“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

1970

A Branch Search Algorithm for the Knapsack Problem

Greenberg, Harold; Hegerich, Robert L.
INFORMS

Harold Greenberg, Robert L. Hegerich, (1970) A Branch Search Algorithm for the
Knapsack Problem. Management Science 16(5):327-332.
http://hdl.handle.net/10945/70157

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
lﬂ“‘ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

m“ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

Downloaded from informs.org by [205.155.65.56] on 27 July 2022, at 12:58 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1970 as DOI: 10.1287/mnsc.16.5.327.

This article has not been copyedited or formatted. The final version may differ from this version.

MANAGEMENT BCIENCE
Yol. 16, No. §, Jsnuary, 1970
Printed in U.8.A.

A BRANCH SEARCH ALGORITHM FOR THE KNAPSACK
PROBLEM*

HAROLD GREENBERG anp ROBERT L. HEGERICH
Naval Postgraduate School

This paper presents an algorithm for the solution of the knapsack problem. The
method involves searching the nodes of a tree along a single branch at a time. The
algorithm eliminates the computational drawbacks inherent in the usual branch and
bound schemes.

1. Introduction

This paper presents a new method for the solution to the knapsack problem:
(1) maximize)i v
subject to 2wai < W,z:=0,1(:=1,---,N).

We can assume without any loss in generality that the constants v; and w; are posi-
tive integers. Fractions can be handled by multiplying through by a proper factor.
Nonpositive constants are handled as in Glover [2]. We also assume that the indices
have been arranged so that v,/w; > v2/ws > «- - > vy/wy.

For physical interpretations to the knapsack problem and further references, see
Kolesar [3] who presents a branch and bound algorithm for the solution to (1).

We develop first a branch and bound algorithm that is computationally more
efficient than the one in [3]. However, branch and bound methods usually have very
large computer memory and time requirements. We then present a branch search
procedure that eliminates these serious computational drawbacks. Computational
results are presented for our two algorithms and for Kolesar’s method.

I1. A Branch and Bound Algorithm

We are able to solve (1) by enumerating solutions in a tree search procedure. As
shown by Dantsig [2], the optimal fractional solution to

(2) maximize Y 1 vis
subject to Shiwzi < W

0<z;,L1(i=1,---,N)
is given by z = 1lifi<r

z; = 0ift > r

z = (W — i w)/w

where r is the least integer (0 < r < N) for which D i, w; > W. If no r exists we
have all z; = 1. If z, = 0, we have the optimal solution to (1).

If x, is fractional the value of the objective function is 2(1) = D s 9; + 0,2, . We
consider z(n), the value of the objective function at node n of the tree, as the solution

* Received March 1068; revised January 1969.
327

Downloaded from informs.org by [205.155.65.56] on 27 July 2022, at 12:58 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1970 as DOI: 10.1287/mnsc.16.5.327.
This article has not been copyedited or formatted. The final version may differ from this version.

328 HAROLD GREENBERG AND ROBERT L. HEGERICH

to (2) with assigned variables added as constraints. A branch and bound scheme is

essentially as follows: .

1. Label node 1 with z(1). Go to 2.

2(a). Find the terminal node of the tree with the largest value of 2(n). This is the node
at which the next branching will take place. Any node (54 1) contains the effect
of assigning values to variables and solving (2) with the assigned values of the
variables added as constraints.

(b). If the solution at node n has all integer variables, we have achieved an optimal
solution to (1). Stop. If not, go to 3.

3(a). Set n = n + 1 and some unassigned variable, say z., equal to zero. Solve (2)
with all assigned variables added as constraints. Label node n with the value
z(n). Go to 3(b).

(b). Set n = n + 1 and z; = 1. Solve (2) with all assigned variables added as con-
straints. Label node n with the value z(n). Go to 2.
Kolesar’s algorithm consists in taking as z; in step 3(a) the unassigned variable with

smallest index (i.e., ¢ = 7 for which v;/w; is the maximum for unassigned variables z;).

We propose instead to follow [4] and to take as z, in step 3(a) the variable that is

fractional at node n.

To illustrate our branch and bound algorithm, we solve the problem given in [3]:

Index wi vi
1 30 60
2 50 60
3 40 40
4 10 10
5 40 20
6 30 10
7 10 3

and W = 100. Solving (2), we obtain 2(1) = 140 with 2y = 1,23 = 1, 23 = }. We
label node 1 with z(1) = 140. Since z; is fractional we branch from node 1 and pro-
ceed to step 3(a). We solve (2) with z; = 0. This produces 2(2) = 135 with z; = 1,
2 =1,2= 0,2 = 1, 25 = }. We label node 2 with 2(2) = 135. In step 3(b) we set
23 = 1. This produces 2(3) = 136 withz; = 1,2, = §, 73 = 1. We go to step 2 in the
algorithm. We see that 2(3) is the maximum for all terminal nodes. Since the solution
at node 3 has z; fractional, we branch from node 3 and proceed to 3(a). We solve (2)
with z3 = 1 and 2 = 0 added as constraints. This produces 2(4) = 120, with z; = 1,
2 =0,73 = 1,2, = 1, 5 = }. We proceed to 3(b) and solve (2) with z; = 1 and
23 = 1. This produces 2(5) = 120 with z; = }, 2» = 1, 23 = 1. Returning to step 2 we
see that 2(2) is the maximum for all terminal nodes. Since the solution at node 2 has
z5 fractional we must branch from node 2. The method continues easily; the complete
tree is shown in Figure 1. The optimal solution is given at node 8 with 2(8) = 133,
=12 =12 = 1,2 = 1and all other z; = 0.

The algorithm achieves solution with the generation of 9 nodes. The same problem
is solved in [3] and requires 15 nodes. The choice rule used here for the selection of z,
is a clear improvement. Further computational experience is presented in §IV.

III. A Branch Search Algorithm

Branch and bound techniques normally require large amounts of computer storage
and time because of the necessity to store information and make comparisons for all

Downloaded from informs.org by [205.155.65.56] on 27 July 2022, at 12:58 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1970 as DOI: 10.1287/mnsc.16.5.327.
This article has not been copyedited or formatted. The final version may differ from this version.

A BRANCH SEARCH ALGORITHM FOR THE ENAPSACK PROBLEM 329

NODE 3} z(3)=138

-~ MODE6[z(erizaly| [(7=ite z(4)=120| | 2(8)=120| Mo0E 5
NODE €

[2833 | [z(99-018 |
NODE 8 NODE 9
Figurre 1. Complete tree for the example.

terminal nodes. In this section, we present a branch search algorithm for solving (1)
that eliminates these drawbacks.

Our branch search algorithm first finds an obvious integer solution to the constraints
of (1). This solution is a lower bound to the optimal solution. We develop a branch of a
tree and explore each part of the branch until the lower bound is reached or until a
new feasible solution is found that represents a larger lower bound. We then back-
track and develop new branches of the tree with possibly larger lower bounds. Further
branching is excluded when the lower bound is reached. The algorithm stops when all
new branches are excluded. The lower bound solution is optimal. The only information
that is stored is the current lower bound solution and the branch routing.

To initiate the algorithm:

Define [z] as the greatest integer less than or equal to z.

Define S(20, 21, - -+, Ty) a8 the current lower bound solution where the z; are all
given and zo = 3 {m vZ:.

Define X(x;, 73, - -+, Zy) to indicate assigned variables. A value z; = 2 (or any
number not equal to zero or one) indicates that the variable is unassigned. An assigned
variable will have the value zero or one.

Define R(j) as the index of the j* assigned variable.

The solution to (2), with L assigned components of X added as constraints, is

3) “ze=1 i i<r, i#RG) G=1--,L)
=0 if i>r, i#RG G=1,--,L)
Zaep =0 or 1 (j=1,---, L) depending on the assignment
T = (W — 2 WaTeo — 2iercn Wi)/ 0,
Z(L+1) = Likavewtem + 2owr v + 02,

Downloaded from informs.org by [205.155.65.56] on 27 July 2022, at 12:58 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1970 as DOI: 10.1287/mnsc.16.5.327.

This article has not been copyedited or formatted. The final version may differ from this version.

330 HAROLD GREENBERG AND ROBERT L. HEGERICH

where the set M (L) is given by
ML) ={ili<r, i#R@G (G=1--,0)}
and r is the least integer (0 < r < N) for which
Diewwm i + we = W — Dl weTre -

If no r exists we have all z; = 1 for< = R(j) (= 1, ---, L). A lower bound to the
solution of (1) is given by

2(L) = i vroTae) + Diiencry Vi-

The algorithm follows:

1. Set L = 1 and all components of X to two. Go to 2.

2. Solve (2). If the solution is all integer we have the optimal solution. Stop. If
not the solutionis 2, = 1,22 = 1, -+ -, £y = 1 and z, is fractional. We cal-
culate Zp = 2 icrv; and form S(z, 1, 1, -+, 1, 0, 0, 0) as a lower bound
to the optimal solution, where the zero components in S represent z; = 0,
i > r.Set R(1) = r and the r** component of X to zero. Go to 3.

3(a). Solve (2) with the L assigned components of X added as constraints.

We obtain (3). If [Z(L + 1)] < x go to 4. If Z(L + 1) > z, and we have
an integer solution, take 2 = Z(L + 1), form a new S(zy, 21, 22, -+, ZTx)
from (3), and go to 4. If [Z(L + 1)] > x, and we do not have an integer solu-
tion, go to 3(b).

(b). If (L) > x, take 20 = z(L) and form a new S(zy, 1, :**, z») from (3)
with z, = 0. In any case, Set L = L + 1, take R(L) = r, and set the B(L)
component of X to zero. Go to 3(a).

4(a). If the R(L) component of X is equal to zero change the component to one
and go to 3(a). If the R(L) component of X is one go to 4(b).

(b). If L = 1 the optimal solution is S(zo, z1, --*, z~). Stop. If L s 1 change
the R(L) component of X to two, set L = L — 1, and go to 4(a).

This completes the algorithm.! z(L) represents the value of the objective function
at the L* level of a branch. R(L) represents a routing of assignments along the
branch. Only one branch is studied at a time, Preference is given to the branch with
the fractional variable assigned the value of zero. This allows lower bounds to be
achieved more rapidly. The only permanent storage information required is the current
lower bound solution 8, the assigned variables R(L) at level L of the branch, and
the assignment vector X.

In the problem given above, the algorithm as viewed in Figure 1 is as follows:

. At node one the optimal solution to (2) is fractional. 2o = 120.

. Branch to node two, assigning z; = 0.

. Branch to node six, assigning zs = 0.

. Branch to node eight, assigning s = 0. This produces an all integer result with

=133, z1=1,ma=1,z4= 1,2: = 1.

. Back-track to node six; branch to node 9, assigning zs=1.

Back-track to node 6, removing the assignment on zs .

. Back-track to node 2; branch to node 7, assigning z; = 1.

Back-track to node 2, removing the assignment on zg .

N e

o =1

1 This type of branch search is similar to that in {2]. The algorithm here simplifies [2] by retain-
ing only one of its tests and applying a different choice rule in the assignment of values to the
variables.

Downloaded from informs.org by [205.155.65.56] on 27 July 2022, at 12:58 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1970 as DOI: 10.1287/mnsc.16.5.327.

This article has not been copyedited or formatted. The final version may differ from this version.

A BRANCH SEARCH ALGORITHM FOR THE KNAPSACK PROBLEM 331

9. Back-track to node 1; branch to node 3, assigning x; = 1. Calculate z(1) = 100;
do not change the current lower bound.
10. Branch to node 4, assigning 2z = 0.
11. Back-track to node 3; branch to node 5, assigning 2, = 1.
12. Back-track to node 3, removing the assignment on z; .
13. Back-track to node 1; end.
14. The optimal solution is given at node 8.
In this example, the total tree investigated has the same number of nodes as the tree
developed by the algorithm in §II.

IV. Computational Results

We have programmed the two branch and bound schemes and the branch search
algorithm in Fortran IV and have run test problems on the IBM 360/67. The coeffi-
cients v; and w; were generated as random integers and the three methods were then
tried on the same problem. Let

BK = Kolesar’s branch and bound algorithm,

BB = the branch and bound algorithm presented here,

BS = the branch search algorithm presented here.

The results for the number of nodes generated and the time to achieve solution are as
follows:

Average number of nodes generated. Average time in Milliseconds.

w N 20 30 40 50 20 30 40 50
25 BS 28.8 28.0 28.8 35.7 61 87 120 164
BB 26.4 20.6 26.6 28.6 201 282 395 494

BK 56.2 49.6 48.0 50.0 259 345 447 552

50 BS 4.5 38.7 36.1 54.5 75 111 145 235
BB 38.6 48.2 42.0 51.8 236 361 453 581

BK 62.2 78.4 78.0 92.6 276 434 553 723

75 BS 19.8 39.0 27.8 18.5 58 116 128 135
BB 31.0 30.2 27.2 25.0 222 312 404 485

BK 62.6 101.2 84.4 61.6 280 523 578 616

100 BS 7.2 24.3 46.8 29.0 36 97 181 163
BB 16.6 2.8 64.0 50.4 191 301 560 598

BK 56.6 85.4 136.6 134.2 273 403 806 978

(10 problems run to obtain each average)

In these test problems the superiority of BB and BS over BX is clearly evident with
regard to number of nodes generated. As for time considerations, the BS method is
markedly faster than the other two methods, while BB is faster than BK. Various
other problems than those listed were run, and in general, the BS method achieved
solution in about one-half to one-third the time required by the BK and BB methods.

The branch search method was tried on several problems with 5000 variables and
solution was achieved in all cases in approximately 4 minutes. The other two methods
failed because of storage limitations.

In general, the branch search algorithm as given in this paper can solve extremely

Downloaded from informs.org by [205.155.65.56] on 27 July 2022, at 12:58 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1970 as DOI: 10.1287/mnsc.16.5.327.
This article has not been copyedited or formatted. The final version may differ from this version.

332 HAROLD GREENBERG AND ROBERT L. HEGERICH

large problems. The procedure requires minimal computer storage and time. The
choice rule used here to assngn a value to a variable is seen to be of distinct advantage.

References

1. DanTzig, G. B., “Discrete Variable Extremum Problems,” Operalions Researchk, Vol. 5 (1957),
pp. 266-277.

2. Groveg, F., “A Multiphase Dual Algorithm for the Zero-One Integer Programming Problem,””
Operations Research, Vol. 13 (1965), pp. 879-919.

3. KoLxsar, P. J., “A Branch and Bound Algorithm for the Knapsack Problem,” Management
Science, Vol. 13 (1967), pp. 723-735.

4. Lanp, A. H,, anp Dorg, A. G., “An Automatic Method of Solving Discrete Programming
Problems,”’ Econometrica, Vol. 28 (1960), pp. 497-520.

Downloaded from informs.org by [205.155.65.56] on 27 July 2022, at 12:58 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1970 as DOI: 10.1287/mnsc.16.5.327.
This article has not been copyedited or formatted. The final version may differ from this version.

Copyright 1970, by INFORMS, all rights reserved. Copyright of Management Science
is the property of INFORMS: Institute for Operations Research and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email
articles for individual use.

