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ABSTRACT

In 2019, the Naval Facilities Engineering Command (NAVFAC) deployed its first
smart grid infrastructure in Norfolk, VA, enabling shore commands to meet energy goals
set by the secretary of the Navy. However, with increased functionality and control
comes increased vulnerability to malicious cyber activity. This research aims to address
anomaly detection using an autoencoder neural network as an intrusion detection
mechanism on the NAVFAC smart grid. We built and experimented with multiple
autoencoder structures to identify an optimal model that provides the best results in terms
of precision, recall, and accuracy for the data sets used. We trained our autoencoder on
NAVFAC-provided advanced metering infrastructure (AMI) data. We used the
NAVFAC smart grid data set to simulate 14 different false data injection attacks (FDIA).
Our experiments, performed with Python and TensorFlow, showed that an autoencoder is
an effective instruction detection system (IDS) when the threshold is tuned correctly.
Moreover, our results show that the activation function and optimizer used may affect
performance. Thus, the “best” autoencoder depends on the customer’s needs and the

threat environment.
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CHAPTER 1

Introduction

In response to energy modernization goals initially established by then-Secretary of the
Navy Ray Mabus, the U.S. Naval Facilities Engineering Command (NAVFAC) developed
smart grid infrastructure for select U.S. Naval bases to increase their energy security and
reduce their energy consumption [1]. In 2019, NAVFAC began transitioning facilities from

traditional power grid transmission infrastructure to this modernized smart grid [2].

The Department of Energy (DOE) describes the smart grid as a rebuild of the existing power
grid by incorporating digital technology that enables two-way communication between the
grid operator and its customers [3]. The objective of the smart grid is to increase power
distribution efficiency, reduce operating costs, and provide quick restoration of services

after power disturbances [3], [4].

Figure 1.1 illustrates the differences between the traditional grid and the smart grid. In
a traditional grid, the power flows from the supplier to its consumers without a feedback
mechanism. This architecture requires technicians to manually record data from on-location
meters, a laborious and time-consuming process when troubleshooting issues [2]. In a smart
grid, there is a two-way flow of information. Through the advanced metering infrastruc-
ture (AMI), information regarding the current state of the grid, predicted power demand,
customer information, and other data are exchanged to allow the smart grid to tailor its
use, increasing efficiency and responsiveness [2], [S]. The NAVFAC smart grid achieves
the same objectives as the commercial smart grid, primarily through two means. First, the
two-way communication feature enables the grid to tailor the power distribution to meet
end-user demands, reducing costs while increasing reliability [4]. Second, the NAVFAC
smart grid can remotely monitor its performance or troubleshoot outages through smart
metering technology connected via a wide area network (WAN) [6]. This function helps

NAVFAC maximize grid efficiency and reduce maintenance costs.



Transmlssuon Lines

ry Electricity
Power Plant Long Dmances Dlstnbuhon Lines
. Generates Electricity Carry Electricity
Before Smart Grid: mg To Houses
One-way power flow, / _
simple interactions - i
Translarmer Nelghborhood
Steps UA) Voltage Transformer Transformers On Poles Step
For Transmission Steps Down Voltage Down Electricity Before It

Enters Houses

Hospital
(with own generatar)

After Smart Grid:

Two-way power flow,
mum-stakeho!der

4 8 power station
i '-lﬂ i

_________ -_H
~
] .I T & Apartment
# ' : -. X : e 4 buildings
il B | e
ing T
Adapted from EPRI Presentation by Joe Hughes  ithown I ML i Smarthouse 2
NIST Standards Workshop nerator) Y 3 - (with hydrogen-car W
Apfril 28, 2008 . il qenentor)

Figure 1.1. Power Infrastructure Design Comparison: Smart Grid versus Tra-
ditional Grid. Source: [10].

With the tremendous benefits of a smart grid comes a cost. Every connected device on
the grid becomes a potential target for malicious activity, increasing the attack surface for
nefarious cyber actors [6]. Once protected by isolation and proprietary technologies and
protocols, power grids that transition to smart infrastructure become vulnerable to similar
threats plaguing the Internet [7]. Additional considerations and security measures must be
implemented that were not required in the past. An intrusion detection system (IDS) is one

of many necessary additions [7].

1.1 Research Motivations
As a critical support node to the U.S. Naval fleet, the NAVFAC smart grid is a priority target
for any malicious actor trying to disrupt ship movements or put a valuable asset at risk. If

unmitigated, the NAVFAC smart grid vulnerability introduces an unacceptable risk to Navy



combat readiness. To defend against attacks, smart grid technology must be sophisticated
enough to identify malicious activity and resilient enough to continue operating while

implementing mitigation efforts.

Currently, the state of smart grid cybersecurity is component-specific. Due to the complexity
of the smart grid network and numerous threats, researchers have not established a holistic
approach to smart grid security [8]. In [9], the author presents five cybersecurity categories
for smart grids — process control systems (PCS), smart meter security, power system state
estimation security, smart grid communication protocol security, and smart grid simulation
for security analysis. Our research overlaps with smart meter security and power system

state estimation security.

Smart meter security issues include physical tampering, since the devices are at the end-user
location, and inaccurate data entering or exiting the meter. Power system state estimation
security focuses on the integrity of the data transmitted between the PCS and the smart
meters. Mechanisms exist that can differentiate between corrupted data and normal data.
However, most techniques fail to detect false data injection attacks (FDIA) [9]. An FDIA is
malicious activity designed to manipulate data values. The techniques that do detect FDIAs
require a labeled data set [10]. However, due to the difficulty of detecting FDIAs and their
seldom occurrence in historical data, smart grid training data is highly unbalanced [11].
Our research provides a defense against FDIAs using unlabeled data, filling a gap in smart

grid cybersecurity.

1.2 Contributions
In this thesis, we develop an IDS for the NAVFAC smart grid using unsupervised machine

learning. Specifically, we use an autoencoder neural network to predict anomalous activity.

We chose an autoencoder because of its ability to “learn” the feature space of normal
activity without using labeled training data. Due to the time-consuming nature of labeling
data, it is unreasonable to expect a completely labeled data set from any operator of such an
extensive network. The label-free aspect of unsupervised learning was therefore critical to

our research.

Autoencoders provide an elegant solution to the data set labeling problem. During the

3



training process, the model ingests non-malicious data to determine a baseline threshold,
which delineates between “normal” and “anomalous” data. In post-training, the autoencoder
quickly identifies anomalous activity by comparing the reconstruction error of each input

to the threshold established during training.

Our research used a NAVFAC data set to train an autoencoder. This data set was provided by
the engineers and smart grid program manager at NAVFAC. The data set was generated by
the NAVFAC’s AMI, which is a configuration of smart meters, data management devices,
and a two-way communication network between the central system and the meters [12]. To
the best of our knowledge, this is the first time that anomaly detection research has been

conducted using Navy smart grid data.

To test the autoencoder ability to detect anomalous activity, we introduced FDIAs by
manipulating input values to evaluate the autoencoder performance. Thus, the contributions

of this work are as follows:

* Design of a network intrusion mechanism based on an autoencoder neural network.
We used and processed a novel, real-world NAVFAC data set for training.

* Provide an unsupervised machine learning framework that overcomes the unbalanced
training data set problem in smart grid research.

» Evaluation of the developed autoencoder on 14 different data sets, representing vary-
ing degrees of FDIA to show the model performance.

* Compare the developed autoencoder with a deeper model given in [11] to show
performance differences and tradeofts.

* Demonstrate that autoencoders can recognize full-scale attacks (targeting every input

parameter) and more nuanced attacks (targeting specific input nodes).

This thesis supports funded research through the Office of Naval Research to study enhancing

the cyber resiliency of the Naval smart grid.

1.3 Thesis Organization
The remainder of this thesis is organized as follows: In Chapter 2, we discuss related re-
search and the fundamentals of autoencoders to include activation functions and optimizers.

Chapter 3 describes the unique characteristics of our NAVFAC data and the manipulations

4



used to make the data set usable. It also provides a high-level comparison between the
NAVFAC smart grid and the commercial smart grid. In Chapter 4, we provide an overview
of the various test autoencoders built through the course of the research and identify the best
performing model. We explain how an open-source Modbus data set was used on our autoen-
coders for benchmarking. Furthermore, we give an in-depth review of the best performing
autoencoder and the comparison model described in [11], highlighting the differences be-
tween the two models. Chapter 5 describes and analyzes the autoencoder simulation results
on the Modbus and NAVFAC data sets. We also show the comparative results between the
developed autoencoder and the deep model given in [11]. Chapter 6 concludes the thesis

and identifies future research opportunities.
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CHAPTER 2:
Related Work

Researchers and academics have proposed several techniques to detect anomalous or ma-
licious network traffic. This chapter addresses related work that focuses on the challenges
inherent to network and power systems data sets and the different methods used for anomaly

detection.

In [13], the author used a collection of Modbus datasets, produced by the University
of Montreal using a supervisory control and data acquisition (SCADA) sandbox, similar
to that of the Navy smart gird, to test the operability of supervised machine learning for
anomaly detection in network activity. Using a Bayesian classification and machine learning
algorithm, the author tested the model on seven different d ata sets, representing various
attacks on the grid. The results showed that anomaly classification accuracy is affected by the
size of the training data set and the amount of concentration of the malicious packets [13].
Furthermore, [5] used a k-nearest neighbor (KNN) machine learning approach to detect
cyberattacks on a simulated network created by the Canadian Institute of Cybersecurity.
The author showed that by optimizing the k-value, the KNN model could accurately identify
and classify malicious activity. However, both researchers note the limitation of their data
sets and the difficulty of acquiring labeled real-world data [5], [13].

To combat the data set labeling challenge, [11] introduced an unsupervised machine learn-
ing approach to anomaly detection using an IEEE 118-bus system dataset. The researchers
developed an autoencoder to detect FDIAs using an hourly power load data set from 32 Euro-
pean countries. The researchers calculated “normal” power system states and corresponding
measurements using optimal power flow solutions [11]. The authors demonstrated that the
proposed autoencoder is superior to current anomaly detectors deployed on the power grid.
With a detection probability in the mid to high 90%, the researchers showed that their pro-
posed neural network does not need attack data for training. However, this data set
consisted of macro-level power generation parameters (total power generation, total power
consump-tion, installed capacity, price, etc.) rather than power analysis within a specific

smart grid.



This thesis builds upon the research in [11] to address anomaly detection within a smart
grid.

2.1 Background

2.1.1 Autoencoder Fundamentals

The model used in this research is an unsupervised machine learning algorithm called an
autoencoder. An autoencoder is a neural network designed for representation learning by
using a hidden layer (or “bottleneck™) in the network, forcing a compressed knowledge

representation of the original input [14].

To achieve representative learning, autoencoders apply backpropagation, setting the target
values equal to the inputs. By defining the desired output as the input values, an autoencoder
can train without using labeled data. This process performs dimensionality reduction by
compressing each layer, in contrast to principal component analysis (PCA) which performs
one massive transformation [15]. In [16], researchers demonstrated that autoencoders could

detect subtle anomalies that linear PCA missed.

A basic autoencoder includes an encoder, bottleneck, and decoder as shown in Figure 2.1.
The encoder compresses the input data into a latent space representation, reducing the
dimensionality and distorting the original data. The bottleneck represents the compressed
input, retaining only relevant information from the input [15]. The decoder decompresses
the data back to the original dimension. The data is reconstructed from the latent space

representation, which produces a lossy reconstruction of the original data [15].

To explain the learning process, consider an autoencoder with only an input and output

layer. The learning process is defined by:

h=0(Wyx+b,,) 2.1

z=0c(Wp h+bp,) (2.2)

where o is the nonlinear activation function, b is the bias, and W is the weight of the neural
network [17].
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v 1

Figure 2.1. Single Layer Autoencoder Structure. Source: [16].

The autoencoder uses an activation function to transform the input vector x into a hidden

representation  [17].

After the input vector is compressed into a hidden representation, we calculate the recon-
struction error or loss function. For this research we use the mean squared error (MSE)

regression model. The MSE is given by:

1 & )
r=— > (xi—z) (2.3)
3

where the difference between the reconstructed vector z (the model’s prediction) and the
original input vector x (ground truth) squared. The average is then taken across the entire

training set.

To find the delta ¢ after calculating the reconstruction error, we use:



6 =o' (x;)r; (2.4)

where o’ is the derivative of the activation function. For an autoencoder with multiple
hidden layers, the delta is calculated at each layer and updated accordingly. This process
continues until just before the input layer [17], [18]. The learning process updates parameters

until the model converges [17].

We chose an autoencoder because of its ability to learn without labeled data and its simplicity.
Autoencoders are easy to tune and experiment with, making them an excellent foundation for
additional research on this topic. We tested various autoencoder structures for this research,
experimenting with adding layers, varying compression amounts, and using different types
of layers. The models and their performance are further discussed in Chapter 4 and 5,

respectively.

2.1.2 Activation Functions: Sigmoid versus ReLLU

Artificial neural networks (ANN) were originally designed to mimic biological neural
networks [19]. Whereas biological neurons receive electrical signals, an ANN neuron
receives weights and biases, as described in Section 2.1.1. After the input layer, the remaining
layers use an activation function to transform the weighted sum of the inputs into an output.
For our tests, the model used either sigmoid or rectified linear unit (ReLU) activation
from the first to the penultimate layer. We wanted to test whether there was a significant
performance enhancement using one or the other. The output layer uses the linear activation

function because we want unbounded output values.

Sigmoid Activation
Sigmoid activation is a common activation function used for shallow ANNs. It is called a
logistic function because it outputs values between zero and one. The sigmoid function is

given by:

9 == (2.5)
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and its derivative is defined by:

e—x

- 2.6
(1+ e‘x)2 (2.6)

g (x) =

as seen in Figure 2.2.

1 T T L
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Figure 2.2. The Graphic Depiction of Sigmoid Function and Its Derivative.
Source: [18].

Since the sigmoid function is a continuous function, it is differentiable everywhere, which
is desirable. However, the literature indicates that sigmoid should not be used for deep ANN
due to a saturation issue. Specifically, sigmoid produces zero gradient in the limit. The limit
for sigmoid’s derivative is defined by [19]:

lim ¢'(x) =0 2.7)
X—+00
lim ¢/(x) =0 (2.8)

11



as seen in Figure 2.2. This phenomenon is called the vanishing gradient, which restricts the
contributions of the first several layers to the learning process during training. In response

to this issue, researchers experimented with other activation designs [19].

ReLU Activation
One alternative to sigmoid is ReLU activation, which addresses the vanishing gradient

problem. The RelLU function is given by:

x, ifx >0,
g(x) = max(0,x) = (2.9)
0, ifx<O,
and its derivative is defined by:
, 1, ifx >0,
g(x) = (2.10)
0, ifx<0,

as shown in Figure 2.3. Rather than restricting the output to between zero and one, ReLU
activation output is either zero, if the input x is negative, or the output equals x, if x is
positive [19]. Most academic literature favors the ReLU activation function because of its
ability to converge quickly, overcome local optimization, and resolve the vanishing gradient

descent problem [19].

12
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Figure 2.3. The Graphic Depiction of ReLU Function and Its Derivative.
Source: [18].

2.2 Optimization Function: Stochastic Gradient Descent
(SGD) versus Adaptive Moment Estimation (Adam)

After the activation function is applied to the last layer of the encoder, the values transfer
to an optimizer. In machine learning, optimizers are combined with a backpropagation
algorithm to minimize the cost of computing the gradient [20]. Optimization functions
are designed to find the global minimum, the lowest point on a curve as depicted in
Figure 2.4. We experimented with two optimizers — stochastic gradient descent (SGD) and
adaptive moment estimation (Adam). With SGD, the network parameters are updated as the
optimizer processes each mini-batch of training data as opposed to adjusting after the entire
training data set has been evaluated. Adam is a follow-on to SGD that endeavors to increase
efficiency. Adam gives each parameter its own learning rate that is adapted as the training
progresses based on previous adjustments, enabling Adam to find the global minimum more

quickly [21]. Literature indicates that Adam performs better during training but, in some
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cases, generalizes worse than SGD [21].
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Figure 2.4. The Graphic Representation of Local and Global Minimum.
Source: [22].

2.3 Chapter Summary

The literature has shown that autoencoders are efficient, powerful unsupervised machine
learning models. Our research incorporates commonly used activation and optimization
functions to increase generalizability while comparing performance across various combi-

nations.

14



CHAPTER 3:

Dataset and Preprocessing

In this chapter, we discuss our methodology to process the NAVFAC AMI data set. We begin
by providing a comparison of a commercial smart grid to the NAVFAC smart grid. After
describing the grids, we detail the specifics of the NAVFAC data set and the manipulations
used to convert the data into a usable format. We conclude the chapter by explaining how
FDIA was used in this thesis.

3.1 NAVFAC Dataset

One of the key elements for smart grids is the AMI. The AMI consists of three sub-systems:
data management system, communication network, and smart devices [22]. Figure 3.1
displays a generic view of this structure. We use Figure 3.1 to compare the commercial
smart grid infrastructure to the NAVFAC smart grid system.

~
»Water Meter s a5y
- ~
~Heat Meter ~=o v

’

» Other Sensors 7y
4
g ’

Py - - — i r
~Electricity o _.--- :;\. - i"
Meter 1 ROl

2

~Gas Meter &

»Water Meter N ‘\

~Heat Meter }" SIS

~Electricity -~ gt o
Meter g!r oy

»Other Sensors L

Home area network Neighborhood area network Wide area network
(HAN) (NAN) (WAN)
~Gas Meter .".‘ E\ »Control Center unit

SRR
& Cloud A
- Services 4

Figure 3.1. Multi-layer Smart Grid Communications Network. Source: [28].

Figure 3.2 displays the architecture and communication flow for the Navy smart grid
provided by NAVFAC. At the bottom of the three ovals - Base X, Base Y, and Base Z —
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is the AMI. The AMI meters and base computer application software (BCS), the software
designed to facilitate two-way communication, record and communicate data collected at
each site. This function corresponds to the home area network (HAN) shown in Figure 3.1.
A HAN enables multiple devices within the home to communicate with the grid, helping to
tailor power supply to meet the demand [23]. Navy smart meters could transmit data from

buildings, ships, piers, or other critical assets.

Figure 3.2. High Level View of the NAVFAC Smart Grid System Architecture.
Data flow paths between various devices are also shown. Source: [2].

In the Navy smart grid, the AMI devices communicate to operational services. This exchange
corresponds to data concentrators in the generic structure shown in Figure 3.1. These devices
aggregate the data collected from each meter in a determined area. Commercial smart grids
often refer to this region as neighborhood area networks (NAN), as depicted in Figure 3.1.
The Navy smart grid combines the functions of the HAN and NAN into what it calls the
base area network (BAN). The BAN provides a high-level view of communication flows

and activity within the base’s smart grid from the AMI to the edge device.

After the operational services receive the data, the information is transmitted to the control
system demilitarized zone (DMZ). The DMZ attempts to filter out malicious traffic while
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allowing legitimate traffic into the network. The DMZ is the boundary between the Navy
smart grid and the Internet. This boundary has its own set of challenges that is beyond the
scope of research presented in this thesis. The final route from the DMZ to the Internet
aligns with the WAN displayed in Figure 3.1. The data set used in this research applies to
information exchanged from the AMI to the operational services.

For this research, we used a NAVFAC AMI time series data set. The data set includes 35
metering statistics (power, current, voltage, phase, frequency, etc.) on 1,200+ AMI devices.
The system recorded meter readings once an hour every day from the beginning of January
2020 to the end of January 2021, equating to 9,528 inputs per meter statistic. Table 3.1
displays a subset of the NAVFAC data input features used in our experiments. Specifically,
the table displays 41 samples of the three-phase current (columns A, B, and C), calculated
neutral current (column D), and frequency (column E) for one AMI meter. A full list of the

data set input features is provided in Appendix A.
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Table 3.1. Subset of NAVFAC Data and Input Features - (from left to right)
three-phase current, neutral current, and frequency.

A B [ ) 3
ML_CH_EL_BL_CAD108_1_AmpsA ML_CH_EL_BL_CAD108_1_AmpsB ML_CH_EL_BL_CAD108_1_AmpsC ML_CH_FL_BL_CAD108_1_AmpsN ML_CH_EL_BL_CAD108_1_Frequency
19.80223316 28.04912444 28.07564029 10.26442111 59.99874222
20.08867897 29.6083119 31.03246116 10.09458527 60.00093188
19.31412804 28.75936009 30.81739706 9.749406079 60.00312154
2137585138 29.08793374 29.24320396 9.404226884 60.00531501
19.4365944 29.71736718 30.99198873 9.059047689 60.00750467
19.42904961 28.39457105 28.63253806 8.713868495 60.00969814
19.16327852 29.0129244 28.46709203 8.3686893 60.0118878
21.33285703 30.30423428 28.74542657 8.023510105 60.01407746
19.23081021 32.92819507 28.99151115 7.678330433 60.01589709
19.31927049 29.34479837 28.19540429 7.668867982 60.0155385
21.74381065 30.1420508 29.87955905 7.73688996 60.01517992
19.31481622 28.23499972 28.55614818 7.804912414 60.01482133
19.60037663 26.50845905 28.1557669 7.872934392 60.01446275
20.50251539 27.59935798 28.67150825 7.94095637 60.01410416
20.82830276 31.68289663 28.89007619 8.008978824 60.01374558
21.44134371 32.96617496 29.08904783 8.077001279 60.01338699
19.34298956 29.27197946 29.55821127 8.145022779 60.01316192
19.42616472 28.81698243 30.23903358 8.514430313 60.01370362
19.18879147 28.1380505 28.30517502 8.931898743 60.01424531
20.06196801 30.32682457 29.12753966 9.349367174 60.014787
20.66791946 33.76398128 35.28367612 9.766835605 60.01532869
20.71311053 33.40337797 29.82834641 10.18430404 60.01587039
22.35909867 33.8992188 30.81066844 10.60177247 60.01641208
22.24169084 34.98733565 29.58121488 11.0192409 60.01695377
22.6666724 35.10792001 30.97708379 11.43670838 60.01730473
21.30970864 34.80672452 29.55660831 11.41746304 60.01675922
21.19914693 34.18040467 30.12945798 11.38890306 60.01621753
20.55455048 33.3291806 35.28059191 11.36034309 60.01567583
20.36251098 32.54070664 30.55274006 11.33178217 60.01513414
21.94516993 31.84016215 30.36826213 11.3032222 60.01459245
19.92621435 32.71579766 30.35516996 11.27466223 60.01405076
27.36852663 36.63082285 32.45240582 11.24610226 60.01350906
40.99850568 37.87734868 38.45874182 11.20643187 60.01223113
39.09131613 41.26671477 36.00549959 10.79661294 60.00822184
27.8111973 40.94595236 36.9662594 10.38679401 60.00420874
43.17045477 37.31666383 35.29385193 9.976975074 60.00019945
33.18045227 3351311932 35.28742334 9.567156141 59.99619017
31.20373573 36.13684093 35.51639367 9.157337208 5999218088
40.96486048 3453898121 36.20859611 8.747518276 59.98817159
20.80058051 29.2923017 33.14574752 8.337698389 59.98416231
19.17330536 30.29594257 28.24703025 8.037771493 59.98089308

To run our models, we used TensorFlow. TensorFlow is an end-to-end open-source machine
learning platform designed to build and train machine learning models using high-level
APIs. TensorFlow enabled us to quickly test and debug our models, resulting in rapid model
design and final product development [24]. The scripts were written in Python for ease of

use and portability. Code is provided in Appendix B through F.

3.2 Data Preprocessing
NAVFAC provided 13 time series data sets as .xml files. Each dataset represents the month

the data was collected. The data was formatted such that the first column identified the
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device and the meter statistic. The corresponding row values were the readings taken every
hour that month.

To get our data in a usable format, we manipulated the NAVFAC spreadsheets. In the
original spreadsheets, the first column represented the AMI device statistic and the top row
corresponded to the timestamp data — the time the reading was recorded, as shown in Table
3.2. When using spreadsheets in Python, the columns are the input parameters. Since we
wanted the AMI device readings to be the input parameters, we transposed the files. This
manipulation allowed us to remove the timestamp, which was irrelevant for our experiments,

and format each column to correspond to a meter statistic.

After dropping the time series data, we removed all input features that were not statistical
values ("yes’/’no’ entries). This reduction compressed our feature input space from 35 inputs
to 26 per AMI. From there, we converted all input values that had error readings (such as
"I/0 Timeout’” or ’No Data’) to the average of its corresponding column. We converted
approximately 16% of the data due to error readings. Following the data manipulation, we

concatenated the 13 .xml files into one file.
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Table 3.2. Subset of the original NAVFAC data set with time series informa-
tion across the top row and the AMI metering statistics in the first column.

A B c D 3 F
Name 01-Jan-20 00:00:00 01-Jan-2001:00:00 01-Jan-2002:00:00 01-Jan-20 03:00:00 01-Jan-20 04:00:00
ML_CH_EL_BL_CAD108_1_AmpsA 18.00185013 18.26225281 17.55812263 19.43239784 17.66945457
ML_CH_EL_BL_CAD108_1_AmpsB 25.49894905 26.91637802 26.14461136 26.44331169 27.01551819
ML_CH_EL_BL_CAD108_1_AmpsC 25.52305412 28.21104622 28.01553535 26.58446503 28.17425346
ML_CH_EL_BL_CAD108_1_AmpsN 10.26431847 10.09448433 9.749308586 9.404132843 9.0589571
ML_CH_EL_BL_CAD108_1_BatteryStatus 0 0 0 0 0
ML_CH_EL_BL_CAD108_1_Frequency 59.99814224 60.00033188 60.00252151 60.00471497 60.0069046
ML_CH_EL_BL_CAD108_1_INTERVALKVARDEMAND 1.317835093 1.325741768 1.334745765 1.343749762 1.352753639
ML_CH_EL_BL_CAD108_1_INTERVALKWDEMAND 8.39419651 8.390296936 8.386398315 8.382499695 8.378601074
ML_CH_EL_BL_CAD108_1_KVAR 1.207982063 1.220406771 1.244156957 1.267907023 1.29165703
ML_CH_EL_BL_CAD108_1_KVARHD 0.335000008 0.335000008 0.335000008 0.335000008 0.335000008
ML_CH_EL_BL_CAD108_1_KVARHR 0 0 0 0 )
ML_CH_EL_BL_CAD108_1_KW 8.149680138 8.18230629 8214933395 8247559547 8.280185699
ML_CH_EL_BL_CAD108_1_KWHD 2.086999893 2.086999893 2.086999893 2.086999893 2.086999893
ML_CH_EL_BL_CAD108_1_KWHDTOTAL 383700.6715 383709.1141 383717.5567 383725.9993 383734.4418
ML_CH_EL_BL_CAD108_1_KWHR 0 0 0 0 0
ML_CH_EL_BL_CAD108_1_KWHRTOTAL 0 0 0 0 0
ML_CH_EL_BL_CAD108_1_MAXKVARDEMAND 2.327378035 2.327378035 2.327378035 2.327378035 2.327378035
ML_CH_EL_BL_CAD108_1_MAXKWDEMAND 19.34158897 19.34158897 19.34158897 19.34158897 19.34158897
ML_CH_EL_BL_CAD108_1_PhAB_Voltage_PA 29.87999916 29.87999916 29.87999916 29.87999916 29.87999916
ML_CH_EL_BL_CAD108_1_PhA_Current_PA 5.070000172 6.449999809 4150000095 5.190000057 12.31000042
ML_CH_EL_BL_CAD108_1_PhA_Voltage_PA 0 0 0 0 0
ML_CH_EL_BL_CAD108_1_PhBC_Voltage_PA -89.73000336 -89.73000336 -89.73000336 -89.73000336 -89.73000336
ML_CH_EL_BL_CAD108_1_PhB_Current_PA -107.9700012 -106.6100006 -106.7200012 -107.4100037 -107.6399994
ML_CH_EL_BL_CAD108_1_PhB_Voltage_PA -119.5899963 -119.5899963 -119.5899963 -119.5899963 -119.5899963
ML_CH_EL_BL_CAD108_1_PhCA_Voltage PA 150.3500061 150.3500061 150.3500061 150.3500061 150.3500061
ML_CH_EL_BL_CAD108_1_PhC_Current_PA 125.9199982 128.8000031 126.1699982 127.3799973 126.3700027
ML_CH_EL_BL_CAD108_1_PhC_Voltage_PA 120.3199997 120.3199997 120.3199997 120.3199997 120.3199997
ML_CH_EL_BL_CAD108_1_PowerFactor 0.98299998 0.98299998 0.98299998 0.987999976 0.987999976
ML_CH_EL_BL_CAD108_1_THDA 10.94 10.94 10.94 10.38 10.38
ML_CH_EL_BL_CAD108_1_VoltsA 121.7668457 121.7091293 121.6483688 121.5876007 121.5268402
ML_CH_EL_BL_CAD108_1_VoltsAB 210.5512543 210.4061584 210.2513733 210.0965881 209.9418182
ML_CH_EL_BL_CAD108_1_VoltsB 120.9006348 120.8249588 120.7286377 120.632309 120.5359802
ML_CH_EL_BL_CAD108_1_VoltsBC 209.3505859 209.1885529 209.0265045 208.8644714 208.7024384
ML_CH_EL_BL_CAD108_1_VoltsC 121.0372696 121.0324554 121.0365982 121.040741 121.0448914
ML_CH_EL_BL_CAD108_1_VoltsCA 211.0124054 210.8993988 210.7797852 210.6601563 210.5405273
ML_CH_EL_BL_CAD109_1_AmpsA 30.19542694 27.83498955 24.05105782 28.16897202 39.9201622
ML_CH_EL_BL_CAD109_1_AmpsB 9.992212296 11.78724957 10.60418606 10.05705929 10.78899765
ML_CH_EL_BL_CAD109_1_AmpsC 2264203644 18.66838727 6.604632854 24.64419937 19.07324403
ML_CH_EL_BL_CAD109_1_AmpsN 15.75883198 14.8468256 13.49901581 12.15120697 10.80339718
ML_CH_EL_BL_CAD109_1_BatteryStatus 0 0 0 0 0
ML_CH_EL_BL_CAD109_1_Frequency 59.99948502 59.99857712 59.99766541 59.99675751 59.99584579
ML_CH_EL_BL_CAD109_1_INTERVALKVARDEMAND -0.050591383 -0.044580456 0.005211 0.055002455 0.104793906

Once the dataset was in one file, our last step was the insertion of an FDIA. To simulate
an FDIA, we increased 10% of the data by a certain percentage, mimicking the research
performed in [11]. For this research, we performed two types of FDIA. The first attack
selected all input values and increased them from 1%-10%, incrementing by one. The range
started at 1% to find the smallest percent increase that was detectable with acceptable results.
It ended at 10% because our experiments showed that the performance plateaued at this
upper threshold value. The results of these experiments will be discussed in further detail

in Section 5.3. The second attack increased all voltage, current, and power values using the
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power equation defined by:

P=VI 3.1

where V is voltage and [ is current. This attack changed roughly 40% of the input features.
The voltage and current values were increased from 2%-5%, incrementing by one, with
the power values corresponding to the equation. The percent increase for the second attack
started at 2% because a 1% increase would have negligible effect on the power values.
Furthermore, the percent increase for voltage and current stopped at 5% because the cor-
responding power change in that scenario is a 25% increase. We determined that a power

increase above 25% would no longer constitute a nuanced FDIA.

To separate the data between normal and anomalous activity, we added a ‘Malicious’ column
to the spreadsheet. For this column, we define 1 and O to represent ‘Malicious’ and ‘Normal’,
respectively. Therefore, the ten percent of data whose values were increased to mimic an
FDIA, a 1 was placed in the ‘Malicious” column. The remainder of the data received a 0 in

that column.

3.3 Chapter Summary

Manipulating data into a usable form is critical to machine learning. The NAVFAC data
set required removing the time series information, eliminating non-numeric values, and
increasing certain portions of the data to mimic an FDIA. The next chapter will describe

the models used to process this data.
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CHAPTER 4

Proposed Autoencoder Models

To establish a baseline for this research, several autoencoders were built and tested. Before
training and testing the models on the NAVFAC data set, the autoencoders were tested
on an open-source Modbus data set to determine the best performing model. Performance
was determined by model accuracy, recall, and precision scores. Once the best performing
model was identified, we trained the model on the NAVFAC AMI data set. We compared
the performance of our model to the autoencoder presented in [11]. The autoencoder
in [11] was also trained on the NAVFAC AMI data set for accurate comparison. We chose
the autoencoder in [11] because it proved effective at detecting anomalous activity on a
traditional power grid data set and its structure is deeper than the models generated in this

research.

The remainder of this chapter discusses the open-source Modbus data set initially used for
benchmarking. This is followed by discussion on the various test autoencoders built and a
description of the best performing model. We also provide an overview of the autoencoder

presented in [11].

4.1 Modbus Data Set

Researchers from the University of Montreal generated a Modbus data set via a SCADA
sandbox, using electrical network simulators [13]. The system design used a master terminal
unit (MTU), which was responsible for maintaining information about the state of the
physical process, and remote terminal units (RTU), which controlled the communication
with the MTU [13]. The sandbox communication scheme used the Modbus protocol, a
popular SCADA protocol similar to the one used in the NAVFAC smart grid [4]. Modbus
performs continuous polling of each smart meter, relaying that information from the RTU
to the MTU. The information exchanged can be viewed and interpreted by a human operator
[13].

The Modbus data includes eleven separate SCADA data sets. Six data sets contain only

normal network traffic, and five data sets have a mix of legitimate and malicious network
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traffic. From these data sets, our research selected four mixed data sets. These four data
sets are described in the first four rows in Table 4.1. Additionally, for the purpose of our
research presented in this thesis, we created another data set that combined all the data sets
with mixed network traffic. This is denoted as the Combined Data Set and is shown in the
last row of Table 4.1.

Table 4.1. Description of Modbus Data Sets. The first four rows of data sets
were provided by the researchers in [30]. The Combined Data Set, shown in
the last row, was compiled specially for the research in this thesis. Source:

[30].
Malicious Number of
Name Description Activity entries
and
Percent
Moving, two.files Modbus, 3 minutes of regular Modbus traffic including polling only — 1 Yes: 3319
6RTU MTU, 6 RTU, and 10 seconds polling interval 2.2%
11 minutes of regular Modbus traffic, including polling and 11,166
manual operation — 1 MTU, 6 RTU, and 10 seconds polling Yes:
6RTU_with_operate interval. It also includes sending Modbus write operation from 0.09%
a compromised RTU using Metasploit proxy functionality and
the proxychains tool
1 minute of regular Modbus traffic, including polling and 1,426
manual operation — 1 MTU, 6 RTU, and 10 seconds polling Yes:
6RTU_with_operate interval. It also includes sending an EXE file from a 8%
compromised RTU through a Metasploit meterpreter channel
5 minutes of regular Modbus traffic, including polling and 1,856
manual operation — 1 MTU, 6 RTU, and 10 seconds polling Yes:
6RTU_with_operate interval. It also includes using an exploit (ms08_netapi) from a 64%
compromised RTU to compromise another RTU using
Metasploit
Amalgamation of all the malicious activity generated by the Yes:
Combined Data Set other data sets. 7% 17,767

4.2 Test Autoencoders

To determine the best performing model (trained on the Modbus data set described in the
previous section), our research experimented with several different structures. This section
discusses their general design and the thought-process behind the attempts. The results for

each model are discussed in Chapter 5.
Our first experiment was a two-layer autoencoder that compressed the input features by half
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at the first layer and then to two nodes at the second layer, as shown in Figure 4.1. The
reasoning behind this structure was to force the autoencoder to make a binary decision —
either the input was normal or malicious. However, this autoencoder produced poor results.

We refer to this model as Test Autoencoder Model 1.

Input Hidden Layers Output

Figure 4.1. Test Autoencoder Model 1.

For the second autoencoder, another layer was added. The model compressed the inputs
by half, then to ten nodes, and then to two nodes as depicted in Figure 4.2. The rationale
for the additional layer was to expand the depth of the model, increasing the number of
opportunities to learn the latent space representation while maintaining a binary bottleneck.

However, the model failed to improve. We refer to this model as Test Autoencoder Model 2.
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Figure 4.2. Test Autoencoder Model 2.

Since the Test Autoencoder Model 2 did not improve from the Test Autoencoder Model
1, we reverted to a two-layer structure. The third model (referred to as Test Autoencoder
Model 3) kept the same first layer but changed the compression at the bottleneck. Rather than
two nodes, like the previous two models, the second layer was compressed to five nodes,
as shown in Figure 4.3. This change challenged the assumption that the best autoencoder

needed to be compressed to a binary decision space.
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Figure 4.3. Test Autoencoder Model 3.

The Test Autoencoder Model 3 performed significantly better than the previous models.
From this point, we ran two more tests - Test Autoencoder Models 4 and 5. The first
layer remained the same, and the second layer was compressed to four nodes for the Test
Autoencoder Model 4 and to three nodes for Test Autoencoder Model 5. The performance
across Test Models 3, 4, and 5 were similar. However, after numerous tests, Test Autoencoder
Model 4 consistently produced slightly better accuracy, recall, and precision scores. For the
remainder of this thesis, we refer to this best performing model as the Optimal Model. The

Optimal Model is discussed in more detail in the next section.
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4.3 Optimal Model

The Optimal Model includes two dense layers of compression and then the reconstruction.
The input layer is reduced by half and then compressed to four nodes. From there, the model
expands using the same dimensions as the encoding layer back to its original size. Figure
4.4 provides a structural diagram of the Optimal Model.

Input Hidden Layers Output
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Figure 4.4. Optimal Autoencoder Structure - Four Hidden Layers.

The model used either ReLU or sigmoid activation from the first to the penultimate layer.
We wanted to test whether there was a significant performance enhancement using one
or the other. For ReLLU activation, the output is either zero, if the input x is negative, or
the output equals x, if x is positive. Sigmoid activation restricts the output between zero
and one [19]. Most academic literature favors the ReLLU activation function because of its
ability to converge quickly, overcome local optimization, and resolve the vanishing gradient

descent problem [19]. The output layer uses the linear activation function because we want
unbounded output values.
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We also experimented with two optimizers — Adam and SGD. Optimizers are designed
to reduce the overall loss function and improve accuracy by modifying the weights and
learning rate. Adam gives each parameter its own learning rate that is adapted as the training

progresses. Conversely, SGD uses a scalar learning rate uniformly for all parameters [21].

Moreover, in TensorFlow, our models used a batch size of 128 and a learning rate of 0.01
for the Adam optimizer or 0.001 for the SGD optimizer. The model ran for between 700
and 1,500 epochs depending on the data set. We used the ’early stop’ callback function to

prevent overfitting.

We must note that this model achieves optimality in terms of precision, recall, and accuracy
for the data sets specifically used in this thesis. Model performance may change with
different data sets, and therefore we do not extrapolate our definition of optimality to other

data sets.

4.4 Deep Model

The Deep Model autoencoder was developed in [11] and is used for comparison against the
Optimal Model discussed in Section 4.3. The Deep Model autoencoder includes four dense
layers of compression and decompression, as described in [11]. Using the powers of two,
the compression begins at 28 (256) and decrements the exponent value by one at each layer
until it reaches 2° (32). The decompression phase uses the inverse of this process. Figure
4.5 illustrates the architecture of the Deep Model.

Like the Optimal Model, the Deep Model used either sigmoid or ReLLU activation from the
first to the penultimate layer. Similarly, the output layer used the linear activation function
because we wanted to compare its output values with the Optimal Model. The Deep Model
used the same batch size and learning rates for each of the optimizers as the Optimal Model.
The model ran for a similar number of epochs as the Optimal Model, but it took two to five
times longer to converge. The time it takes a model to converge is an important consideration
in a real time system. Since it has more layers and compression, the Deep Model will always

run slower than the Optimal Model, despite all other parameters being equal.
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Figure 4.5. Deep Autoencoder Structure - Eight Hidden Layers.

4.5 Model Operation

To start the machine learning process, we segmented the data into two sets. One data set
contains only normal activity data for training, and the other includes both normal and
malicious activity data for testing. This process is shown in Figure 4.6. Once the training
data is input into the model, the autoencoder tries to replicate the input values as its output,
minimizing the reconstruction error, as described in Chapter 3. The model will continue

training until the model converges or the last epoch runs.

To perform anomaly detection with an autoencoder, we must calculate a threshold. To
determine the threshold, we feed only normal activity data into the model. For this research,

we used the MSE as the loss function to calculate the reconstruction error.
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Figure 4.6. The Unsupervised Machine Learning Training and Testing Data
Flow Process. Source: [15].

After the model calculates the MSE, the scores are rank-ordered. Next, we determined
whether the MSE values are two standard deviations or greater from the average. If so,
we removed those values. The process of removing the tail values in the distribution curve
accounts for any strange but still normal data that entered the model. If we used the
highest reconstruction error without removing the outliers, we might set an artificially high
threshold, degrading model performance.

Once the tail values are removed, the MSE scores within two standard deviations are rank-
ordered with the maximum value (the highest reconstruction error within the set) established
as the threshold [25]. The autoencoder labels the input values with reconstruction errors

above the threshold as 'malicious’ and values below the threshold as 'normal.’

4.6 Chapter Summary

We built multiple models and identified the best performer, the Optimal Model, using a
Modbus data set. The Optimal Model consists of four hidden layers. We also introduced a
Deep Model discussed in [11] that we will use as a comparative performance benchmark.
The Optimal Model and Deep Model will be trained on the NAVFAC data set. The results

are discussed in the next chapter.
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CHAPTER 5:
Results and Analysis

This chapter reviews the results of the experiments we conducted on the Modbus data set
and the NAVFAC data set. The chapter begins by discussing the metrics used to determine
the performance of our models. To help explain the metrics, we provide two graphical
representations to visualize performance on a specific data set. Next, the test model results
on the Modbus data set are discussed, highlighting the best performing autoencoder - the
Optimal Model. The chapter concludes by comparing the results of the Optimal Model and
the Deep Model on the NAVFAC data set and providing recommendations for employment

in the Naval smart grid.

5.1 Data Analysis

Given that our autoencoder detects anomalous activity, the metrics of concern are accuracy
and recall while maintaining an acceptable precision. Accuracy is the ratio of correctly

labeled events to the total number of events. Recall is given by:

Ip

Recall =
ecd tp+ fn

5.1

where the ratio of the total true positive values (zp) predicted to the sum of true positive
values and the total number of false negative numbers ( fn).
Precision is defined by:

tp
tp+fp

Precision = 5.2)

where the ratio of the total true positives values (zp) predicted to the sum of true positive

values and the total number of false positive values (fp) [26].

For an IDS, operators prefer an increased number of false positives (normal activity labeled
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malicious) over false negatives (malicious data labeled normal). However, the model should

not overtax an operator or system with excessive false alarms.

To help visualize the autoencoder performance and illustrate how to calculate recall and
precision, two figures are provided. Figure 5.1 displays plotted predictions for one NAVFAC
data set using the Optimal Model. The red line (threshold) represents the MSE after training
on normal data only. The line divides the graph into two sections. Any error values above
the line is predicted ‘malicious’, while everything below the line is predicted ‘normal.’
Orange and blue circles represent malicious and normal data, respectively. Blue circles
plotted above the threshold are false positives, while orange circles below the threshold
are false negatives. As shown, the model performed extremely well. It identified most of
the anomalous activity, producing a small number of false negatives, without triggering
too many false positives. The confusion matrix in Figure 5.2 shows the total number of
true positives (top left), false positives (top right), false negatives (bottom left), and true
negatives (bottom right).
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Figure 5.1. The Graphic Depiction of the Optimal Model Separating Data
and Plotting Predictions on one NAVFAC Data Set.
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Figure 5.2. Confusion Matrix of the Optimal Model trained on one NAVFAC
Data Set.

5.2 Modbus Model Results

This section describes the performance of the various test autoencoders that were discussed
in Chapter 4. The results represent the performance of the test models trained on the
Modbus data set [13]. The results for Test Autoencoder Model 1 (refer to Figure 4.1 for
model structure) and Test Autoencoder Model 2 (refer to Figure 4.2 for model structure)
are shown in Table 5.1 and Table 5.2, respectively. These models were by far the worst-
performing autoencoders. Neither model achieved a 90% or better across accuracy, recall,
and precision for any data set. Furthermore, they performed exceptionally poorly on the
two most critical data sets - “6RTU with operation” and “Combined data” (as shown in
Table 4.1). The “6RTU with operation” is the only data set with 50+% of the data labeled
malicious. The “Combined data” represents the entirety of all normal and malicious data

from the Modbus data set. This data set is most emblematic of a real-world environment.
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The performance of Test Models 3 (refer to Figure 4.3), 4 (refer to Figure 4.4), and 5
improved significantly. Their results are shown in Table 5.3, Table 5.4, and Table 5.5,
respectively. All three models scored mid to high 90% on the three metrics for multiple
data sets. The only data set that the three models performed poorly on was “Send a fake
command Modbus RTU.” This data set is highly unequal; only 0.09% of the 11,000+ data
points were malicious. Due to this imbalance, the autoencoders were heavily penalized
for a few mistakes, degrading results considerably. However, all three models performed
exceptionally well on the two most important data sets - “6RTU with operation” and
“Combined data”. Although Test Autoencoder Models 3, 4, and 5 performed similarly, Test
Autoencoder Model 4 scored slightly better overall. Therefore, Test Autoencoder Model 4
became the Optimal Model for this thesis.

Table 5.1. Test Autoencoder Model 1 Results on Modbus Data Set. Autoen-
coder failed to balance accuracy, recall, and precision for any data set.

Data Set Accuracy | Recall | Precision
Moving two files Modbus 6RTU 98.8% | 54.5% 100%
Send a fake command Modbus RTU | 95.3% 0% 0%
CnC uploading exe Modbus 6RTU 97.6% | 78.7% 100%
6RTU with operation 56.5% 32% 100%
Combined data 91% 2% 11.5%
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Table 5.2. Test Autoencoder Model 2 Results on Modbus Data Set. Autoen-
coder failed to balance accuracy, recall, and precision for any data set.

Data Set Accuracy | Recall | Precision
Moving two files Modbus 6RTU 93.7% 100% | 26.1%
Send a fake command Modbus RTU | 99.6% 100% 7.6%
CnC uploading exe Modbus 6RTU 97.6% | 78.7% 100%
6RTU with operation 54.3% 32% 90.4%
Combined data 89.2% 3.6% 7.9%

Table 5.3. Test Autoencoder Model 3 Results on Modbus Data Set. Autoen-
coder achieved mid 90% performance across accuracy, recall, and precision
on three of the five data sets.

Data Set Accuracy | Recall | Precision
Moving two files Modbus 6RTU 99.8% 100% | 95.6%
Send a fake command Modbus RTU | 98.6% 100% 2.1%
CnC uploading exe Modbus 6RTU 97.6% | 78.7% 100%
6RTU with operation 97.4% | 97.7% | 98.3%
Combined data 99.3% | 98.3% | 93.3%
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Table 5.4. Test Autoencoder Model 4 Results on Modbus Data Set. Autoen-
coder achieved mid 90% performance across accuracy, recall, and precision
on four of the five data sets, including a perfect score on the 'CnC uploading
exe Modbus 6RTU’ data set.

Data Set Accuracy | Recall | Precision
Moving two files Modbus 6RTU 99.8% | 95.4% 100%
Send a fake command Modbus RTU | 99.7% 100% 12.5%
CnC uploading exe Modbus 6RTU 100% 100% 100%
6RTU with operation 99.1% 100% | 98.6%
Combined data 99.1% | 94.6% | 94.9%

Table 5.5. Test Autoencoder Model 5 Results on Modbus Data Set. Autoen-
coder achieved mid 90% performance across accuracy, recall, and precision
on two of the five data sets.

Data Set Accuracy | Recall | Precision
Moving two files Modbus 6RTU 99.1% | 95.4% 75%
Send a fake command Modbus RTU | 98.3% 100% 1.8%
CnC uploading exe Modbus 6RTU 97.6% | 78.7% 100%
6RTU with operation 98.7% 100% 98%
Combined data 99.1% | 95.6% 949%0

5.3 NAVFAC Data Set Results

For this research, we created 14 different data sets from the given NAVFAC data set. Ten of
the data sets mimic an FDIA across all AMI input parameters, representing a broad attack
on the smart grid. As discussed in Chapter 3, these attacks increase the input values across
the AMI data set from 1%-10%, incrementing by one. In Table 5.6, Table 5.7, Table 5.8, and

Table 5.9, these attacks correspond to the rows with only a single percent in the *% Increase’
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column (1%-10%). The other four datasets simulate an FDIA on specific input parameters
— voltage, current, and power. These changes to specific input parameters mimic nuanced
attacks. These attacks are displayed in the rows with two distinct percentage values in the
"% Increase’ column (bottom 4 rows of Tables 5.6-5.9). The first percent value represents
the percentage increase to the voltage and current parameters. The second percent value
corresponds to the change in the power input parameter using the power equation discussed

in Chapter 3.

5.3.1 Optimal Model - Sigmoid and Adam/SGD

Table 5.6 displays the Optimal Model’s performance using the sigmoid activation function
and the Adam or SGD optimizers. When testing against an FDIA across all AMI input
parameters, a 3% increase and above produced impressive results, with only recall failing to
score in the mid 90%. However, at the 4% mark and above, accuracy, recall, and precision
were all in the mid to high 90%. When simulating an FDIA on specific AMI parameters,
current and voltage, the model did not produce positive results until a 4% increase to the
voltage and current parameters. At the 2-3% increase for current and voltage, the recall
score ranges from mid 50% to high 60%. However, at the 4% mark, the Optimal Model
produces high accuracy and precision, and acceptable recall. With a 5% increase, the model

produced mid-to-high 90% across all these statistics.
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Table 5.6. Results for Optimal Model using Sigmoid Activation Function and
either Adam or SGD Optimization on NAVFAC Data Sets.

Sigmoid
Adam SGD
% Increase |Accuracy| Recall [Precision| % Increase |Accuracy|Recall |Precision
10% 996% | 1.0% | 96.6% 10% 99.6% | 1.0% | 96.6%
9% 996% | 1.0% | 96.6% 9% 996% | 1.0% | 96.6%
8% 996% | 1.0% | 99.6% 8% 996% | 1.0% | 96 .6%
7% 996% 199.7%| 96.6% 7% 99.6% 199.7%| 96 .6%
6% 996% 199.7%| 96.6% 6% 99.6% 199.7%| 96 .6%
5% 996% 199.5%| 96.6% 5% 99.6% 199.5%| 96.6%
4% 994% |97.6%| 96.5% 4% 994% 1974%| 96.5%
3% 989% 1929%| 964% 3% 98.9% 192.6%| 964%
2% 96.6% |692%| 952% 2% 96.8% 170.7%| 95.3%
1% 948% |500%| 93.6% 1% 947% 1498%| 93.5%
VI2%/P4% | 951% |54.1%| 940% VI2%/P4% | 953% |55.6%| 94.1%
VI3% /P9% | 96.5% |67.7%| 95.1% VI3% /P9% | 96.5% |683%| 95.2%
Vi4% /P16%| 98.1% [84.0%| 96.0% VI4% /P16%| 98.1% [840% | 96.0%
VI5% /P25%| 99% [942%| 964% VI5% /P25%| 990% [93.3%| 964%

5.3.2 Deep Model - Sigmoid and Adam/SGD
Table 5.7 shows the Deep Model performance using sigmoid activation and the Adam or
SGD optimizers. Similar to the Optimal Model, at the 3% increase mark the Deep Model
produced 98.9% accuracy, 92.9% recall, and 96.4% precision. Additionally, at 4% and
above, accuracy, recall, and precision were all in the mid to high 90%. When simulating an
FDIA on specific AMI parameters, the Deep Model mimicked the Optimal Model, failing
to achieve positive results until a 4% increase to both parameters. At that point, accuracy
and precision score in the mid to high 90%, and recall scores 84%. At the 5% increase mark,

the Deep Model produced mid to high 90% accuracy, recall, and precision.
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Table 5.7. Results for Deep Model using Sigmoid Activation Function and
either Adam or SGD Optimization on NAVFAC Data Sets.

Sigmoid
Adam SGD
% Increase |Accuracy|Recall |Precisionl % Increase |Accuracy|Recall IPrecision
10% 996% | 1.0% | 96.6% 10% 996% | 1.0% | 96.6%
9% 996% | 1.0% | 96.6% 9% 996% | 1.0% | 96.6%
8% 996% | 1.0% | 99.6% 8% 996% | 1.0% | 96.6%
7% 99.6% [(99.7%| 96.6% 7% 99.6% [99.7%| 96.6%
6% 99.6% [99.7%| 96.6% 6% 99.6% [99.7%| 96.6%
5% 99.6% [995%| 96.6% 5% 99.6% [99.5%| 96.6%
4% 994% 197.8%| 96.6% 4% 994% 1974% | 96.5%
3% 98.9% [92.9% | 96.4% 3% 989% |92.6% | 96.4%
2% 96.6% |1694% | 95.2% 2% 96.7% [70.5%| 95.3%
1% 94.6% [(483%| 93.3% 1% 94.8% [50.7% | 93.6%
VI2% /P4% | 952% |54.8% | 940% VI2% /P4% | 952% |552%| 94.1%
VI3%/P9% | 96.5% |68.6%| 952% VI3% /P9% | 96.5% |67.7%| 95.1%
VI4% /P 16%| 98.1% |84.0%| 96.0% VI4% /P 16%| 98.2% |853%| 96.1%
VI5% /P25%| 990% |93.3%| 964% VI5% /P25%| 990% |93.3%| 96.4%

5.3.3 Optimal Model - ReLU and Adam/SGD

Table 5.8 illustrates the Optimal Model’s performance using the RelLU activation function
and the Adam or SGD optimizers. As opposed to the results shown in Table 5.6 and Table 5.7,
the model using ReLU activation performs differently depending on the optimizer. When
using the Adam optimizer, performance is consistent. Even with minor increases, the model
maintains a far better balance between recall and precision than the other configurations.
Recall stays in the mid to high 90% and precision remains in the mid 80 to low 90%, with
only a few exceptions. That said, with this structure, the Optimal Model produces poor

results at the 9% increase and above mark (precision drops to the low 80%).
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Table 5.8. Results for Optimal Model using ReLU Activation Function and
either Adam or SGD Optimization on NAVFAC Data Sets.

ReLU
Adam SGD
% Increase |Accuracy| Recall IPrecision % Increase |Accuracy|Recall |Precision

10% 97.7% 1984%| 81.7% 10% 989% | 1.0% | 90.4%

9% 96.9% |94.1% | 78.9% 9% 97.7% |94.1% | 84.3%

8% 98.8% |954%| 92.5% 8% 980% |94.6% | 86.6%

7% 98.7% | 1.0% | 88.9% 7% 99.6% [99.7% | 96.4%

6% 97.5% 196.1%| 81.8% 6% 982% | 1.0% | 85.1%

5% 990% | 10% | 91.1% 5% 99.6% [99.5%| 96.6%

4% 98.2% 193.7%| 88.7% 4% 984% |194.6% | 90.3%

3% 98.5% 193.1%| 89.5% 3% 974% |94.8% | 81.6%

2% 98.5% 1924%| 93.0% 2% 973% |83.8% | 88.8%

1% 972% |850%| 86.6% 1% 94.6% |48.3%| 93.3%
VI2%/P4% | 98.8% [98.2%| 90.8% VI2%/P4% | 973% | 1.0% | 78.6%
VI3%/P9% | 974% [94.6%| 81.9% VI3%/P9% | 96.6% [69.2% | 95.2%
V14% /P 16%| 97.5% |92.6%| 84.0% V14% /P 16% | 98.2% |85.5% | 96.1%
VI5% /P25%| 98.9% |99.7%| 90.6% VI5%/P25% | 990% |99.7% | 91.1%

With the SGD optimizer, the model is worse at detecting minor increases and is inconsistent.
At the 1% increase mark, the model outputs 48.3% recall score, compared to an 85% recall
score with the Adam optimizer. However, the Optimal Model using ReLU and SGD produces
acceptable results at the 5% increase point and above. Accuracy and recall remain in the

high 90% while precision scores in the mid 80 to low 90%.

5.3.4 Deep Model - ReLLU and Adam/SGD

Table 5.9 displays the Deep Model performance using the ReLLU activation function and
the Adam or SGD optimizers, respectively. As with the results shown in Table 5.8, the
performance of the Deep Model depends on the optimizer. With the Adam optimizer, the

model produces consistent results. Across all the data sets, accuracy remains in the high
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90%%, recall ranges from high 80 to mid 90%, and precision fluctuations from the low 80%

to low 90%. This is the only configuration that does not produce any scores below 80% for

accuracy, recall, or precision.

When the Deep Model uses the SGD optimizer and the ReLLU activation function, it produces

inconsistent results. The model fails to detect minor increases and produces worse than

expected results when the FDIA percent increase rises above 5% (precision ranges from the
mid to high 80s). The Deep Model with ReLU activation and SGD optimizer is the worst

performer. It is the only configuration to fail to score a 90% in each metric for any data set.

This configuration is the only one not suitable for use in our proposed IDS.

Table 5.9. Results for Deep Model using ReLU Activation Function and either
Adam or SGD Optimization on NAVFAC Data Sets.

ReLU
Adam SGD
% Increase |Accuracy|Recall |Precisionl % Increase |Accuracy|Recall IPrecision
10% 982% 196.1%| 81.7% 10% 98.2% |97.8%| 86.5%
9% 98.8% |98.7%| 90.0% 9% 98.7% 198.0% | 89.7%
8% 98.7% 193.7%| 93.3% 8% 98.5% |96.5% | 89.6%
7% 98.6% |93.1%| 93.1% 7% 982% |96.5%| 87.1%
6% 982% |94.8% | 87.8% 6% 97.6% |96.5%| 82.0%
5% 98.5% |89.8%| 95.2% 5% 979% 196.7% | 84.2%
4% 982% 196.1%| 87.6% 4% 97.2% 195.6% | 80.0%
3% 98.3% |193.5%| 90.2% 3% 96.8% |959% | 77.2%
2% 98.3% |93.7%| 90.0% 2% 97.7% 192.0% | 85.7%
1% 98.1% |94.8%| 87.5% 1% 97.5% [(84.5% | 89.5%
VI2% /P4% | 97.9% |94.6%| 86.1% VI2% /P4% | 983% [954% | 88.8%
VI3%/P9% | 98.5% [96.1%| 89.9% VI3% /P9% | 983% [954% | 88.6%
VI4% /P 16%| 980% |959%| 85.7% V14% /P 16%| 98.4% |974%| 88.1%
VI5% /P25%| 979% |99.5%]| 82.6% VI5% /P25%| 98.4% |984% | 87.5%
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5.4 Results Summary and Recommendation

The tables shown in the previous section show the potential benefit of using an autoencoder
to detect malicious or anomalous activity in a smart grid environment. These results are
consistent with other research in this area, and in many cases exceeds the previous research’s

results [4], [5], [11]. The key findings from this research are:

Demonstrated that autoencoders can recognize full-scale attacks (targeting every input

parameter) and select, more nuanced attacks (targeting specific input nodes).

Showed the autoencoders’ performance using real-world NAVFAC data.

Presented two different models — the Optimal Model and the Deep Model and com-
pared performance results.
* Demonstrated that the models’ performance may vary depending on which activation

function and optimizer are used.

The best autoencoder depends on stakeholder needs. Suppose the smart grid operator wants
to detect minor fluctuations without receiving an unacceptably high number of false posi-
tives. In that case, the best autoencoder combines ReLLU activation and Adam optimization.
However, if the operator wants the model to detect significant attacks on the grid with the
highest accuracy, recall, and precision, then the autoencoder should use sigmoid activation
and Adam or SGD optimization. Another consideration is speed. As stated above, the Deep
Model converges two to five times slower than the Optimal Model. Despite the deeper struc-
ture of the Deep Model, its performance was very similar to the Optimal Model. Therefore,
a more complicated (deeper) model did not facilitate better results on this data set. The Deep
Model has no significant benefit over the Optimal Model, making an autoencoder with the
Optimal Model structure the best choice for the NAVFAC smart grid.
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CHAPTER 6:

Conclusion

This thesis is intended to provide a foundation for additional research into unsupervised
machine learning for the purpose of intrusion detection in the U.S. Navy smart grid. Un-
derstanding the threat of a power grid connected to the Internet, as well as the difficult
nature of accurately classifying anomalous activity within a continual stream of normal

data, highlights the importance of using machine learning.

6.1 Summary

To meet the energy modernization goals of the Secretary of the Navy, the Navy has expanded
its attack surface by deploying smart grid technology across the fleet. To minimize the risks
posed by cyber actors while maximizing power efficiency, an IDS using unsupervised
machine learning must be utilized to protect critical infrastructure and sensitive networks.
The real-world data sets used in this thesis were provided by NAVFAC, allowing us to
experiment on actual AMI smart grid data. This thesis has demonstrated the effectiveness
of autoencoder neural networks using TensorFlow for intrusion detection on the Naval smart

grid.

This thesis begins by developing five different autoencoder models and testing their perfor-
mance on an open-source Modbus data set. Accuracy, recall, and precision scores were our
metrics of performance. The objective of this initial step was to build the best autoencoder
to compare it against the autoencoder developed in [11], (referred to as the Deep Model
in this thesis), on the NAVFAC smart grid data set. The model that performed the best on
the Modbus data set was a two-layer network that compressed the first hidden layer by half
and the second hidden layer to four nodes. This autoencoder is called the Optimal Model

throughout this research.

To demonstrate the ability of anomaly detection using autoencoders, we tested an FDIA
detection mechanism using the Optimal Model and Deep Model. To simulate an FDIA, we
increased 10% of the NAVFAC data set from 1% to 10%. Experiments showed that the

autoencoders could detect malicious activity against an FDIA on all AMI parameters and
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when targeting a select few. Six model configurations are great candidates to include in the
NAVFAC smart grid IDS architecture. The most appropriate model depends on the operator
needs and threat environment. Furthermore, an essential contribution of this research is that
the autoencoder learned the internal dependency of normal operation data, avoiding the
need for labeled malicious data. This autoencoder feature helps overcome the unbalanced

training data set problem in smart grid data sets.

6.2 Future Work

There are various avenues for future work in this area. First, it would be of benefit to test the
autoencoder model on NAVFAC smart grid network traffic data set. The current NAVFAC
data set contains AMI readings across a number of devices, classifying power fluctuations
as anomalous or normal. However, there are several attack vectors against a smart grid that
may not disturb the power supply. To this end, it would be beneficial to test whether an

autoencoder can detect malicious activity in the NAVFAC smart grid network traffic.

We also think it would be prudent to test alternative unsupervised machine learning al-
gorithms. While our autoencoder highlights the power of unsupervised machine learning,
there are other machine learning algorithms that may be successful. By using the same data
set, researchers could compare the performance of the competing algorithms, assisting end

users in selecting the best model to match their needs.

Lastly, we believe an actual IDS implementation for the smart grid that incorporates un-
supervised machine learning should be built. Extensive research has been conducted to
develop anomaly detection algorithms. Less research has been produced outlining a proto-
type or proposal for an IDS implementation using machine learning. The U.S. Navy would

benefit greatly from a working IDS.
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APPENDIX A:
NAVFAC DATA SET INPUT FEATURES

1 Phase A Current

2 Phase B Current

3 Phase C Current

4 Neutral Current

5 Meter Frequency

6 Average kVAR

7 Average kiloWatts

8 Instantaneous kW

9 Maximum kVAR

10 Maximum kW

11 | Phase A-B Voltage Phase Angle
12 | Phase A Current Phase Angle
13 | Phase A Voltage Phase Angle
14 | Phase B-C Voltage Phase Angle
15 | Phase B Current Phase Angle
16 | Phase B Voltage Phase Angle
17 | Phase C-A Voltage Phase Angle
18 | Phase C Current Phase Angle
19 | Phase C Voltage Phase Angle
20 Phase A Current THD

21 Phase A Voltage

22 Phase A-B Voltage

23 Phase B Voltage

24 Phase B-C Voltage

25 Phase C Voltage

26 Phase C-A Voltage
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APPENDIX B:
DATA PREPROCESSING SCRIPT

The following script imports the requisite libraries and models to perform machine learning.

Then the data is manipulated to use within the TensorFlow framework.

import
import
import
import
import
import

import

matplotlib.pyplot as plt
seaborn as sns

pandas as pd

numpy as np

tensorflow as tf

math

sklearn as sk

from tensorflow.keras.models import Model, load_model, Sequential

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.callbacks import ModelCheckpoint,

TensorBoard, EarlyStopping

from tensorflow.keras import regularizers

from tensorflow.keras import optimizers

from tensorflow.keras import models

from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix , precision_recall_curve

from sklearn.metrics import recall_score, classification_report , auc,

roc_curve , accuracy_score , precision_score

from sklearn.metrics import precision_recall_fscore_support, fl_score

from pandas.api.types import is_numeric_dtype

#Load Data
df = pd.read_excel (’AMI_data. xlsx’)
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# Substitute NaN values with the mean of its column
column_means = df.mean()

df = df.fillna (column_means)

# Removes any values that are not numberical
numeric_cols = df.select_dtypes(exclude="number’)

df .drop(numeric_cols, axis=1, inplace=True)

# Filter features from target
features = [f for f in list(df) if f not in [’ Malicious’]]

# Set training and test data

X _train, X_test, Y_train, Y_test = train_test_split(df[features],
df[ > Malicious ’ ],
test_size=.5,

random_state=1)

# Parameter helps prevent overfitting
early_stop = EarlyStopping(monitor="val_loss’, mode="min’,

verbose=1, patience=50)

# Create set of normal traffic for training and testing

X _train_0 = X_train.copy ()
X_train_0O [’ Malicious’] = Y_train
X _train_0 = X _train_O[ X_train_O[  Malicious’]==0]

X_train_0 = X_train_0.drop(’Malicious’, axis=1)

X_test_0 = X_test.copy ()
X_test_0O[’Malicious’] = Y_test

X test_ O X_test_O[X_test_O[’ Malicious’ ]==0]
X_test_0 X _test_0O.drop(’Malicious’, axis=1)
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APPENDIX C:
BASIC MODEL SCRIPT

The following script defines the Basic Model autoencoder and sets its parameters.

# Auto encoder parameters

nb_epoch = 2000

batch_size = 128

input_dim = X_train_O.shape[1]
encoding_dim = math. ceil (input_dim / 2)
hidden_dim = 4

Ir_e = le-2 # or le—3 when using SGD

# Create autoencoder model and set parameters
input_layer = Input(shape=(input_dim, ))
encoder = Dense(encoding_dim, activation="relu",

activity_regularizer=regularizers.ll1(lr_e))(input_layer)

encoder = Dense(hidden_dim, activation="relu")(encoder)
decoder = Dense(hidden_dim, activation="relu")(encoder)
decoder = Dense(encoding_dim, activation="relu")(decoder)
decoder = Dense(input_dim , activation="linear")(decoder)

autoencoder = Model(inputs=input_layer, outputs=decoder)
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APPENDIX D:
DEEP MODEL SCRIPT

The following script defines the Deep Model autoencoder and sets its parameters.

# Auto encoder parameters

nb_epoch = 2000

batch_size = 128 # This was changed to match the article
input_dim = X_train_0.shape[1]

Ir_e = le-2 # or le—3 when using SGD

# Create deep autoencoder model and set parameters
input_layer = Input(shape=(input_dim, ))
encoder = Dense(256, activation="relu",

activity_regularizer=regularizers.ll(lr_e))(input_layer)

encoder = Dense(128, activation="relu")(encoder)
encoder = Dense(64, activation="relu")(encoder)
encoder = Dense(32, activation="relu")(encoder)
decoder = Dense(32, activation="relu")(encoder)
decoder = Dense(64, activation="relu")(decoder)
decoder = Dense(128, activation="relu")(decoder)
decoder = Dense(256, activation="relu")(decoder)
decoder = Dense(input_dim , activation="linear")(decoder)
autoencoder = Model(inputs=input_layer , outputs=decoder)
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APPENDIX E:
TRAINING AND TESTING SCRIPT

The following script compiles and runs the model. After that it establishes the threshold
for normal data. Once the threshold is calculated, the model makes predictions on the test

dataset.

# Compile and Run model
sgd = tf.keras.optimizers.SGD(learning_rate=0.001, decay=le-6,

momentum=0.9, nesterov=True)

# Compile model
autoencoder.compile( metrics=[ " accuracy’],
loss="mean_squared_error’,

optimizer=sgd)

# Save checkpoint to upload the best model for testing
cp = ModelCheckpoint(filepath="autoencoder_classifier_AMI.h5",

save_best_only=True, verbose =0)

history = autoencoder. fit(X_train_0, X_train_O,
epochs=nb_epoch,
batch_size=batch_size ,
shuffle=True,
validation_data=(X_test_0, X_test_0),
verbose=1,

callbacks=[cp, tb, early_stop]). history

# Load the best performing parameters from training

autoencoder = tf.keras.models.load_model ( autoencoder_AMI.h5")
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# Establish threshold for normal traffic
x_train_pred = autoencoder.predict(X_train_0)

train_mae_loss = np.mean(np.abs(x_train_pred - X_train_0), axis=1)

# Calculate threshold by accounting for standard deviation
mean = np.mean(train_mae_loss , axis=0)

sd = np.std(train_mae_loss , axis=0)

final list

[x for x in train_mae_loss if (x > mean — 2 % sd)]

final_list [x for x in final_list if (X < mean + 2 % sd)]

#Set threshold to the max valvue within two standard deviations

sd_threshold = np.max(final_list)
# Make predictions for X_test and calculate the difference

test_x_predictions = autoencoder.predict(X_test)

test_mae_loss = np.mean(np.abs(test_x_predictions — X_test), axis=1)
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APPENDIX F:
OUTPUT SCRIPT

The following script prints the accuracy score, displays a heat map confusion matrix, and

generates a scatter plot illustrating the predictions in relation to the threshold and truth
value.

# Display accuracy score
accuracy_score(Y_test, [1 if s > sd_threshold else 0

for s in test_mae_loss])

# Graph depicts threshold and location of normal and malicious data

error_df_ test

pd.DataFrame ({ " Reconstruction_error’: test_mae_loss ,

>True_class’: Y_test})

error_df_test error_df_test.reset_index ()
groups = error_df_test.groupby(’ True_class’)

fig, ax = plt.subplots ()

for name, group im groups:
ax.plot(group.index, group.Reconstruction_error ,
marker="0", ms=3.5, linestyle="",
label= "Malicious" if name == 1 else "Normal")
ax . hlines (sd_threshold , ax.get_xlim ()[0], ax.get_xlim()[1],
colors="r", zorder=100, label="Threshold’)

ax.legend ()

plt.title ("Reconstruction errorfor different, ,classes")
plt.ylabel ("Reconstruction error")
plt.xlabel ("Data, point,index")

57



plt.show ();
#Confusion Matrix heat map

pred_y = [1 if e > sd_threshold else O for e in
error_df_test[’Reconstruction_error’]. values ]

conf_matrix = confusion_matrix(error_df_test[’  True_class’], pred_y)

plt.figure (figsize=(8, 6))

sns . heatmap (conf_matrix ,
xticklabels=["Normal","Malicious"],
yticklabels=["Normal","Malicious"],
annot=True, fmt="d");

plt.title ("Confusion_matrix")

plt.ylabel (’True_class’)

plt.xlabel (’Predicted_class’)

plt.show ()

#Print accuracy, recall, and precision scores

print ("accuracy:", accuracy_score(error_df_test[ True_class’], pred_y))
print("recall:", recall_score(error_df_test[ True_class’], pred_y))
print (" precision:", precision_score(error_df_test[ True_class’], pred_y))
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