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ABSTRACT 

Attacker-defender models help practitioners understand a network’s resistance to 

attack. An assailant interdicts a network, and the operator responds in such a way as to 

optimally utilize the degraded network. This thesis analyzes two network interdiction 

algorithms, Benders decomposition and a dual integer linear program approach, to 

compare their computational efficiency on the shortest path and maximum flow 

interdiction problems. We construct networks using two operationally meaningful 

structures: a grid structure designed to represent an urban transportation network, and a 

layered network designed to mimic a supply chain. We vary the size of the network and 

the attacker's budget and we record each algorithm’s runtime. 

Our results indicate that Benders decomposition performs best when solving the 

shortest path interdiction problem on a grid network, the dual integer linear program 

performs better for the maximum flow problem on both the grid and layered network, and 

the two approaches perform comparably when solving the shortest path interdiction 

problem on the layered network. 
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Executive Summary

Whether it consists of information, commodities, or vehicular traffic, ne twork flow conti-
nuity is critical for the functioning of many complex and important systems, particularly 
those revolving around health care, energy, logistics, transportation, and communication 
infrastructure. Identifying vulnerabilities in a timely manner is critical to the continued 
uninterrupted flow of these networks. Disrupting any of these networks for an appreciable 
amount of time has been shown to immediately and drastically impact many facets of life. 
For instance, Svitek (2021) reports power outages caused by winter storms claimed 246 
lives in Texas in February of 2021, and INRIX (2019) shows that traffic congestion causes 
Americans to lose on average 97 hours per year at a cost of $1,348.00 per driver. To pre-
vent such losses and disruptions, complex networks require constant analysis to identify 
vulnerabilities and determine where limited resources can best be invested to mitigate these 
vulnerabilities.

Practitioners identify and fortify against vulnerabilities in their systems by solving so-called 
“attacker-defender” models where a network is optimally attacked and defended resulting in 
an optimized attack and defender pattern that may aim to maximize throughput or identify 
vulnerabilities. As the networks grow in size and complexity, these problems can take 
significant computational energy and time to solve.

This thesis applies the Benders decomposition and a dual integer linear program approach 
to the shortest path and maximum flow problems. The network topologies studied include 
grid and layered networks, and vary in size and density. We record and analyze the impact of 
network characteristics and attacker’s budget on model runtime to identify which algorithm 
is better for various problem setups.

Our analysis concludes that the Benders decomposition approach is generally better suited 
for expeditiously finding the shortest path on a grid network while the dual integer linear 
program approach is better suited for identifying the maximum flow on both the grid and 
layered style network. Neither algorithm conclusively performed better when finding the 
shortest path on a layered network.
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CHAPTER 1:
Introduction

Whether it consists of information, commodities, or vehicular traffic, network flow conti-
nuity is critical for the functioning of many complex and important systems, particularly
those revolving around health care, energy, logistics, transportation, and communication
infrastructure. Identifying vulnerabilities in a timely manner is critical to the continued
uninterrupted flow of these networks. Disrupting any of these networks for an apprecia-
ble amount of time has been shown to immediately and drastically impact many facets of
life. For instance, Svitek (2021) reports power outages caused by winter storms in Texas
claimed 246 lives in February of 2021, and INRIX (2019) reports that traffic congestion
causes Americans to lose on average 97 hours per year at a cost of $1,348.00 per driver. To
prevent such losses and disruptions, complex networks require constant analysis to identify
vulnerabilities and determine where limited resources can best be invested to mitigate these
vulnerabilities.

Practitioners identify and fortify against vulnerabilities in their systems by solving so-called
“attacker-defender” models. Solving such models involves positing attacker capabilities, as
well as the potential damage that could be inflicted on the network. Where these parameters
are uncertain, it may be advantageous to consider many instances with varying input data.
Moreover, networks of practical scale may be very large, containing hundreds of thousands
of nodes and arcs. As such, computational efficiency is a key concern. Practitioners use a
combination of theoretical (big-𝑂) runtimes and practical experience to select algorithms
for their studies. While runtime analysis and practical experience are useful, systematic
empirical studies of the commonly used algorithms are lacking in the literature.

Various algorithms exist to identify where a network is vulnerable or where it should
be fortified. Some of these algorithms may offer advantages in terms of computational
efficiency, but the magnitude of the improvement likely depends on the exact form and
magnitude of the problem being solved. Parameters for these problems primarily include
the size and shape of the network and the attacker’s budget.

This thesis performs a computational study of two common approaches to solving network
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interdiction and design problems, namely Benders decomposition (BD) and a dual integer
linear program (DILP) approach. We study the relative efficiency of these algorithms on
two common network flow interdiction problems: the shortest path interdiction problem
and the maximum flow interdiction problem.

By comparing BD and DILP on a range of problem types, we hope to provide insight into
the relative efficiency of these algorithms, and how their efficiency varies across problem
types and size. With this insight, operators can provide timely recommendations on where
to invest resources to mitigate, redirect, or respond to damaged networks.

1.1 Background
Network applications vary widely and include tasks both mundane and extraordinary. Heisler
(2015) identifies that both Google and Apple use Dijkstra’s algorithm to find the shortest
path to the grocer. (Wood (1993) targets the flow of tracer chemicals can reduce throughput
in drug trafficking networks. Bartolacci and Dimitrov (2017) identifies improvements in a
cellular network can improve critical message dissemination during national emergencies.
Ishimatsu et al. (2016) analyzes multicommodity flow networks identifies where resources
should be located to lower costs, optimize sustainability, and maximize throughput.

1.1.1 Shortest Path and Maximum Flow Problems
We consider two classical network flow problems, both of which are defined on a network
consisting of nodes in set 𝑁 (indexed by 𝑖 and 𝑗) and arcs (𝑖, 𝑗) in set 𝐴. In the 𝑠-𝑡 shortest
path problem, a cost 𝑐𝑖, 𝑗 is associated with each arc (𝑖, 𝑗) ∈ 𝐴, and the goal is to send
a unit of flow along a directed path from start node 𝑠 to terminal node 𝑡 at minimum
total cost. Decision variables 𝑋𝑖, 𝑗 indicate the flow along arc (𝑖, 𝑗) ∈ 𝐴. The mathematical
representation of the 𝑠-𝑡 shortest path problem is presented as follows.
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min
𝑋

∑︁
(𝑖, 𝑗)∈𝐴

𝑐𝑖, 𝑗𝑋𝑖, 𝑗

s.t.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


1 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡 ∀𝑖 ∈ 𝑁

−1 𝑖 = 𝑡

𝑋𝑖, 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴

In the 𝑠-𝑡 maximum flow problem, each arc (𝑖, 𝑗) ∈ 𝐴 has a capacity 𝑢𝑖, 𝑗 associated with
it, representing the maximum amount of flow that can travel along that arc. The goal is to
maximize the total flow from start node 𝑠 to terminal node 𝑡, where again decision variables
𝑋𝑖, 𝑗 represent the flow along each arc (𝑖, 𝑗) ∈ 𝐴.We utilize a “virtual arc” (𝑡, 𝑠) (not included
in 𝐴) to connect the terminal node back to the source node, allowing flow to circulate through
the network. We assume all capacities are finite, and define 𝑈 ≡ max(𝑖, 𝑗)∈𝐴{𝑢𝑖, 𝑗 } as the
maximum capacity on any single arc in the network. The overall flow in the network, and
therefore the flow on the artificial return arc, (𝑡, 𝑠), is then bounded by |𝑁 |𝑈.

max
𝑋

𝑋𝑡,𝑠

s.t.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


𝑋𝑡,𝑠 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡 ∀𝑖 ∈ 𝑁

−𝑋𝑡,𝑠 𝑖 = 𝑡

0 ≤ 𝑋𝑖, 𝑗 ≤ 𝑢𝑖, 𝑗 ∀(𝑖, 𝑗) ∈ 𝐴
0 ≤ 𝑋𝑡,𝑠 ≤ |𝑁 |𝑈

1.1.2 Attacker-Defender Models for Shortest Path and Maximum Flow
For both the shortest path and maximum flow problem, it is possible to formulate an attacker-
defender model in which an attacker wishes to expend a finite set of resources as efficiently
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as possible, with the goal of producing the worst possible optimal objective value for an
operator of the respective network.

In the shortest path interdiction problem, the attacker must choose a set of at most
max_attacks arcs to attack, where an attacked arc (𝑖, 𝑗) has its cost increased by penalty
value 𝑞𝑖, 𝑗 (in addition to its original cost 𝑐𝑖, 𝑗 ). Letting binary decision variables 𝑌𝑖, 𝑗 repre-
sent the decision of whether or not to attack each arc (𝑖, 𝑗) ∈ 𝐴, the attacker’s problem is
presented as follows.

max
𝑌

min
𝑋

∑︁
(𝑖, 𝑗)∈𝐴

(𝑐𝑖, 𝑗 + 𝑞𝑖, 𝑗𝑌𝑖, 𝑗 )𝑋𝑖, 𝑗

𝑠.𝑡.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


1 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡

−1 𝑖 = 𝑡

∀𝑖 ∈ 𝑁

∑︁
(𝑖, 𝑗)∈𝐴

𝑌𝑖, 𝑗 ≤ max_attacks

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴
𝑋𝑖, 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴

Of note, the attacker’s and operator’s decision variables interact only in the objective
function, where the total cost of the path chosen by the operator is a function of both the
attacker’s and the operator’s decisions.

Similarly, the maximum flow interdiction problem represents the impact of the attacker’s
decisions via the objective function, where any flow that is sent along attacked arcs is
“canceled out” of the objective function using a penalty 𝑞𝑖, 𝑗 > 1.
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min
𝑌

max
𝑋

𝑋𝑡,𝑠 −
∑︁

(𝑖, 𝑗)∈𝐴
𝑞𝑖, 𝑗𝑌𝑖, 𝑗𝑋𝑖, 𝑗

𝑠.𝑡.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


𝑋𝑡,𝑠 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡

−𝑋𝑡,𝑠 𝑖 = 𝑡

∀𝑖 ∈ 𝑁

∑︁
(𝑖, 𝑗)∈𝐴

𝑌𝑖, 𝑗 ≤ 𝑚𝑎𝑥_𝑎𝑡𝑡𝑎𝑐𝑘𝑠

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴
0 ≤ 𝑋𝑖, 𝑗 ≤ 𝑢𝑖, 𝑗 ∀(𝑖, 𝑗) ∈ 𝐴
0 ≤ 𝑋𝑡,𝑠 ≤ |𝑁 |𝑈

Both the shortest path and maximum flow interdiction models can be modified or embel-
lished to suit particular applications. For instance, both models easily accommodate more
sophisticated attack budget constraints than the simple cardinality constraints presented in
the formulations above. Interdiction models can be deterministic, meaning that arc costs and
capacities are known and unchanging and attacks always succeed, or they can be stochastic,
meaning that the probability of successful interdiction and the arc capacities are uncertain.
For the purposes of this thesis, all parameter values are deterministic and are known by both
the operator/defender and the interdictor/attacker.
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1.2 Literature Review
Ford and Fulkerson (1962) proposed the max-flow min-cut theorem, which states that “the
maximum flow value from 𝑠 to 𝑡 is equal to the minimal cut capacity over cuts separating 𝑠
and 𝑡” (p. 19).

Wollmer (1963) develops an algorithm that enumerates all arcs in a capacitated network
to find the maximum flow. Lubore et al. (1971) improves on Willmer’s algorithm by
determining the single most vital arc with respect to maximum flow. Their algorithm
assumes the interdiction costs for arcs are equal across the network and is applicable when
determining the single most valuable arc but is not capable of finding the set of 𝑘 > 1 most
vital arcs. Later, Lubore et al. (1975) developed an algorithm that minimizes the maximum
flow of the network by finding a set of 𝑘 arcs that, when removed decreased the network’s
throughput and is applicable to both planar and nonplanar networks.

Wollmer (1964) focuses on sensitivity analysis of the flow across a planar network by
removing 𝑛 number of arcs from the network in order to minimize flow. By a modification
to the location of the capacities from nodes to arcs, the problem can be viewed as a shortest
path or lowest cost issue.

Wollmer (1970) outlines two algorithms specifically addressing network interdiction that
target both the maximum flow and minimum cost flow problems. Helmbold (1971) proposes
the use of dynamic programming to solve a generalized version of Wollmer’s model in which
he uses recursion to find the shortest path across the network. Preston (1972) identifies
optimal allocation of aircraft for airstrikes against a transportation network and the added
benefit of assigning another aircraft to interdict the network.

Golden and Ball (1978) develops a model that lengthens the arcs in a network via a least
cost investment strategy to increase the cost of the shortest path. While the model identifies
the minimum cost set of attacks that will increase the shortest path, it does not allow for
arcs to be removed from the network.

Van Roy (1983) proposes the use of cross decomposition utilizing both the primal and
dual structures of the problem. Holmberg (1990) further explores the tractability of cross
decomposition as it relates to specifically linear and generally non-linear problems. The
first of these two models requires that part of the problem be linear and results in finite

6



convergence. The second problem deals with entirely nonlinear problems.

Cormican et al. (1998) advocates splitting difficult to solve problems into several easier to
solve ones and explores implications of uncertainty in network interdiction.

Fischetti et al. (2010) propose new criterion for determining Benders cuts specifically target-
ing unbounded subproblems that are significantly more robust and often yield faster results
than the standard Benders cuts. Similarly, Wood (2002) seeks to analyze Benders cuts as
they apply to the 𝑠-𝑡 shortest path problem. The first algorithm adds “supervalid inequalities”
to the master problem which eliminate the most recent solution but are guaranteed not to
eliminate an optimal solution. The second algorithm institutes a covering strategy in which
at least one arc of a subpath must be interdicted. Once no more subpaths can be interdicted,
an optimal solution has been found.

Steinrauf (1991) develops two algorithms. The first identifies a set of arcs to interdict that
will minimize flow. The second seeks to interdict a set of arcs that seeks to maximize the
number of nodes isolated based on a finite interdiction budget.

Wood (1993) address how attack resources are spent on breaking arcs. The first constrains
the problem by requiring that an arc must be attacked to the point at which it breaks. The
second requires that only one unit of resources is required to break an arc so a cardinality
constraint is put on the attack budget dictating how many arcs can be attacked.

Attacker-defender models have been used in identifying network vulnerability. Garcia (2001)
develops a process for assessing the vulnerability of a network based on random disruption
through analysis of its individual components as they relate to the whole system.

Brown et al. (2006) develops bi-level and tri-level defender-attacker-defender models that
assume an intentional intelligent attacker and defender and seek to develop worst-case
scenario models and identify the “value of protecting or hardening” a subset of the network.
(p. 531). Their models use attacker-defender models exactly like the ones we analyze as
subproblems. Being able to solve those subproblems quickly leads to direct improvements
in the run times of their algorithms.

Ross (2014) develops a model balancing worst-case and random disruptions but was only
effective at smaller networks due to the computational intensity of the model. All of these

7



models used various versions of a bi-level attacker-defender model or tri-level defender-
attacker-defender models.

Each of these approaches to attacker-defender models is critical in identifying how to best
defend infrastructure.
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CHAPTER 2:
Attacker-Defender Models

This chapter describes our methodology for generating instances of the interdiction problems
described in Section 1.1.2, as well as the algorithms we use to solve them. We consider two
network topologies: a grid network, which is designed to mimic an urban transportation
network, and a layered network, which is designed to represent a supply chain. For each
problem type and network topology, we compare the performance of the BD algorithm
and the DILP on many randomly-generated networks of varying sizes. We are primarily
interested in applying an attacker defender model to basic network problems to determine
which of two algorithms will return an optimal solution in the least amount of time. We will
do this many times on many different networks to determine which algorithm is best suited
for each problem.

This chapter presents how we generate the networks, gives a mathematical formulation
of the interdiction problems discussed in Chapter 1, and discusses the algorithms used to
determine an optimal attack and the corresponding operator solution.

2.1 Network Development
We now describe our methodology for generating network instances, including the set of
nodes 𝑁 present in each instance, the set of arcs 𝐴 that connect these nodes, and any
applicable data, including arc costs 𝑐𝑖, 𝑗 for the shortest path problem, arc capacities 𝑢𝑖, 𝑗 for
the maximum flow problem, and penalties 𝑞𝑖, 𝑗 for both problems.

2.1.1 Grid Network
Our grid network instances connect 𝑠 to 𝑡 via a grid of nodes with an equal number of nodes
in height and width, as shown by nodes 1-9 in Figure 2.1. We refer to this number as the
grid dimension. As an example, if the grid dimension was defined as 5, that would result in
a 5x5 grid containing 25 nodes, for a total of 27 nodes in the network (including 𝑠 and 𝑡).

The 𝑠 node has arcs that flow into every node on the left side of the grid, and each node
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on the right side of the grid has an arc that flows into node 𝑡. Within the grid, arcs connect
each node to those nodes immediately above, below, left, and right of it. For each diagonal
pair of nodes (𝑖, 𝑗), such as nodes 𝑖 = 4 and 𝑗 = 8 in Figure 2.1, arc (𝑖, 𝑗) appears with 20%
probability. This is denoted by the dashed lines in Figure 2.1.

Figure 2.1: Example: Grid network with dimension 3.

For each arc (𝑖, 𝑗), we generate a cost 𝑐𝑖, 𝑗 , shortest path penalty 𝑞𝑖, 𝑗 , and capacity 𝑢𝑖, 𝑗 value
uniformly at random between specified lower and upper limits. For the purposes of this
thesis, the lower and upper limits for the grid network parameters are provided in Table 2.1.

Lower Limit Upper Limit

Cost 𝑐𝑖, 𝑗 10 20
Penalty 𝑞𝑖, 𝑗 30 40
Capacity 𝑢𝑖, 𝑗 5 15

Table 2.1: Arc parameters: Grid network

For the maximum flow interdiction problem, any 𝑞𝑖, 𝑗 > 1 suffices. This thesis uses a value
of 𝑞𝑖, 𝑗 = 1.05 for all (𝑖, 𝑗) ∈ 𝐴.
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2.1.2 Layered Network
The layered network is characterized by the number of layers and the number of nodes per
layer. Our layered network instances connect 𝑠 to 𝑡 via a series of layers containing a fixed
number of nodes 𝑛. Each node in layer 𝑙 is connected via an arc (𝑖, 𝑗) to a random number of
nodes 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠 in layer 𝑙 + 1. For each node, the value of 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠 is chosen
uniformly at random between specified lower and upper limits. Additionally, for each node
𝑖 in layer 𝑙, there is a 10% chance that an arc exiting 𝑖 will “skip” a layer and connect 𝑖 to
some node 𝑗 in layer 𝑙 + 2. For example, in Figure 2.2 we have Three layers with five nodes
in each layer, and each node 𝑖 is connected to at least 1 but not more than 3 nodes 𝑗 in the
adjacent layer (so 1 ≤ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠 ≤ 3). The arc (1, 11) represents an arc that skips a
layer; this is indicated by the dashed arc line.

Figure 2.2: Example: Three-layer network with five nodes in each layer.

As in the grid network, each arc (𝑖, 𝑗) ∈ 𝐴 is assigned a cost 𝑐𝑖, 𝑗 , shortest path penalty 𝑞𝑖, 𝑗 ,
and capacity 𝑢𝑖, 𝑗 uniformly at random between specified lower and upper limits. Again,
we set 𝑞𝑖, 𝑗 = 1.05 for all arcs in the maximum flow problem. Each layer contains 𝑛 = 15
nodes. The lower and upper limits on the 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠, 𝑐𝑖, 𝑗 , 𝑞𝑖, 𝑗 , and 𝑢𝑖, 𝑗 parameters are
provided in Table 2.2.

To ensure that the network is connected, a breadth-first search is conducted starting and
ending at nodes 𝑠 and 𝑡, where a reverse adjacency list is used when starting from node 𝑡.
The search marks each node the first time it is encountered. Once the search is concluded,
the list of marked nodes is compared to the master list of nodes. If a node is not in the
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marked node list, the network is discarded and regenerated until a connected network is
generated.

Table 2.2: Arc parameters: Layered network
Lower Limit Upper Limit

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑛𝑒𝑠𝑠 2 6
Cost 𝑐𝑖, 𝑗 10 20

Penalty 𝑞𝑖, 𝑗 30 40
Capacity 𝑢𝑖, 𝑗 5 15

2.2 Algorithms for Solving Attacker-Defender Problems
We compare two methods for solving the attacker-defender problems described in Sec-
tion 1.1.2: the DILP approach and BD. We now describe those methods in detail.

2.2.1 Dual Integer Linear Program Approach
Our first solution technique, DILP, is based on the observation that for a fixed attack 𝑌 , the
operator’s problem is a linear program that could equivalently be solved via its dual.
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Shortest Path
To develop our dual integer linear program, we associate dual variables 𝜋 with the 
operator’s main constraints in the 𝑠-𝑡 shortest path interdiction problem.

max
𝑌

min
𝑋

∑︁
(𝑖, 𝑗)∈𝐴

(𝑐𝑖, 𝑗 + 𝑞𝑖, 𝑗𝑌𝑖, 𝑗 )𝑋𝑖, 𝑗

𝑠.𝑡.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


1 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡

−1 𝑖 = 𝑡

∀𝑖 ∈ 𝑁 [𝜋𝑖]

∑︁
(𝑖, 𝑗)∈𝐴

𝑌𝑖, 𝑗 ≤ max_attacks

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴
𝑋𝑖, 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴

Taking the dual of the inner minimization linear program, we obtain the following 
maxi-mization problem.

max
𝜋,𝑌

𝜋𝑠 − 𝜋𝑡

𝑠.𝑡. 𝜋𝑖 − 𝜋 𝑗 − 𝑞𝑖, 𝑗𝑌𝑖, 𝑗 ≤ 𝑐𝑖, 𝑗 ∀(𝑖, 𝑗) ∈ 𝐴∑︁
(𝑖, 𝑗)∈𝐴

𝑌𝑖, 𝑗 ≤ max_attacks

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴
𝜋𝑖 unrestricted ∀𝑖 ∈ 𝑁
𝜋𝑠 ≡ 0

Our DILP approach involves simply solving this ILP to an optimality gap of 1%.

13



Maximum Flow
Proceeding as with the 𝑠-𝑡 shortest path problem, we introduce dual variables 𝜋 and 𝛼
associated with the operator’s constraints.

min
𝑌

max
𝑋

𝑋𝑡,𝑠 −
∑︁

(𝑖, 𝑗)∈𝐴
𝑞𝑖, 𝑗𝑌𝑖, 𝑗𝑋𝑖, 𝑗

𝑠.𝑡.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


𝑋𝑡,𝑠 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡

−𝑋𝑡,𝑠 𝑖 = 𝑡

∀𝑖 ∈ 𝑁 [𝜋𝑖]

∑︁
(𝑖, 𝑗)∈𝐴

𝑌𝑖, 𝑗 ≤ max_attacks

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴
0 ≤ 𝑋𝑖, 𝑗 ≤ 𝑢𝑖, 𝑗 ∀(𝑖, 𝑗) ∈ 𝐴 [𝛼𝑖, 𝑗 ]
0 ≤ 𝑋𝑡,𝑠 ≤ |𝑁 |𝑈 [𝛼𝑡,𝑠]

Taking the dual of the inner maximization linear program, we obtain the following mini-
mization problem.

min
𝜋,𝛼,𝑌

∑︁
(𝑖, 𝑗)∈𝐴

𝑢𝑖, 𝑗𝛼𝑖, 𝑗 + |𝑁 |𝑈𝛼𝑡,𝑠

s.t. 𝜋𝑖 − 𝜋 𝑗 + 𝛼𝑖, 𝑗 + 𝑞𝑖, 𝑗𝑌𝑖, 𝑗 ≥ 0

𝜋𝑡 − 𝜋𝑠 + 𝛼𝑡,𝑠 ≥ 1 ∀(𝑖, 𝑗) ∈ 𝐴
𝜋𝑖 unrestricted ∀𝑖 ∈ 𝑁
𝜋𝑠 ≡ 0

𝛼𝑖, 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴
𝛼𝑡,𝑠 ≥ 0∑︁
(𝑖, 𝑗)∈𝐴

𝑌𝑖, 𝑗 ≤ max_attacks

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴
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As with the shortest path DILP, we solve this ILP to an optimality gap of 1%.

2.2.2 Benders Decomposition Approach
Our second approach, BD, solves the attacker’s problem by iterating between an operator
subproblem, which evaluates the effect of a given attack, and the attacker’s relaxed master
problem, which identifies the most promising feasible attack, given a set of observed operator
solutions.

Shortest Path
For the shortest path problem, the Benders subproblem finds the operator’s shortest path,
given a set of attacked arcs, while the master problem finds the best feasible attack, given
the set of operator paths observed so far.

Shortest Path Operator’s Subproblem
The shortest path operator’s subproblem is as follows.

min
𝑋

∑︁
(𝑖, 𝑗)∈𝐴

(𝑐𝑖, 𝑗 + 𝑞𝑖, 𝑗𝑌𝑖, 𝑗 )𝑋𝑖, 𝑗

𝑠.𝑡.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


1 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡

−1 𝑖 = 𝑡

∀𝑖 ∈ 𝑁

𝑋𝑖, 𝑗 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴

The subproblem fixes the values for 𝑌𝑖, 𝑗 based on a feasible attack solution and provides a
lower bound on the attacker’s optimal objective value. The subproblem also provides a new
operator extreme point (i.e., a path) that is used in the master problem.
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Shortest Path Attacker’s Relaxed Master Problem
The attacker’s relaxed master problem finds the best feasible attack against a set of operator
extreme points �̂� 𝑘

𝑖, 𝑗
, for 𝑘 = 1, ..., 𝐾 , while variable 𝑍 records the objective value that could

be achieved by the attacker if the operator were restricted to the given extreme points.

max
𝑌,𝑍

𝑍

𝑠.𝑡. 𝑍 ≤
∑︁

(𝑖, 𝑗)∈𝐴
(𝑐𝑖, 𝑗 + 𝑞𝑖, 𝑗 ) �̂� 𝑘𝑖, 𝑗𝑌𝑖, 𝑗 𝑘 = 1, 2, ..., 𝐾∑︁

(𝑖, 𝑗)∈𝐴
𝑌𝑖, 𝑗 ≤ max_attacks

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴

The solution to this master problem provides a new attack plan to be utilized in the sub-
problem. It also provides an upper bound on the attacker’s optimal objective value.

Benders Decomposition Algorithm
Given the subproblem and master problem formulations, the Benders decomposition algo-
rithm for shortest path interdiction is:

1. 𝐿𝐵 = −∞;𝑈𝐵 = ∞;𝐾 = 1
2. 𝑌 = 0 (i.e., 𝑌𝑖, 𝑗 = 0 ∀ (𝑖, 𝑗) ∈ 𝐴)
3. While𝑈𝐵 − 𝐿𝐵 > Y𝐿𝐵:
4. Solve OPERATOR SUBPROBLEM (using 𝑌 ) to get
�̂�𝐾 = 𝑋∗, 𝑄𝐾 =

∑
(𝑖, 𝑗)∈𝐴

(
𝑐𝑖, 𝑗 + 𝑞𝑖, 𝑗𝑌 𝑘𝑖, 𝑗

)
𝑋∗
𝑖, 𝑗

5. If 𝐿𝐵 < 𝑄𝐾 : 𝐿𝐵 = 𝑄𝐾 , 𝑌 𝐵𝐸𝑆𝑇 = 𝑌

6. Solve ATTACKER RELAXED MASTER (using �̂�1, �̂�2, . . . �̂�𝐾) to get
𝑌 = 𝑌 ∗, 𝑍𝐾 = 𝑍∗

7. If𝑈𝐵 > 𝑍𝐾 :𝑈𝐵 = 𝑍𝐾

8. 𝐾 = 𝐾 + 1
9. End While

10. Return 𝑌 𝐵𝐸𝑆𝑇 as an Y-optimal solution to the attacker problem
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11. (optional) Solve OPERATOR SUBPROBLEM (using𝑌 𝐵𝐸𝑆𝑇 ) to determine operator’s
optimal response.

In our experiments, we solve to a tolerance of Y = 1%.

Maximum Flow
For the maximum flow problem, the Benders subproblem finds the operator’s maximum
flow, given a set of attacked arcs, while the master problem finds the best feasible attack,
given the set of operator flows observed so far.

Maximum Flow Operator’s Subproblem
The maximum flow operator’s subproblem is as follows.

max
𝑋

𝑋𝑡,𝑠 −
∑︁

(𝑖, 𝑗)∈𝐴
𝑞𝑖, 𝑗𝑌𝑖, 𝑗𝑋𝑖, 𝑗

𝑠.𝑡.
∑︁

𝑗 :(𝑖, 𝑗)∈𝐴
𝑋𝑖, 𝑗 −

∑︁
𝑗 :( 𝑗 ,𝑖)∈𝐴

𝑋 𝑗 ,𝑖 =


𝑋𝑡,𝑠 𝑖 = 𝑠

0 𝑖 ≠ 𝑠, 𝑡

−𝑋𝑡,𝑠 𝑖 = 𝑡

∀𝑖 ∈ 𝑁

0 ≤ 𝑋𝑖, 𝑗 ≤ 𝑢𝑖, 𝑗 ∀(𝑖, 𝑗) ∈ 𝐴
0 ≤ 𝑋𝑡,𝑠 ≤ |𝑁 |𝑈

The subproblem fixes the values for 𝑌𝑖, 𝑗 based on a feasible attack solution and provides an
upper bound on the attacker’s optimal objective value. The subproblem also provides a new
operator extreme point (i.e., a flow) that is used in the master problem.

Attacker’s Relaxed Master Problem
The attacker’s relaxed master problem finds the best feasible attack against a set of operator
extreme points �̂� 𝑘

𝑖, 𝑗
, for 𝑘 = 1, ..., 𝐾 , where dummy variable 𝑍 records the objective value

that could be achieved by the attacker if the operator were restricted to the given extreme
points.
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min
𝑌,𝑍

𝑍

𝑠.𝑡. 𝑍 ≥ �̂� 𝑘𝑡,𝑠 −
∑︁

(𝑖, 𝑗)∈𝐴
𝑞𝑖, 𝑗 �̂�

𝑘
𝑖, 𝑗𝑌𝑖, 𝑗 𝑘 = 1, 2, ..., 𝐾∑︁

(𝑖, 𝑗)∈𝐴
𝑌𝑖, 𝑗 ≤ max_attacks

𝑌𝑖, 𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴

The solution to this master problem provides a new attack plan to be utilized in the sub-
problem. It also provides a lower bound on the attacker’s optimal objective value.

Benders Decomposition Algorithm
Given the subproblem and master problem formulations, the Benders decomposition algo-
rithm for shortest path interdiction is:

1. 𝐿𝐵 = −∞;𝑈𝐵 = ∞;𝐾 = 1
2. 𝑌 = 0 (i.e., 𝑌𝑖, 𝑗 = 0 ∀ (𝑖, 𝑗) ∈ 𝐴)
3. While𝑈𝐵 − 𝐿𝐵 > Y𝐿𝐵:
4. Solve OPERATOR SUBPROBLEM (using 𝑌 ) to get
�̂�𝐾 = 𝑋∗, 𝑄𝐾 = 𝑋∗

𝑡,𝑠 −
∑

(𝑖, 𝑗)∈𝐴 𝑞𝑖, 𝑗𝑌𝑖, 𝑗𝑋
∗
𝑖, 𝑗

5. If𝑈𝐵 > 𝑄𝐾 :𝑈𝐵 = 𝑄𝐾 , 𝑌 𝐵𝐸𝑆𝑇 = 𝑌

6. Solve ATTACKER RELAXED MASTER (using �̂�1, �̂�2, . . . �̂�𝐾) to get
𝑌 = 𝑌 ∗, 𝑍𝐾 = 𝑍∗

7. If 𝐿𝐵 < 𝑍𝐾 : 𝐿𝐵 = 𝑍𝐾

8. 𝐾 = 𝐾 + 1
9. End While

10. Return 𝑌 𝐵𝐸𝑆𝑇 as an Y-optimal solution to the attacker problem
11. (optional) Solve OPERATOR SUBPROBLEM (using𝑌 𝐵𝐸𝑆𝑇 ) to determine operator’s

optimal response.

As with the shortest path problem, we solve to a tolerance of Y = 1%.
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CHAPTER 3:
Results

3.1 Hardware and Software
Experiments were run and figures were generated using an M1 Macbook Air (M1, 2020).
This computer utilizes a 3.2 GHz 8-core central processor, a 1.28 GHz 7-core integrated
graphics processor, and 8GB of unified LPDDR4X SDRAM. To the maximum extent practi-
cal, the computer was located in a cooled stationary location while conducting experiments.

MacOS Monterey (12.3) was used for all experiments. All experiments were conducted
using Python 3.9 through the Spyder GUI. The solver utilized is CPLEX Studio 22.1.0.
JMP Pro 16 was used to generate all figures.

All figures present the full results of our computational experiments, including the compu-
tation time of every instance run, as a function of problem size as quantified by the number
of nodes in the network. In all tests we ran 15 replications for each size of network, for each
type of network, at each parameter value. Gray dots on the figures represent actual results
from these replications. Additionally, we use a cubic smoothing spline to smooth our results
in all figures. Wood (2017) showed that the cubic smoothing spline balances the fit of the
trend line to the data while generating a smooth trend line function.

A log transformation was applied to all figures along the 𝑅𝑢𝑛𝑡𝑖𝑚𝑒 axis to better view
variation within data.
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3.2 Shortest Path – Grid Network
Figures 3.1, 3.2, and 3.3 show runtime comparisons for the shortest path interdiction problem
applied to a grid style network. The increase in nodes |𝑁 | directly translates to an increase
in network size.

3.2.1 BD
Figure 3.1 shows BD applied to the shortest path interdiction problem on a grid network at
various network sizes and max_attacks values.

Our observations indicate that, as network size increases (i.e., as the number of nodes |𝑁 |
increases), the runtime of BD also increases.Figures 3.1 (d) and (e) show that at max_attacks
values of 5 and 6, there is higher variation in smaller networks leading to an uncharacteristic
decrease in runtime. Figure 3.1(f) shows that as max_attacks increases, the average runtime
also increases at all observed network sizes.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.1: Runtime comparison: BD shortest path on a grid network.
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3.2.2 DILP
Figure 3.2 shows DILP applied to the shortest path problem on a grid network at various
network sizes and max_attacks values.

Our observations indicate that, a positive direct relationship exists between DILP runtime
and network size. This is similar to how BD behaves. Figure 3.2(a) shows low relative
variability among data points while Figures 3.2(b) through (e) show increasing variability
and can be seen very clearly when comparing different max_attacks levels (see Figure
3.2(f)).

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.2: Runtime comparison: DILP shortest path on a grid network.
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3.2.3 BD vs. DILP
Figures 3.3 shows a comparison of BD and DILP runtimes when applied to the shortest
path problem on a grid network at various network sizes and max_attacks values.

In our observations, at max_attacks = 2, DILP returns an optimized solution quicker than
BD. The two algorithms perform similarly for max_attacks = 3. For max_attacks > 3 ,
BD consistently returns a lower runtimes. At max_attacks > 3, as max_attacks continues to
increase, the relative gap between BD and DILP runtimes increases (see Figures 3.3 (c)-(e)).

Figure 3.3(c) demonstrates the relative volatility in runtimes between BD and DILP on this
particular problem. Figure 3.3(d) shows that at max_attacks = 5 the same relative drop in
runtimes is seen in both BD and DILP at network sizes ranging from approximately 450
to 1,000 nodes before resuming an upward trend. At max_attacks = 6 (Figure 3.3(e)) this
relationship is not as apparent.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.3: Runtime comparison of BD (—) and DILP (- - -) for the shortest path interdiction
problem on a grid network.
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3.3 Shortest Path – Layered Network
Figures 3.4, 3.5, and 3.6 show runtime comparisons for the shortest path interdiction problem
applied to a layered network at various network sizes and max_attacks values. The size of
each layer was fixed at 15 nodes, so the increase in nodes corresponds to an increase in
layers and overall size of the network.

BD
Figure 3.4 shows runtimes when applying BD to the shorteset path problem on a layered
networks at various network sizes and max_attacks values.

Our observations indicate that there is a positive relationship between network size and BD
runtime. A comparison of each trend line across tested max_attacks levels indicates that,
uniformly, as the max_attacks increases, so does the runtime. Variation among runtimes
appears to be consistent across all max_attacks levels and network sizes.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.4: Runtime comparison: BD shortest path on a layered network.
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DILP
Figure 3.5 shows runtimes when applying DILP to the shortest path problem on a layered
networks at various network sizes and 𝑚𝑎𝑥_𝑎𝑡𝑡𝑎𝑐𝑘𝑠 values.

Our observations indicate that DILP runtime increases both as the network size increases
and as max_attacks increases. The variation among runtimes also appears to increase as
max_attacks increases.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.5: Runtime comparison: DILP shortest path on a layered network.
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3.3.1 BD vs. DILP
Figures 3.4 and 3.5 and 3.6 show the maximum flow interdiction problem on a grid network
at various network sizes and max_attacks values.

Our observations indicate that DILP and BD runtimes increase as the network grows and as
max_attacks grows (see Figures 3.4 and 3.5 . At equivalent max_attacks value, the variability
of the DILP is higher than BD.

Figures 3.6 also indicates that as max_attacks increases, the average runtime for DILP
increases more than the average runtime of BD. DILP generally has lower runtimes across
tested network sizes at max_attacks ≤ 4 (Figure 3.6(a)-(c)), however, for max_attacks > 4
(Figure 3.6(d),(e)), the two algorithms perform comparably.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.6: Runtime comparison: BD (—) and DILP (- - -) for the shortest path interdiction
problem on a layered network.
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3.4 Maximum Flow – Grid Network
Figures 3.7, 3.8, and 3.9 show runtime comparisons for the maximum flow problem applied
to a grid style network at various network sizes and max_attacks values. The increase in
nodes |𝑁 | directly translates to an increase in network size. Network size includes both the
manually added arcs and randomly generated diagonal arcs.

3.4.1 BD
Figure 3.7 shows BD runtimes when applied to the maximum flow interdiction problem on
a grid network at various network sizes and max_attacks values. Our observations indicate
a positive relationship between network size and BD runtime. A comparison of each trend
line across tested max_attacks levels indicates that generally, as the max_attacks increases,
so does the average runtime.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.7: Runtime comparison: BD maximum flow on a grid network.
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3.4.2 DILP
Figure 3.8 shows DILP runtimes appled to the maximum flow problem on a grid network
at various network sizes and max_attacks values.

Our observations indicate that, on smaller networks, the DILP runtime increases in a
straightforward manner. However, for all max_attacks values considered, the DILP algorithm
exhibits large variability in runtime for networks containing approximately 900-1,500 nodes
(the exact range of this variability depends on the max_attacks value). Beyond that point,
the variability subsides and the runtimes again exhibit a relatively smooth increase with
network size.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.8: Runtime comparison: DILP maximum flow on a grid network.
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3.4.3 BD vs. DILP
Figure 3.9 shows a comparison of BD and DILP runtimes when applied to the mmaximum
flow interdiction problem on a grid network at various network sizes and max_attacks
values.

Our observations indicate that the DILP algorithm returns runtimes lower than the BD
algorithm in most circumstances.

Both BD and DILP show consistent increases in runtime for relatively small networks, after
which the DILP shows a “bump” in runtime due to a subset of instances with very high
runtimes. The BD runtime, however, continues to increase smoothly. However, despite the
variability in runtime for some network sizes, DILP outperforms BD on average for all
settings considered.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.9: BD (—) and DILP (- - -) for the maximum flow interdiction problem on a grid
network.
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3.5 Maximum Flow – Layered Network
Figures 3.10, 3.11, and 3.12 show runtime comparisons for the maximum flow network
problem applied to a layered style network at various network sizes and max_attacks values.
The size of each layer was fixed at 15 nodes, so the increase in nodes corresponds to an
increase in the number of layers present.

3.5.1 BD
Figure 3.10 shows BD applied to the maximum flow interdiction problem on a layered
network at various network sizes and max_attacks values.

Our observations indicate that there is a positive relationship between network size and BD
runtime. A comparison of each trend line across tested max_attacks levels indicates that
generally, as the max_attacks increases, so does the BD runtime (see Figure 3.10(f)).

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.10: Runtime comparison: BD maximum flow on a layered network.
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3.5.2 DILP
Figure 3.11 shows DILP applied to the maximum flow interdiction problem on a layered
network at various network sizes and max_attacks values.

Our observations indicate that as the size of the network grows, the DILP runtime generally
increases. However, as with the maximum flow interdiction problem on a grid network, we
again observe increased variability in DILP runtime for particular network sizes. This leads
to non-monotonic behavior of the corresponding trend lines and is seen across all tested
max_attacks levels.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.11: Runtime comparison: DILP maximum flow on a layered network.
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3.5.3 BD vs. DILP
Figure 3.12 shows a comparison of BD and DILP runtimes when applied to the maximum
flow interdiction problem on a layered network at various network sizes and max_attacks
values.

Our observations indicate that, in general, DILP exhibits lower runtimes than BD for the
maximum flow interdiction problem on a grid network (see Figure 3.12). However, as the
network size increases, the relative difference in average runtimes decreases significantly.
This indicate that convergence between the two algorithms’ runtimes may occur at larger
network sizes, and BD may outperform DILP for very large networks. As max_attacks
increases, the two algorithms’ runtimes appear to converge at a faster rate.

(a) max_attacks = 2 (b) max_attacks = 3 (c) max_attacks = 4

(d) max_attacks = 5 (e) max_attacks = 6 (f) max_attacks comparison

Figure 3.12: BD (—) and DILP (- - -) for the maximum flow interdiction problem on a layered
network.
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CHAPTER 4:
Conclusion

4.1 Summary
This thesis analyzes runtimes for two common network flow interdiction algorithms, BD and
DILP, implemented on two practically meaningful network structures. The BD and DILP
algorithms each have niches where they perform better. BD generally performs better than
DILP when finding the shortest path on a grid network, particularly at higher max_attack
values. DILP consistently returns lower runtime values for finding the maximum flow on
both the grid and layered style networks. However, DILP can exhibit higher variability in
rumtime in some settings.

We find that max_attacks, network size, network type, and interdiction problem all impacted
which algorithm had the lower average runtime.

When finding the shortest path at max_attacks ≤ 4 values, our results indicate BD per-
forms better on the grid network, while DILP performs better on the layered network. For
max_attacks ≥ 4, BD performed better when finding the shortest path on the grid network
and both algorithms perform comparably when finding the shortest path on the layered
network.

4.2 Recommendations
In general, BD should be used when finding the shortest path on a grid network for
max_attacks ≥ 4 or when the max_attacks value is unknown. DILP should generally
be used when finding the shortest path on a layered network for max_attacks ≤ 4, and
under most circumstances when identifying the maximum flow on either a grid network or
a layered network.
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4.3 Future Work
The networks considered in this thesis were relatively consistent in density across samples.
We utilized straightforward implementations of the two interdiction algorithms that were
not specialized to account for any aspects of the network structure. Future analysis might
include different meaningful network structures, more nuanced and novel network flow
problems, or different interdiction algorithms.

Adding complexity to the network may aid in characterization of algorithms’ runtimes.
Adding levels of network complexity may include intersecting multiple networks (i.e.,
differing modes of transportation), multiple source and terminal nodes, and flowing different
types of supplies across the network.
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