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ABSTRACT 

 The objective of this study is to investigate, in a pure MIMO scenario, how the 

ability of the system to determine the location of the user is affected when the number of 

antennas surpasses the number of users. With the increase in the number of antennas, the 

multi-user MIMO becomes a massive MIMO scenario. In this study, the established 

pre-coding matrices for different users will be used to determine the location of a user in 

a line-of-sight, or Rician, channel set-up with random non line-of-sight elements. The 

localization approximation will be a matter of comparing the “closeness” of the 

pre-coding matrix from the transmission to the actual user channel matrix. Zero-forcing is 

used to establish the matrix necessary to determine the location of users in multiple grid 

sizes for one, two, and five users. 
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I. INTRODUCTION 

In this chapter, we outline the goal of this thesis and go over a brief background on 

the history and relevancy of multiple-input, multiple-output (MIMO) communication.  

A. OBJECTIVE AND PROBLEM STATEMENT 

The objective of this thesis to explore the ability to determine user location with 

previously given channel-state information (CSI) by looking at linear pre-coding matrices 

from the CSI of several channels modeled in a multiple-input, multiple-output (MIMO) 

downlink. An overview of what a MIMO downlink looks like is given in [1]. We provide 

more details on this in Chapter II. The channels are modeled in an urban environment with 

various scattered or non–line-of-sight paths (NLOS), a strong single line-of-sight (LOS) 

path, and a strong reflected path. CSI fingerprinting has been previously explored for 

indoor localization in Wi-Fi environments in [2], [3] and outdoor environments in [4], and 

these are only a few methods of many covered in a survey in [5]. The goal of this thesis 

was to explore a CSI based fingerprinting method for an outdoor environment and scale up 

the size of simulation models to be concurrent with a massive MIMO scenario. More 

information regarding massive MIMO, and what “scaling up” refers to, is explored in later 

chapters. 

B. ORGANIZATION 

This thesis is organized into five chapters. In Chapter I, we examine the problem 

statement and objective of the research. A brief explanation of MIMO communications and 

the downlink is also provided. An overview of massive MIMO, a discussion of previous 

fingerprinting and localization methods, and an explanation of channel modeling is 

presented in Chapter II. An overview of simulation methodology is given in Chapter III. 

Simulation results and analyses are discussed in Chapter IV. The conclusions and a 

discussion of possibilities for future work are discussed in Chapter V. Attached to the end 

of this thesis is an appendix that contains the MATLAB code used for the simulations, 

figures containing simulation results, and a list of references used to conduct literature 

reviews and background understanding of MIMO communications and channel fading. 
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II. BACKGROUND 

In this chapter, we provide a brief overview of MIMO communications. We explain 

how a basic MIMO downlink works. Additionally, we provide an overview of previous work 

done in fingerprint-based localization methods. We describe the relevancy of massive MIMO 

in modern communication systems and describe the Rayleigh and Rician fading channels used 

for modeling. 

A. MIMO 

A key aspect of this thesis is understanding MIMO communications systems and 

channel behavior for such communications. As described in [1], MIMO was initially 

investigated for a single-user scenario but was later developed for multi-user cases where the 

users could have one or multiple receiver antennas as well as multiple transmitter antennas in 

the case of an uplink. The basic set-up for MIMO communications consists of m transmit 

antennas from a single base station to one user with n receiver antennas, as shown in Figure 

1.  

 
Figure 1. A basic MIMO downlink 

The channel between the user receiver antennas and the base station transmitter 

antennas is described by the channel matrix H. The relationship between H, the user, and base 

station is modeled by the equation to describe a standard MIMO communication link, 
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 = +y Hx n   (1) 

where y is an n × l vector representing the received signal, x is the transmitted m × l 

transmitted signal, and n is added noise, usually in the form of additive white Gaussian noise. 

The number of frames transmitted while the channel is static is represented by l. The channel 

response at the time of transmission is given by H. While the channel is static where the 

transmitted symbol does not exceed the coherence time of the channel, the channel impulse 

response (CIR) components of H remain unchanged [6]. The coherence time represents the 

time it takes before the channel information changes. The typical makeup of H is shown as 
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where each element hn,m represents the channel response between the transmitter antenna i 

and the receiver antenna j. Components of this matrix account for any multipath fading, 

doppler shifting, or scattering that may occur between the transmitters and receivers. Multi-

user cases were initially brought to the forefront, but for data streams to be sent out to multiple 

users there had to be a way to separate the signal of each user. A transmission signal intended 

for one user would still be received by another user. The problem of user signal interference 

is illustrated by Figure 2. A method of tackling this issue that has been developed is to pre-

code the data before it is transmitted by the transmitter antennas. Pre-coding allows for data 

to be uniquely coded to be received by a designated user and ignored by others. 
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Figure 2. A multi-user MIMO downlink showcasing that signals may arrive at 

other users that they were not intended for. Source: [1]. 

One of the key aspects of any communication channel is what happens between the 

transmitter and the receiver. This is the area we chose to focus on. As previously discussed, 

the channel is described by H. In our survey of previous work, we considered other methods 

of fingerprinting or using previously stored information as comparison to newly measured 

data. The fingerprints described are received signal strength (RSS) and CSI-based 

fingerprinting. The key difference between the two is which part of the communication link 

they refer to. RSS refers to a magnitude of measured power while CSI may refer to several 

aspects of the channel, such as phase, power, and fading. For this thesis, CSI refers to the 

individual complex values that make up the channel matrix, and it is the numerical 

representation of our channel model. This is what we use for our chosen method of user 

localization. 

B. PREVIOUS WORK AND LITERATURE REVIEW 

User localization in communication systems may be provided through a varying range 

of the methods. The most common method for outdoor localization is the global position 

systems (GPS). Methods for indoor localization include RSS, CSI-based fingerprinting, and 

other methods. The authors of [5] provide a brief overview of several localization methods. 

Our work aims to take some of the previously implemented indoor techniques and apply them 

to a simulated urban communication scenario within a MATLAB simulated environment. 



6 

Additionally, we aim to simulate a massive MIMO scenario using large transmitter antenna 

arrays operating in the GHz ranges.  

The previously applied CSI fingerprinting techniques explored in this literature review 

have been done indoors rather than in an urban environment. Fingerprinting is a way of taking 

a measurement or feature of, in this case, the channel and storing it as a “fingerprint” to be 

used as a comparison metric for later iterations of the channel or features. Our simulations are 

set up to simulate the fading channels corresponding to a crowded suburban street or a city. 

Our goal is to model larger areas and establish CSI fingerprinting using some of the concepts 

associated with massive MIMO. In this section, we summarize the methods described by the 

authors of [5], and specifically describe some previously explored methods for CSI-based 

fingerprinting given in [2]–[4]. 

In [5], the authors describe indoor localization as difficult because of low probability 

for a LOS path in a multipath environment. There is no single strong path to use to analyze a 

received signal. Instead, there are several signals arriving with different delays. The same 

argument may be made for an outdoor urban environment. The method of interest to this thesis 

described in the survey is scene analysis. The section in [5] on scene analysis describes the 

use of fingerprints obtained from the area of transmission, or the scene. The fingerprint 

described has characteristics that depends on the location of the transmitter or receiver. This 

method employs two stages like those described in [2], [3]; an offline stage for environmental 

survey where offline fingerprints are collected, and an online stage where observed signals 

are compared to that of the stored information [5]. In [5], the authors describe using signal 

strength for fingerprinting purposes. Later in this chapter, we describe studies that were done 

using CSI rather than signal strength, but they applied algorithms like those described in this 

survey paper. Of the five positioning algorithms described in the survey done by Liu et. al., 

the k-Nearest Neighbor (kNN) method draws the most interest for the work done in this thesis. 

The kNN algorithm described in [5] involves using RSS from the online phase to find the 

match with the lowest root-mean square error between the offline fingerprint and the online 

fingerprint. The kNN method focuses on RSS rather than CSI, but the authors of [2], [3] 

applied probabilistic and deep learning methods to using CSI for fingerprinting rather than 

RSS.  
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As stated earlier, a CSI-fingerprinting method for indoor localization has been 

explored for indoor WiFi environments in [2], [3]. We provide an overview of the work done 

by both studies in this section. The work by the authors in [2] was done to provide accurate 

CSI-based localization in an indoor WiFi environment that employed orthogonal frequency-

division multiplexing (OFDM) MIMO with 30 subcarriers. The authors collected CSI 

information for 19 different locations within the same floor to use for their fingerprinting 

technique [2]. The methodology behind their fingerprinting was based on two vectors: an 

amplitude and a phase difference vector [2]. They collected information from these 19 

locations and compiled the channel information for each subcarrier into a single-value 

magnitude and a single-value phase of the difference of each of the 30 subcarrier channel 

averages. Each subsequent channel average was subtracted from the one before it to create 

two 1 × 29 vectors. The last channel of the subcarrier average was dropped because it was 

implemented in the difference to the subsequent carrier. 

The authors in [2] used a kNN algorithm and a probabilistic Bayes’ rule for 

localization. The kNN approach focused on using a Euclidean distance calculation and a look 

at the lowest matching distance as similar to the survey method in [5]. The probabilistic 

approach was used to find which location would maximize the probability that the point is at 

that location given the testing CSI. The highest probability corresponded to the location 

estimate [2]. The authors had a limited scope of their experiment due to the limitations of a 

stationary controlled laboratory environment. They had completely stationary computers with 

limited variability of environmental parameters such as size and distance between UE and BS. 

The advantage of using simulations means we can vary our environmental parameters and 

area size to see how those conditions might affect the accuracy of our fingerprinting technique. 

Additionally, we are collecting CSI for a multi-user scenario. A base station is usually dealing 

with several users in a single cell for an urban environment. Our method is similar to that of 

the work done in [2] in that we look at matrix norms as an estimation for how close our channel 

realizations are to stored information from an off-line training phase. If we compare the pre-

coding matrix of each new channel realization to multiple matrices, we can make estimations 

from the lowest value of the norm.  
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The authors of [3] also looked at using CSI for localization. Their study differs from 

the work done in [2] with the methodology they used for fingerprinting from the CSI; they 

used a deep-learning based approach for indoor fingerprinting. They dubbed this approach 

DeepFi [3]. To give a brief overview, the authors of [3] take in CSI in a training phase, analyze 

said fingerprints through the use of a four-layer deep network. The goal of the deep network 

was to reduce training complexity [3]. The authors of [3] make a note that CSI amplitudes are 

more stable than RSS values when information is collected at a stationary location, which 

provides context for why one might choose CSI as a fingerprinting reference over RSS. The 

authors conducted their experiments in two environments: a living room and a laboratory. 

Like the authors of  [2], the scope of their experiment is limited to indoor environments, and 

the sizes of their simulation environments are static. 

A study conducted in [4] was focused on using CSI fingerprinting in an urban 

environment with a massive MIMO scenario. An offline phase was proposed where 

fingerprints were collected from a grid and stored by the BS to be matched later using kNN 

for fingerprint matching. The authors of [4] conducted their simulation in a sector with a range 

of 500 m. They also varied the interval at which they were fingerprinting within their 

simulated environment. The authors had a fixed simulation size that did not vary. Our goal 

was to do similar work to the authors in [4] but to vary the environment size and explore 

different user configurations similar to how these authors randomized their user locations. 

Varied environments allow us to look at how accuracy might be affected for small or large 

cells being serviced by a single BS. We also based our fingerprinting on the existence of 

strong LOS and NLOS components.  

Some of the work done in looking at  MM wave CSI-based fingerprinting has been 

done in [7] where the authors use an intermediate channel measurement of spatial beam 

signal-to-noise ratios for their fingerprints. These authors conducted their measurements in an 

indoor environment like the authors in [2]–[4]. They use the beam SNR measurements as their 

fingerprinting method and use deep neural networks to generate a location estimation. 

Another method for MM wave fingerprinting was explored in [8]. These authors look at RSSI 

and the direction of arrival of the signal from access points to determine their location 

estimates. Their scheme is also done at an indoor location with various scattered paths. The 
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authors of [8] use references to establish a known database of RSSI and direction of arrival 

information and then match online RSSI  and directions of arrival to the stored information 

using a kNN approach to determine the location estimate. The authors of [7], [8] conduct their 

data collection in an indoor environment. 

The work done in this thesis expands upon previous CSI fingerprinting models by 

moving the indoor localization concept to an outdoor urban environment setting and exploring 

wireless communications concepts employed in 5G technology. We look at CSI for a small 

city setting where there still exists one LOS between the user equipment (UE) and the BS with 

an additional strong NLOS reflected path. The advantage of using simulations means we can 

vary our environmental parameters and area size. We will go further into depth on our results 

in future chapters. Additionally, our simulations consider multiple users rather than just one 

with a massive MIMO scenario. As we will discuss later, massive MIMO is an integral part 

of future communication technologies such as 5G, and we employ aspects of a massive 

MIMO and MM wave for our CSI fingerprinting scheme and simulations. Some work in the 

area of fingerprinting has been done for MM wave communications in  [7], [8] using RSSI 

and direction-of-arrival and spatial beam SNR, respectively. We also look at the pre-coding 

matrices generated from CSI in addition to the CSI itself. The pre-coding matrices act to 

diagonalize the channel matrix and for users to receive the signal intended for them rather 

than one intended for another user. Data collection and processing are conducted in a 

simulation environment to evaluate a variety of environmental scenarios with the employed 

5G technology aspects.  

C. MASSIVE MIMO AND ITS CURRENT RELEVANCY 

Several companies have begun the rollout of 5G, or 5th generation wireless networks. 

The technology promises to have faster download times and communication speeds [9]. One 

of the new technologies associated with 5G communication systems is massive MIMO. Erik 

Larsson and several other authors give an overview of the advantages and disadvantages of 

massive MIMO technology in [10]. 

The focus of massive MIMO is to go larger through the employment of large volume 

of transmission antenna. Massive MIMO relies on scaling up the number of antennas at the 
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BS. The BS will have a significantly higher number of antennas compared to the number of 

UE antennas. According to an overview in [10], massive MIMO has the potential to increase 

capacity to possibly ten times more than traditional MIMO systems. The systems have the 

ability to focus a large amount of energy at one location through coherent superposition of 

waves being sent to one location [10]. The waves combine destructively at all other locations. 

Massive MIMO has further benefits in low latency times and the ability to be built with 

inexpensive components [10]. 

In terms of relevancy to millimeter wave (MM wave) technology employed by 5G 

systems, massive MIMO presents an effective way of employing 5G technologies. 

Technology that employs MM wave refers to the high frequency, millimeter-sized 

wavelengths employed for future 5G communication systems. The small wavelength of MM 

wave technology allows for closely spaced antennas at the BS, designated by the condition 

that they have a spacing of λ/2 where λ is the carrier wavelength. When the number of transmit 

antennas increases, the product of two channel estimates approaches zero or becomes 

orthogonal. This behavior is called channel hardening and occurs with the increase in the 

number of transmit antennas at the BS. It is one of the key advantages of massive MIMO [10]. 

Massive MIMO employs the increase in the number of transmit antennas at the BS and has a 

close relationship with future 5G networks, which is why we chose to scale up the number of 

BS antennas for the later stages of our simulations.  

D. CHANNEL FADING MODELS 

Our ability to accurately model realistic channels is presented as one of the main 

aspects of this thesis. We examine two of the possibilities for channel modelling and channel 

characterizations in this section. Channels follow random patterns modeled by a probability 

density function (PDF). The probability models themselves are predictable. By understanding 

the behavior of wireless channels, we can simulate our own channel coefficients for MIMO 

channels in an environment such as MATLAB. In this section, we describe exactly what these 

channel models are before giving a description of how they are implemented. 

A channel between the transmitter and receiver may consist of multiple paths over 

which the signal can reach the receiver due to reflections, scattering, other signals, etc. Thus, 
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many channels are multipath channels. Multipath fading is modeled as small-scale fading. 

The channel is time-variant and changes with slight movements occurring along the 

propagation path from cars, people, atmospheric conditions, etc. The channel also experiences 

changes due to movements by the transmitter or receiver as well. The impulse response 

 
0

( , ) ( ) ( )
I

i i
i

h t a t tτ δ τ
=

= −∑   (3) 

which represents the summation of multiple taps along a channel delay line, may be used to 

describe the channel behavior given multiple paths. The path gain of the ith path is given by 

ai, I is the total number of paths between the transmitter and receiver, iτ  is the propagation 

delay along path i. 

With this impulse response in mind, we needed a way to model ai(t). The method of 

modelling the complex gain depended on whether we were dealing with a line-of-sight 

component or not. We explored two statistical models for our channels described in the 

subsequent sections: Rayleigh and Rician fading.  

1. Rayleigh Fading Channels 

When no line-of-sight path exists between the transmitter and receiver, the magnitude 

of the fading process can be described by a Rayleigh fading model. The model has a PDF 

described by  

 
2 2/(2 )

2( ) r
R

rf r e σ

σ
−=   (4) 

where σ is the standard deviation, and r is the random variable representing the magnitude of 

the path gain ai(t) [11]. The CIR produced by the fading model appear as a zero-mean 

complex Gaussian process in nature. 

2. Rician Fading Channels 

The other fading channel primarily used in our modeling and simulation is the Rician 

model. The implication of Rician fading is that the magnitude of each channel tap has a non-

zero mean and is modeled by the PDF [11] 
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where A is the specular power of ( , )h t τ , i.e., the power of the LOS or the strong reflected 

path and I0 is a zeroth-order modified Bessel function. 

E. PRE-CODING METHODS 

One of the key ideas MIMO systems employ to send users their intended data is pre-

coding. If User 1 and User 2 are both receiving information from the same base station, pre-

coding is the method by which the BS avoids sending User 1 the information of User 2 and 

vice versa. Rather than directly transmitting user data streams. The streams are run through a 

pre-coding algorithm before being transmitted by the BS on the downlink. Pre-coding may be 

done through linear or non-linear algorithms. Non-linear algorithms require greater 

complexity and computational power than linear. A linear method was chosen for this thesis. 

Linear pre-coding methods are relatively simpler and easier to implement. They require less 

data processing than non-linear methods such as dirty paper coding [1]. The linear pre-coding 

method explored for our simulation environment was zero-forcing (ZF). The ZF pre-coding 

matrix can be used to compute how close each new channel realization is to the stored training 

values.  

1. Zero-Forcing  

ZF presents a simple way of ensuring user signals do not interfere at the receiver in 

the downlink. If the transmitter has access to full CSI from the receivers and each user has 

only one antenna, then the ZF pre-coding matrix is generated for the case where, in an n × m 

MIMO scenario, n ≤ m [12]. The pre-coding matrix P is given by the pseudo-inverse of H 

shown as 

 †.=P H   (6) 

If the columns of the channel matrix H are linearly independent, the pseudo-inverse is 

calculated by 

 † H 1 H( ) ,−=H H H H  (7) 
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and if the rows are linearly independent, 

 † H H 1( ) .−=H H HH  (8) 

If both the rows and columns of H are linearly independent, then the pseudo-inverse is just 

the inverse of H. 

The pseudo-inverse accounts for situations where H is not a square matrix and is, 

therefore, not invertible. When H is n m×  and P is m n× , then 

 † =H P I   (9)  

where I is the identity matrix. From this relationship, the channel becomes diagonalized, and 

the received signals that are not meant for each user are cancelled out. This pre-coding must 

be done by the BS because the users are not coordinating with each other. The transmitted 

signal with pre-coding becomes  

 =x Ps   (10) 

where s is the original data of the users or user original data. One of the key advantages of ZF 

pre-coding is that it is easy to implement and requires little computational power. With perfect 

CSI it is as easy as inverting the channel matrix formed from said CSI. ZF is not without its 

disadvantages though. One of the major disadvantages described in [1] include that for a low 

signal-to-noise ratio (SNR)  situation, ZF may be sub-optimal to overcome interference at the 

receivers [1]. ZF requires more power to invert channel matrices that are not properly 

conditioned. Because of its easy implementation, we used ZF as the primary pre-coding 

scheme for our simulations. Our simulations are based on generating channel information 

over an off-line period, then generating pre-coding matrices based on the number of user 

receivers the BS is communicating with and comparing that stored information with newly 

generated channel realizations. We expand upon how our pre-coding scheme was simulated 

and run in Chapter III. 
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III. SIMULATION SETUP 

Our simulation methodology is divided into three sections. First, we look at how 

we modeled the fading environment and establish CSI. Second, we describe our offline 

training phase where we take CSI from each transmitter to each reference point (RP) and 

put together our fingerprint training database. Finally, we execute an online phase where 

we match new channel realization pre-coding matrices to stored fingerprints. 

A. CHANNEL MODEL SETUP 

The first step in creating our simulation environment was to establish a working 

channel model and confirm that that channel model followed the predicted behavior as 

described in [11]. We had to establish what determines an accurate fading channel. Fading 

channels may be modeled as complex Gaussian random processes or as the sum of multiple 

sinusoidal components [11], [13]. In our simulations, we modeled the fading channels as 

Gaussian random processes. The sum of sinusoids method proved to be more 

computationally taxing and would achieve results similar to the Gaussian modeling 

method. To save computational power for CSI fingerprint matching at later stages of 

simulation, we used the complex Gaussian model.  

For the work done in this thesis, fading was modeled by generation of Rician and 

Rayleigh taps with additive white Gaussian noise (AWGN). We assumed each user would 

receive a signal from NLOS multipath components, a LOS path, and a strong NLOS path. 

The NLOS reflected path is a building or structure within the environment that still 

produces strong signal power when the signal bounces off it. Therefore, it was modeled as 

a Rician tap. We had knowledge of the exact distance for the LOS and NLOS strong 

reflected path for each reference point (RP) on the grid. With this, the BS could estimate 

the phase of the signal arriving at the LOS path and the phase of the NLOS strong reflected 

path of the Rician fading taps. The phase for each tap was calculated from 

 
2 cd f

c
π

θ
× ×

=   (11) 
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where d is the path length in meters of the LOS and NLOS strong reflected path, 

respectively, fc is the carrier frequency, 30 GHz in this case, and c is the speed of light, 

3×108 m/s. The free-space path-loss equation allowed us to generate the non-zero mean for 

the two Rician channel taps. The normal path loss model is given by, 

 0
0r t

dP P L
d

α
 = ×  
 

  (12) 

where Pr is received power, Pt is the transmitted power, L0 is the free-space path loss at 

the reference distance d0, d is the distance between the transmitter and receiver, and α is 

the path loss exponent. In our case, α is 3 for an urban environment and our reference 

distance d0 was one meter. The free-space path loss L0 is calculated from 
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×
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  (13) 

where G is the antenna gain. The antenna gain G is given by 

 2

4 eAG π
λ
×

=   (14) 

where Ae is the effective aperture area. In our case, we set this to one. Substituting (14) 

into (13) we get the path loss at the reference given by 

 0 2
0

1 .
4

L
dπ

 
=  × 

  (15) 

With our reference distance set as one meter and the path loss exponent of three, the 
equation for Pr becomes 

 
31 1

4r tP P
dπ

  =   
  

  (16) 

Given the received power, the variance is derived from the signal-to-noise ratio (SNR) as 

 SNR r

n

P
P

=   (17) 
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where Pn is the noise power. To determine the SNR for the LOS path, we established a 

baseline distance in the grid as the central point of the grid to the location of the transmitter 

for each given grid size. For the baseline of the established grid, the SNR was set as a 

standard 20 dB. The location of the RP in the training phase was compared to the baseline 

location. If the distance was greater than the baseline distance, the SNR was scaled to a 

lower value. If the distance was lower than the baseline distance, the SNR was scaled to a 

higher value. Our final Rician tap estimation was given by 

 (0, ).j
rician r nh P e Pθ= + CN   (18) 

This principle was what allowed us to generate a theoretical fading coefficient for 

each possible channel. Approximately 30 channel taps were generated for the multipath 

channel taps, and a collection of those were used for each channel estimation. Because of 

the zero-mean nature of the Rayleigh fading channel, we did not need to include all 30 

channel taps in the channel model. A single channel tap was generated for the LOS and 

NLOS reflected path through the summation of the generated Rician coefficients while the 

small, scattered Rayleigh taps were generated from an exponential decay applied to a 

gaussian random number generator to scale the taps to have a lower magnitude for a larger 

delay τ. Ultimately, the Rayleigh taps sum together to create a zero mean. The first step of 

our exponential decay model was to establish the number of taps we needed for the channel 

estimate. This was determined by randomly choosing a value from a Poisson distribution 

with a rate of occurrences set to an arbitrary value of four. The specific location of these 

taps along the delay line was chosen at random from the 30 possible channel taps.  

An exponential scale was used with a decay constant of one to significantly lower 

the magnitude of the tap located at the furthest delay. The scale was applied to the generated 

complex gaussian values. The closest value had a real and complex value of one, so the 

taps were further scaled using a generated variance from the Rician K factor. The phase of 

the Rayleigh channel taps was uniformly distributed. The variance of the Rayleigh taps 

was the magnitude of the combined LOS and strong NLOS specular path divided by a 

designated K value. The variance was generated by scaling  
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where ,LOS NLOSP  is the power associated with the Rician components of the fading channels, 

in order to have the variance equal the noise power that would result from a certain K value. 

The variance for the taps generated was associated with a K value to represent the ratio of 

the power of Rician taps to the power of the scattered multipaths. Given the power from 

the scattered multipath components Pscattered and an arbitrarily chosen K value, we 

generated a standard deviation. We used K = 3 for our simulations. The K value was chosen 

based on the shape of the curve produced by the Rician pdf. Our decision for this value 

was driven by the ability of a Rician pdf with this value to be modeled as a gaussian random 

process. A value too large would be unrealistic for an urban environment, and a value too 

small would make the fading channel purely Rayleigh, defeating the purpose of modeling 

a Rician fading channel in the first place. Therefore, K = 3 was used for the simulations. 

The overall channel estimate was generated from the sum of the NLOS reflected 

path, the LOS path, and the scattered multipath taps given by  

 .nm LOS NLOS scatteredh h h h= + +   (20) 

Our check to ensure we had correctly generated a proper working channel was to observe 

that the phase from several channel realizations averaged together matched the theoretical 

phase difference between the NLOS and LOS paths. As described earlier, the channel taps 

for a Rayleigh fading channel produces zero mean and looks like a gaussian random 

process over several realizations. Combined with the taps for the NLOS strong reflector 

and the LOS path generated by Rician elements, the overall average for multiple 

realizations should match the amplitude and phase of several combined generated LOS and 

NLOS strong reflector paths. These results are confirmed in Figure 3 and Figure 4. With 

confirmation that the channels followed predicted behavior, we confirmed that they would 

be valid for use within the simulation. With a working channel model, we take results and 

compare them to conduct our analysis of how accurate our user location estimation scheme 
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was and what our results said about the ability to estimate user location given CSI based 

pre-coding matrices. Our results and analyses are discussed in the next chapter. 

 
Figure 3. Running average of the magnitude of several realizations of the 

training database compared to the magnitude of the Rician path 
components. 

 
Figure 4. Running average of the phase of several realizations of the training 

database compared to the theoretical phase calculated as the difference 
between the LOS and the NLOS path. 
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B. SIMULATION ENVIRONMENT 

With channel models, we needed to establish the cell for the BS. The cell of the BS 

in our model consisted of an X × X grid with a strong reflector at a fixed location and either 

one or multiple UE randomly dispersed throughout the grid. We designated the same 

reflector location for all simulations conducted to keep a consistent model.  

The first set-up in our simulations was a 4 × 4 grid, where each square was either 1 

m2 or 9 m2. We wanted to create smaller grid to simulate a micro-cell. The two square sizes 

were used to see if and how distance between training points affected accuracy. Other grid 

sizes included 5 × 5 and 7 × 7. The total number of square locations within each grid size 

was designated by G. We explored various changes in the parameters that made up the 

simulation environment. These parameters included the number of grid squares, the size of 

the grid squares, number of transmitters, and total number of users. Simulation complexity 

increases drastically with an increase in the number of users, transmitters, and number of 

grid squares. This was also a factor that determined the sizing of our grids. We made the 

determination of whether to run larger grid sizes based on computational requirements and 

whether there would be more gain in doing so. The total number of channel models to setup 

the training database NChannels, training is given by 

 ,Channels training Tx rpN N N= ×  (21) 

where NTx is the total number of transmitters and Nrp is the total number of reference points. 

Given that the number of reference points used equates to the total number of grid squares 

not including the transmitter, the total number of channels is 

 ( 1),Channels TxN N G= × −  (22) 

where the total number of squares in the grid G is 

 .G X X= ×  (23) 

The basic setup for the grid is shown in Figure 5. 
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Figure 5. A generic example of the simulation grid for a 2 × 2 MIMO 
scenario. Transmission antennas are shown in blue, two users are shown in 

black, and the strong reflector is the red dot.  

The channel paths are further included in Figure 6, where the LOS and the strong reflected 

paths are indicated. 



22 

 
Figure 6. A generic example of a 2 × 2 MIMO setup scenario with the LOS 

and strong NLOS path indicated for one the of the transmission antennas. 
The transmit antennas are shown in blue, and the strong reflector is 
designated as red. Each square in this model is 1 m2, but sizes were 

adjusted in simulation. 

While the grids displayed in Figure 5 and Figure 6 show 1 m2 for each square in the grid, 

multiple square sizes we used. The transmitter antennas were always located in the same 

grid location for each simulation, as was the reflector. The only location changes occurred 

with the UE. UE locations were randomized for each simulation.  

C. OFFLINE TRAINING STAGE 

The next step of simulation was to establish a stored database of all offline 

measurements in what we refer to as the training sample database. The measurements were 

taken at the center of each grid square. As an example the simulation training locations are 

shown in Figure 7. The locations are fit to a 1-m2 square size, but the size was varied for 

the simulations. The grid square sizes used in simulation were 1 m2 and 9 m2. Each grid 

square was assigned a numeric value ranging from g = 1,…,G to be stored in the training 
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database. The training sample database consisted of G−1 values for the channel coefficient 

corresponding to each transmitter-RP pair.  

 
Figure 7. Grid simulation environment showing RPs for the training 
database calculation during the offline phase. In this case the transmitter is 

located at g = 1, designated by the blue “X.”  

For each simulation run, the training sample database contained all 10 000 training 

samples of CSI between each transmitter and each possible location on the grid for a user 

location. The averages for the training samples settled out after within the first 300–400 

samples so 10,000 provides a stable average to use for comparison. This is similar to the 

offline stages described in [2]–[4]. These averages were used to compile the entries in the 

training channel matrix database Htraining. The training database matrix Htraining was used 

for as a comparison metric for the location estimate. Simulations were run for k users where 

k was 1, 2, and 5. For designated k users, the database contained every possible combination 

of users on the grid given by the binomial coefficient  
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With each possible user combination, the training channel matrix database also 

contained the corresponding channel matrix Htraining. For example, for the 4 × 4 grid with 

two users, the training channel matrix database has 
15
2

 
 
 

 possible user combinations, 

equating to 105 combinations. For each location combination, there was a stored matrix of 

size 2 × m, where m is the number of transmitter antennas. As the grid size increases, the 

training channel matrix database contains more entries. As the number of users or 

transmitter antennas increases, each entry has a larger sized matrix. The simulation 

complexity had a massive increase as these elements were scaled up.  

D. ONLINE EXECUTION 

After the offline stage, an online stage is run to take actual realizations of the 

channel to be compared to the training database. The basic algorithm for the online phase 

is as follows. User locations were first randomly generated. These generated locations were 

used for multiple channel realizations, where new channel estimates were calculated. With 

each new channel estimate, a pre-coding matrix was established. That matrix was 

compared to each entry in our training database using a norm to establish a distance 

between the matrices. The location entry with the corresponding lowest norm was used as 

the location estimate of the users.  

The new data from the online stage deals with generating individual new channel 

realizations rather than generating a running average of channel realizations. After 

establishing the offline channel matrix training database, actual grid square locations for 

the users were randomly generated. From there, specific locations within the squares were 

established as though the users were randomly located somewhere within the square. Each 

new online channel realization was designated as Htest. From Htest, the zero-forcing pre-

coding matrix Ptest was established by taking the pseudo-inverse. For each new channel 

realization, the Frobenius norm was calculated to measure the distance between Ptest and 

the pseudo-inverse of each stored training matrix designated as Ptraining. We used the 
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Frobenius norm because it allows us to look at the similarity between each individual 

matrix element. Each matrix element described the behavior of the channel between each 

transmitter and user. The Frobenius norm allows us to gauge the overall closeness between 

the two matrices based on elementwise differences. Two matrices that are almost equal or 

have similar channel behavior theoretically have a smaller norm. The Frobenius norm 

calculation to find the distance between the two matrices is given by 

 ( )2
, , ,test training test mn train mn

n m
p p− = −∑∑P P   (25) 

where pmn describes the element of each matrix. The location(s) corresponding to the 

smallest calculated norm was stored as the location estimate(s) for the user(s). The distance 

error for each user linking with the base station was determined from  

 2 2
, ( ) ( )error n actual rp actual rpd x x y y= − + −   (26) 

where xactual and yactual are the actual coordinate locations of the user. The RP locations 

corresponding to the grid square location determined via the minimum norm calculated in 

(25) are represented by xrp and yrp. The distance error is calculated for each new channel 

realization. For a multi-user case, the location estimate used for each user corresponded to 

the matching order of the reference points for that fingerprint. For example, say two user 

locations were [2,5], (i.e., one user at square #2 and one user at square #5), and they 

matched to the fingerprint stored for locations [3,6]. The algorithm calculates the distance 

from the user at square #2 to the reference point in square #3 and calculates the distance 

from the user at square #5 to the reference point in square #6. The algorithm considers 

strictly ordered user locations. This allowed us to keep a consistent condition for location 

estimation but restricted the possibility for having a more accurate system by incorporating 

the distance from #3 to #5 or #2 to #6.  

A running average was kept for the distance error of each new channel realization 

to establish a performance metric. The running average of the error for each new channel 

realization stabilized after a few hundred realizations for each environmental setup. 

Because of this, we ran 250, 500, or 1,000 realizations for each randomized user location. 
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The 500 realizations correspond to the case where we have a larger number of users: 5 and 

10. Because the complexity of the simulation increases significantly with the number of 

channel models we had to generate, we had to run fewer simulations. For each grid size 

and square size, we ran 500, 1,000 or 2,000 simulations. Fewer total simulations were run 

with more users and larger grids to save computational time. For clarification, the total 

number of simulations accounts for the total number of randomly generated user 

location(s), and the total number of realizations was the number of newly generated 

precoding matrices compared to the stored fingerprints. The empirical CDF of the mean 

distance errors and the number of times the users were within a given radius from the 

correct reference point were used as performance metrics for the system. 
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IV. RESULTS AND ANALYSIS 

To measure the success of our results, we looked at the number of times the 

fingerprinting algorithm deduced that the users are located within a certain radius of the 

location estimate. Because the location estimates are not exact, we did not achieve a 

distance error of zero. Our ability to estimate the location of the user was based on the 

mean-distance error discussed in Chapter III. We established a radius around the RP that 

we consider to be an accurate location estimate for the user. This was a way to say the user 

falls within the correct square. We used 0.5 m for the 1-m and 1.5 m for the 3-m RP 

spacings. We also analyzed the cumulative distribution function (CDF) based off the 

empirical data for the mean error distances given the different number of transmitter 

antennas. 

A. INITIAL FINDINGS AND OBSERVATIONS 

We observe the behavior of the accuracy of the fingerprinting model for 1, 2, and 

5 user scenarios. Our initial observations are based on the empirical CDFs for each grid 

size and each square size.  

Our first simulation scenario looks at a single user to establish a baseline for what 

results look like when the transmitter is only focusing its energy on one user within the 

grid.  

1. Single User Scenario 

The database for the single user contains only single-user fingerprints. These prints 

are vectors consisting of the channel information for each transmitter-to-user pair. In Figure 

8 and Figure 9, we see the start of a trend that follows through for all our scenarios. For the 

case where the RPs are spaced apart by 1 m (i.e., the 1-m2 square size), we see that there is 

a large difference in accuracy between the case of two and 20 transmitter antennas and the 

case of 128 and 256 transmitter antennas. Specifically, about 15% of the generated mean 

error distances for the two transmitters fall within an accuracy of 0.5 m, and 12% for the 

20 transmitter antennas fall within that accuracy marker. There is a significant drop for the 
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128 and 256 transmitter antennas. Both cases have only 10% of their mean error distances 

falling below the accuracy marker. The reverse happens for the 9-m2 square size where the 

RPs are spaced 3 m apart. We see the mean error distances for the 20, 128, and 256 antennas 

has approximately 15% of the mean error distances falling below the accuracy marker, and 

the two transmitter antennas falls below 10%. We start to see a trend in this area as we 

change the size of the grids and vary the number of users. The percentages of mean error 

distances that fall within the accuracy marker are given in Table 1. Figure 16, Figure 17, 

Figure 18, and Figure 19 for the 4×4 grid scenario are in the Appendix. Analysis of the 

results given are provided in later in this chapter. 

 
Figure 8. Empirical CDF for single user in a 4×4, 1 m2 grid. 
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Figure 9. Empirical CDF for single user in a 4×4, 9 m2 grid. 

Table 1. Single User Accuracies 

 Percentages based on Number of Transmitter Antennas 

Grid Square 2 20 128 256 

4×4 1 m2 10.95 13.7 7.9 6.15 

9 m2 9.0 14.9 15.05 12.65 

5×5 1 m2 8.9 12.5 5.75 4.75 

9 m2 13.0 20.15 21.25 22.85 

7×7 1 m2 5.25 11.9 4.5 3.8 

9 m2 10.55 18.1 16.9 16.75 
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2. Two-Users Scenario 

We scale our simulations to include two single antenna users. For each simulation 

the user locations are randomly generated for multiple realizations of the channel. As we 

did for the single user case, we observe a 4×4, 5×5, and a 7×7 grid. Two square sizes are 

run for each grid: 1 m2 and 9 m2. We see a significant decrease in accuracy from the single 

user case to the two-user case. This is probably attributed to the total number of possible 

combinations of user locations that grows significantly as we increase the total number of 

users. The percentage of results that fall within the accuracy markers of 0.5 m and 1.5 m 

are shown in Table 2. The trends we see with these percentages closely follow what we 

found for the single user. 

Table 2. Accuracies for two users 

 Percentages Based on Number of Transmitter Antennas 

Grid Square 2 20 128 256 

4×4 1 m2 4.6 5.4 1.5 1.5 

9 m2 5.35 9.25 10.1 8.75 

5×5 1 m2 3.05 4.3 0.06 0.085 

9 m2 8.5 19.75 19.75 19.9 

7×7 1 m2 1.2 2.75 0.045 0.05 

9 m2 5.15 11.85 12.8 11.5 

 

For comparing these results to our baseline single user results, we look at the 

empirical CDFs for our two-user cases. In Figure 10 and Figure 11, the results closely 

match the single-user case in terms of general trend for the CDF shape. Attached in the 

Appendix, Figure 20, Figure 21, Figure 22, and Figure 23, are plots of  the CDF for the 

other two-user cases and reinforce the data shown in Table 2. The ordering of the curves 

for the two-user cases matches that of the single-user cases. We see a significant reduction 

in how many of the mean error distances fall below the accuracy marker. For the single-
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user case 4×4, 1 m2, we saw those percentages for each case fall between 7% and 12%. For 

the two-user case, we see these percentages cut by more than half, falling between 1% and 

6%.  

 
Figure 10. Empirical CDF for two users in a 4×4, 1 m2 grid. 
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Figure 11. Empirical CDF for two users in a 4×4, 9 m2 grid. 

3. Five-Users Scenario 

In our five-users case, we see a clear degradation in the percentage of users that fall 

within the reasonable error margin. The spread of the mean error distances is shown in 

Figure 12 and Figure 13. Figure 24 and Figure 25 in the appendix are CDF plots that 

reinforce the degradation of accuracy seen in the five-user case. We see a change in the 

trend that we saw from our previous cases. The percentage of mean distance errors no 

longer improves from changing the RP spacing to 3 m. None of the distance errors in Figure 

13 fall within the “acceptable” accuracy margin of 1.5 m, while only approximately 1% to 

2% of the cases for the 1-m2 square size fall within the 1.0-m marker. What we can gather 

from these results is that complexity plays a large role in the ability of the system to 

accurately predict multiple user locations. Due to the computation requirements of running 

simulations for five users, we chose to forego larger grid sizes. We can clearly see a 

degradation in accuracy for having five users. The system has too many possibilities to 

consider. 
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Figure 12. Empirical CDF for five Users in a 4×4, 1 m2 grid.  

 
Figure 13. Empirical CDF for five Users in a 4×4, 9 m2 grid. 
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B. ANALYSIS OF FREQUENCY EFFECT ON PHASE 

In our results, we notice an initial sense of randomness associated with the CSI. In 

other words, we notice that the channel information differs widely based on the location of 

the users. The difference in CSI from a user location is explained by the nature of how the 

CSI is generated based on distance from the transmitters and phase, but it was unexpected 

to find that something as small as a millimeter change would cause such drastic CSI 

changes. In this section, we discuss how the CSI may change with the slightest movement 

of the UE and attribute some of our findings to that movement. When we set up our 

simulations, we had the UE locations generated at random. Thus, they would never align 

exactly with the RP location. Our initial thought process was that the path would be similar 

enough to the path to and from the RP. The CSI for the UE would have a magnitude and 

phase that fell within a close range of the magnitude and phase of the combined NLOS 

strong reflected path and the LOS path.  

Based on our findings, there are certain locations where the location of UE is 

predicted correctly every time and other locations where the correct location of the UE 

correct location is never determined. There are also a few scenarios where we found 

accurate RP prediction for some cases but not for others with the same user location. We 

attribute this disparity to the phase changes that occur with small variations in location 

within the grid. The cause of many location estimation errors is due to large changes in 

phase because of small changes in distance from the RP. We also observe that the 9-m2 

square sized simulations have a considerably higher accuracy rate where the RP correctly 

matches to the square that the user is in. This may indicate that if this methodology was 

used for actual deployed Massive MIMO technology, then fewer measurements could be 

taken while maintaining above average performance.  

We look at two communication examples in Figure 14 and Figure 15 to describe 

how the change in location affects the change in phase. 
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Figure 14. Visual display of LOS path and NLOS strong reflected path for a 

user located in square #6. 

 
Figure 15. Visual display of LOS path and NLOS strong reflected path for a 

user located in square #12. 
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The initial purpose of these two scenarios was to observe how the angle of the bounce path 

might be affecting accuracy results. Instead of angle of the bounce path, we find that 

frequency plays a large role in how well the system performs. This is the result of how the 

channel behaves when the frequency approaches the MM wave realm. For our examples, 

we have a situation where the user is in square #6 and another where the user is in square 

#12. We calculate the phase of the bounce and direct paths to the RPs in these respective 

squares. We have two transmitter antennas so there are two individual values for each 

bounce and direct path making up a total of four phase values. We use (11) to calculate our 

phase for each path. For the purposes of this explanation, we focus on the phase values 

between one of the transmitters and the RP or UE rather than both transmitters. The phase 

difference between the transmitters is negligible. In Table 3, we see the difference in phase 

calculated for the UE and the RP. For each of these cases, we set the UE to be located 3 

mm to the right of the RP to show the difference in phase. We can see in the table the 

difference caused by moving the UE just 3 mm from the RP. The phases are not within an 

acceptable range to accurately predict the square in which the UE is located.  

Table 3. Phases for 30-GHz Carrier Frequency, 1-m2 square 

Square Number RP/UE  LOS Phase (°) NLOS Phase (°) 

6 RP 317.47 76.3137 

UE 34.0811 100.9 

12 RP 327.91 134.96 

UE 55.8478 237.43 

 

To further investigate our claim that frequency is causing large user location error, 

we investigate what happens when we lower the frequency to 1-GHz. We look at the same 

situation where the UE is in squares 6 and 12 as shown in Figure 12 and Figure 13, 

respectively. These findings are recorded in Table 4. We clearly see that the phase 

information for the UE located only 3 mm from the RP still closely matches the phase 

information that makes up the recorded fingerprint in the training database. 
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Table 4. Phases for 1-GHz Carrier Frequency, 1-m2 square 

Square Number RP/UE LOS Phase (°) NLOS Phase (°) 

6 RP 297.2332 358.7159 

UE 299.8715 357.5805 

12 RP 48.4698 358.7159 

UE 51.4416 2.1315 

 

These findings bring us to the conclusion that our chosen frequency of 30 GHz has 

an effect on accuracy in this system and brings up the question of what qualifies as an 

acceptable frequency for use in this specific fingerprinting methodology  

 While the phases match much more closely with the 1 GHz carrier frequency, MM 

wave systems operate at higher frequencies than 1 GHz. The phases closely match between 

the RP and UE up to about 4 GHz as shown in Table 5 for the UE located in squares #6 

and #12. What we can gather from this is that as the carrier frequency increases, the UE is 

too far away from the RP for the phase to match closely enough. This is for a 4×4 grid 

scenario at 1 m2 sized reference squares. In future work it may be worthwhile to explore 

whether increasing point density allows for better location estimation. If those points are 

closer together, then the database contains more information for the user to match to. The 

radius of accuracy would be smaller. 

Table 5. Phases for 4-GHz Carrier Frequency, 1-m2 square 

Square Number RP/UE LOS Phase (°) NLOS Phase (°) 

6 RP 12.3789 310.3547 

UE 23.016 305.8133 

12 RP 51.8618 310.3547 

UE 63.6232 324.017 
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We also explore how the frequency influences the phase for RPs placed in 9-m2 

sized grid squares. As with the 1-m2 squares, we also look at two different squares within 

the grid to paint a full picture of our results.  

Table 6. Phases for 30-GHz Carrier Frequency, 9-m2 square 

Square Number RP/UE LOS Phase (°) NLOS Phase (°) 

6 RP 52.6148 291.097 

UE 129.025 23.7205 

12 RP 51.5964 10.8755 

UE 139.4979 106.3283 

 

As was the case with the 1-m2 squares, the phase data in Table 6 also shows that a 

carrier frequency of 30 GHz produces training and testing phases that are less likely to 

match if the UE is just 3 mm away from the RP.  

 We run the same test with 1 GHz as the carrier frequency. We see a clear 

improvement in Table 7, just as in Table 4. Additionally, we find that increasing the carrier 

frequency to 4 GHz also produces phases close to what is calculated in the RP.  

Table 7. Phases for 1-GHz Carrier Frequency, 9-m2 square 

Square Number RP/UE LOS Phase (°) NLOS Phase (°) 

6 RP 357.2899 159.9204 

UE 349.8661 163.0079 

12 RP 290.5540 282.5797 

UE 293.4976 285.7615 
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Table 8. Phases for 4-GHz Carrier Frequency, 9-m2 square 

Square Number RP/UE LOS Phase (°) NLOS Phase (°) 

6 RP 217.149 235.1729 

UE 227.36 247.5227 

12 RP 302.8491 5.8101 

UE 314.5814 18.5371 
 

With our data, we see a clear improvement in location accuracy with the 9 m2 square 

sizes. Companies may not have to take channel measurements at as many points within a 

communications cell to still accurately predict where the UE is, but frequency must be 

lowered from the typical MM wave spectrum. Part of this phenomenon is in how we have 

defined accuracy for each scenario. By allowing 1.5 m rather than 0.5 m from the reference 

points, we have created a greater radius of accuracy. More points that are further away can 

fall within a range that are considered to be acceptably close to the RP. Having the RPs 

spaced further than 1 meter apart allows for a more accurate system because more points 

are included. They are still in the same square as the RP but can be further from it and still 

be considered “acceptable.”  
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V. CONCLUSIONS AND FUTURE WORK 

A. SUMMARY OF RESEARCH AND FINDINGS 

In our work, we generated a communications MIMO grid between UE and 

transmission antennae. Our goal was to assess the accuracy of a massive MIMO 

communications location identification based on CSI. We chose to conduct simulations for 

single user, two user, and five user scenarios. Using a non-zero mean gaussian distribution, 

we generated a training phase of CSI based on RP to store in an information database. We 

then set up a testing phase where UE would randomly be placed on the grid. The goal was 

to assess how well the estimated location of the UE matched the closest RP and where the 

reason for errors lay.  

We found that our errors were due to our chosen frequency and the drastic 

millimeter changes seen in CSI. In our setup, we went on an assumption that wherever the 

UE ended up in the grid square, it would reflect a fairly accurate picture of CSI compared 

to that of the RP. As we discovered, this was not the case. Even the 1-m2 spacing proved 

to be too close in point density. Due to the computational weight of the simulations we 

performed, we needed to limit the scope of how many grid sizes and spacings we were 

going to simulate. We are unable to come to a solid conclusion as to whether or not a 

middle ground grid size would have followed the same trend that we saw, where having 

the points spaced closer together was actually a detriment to our system “accuracy”. 

B. FUTURE WORK 

There are several directions future continuation of this research could take to further 

explore MM wave communications and technology. A continuation of this work presents 

opportunities to explore other methods of channel comparison and to improve upon 

channel simulation as well. We made discrete decisions on certain parameters for the sake 

of simulation complexity and timeliness. For our data, we applied a Frobenius norm to 

analyze the “closeness” of the channel matrices. Additionally, the option of comparing the 

elements of the testing matrices could be directly compared to that of the training matrices.  
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Another direction for this work would be to change the density of the CSI 

fingerprints for the training database. In an area as dense as a city street or block, having 

points closer together may allow for better separation of channel information. Future 

research could be conducted on how exactly distance specifically affects the information 

itself. In this work, we only observed data for two spacings between points: 0.5 m and 1.5 

m. There are an infinitesimal number of possibilities for point spacings that have yet to be 

explored. The density of the fingerprint points could allow for the use of higher frequencies 

closer to that of real-world 5G frequencies.  

In our work, we only looked at one K value in our channel modeling. We 

specifically chose K = 3 to simulate a Rician fading channel. There cannot be too much 

variance in K because, as stated earlier, a value too large is unrealistic and a value too small 

makes the channels more Rayleigh in nature. Some finetuning could be done to observe 

how changes in K affect the results and accuracy of the Frobenius norm comparison. 

Additionally, other methods of channel modeling could be employed to make a more 

realistic city block. We wanted to use a baseline simplistic model to get an initial idea of 

how the location estimation would perform. Our method of pre-coding also went into how 

closely the channel information would compare for the training and testing databases. 

We only looked at zero-forcing due to its ease of modeling and simplicity. As with 

the norm we decided to use, there are other methods of digital pre-coding available that 

may be worth looking into in future research. Other areas where this research could be 

taken include implementation of machine learning algorithms for finetuning the training 

data and obtaining more accurate location estimates. Different channel models can be used 

to create the channel databases.  

This work has several directions it can be taken. We focused on taking a relatively 

simple channel design and running a large number of simulations. Future work could 

include modifying the channel design and running a  smaller number of simulations. 

Additionally, rather than focusing on grid size and number of antennae, future research can 

be done to instead focus on the channel design. Our model is just one attempt at 

implementing a fingerprinting style localization method for massive MIMO systems. 
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APPENDIX A. SINGLE-USER CDF 

This appendix contains additional CDF graphs for single-user scenarios to show the 

trends described in Chapter IV. 

 

 
Figure 16. Empirical CDF for one user in a 5×5, 1-m2 grid. 
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Figure 17. Empirical CDF for one user in a 5×5, 9-m2 grid. 

 

 
Figure 18. Empirical CDF for one user in a 7×7, 1-m2 grid. 
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Figure 19. Empirical CDF for one user in a 7×7, 9-m2 grid. 
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APPENDIX B. TWO-USERS CDF 

This appendix contains additional CDF graphs for two-users scenarios to show the 

trends described in Chapter IV. 

 

 
Figure 20. Empirical CDF for two users in a 5×5, 1-m2 grid. 
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Figure 21. Empirical CDF for two users in a 5×5, 9-m2 grid. 

 

 
Figure 22. Empirical CDF for 2 Users in a 7×7, 1-m2 grid. 
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Figure 23. Empirical CDF for two users in a 7×7, 9-m2 grid. 



50 

THIS PAGE INTENTIONALLY LEFT BLANK 

 

  



51 

APPENDIX C. FIVE-USERS CDF 

This appendix contains additional CDF graphs to show the trends described in 

Chapter IV. 

 

 
Figure 24. Empirical CDF for five users in a 5×5, 1-m2 grid. 
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Figure 25. Empirical CDF for five users in a 5×5, 9-m2 grid. 
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APPENDIX D. MATLAB CODE 

This appendix contains the MATLAB code written to generate the training 

database, generate the actual testing databased, and compare the two using a Frobenius 

norm. The code also contains function to generate Rician channel taps that were used to 

populate H. The map function was written to generate individual number values to assign 

to each grid square.  
%% System Specifications (Parameters) 
%Grid Information 
tic 
parpool(32); 
gridX = 7; gridY = 7; 
rng(‘shuffle’); 
squareSize = 1; 
gridSize = gridX*gridY; 
map = Map([gridX,gridY],squareSize); %Create a map of 
single values to the grid locations 
%and assign actual locations of where the users are. 
 
reflectorX = 2; reflectorY = 3; 
 
reflectorLocation = 
findLocation(map,reflectorX,reflectorY); 
 
nTx = 2; 
txX = 1; 
txY = 1; 
txLocation = [txX,txY]; %Grid number for where the 
transmitter is located 
txLocationActual = zeros(nTx,2); %store the specific 
locations of the 
nUsersMax = nTx; 
 
K = 3; 
txPower = 1; 
fc = 30e9; %LTE Carrier freq. 
lambda = 3e8/fc; 
 
%transmission antennae, taking into a ccount their spacing 
hypotenuse = (nTx-1)*lambda/2; 
a = hypotenuse/sqrt(2); %intersect points along x and y 
for t = 1:nTx 
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  %intersect of first antennna will be (0,a) then continue 
down from 
  %there 
  txLocationActual(t,1) = (t-1)*a/nTx; 
  txLocationActual(t,2) = a - (t-1)*a/nTx; 
end 
 
%Calculate distance to middle of cell for each transmitter 
medianXY = median(map(2:gridSize,4:5)); 
medianDistance = zeros(nTx,1); 
for t = 1:nTx 
  medianDistance(t) = sqrt((medianXY(1)-
txLocationActual(t,1))^2 +... 
      (medianXY(2)-txLocationActual(t,2))^2); 
end 
clear medianXY; 
%% Set up training database 
nIterations = 10000; %DATABASE SIZE (HOW MANY TIMES WE DO A 
CHANNEL RESET) 
trainingDatabase = cell(1,nIterations); %database contains 
all possible number of users 
lambda = 4; 
p = poissrnd(lambda,1,1e6); 
txTrack = findLocation(map,txX,txY); 
parfor iteration = 1:nIterations 
  idx = 1; 
  for rxLoc = 1:gridSize %Go through a realization of the 
channel 
      % for each antenna... differences 
      if rxLoc ~= txTrack 
          rayleighH = cell(nTx,1); 
          ricianH = zeros(nTx,1); 
          phaseout = ricianH; 
          channelEstimate = zeros(nTx,1); 
          for i = 1:nTx 
              [ricianH(i), ~,L,~] = 
RicianTap([reflectorX,reflectorY],... 
                  txLocationActual(i,:), 
map(rxLoc,4:5),medianDistance(i),txPower); 
              rayleighH{i} =  (L^2/K)*RayleighTaps(30,p); 
              channelEstimate(i) = 
sum(cell2mat(rayleighH(i)))+... 
                  ricianH(i); 
          end 
          %grid location 
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          trainingDatabase{1,iteration}{idx,1} = 
map(rxLoc,1); 
          trainingDatabase{1,iteration}{idx,2} = 
channelEstimate; 
          %channel estimate for each individualized channel 
          idx = idx + 1; 
      end 
  end 
end 
 
vars_clear = {‘idx’,’iteration’}; 
clear(vars_clear{:}); 
trainingAvgH = cell(gridSize-1,2); 
for i = 1:gridSize-1 
  temp1 = zeros(nTx,1); %average rayleigh for each 
transmitter 
  for j = 1:size(trainingDatabase,2) 
      for k = 1:nTx 
          new1 = trainingDatabase{j}{i,2}(k);%channel 
estimate 
          temp1(k) = temp1(k) + new1; 
      end 
  end 
  trainingAvgH{i,1} = cell2mat(trainingDatabase{j}(i,1)); 
%locations 
  trainingAvgH{i,2} = (temp1)/size(trainingDatabase,2); 
%averages 
end 
clear temp1; clear temp2; clear new1; clear new2; 
%% set up training H matrices, based on number of users 
nUsers = 5; 
% if nUsers > nTx 
%     error(‘Number of User antennae must be less than 
Transmitter’); 
% end 
[C, nCombos] = 
LocationCombos(txLocation,nUsers,[gridX,gridY],squareSize); 
temp = trainingDatabase{1,1}; clear trainingDatabase; 
databaseLocations = cell2mat(temp(:,1)); 
trainingH = cell(nCombos,2); %1: location, 2: H matrix 
for combo = 1:nCombos 
  %set the user combination 
  uLocations = C(combo,:); 
  trainingH{combo,1} = uLocations; 
  %combination 
  H = zeros(nUsers,nTx); 
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  % Do training Database first 
  for j = 1:nUsers 
      location = uLocations(j); 
      index = find(location == databaseLocations); 
      H(j,:) = cell2mat(trainingAvgH(index,2)); 
  end 
  trainingH{combo, 2} = H; 
end 
clear trainingAvgH; clear combo; 
fprintf(‘Database Success!\n’) 
%% set up actual user locations (randomly chosen) 
%Graph information 
totalSimulations = 500; 
Saved_Mean_Averages = cell(totalSimulations,1); %1-nUsers: 
user locations 
Success_Count = cell(totalSimulations,1); 
% waitstring = [‘running Simulations’]; 
% wait = waitbar(0,waitstring); 
parfor simulation = 1:totalSimulations 
  userLocations = zeros(nUsers,3); %1: map location, 2–3: 
actual x and y 
  %1: Get random user location(S) 
  for user = 1:nUsers 
      userLocations(user,1) = randi([2,gridSize]); 
      %check that users are not in same location 
      for m = 1:nUsers-1 
          %skip yourself 
          if m == user 
              continue 
          end 
          %check that users aren’t in same locations 
          while userLocations(user,1) == userLocations(m,1) 
              userLocations(user,1) = randi([2,gridSize]); 
          end 
      end 
       
      %Get x and y locations 
      userLocations(user,2) = map(userLocations(user,1),2)- 
1 +... 
          randi(99)/100; 
      userLocations(user,3) = map(userLocations(user,1),3)- 
1 +... 
          randi(99)/100; 
  end 
  [~,I] = sort(userLocations(:,1),’ascend’); 
  userLocationsSorted = userLocations(I,:); 
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  userLocations = userLocationsSorted; 
   
  %2: Generate new realizations 
  nRealizations = 250; 
  ChannelRealizations = cell(1,nRealizations); %store each 
new H realization 
  ErrorDistance = zeros(nRealizations,nUsers); %row: 
realizations, column: user # 
  sumError = zeros(1,nUsers); 
  runningAverage = zeros(nRealizations,nUsers); %row is the 
average mean error, column is the user number 
  temp_success_count = 0; 
   
  for r = 1:nRealizations 
      H = zeros(nUsers,nTx); 
      Norms = zeros(nCombos,1); %store norm for each 
      %1: generate channel realization 
      for user = 1:nUsers 
          %channel coefficients from each transmitter to 
each user 
          rayleighH = cell(nTx,1); 
          ricianH = zeros(nTx,1); 
          phaseout = ricianH; 
          channelEstimate = zeros(nTx,1); 
          for tx = 1:nTx 
              [ricianH(tx), ~,L,~] = 
RicianTap([reflectorX,reflectorY],... 
                  txLocationActual(tx,:), 
userLocations(user,2:3), medianDistance(tx),txPower); 
              channelEstimate(tx) = 
sum(cell2mat(rayleighH(tx)))+... 
                  ricianH(tx); 
              rayleighH{tx} = (L^2/K)*RayleighTaps(30,p); 
          end 
          H(user,:) = channelEstimate; 
      end 
      ChannelRealizations{r} = H; 
       
      %2: compare realization to each entry in training 
database 
      for c = 1:nCombos 
          trainH = cell2mat(trainingH(c,2)); 
          Norms(c) = frobenius(pinv(trainH),pinv(H)); 
      end 
      %3: Find location combo H with lowest norm 
      locationIdx = find(Norms == min(Norms)); 
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      %4: Get actual locations from each 
      LocationEstimate = C(locationIdx,:); 
       
      %5: calculate error distance for each user 
      for n = 1:nUsers 
          userActual = userLocations(n,2:3); 
          estimateActual = map(LocationEstimate(n),4:5); 
          ErrorDistance(r,n) = sqrt((userActual(1)- 
estimateActual(1))^2 +... 
              (userActual(2) - estimateActual(2))^2); 
          sumError(n) = sumError(n) + ErrorDistance(r,n); 
      end 
       
      if mean(ErrorDistance(r,:)) < squareSize*sqrt(2)/2 
          temp_success_count = temp_success_count+1; 
      end 
       
      %6: keep a running average of error distances 
      runningAverage(r,:) = sumError/r; 
  end 
  Success_Count{simulation} = temp_success_count; 
  Saved_Locations{simulation} = userLocations; 
  Saved_Mean_Averages{simulation} = 
mean(runningAverage(nRealizations/2:nRealizations,:)); 
end 
clear trainingH; 
fprintf(‘Took %0.0f seconds. \n’,toc) 
save(‘Results_7x7_1m2_2Tx_5User.mat’); 
 
function [H,phase,L,equalFlag] = 
RicianTap(reflectorLocation,txLocation,... 
  userLocation,medianDistance,txPower) 
%All location inputs are in terms of x and y 
fc = 30e9; 
c = 3e8; 
wavelength = c/fc; 
lossExp = 3; 
equalFlag = 0; 
refPower = (1/(4*pi)); 
medianSNR = 100; %based off of 20 dB for median 
txPower = txPower; 
%Calculate distances of the bounce path and the direct line 
of sight 
if (reflectorLocation(1) ~= userLocation(1)) || 
(reflectorLocation(2) ~= userLocation(2)) 
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  %Acquire distances 
  distTx2Reflector = sqrt((txLocation(1) - 
reflectorLocation(1))^2 +... 
      (txLocation(2) - reflectorLocation(2))^2); 
  distReflector2User = sqrt((userLocation(1)-
reflectorLocation(1))^2 +... 
      (userLocation(2) - reflectorLocation(2))^2); 
  bouncePath = distTx2Reflector + distReflector2User; 
  directPath = sqrt((userLocation(1) - txLocation(1))^2 
+... 
      (userLocation(2) - txLocation(2))^2); 
  %Acquire SNR relative to median distance 
  if directPath == medianDistance 
      SNR = medianSNR; 
  elseif directPath < medianDistance 
      SNRScale = ((medianDistance-
directPath)/directPath)+1; 
      SNR = SNRScale*medianSNR; 
  else 
      SNRScale = ((directPath-medianDistance)/directPath); 
      SNR = SNRScale*medianSNR; 
  end 
   
  directPhase = 2*pi*(directPath/wavelength - 
floor(directPath/wavelength)); 
  bouncePhase = 2*pi*(bouncePath/wavelength - 
floor(bouncePath/wavelength)); 
   
  Ldirect = refPower * (1/directPath)^lossExp; 
  Lbounce = refPower * (1/bouncePath)^lossExp; 
   
  rxPowerDirect = txPower * Ldirect; 
  rxPowerBounce = txPower * Lbounce; 
   
  noisePower = rxPowerDirect/SNR; %get the variance 
  var = noisePower; 
  %     Lbounce = 2; 
  %     Ldirect = 1; 
  meanDirect = sqrt(rxPowerDirect)*exp(1i*directPhase); 
  meanBounce = sqrt(rxPowerBounce)*exp(1i*bouncePhase); 
   
  HDirect = var*((randn + 1i*randn))+ meanDirect; 
  HBounce = var*((randn + 1i*randn))+ meanBounce; 
  H = HDirect + HBounce; 
   
  pathDiff = bouncePath - directPath; 
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  %     phaseDiff = 2*pi*(pathDiff/wavelength - 
floor(pathDiff/wavelength)); 
  L = abs(meanBounce+meanDirect); 
  phase = angle(meanBounce+meanDirect); 
  if pathDiff == 0 
      equalFlag = 1; 
  end 
else 
  directPath = sqrt((userLocation(1) - txLocation(1))^2 
+... 
      (userLocation(2) - txLocation(2))^2); 
   
  %Acquire SNR relative to median distance 
  if directPath == medianDistance 
      SNR = medianSNR; 
  elseif directPath < medianDistance 
      SNRScale = ((medianDistance-
directPath)/directPath)+1; 
      SNR = SNRScale*medianSNR; 
  else 
      SNRScale = ((directPath-medianDistance)/directPath); 
      SNR = SNRScale*medianSNR; 
  end 
   
  directPhase = 2*pi*(directPath/wavelength-
floor(directPath/wavelength)); 
  Ldirect = refPower * (1/directPath)^lossExp; 
  rxPowerDirect = txPower * Ldirect; 
  noisePower = rxPowerDirect/SNR; %get the variance 
  var = noisePower; 
  meanDirect = rxPowerDirect*exp(1i*directPhase); 
  L = rxPowerDirect; 
  HDirect = var*((randn + 1i*randn))+ meanDirect; 
  H = HDirect; 
  phase = directPhase; 
end 
end 
 
function [M] = Map(Grid, square) 
%Take in Grid x and y size 
%generate single value to match each x and y location 
GridSize = Grid(1)*Grid(2); 
M = zeros(GridSize,5); %Map locations to grid 
counter = 1; 
for y = 0:Grid(2)-1 
  for x = 0:Grid(1)-1 
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      xactual = x*square + 1/2*square; 
      yactual = y*square + 1/2*square; 
      M(counter,:) = [counter,x+1,y+1,xactual,yactual]; 
      counter = counter +1; 
  end 
end 
end 
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