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PREFACE

The inspiration for the theory of partial differential equations has always come from
two main sources, physics and geometry. The interaction between all three areas has
become intensified in recent years. The solution of the index problem by Atiyah and
Singer in the early 60’s forced the people working on differential equations to improve
their knowledge of differential geometry. This was very useful in the subsequent de-
velopment of microlocal analysis which mainly involved symplectic geometry, a topic
which had previously mainly been cultivated in connection with ordinary differential
equations. Riemannian geometry is central in the recent development of gauge theories,
which rely on a mixture of geometry, physics and partial differential equations. There
has also been a great deal of recent activity in the general theory of relativity, that is, in
pseudo-Riemannian geometry — for example, the proof of the positive mass conjecture
and global existence theorems for the vacuum Einstein equations. The solution of some
purely geometric problems, such as the Yamabe problem and the isometric imbedding
problem, have also enriched the theory of non-linear partial differential equations. The
fundamental open problems in the theory of overdetermined systems of linear differ-
ential equations also require a strong background in geometry even to understand the
present state of affairs. All this should be sufficient reason for an analyst to study
geometry seriously.

In a half semester course it is only possible to present a brief outline of the most clas-
sical Riemannian geometry with a few glimpses of more recent developments. However,
if enough interest is manifested, I plan to continue for one or several semesters more
in order to be able to approach the research front, and these lectures should then be a
convenient platform to build on. One could continue in many different directions. One
possibility is to discuss pseudo-Riemannian manifolds with Lorentz signature (general
relativity theory). Another is to discuss relations to the theory of functions of several
complex variables; the presence of a complex structure gives a much richer structure.

Lund in December 1990

Lars Hormander
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CHAPTER 1

CURVES IN A EUCLIDEAN SPACE

Summary. In Section 1.1 we shall just recall the definition of the curvature of a curve in
a FEuclidean vector space. The special two dimensional case where the curvature can be
given a sign is studied in somewhat greater depth in Section 1.2. We define the torsion
of a curve and prove the Frenet formulas in Section 1.3. This leads to a discussion of
moving frames in Section 1.4 which is a preparation for the Riemannian geometry in
Chapter IV.

1.1. Curvature of a curve. Let V be a finite dimensional vector space over R
with a symmetric scalar product (z, y) defined for z,y € V and the norm ||z| = (z,z)=.
By a C* curve in V we mean a C* map

(1.1.1) ISt—zx(t)eV

where I is an interval C R, k£ > 1, and 2/(¢) # 0 for every t. (Self-intersections are
allowed.) If J is another interval on R and ¢ : J — I is a C* bijection with ¢’ > 0,
then we regard the curve defined by = o ¢ as the same curve as (1.1.1) with just a
change of parametrization. The arc length s(t) on (1.1.1) is defined up to an additive
constant by

ds(t)/dt = ||’ (t)]-

If we define X(s(t)) = x(t) then X is also in C* and || X'(s)|| = 1. If 3 is another
parameter with this property, then ds/ds =1 so § — s is a constant.
Differentiation of the equation 1 = || X’(s)||? = (X'(s), X'(s)) with respect to s gives

2(X"(s),X'(s)) =0.
Thus the second derivative X”(s) is orthogonal to the tangent X'(s) of the curve.
To interpret it geometrically we consider a circle with two perpendicular radii y, z of
length R and center z(; it is parametrized by

z(s) = xo + ycos(s/R) + zsin(s/R), thus z'(s) = (—y/R)sin(s/R) + (z/R) cos(s/R).

Since (y,y) = (2,2) = R? and (y,2) = 0, we confirm using the second equation that
|2’ (s)]|?> = 1. The second derivative

2" (s) = —(y/R?) cos(s/R) — (zl/RQ) sin(s/R) = (zg — z(s))/R?
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is directed toward the center of the circle and ||z”(s)|| = 1/R.

DEFINITION 1.1.1. If s = x(s) € V is a C? curve parametrized by the arc length,
then 2/(s) is the unit tangent vector at x(s). If 2”(s) # 0, then n = z”(s)/||z"(s)||
is called the principal normal of the curve at x(s), 1/||«”(s)|| is called the radius
of curvature, and the circle with center at z(s) + x”(s)/||z”(s)||? lying in the plane
spanned by the vectors z’(s) and z”(s) at x(s) is called the osculating circle. One calls
k = ||2”'(s)|| the curvature at z(s) even if k = 0; otherwise z''(s) = kn.

From the discussion above it is clear that when the curvature is not 0 then the
osculating circle is the only one which has a tangency of higher order with the curve
at z(s).

Now suppose that we have a curve t — x(t) with 2’(t) # 0 which may not have the
arc length as parameter. If we write z(t) = X (s(¢)) as above, we obtain

2’ (t) = X'(s)ds/dt, a"(t) = X" (s)(ds/dt)* + X' (s)d*s/dt>.
Since X"(s) is orthogonal to X’(s) we have
X (s)(ds/de)? = (1) ~ (a"(8), X'()X'(s)
or equivalently,

(1.1.2) X"(s) = 2" )/ 2" (O)* — 2’ (1) (" (), 2" () /" (&) *-
EXERCISE 1.1.1. Calculate the curvature of a C? curve t ~ z(t) with arbitrary
parametrization.

EXERCISE 1.1.2. Show that the tangential component of z”(t) is equal to d*s/dt?
times the unit tangent vector, and that the normal component is (ds/dt)?s times the
principal normal.

1.2. The two dimensional case. For curves in the plane R? we can attach a
sign to the curvature (which depends on the orientation of the plane). If s — z(s)
is a curve with the arc length s as parameter and if z”(s) # 0, then we change the
direction of the normal n(s) so that z’'(s) and n(s) are positively oriented, that is,
det(z'(s),n(s)) > 0 and define the curvature x(s) so that z”(s) = k(s)n(s) as before.
Thus k > 0 means that moving along the curve one sees the curve to the left of the
tangent.

Consider now a closed simple C? curve

R/LZ > s xz(s) € R
where s is still the arc length and x(s) = z(s’) if and only if s — s’ € LZ. We can write
z'(s) = (cosf(s),sinb(s)), 0<s<L,
where 6 is a C'' function uniquely determined up to an integer multiple of 27. Since
2"’ (s) = (—sin 6, cos0)df /ds = kn = k(—sin b, cosh),
we have k = dfl/ds. The integral

(1.2.1) /()LKdS:/OLdQZQ(L)—e(O>

is obviously a multiple of 2.
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THEOREM 1.2.1. The integral (1.2.1) of the curvature of a simple closed curve is
+27 with the positive sign if the curve lies entirely to the left of some tangent when
one moves around it in the positive direction.

Proor. The normalized chord direction
z(t,s) = (z(t) —z(s))/[|z(t) —x(s)], 0<s<t<L

becomes a continuous function in the closed triangle 7' = {(¢,5);0 < s <t < L} if we
define x(s, s) = 2/(s). Since T is simply connected we can find a continuous function
©(t,s) in T such that ¢(s,s) =60(s),0<s < L, and

x(t, s) = (cos p(t, s),sinp(t, s)), (t,s)eT.
We want to find
O(L) = 0(0) = (L, L) = (L, 0) + ¢(L, 0) = ¢(0,0) = 2(¢(L, 0) — ¢(0,0)),

where the last equality follows from the fact that x(L, s) = —z(s,0). Choose the origin
of the parametrization so that z2(0) = min, z2(s). Then ¢(s,0) only varies between 0
and 7. If 24(0) > 0 then ¢(0,0) = 0 and ¢(L,0) = 7 so the integral of the curvature
becomes 27. If 27 (0) < 0 the sign changes, which proves the theorem.

EXERCISE 1.2.1. Show that when 2/(0) = 1 in the preceding argument, then the
variation d(y) of the argument of (z(s) —y)/||z(s) — y|| for 0 < s < L is either 0 or 27
for all points y in the complement 2 of the curve, and that Q. = {y € Q;d(y) = 0} is
an open connected unbounded set while 2; = {y € Q;d(y) = 27} is an open connected
bounded set, the interior of the curve. (Jordan’s curve theorem.) Hint: Examine first
a neighborhood of x(0), then a neighborhood of the curve.

EXERCISE 1.2.2. Show that if T : [0,7] > s + z(s) € R? is a simple closed C?
curve parametrized by the arc length, and N € S?, then s — z(s) — N(z(s),N) is a
C? curve in the orthogonal plane of N for almost all N. Write an expression for its

curvature and conclude that if k(s) is the curvature of I'; then fOT k(s)ds > 2mw. (See
also Milnor [1].)

EXERCISE 1.2.3. Show that if
R/TZ >t z2(t) € R?

is a simple closed C? curve, then

L:/O | det(a/ (¢), 2" (£))[/3 dt

is independent of the parametrization. It is called the affine length. Show that L3/A
is invariant under affine transformations if A is the area of the interior of the curve,
calculate the quotient for an ellipse. (By a theorem of Blaschke this is the least upper
bound for all convex curves; see Burago and Zalgaller [1], p. 7.)
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1.3. The Frenet formulas. We shall now return to the study of a C* curve
(1.1.1) taking the arc length s as parameter. If the curvature is not equal to 0 at
x(sp), then the principal normal n(s) is defined for s near sg. If £ > 3 we can take
its derivative n/(s). Since (n(s),n(s)) = 1 we obtain 2(n’(s),n(s)) = 0, and since
(n(s),z'(s)) = 0 we have

(n'(s),2'(s)) + (n(s),z"(s)) =0, thatis, (n'(s),z'(s)) = —k(s).

Hence n'(s) + k(s)x’(s) is orthogonal to the plane spanned by x’(s) and n(s). The
length 7(s) of this vector is called the torsion of the curve at z(s). If 7(s) # 0, then
normalization gives a unit vector b(s), called the binormal of the curve at x(s), and we
have

n'(s) = —k(s)z'(s) + 7(s)b(s).

The procedure can be continued by differentiation of b with respect to s. Differentiation
of the equations

gives

(b'(s), 2'(s)) = —(b(s), 2" (s)) = 0,
(b'(s), n(s)) = = (b(s), n'(s)) = =7(s), (V'(s),b(s)) = 0.

If dim V' = 3 the vectors x'(s), n(s) and b(s) form a complete orthonormal system, so
we get the third of the Frenet formulas

However, the procedure becomes more illuminating in the higher dimensional case if
we use somewhat different notation.

Consider a C**1 curve (1.1.1) with arbitrary parametrization, such that for all t € I
the derivatives #/(t), ...,z (t) are linearly independent but z’(t),..., z(¥*D(¢) are
linearly dependent. Clearly k£ < dim V. For any given sufficiently differentiable curve
this is true if I is replaced by any interval in the dense open subset where the rank
of 2/(t),2"(t), ... is locally maximal. The hypothesis is independent of the choice of
parametrization, and so is the linear span F;(t) of #/(t),...,2U)(t) when j < k. In
fact, if £ is another parameter then

dz _(d\ dz
o \dt) a7
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so this follows inductively. Application of the Gram-Schmidt orthogonalization proce-

dure to the sequence z'(t), ..., z*)(t) gives orthonormal vectors e (t),. .., ex(t):
er(t) =a'(t)/er(t), ..., e;(t) = («D(t) - Z(ib’(j)(t), ei(t))ei(t))/c;(t),

where ¢;(t) > 0 is chosen so that |e;(t)|| = 1. These vectors at z(t) do not depend
on the choice of parametrization; e;(t) is the unit tangent vector, es(t) is the principal
normal, eg(t) is the binormal, and so on.

Assume now for the sake of simplicity that the parameter ¢ is the arc length s. By
the construction and the hypothesis that Eyy1(s) = Ex(s) we have

k
ei(s) = Zwij(s)ej(s), i <k,

where w;;(s) = (e;(s),e;(s)) =0if j > i+ 1. If we differentiate the equations

(ei(5), €j(s)) = di;

expressing the orthonormality of e (s),. .., ex(s), we obtain

0 = (e5(s), €5(s)) + (ei(s), €5(s)) = wij (s) + wji(s),

so the matrix (w;;(s)) is skew symmetric. Thus w;;(s) = 0, and since w;;(s) = 0 when
j > i+ 1, this is also true when ¢ > j + 1. If we set k;(s) = wj j+1(s), 1 < j < k, it
follows that the matrix (w;;) has the special form for k = 4, say:

0 K1 0 0
—Rk1 0 K2 0
0 —R9 0 K3
0 0 —k3 0

Here k1(s) is of course the curvature, and ks is the torsion. The Frenet formulas can
now be written

(1.3.1) ei(s) = mi(s)ea(s), e€j(s) = —rj_1(s)ej_1(s) +rj(s)eji(s), 1 <j <k,

e (s) = —kr_1(8)ep_1(s).
This system of differential equations has a unique solution with given initial data. If
these are orthonormal then the solution remains orthonormal, and the solution must
belong to the space Fj(sg), for there is a solution with eq(s),...,ex(s) contained in
this space which is equal to e1(sg), ..., ex(so) at sg, so Ex(s) is independent of s and
the curve lies in an affine subspace of dimension k.

EXERCISE 1.3.1. Let k > 3 and determine the Taylor expansion of x(s) with error
o(s%) at 0 € I in terms of x(0), e1(0), e2(0), e3(0) and the Taylor expansions of x; and
ko at 0.
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1.4. Moving frames. In the preceding section we studied orthonormal vectors
depending on a parameter which were adapted to a given curve. However, some of the
arguments are of a much more general nature so we shall take them up once more.

Let V' again be a Euclidean space of dimension n < oo, and denote by F (V) the
set of all orthonormal frames ey, ...,e, € V. Since FI(V) C V™ it makes sense to say
that a curve I 5 t — f(t) € F(V) is differentiable. Writing f(t) = (e1(t),...,en(t))
we have by definition of F(V)

(ei(t), (1)) = dij

and conclude as in Section 1.3 by differentiating that
(1.4.1) de;/dt = wij(t)e;(t), where wi;(t) = —wji(t).
j=1

This can be interpreted as follows. If e = (e1,...,e,) € F(V) and f = (f1,...,fn) €
F(V), then

(1.4.2) €, = Z Oijfj, where Z Oszjk = (523
k=1

j=1

Thus O 'O = I, where I is the identity matrix, or equivalently ‘O O = I. Such matrices
are called orthogonal, and one denotes by O(n) the set of orthogonal n x n matrices,
which is a group under matrix multiplication. When (1.4.2) is valid we write e = O f.
With any fixed e we can now write e(t) = O(t)e® where O(t) is differentiable with
values in O(n), and we have de(t)/dt = (dO(t)/dt)e®. In particular, if t = 0 and we
take €% = ¢(0), then O(0) = I, and (1.4.1) means that

(1.4.3) O(t) differentiable at 0 with values in O(n), O(0) =1
= 0'(0) is skew symmetric.

The proof is obvious: the equation O(t) ‘O(t) = I implies
0'(0)*0(0) + 0(0)*O’'(0) = 0, that is, O’(0) + *O’'(0) = 0.

This means that infinitesimal rotations are defined by skew symmetric matrices. Every
such infinitesimal rotation w gives rise to a one parameter group of rotations O(t), that
is a function R 3 ¢ — O(t) € O(n) such that

(1.4.4) O(t)O(s) = O(t +s), O'(0) = w.

The first condition implies O(0) = I, and differentiation with respect to s gives O'(t) =
O(t)w when s = 0, hence

oo

O(t) = e =) (tw) /3.

0
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The properties (1.4.4) follow at once, and since *O(t) = O(—t) it follows that O(¢) €

O(n).
Let us consider the examples of lowest dimension. If n = 2 then

o= (8 0). = (ot sy,

so " means rotation by the angle tf in the negative direction. If n = 3 then

0 03 —0s
w = —93 0 91
o —6; O

Noting that wf = 0 it is easy to see that e’ means rotation by the angle ¢|6] around

0.
EXERCISE 1.4.1. Show that if

0 03 —0-
w = —93 0 01 )
o —0; O

then €' = A+ Bcos(t|0]) + C'sin(¢|f]) and determine the 3 x 3 matrices A, B, C. Use
this to find the curve in R? with constant curvature and torsion which passes through
the origin with tangent, principal normal and binormal along the positive x1, x5 and
T3 axes.

EXERCISE 1.4.2. Show that if n is odd and S is a skew symmetric n X n matrix,
then the equation S0 = 0 has at least one solution § # 0, and show that e?°6 = .
Show for any n that if S is a skew symmetric n X n matrix # 0, then there is a two
dimensional plane W C R™ such that W and its orthogonal complement W+ are left
invariant by S and therefore by e*®. Describe the structure of S and e*® geometrically
in general. Hint: Use that S/i is hermitian symmetric in C".

EXERCISE 1.4.3. Show that if O € O(n), then R™ is an orthogonal direct sum
Wi & W_ @& W such that £0 is the identity on Wi and W is the orthogonal direct
sum of twodimensional subspaces where O is a rotation. Conclude that the component
of the identity in O(n) is the subgroup SO(n) of elements with determinant 1, and
that every element in SO(n) is of the form e for some skew symmetric S. Hint: Use
that O is unitary in C™.

We end this section with a few exercises giving some information on Lie groups and
Lie algebras which will be useful later on. Let M(V') be the set of linear transformations
in the finite dimensional vector space V, and let GL(V) be the subset of invertible
ones. Then GL(V) is a group under multiplication; the identity is denoted by I. With
some Euclidean norm in V' we use the corresponding operator norm in M (V). When
V = R"™ we write M(n) and GL(n) instead of M(R"™) and GL(R").
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EXERCISE 1.4.4. Show that

(1)
(2)

(3)
(4)

()

eX = 377 X"/n! converges in M(n) if X € M(n), and that e* € GL(n),
e XeX = 1.

log(I+X)=37"(—-1)""'X"/n converges in M(n) if X € M(n) and || X|| < 1,
and e°8U+X) = [ 1+ X then.

loge® = X if | X|| < log 2.

if R >t~ A(t) € GL(n) is a continuous one parameter subgroup, then

A [ ayas= [ awas

deduce that A : R — M(n) is differentiable and that A(t) = !X where X =
A'(0) € M(n).
if X,Y € M(n), then

EXERCISE 1.4.5. Let G be a closed subgroup of GL(n), and

g={X cM(n);e* € G,t € R}.

Show that

(1)
(2)

g is a linear subspace of M(n).

if ge G and X € g, then
geXgt =€, teR,

where Y = gXg~! € g. One writes Y = Ad(g)X also (the adjoint representa-

tion).

if Y, X € g, then t — Ad(e') is a one parameter subgroup of GL(g), hence

Ad(e?Y) = et2d(Y) where ad(Y) € M(g) (the infinitesimal adjoint representa-

tion); show that ad(Y)X = [V, X] = YX — XY and deduce that g is a Lie

algebra, that is, closed also under commutators.

show that {eX; X € g,||X|| < 1} is a neighborhood of the identity in G. Hint:

Assume that this is false and take a sequence X, — 0 in M(n) such that

eXr € G. Write X, =Y, + Z), where Z;, € gand 0 £ Y}, € g+ (the orthogonal

complement with respect to some Euclidean norm in M(n)). Note that

G 3 eXhe %k = Vet ZiemZk — Wi swhere W), = Yy, + O(| Y| Zk|).

Pass to a subsequence such that Wy /||Wy| — W and get a contradiction by
proving that W € g ngt.
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EXERCISE 1.4.6. Show that if U € SU(n), the group of unitary n x n matrices
with determinant 1, and h € Hg(n), the space of n X n hermitian symmetric matrices
with trace 0, then UhU* € Hg(n), which gives a homomorphism SU(n) — O(n? — 1).
Describe the one parameter subgroups of SU(n), and prove that SU(2) — SO(3) is
surjective, and in fact a double cover. Show that SU(2) is simply connected by proving
that

SU(2) 3 U — (ReUy1,Im U1, ReUsp, ImUsy) € S3

is a bijection on the unit sphere S2 C R*, and write down the inverse.



10

I. CURVES IN A EUCLIDEAN SPACE



CHAPTER 1I

CURVATURE OF SUBMANIFOLDS OF A EUCLIDEAN SPACE

Summary. In Section 2.1 we introduce the notions of first and second fundamental
forms for a submanifold of a Euclidean space. After introducing the Christoffel symbols
and geodesic curvature, we define the Riemann curvature tensor and connect it with
the second fundamental form through the Gauss equations. Section 2.2 is devoted to
the special case of a hypersurface, and in particular the Gauss map. Basic algebraic
(symmetry) properties of the curvature tensor are given in Section 2.3. The discussion
includes the first Bianchi identity and the decomposition of the curvature tensor with
special emphasis on the four dimensional case.

2.1. Curves on a submanifold of a Euclidean space. Let M be a C*
submanifold of dimension n in a finite dimensional vector space V of dimension N.
This means that to every Xg € M there is a neighborhood U in V' and

(1) a map F € C*(U,R¥™") such that F’ is surjective and M NU = {X €

U; F(X) = 0};

(2) there is a neighborhood w of 0 in R™ and a map f € C*(w, V) with f(0) = X

and injective differential, such that f(w) =M NU.

These conditions are equivalent. In fact, given F' as in (1) we can choose G €
CH(U,R™) such that (F',G") is of rank N at Xy and G(X(p) = 0. By the implicit
function theorem there is an inverse ® € C* defined in a neighborhood of 0 in RY.
Since X = ®(F(X),G(X)) when X is in a neighborhood of Xy, it follows that a
neighborhood of Xy in M is parametrized by X = ®(0,y) where y = G(X) is in a
neighborhood of 0 in R™. Conversely, (F(®(0,y)), G(®(0,y))) = (0,y), so ®(0,y) € M.
Choosing G as the projection on a suitable n dimensional coordinate plane, we obtain
a representation (2) where N — n coordinates are C* functions of the other n.

On the other hand, given f as in (2) we can choose g € C*(RYN~",V) with ¢g(0) = 0
so that (z,y) — f(z) + g(y) has bijective differential at (0,0). Let ¢ = (¢1,¥2) be
an inverse from a neighborhood of X, to a neighborhood of 0 in R™ x R¥~". Then
o(f(x)) = (2,0) for z in a neighborhood of 0 in R™, and X = f(p1(X))+g(p2(X)) =
flp1(X)) if p2(X) =0, so (1) is valid if F' = .

If I 5t~ X(t)is a C” curve for some v < p which is contained in M, and if
f is a parametrization of M near X (ty) = Xy as in (2) above, then we can write
X (t) = f(x(t)) where z(t) € w, if t is close to tg. The local coordinates x(t) are also
C" functions of ¢, for f has a C* left inverse ¢ by the inverse function theorem, and
x(t) = p(X(t)). Thus it is equivalent to say that X (¢) is a C* function with values in
V or that the local coordinates z(t) are C* functions of ¢. (In the same way we see that
a change of local coordinates is made by a C* map.) This will be the only available

11
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definition for abstract manifolds in Chapter ITI. We shall consistently use upper case
letters for points in V' and lower case letters for points in the parameter space. It is
the latter which will survive in Chapter III.

If v > 1 then the tangent of our curve has the direction

axX _ df(a(t)

(211) -Eﬂﬁr-zm%HMfM=MW%=WW

Thus the tangent vectors of all C'! curves passing through f(z) span the plane

Tf(m)M = f/(x)R

called the tangent plane of M at f(z). It is of course independent of the choice of f,
but f’(z) identifies it with R™ in a manner which is not invariant. From now on we

assume that V is a Euclidean vector space. The arc length s on the curve is then given
by

(2.1.2)  (ds/dt)? Z Gik(x(t)) i T =day/dt,  gi(x) = (fi(2), fe()).

7,k=1

One calls the quadratic form (2.1.2) the first fundamental form of M. It is a quadratic
form depending on x € w, which can invariantly be regarded as a quadratic form in
TrwyM, for R* 5 7 > 7 f;(x) = X € Ty, M is a bijection, and the form is equal
to the square of the norm of the tangent vector X in V.

Assuming from now on that p > 2 and that we have a C? curve, we compute the
second derivative:

2 T " 233‘ i T
ery DD Sy Y S ),

dt? dt dt
Jik=1
where fjr(x) = 00, f(x). Second derivatives of = just occur in the first sum, and the
coefficients there are tangent vectors. If we project on the normal plane Ny M of
Ttz M, we can eliminate this sum and obtain:

THEOREM 2.1.1 (MEUSNIER). Let hji(x), j,k=1,...,n, be the orthogonal projec-
tion of fjx(x) = 0;0kf(x) in the normal plane Ny )M of M at f(x). For every C?
curve on M with the unit tangent vector f'(x)T at f(x), the sum

(2.1.4) > ()T

7,k=1

s then equal to the curvature times the orthogonal projection of the principal normal
m Nf(x)M.

We can regard (2.1.4) as a quadratic form H in T, M with values in Ny, M; by
Theorem 2.1.1 it is then independent of the choice of parametrization. One calls (2.1.4)
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the second fundamental form of M. Classically it was defined for hypersurfaces (in R?).
In that case, an orientation of M identifies Ny ()M with R, so one can then regard H
as a real valued quadratic form. We shall sometimes introduce an orthonormal basis in
Ny )M and will then be able to write H as an N — n tuple of scalar quadratic forms.

We shall now consider the tangential components of (2.1.3). Since fi(z),..., fu(x)
form a basis in Ty, )M, we can write

(2.1.5) fin(z Z Lir' () fi(x) + hax(2),

for the normal component is hlk(a;) by definition. To calculate the coefficients T';i! we
take the scalar product with f; which gives

(2.1.6) > Tirlgy = (firs 1).
=1

By a miracle one can compute the right-hand side by means of the coefficients of the
first fundamental form and their derivatives, for we have

Okgij = (fir, f5) + (fi, fix)
0igjr = (fi> [r) + (f5, fri),
]gk:’L = (fk]7fl) (fkaflj)

The desired quantity occurs in the first two equations so we add them and subtract
the third, which gives

(2.1.7) Cirj = (fir, ) = 5(Okgij + 0igjr — O i),
where the first equality is a new definition. Note the symmetry in the indices i, k, and
that

If (¢%) denotes the inverse of the matrix (g;;) we obtain from (2.1.6) and (2.1.7)
(2.1.8) L = Zglj(fik, fi) = Zgljrikj-
j=1 j=1

DEFINITION 2.1.2. The functions I';y; and ;.7 are called Christoffel symbols of
the first and second kind; they are determined by the first fundamental form.

REMARK. The classical notation was [ij, k| and { le } instead of I';;, and I';;!.

EXERCISE 2.1.1. Prove that if g = det(g;;), then 8ig = 29>, T'/", that is, 9;\/g =
\/§ Zz Fill-
Summing up the preceding discussion, we can now write (2.1.3) in the form
dzf(a:(t)) d x; ;dx; d:ck " dx; dxy,
2.1. —— = —7 i —h; .
(2.1.9) dt? 1 (T * Z g ) i)+ g ar )

j= i,k=1

We discussed the normal Component in Theorem 2.1.1, and we can now examine the
tangential component:
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THEOREM 2.1.3. Let s — f(z(s)) be a C? curve in M, parametrized by the arc
length, that is, Y gk(z) dx;/ds dxy/ds = 1. Then the curvature times the orthogonal
projection of the principal normal in Ty, M is equal to

" d da; d
(2.1.10) > ( d:; +3 T d‘z %)fj(x).
; ik

Thus the vector (2.1.10) does not depend on the choice of parametrization f. The
length is called the geodesic curvature of the curve at f(x), and the direction is called
the geodesic principal normal direction.

In (2.1.10) we have just computed the derivative of the tangent vector along the
curve. However, the argument is much more general. Suppose that we have a C!
vector field v defined in a neighborhood of the curve and that v is everywhere tangent
to M. Then we can write the vector at f(x) as

o(@) =) () f;(2),

and we obtain

By (2.1.5) it follows that

dv(z(t - —~
(2.1.11) w = > (kv + Y Tidvi)ayfi(x)  mod Ny
j k=1 i=1

This is called the covariant derivative of the vector field along the curve. Note that
one does not need to know the embedding function in order to compute (2.1.11); it
suffices to know the first fundamental form. (The right-hand side of (2.1.11) is also well
defined if v is just given on the curve.) This aspect will be discussed systematically in
Chapter III.

Now we pass to determining the tangential components of the derivatives of a C*
normal vector field n(z) at f(x). We can write

din(z) = Z nie(2) fi(z)  mod Ny
k=1
Since differentiation of the equation (n, f;) = 0 gives

((%n, f]) + (n, fzy) = O, that iS, Z nikgkj = _<hij7 n)
k=1
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it follows that

n

(2.1.12) nik =— »_(hij;n)g".

j=1

This means that y — 3 y;0;n(x) mod Ny(,) regarded as a linear transformation in
Ty(y is precisely the linear transformation defined by the scalar product (H,—n) of
the second fundamental form and —n, using the identification of quadratic forms and
linear transformations given by the first fundamental form.

It is now easy to find the tangential component of f;;; = 0;0;0,f. (The following
formulas should be understood in the sense of distribution theory if M is only in C?,
but one can also assume that M € C3 and use approximation to extend the final
formulas where no third derivatives occur to the C? case.) Since f;; = > Fijl fi + hij
we obtain

n n n

frij = O fij = Z (akzrijm + Z Fijlrlkm - Z(hij, hkl)glm)fm mod Nf(m).

m=1 1=1 =1
Since fri; — fjix = 0, we have proved

THEOREM 2.1.4 (THE GAUSS EQUATIONS). The first and the second fundamental
form are related by the equations

n
R™ijp = L™ = 0pLy™ + (L' Tyy™ = Ty Tup™)
=1

- Z zk7 h1j7hk}l>) ;

(2.1.13)

here the first equality is a definition.
The second equality in (2.1.13) suggests that we should introduce

(2.1.14) Rijk = Y gimmR™ijn

for then it takes the simple form
(2.1.15) Riiji = (hik, hji) — (hij, hir)-

To rewrite the first equality in (2.1.13) we note that in view of (2.1.7)’

Z gm0 L™ + Zriksrsjl =0 Z gmLie™ — Z Li™ (Tijm + L)
m=1 s=1 m=1

m=1
+ Z L™ Do
m=1
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Using the cancellation between the last two sums we obtain

(2.1.13)’ Rlijk = @Fikl — BkFiﬂ + Z (Fiijlkm — Fikml“ljm).

m=1

Again we note that the expression (2.1.13)’ shows that R;;i; can be computed from
the first fundamental form alone while (2.1.15) only involves the second fundamental
form. From (2.1.15) we also see that the corresponding 4-linear form

Rt 2,85t = Y Ryutititit); t',... t*eR",
i..k,01=1

is antisymmetric in the pair t!,t? and in the pair ¢3,t* but symmetric for exchange
of the pairs. Considered as a 4-linear form in f'(x)t', ..., f'(2)t* € Ty M the form
R is independent of the choice of parametrization since this is true for the symmetric
bilinear map H : Ty,yM X Ty)M — NyyM defined by S hijtit?. In fact, for the

~ ¢ J )
corresponding form R we have by (2.1.15)

(2.1.15)’ R(t', 2,63, t4) = (H (¢4, ¢%), H(t%, 1) — (H(t', %), H({#2, %)),
DEFINITION 2.1.5. The 4-linear form R on TM is called the Riemann curvature

tensor of M.

The curvature tensor has symmetries in addition to those already mentioned. We
shall discuss them in Section 2.3. However, already here we introduce the Ricci tensor
which is obtained by contraction of the Riemann curvature tensor,

(2.1.16) Rj = Z 9" Riji = ZRkjkl = ZRklkj-
ik=1 k=1 k=1
The corresponding bilinear form
> Rtjt}

is symmetric and invariantly defined on the tangent space of M, for it is the trace
of the linear transformation corresponding to the bilinear form (¢,s) — R(t,t!,s,t?)
and the first fundamental form. Taking the trace once more one obtains the scalar
curvature

(2.1.17) S=Y ¢'Rj.

EXERCISE 2.1.2. Show that with the notation in Exercise 2.1.1

Ryp =Y 0;Tu) — 30idklogg+ 5> Tulologg— > Tyy'Tuy.
=1

=1 1,j=1
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2.2. The curvature of a hypersurface. To clarify the geometric meaning of
the curvature tensor we shall devote this section to a discussion of hypersurfaces in
R”Y. (The case N = 3 is the classical one of course.) Thus we assume now that
dimV = N =n + 1. Let n(z) denote one of the unit normals of M at f(z). Then we
can write

hij (@) = hij(2)n(z)

where ﬁij is now a scalar. It is clear that this scalar quadratic form corresponds
to an invariantly defined quadratic form on the tangent space of M. The quotient
> fzijtitj/ >~ gijtitj is by Meusnier’s theorem the curvature at f(z) of a curve in M
with tangent vector f’(x)t and the principal normal in the direction of the normal n(x)
of the surface, that is, with vanishing geodesic curvature. To understand the quotient
it is natural to diagonalize the forms simultaneously, thus introduce new coordinates
S1,...,Sy, such that

n n n n
Z ilijtitj = ZKZ‘S?, Z gijtitj = 2512
=1 =1

4,j=1 4,j=1

This is always possible since ) g;;t;t; is positive definite. The eigenvalues K; are the
solutions of the equation

(2.2.1) det(hij — )\gij) =0.

In particular, the symmetric functions are given by the coefficients in this equation,

(2.2.2) ZKi = Z hijg", HKi = det(hy;)/ det(giy).
i=1

i,j=1 i=1

DEFINITION 2.2.1. For an oriented hypersurface the eigenvectors of the second fun-
damental form with respect to the first fundamental form, both regarded as quadratic
forms on the tangent space T, M of M at x, are called principal curvature directions at
x. The corresponding eigenvalues are called principal curvatures. Their product and
sum, given by (2.2.2), are called the total (or Gauss) curvature and the mean curvature
respectively.

EXERCISE 2.2.1. Write down explicitly the formulas for the mean curvature and
the total curvature of a surface of the form z,,1 = @(x1,...,7,) in R"™, where
p € C2

Since (n,n) =1 we have (n,9;n) = 0, so (2.1.12) gives
Oin=—"> hijg" fi,
J,k=1

or equivalently

(Z tiain7zskfk) = - Z ilijtisj.
=1 k=1

2,j=1
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Thus the differential of the Gauss map
(2.2.3) v:M>3 f(z) = n(x) e S”
is the linear transformation in 7',y M corresponding to minus the second fundamental

form and the first fundamental form:

THEOREM 2.2.2. If~ is the Gauss map M — S™ where M is an oriented hypersur-
face and S™ is the unit sphere, then the differential o' : T,M — T, (yS™, x € M, can
be regarded as a map T, M — T, M since T, M and T, ,;S™ are parallel. The princi-
pal curvature directions are then eigenvectors of —' with the principal curvatures as
ergenvalues.

The last statement is a classical theorem of Olinde Rodrigues. In particular we see
that v is a local diffeomorphism precisely when the total curvature is not 0.

EXERCISE 2.2.2. Let Mj be an open subset of M which is mapped diffeomorphically
into S™ by ~, and let f be a continuous function with support in the range ~v(My) C S™.

Show that
/de: /(fov)lKldM

where dS and dM are the Euclidean volume elements of S™ and of M.

We shall now compute the Riemann curvature tensor of a hypersurface. Ifeq, ..., e,
is an orthonormal system of principal curvature directions at a point x € M, then

h t):zn:Kj(t7ej)2v teTx(M>a

where K are the corresponding principal curvatures. For ¢!, ... t* € T,,(M) we have

(' €)%, €0) (1%, ;) (1, e5) — (', e0) (1%, ) (82, €5) (£, €5)
+ (1 e)(t%, ) (2, en) (t, eq) — (t,¢5) (*, €5) (¢ ,ez)( ,61)
(e (# e]

N ‘ (12, e;) t2 .€5) (t*

(t°,e5)
7ej)

If we multiply by %KiK ; and sum, it follows that

(2.2.4) R(t', 12,63, t%) =

ei) (t%e5) || (t* e) (4 ¢5)

€) (tl,ej)H(t?’,ei) (t?’,ej)‘_

We can of course equally well sum for ¢ < j, omitting the factor 1/2. In the particular
case where n = 2 we only have one term then and conclude that E(tl, t2,¢3,t1) is the
product of the total curvature K = K; K5 and the areas of the parallelograms spanned
by t',t? and by t3,t*. Since R is determined by the first fundamental form, we have
in particular proved:
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THEOREM 2.2.3 (TEOREMA EGREGIUM OF GAUSS). For a surface in R3 the total
curvature is determined by the first fundamental form; it equals R(t', % 1, ¢2) if t1 2
are two orthogonal unit tangent vectors.

Note that the mean curvature is not determined by the first fundamental form, for
a plane and a cylinder have the same fundamental form with suitable coordinates but
the mean curvatures are different. In Chapter III we shall return to the historical
background of Gauss’ discovery.

To compute the Ricci tensor, we take i # j in (2.2.4), let t! = t3 = ¢;, and sum
over k. The only contributions # 0 occur when k£ = i or k = j, so the quadratic form
corresponding to the symmetric Ricci tensor is

(2.2.5) tr Y KiKj(te;)”.

i#j
When n = 2 it is the Gauss curvature times the first fundamental form. For any n
it has diagonal form, and the diagonal elements are Zj;#i K;K;, fori =1,...,n.

This is the sum of the Gauss curvatures of the sections with three dimensional planes
containing n, e; and e; for some j # i. The scalar curvature is

(2.2.6) S=) KK;= (i K)? =) K7,

i#j
which is twice the Gauss curvature when n = 2.

2.3. Algebraic properties of the curvature tensor. Recall that the curvature
tensor R;ji; defined by (2.1.15) for a submanifold of RY is antisymmetric in the pair
17 and in the pair kl but symmetric for exchange of these pairs. This implies that

R(t17 t27 t17 t2)/(g(tlv t1>g(t27 t2> - g(t:l’ t2>2)

only depends on the two plane spanned by the tangent vectors t! and ¢?; the de-
nominator is the square of the area of the parallelogram spanned by them. Because
of Theorem 2.2.3 one calls this quotient the sectional curvature for the two plane in
T,.M.

We shall now determine if there are additionals restrictions on the tensors which
may occur at a point. This is a simple problem in linear algebra. Let ) hjpz;z) be a
quadratic form in R™ with coefficients h;; = hy; in R” where » = N — n, and define
as in (2.1.15)

(2.3.1) Rijer = (hik, hji) — (hits hji).-

Since we put no condition on r = N — n and the different coordinates in R" give
additive contributions, the set 7 of tensors R;;i; which can occur is the linear space
generated by (2.2.4) where we take only K; and K, different from 0. Let E be the
vector space of all R;ji, ¢,7,k,l =1,...,n with the obvious symmetries

(2.3.2) Rijki = —Rjiki = —Rijik = Rkuij-
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E is a Euclidean space with the norm square ) R?jkl, so every linear form on E can
be written

R Z Rijr1Sijn

where S € E. If the linear form vanishes on the term in (2.2.4) with ¢ = 1, j = 2, then
we have for the 4-linear form defined by S

(2.3.3) 5(61,62,61,62> = O,
for (2.3.2) implies that the four terms in R give the same contribution. Since
5(61,62+)\61,61,62+)\61>25(61,62,61,62), )\ER,

we must have (2.3.3) for arbitrary ej, e; € R™, not necessarily orthogonal. Polarization
gives

(2.3.3) S(e1,ez,e1,e4) =0, e1,e2,e4 € R",

for this is a symmetric bilinear form in e; and e4. Trying to polarize again we just
obtain
S(e1, e2,e3,e4) + S(es, ez, e1,64) =0,

or if we use the symmetries (2.3.2)
S(el7 €2, €3, 64) = S<el7 €4, €2, 63).

Thus S(eq, ez, e3,€e4) is invariant under circular permutations of ey, e3, e4. By (2.3.2)
an exchange of e; and es or e3 and e4 changes the sign, so

S(e1,e2,e3,e4) = sgn Ws(ewu), €r(2)s €n(3)> €7r(4)>

if 7 is any permutation of 1,2, 3,4. This means that S is an alternating 4-linear form
(hence equal to 0 if n < 3). Conversely, every alternating form satisfies (2.3.3), so T is
the orthogonal space in E of the alternating forms. These are spanned by the exterior
products

4
(e1,...,e4) > det(t’, ej);{j:l = ngnﬁ H(t“(i), e;)
™ 1

where the sum is taken over all permutations of 1,...,4 and t!,...,t* € R™. Thus
R €T if and only if R € E and

Z sgnmR(E™M . 7)) = 0.

Because of the symmetries (2.3.2) we can rearrange the arguments so that t! stands
first and the permutation is positive, so the condition is equivalent to

(2.3.4) R(t' 2,63 tY) + R(t*, ¢4, 12, 63) + R(t', 13, ¢ 1?) = 0.
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This is called the first Bianchi identity. 1t is often written R;j;;) = 0 where the bracket
is read as summation over all circular permutations. The symmetry conditions are not
independent of each other. The condition on R;j;j; in (2.3.2) is obviously a consequence
of the others, and the condition on Ryy;; follows from the first two equalities in (2.3.2)
and the Bianchi identity. In fact, they give

R(tY, 12,13, 1Y)
= —R(t', ¢4, 12, #3) — R(t*, 3, ¢4, %) = R(t*, ¢4, 4%, ¢3) + R(#3, ¢4, ¢4, %)
= —R(t* 3,11, ¢%) — R(t*, 2,63, tY) — R(3, ¢, t4,tY) — R(#3, ¢4, 42, th)
= 2R(3, ¢4 t1, %) + R(t3,t*, 3, t1) + R(¢%, 3, ¢4 1)
= 2R(3, ¢4 t1, %) — R(t3, 4, 1, ¢3) = 2R(£3, ¢, 1, %) — R(t', 12,43, t%)

which proves the remaining symmetry in (2.3.3).

For a submanifold M of R™" with dimension n the Gauss curvature at X € M
of the intersection with a plane of dimension 2 + r containing the normal Nx M and
two tangent vectors t!,¢? is by Theorem 2.2.3 equal to R(t!,t% ¢!, ¢?) divided by the
square of the area of the parallelogram spanned by t' and t?. Now a tensor R € T is
uniquely determined by such curvatures, for

ReT, Rt t' 1) =0, ift'*?cR" = R=0.

In fact, the condition on R here is the condition (2.3.3), which means that R is orthog-
onal to 7T, hence equal to 0.

A symmetric bilinear form in v variables has v(v + 1)/2 independent coefficients
whereas an antisymmetric bilinear form has (3) = v(v —1)/2 independent coefficients.
Since we can interpret F as a space of symmetric bilinear forms on the space R AR"™
which has dimension v = n(n—1)/2, it is clear that dim £ = v(r+1)/2. The orthogonal
space of 7 in E has dimension (Z), so it follows that

dm7 =v(v+1)/2—-v(n—2)(n—3)/12
=v(3n(n—1)+6 —n®+5n—6)/12 = n*(n® — 1)/12.

We sum up the results proved so far in a theorem:

THEOREM 2.3.1. A 4-linear form R in R™ can occur as the Riemann curvature
tensor for some n dimensional submanifold of a Fuclidean space if and only if it has
the symmetry properties (2.3.2) and satisfies the Bianchi identity (2.3.4). Such tensors
form a linear space T of dimension n?(n? —1)/12. When R € T then R is uniquely
determined by R(t',t?,t1,¢%) for t',t?> € R".

It is clear that one can find r depending only on n such that for every R € T there is
a solution A of (2.3.1) with values in R". The dimension of the space of such quadratic
forms h is rn(n +1)/2, so it follows from the Morse-Sard theorem that we must have
rn(n+1)/2 > n?(n? — 1)/12, that is,

(2.3.5) r>n(n—1)/6.
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EXERCISE 2.3.1. Use the fact that (2.3.1) is invariant if A is replaced by Oh where
O € O(r) to show that (2.3.5) can be strengthened to

n(n+1)s —s(s —1) > n?(n* —1)/6 for some s € {1,2,...,7},

which means that r > ((1 —1/v3)(r? + 1)+ (1 — V3)n+ O(1/n)) /2.

Classical results to be discussed in Chapter III will prove that one can always take
r = n(n — 1)/2. Using representation theory Berger, Bryant and Griffiths [1] have
proved that one can always take r = (”51) + 2, but the best value of r does not seem
to be known. Such a value is an obvious lower bound for the codimension with which a
general Riemannian manifold can be locally C? embedded. In Chapter III we shall see
that a local embedding with high regularity is usually not possible with codimension
lower than (g)

The full linear group GL(n) acts on T by

(gR)(t', ..., tYY =R(g7't',...,g7't"), g€ GL(n), RcT, t/ € R".

There is no invariant subspace for this operation (see Berger, Bryant and Griffiths [1]).
However, in the context where we encountered the Riemann curvature tensor only the
operation of O(n) is natural, since it corresponds to changing orthonormal basis in
the tangent space. At the end of Section 2.1 we also defined the Ricci tensor, which
belongs to the space S?(R"™) of symmetric bilinear forms in R™. The passage from
the Riemann tensor to the Ricci tensor commutes with the operation of O(n), so the
kernel W consisting of all R € T such that

(2.3.6) Z Riju=0, jl=1,...,n,
i=1

is invariant under O(n). (In view of the symmetries (2.3.2) the contraction of R with
respect to any pair of indices is equal to 0 if R € W.) Since the Euclidean norm we
introduced in F above is invariant under O(n), the orthogonal complement of W in T is
also invariant under O(n). We shall determine the decomposition of a general R € T
in components belonging to these spaces, but first we shall make some elementary
remarks on how O(n) acts on S%(R™).

The metric scalar product (-,-) in R™ is of course invariant under O(n), and so is
its orthogonal space consisting of symmetric forms which are traceless (with respect to
the Euclidean form). If a O(n) invariant subspace of S?(R™) contains a form which is
not proportional to the metric form, then it contains a form ) Az y; with Ay # Ao.
Hence it also contains the form with Ay and Ay interchanged and therefore the form
21Y1 — x2y2 and so the form x;y; — xyy, for arbitrary j and k. The linear hull contains
all diagonal forms with zero trace, so the only O(n) invariant subspaces of S?(R™)
are the multiples of the metric form and the forms with zero trace. If n > 3, as we
assume now, it follows at once from (2.2.5) that both the metric form and other forms
can occur as Ricci tensors, so the map 7 (R") — S%(R") corresponding to passage
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from the Riemann tensor to the Ricci tensor is surjective. (It is easy to show that any
symmetric tensor can in fact occur as Ricci tensor for a manifold with codimension
r=2.)

From the surjectivity just proved it follows that the orthogonal space of W in T
is of dimension n(n +1)/2. If R € 7 and S = ) R;ji; is the scalar curvature while
Bi; = R;; — S0;;/n is the traceless Ricci tensor, then we claim that

(2.3.7)  Rijri = Wijn
+ (Bikdﬂ — Bilfsjk + le(sik — Bjkéil)/(n — 2) + S(éikdﬂ - 5¢lt5jk)/n(n — 1)

decomposes R in an element in ¥V and two orthogonal ones, one which has traceless
Ricci tensor and one which has Ricci tensor proportional to the metric tensor. To
verify this it suffices to show that the last two terms are in 7, for they are obviously
orthogonal to WW and the contractions with respect to i, k are

(0—Bji +nBj; — Bji1)/(n—2) = Bj; resp. S(nd;; —d;1)/n(n—1) = Sd;;/n.

The symmetries (2.3.2) are obviously valid, and the Bianchi condition is then equivalent
to orthogonality to all antisymmetric 4-linear forms, which is equally obvious since
every term is symmetric in some pair of indices.

DEFINITION 2.3.2. The component W € W of R € T defined by (2.3.7) is called
the Weyl tensor or the conformal curvature tensor. We have

(2.3.7)/ Rijkzl - Wijkl
+ (Rirdji — Riudjr + Rji0ir — Rjrdir)/(n —2) — S(6irbj1 — 0idjx)/(n — 1)(n — 2)

The reason for the terminology will be clear in Chapter III, but some motivation
will be provided already by the following

EXERCISE 2.3.2. Calculate the Riemann curvature tensor of a sphere of radius R
in R"*! and decompose it according to (2.3.7).

We have proved that O(n) acts on TOW with just two invariant subspaces, displayed
in the decomposition (2.3.7), but the proof that W has no O(n) invariant subspace
requires a bit of invariant theory. We must therefore refer the reader to the proof given
in Berger, Gauduchon and Mazet [1, pp. 76-78].

EXERCISE 2.3.3. Prove that

| 2
> " RijmRirij = —5 > Rijui’

i7j7k7l i7j7k7l

When n = 3 then n(n+1)/2 = 6 = n?(n? —1)/12 so there is no Weyl tensor. When
n > 4 it is known that WV has no SO(n) invariant subspace (see references in Besse
[1, p. 49]). However, this is not true when n = 4, and since further decomposition of
W is then relevant in Yang-Mills theory, we shall discuss it briefly. (For details and
references we refer to Atiyah, Hitchin and Singer [1], Besse [1].) Since the 4-linear

forms R with the symmetries (2.3.2) can be identified with symmetric bilinear forms
on A?2(R™), we shall first discuss how SO(n) acts on A2(R™).
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LEMMA 2.3.3. A%2(R™) has no proper invariant subspace under the action of SO(n)
if n # 4, but A2(R*) = Ay ® A_ where A+ are irreducible SO(4) invariant subspaces
of dimension 3.

Proor. If S is a skew symmetric n X n matrix, then R" = Vo @ V1 @ - - - @ V; where
SVy =0 and V; is of dimension 2 and SV; =V, when ¢ =1,...,j. (See Exercise 1.4.2.)
This means that every element in A2(R™) can be transformed by the action of SO(n)
to the form

(2.3.8) ciep Neg + -+ cjeqi—1 A ey,

where eq,...,e, is the standard basis in R” and 25 < n. Suppose now that A is
some SO(n) invariant subspace # {0} of A2(R"™), and let (2.3.8) be an element in A
with ¢1...¢; # 0. If j = 1, then A will contain every element of the form (2.3.8) so
A = A2(R™) then. If 2j < n, then e; — —ey, €, — —e,, defines an element in SO(n)
which just replaces ¢; by —c1, s0 1 Aes € A and A = /\2(R”) then. Assume now that
2j = n. Then e <> e3, es <> e4 defines an element in SO(n) which interchanges ¢;
and cg; by subtraction we find that e; Aey —e3 Aeg € A unless ¢; = ¢o. The lemma is
now proved if n > 4 unless n = 25 and ¢; = ¢y = --- = ¢;. Since e; — €3 — €5 — €1
defines an element in SO(n) we can then conclude by subtraction that

(61—63)A62+(63—65>/\64+(65—61)/\66E/\.

Since e; — ez +e3 —e5+e5 —e; = 0, the rank of this two vector is just 4 and the lemma
follows also in this case.

We are now just left with the case n = 4, and then we know that A must contain
either e; ANes +e3 Aeg or eg ANea —es3 ANes = e1 Aea +eq Aes. In the first case
A must contain the space Ay spanned by e; A e; + er A e, where 4, j,k,[ is an even
permutation of 1,2,3,4, and in the other case A contains the space A_ defined using
the odd permutations. If o+ € AL then

o+ Nt = (P, 04 )w, Y- Np_=—(p_,p_)w, @iy ANp_=0, (p+,9-)=0,

where w = e; Aea Aeg Aeyg and (+,-) is the Euclidean scalar product of two vectors.
Thus W are the eigenspaces with eigenvalues +1 of the quadratic form ¢ A ¢/w with
respect to (¢, ¢), which proves the invariance under SO(n), since w is invariant.

EXERCISE 2.3.4. Let n = 4 and take
(e1 NeaEteg Aeg)/V2, (e1 NesEeg Aes)/V2, (e1 Neg+en Aes)/V2

as basis in Ax. With this basis the SO(4) action on A?(R?) gives a homomorphism
SO(4) — SO(3) x SO(3). Show that the corresponding homomorphism of Lie algebras
50(4) — s0(3) @ s0(3) is an isomorphism and determine it explicitly in terms of the
corresponding 4 x 4 and 3 x 3 skew symmetric matrices.

REMARK. The decomposition when n = 4 will perhaps be more evident when we
have introduced the % operator on forms later on.
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Still with n = 4 we now interpret the space E of 4-linear forms on R* satisfying
(2.3.2) as the space of symmetric bilinear forms on A2(R*) = AL @ A_. This space has
a SO(4) invariant block matrix decomposition

S%(Ay) @ S*(A_) @ Hom(A L, A),

with spaces of dimensions 6, 6 and 9. However, since we have an SO(3) action on the
first two spaces they decompose further into the multiples I(A1) of the metric form
and the tracless forms SZ(A4), so we have in fact an SO(4) invariant decomposition

SFAL) @ I(AL) ®ST(A-) @ I(A~) @ Hom(A4, A),

where the spaces now have dimensions 5, 1, 5, 1, 9. Since the space of Weyl tensors
W has dimension 10, and the space of traceless Ricci tensors has dimension 9, it is
now clear that Hom(A,,A_) is precisely the space of traceless Ricci tensors while
W = W, & W_ with Wy = S2(A+). The purely antisymmetric tensor and the
pure scalar curvature part S(d;50;; — 0;0;)/12 are found in the two invariant one
dimensional spaces; the antisymmetric tensors are generated by the differences of the
two metric tensors whereas the scalar curvature term corresponds to their sum. Thus
a general curvature tensor in 7 is represented in block matrix form by

W + SI/12 B
B W_ + S1/12

where B corresponds to the traceless Ricci tensor and the traceless symmetric Wi
together define the Weyl tensor. We leave the details of the verification for the energetic
reader.

The SO(n) invariant classification of the curvature tensors gives rise to important
classes of Riemannian manifolds:

DEFINITION 2.3.4. A Riemannian manifold is called an Einstein manifold if the
traceless Ricci tensor vanishes, and it is called conformally flat if the Weyl tensor
vanishes. An oriented manifold of dimension 4 is called self-dual if the Weyl tensor is
in W, and anti-self-dual if it is in W_.
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CHAPTER III

ABSTRACT RIEMANNIAN MANIFOLDS

Summary. In Section 3.1 we extend the intrinsic results proved in Chapter II to abstract
Riemannian manifolds, taking the notion of covariant differentiation as the main tool.
After introducing geodesic coordinates we also discuss various geometrical interpretations
of curvature and prove the classical Gauss-Bonnet theorem. Section 3.2 is devoted to
embedding theorems which show that abstract Riemannian manifolds are not really more
general than the submanifolds of a Euclidean space studied in Chapter II. In Section
3.3 we show that a Riemannian manifold with vanishing curvature tensor is flat, that
is, locally isomorphic to R™; more generally we also discuss manifolds with constant
curvature. Section 3.4 is devoted to the transformation rules for the curvature under
conformal changes of metric. For dimensions > 4 it is proved that vanishing of the Weyl
tensor is necessary and sufficient for the existence of a flat conformal metric. The Yamabe
problem to find conformal metrics of constant scalar curvature is also mentioned briefly,
but we leave the study of it for another chapter.

3.1. Covariant derivatives and curvature. In Chapter II we studied n dimen-
sional C* submanifolds M of some RY. Locally they were parametrized by maps
w D o+ k(x) € M where w is an open set in R” and x € C* is injective with injective
differential. If © >  — &(Z) € M is another local parametrization, it follows that the
map

Lo k(x)

T T =K
is defined in the open set k™1 (k(w) N &(@)) C w which is in C* since & has a C* left
inverse.

An abstract C* manifold M of dimension n is by definition a Hausdorff topological
space provided with a family of homeomorphisms, « : w — f(w) C M with open range,
such that £~ 1ok € C* (k71 (k(w)NR(Q)) if & is another member of the family. We shall
always assume that M has a countable dense subset. Then it is well known that M
can be embedded as a submanifold of R?>"*!, so the difference between submanifolds
of RN and abstract manifolds is more one of principle and attitude than of substance.

The tangent bundle T(M) was defined for a submanifold of RY as the set of all
(x,t) with € M and t in the tangent space T,(M) of M in RY. It has a natural
generalization for an abstract manifold. One just takes T, (M) to be the n dimensional
vector space of first order differential operators at x which annihilate constants. In a
local coordinate patch w C R™ with local coordinates x, the first order operators can
be written >} t;0/0z7, which identifies (M) with w x R"™ over w. (From now on we
shall use superscripts for the coordinates to conform with the conventions of tensor
calculus.) If one switches to coordinates Z as above, then (z,t) is identified with (Z, 1)
if k(x) = &(%) and (F~'k)'t = ¢, which means that t = (03/0z)t.

27
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When studying submanifolds of R we took from the Euclidean metric in R¥ the
first fundamental form which we wrote

(3.1.1) ds® = Z gij(v)dx'dz?

in terms of local coordinates. A manifold is said to be Riemannian if it is provided
with such a form:

Definition 3.1.1. A C* manifold, where k > 1, is said to be Riemannian if there is
given in each fiber T, M of T'M a positive definite quadratic form such that in local
coordinates it has the form (3.1.1) with g;; € C*¥~1.

Shifting to other local coordinates = gives
> gij(@)ditdid =) §i;(2)(0F" /02" )da" (03 |0zt )da,

or in matrix notation (g;;(z)) = *(8%/02)(g:;(2)) (0% /0x), so it is sufficient to assume
that the coefficients in (3.1.1) are in C*~1 for a set of coordinate patches covering M.
We note in passing that

det(gi;(x)) = (det 0 /0)” det(d; (7).

which means that \/det(g;;(x)) d, where dz is Lebesgue measure in R", is an invariant
definition of a positive measure (positive C¥~1 density) on M, often denoted by dvol(x).
We shall now show that the results in Chapter II which are intrinsic in the sense
that they can be expressed in terms of the first fundamental form alone remain valid
for abstract Riemannian manifolds. This could be done by proving that every abstract
Riemannian manifold can at least locally or to a high degree of approximation be
embedded isometrically in RY for some N. We shall see in Section 3.2 that this is
possible. However, we shall now give a direct approach which only relies on Chapter
IT for motivation and not for any proofs. This means that we shall establish invari-
ance under changes of coordinates even when we know from Chapter II that this is
true for submanifolds of RY. It would be tedious to mention precise differentiability
assumptions, so for the time being we assume that M is a C'°° Riemannian manifold.
Let X and Y be two smooth vector fields, in local coordinates represented by

X =) X10/027, Y =) Y9/0xl.
1 1

(2.1.11) suggests that another vectorfield, the covariant derivative of Y in the direction
X, should be invariantly defined by

(3.1.2) VxV =) (XY + ) Tyl XkY*)o /o,
j=1 ik=1
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where I';;7 is defined in terms of the metric by the last expression in (2.1.8), (2.1.7).
We could verify by direct computation that this definition is indeed independent of the
choice of local coordinates, but instead we shall prove that in a local coordinate patch
the linear differential operator defined by (3.1.2) has the properties

VxY - VyX = [X,Y],
(3.1.4) (VzX,Y) + (X, VYY) = Z(X,Y),

where Z is a third vector field. From (3.1.3) it follows that VxY is linear in X as well
as in Y. We shall also prove that Vx is uniquely determined by (3.1.3), (3.1.4), which
implies the invariance. The proof of (3.1.3), where [X,Y] = XY — Y X denotes the
commutator of the vector fields, follows immediately from the fact that I';,7, defined
by (2.1.7), (2.1.8), is symmetric in i, k. To prove (3.1.4) we write Z = >_ Z79/02’ and
obtain

(VzX,Y)= > (ZXT+ ) Ty ZFX")g;Y"

4,i=1 i,k=1

=D o(ZXO)Y' + > 2T XY

Jrl=1 ik, l=1

If we exchange X and Y and add using (2.1.7)’, it follows that (3.1.4) holds. To prove
the uniqueness means proving that if the right hand sides of (3.1.3), (3.1.4) are replaced
by 0, then VxY must be 0 for arbitrary X and Y. This follows since

(VxY,Z) = —(Y,VxZ) = —(Y,VzX)
= (V2Y,X) = (VyZ,X) = —(Z,VyX) = —(Z,VxY)

where we have alternated using the homogeneous forms of (3.1.3), (3.1.4). This implies
VxY =0 as claimed. Thus we have proved:

Theorem 3.1.2. For smooth vector fields X, Y on M the vector field defined in
local coordinates by (3.1.2) is invariantly defined and the covariant differentiation V is
characterized by (3.1.3), (3.1.4).

Note that VxY (z) is defined even if Y is only defined on a curve with tangent X at
x. Taking for X and Y the unit tangent of a curve we can define the geodesic curvature
and geodesic principal normal as the norm and the direction of V xY. This generalizes
the definition given after Theorem 2.1.3 for submanifolds of R™.

In the Euclidean case the differential operators Vx and Vy act componentwise as
the scalar operators X and Y, so their commutator is V|x y]. We shall now examine
to what extent this is true in the Riemannian case, so we form with three vector fields
XY, Z

S - (VXVY - VYVX - V[X7y])Z
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If X is replaced by the product ¢ X with some smooth function ¢, then S is just
multiplied by ¢, for since [pX,Y] = ¢[X,Y] — (Y)X and

(3.1.5) Vex = ¢Vx, Vy(eW)=oVyW + (Y)W,

the other terms —(Y¢)VxZ + (Y¢)Vx Z will cancel. Thus S contains no derivatives
of X, hence no derivatives of Y by the skew symmetry. This is also true for Z since

Vx(eVyZ + (Y)Z) = Vy(oVxZ + (X¢)Z)
=o(VxVy —=VyVx)Z+(Xp)(VyZ-VyZ)+(Y)(VxZ—-VxZ)+([X,Y]p)Z.

We can therefore calculate S using local coordinates and assuming that the components
of X,Y, Z are constants, hence [X,Y] = 0. Then

VxVyZ =Vx Y TY'200/00' =Y (akrjli +3 rkjrﬂ")x’fylzja/ﬁxi.

2,5,1 ijkl

If we subtract the analogous formula for Vy V x Z and recall the first definition (2.1.13)
of the Riemann curvature tensor, it follows that

(3.1.6) (VxVy = VyVx = Vixy)Z =Y RuX*Y'Z10/0x",
ijkl

In particular, this proves that the definition of the Riemann curvature tensor given
by (2.1.13) is coordinate independent and does define a tensor of type 1,3. (2.1.13)’
follows as before.

If [0,a] 3 ¢t — y(t) € M is a (piecewise) C* curve and Xo € T,(0)M, then there is
a unique vector field X (t) € T,y M, t € [0, al, along the curve with X (0) = Xy and
VX (t) = 0. In fact, in local coordinates this is the Cauchy problem for a linear
system of differential equations

i ' by
TRl ;Fikﬂ<v<t>>d”dft>xz<t> 0, j=l...m

One calls X () the parallel translation of X, along the curve.

Ezercise 3.1.1. Show that in the local coordinates the parallel translation of X, from
x to x + eeg, where ey, is the kth basis vector in R"”, is

Xo+ (A(e) + 3A(e)* +O(e%)Xo, ase—0; A(e)j; = —elin! (z + See).

Use this to find the limit as e — 0 of (Xo(g) — X)/e? if X, is the parallel translation
of Xy around the square from = to x + ey, to x + e(ex + €;) to = + ee; to x.
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Covariant differentiation can be extended to arbitrary tensors. Let first w be a one

form, that is, a section of the cotangent bundle 7™ (M). To w corresponds a vector field
Y, for the metric tensor identifies T (M) and T, (M) for every x; in local coordinates

b= igkjwj, wj; = igjkyk, ifw= ijdxj, Y = Zyka/axk

Sometimes the notation ¥ = w? and w = Y is used for the “musical” isomorphisms
T; — T, — T, raising and lowering indices. With that notation we now have an
obvious invariant definition of covariant differentiation of one forms w,
_ AL

Vxw = (wa ) .

By (3.1.4) we obtain for any vector field Y
X (" Y) = (Vxwh V) + (v, VxY),

or if we use the notation (-, -) for the duality between T and T,

(3.1.7) X(w,Y)=(Vxw,Y)+ (w,VxY).

This could also have been taken as a definition of Vxw. In local coordinates (3.1.7)
means that

(Vxw,Y)=X> w;Y? =) wi(XY7 + Y T/ X*y?)

j=1 k=1
=Y (Xw)Y? = > wl}, X*y7
Jj=1 4,k,1=1
so we obtain
(3.1.2)’ (VXw Xw] Z ij X wi.
k=1

Ezercise 3.1.2. Let w = > w;dx’ be a one form. Show that for vector fields X, Y we
have

(VxVy = VyVx = Vixy)w = — Y R X Y w;da’.

Ezercise 3.1.3. Show that for tensor fields f of type k, [, that is, sections of

TM)@ - @T(M)RT*(M)®--- @ T*(M)

S/

o N
Vv Vv
k times [ times
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and a vector field X the formula in local coordinates

(3.1.2)" (Vx /)iy +Z Z Ty firivative iy

v=1p,j=1

_ e J
Z Z FJV] Ju 1HJr+1-- JLX

v=1p,j=1

defines invariantly a tensor field Vx f of type k,[, and that this extension of Vx is
uniquely determined by the product rule

Vi(V1® @Y, Quwi Q- Qw)
=(VxV1)®Ye® - Qu+--+Y1® - Quw-1 ® Vxuwy,

where Y7, ..., Y} are vector fields and w1, ..., w; are one forms. Prove that the product
rule also holds for arbitrary tensor products.

To round off the definition of Vx, we define Vx f = X f if f is just a function on M.
Recall that contraction of a tensor means in local coordinates that one of the upper
indices is put equal to one of the lower indices followed by summation over that index.
In particular, the contraction of ¥ ® w where Y is a vector and w a one form is the
scalar product (w,Y’) discussed above. For decomposable tensors as in the preceding
exercise, the contraction also means precisely taking scalar product of one of the vector
factors and one of the one form factors. Since (3.1.7) shows that for Y ® w it does
not matter if one first applies Vx and then contracts or if one first contracts and then
applies Vx, it follows that covariant differentiation commutes with contraction.

Let f again by a tensor field of type k,l. Since Vx f at every point is just a linear
function of X, not depending on its derivatives, we can regard V x f as the contraction
of X and a tensor field Vf of type k,[ + 1,

z R R 7 S P8
Jl] +ZZFW Ji---Ji

v=1pu=1

(3.1.2)" (Vf)ir

l n

_ 12
ZZFJVJ JV 1HJv+1---J1

v=1pu=1

Note the notation , j for the added index. Also note that Vx f is defined at x even if f
is only defined on a curve passing through x with tangent X. A tensor f defined along
a curve t — x(t) € M can therefore be differentiated with respect to ¢t as V) f.

If X and Y are two vector fields and ¢ is the metric tensor, of type 0,2, then
(X,Y) = > ¢;;X'Y7 is the contraction of ¢ ® X ® Y with respect to both pairs of
indices. Thus V(X,Y’) is the contraction of

(Ve) @ X QY +g®(VX)QY +g® X @ VY.
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On the other hand, by (3.1.4) it is the contraction of the last two terms only. Hence it
follows that

(3.1.8) Vg =0.

Exercise 3.1.4. Prove (3.1.8) directly from the definitions. Show also that Vg = 0.
Prove that if X,Y, Z are vector fields then VxVy Z is the sum of the contraction of
(V2Z) @Y ® X and that of (VZ) ® VxY. Deduce that in local coordinates

Z' i —Z =Y RiyuZ'.
l

Ezercise 3.1.5. Let f be a tensor field of type k,l, and compute the antisymmetric
part of VV f, that is, in local coordinates,

f'l I 1 PP 2
J1---J1,7T8 J1---J1,87°

FEzxercise 3.1.6. Let V be a linear subspace of the tensor product R" ® - -- ® R™ with
k + [ factors, such that V is invariant under the action of the orthogonal group O(n)
on the tensor product. Show that if M is a Riemannian manifold of dimension n and
f is a tensor of type k,l at x € M, then the components ;;+11’“2k+l with respect to
any orthonormal basis for T, M are in V' if this is true for one orthonormal basis. Such
tensors therefore form a vector subbundle V of the bundle of tensors of type k, . Prove

that if f is a section of V and X is a vector field, then Vx f is a section of V.

We shall now discuss the notion of curvature from a somewhat different view point
which is close to its origin. Surveyors and cartographers perceived quite early the
need for solving spherical triangles (on the earth) which are too large for application
of Fuclidean trigonometry but too small to make it numerically convenient to use
spherical trigonometry. (A spherical triangle is bounded by arcs of great circles.) It
was known at least since the 16th centrury that the sum of the angles in a spherical
triangle is equal to 7 + S/R? where S is the area and R is the radius. Legendre
observed that when the corner angles are not close to 0 or 7, then the “spherical
excess” S/R? is approximately equally divided as an angular excess of S/3R? at each
corner, compared to a Euclidean triangle with the same sides. The practical rule
is then to apply Euclidean trigonometry with this correction. In his fundamental
paper on surface theory Gauss [1] devoted much attention to Legendre’s theorem and
determined the next order of approximation (which gives a larger excess opposite a
shorter side), and for general surfaces he derived an analogue of Legendre’s theorem
with S/3R? replaced by SK/3. Here K is what we know as Gauss’ curvature, which
occurs in this context naturally as an intrinsic property of the surface. Riemann [1]
followed the path initiated by Gauss in his extension to dimensions > 2. We shall now
follow these papers in principle but using modern notation of course.

The first point in Gauss [1] was to define an analogue of the great circle arcs on
the sphere. These are the shortest paths between any two of its points which have
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no antipodal points between them. To define an analogue for Riemannian manifolds,
geodesic arcs, we assume given two points xg, x1 in the same coordinate patch w and
look for a smooth curve [0,1] 5t — z(t) in w with 2(0) = xg, (1) = 1, such that

s—/ ds—/ Z gik(x xj/dtdxk/dt)2 dt

7,k=1

is minimized. By Schwarz’ inequality we have

s? < / Z gin(x)dz? [dtda® [dt dt

7,k=1

with equality if and only if ds/dt is constant, that is, the parameter ¢ is proportional
to the arc length. This can always be achieved, so the minimum problem is equivalent
to minimizing

(3.1.9) /Zg]k (z)da? /dtdz® /dt dt

7,k=1

for all smooth curves from xy to x;. This has the advantage that one can expect a
unique solution if the points are sufficiently close. If the minimum is attained, then
the Euler equations

n

d & dz* dz® dz*
3.1.10 2 (1) —— = 0:gin(x)— ——, j=1,...,n,
( ) dt;ggk(w) pr igl jgin() s n

must be valid. (Replace z(t) by x(t) + ey(t) where y(0) = y(1) = 0, put the derivative
with respect to € equal to 0 when ¢ = 0, and integrate by parts.) Carrying out the
differentiation in the left-hand side we obtain the equations

Qng + Z (2091 () — a.gik@))da:id_a:k:o j=1,...,n.
J dt2 Pyt J J dt dt ) ) 9

The second sum does not change if we replace the parenthesis by
0igjk(x) + Okgji(z) — 9jgik () = 2L,

so the differential equations (3.1.10) can be written

A2k - dz® dx?
3.1.10Y K —
( ) dt? + Z dt dt

1,j=1

These equations mean that the covariant derivative of the tangent vector dx/dt along
the curve is equal to 0, that is, that the geodesic curvature vanishes (cf. Theorem
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2.1.3). The derivation as Euler equations of an invariant variational problem shows
that the equations are invariant under a change of variables, and we know that also
from the invariance of the covariant derivative.

Without deciding yet if a solution of the minimum problem for I really exists, we
can define:

Definition 3.1.3. An integral curve of the differential equations (3.1.10) (or equivalently
(3.1.10)") is called a geodesic curve.

By the basic existence theorems for ordinary differential equations the equations
(3.1.10) have a unique solution for small ¢ with prescribed initial data x = x¢, dz/dt =
v € Ty, when t = 0. The solution z(zg, ¢, v) is a C* function and depends on tv rather
than on ¢t and v, because (3.1.10) is independent of ¢ and homogeneous in dt. This
means that x(x,t,v) = X (zg,tv) where X is a C*° function from a neighborhood of
the zero section in T'(M) to M with X (z¢,0) = x¢ and 9, X (x, 0) equal to the identity.
By the inverse function theorem we can therefore introduce X as local coordinates in
a neighborhood of zy. If we do that for fixed zg, and denote the metric in the new
coordinates by 3" G (X)dX7dX"*, the fact that ¢t — tX is a solution of (3.1.10) for
every X means that

(3.1.10)” 2% > GRtX)XE =) (9;Gu) (X)X X

If we multiply by X7 and sum, it follows that Y G;x(tX)X’X" is independent of
t, thus > (Gjx(tX) — G;(0))X/X* = 0. (This also follows at once by covariant
differentiation.) The derivative with respect to X7 is

2) (Gn(tX) — Gir(0) X" + ) (9;Gar) (tX) X' X*
which must therefore vanish. Combined with (3.1.10)” this gives
QSj + 2t65j/6t =0, Sj = Z(ij(tX) — ij(0>)Xk.

Thus ¢S, is independent of ¢, hence equal to 0, so we obtain
(3.1.11) S GRX)XF=>"Gr0)X*,  j=1,...n
1 1

Conversely, if we have a coordinate system such that (3.1.11) is valid, then reversing the
preceding argument shows that the straight lines through the origin (with respect to
the parameters) are geodesics. We could make a linear change of coordinates to make
G;1(0) equal to the identity matrix. However, with pseudo-Riemannian geometry in
view, where g, will be non-singular but not positive definite, we prefer to leave G (0)
arbitrary. The coordinate systems now obtained are called geodesic coordinates; they
are uniquely determined up to a linear transformation (up to an orthogonal one if one
has insisted on the Euclidean normal form).
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From Cauchy-Schwarz’ inequality and (3.1.11) it follows that

( zn: ij(X)deka>%

7,k=1

=3 G0 X ax* 3 ij(O)Xij)% = d( 3 ij<o>Xka)%,

and this implies that when X is in the domain of the geodesic coordinates, then the
shortest path to the origin is indeed the geodesic ray. Thus we have proved that
geodesics do give the shortest path between any two of its points which are sufficiently
close. (The importance of the latter restriction was already clear for the sphere.)

So far in this chapter we have only discussed local properties of Riemannian man-
ifolds. A Riemannian manifold is a metric space with the distance s(x,y) between
x,y € M defined as the infimum of the lengths of differentiable curves from z to y.
We add a theorem of a global nature:

Theorem 3.1.4 (Hopf-Rinow). Let M be a connected Riemannian manifold. Then
the following properties are equivalent:

(1) M is a complete metric space.

(2) Ewvery geodesic in M can be extended indefinitely in both directions.

(3) There exists a point x € M such that all geodesics starting at x can be extended
indefinitely in both directions.

(4) Every closed bounded subset of M is compact.

They imply that any two points x,y € M can be joined by a geodesic of length s(z,vy).

Proof. (1) = (2): Let R D (a,b) > s — x(s) be a geodesic with maximal interval
of definition and the arc length as parameter. Since s(x(s1),z(s2)) < |s1 — S2|, the
sequence (b — 1/k) is a Cauchy sequence if b < co. By the local existence theorem
for ordinary differential equations applied in a neighborhood of the limit, the geodesic
with initial data x(b— 1/k),2'(b— 1/k) can be extended for an interval ¢ independent
of k for large k, which shows that (a,b) is not a maximal interval of definition and
proves (2).

The implications (4) = (1) and (2) = (3) are trivial. Assume now that (3) is
valid. This means that we have a globally defined geodesic exponential map v : T, M >
v— X(1) € M, giving the value at time 1 of the geodesic with initial data z,v. Since
7 is continuous and B(r) = {v € T, M; |v|, < r} is compact, it follows that yB(r) is
compact. We know already that vB(r) is equal to B(r) = {y € M;s(z,y) < r} for
small r, and it is obvious that yB(r) C B(r) for every r > 0. If we prove that equality
holds for every r, then (4) will be proved.

~

(0) when g < r. If 11 = 00 our

Let 71 be the supremum of all r such that vB(p) =
claim is true so assume that r; < co. Then vB(ry) = B(ry), for B(ry) is the closure of

~

UT‘<T‘1 B(T’l) =7 UT<T1 B(T) - VB(T1)7
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and vB(r1) is compact and therefore closed. Now we claim that vB(r) = B(r) for
r < ry+0if § is small enough. If y € B(r) \ B(r1), we can for large v find a path
of length < s(z,y) + 1/v from z to y. If z, is the last point in B(ry) = vB(r;), then
s(z,z,) =11 and s(z,,y) +r1 < s(x,y) + 1/v. If z is a limit point of the sequence z,
in the compact set yB(r1), it follows that s(z,y) < s(z,y) —r1 < . In view of the
compactness of yB(r) we can choose ¢ independently of z so small that this implies
that there is a geodesic from z to y of length s(x,y) — r1. We also have a geodesic of
length r; from x to y. If these did not fit together to one geodesic, we could get a path
shorter than s(z,y) from x to y by smoothing out the broken geodesic near z, which
is a contradiction completing the proof of Theorem 3.1.4.

Variations of geodesics are controlled by the Jacobi differential equations:

Theorem 3.1.5. Let v € C3(w, M) where w is an open set in R?, and assume that
t — ~(t,s) is for fized s a geodesic with parameter proportional to the arc length, when
(t,s) € w. LetT = 7,.0/0t be the tangent of the geodesic and let X = ~v,0/0s be a vector
field along the geodesic describing the direction in which it moves. Then X satisfies
the Jacobi differential equation VoV X = R(T, X )T, where in local coordinates

R(T,X)Z =) RuZ'T"X'9/0x".

Proof. If 4/ has rank 2 then the range is locally a two dimensional surface where the
vector fields 7" and X are defined and commute, since d/0t and 0/Js commute. In
this surface we have VT = 0 for t — (¢, s) is a geodesic. Since [T, X| = 0 we have
VX —VxT =0, so (3.1.6) gives

VirVrX =VypVxT = [V, Vx]T+VxVrT = V[T’X]T + R(T,X)T = R(T, X)T,

which proves the Jacobi differential equation in the closure of the open subset of w
where 7/ has rank 2. In the complement in w we have locally v(¢,s) = 7o(¢(t, s))
where vo(t) = (¢, sg) for a suitable sg. The geodesic equation means that (¢, s) is
linear in in ¢ for fixed s. Hence X = aT where a = (0v/0s)/(0v/0t) is linear in t, and

VTX = (VTCL)VT, VTVTX = (VTVTCL)T = 0,

which completes the proof.

Ezxercise 3.1.7. Show that if Mj is a submanifold of the Riemannian manifold M of

codimension v, then one can at every point in M choose local coordinates z?,..., 2"
in M such that My is defined by z! =--- = 2% =0 and
” i, if1<j <
% , if1<j<v
Zgjk(il?)x = e
— 0, ifj>w.

Hint: This means precisely that the rays t ~ (ta!,... tz¥,2v"L, ... 2™) are
geodesics orthogonal to Mj. (Note that when v = 1 the condition means that g (x) =
d1k-)



38 III. ABSTRACT RIEMANNIAN MANIFOLDS

Ezxercise 3.1.8. Show that if My is a geodesic curve in a Riemannian manifold M,
then one can in a neighborhood of any compact interval on M, find coordinates = =
(x',...,2") such that My is defined by 2’ = (z!,...,2""1) = 0 and

gik(@) = 0jk + Gjp(a’, ™) + O(|2']?),

where G, (2’,2™) is a quadratic form in 2’ depending on 2™ and
n—1
Zij(a:',x”)xk =0,j=1,...,n.
1

(Hint: Use Exercise 3.1.6 and make the vector fields 8/0x7 parallel along Mj.) Con-
clude that if the differential equations

2d* X7 Jdx"? = OG (X', 2™) /027, j=1,...,n—1

have a solution X’(z™) # 0 vanishing when 2™ = a and 2™ = b, then an interval on M,
containing [a, b] strictly cannot minimize the distance between its endpoints. Show that
the Jacobi differential equation along M, for a vector field (X'(z™), X" (™)) means
that X™ is a linear function of z™ and that X'(x™) satisfies the preceding differential
equations.

It follows from (3.1.11) that if we expand G in a Taylor series,
G=G"+G' +G*+...

where G7 is homogeneous of degree j in X, then G' = 0, for the equations
Z:G;.k(X)X”C = 0 imply that if Gjl.k(X) = > G X', then Gji is symmetric in the
first two indices and antisymmetric in the last two. The permutations

gkl — jlk — Ik — lkj — klj — kjl — jkl

must therefore change the sign although we get back the same elements, which proves
the claim.
The first interesting term is therefore G2. We shall write

G*(X;Y) = (G*(X)Y,Y),

which is a symmetric quadratic form in X as well as in Y and has the fundamental
property

(3.1.12) 0G*(X;Y)/0Y =0, ifY =X.

In particular, G?(X; X) = 0. Since the dimension of the space of quadratic forms in
n variables is n(n + 1)/2 and that of cubic forms is n(n + 1)(n + 2)/6, it is easily seen
that the space of forms satisfying (3.1.12) is of dimension

(n(n+1)/2)*> =n*(n+1)(n+2)/6 = n*(n* - 1)/12.
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We have seen in Theorem 2.3.1 that this is precisely the dimension of the space T of
curvature tensors. We can polarize G2 to a 4-linear form G?(X1, Xo;Y1, Y2) which is
symmetric in X7, X5 as well as in Y7, Y5 and has the property

G*(X;Y)=G*X,X;Y,Y).
Then (3.1.12) yields
(3.1.12) G* (X1, Xo; X3, X4) + G*(X3, X1; X2, X4) + G*(X2, X5; X1, Xy) = 0.

From (3.1.12)" we easily obtain G*(X, X;Y,Y) = —2G?(X,Y; X,Y), hence the sym-
metry

(3.1.13) G*(X;Y) = G*(Y; X).

Since G (0) = 0, the corresponding Christoffel symbols vanish at the origin. (Note
that the Christoffel symbols are not tensors, for otherwise we could not make them
equal to 0 at a point by changing coordinates. The fact that we have raised and
lowered an index in the same way as for tensors might suggest otherwise, but it is just
for linear transformations that they behave as tensors.) Thus the formulas (2.1.13)
for the curvature tensor simplify at 0 to

Riijik = 5(0;0:Gri + 0k01Gyj — 001Gyt — 9;01,G 1)

after cancellation of two terms 0;0;G;;. This means that for the corresponding 4-linear
forms we have

(3.1.14) R(X1, X2; X3, Xy) = G*(X1, Xy; Xo, X3) + G* (X2, X3; X1, X4)
— G*(X2, X45 X1, X3) — G*(X1, X3; X2, X4).

Here we have only used so far that G! = 0. For geodesic coordinates we have the
symmetry (3.1.13), which simplifies (3.1.14) to

(3.1.14) R(X1, X2; X3, X4) = 2G*(X1, X4; X2, X3) — 2G* (X1, X3; X2, X4).
Using (3.1.12)" we obtain on the other hand

—6G*(X1, Xo; X3, X4) = R(X1, X4; Xo, X3) + R(X1, X3; X2, X4),

(3.1.15) )
-3G* (X, X;Y)Y)=R(X,Y; X,Y).
We have a one to one correspondence between the two 4-linear forms G?(X1, ..., X4)
and R(X7q,...,X4) with the properties:

symmetry for G when X; <+ X5 or X3 + X, or (X1, X2) < (X3, Xy); for R when
(X1, X2) < (X3, X4);

antisymmetry for R when X7 <> X5 or X3 <> Xy;
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circular antisymmetry for both G? and R as described in (3.1.12). For R this is
again the first Bianchi identity.

Ezxercise 3.1.9. Show that at the center of a geodesic coordinate system we have

Liji(z) = § Y (Rikje(0) + Riji(0))z' + O(|z[?).
z

What is the analogue for I';;*?

Ezxercise 3.1.10. Show that at the center of a geodesic coordinate system we have

> Ry’ =12) Gyu’

i’j7k7l i’j7k7l

The preceding observations were expressed in words by Riemann [1, p. 279]: “Fiihrt
man diese Grossen ein, so wird fiir unendlich kleine Werthe von = das Quadrat des
Linienelements = Y dx?, das Glied der Niichsten Ordnung in demselben aber gleich
einem homogenen Ausdruck zweiten Grades der n(n —1)/2 Grossen (z1dxs — xodzy),
(r1drs — x3dx1), ..., also eine unendlich kleine Grosse der vierten Dimension, so
dass man eine endliche Grosse erhalt wenn man sie durch das Quadrat des unendlich
kleinen Dreiecks dividirt, in dessen Eckpunkten die Werthe der Veranderlichen sind
(0,0,0,...), (x1,x2,x3,...), (dr1,dxs,drs3, ... ). Diese Grosse behilt denselben Werth,
so lange die Grossen x und dx in denselben binaren Linearformen enthalten sind, oder
so lange die beiden kiirzesten Linien von den Werthen 0 bis zu den Werthen z und
von den Werthen 0 bis zu den Werthen dz in demselben Flachenelement bleiben, und
hangt also nur von Ort und Richtung desselben ab. Sie wird offenbar = 0, wenn
die dargestellte Manningfaltigkeit eben, d.h. das Quadrat des Linienelements auf
> dax? reducirbar ist, und kann daher als das Mass der in diesem Punkte in dieser
Flachenrichtung stattfindenden Abweichung der Mannigfaltigkeit von der Ebenheit
angesehen werden. Multiplicirt mit —3/4 wird sie der Grosse gleich, welche Herr
Geheimer Hofrath Gauss das Kriimmungsmass einer Flache genannt hat.”

The factor 4 here comes from the fact that Riemann divided by the square of the
area of a triangle and not the corresponding parallelogram. The factor —3 is the same
as in (3.1.15) above, and we shall now show that it is also closely connected to the
denominator 3 in Legendre’s theorem.

Still with geodesic coordinates we shall consider the geodesic triangle with corners
at 0, €Y', eZ when ¢ is small. For the sides from 0 the lengths are ¢|Y| and ¢|Z| where
X% = > Gjx(0)X7XF; we denote the corresponding scalar product by (-,-). The
third side is not as easy to determine since we do not know the geodesic. However, it
is clear that the square of its length is equal to €2 times the square of the length of the
geodesic from Y to Z for the metric

> Gin(eX)dXTdX* = |dX|* + £2G*(X;dX) + O(®).
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This geodesic must differ from the straight line segment [0,1] 3¢t — Y +t(Z —Y) by
O(g?), and since the straight line is a geodesic for the metric |[dX |, we obtain for the
geodesic distance ea between €Y and €7

1
a? = |Y—Z|2+52/ GEY +tHZ~Y); Z-Y)dt +O(e*)
0
=Y - 2P+ (Y; 2) + 0(),
for GA(Y +t(Z-Y);Z-Y)=G*Y;Z—-Y) = G*Y;Z). The Riemannian angle o,

at 0 is defined by (Y, Z) = |Y||Z| cos o, and the angle a. opposite ea in the Euclidean
triangle with sides €|Y|, €|Z|, €a is given by the cosine theorem

a’ =|Y|* +|Z|* - 2|Y||Z| cos ., hence
2|Y||Z|(cos a, — cosa) = 2G*(Y; Z) + O(?).

Thus § = o, — @, = O(g?) and

G*(Y;Z) |eY]leZ]sina, 3
5— _ O(c%).
(YT Z[sinn)? 2 +0()

Since the first factor is —1/3 times the sectional curvature in the Y'Z plane (cf. (3.1.15)
and Theorem 2.2.3), and the second factor is the area of the geodesic triangle +0(g3),
we have proved Legendre’s theorem. Note that the total angle excess is equal to the
sectional curvature times the area +O(g?).

Ezercise 3.1.11. Assuming that the earth is a sphere with circumference 40000 km,
and that T is an equilateral geodesic triangle on the earth with the base equal to 100
km and angles 60° at the base, estimate how many seconds of arc the third angle differs
from 60°.

In the two dimensional case considered by Gauss we can make a subdivision of the
geodesic triangle T' by geodesics joining the midpoints of each side. Repeating this
subdivision and noting that angle excess is additive when we subdivide, we conclude
in the limit that

(3.1.16) oz-l—ﬁ-l—’yzw-l—//TKdS

where «, 3,7 are the angles at the corners, K is the Gauss curvature, and dS is the
Riemannian area measure. This is Gauss’ part of the Gauss-Bonnet theorem; it was
extended by Bonnet to more general regions. This we shall now do with a different
more analytical proof which will introduce some ideas which will be important later
on.

Let us assume that we have a Riemannian metric in a simply connected open set
w C R2. We shall generalize Theorem 1.2.1 by calculating the integral of the signed
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geodesic curvature k, over a simple closed curve s z(s) € w, 0 < s < L. We assume
that s is the arc length, that is,

Z e d:L'J( ) dx¥(s) 1

7,k=1

and we denote by e(s) the unit tangent vector e(s) = x’(s). The covariant derivative
of e along the curve has the components

. deﬂ d:l)
e FZ

but we shall avoid explicit calculations using this expression. Let n be the unit vector
orthogonal to e such that e, n is positively oriented. Then the signed geodesic curvature
kg is given by

kg = <v€e7 n)v

and our task is to calculate the integral

L
(3.1.17) / Kgds.
0

This is the integral of the differential form
(3.1.18) K= Z gii(de? + Z L/ (z)e'da®)n!
7,l=1 k,i=1
in the unit circle bundle
2 .
S(Tw) = {(z,w) € T(w); Y gjr(x)ww® =1},
J k=1

the integral being taken along the curve v : s — (x(s), e(s)). (Recall that n is uniquely
determined by e.) Here e(s) = 2’(s), but we shall simplify the problem by generalizing
it, so we allow any closed C! curve « in S(Tw) now.

We shall first examine how f,y k depends on the choice of the unit vector e. Any
other choice € can be written

€ =ecos + nsinf, thusn = —esinf + ncosb,
where 6 is uniquely determined modulo 27, so df is uniquely determined. We obtain

Vé = (Ve)cosh + (Vn)sinf + (—esinf + ncos0)db,
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and since (e,e) = (n,n) =1, (e,n) = 0, it follows from (3.1.4) that
(Ve,e) =0, (Vn,n)=0, (Ve,n)+ (e,Vn)=0.

Hence
(Vé,n) = (Ve,n) + db,

SO f,y K= f7 K+ fOL de if 7 is the curve s — (x(s), é(s)).
If v and v are two arbitrary vector fields with no zeros defined along the curve
s +— x(s), then we can normalize them with respect to the Riemannian metric to unit

vector fields e and € and introduce the variation fOL df of the angle from e to € along the
curve. This is an integer multiple of 27 which must be independent of the Riemannian
metric. In fact, if we replace g;r by Agjx + (1 — A)djr, 0 < A < 1, then the angle
variation depends continuously on A so it must have the same value when A = 0 as
when A = 1. If for example one of the vector fields is tangent to the curve and the
other is 3/0z", then it follows from Theorem 1.2.1 that the angle variation between
them is £27.

We shall now determine the integral fv k when e is a unit vector field defined in the
whole of w, for example the normalization of the vector field /0x'. The advantage
of this is that we can then pull the form k back by the map x — (z,e(x)) to a form
in w with integral over the curve s — z(s) equal to f,y k. (It also follows that ~ is a
boundary in S(Tw).) The interior w’ of the curve is € w since w was assumed simply
connected, and we shall calculate the integral of the differential form over dw’ using
Stokes’ formula. If ¢; = 9/0z" and we write V; = V., for the sake of brevity, the
differential form to integrate is

2

Z(Vie, n) da’.

i=1
The integral over dw’ is equal to the integral over w’ of
(3.1.19) Vl (Vge, n) — Vg(Vle, n) = ((V1V2 — Vng)e, n) + (Vge, Vln) — (Vle, VQTZ)

Here we have used (3.1.4). The last two terms are equal to 0 since V je has the direction
of n and Vin has the direction of e. By (3.1.6) the first term, on the right is equal
to R(n,e,e1,69) = —R(e,n,e1,e2). The vectors e, n are positively oriented and span
a parallelogram with area 1 while £1,e2 span one of area /g where g = det(g;x). In
view of Theorem 2.2.3 we therefore conclude that (3.1.19) is equal to —K /g, where
K is the total (Gaussian) curvature, and we have proved:

Theorem 3.1.6 (Gauss-Bonnet). Let w C R? be a simply connected open set with
Riemannian metric, and let w' € w be simply connected with C? boundary. Then

(3.1.20) / Kg ds -I—/ K dS = 2m,
ow’ w’
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where K is the total curvature, kq is the geodesic curvature of Ow’ with the orientation
making w' lie to the left of Ow', ds is the arc length of Ow’, and dS is the Riemannian
area element \/gdx in w'.

In the proof we have actually proved
(3.1.21) dr = (=K /gdxz' A dz?)

where 7 is the projection S(Tw) — w and & is defined by (3.1.18). In fact, since
exterior differentiation commutes with pullbacks, we have just proved that the two
sides of (3.1.21) are equal when pulled back by any local section x — (z,e(x)) of
S(Tw). This implies (3.1.21), for if u is a differential form in a fiber space over a
manifold M and s*u = 0 for every local section of M, then u = 0 if the degree of u
does not exceed dim M. (Verify this as an exercise.) Note that x cannot be obtained
by lifting a form from w; in fact, we have shown that the restriction of x to any fiber
of S(Tw) is equal to the natural one form on the oriented circle.

In Theorem 3.1.6 we assumed that dw’ was in C2, so (3.1.20) does not quite cover
(3.1.16). However, it is easy to extend the theorem to the case where dw’ is only
piecewise C?. To get a closed curve in S(Tw) we must then add at each corner z
a circular arc in the fiber connecting the incoming tangent to the outgoing tangent;
alternatively we can approximate w’ by domains with the corners rounded off. This
gives

(3.1.20)' / ngds+zaj+/ K dS = 2r,
ow’ w’

where «; denote the exterior angles at the corners and k, is integrated only over the
smooth part of dw’. For a geodesic triangle, the three angles are m — «;, so the sum is

37T—ZOéj:7T—|—/ K dS.

Thus (3.1.20)" contains (3.1.16). It is also easy to obtain (3.1.20) from (3.1.16) applied
to a triangulation of a polygonal approximation of w’. We leave this also as an exercise.

We shall now discuss the case of a compact oriented Riemannian manifold M of
dimension 2 (without boundary). Suppose that M is decomposed by geodesic arcs

into a finite number v, of geodesic polygons w;. Denote the interior angles of w; by
Bjk- Then (3.1.20)" yields

> (m = Biw) + / K dS = 2.
k Wy
The number of terms in the sum is equal to the number of sides of w;. If vy and 14

denote the total number of corners and sides occurring in some wj;, we get by adding

/ K dS + 2nv; — 2wy = 27w,
M
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for there will be altogether 211 terms 7 in the left-hand side. Thus
1

(3122) —/ KdS:VQ—V1+V0,
2T M

so the right-hand side is independent of how the decomposition of M is made; it is the
Euler characteristic of M.

We can approach the calculation of the integral in (3.1.22) in another way starting
from a function f on M which has only non-degenerate critical points. Then the vector
field F = (df)*, usually denoted grad f, has only finitely many zeros. Let

I = A{(z, F(2)/| F(x)|); F(x) # 0} € S(TM).

This is a manifold whose boundary consists of the circles over the zeros of F', that
is, the critical points of f. For at such a point we can introduce geodesic coordinates
diagonalizing the quadratic terms in f, that is,

(@) = &+ O(|z?),  f(z) = f(0) + (fu(a")? + f2(2*)*) /2 + O(| ).

Then we have F(z) = (fiz!, for?) + O(|z|?) and

F(2)/||F ()|l = (fra, f22*)// (F121)? + (£222)2 + O(|z]).

When z winds around a small circle |x| = e then F(z)/||F(x)| winds around the unit
circle in the same or opposite direction depending on the sign of f; fo. The boundary
of I' is the limit of the image of the negatively oriented circle of radius € as ¢ — 0, so
it consists of the circles in S(T'M) with orientation opposite to the sign of the Hessian
of f at the critical point. If we integrate (3.1.21) over I' it follows now from Stokes’

formula that
— KdS:/dm:/ K= —2m €5
/ r ar Z !

where ¢ is the sign of the Hessian of f at the critical point. Thus we have

Theorem 3.1.7. If M is a compact two dimensional oriented Riemannian manifold
with total curvature K and no boundary, then [ 1 K dS/2m is for every real valued
function on M with only non-degenerate critical points equal to the sum of the signs
of the Hessian of f at the critical points. The integral is also equal to the Fuler
characteristic.

Instead of the vector field F' = (df)* we could have used here any vector field with
only non-degenerate fixed points (that is, zeros). We shall later on give an extension
due to Chern of the preceding arguments which is applicable to any oriented manifold of
even dimension. The problem is to find the appropriate differential forms in S(T'M).
To do so we need a systematic approach to Riemannian geometry using differential
forms; the proof of Theorem 3.1.6 was meant to motivate the need for that.

We shall now supplement Theorem 3.1.7 by studying the integral | \ K dS for a
compact oriented hypersurface M C R"*! of any dimension n. We denote by ~ the
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Gauss map (2.2.3); the direction of the normal n is chosen so that a positive system of
tangent vectors followed by n is a positive system in R*T. We choose the orientation
of S™ so that with this definition the normal at x € S™ is —z. Set ¥ = —~, which is
then the identity map if M = S™. The degree D of the map ¥ is then defined by

/ *u = D u
M Sn

where u is an arbitrary n-form on S™. We choose for u the volume form on S™, which
means that u(ty,...,t,) is the n-dimensional volume with sign of the parallelepiped
spanned by the tangent vectors tq,...,%, at a point on S”. By Theorem 2.2.2

Fu)(trs .. otn) =u(¥t, ., 7 t) = ([ E))ults, ... tn).

Now t1,...,t, have as tangent vectors of M the same orientation as they have as
tangent vectors of S™ at —n, since the normal is n there. Hence ¥*u equals K times
the volume form of M, and we obtain

(3.1.23) / KdS:D/ ds,
M n

where dS denotes the area element in M and that in S” in the two integrals.

When n = 2 it follows in view of Theorem 3.1.7 that the degree of the mapping —v
is equal to half the Euler characteristic. Later on we shall extend this to arbitrary n
such that (n —2)/4 is an integer.

We shall finally prove an important result on the covariant derivative of the curvature
tensor. For a geodesic system of coordinates the Christoffel symbols are O(|z]), so the
non-linear terms in (2.1.13)" are O(|z|?). Hence we obtain

Rijii = (0069 + 0;0191 — 0:0kgj1 — 0;019i) + O(|z]?),
and it follows that
Rijktm = 5(0;0m0kgu + 0;0,0m 91 — 0;0m0kgj1 — 0;0,0m3ik)

at the center of the geodesic coordinates. Note that the first and the last term are
equal apart from the sign and a circular permutation of the indices klm, and that this
is also true for the middle terms. Hence we obtain the second Bianchi identity

(3.1.24) Rijki,m + Rijim,k + Rijmi,g = 0,

or more briefly R;jjr,m) = 0. Since Rijki,m is a tensor, this is of course true for any
system of coordinates. Contraction of (3.1.24) with respect to the indices ik and the
indices jl, that is, multiplication by ¢g**¢/! and summation gives, since contraction and
the musical isomorphisms commute with covariant differentiation

Sm =Y 9% Rimp— Y ¢ Rjm1 =0,
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that is,
(3.1.25) OrS =2 g"Rip;.

Here S is the scalar curvature and R;; is the Ricci tensor.

By Definition 2.3.4 a Riemannian manifold M is said to be an Einstein manifold
if R;j = fgi; for some function f on M. This implies that S = nf, where n is
the dimension of M. Since Ry ; = ¢ix0;f in view of (3.1.8), using (3.1.25) gives
nopf = 20cf, k = 1,....,n. If n > 2 and M is connected, it follows that f is a
constant, so we have proved:

Theorem 3.1.8. If M is a connected Finstein manifold of dimension > 2, then the
Ricci tensor is a constant multiple of the metric tensor.

3.2. Local isometric embedding. Let us assume given a smooth Riemannian
metric in a neighborhood of 0 in R™. We want to find a map x + f(z) € R defined
in a neighborhood of 0 so that the given metric is the same as the metric introduced on
the embedded manifold by the Euclidean metric, that is, |df (z)|? = 3 g;x(z)dz’ dx®,
or explicitly

(3.2.1) (0,£(2),0f(2)) = gjn(a), 1<j<k<n.

Altogether there are n(n+1)/2 equations, so it follows from general theorems discussed
at the end of this section that smooth solutions do not exist in general unless N > n(n+
1)/2. We shall now discuss a classical theorem of Janet and Cartan (see Jacobowitz
[1] and references there) which shows that a local real analytic solution always exists
when N = n(n + 1)/2 if g;, are real analytic. The idea of the proof is to argue by
induction with respect to n, and extend a local isometric embedding of R*~! x {0} by
solving a Cauchy problem. To do so one must cut down the number of equations to
solve:

Lemma 3.2.1. The equations (3.2.1) are valid in a ball with center at 0 if and only
if they hold for 1 < j < k <n when x, =0 and in addition we have the equations

(872Lf7ajf)zrnnja 1§]§n,

(3.2.2) " 1 o
<8nf7 azajf) = anrijn + (818nf7 8]87Lf) - §aiajgnn7 1<:< ] <mn,

and the boundary conditions

2.
<3 3) (anf7aiajf)zrijn7 1 §Z§]<n7 xn:(l

Proof. The first n equations (3.2.2) and the second set of initial conditions (3.2.3)
follow from the definition (2.1.7) of the Christoffel symbols. To prove the second set
of equations (3.2.2) we note that

anrijn - an(anf7 818]f) = (8721f7 818]f) + <8nf7 anazajf)7

(3.2.4) Lnaa 1 B
Y jgnn - 5818] <8nf7 8nf) - <8nf7 anazajf) + (818nf7 8janf)
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Subtraction yields the remaining equations (3.2.2).
Now assume that we have a solution of (3.2.2), (3.2.3) such that (3.2.1) is valid when
x, =0 for 1 < j <k < n. The first equation (3.2.2) with j = n shows that

an(anf7 anf) = 2ann = OnZnn,

so using the first boundary condition (3.2.3) with j = n we obtain (0, f,nf) = gnn
also when z,, # 0. From the first equation (3.2.2) with j < n we now obtain

On(Onf,0;f) =Tunj + (Onf,0;0,f)
= anj + %8] <8nf7 anf) = anj + %ajgnn = anan,

and using the boundary condition we conclude that (0, f,0;f) = gn;. Now we have
for1<i<j<n

= 0i(Onf,0;f) + 05(0if,Onf) — 2(0nf,0:0; f) = 0igjn + 0jgin — 2(On f,0:0; f).

When z,, = 0 this is equal to 0;g;, + 0;gin — 21'sjn, = Ongi; by the second set of initial
conditions (3.2.3). Differentiating again we obtain

6721 (alfv ajf> = 6nazgjn + anajgzn - 26nF23n = 6721913'7

where we have used (3.2.4). 1In view of the initial conditions it follows that
(0if,0;f) = gij for 1 <i < j < n, which proves the lemma.

As already mentioned we shall start from a local isometric embedding of R"~!, and
we must choose it so that the equations (3.2.3) with j < n can be solved. This requires
a stronger condition on the embedding, which we formulate with R”~! replaced by
R” in the following definition:

Definition 3.2.2. A C? map x — f(z) from a neighborhood of 0 in R™ to R¥ is said
to be free at 0 if the derivatives

9:f(0),0;0;f(0), 1<i<j<m

are linearly independent. Their linear hull is then called the osculating space at 0.

It is clear that f is free at every point in a neighborhood of 0 if f is free at 0. If a
free map exists then N > n+n(n+ 1)/2, the dimension of the osculating space. Note
that when n is replaced by n — 1, this condition becomes N > (n — 1)+ (n — 1)n/2 =
nn+1)/2—1.

Theorem 3.2.3 (Janet-Cartan). If Y g;i(z)dxidx” is a real analytic Riemann-
tan metric in a neighborhood of 0 in R™ then there is a local real analytic isometric
embedding in RN with N = n(n +1)/2. It can be chosen free if N = n(n + 3)/2.
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Proof. When n = 1 the statement is obvious. We may therefore assume that n > 1
and that the theorem has already been proved for dimensions smaller than n. Without
restriction we may assume that the coordinates are geodesic or at least that

gjk(z) — 6k = O(|z]?), asz— 0.

Using the inductive hypothesis we choose a free real analytic map fy from a neighbor-
hood of 0 in R*~! to RN~!, where N = n(n+1)/2, such that for 2’ in a neighborhood
of 0

(05 fo(z"), Ok fo(x")) = gju(2’,0), 1<j<k<n.

We want to find f satisfying (3.2.2) so that f(z’,0) = (fo(2’),0) and (3.2.3) is valid.
The equations

(Onf(2',0),0;fo(2")) = gnj(2,0), 1<j<n,
(6nf($/70>7aiajf0(x/)> = Fijn(x/70)7 1 S { S ] <n,

determine uniquely the component v(x2’) of 9, f(z’,0) in R 1, because fj is free, and
v(0) = 0 since the right-hand sides of these equations vanish at 0. The only remaining
equation (3.2.3) can now be written

(Onfn(2',0))2 = gun(2’,0) — [u(z")]?

where || - || denotes the Euclidean norm. Since the right-hand side is positive when
2’ = 0 we have a unique analytic positive solution. Summing up, we have well defined
analytic boundary conditions

(3.2.5) f(@,0) = (fo(2'),0), nf(2,0) = (v(z), Vgnn(a’,0) — [Jv(z’)]]?).

The last coordinate of 9, f(«’,0) is not 0, so 9;f(0), 1 < j <n, and 9;0;f(0), 1 <i <
j < n, form a basis for RY. The equations (3.2.2) can therefore be solved for 92 f,

(326) 8721f = @(.’E, {8jf}j§n7 {8iajf}i<n,j§n)7

where ® is analytic in a neighborhood of the initial data at 0. This is a Kovalevsky
system so it has a unique analytic solution with the data (3.2.5) in a neighborhood of
the origin.

It remains to show that we can get a free embedding in a space of dimension N + n.
To do so, we first construct an embedding in RY*"~! by changing (3.2.5) to

f(.’l?l, O) = (fO(x/)7 07 ceey 0)7
——
(325), n times
O f(@',0) = (v(2"), V/gnn (2, 0) — Ju(@")|]? — [2'[?,2").

The equations (3.2.2) still have a unique analytic solution (3.2.6) if we require that
02 f shall lie in the linear hull of 9;f, 1 < j <n and 9;0;f, 1 <i < j < n. Then it is
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clear that all derivatives 0; f and 0;0; f with ¢ < j are linearly independent at 0 with
the exception of 92 f, and since we have an isometric embedding in RV *"~1 we could
not hope for more. If f is such an embedding for the metric 3 g;xda’dx® —4(z"dz™)?,
then the embedding (£, (z™)?) in RV*" will be free.

If the metric is not real analytic, the proof breaks down for there is no reason
then why the Cauchy problem should be solvable. Of course one can still use the
completely elementary formal part of the Cauchy-Kovalevsky theorem and conclude
that if g;; € C* then f can be chosen so that (3.2.1) holds with an error vanishing of
infinite order at 0. Even for n = 2 it is not known whether the first part of Theorem
3.2.3 is valid in the C°° case when the Gauss curvature has a non-simple zero at the
origin. (See e.g. Jacobowitz [2].) However, the second part of Theorem 3.2.3 remains
true as will now be shown following Giinther [1].

Assume now just that g;; € C?*¢ for some o € (0,1), that is, that 9%g;; is
Holder continuous of order ¢ when |a| < 2. Replacing g;; by the second order Tay-
lor polynomial we obtain from Theorem 3.2.3 a free embedding f with values in RY,
N =n(n + 3)/2, defined in a neighborhood of 0 such that

0%(gs(x) = (0 f (2),0;f () = O(|jx|***71*) as 2 — 0.
Choose ¢ € C3°(R"™) such that p(z) = 1 when |z| < 1 and ¢(z) = 0 when |z| > 2,
and set for small €
hij(x) = p(x/e)(gij(x) — (8:f (), 0 f (2)))-
Then |z| < 2¢ if @ € supp hij, gij(x) = hij(x) + (0if (), 0; f(x)) if |z| < €, and
(3.2.7) sup |0%hy;(z)] = 02271l if o] < 2.

Let € C R" be a ball with center at 0 so small that f is free in Q. It suffices to
show that for small ¢ there is a map u € C?7¢ from Q to RY such that |d(f + u)|> =
|df |2 + 3 hijdz'dx?, that is,

(3.2.8) (Oyu, 0; f) + (Oju, 0; f) + (Oiu, Oju) = hyj.

We choose € so small that h;; vanishes on 0. If u vanishes on 09 then (3.2.8) is
equivalent to the equation obtained by letting A = >~ 9? act on both sides, which
gives

where T;;(u) is quadratic in the second derivatives of u. We can simplify the equations

by adding just n equations which annihilate the first two terms in all these equations
and conclude that (3.2.8) is valid if

A(alf7u) = _(aiu7 AU), 1<i<n,
A(9;0; f,u) = §(Ti5(u) — Ahy;), 1<i<j<n,
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in 2 and v = 0 on 0f). Let G be the operator solving the Dirichlet problem for the
Laplacian in €, thus AGy = v in Q and Gy = 0 on 99 if y» € C(€2). Then these
conditions are fulfilled if

(0if,u) = —G(Ou, Au), 1<i<n,

3.2.9
( ) (Blajf,u) = %G(Tm(lo — Ahij), 1 S 1 S j S n.

The vectors 0; f(x), 0;0; f(x) with 1 <i < j <n form a basis for R" for every = €
since f is free, so we have for every U € RV

U= Y @@f,U)+ Y ¢i(0:0;f,0),

1<i<n 1<i<ji<n

where @;, ¢;; are analytic in Q. Thus the equations (3.2.9) are equivalent to u =
H + T(u) where

1<i<j<n 1<isn 1<i<j<n

Standard Holder estimates in the theory of elliptic equations show that 7'(u) is
continuous in C?7¢ and a contraction operator in the convex subset where
> |aj<2Sup [0%u| is small enough. In view of (3.2.7) it follows that the equation
u = H + T(u) has a unique solution there if ¢ is small enough. Arguing by stan-
dard elliptic theory we conclude that u is as smooth as A if h has additional regularity.
Admitting these basic facts without proof here, we obtain:

Theorem 3.2.4. If Zgjk(as)da:jda:k 1s a Riemannian metric in a neighborhood of 0
in R™ with coefficients in C*1¢ for some non-integer o > 0, then there is a local C*T¢
free isometric embedding in RN with N = n(n + 3)/2.

Note that the solution we have found to the first order equations (3.2.8) is not
smoother than the right hand side. This is unavoidable because of the Gauss equations
and gives rise to the analytical difficulties of the problem which were first overcome
by Nash [1]. A great deal is known also about global isometric embeddings. We
must confine ourselves here to referring to Gromov and Rohlin [1], Berger, Bryant and
Griffiths [1], and the references in these papers.

We shall finally justify the statement made above that a smooth isometric embedding
in RY does not exist in general unless N > n(n + 1)/2. It is notationally more
convenient to prove a general form of this statement. Let u denote a C'°° function
defined in a neighborhood of 0 in R™ with values in RY. Denote by J,,u the m-jet of
u,

Jmu = {aau}|a|§m,

and let ®(x, J,u) be a C* function of x and J,,u with values in R”. Thus the
equation ®(x, J,,u) = v is a general system of v differential equations of order m for
N unknowns.
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Theorem 3.2.5. If for all v in an open subset of C°(R™ R") one can find a function
u € C°(R™,RY) such that ®(z, J,u) = v in a neighborhood of 0, then N > v.

Proof. Let p be some large integer to be chosen later. We shall not really use the full
differential equation but only the much weaker condition

(3.2.10) Ju®(x, Jpu)(0) = J,v(0).

The space E,, of p-jets at 0 of functions in C*°(R",R"), to which the right-hand
side belongs, has dimension 1/(“:;”), for (”:”) is the number of multi-indices o =
(0, ...,0p) with ag 4+ - -+ ay, < p. The left-hand side is a C*° function of J,, 4., u(0),
which belongs to a space of dimension N (“+7Z+"). By the Morse-Sard theorem the

range is of measure 0 in £, if

N(u—l—m—l—n) <V(,u—i—n), that is,N<1/HL‘7,.
n n mw+m-+

j=1
If N < v then this condition is fulfilled for large p, which proves the theorem and even
more: If N < v then the equation ®(x, J,,u) = v cannot even be satisfied to order u
at a fixed point when g is large, unless J,v is exceptional there in the sense that it
belongs to a set of measure 0.

For the isometric embedding problem one can improve the estimate of p obtained
from the preceding proof by using the special properties of the equations. (See Exercise
2.3.1 and Gromov-Rokhlin [1].) Whether local isometric embedding of low regularity
is possible in dimensions below the Janet-Cartan dimension n(n + 1)/2 does not seem
to be known except for the result of Nash [2], Kuipers [1]; they showed that even a
global C! isometric embedding is possible in essentially the same dimension where a
C' embedding exists, hence always in 2n 4 1 dimensions. However, for C* embeddings
with & > 2 the situation is quite different as shown by (2.3.5), because the Gauss
equations are then available, and the problem does not seem to have been studied
then.

3.3. Spaces of constant curvature. Let M be a connected Riemannian manifold
of dimension n, and recall from Section 2.3 that the sectional curvature of M at a
point © € M for the two plane spanned by t',t? € T, M is defined by

(3.3.1) R(t' 82,65, 8%) /(g(¢',£")g (£, %) — g (', 1%)?).
If this is a function f(x) independent of the direction of the two plane then
R( 8%, 6%,%) = f(x)(g(t', )9 (¢, £1) — g (¢, 1) g (¢, 1))

by the uniqueness statement in Theorem 2.3.1, for the right-hand side has all the
symmetry properties defining 7. Thus the Weyl tensor and the traceless Ricci tensor
are equal to 0. If this is true for every point in M, then M is an Einstein manifold, and
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if n > 2 it follows from Theorem 3.1.8 that f is a constant, so the sectional curvature is
independent of x also. (This is a classical theorem of F. Schur, far older than Theorem
3.1.8.)

Definition 3.3.1. A connected Riemannian manifold M is said to have constant cur-
vature K if the curvature tensor is given by

(3.3.2) Rijri = K(gikgj1 — gugijx),

with a constant K.

From (3.3.2) it follows that the Ricci tensor is (n — 1)Kg;; and that the scalar
curvature is n(n — 1) K. Thus a manifold of constant curvature is an Einstein manifold
but the converse is not true when n > 3 since the Weyl tensor may not be equal to 0
then. Since the covariant derivative of the metric tensor is equal to 0, this is also true
for the curvature tensor (3.3.2).

An obvious example of a manifold of constant zero curvature is R™ with the standard
Euclidean metric. We shall now prove that locally there are no others.

Theorem 3.3.2. A Riemannian manifold M with curvature tensor identically equal

to 0 is flat in the sense that at every point one can choose local coordinates such that
the metric is >_(dx?)2.

Proof. Choose first some arbitrary local coordinates = = (2!,...,2") varying over a
ball 2 with center at the origin. Set V; = Vj, where 9; = 8/9x". Since [9;,9;] = 0 it
follows from (3.1.6) and the hypothesis that [V;, V] = 0. For every vy € R" we can
therefore find a unique vector field v in Q with v(0) =vp and V,o =0,i=1,...,n. In
fact, we shall prove inductively for v = 1, ..., n that there is such a vector field defined
in Q, ={re a2 =0,j >v} with Vo = 0,4 < v. This is obvious when v = 1,
for the equation Viv = 0 is just a linear system of differential equations with leading
term Ov/0x' which we can solve with initial value vg. If v > 1 and @ has the required
property with v replaced by v — 1, then we can find v defined in €2, with V,v = 0 and
v =0 when z, = 0. If y < v it follows that V,V,v = V,V,v = 0in Q,, and since
Vv =V,0 =0 when z, =0, it follows that V,v = 0 in ,. When v = n, the claim
is proved.

Now choose vector fields vy,...,v, in Q such that Vv; = 0 for j = 1,...,n and
1, ..., v, form an orthonormal basis at 0. Since d(v;,vx) = (Vvj, vg) + (vj, Vug) =0,
this follows at every point in 2. We have

[Uj, ’Uk] = ij’Uk — Vvkvj = 0,

so there are new coordinates y in a neighborhood of 0 such that v; = 8/9y’, j =
1,...,n. But this means that the metric is the Euclidean metric in these coordinates.

An equally obvious example of a manifold of constant positive curvature K is a
sphere with radius R = K~2 in R*".. In fact, O(n + 1) is a transitive group of
isometries, and the isotropy group O(n) leaving a given point z € S™ fixed is transitive
on the two planes in the tangent plane at x. Analytically the sphere is defined by
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|z|? + (z"*t1)? = R? where z = (2!,...,2"). In the hemisphere where 2! > 0 we
can use x as parameter, and noting that (x,dx) + 2" 1d2"*! = 0 we obtain

ds® = |al33|2 + (x, dx>2/(x”+1)2 = |d:L'|2 + K{x, d:L'>2 + O(|33|4)

where K = 1/R%. Thus g;; = 0;; + Kz'z? + O(|z|*), and we obtain when z = 0 by
(3.1.14)

Rijkl = %(636k$2$l + 6i651‘j$k — 6i6k$‘jl‘l — 6jal$il‘k> = K(éﬂdik — 51[(5@).

This we knew already of course, for when n = 2 the total curvature is 1/R? = K.
For the restriction to the hyperboloid H = {z € R"™1; (z"*1)? = |z|*> + R?, 2" ! >
0} of the hyperbolic (Lorentz) metric |dz|? — |dz"*1|? we have

ds® = |dz]? — (@, dx)?/(z"1)? = |da]* + K (@, dz)* + O(|2]*)

where K = —1/R? < 0 now. The metric is positive definite since |z|?> < (z"*1)? on H.
The preceding calculation for the sphere gives that

Rz‘jkl = K((Sjl(sik - 5il5kj)

at the origin. To prove that the curvature is constant it suffices to note that the group
of Lorentz transformations, that is, linear transformations preserving the Lorentz form
ST (29)? — (z"T1)? acts isometrically and transitively on H.

The parametrization of S™ above covers only a half sphere. We can cover the whole
sphere minus one point by means of the stereographic projection. If X € S™ then the
stereographic projection x € R™ from the point (0,...,0,—R) to the tangent plane at
the antipodal point is obtained from the equations

X =1(0,...,0,—R) +t(x,2R), |X|=R, thatis, t=4R*/(4R*+ |z|?).

Thus

[dX | = |tdz + xdt|* + AR*dt* = t*|dx|? + (AR* + |z|*)dt® + 2tdt(x, dz) = t*|dz|?,
for dt(4R? + |z|?) + 2t(x, dz) = 0. Hence the metric is

ds® = (1 + |2*/4R?)7*|dz|* = |dz|*(1 — 5 |z[*) + O(|z[*)

where K = 1/R? again. We leave as an exercise to calculate the curvature at 0 using
this expression for the metric.

For the hyperboloid H we can similarly use stereographic projection from

(0,...,0,—R) on the tangent plane at (0,...,0, R). This gives the equations

X =(0,...,0,—R) +t(x,2R), X € H, thatis, t = 4R*/(4R* — |z|?).
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The stereographic projection just fills the open ball with radius 2R now. We obtain
D 1dXT)? = [dX P = Jtde + xdt|® — AR*dt?
1

= t?|dz|* + (|z|* — 4R?)dt* + 2tdt{x, dx) = t*|dx|*.
With K = —1/R? we therefore obtain the metric
(3.3.3) ds* = (1 + K|z|*/4)?|dx|*.

For K = —1 this is the Poincaré model of non-Euclidean geometry. By an inversion
we pass to the half space model. First we move the boundary point (0,...,0, —2R) to
0 by introducing

y=2+(0,...,0,2R); 4R*— |z|* = —|y|* + 4Ry".

With z = y/|y|? we make an inversion at the origin and obtain

|da|? = |dy|* = |dz/|2|* — 22(z,dz) /|2]*|* = |d=|*/ 2",
ARy" — |y|* = (4Rz" = 1)/|2|?
so the metric is 16 R*(4R2"™ — 1)72|dz|? or after a translation, z = z — (0,...,0,1/4R)
(3.3.4) ds* = R?|dx|*/(z™)?.

Exercise 3.3.1. Verify directly that the metric (3.3.4) in the half space where z,, > 0
has constant curvature —1/R?.

Ezercise 3.3.2. Find geodesic coordinates at 0 for the metric (3.3.3).

We obtained the Poincaré model starting from an immersion in Minkowski space.
Schur [1] gave an isometric immersion of a part of the n dimensional hyperbolic space
with curvature —1 in R?"~! as follows. Set

—1

. - .1 _ . _ )
X' piX? =™ Ja XTI X = e

Then
Z_: (dX7)* = (a")~* z_:(da?j)Q + (n = 1)(z™) "4 (dae™)? 4 (dX>1)?

which is equal to the Poincaré metric if
(dX? )2 = (dz")?((z")? = (n = 1)) (=") "

Choosing an integral of this differential equation we obtain an isometric immersion of
the half space where ™ > y/n — 1. According to a reference in Gromov and Rokhlin
[1] it was proved in Liber [1] that a local isometric embedding is not possible in R?"~2.
A classical result of Hilbert states that for n = 2 it is not possible to embed the whole
hyperbolic plane in R3; this was extended by Efimov [1] to arbitrary complete two
dimensional surfaces with a negative upper bound for the curvature.

We shall now prove an extension of Theorem 3.3.2 to any constant curvature:
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Theorem 3.3.3. A Riemannian manifold with constant curvature K is isometric near
any point to a sphere, if K >0, to R if K =0 and to hyperbolic space if K < 0.

Proof. Assume that we have geodesic coordinates in a ball 2 with center at 0, g;;(0) =
dij. Then the theorem states that the metric tensor g;; is uniquely determined by K
in a neighborhood of the origin. This will be proved by deriving differential equations
along the rays, that is, the integral curves of the radial vector field

0= Zn:a:jﬁj.

1

We shall prove in Lemma 3.3.4 below that for j = 1,...,n there is a unique vector
field e; such that

(335) Vgej = O, ej(O) = 6j.
(This is not quite obvious since the radial vector field vanishes at 0.) Since

Vo(ej,er) = (Vyej, ex) + (€5, Voer) =0,

where (-, ) denotes scalar product in the Riemannian metric, it follows that eq,..., e,
are an orthonormal system at every point in Q. Let #',...,0" be the one forms
biorthogonal to eq,...,e,, that is,

(07, ep) = 5%, i k=1,...,n.
Then t = Y, (0%, t)e; for every tangent vector, so
Zgjktjtk = Z<9i7t>2~
i

Writing
0' =" Aida, thatis, A} = (67,9;),

we obtain gji =), A;A};, so it is enough to find the coefficients A;
Since (V,07,e;) =0 for j,k=1,...,n, we have V,6/ = 0 also. Thus, by (3.1.3),

oAl = (0, V ,0;) = (0", V0 — 0;),
for [0, 0] = —0;. Now (07, p) = z*, for V,0 = p since the radial direction is parallel, so

0(0%, 0) = (6%, o), which means that (6%, o) is homogeneous of degree 1. At the origin
we have 6" = dz’, so the assertion follows. It means that ¢ = Y x’e;. Thus

(0+ 1Ay = (0", V,0) = 0;a" — (V;60°,0) = 65 = Y _a"(V;6",ex) = 0} + > _a"By;.

Here we have introduced . .
i = (0", Vie;)
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and must now obtain a differential equation for this new quantity. By (3.1.6)
QB;k = <9i, ngkej> = —<9i, Vk6j> + R(e;, €j, 0, k),

for [p, 0] = —0k and V,e; = 0. Thus

(Q+ 1) ;k = ZR(ei7ej7 o, el><9l76k>'
l

Since the covariant derivative of R is equal to 0, we have
oR(e;,ej,0,e1) = R(ei,ej,V,0,€e1) = R(es, ej, 0, €1),
so this is a homogeneous function of degree 1. At the origin we have
R(ei, ej,0m,€1) = Rijmi = K (6651 — 0u10;1),

so it follows that
R<ei7 €5, 0, el) = Z meuml

Summing up and introducing polar coordinates x = rw, we have the differential equa-
tions

d 7 m
%(rBjk) = ZRijmlw T’A%

I,m

for the functions rAé- and rBj-k which vanish at the origin. This determines them
uniquely and proves the theorem when we have established the following

Lemma 3.3.4. Let o be the radial vector field in the ball Q) in a geodesic system of
coordinates. For every vg € R™ one can then find a unique C°° vector field v with
v(0) = vy and Vv = 0. It follows that Vv = 0 at the origin.

Proof. We have to solve a singular Cauchy problem of the form
(3.3.6) ijajv +Av =0, v(0)=wy,

where (Av)? = Y T 72%v! has coefficients vanishing of second order at the origin. If
we introduce polar coordinates, x = rw, the problem takes the form

ol Jor + Z L’ (rw)wbv! =0, v = vy when r = 0.

It is immediately clear that we have a unique solution in [0, R) x S"~1, if Q is the
ball with radius R, and it is a C'*° function there. We have to verify that it is a C*>°
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function in the original variables z!, ..., 2™. To do so we observe that (3.3.6) can be
solved in terms of formal power series

V=v9+ V1 +v2+...
where v; is homogeneous of degree j. In fact, (3.3.6) can be written
vy + 20+ +Alvg+uvr+...)=0

and gives v; = 0, 21}% + Y vl zFvl and so on, where ;7 is the first order Taylor
expansion of ;7. Now write v =vg +--- +vny_1 + w for some large N. Then w =0
when r = 0, and

ow’ |or + Z Dir? (rw)whw’ = fI(r, w)

where f = O(rV~1). This implies that w = O(r"), and since §/0z" = w,0/0r +
(Ow/0z",0/0w), where Ow/dx" is homogeneous of degree —1, it follows that w € CN 1
as a function of the original variables, the derivatives vanishing at 0. This completes
the proof of the lemma and of the theorem.

The tools introduced to prove Theorem 3.3.3 also give another useful result on the
connection between the curvature tensor and the metric tensor.

Theorem 3.3.5. Let Y. g;i(z)dxidx® be the metric form for a geodesic coordinate
system centered at 0, thus > gjr(x)z® = 2. Any derivative 3%g;,(0) can then be
expressed as a polynomial in the components of the curvature tensor and its covariant
derivatives of order < |a| — 2.

Proof. 1t suffices to prove the theorem with covariant derivatives replaced by deriva-
tives 0% with respect to the coordinates. In fact, the difference

(337) Rijkl,ozl...ozm - aozm cee 8041Rijkl

is at the origin a polynomial in derivatives of R of order < m and derivatives of the
metric tensor g of order < m since the Christoffel symbol just contains the first order
derivatives of g. If we already know that these derivatives of g can be expressed in
terms of derivatives of R of order < m — 2, it follows that (3.3.7) can be expressed in
terms of derivatives of R of order < m. By induction with respect to m we therefore
conclude that every polynomial in derivatives of R of order < m can be written as a
polynomial in covariant derivatives of R of order < m.

Thus it suffices to examine how the Taylor expansion of R determines that of g.
Since (g;;(0)) is the identity it suffices in fact to consider the inverse matrix g%/, which
is somewhat more convenient since for every t € R", regarded as a covector,

Y g7tit; =Y (ei,1)*, hence g7 = enen’.
m

Here e,, are the vector fields in the proof of Theorem 3.3.3, said to form a synchronous
frame for T'M . 1f we prove that derivatives of e,, of order < v at 0 are polynomials in
those of R of order < v — 2, the theorem will be proved.
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In the proof of Theorem 3.3.3 we saw that
(0", (Vo + 1)Viem) = R(ei, em, 0,0), thatis, (V,+1)Viem) = R'juel,a".
3.k

The operator (¢ + 1) multiplies a homogeneous function by the degree of homogeneity
plus 1. If we take the homogeneous terms of order y in the Taylor expansion we find
for p > 0 that the derivatives of order u of V;e,, at 0 are polynomials in those of R
and of e,,, of total order at most p — 1. Since the first order derivatives of e,, vanish
at 0 it follows inductively that all derivatives of e,, at 0 of order p+ 1 are polynomials
in those of R of order < p — 1, which completes the proof. Taking the first order term
in V,e,, above we also obtain

(Viem)' IZZRZm“ 2+ O(|z[?),

which gives the following result which will be needed in Section 6.10:

Theorem 3.3.6. Ifeq,..., e, is the synchronous frame, equal to the basis vectors at
the origin of a geodesic coordinate system, then

Viej = % Z Rijkl(O).’L‘kei + O(‘.’E|2),

and the same result holds for the dual frame in T* M.

Ezercise 3.3.3. Show that with the notation in Theorem 3.3.6 9 (V,e; — I'ji%e;)(0) is
symmetric in k and [. Express Y g;x(z)dz?dz® in terms of R(0) with an error O(|z|3).

Remark. For a manifold of constant curvature, the curvature tensor is a polynomial
in the metric tensor. Hence it follows inductively from Theorem 3.3.5 that we can
calculate all derivatives of the metric tensor at the origin of a geodesic system of
coordinates. If we already knew that the metric is analytic, this would give another
proof of Theorem 3.3.3, so the connection between Theorems 3.3.3 and 3.3.5 is quite
close.

Ezercise 3.3.4. Let M and N be Riemannian manifolds of the same constant curvature
K such that N is complete. Let v :[0,1] 3 ¢ — z(t) € M be a smooth arc, and let f
be an isometry of a neighborhood of z(0) on a neighborhood of some point y(0) € N.

(1) Prove that, restricting fo if necessary, one can find a smooth arc 4 : [0,1] 5 ¢ —
y(t) € N and for every t € [0, 1] an isometry f; of a neighborhood U (t) of z(t)
on a neighborhood of y(t) such that f; = f, in U(t) N U(s) for all s,t € [0, 1].

(2) Show that 4 and the germ of f; at z(1) are uniquely determined by 7 and the
germ of fy at x(0).

(3) Prove that if M is simply connected, then y(1) and the germ of f; are uniquely
determined by z(0), z(1) and fo.

(4) Deduce that if M is complete and simply connected, then fy can be extended
to a locally isometric map f: M — N, and that M is then for K > 0, K =0
or K < 0 isomorphic to a sphere, to R™, or to hyperbolic space.
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3.4. Conformal geometry. A Riemannian metric allows one to measure both
angles and distances. In some cases only the angles are interesting, so metrics differing
by a scalar factor give the same results. Also in analytical contexts where the metric
originates from the principal part of a second order differential operator, one is often
able to simplify by multiplication of the equation and therefore the metric by a non-
vanishing factor.

Definition 3.4.1. If M and | M are Riemannian manifolds with metrics g and g, then a
diffeomorphism f : M — M is said to be conformal if f*g = e2% g for some smooth .
When M = M we shall assume that f is the identity unless otherwise stated.

The two dimensional case is very special so we shall discuss it first.

Theorem 3.4.2. Fvery Riemannian manifold M of dimension 2 is locally conformal
to the flat space R2.

Proof. A metric Zik:l gjkdx’ dz* in a neighborhood of 0 in R? is conformal to the
Euclidean metric if and only if g1o = 0 and g1; = goo. This means precisely that the
one forms dx' and dx? are orthogonal and of equal pointwise norm.

Assuming that g, = §;1 + O(|]z]?), as we may, we set wy; = dz’ and

wy = (g'tda® — g*%dz')/ /91122 — (g12)2.

Then w; and wy are orthogonal and have the same norm; we — d? is O(|x|?). We can
choose a complex valued function u with u(0) # 0 such that d(u(w; + iws)) = 0, for
this means that

du A (w1 + iwz) + ud(wy + iwz) = 0,

which reduces to Ou/dz! + i0u/0x? = 0 at the origin, so it is an elliptic differential
equation. In a connected neighborhood of the origin we can now write

u(wy + iwy) = dy' + idy?

where y! and y? are real valued and dy', dy? are orthogonal and of equal norm, for dy*
and dy? are obtained from w; and wy by an orthogonal transformation and a rotation.
If we take y! and 32 as new coordinates, the metric is a multiple of the Euclidean
metric (dy')? + (dy?)?, which proves the theorem.

Remark. What we have used here is that an oriented two dimensional Riemannian
manifold has an analytic structure; we have chosen y! + iy? analytic with respect to
it.

From now on we assume that the dimension n is at least 3.
Theorem 3.4.3. If § = e2%g, then we have for the corresponding curvature tensors
(3.4.1) e *Rijui = Rijii + gaoji + ginpir — it — Gjin + (9ugjn — gingjt)|Vel?
where p;j = ¢ ,ij — 0;p0;p, calculated in terms of the metric g.

A direct verification is possible but laborious and uninteresting. We shall therefore
prepare the proof with an elementary lemma which allows us to avoid messy calcula-
tions.
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Lemma 3.4.4. If a € R" then the metric (1+ 2(x, a) + |z|?|al?)~2|dz|? in R™ is flat
except at the singularity where |a|*>x = —a # 0.

Proof. If we take y = |a|?>x + a, the metric becomes |y|~*|dy|?, and the inversion
z = y/|y|? reduces it to |dz|?, so it is flat. (See also the argument leading to (3.3.4).)

Proof of Theorem 3.4.3. 1f ¢ is a constant, the statement is obvious, so we may assume
that ¢(0) = 0. Next assume that g is the Euclidean metric in R™ and that
p(x) = pa(w) = —log(1 + 2(z,a) + |z[*|a]?) = —2(z,a) — |2[*|al* + 2(z, a)* + O(|z|*)
as for the conformal factor in Lemma 3.4.4. Then we have

vi; = 2(2a;a; — §ij|al® — 2a;a;) = —26;;|al?

and it follows at once that the right-hand side of (3.4.1) vanishes, so Theorem 3.4.3 is
valid in this case. In the general case we write o(x) = @, (x) + q(x) + O(|z|®) where
q is quadratic, and we assume that g;x(z) = 0 + Gjk(z) + O(|z|®) where Gy is a
quadratic form. Then

g = €e*?1g90 + G + 2990 + O(|z[*); go =Y (da)>.

Only the first term contributes to the Christoffel symbols fijk for the metric g at 0.
From the linearity of the formula (2.1.13)" in the second order derivatives we conclude

that R is the sum of the curvature tensor for the metric 2%« go, which is 0, the curvature
tensor R and the curvature tensor for the metric gg + 2qgo. The latter has the 75kl
component

9i10;0kq + 9;:0;019 — 9;10:0kq — 9ix0;01q
which agrees with the terms in (3.4.1) of second order in ¢. The proof is complete.

If we contract (3.4.1) in the indices jl we obtain the transformation law for the Ricci
curvature:

(3.4.2) Rit = Rir + (2 = n)pir — (O_ g"0i1 + (n = 1)|V|*)gir.
Another contraction gives the transformation rule for the scalar curvature:
(3.4.3) e2¥S =8 +2(1 —n)Ap — (n—1)(n — 2)|Vy|?,

where we have introduced the Laplace-Beltrami operator

(3.4.4) Ap = "g70;;.

With this notation we can rewrite (3.4.2) in the form

(3.4.2) Rij = Rij + (2—n)pij — (Ap + (n — 2)|Ve|) gy
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If we multiply (3.4.3) by g;;/(2 —2n) and add to (3.4.2)", we eliminate Ay and obtain
Rij+ S§ij/(2 = 2n) = Rij + Sgi;/ (2 — 2n) + (2 = n)®i5,  ®ij = i + 3|V gi;.

If we note that (3.4.1) can be written

(3.4.1) e 2 Rijii = Rijii + 9u®ik + gix®it — 9in®i1 — 9;:Pin

it follows that

20 (Eijkl n gaulik + GiuRa — ginRji — gulir  S(Gugjr — gikgjl))

n—2 (n—1)(n—2)
B gaRjr + gjxRi — gicRj — gaRir — S(gugjr — gixgji)
= Riji + -
n—2 (n—1)(n—2)

Comparison with (2.3.7)" shows that this means precisely that
(3.4.5) e 2P Wit = Wijk

for the corresponding Weyl tensors. Hence we have the following corollary to Theorem
3.4.3:

Corollary 3.4.4. Under the hypotheses of Theorem 3.4.3 we have the transformation
law (3.4.5) for the corresponding Weyl tensors.

Ezercise 3.4.1. Show that if § = €?#¢ then the corresponding covariant derivatives are
related by

VxY = VxY + (X@)V + (Y)X — (X,Y)(dp)",
where the scalar product and § are defined by the metric g.

A metric is called conformally flat if it is conformal to a flat metric. From Corollary
3.4.4 it follows at once that a necessary condition for this is that the Weyl tensor
vanishes. (When H. Weyl introduced this tensor he called it the conformal curvature
tensor. This term is still used occasionally, and the term Weyl tensor may then have a
different meaning. This is the case in Gerretsen [1], where somewhat different proofs of
the following results can be found.) We shall now examine if it is a sufficient condition
too.

If the Weyl tensor of the Riemannian manifold M with metric tensor g;; is equal to
0, then the Weyl tensor of the manifold M = M with metric tensor Gij = €*%gi; is 0

for arbitrary ¢, so the curvature tensor of M vanishes if and only if the Ricci tensor is
equal to 0, that is by (3.4.2)’
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To clarify the role of the Weyl tensor we shall discuss these equations for the vanishing
of the Ricci tensor R;; without assuming at first that W = 0. Let ® be the one form
Vo =dp = 0;pdzr’. Then the preceding equations can be written

(3.4.6) Rij+ (2= n)(®ij — ®:®;) — () g"®ry+ (n - 2)|2[*)gs; = 0.
k.l

Conversely, if we can find a one form satisfying these equations in an open set Q C M,
we obtain using (3.1.2)’

0= (I)i,j — q)j,i = (9]<I>Z — 81@]
since Fijl is symmetric in ¢, 5. Thus d® = 0 in €2, so ® = dp for some ¢ if €2 is simply

connected, and ¢ will then have the desired properties.
Contraction of (3.4.6) gives (see (3.4.3))

S+2(1—n)) ¢"®k;— (n—2)(n—1)[®]* =0,
k,l

or equivalently

2(n = 1)) g™ i+ (n—2)|2*) = 5+ (n—2)(n— 1)|®[°.
k,l

We can therefore rewrite the equations (3.4.6) in the form
(347) q)i,j = (I)Zq)] =+ Wiy — %|(I)|29ij7
wij = (Rij — Sgij/(2n = 2))/(n = 2).
Note that (2.3.7)" can be written
(3.4.9) Rijii = Wijr + wikgji — wilgjk + Wjigik — Wikgil-

If we introduce the definition ®; ; = 0;®;, — >, Fijlq)l in (3.4.7), we obtain a system
of the form (C.6) discussed in Theorem C.3 in the appendix, with ® in the role of the
y variables there. To find the Frobenius integrability condition (C.7) we should apply
Ok and subtract the equation with j and £ interchanged, and then use the equations
(3.4.6) to express the derivatives of ®. Clearly this gives the same result as if we take
the covariant derivative of (3.4.6) and use that

(3.4.10) D; ik — Pikj = Z RY 1P, .

Here the right-hand side can be expressed using (3.4.9), and we have

(I)i,jk: = CIDi7k(I)j + CIJiCIDj’k + Wij k — %gij8k|@|2.
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(3.4.6) implies ®; , = Py, ;, as already observed, and
(3.4.11) D; 1 ®; — Dy jOp = wir®; — wi; P — 5|12 (gikP; — 9i; i)
Furthermore,

(3.4.12) 1Vi|®]? = (V,@,®) = Zglmq>lkq>

= Zglm@l@k + wik — Squ|®[?) Zglmwlk<bm + 1@ |@)2.

I,m I,m

With ®” denoting the coordinates of ®%, it follows from (3.4.9) that the right-hand
side of (3.4.10) can be written

D Woiik® + gie Y wii®” = i Y win®” + win®; — wi; .

The left-hand side is
wir®; — wiPr — 5121 (gik®; — 9ijPr) + wij ke — Wik, ;
— i (Y wn® + L|0Py) + g (Y w2 + Lo e)).

After cancellation the compatibility conditions (3.4.10) therefore simplify to

(3.4.10)’ > Woin® =wijp —wik g, i jk=1...,n

If W = 0, then these conditions no longer involve ® at all, so they are necessary for
the existence of any solution at all to (3.4.6), and they imply the local existence of a
solution with given value at a point. On the other hand, if there is a solution with
Vi given at a point, then it follows that both sides of (3.4.10)" must vanish, since the
right-hand side is independent of ®, hence W = 0 and

(3.4.10)” Wij kb — Wik,j = O, i,j, k= 1, Loy

We shall now show that when n > 3 there is a second miracle: the conditions
(3.4.10)" are always fulfilled if the Weyl tensor is equal to 0. (This is not true when
n = 3 which is not surprising since the Weyl tensor is always 0 then.) In fact,

(3.4.13) (n = 3)(Wjki — wikg) = > Whhij-
l

(I owe the following calculations to Anders Melin.) First note that the definition of
the Ricci tensor and the second Bianchi identity give

Rjri — Rk 5 Z Rl Zleli,j = Z(lelj,i + Ry ) = Z Rlyiji-
I I I



CONFORMAL GEOMETRY 65

By (3.4.9) it follows that
(3.4.14)

I I
Rjki— Rikj = E W'kiji + E 9" (Wimi 19k — Wmj,19ki + Wkj,19mi — Wki,i9m;)
l Im
I ! !
= E Wik + Wiji — Wi + E WGk — E W j19ki
] ] I

for Vg = 0. Since
(3.4.8) R;; = (n— 2)&),‘]‘ + Sgij/(2n —2),
we have

Rij7l = (n - Q)Wij,l + S,l gij/(2n — 2).

If we multiply by ¢ and contract in 4, I, recalling (3.1.25), we obtain

15;=(n-2) Zwlﬂ +S5;/(2n—2), hence Zwlj,l =5;/(2n—-2).
(3.4.13) follows if we use this result and (3.4.8)" in (3.4.14), for S drops out. Hence we
have proved (3.4.13) and the following

Theorem 3.4.5. A Riemannian manifold of dimension > 3 is conformally flat if
and only if the Weyl tensor vanishes. A Riemannian manifold of dimension 3 is
conformally flat if and only if the integrability conditions (3.4.10)" are valid.

We shall finally discuss how the Laplace-Beltrami operator defined by (3.4.4) is
changed when one passes to a conformal metric. First we give an equivalent and often
more useful definition:

Proposition 3.4.6. For every u € C? we have

(3.4.15) Z g = Z g_%ﬁj (9% g dyu),
iaj Z’]
where g = det(gi;).

Proof. If u,v are in C? with support in the same coordinate patch, then
/Zg”@iuﬁjvg% dx
4,

is invariantly defined, dx denoting the Lebesgue measure in the local coordinates, for
g% dz is the invariant volume element dvol(x). Since integration by parts shows that
the integral is equal to

- /U Y 9770;(92 9" dhu) dvol()
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we conclude that the right-hand side of (3.4.15) is invariantly defined, and so is the
left-hand side. Both are equal at the center of a geodesic coordinate system, which
proves the proposition.

Exercise 3.4.2. Prove (3.4.15) by explicit computation using Exercise 2.1.1.

Denote by A the Laplace-Beltrami operator defined using the conformal metric
g = e*¥g. When n = 2 it follows from the second expression for A in (3.4.15) that A =
e 29 A; hence the harmonic functions satisfying the homogeneous Laplace-Beltrami
equation are the same for two conformal metrics. This is not true when n > 2, but we
shall now prove a substitute result in that case. With a constant a to be chosen later
we have

Ale™Pu) = e 0972 ) 03(e" Pz g O (e Pu))
= VP (Au+ (n — 2+ 20) Zgjkﬁjgo@ku) + Fu,

where F' does not depend on u. Now we choose a = 1 — 5 so that the first order terms

disappear. If the formula is applied with © = e~ ¥, it follows that
F = 0VPA() = o 2(a%Vl? — adp);
the last equality is justified using geodesic coordinates. By (3.4.3) we have
a|Vol* — Ap = (2~ n)|Vel* - 2A¢) = (75 — 5)/(2n - 2),
so we have since —a/(2n — 2) = (n — 2)/(4n — 4)

A(e™u) = el D9(Au+ (n — 2)/(4n — 4)(e29S — S)u), or

S(n—2) )(eP2m™/2y) = o= HD/2(A S(n — 2))
dn — 14 dn — 14

The operator A — S(n —2)/(4n —4) is called the conformal Laplacian. The transfor-
mation law (3.4.16) makes it easy to pass from solutions for one metric to solutions for
another conformal one. Note that in a flat space, where S = 0, the conformal Laplacian
is the standard Laplacian, so we shall be able to study its solutions by studying the
conformal Laplacian in a conformally equivalent situation. In the Euclidean case one
may for example use the stereographic projection to obtain a compact situation. The
applications are perhaps even more striking in pseudo-Riemannian geometry where a
related conformal map can be used to map Minkowski space into a bounded part of
the Einstein universe, but that will not be discussed in the present notes.

If S is prescribed, then (3.4.3) is a non-linear elliptic equation for ¢ which can be
solved locally without difficulty. Thus there always exists locally a conformal metric
with zero scalar curvature. The corresponding global questions are very hard, however.
The Yamabe problem to find for a given compact Riemannian manifold a conformal
metric with constant scalar curvature was not completely solved until 1984, when R.
Schoen cleared up the hardest exceptional cases. We hope to return to this in another
chapter.

(3.4.16) (A —
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3.5. The curvature of a submanifold. Chapter II was restricted to the study of
submanifolds M of R¥, but in this chapter we have extended all results given there on
the interior geometry of M to abstract Riemannian manifolds. We shall now extend
the results related to the embedding in RY also by discussing submanifolds of a general
Riemannian manifold.

Let M be a Riemannian manifold and let M be a smooth submanifold. We shall
denote the covariant differentiations in M and in M by V and V respectively.

Theorem 3.5.1. If X and Y are vector fields in M then

(3.5.1) VxY —VxY = h(X,Y),

where h is a symmetric bilinear form in Ty M with values in the normal plane Ny M =
T.M ST, M for everyx € M.

Proof. The theorem states in particular that T%XY = VxY if 7 is the map TM|M —
TM defined by orthogonal projection in each fiber. We begin by proving this weaker
result. To do so we note that the identities (3.1.3), (3.1.4) for V show that if X,Y, 7
are vector fields in M, then we have there

TVxY —7Vy X = 7[X,Y] = [X,Y],
(TV2X,Y) + (X, 7VzY) = (VzX,Y) + (X,VzY) = Z(X,Y),

hence 7V xY = VxY by the uniqueness statement in Theorem 3.1.2.
From (3.1.3) applied to V and V we obtain

VxY —VxY =VyX +[X,Y] - VyX — [X,Y] = Vy X — Vy X,

which proves that the left-hand side of (3.5.1) is symmetric in X and Y. If ¢ € C§°
then

Vx (YY) = Vx(©Y) = Voy X — Voy X = o(Vy X — Vy X) = o(VxY — VxY).
Hence the left-hand side of (3.5.1) at z € M is a symmetric bilinear form in X (z) and

Y (x), with values in N, (M), which completes the proof.

Definition 3.5.2. The symmetric bilinear map h in T, M with values in N, M defined
by (3.5.1) is called the second fundamental form of M with respect to M.

In the particular case where M = RY Theorem 3.1.5 gives back the expression
(2.1.11) for the covariant derivative. We shall now also give an extension of the Gauss
equations (2.1.13), (2.1.15). Let X,Y, Z, W be vector fields in M. By (3.1.6) we have

(VxVy = VyVx — Vixy))Z W) = R(W, Z, X,Y),
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where R is the Riemann curvature tensor of M, and we have a similar formula with V

and R replaced by V and R. (We can extend X,Y, Z, W to vector fields on M , but on
M the result is independent of the extension.) By Theorem 3.5.1 we have

(VxVyZ,W) = (VxVyZ, W) = (VxVy Z,W) = (Vxh(Y, 2), W).
Since (h(Y,Z),W) =0 on M, it follows from (3.1.4) and Theorem 3.5.1 that
~(Vxh(Y, 2),W) = (h(Y, Z), VxW) = ((Y. Z), (X, W)).

Hence o
(VvaZ, W) = (vayZ, W) + (h(Y, Z),h(X, W)),

and since (Vix y] — ﬁ[X’yDZ is a normal vector, we obtain

RW,Z, X,)Y)=RW,Z,X,Y)+ (h(Y, Z),h(X, W)) - (h(X, Z),h(Y, W)),

which proves the following extension of the Gauss equations (2.1.13), (2.1.15):

Theorem 3.5.3. If M is a smooth submanifold of a Riemannian manifold M, with
Riemann curvature tensors R and R, respectively, and tq,ts,ts,t4 € T M, then

(352) R(t17 ta, 3, t4) = R(t17 ta, 3, t4) + (h(t17 t3)7 h(t27 t4)) - (h'<t17 t4)7 h(t27 t3))7

where h is the second fundamental form of M with respect to M.



CHAPTER IV

EXTERIOR DIFFERENTIAL CALCULUS
IN RIEMANNIAN GEOMETRY

Summary. Chapters II and III have been based on the tensor calculus of Ricci. We
shall now discuss an alternative approach due to E. Cartan using the calculus of exterior
differential forms and moving orthogonal frames systematically. In Section 4.1 we recon-
sider the study in Chapter II of submanifolds of Euclidean space, and in Section 4.2 we
discuss abstract Riemannian manifolds, as in Chapter III. Using the tools developed we
then return to the Gauss-Bonnet theorem in Section 4.3 and prove its analogue in higher
dimensions following S. S. Chern. Pontrjagin classes are then defined in Section 4.4.

4.1. Submanifolds of a Euclidean space. In the proof of the Gauss-Bonnet the-
orem (Theorem 3.1.6) we have seen a convincing example of the usefulness of working
with arbitrary orthonormal frames in the tangent bundle of a Riemannian manifold.
We shall now use such methods also to study submanifolds of a Euclidean vector space
V', of dimension N. Let F;(V') be the set of all orthonormal frames ey,...,ex € V. If

we choose a fixed frame (€Y,...,e%) € Fy(V), then any other orthonormal frame can
be written uniquely in the form OeY, ..., OeQ; where O € O(N), the orthogonal group.
(See Section 1.4.) Another choice of €, ..., eQ; gives an identification with O(/N) which

only differs by a right translation in O(N); in particular we see that Fy(V') is a C*
(in fact real analytic) manifold.
In Fy(V) we have N functions

ej : Fo(V) > (er,...,en) —e; € V.

The differential de; is a linear form on the tangent space of Fy(V') with values in V/,
so it can be written

N
(4.1.1) dej = Zwkjek,
k=1

where wj, = (ex, de;) are scalar one forms on Fy(V'). Since

0 = d(ej,ex) = (dej, ex) + (ej, dey),

we have
(4.1.2) wjr +wgj =0, g, k=1,...,N.
Since
N N N N
0= d26j = Z(dwkj)ek — Zwkj Adey = Z(dwkj)ek — Z wij N\ W€k,
k=1 k=1 k=1 k=1

69
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we obtain

N
(4.1.3) dwpj + Y wp Awy =0, jk=1,... N
=1

The equations (4.1.2), (4.1.3) are of course just another way of writing the results of
Section 1.4 such as (1.4.1).

If W C V is a subspace of dimension n, the set of orthonormal frames in Fy(V)
such that eq,...,e, € W, hence e,4+1,...,ex € W+, is a submanifold Fo(V, W) which
we can identify with the group O(n) x O(N —n). It is clear that the restriction of the
form w;; above to Fy(V, W) vanishes if j < n and k¥ > n. When j < n and k < n,
it is equal to the analogous form on Fy(W) pulled back to Fo(V, W) by the obvious
surjective map Fo(V, W) — Fy(W).

Now let M be a C°° submanifold of V', of dimension n, and set

(4.1.4) F,=F(WV,T,M), xecM,

which is the set of orthonormal frames at x such that ey, ..., e, span the tangent space
T,.M while e,,+1,...,exn span the normal space. We shall use the notation «, 3, ... for
indices running from 1 to n, the notation r, s, ... for indices running from n+1,..., N,

and A, B, ... for indices running from 1 to N. It is clear that F(M) = Ugen{x} X Fy,
as a subset of M x Fy(V) is a C fiber space over M. Composing the projection
p: F(M) — M with the embedding M — V we get a map F(M) — V, which we also
denote by p. In addition we have N maps ey : F(M) — V. Since the range of the
differential dp at a point in F} is equal to T, M, we can write

(4.1.5) dp = Zwaea,
a=1

and we have as in (4.1.1), (4.1.2)

N

(4.1.6) deA:ZwBAeB, A=1,...,N,
B=1

(4.1.7) wap +wpa=0, A B=1,... N.

Here w, and wap are scalar differential forms on F'(M). From (4.1.5) we obtain

O:d2p:Zdwa I Zwa/\dea—Zdwa €o Zwa/\wBQeB

or if we separate components with indices < n and > n:

(4.1.8) dwa—l—Zw,@/\wﬁa:O, a=1,...,n,
B=1

(4.1.9) > WaAwer =0, r=n+1,...,N.
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Differentiation of (4.1.6) gives

0= Z(deA)eB — ZWC’A ANdec = Z(deA)GB + ZWBC Nweoaen,

hence
N

(4.1.10) deA-l-Zch/\wCA:O, A B=1,...,N.
C=1

In particular,

(4.1.11)
dwap + ZWO"V Nwyg =Qap, a,f=1,...,n, where
y=1
N
(4.1.12) Qop = — Z War Nwrg, o,B=1,...,n.
r=n-+1
The restriction of w, to a fiber F) is equal to 0 for « = 1,...,n, since p is constant

in F,., and since p is surjective these forms are at every point in F}. a basis for covectors
orthogonal to F,. Now the restriction of w,, to a fiber F, must vanish, for when x is
fixed we have the situation discussed for Fy(V, W) above. Hence we can write

n
War = Z /\rozﬁwﬁ
B=1

with uniquely determined coefficients A\,og € C°(F(M)). Here Arop = Arga according
to (4.1.9). Hence

N N n
Qaﬁ = Z War N Wpar = Z Z )\rozg)\r,b’awg N We
r=n-+1 r=n+1 p,0=1

is also a form with vanishing restriction to the fibers. The forms wq, wag and Qug,
a,8 =1,...,n, can be obtained by pulling back forms to F(M) from the fiber space
P(M) over M with fiber at x consisting of the orthonormal frames in 7, M, for the
definitions above are already applicable in P(M) without reference to the normal
vectors.

To clarify the meaning of the preceding equations we shall express them in terms
of our earlier notation. Thus consider a subset of M with a local parametrization
x +— f(x), where x varies in an open subset of R™. We can consider the coordinates
xl, ..., 2™ as functions on M and lift them to F/(M). With the notation f, = df/0z,
which is a vector field on M, we then obtain

n

dp = Z fa(x)dxP = Zwaea, thus w, = Z(fg,ea)dxﬁ.
B=1 a=1 B=1
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Here dx? is a differential form on M pulled back to F(M), and the coefficients are
functions on F'(M). Let s be a local section of F(M) and set s*e, = E,. Then we

have
n n

$*wga = (dEq, Eg) = Y (0E,/0x', Eg)da’ = (Vy,Ea, Eg)da’

i=1 i=1

By the product rule (3.1.4) for V and (3.1.6) we obtain

S*dwﬁa = ds*wga = Z ((ij vfian Eﬁ) + (VfiEa, ijEg))dSCj A dzt
=1 (V4 Vs, = V3, V) Ea, Eg)dz’ Nda' + (Vy,Ea, E,)(Vy, Eg, Ey)da! Ada'

= % Z R(E, Eg, fi, fj)dl'j Adx' + s* Zwm A Wgn .

If we compare this result with (4.1.11), it follows that

(4.1.13) Qup = % Z R(ea,eg,fi,fj)dxi Adx? .

1,j=1

If we use that dp = Y fidz* = > w-e,, and evaluate (4.1.13) on a pair of tangent
vectors, we conclude that

n

(4.1.13) Qup = % Z R(eq, e, ey, es5)wy A ws.
v,0=1

Thus the forms €),g contain exactly the same information as the Riemann curvature
tensor. From (4.1.13)" we also see again that Q,p is a linear combination with co-
efficients in C*°(P(M)) of forms pulled back from M to P(M). By the expression
(2.1.13)’ for the curvature tensor it also follows that 2,4 is independent of the imbed-
ding of M. In Section 4.2 we shall give an independent proof of that by reconsidering
the preceding formulas for an abstract Riemannian manifold.

We shall now also calculate the forms w,,. With the same notation as above and
(2.1.5), we have

$*Wra = (dBa, Er) = (0Eq/027,E,)dz’ =Y (h(f;, Ea), E,)da’
Z (Es, Ey), Er)s*wgs,
B

since dp = Y fjdz? =" egws. Hence we obtain

n

(4.1.14) Wro = Z(h(eg,ea),er)wm a=1,...,n,r=n+1,...,N.
p=1
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Using (4.1.12) we therefore obtain

(4.1.15) Qop = war Awgr = Y _(hley,eq), hles, ep))ws Aws,
r=1 ¥,0

which in view of (4.1.13) shows that (4.1.12) is equivalent to the Gauss equations.

We shall finally express the degree of the Gauss mapping for a hypersurface in terms
of differential forms (see (3.1.23)). Thus consider a compact oriented hypersurface
M C R™"1. We can then restrict ourselves to positively oriented frames in F'(M) such
that e,+1 has the positive normal direction. The product

(4.1.16) W1,n+1 VANCIERIVAN Wn,n+1

is the pullback to F'(M) of a differential form of degree n on M. It is clear that it
is locally equal to such a form multiplied by a function on F(M), so we just have to
show that it does not change if we replace e, by Zgzl Oga€g, & = 1,...,n, where
O € SO(n). An easy calculation which we leave as an exercise shows that (4.1.16) is
just multiplied by the determinant of O, which is equal to 1. To compute (4.1.16) we
may therefore choose eq, ..., e, as directions of principal curvature, which means that

Wa,n+1 = (den—l—l,ea) = —NqWe

where K, are the principal curvatures. Hence (4.1.16) is equal to (—1)"Kw where
K = H? K, is the total curvature and w = w; A -+ A w,, is the volume form on M
(pulled back to F'(M)). If D is the degree of the reflected Gauss map ¥, we obtain in
view of (3.1.23)

Dvol(S™) = (—1)”/ W41 A A Wnontt
M

B (_1>n/ Zeil‘winwilan‘i‘l A '.'/\winan‘i‘l/n!
M

where ¢;,. ;. is +1 for even and —1 for odd permutations of 1,...,n and 0 otherwise.
(The integrands here and below should be read as the forms on M which pull back to
them.) If n is even we can pair the factors using the Gauss equations (4.1.12), which
gives

(4.1.17) Dvol(S™) = (-1)* / Zgil...ithiz AN Qigig N ANy, [
M

The forms in the right-hand side are well defined for any abstract Riemannian manifold,
and we shall take (4.1.17) as our starting point when generalizing the Gauss-Bonnet
theorem to higher dimensions.
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4.2. Abstract Riemannian manifolds. In this section M will denote a general
abstract C'* Riemannian manifold of dimension n. The fiber bundle P(M) over M
with fiber P, at x € M consisting of orthonormal frames for T, M is still well defined.
We denote the projection P(M) — M by p. In a neighborhood U of any point in
M we can choose a C* orthonormal basis for TU and use it to identify P(U) with
UxO(n). Fori=1,...,n we have C*° maps e; : P(M) — T'(M) mapping an element
in P(M) to the ith element in the frame, in the tangent space at the base point. We
denote by w; the one forms on P(M) which vanish on the fibers such that

(4.2.1) dp =7 wje;.
1

(Since all indices run from 1 to n now, we shall often omit the range.) We shall now
extend (4.1.8).

Theorem 4.2.1. There are uniquely determined one forms w;; on P(M), i,j =
1,...,n, such that

(4.2.2) wij Fwi =0, dwj+ Y wpAwg; =0, i,j=1,...n
k=1

Proof. Uniqueness. Let @;; be forms with
Cz)ij —l—(:inIO, Zwk/\@kj =0.

Since wq,...,w, are linearly independent at every point, it follows if we extend to a
basis for T*P(M) at a point that wy; must be a linear combination of wy, ..., w,, that
is,

(:)k:j = E )\kjiwi, where >\kji - )\ijkz =0.
Since also Apj; = —Ajr; by assumption, we obtain
Nijk = —Njik = —Akij,

so a circular permutation of the indices changes the sign. After three circular permu-
tations we conclude that A;j, = 0.

Ezxistence. In view of the uniqueness it suffices to prove existence locally, so we may
assume that M is an open subset of R™, with coordinates denoted by (x!,...,2™), and
we identify the tangent space of R™ with R". Since

dp = (dx*, ..., dz") = ijej,

where p is a function with values in R", we obtain

Z(dwj)ej - ij Nde;j =0, thatis, dw; = Zwk A (deg, e;).
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(The scalar product is of course taken in the Riemannian metric.) The restriction of
(deg, e;) to a fiber of P(M) is antisymmetric in j and k, so we can find one forms By
which are also antisymmetric in j, k such that (dey,e;) + Bj, vanishes on the fibers.
Then we obtain

dw; = Z B N\ wp + Z Aijkw]' N\ Wi
where A;j), is antisymmetric in j and k. Now set
wki = Bik + Z(Akij + Aijk + Ajir)w;.-
J

Since
Apij + Aije + Aikj + Agji = 0

it follows that w;x is antisymmetric in its indices, and

Zwi N Wg; = Zwi N (Bik + ZAMjwj) = dwy,

J

because A;;;, + Aji is symmetric in ¢ and j. This proves the existence.

Ezxercise 4.2.1. Show that for every section s of P(M) we have
s*w; = —(Vs¥ey, s"e;) = (Vsej, s™ex),

and that this determines wy; uniquely.
Next we shall extend (4.1.11) and (4.1.13)":

Theorem 4.2.2. If w; and wj, are the forms on P(M) defined in Theorem 4.2.1,
then the two forms

(4.2.3) Qir :dwik—i-Zwij/\wjk, Lk=1,...,n,
j=1

are antisymmetric in the indices i and k, we have
n
(4.2.4) > Qi Awr=0, i=1,...n,
k=1
and there are C* functions R;j,, on P(M) such that
(425) Qi = % Z Rikjle ANwy, t,k=1,...,n.

l,j=1

Rijr is antisymmetric in 1,5 and in k, 1.
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Proof. Exterior differentiation of the second part of (4.2.2) gives
0= Zdek N wg — ijk A dwy, = Z(dw]'k + iji /\wik) Nwg = ZQ]k N Wg.

This proves (4.2.4). From the discussion of vector spaces at the beginning of Section
4.1 we know that the restriction of €2;;; to any fiber must vanish. (See (4.1.3).) We can

therefore write
Qi = Z Qikj ANwj + % Z Rikﬂw]‘ N wy.

Here R;yj; are C*° functions on P(M) and 6;;; are linear combinations with such
coefficients of forms extending wy, .. .,w, to a basis for one forms at a point in P(M).
The forms 6;; are skew symmetric in ¢ and £ since 2;, are and 6;;; is unique. By
(4.2.4) we must have

Zeik]‘ Nwg ANwj = 0

k,j

and we can conclude that 6;;; are skew symmetric in £, j. Recalling the first part of
the proof of Theorem 4.2.1 we can therefore conclude that 6;,; = 0. Hence we obtain
(4.2.5), where the coefficients are uniquely determined if we require skew symmetry in
j,1. The proof is complete.

If we enter the expression (4.2.5) in (4.2.4) we find that
Ripkjn =0,

where the notation means summation over the circular permutations of k,j,l. In
view of (4.1.13)" we can identify R;jr; with the Riemann curvature tensor, expressed
in the basis eq,...,e, corresponding to a point in P(M), so this is again the first
Bianchi identity (2.3.4). To derive the second Bianchi identity we take the exterior
differential of (4.2.3) and eliminate dw;; and dwj;;, using the same equation. Two sums
> wi Awyj Awyy cancel and we obtain

(426) dS, — Z Qij NWwijk + Zwij N ij =0.
=1 =1

To show that this is equivalent to the second Bianchi identity (3.1.24) we choose a
system of geodesic coordinates x', ..., 2™ with center at a given point. By Lemma 3.3.4
there are unique orthonormal vector fields Ey,. .., E, near 0 such that E; = 0/ OxJ at
the origin and the covariant derivative along the radial vector field vanishes. Thus we
obtain a section s of P(M) which we can use to pull back (4.2.6) from P(M) to M.
By Lemma 3.3.4 the first order derivatives of E; vanish at 0, and since the forms s*w;
are biorthogonal, their first derivatives also vanish at 0. Hence it follows from (4.2.2)
that ) s*w;; A s*w; =0 at 0. Since s*w;; is skew symmetric in ¢, j, it follows (see the
proof of uniqueness in Theorem 4.2.1) that s*w;; = 0 at 0, so (4.2.6) gives ds*Q;;, = 0.
By (4.2.5) we have

s Qg = %ZR(Ei,Ek,Ej,El)S*wj VAN S*wl,
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where R is the Riemann curvature tensor, so we obtain
Z OR;iji/0x"dx" N de? Ndz!t =0

at the origin, if we recall that the derivatives of s*w; and F; vanish there. At the center
of a geodesic coordinate system the Christoffel symbols vanish so covariant derivatives
are equal to the corresponding partial derivatives, and we obtain

Rk, = 0,

which is the second Bianchi identity (3.1.24).

Summing up, the equations (4.2.1), (4.2.2), (4.2.3) define the one forms w;, w;; and
the two forms €;; on P(M) uniquely. The equations (4.2.4) and (4.2.6) expressing the
first and the second Bianchi identity are valid, and the curvature forms €2;; have the
form (4.2.5) where R denotes the components of the Riemann curvature tensor in the
moving frame in P(M).

4.3. The Gauss-Bonnet theorem in higher dimensions. In Section 3.1 we
proved the Gauss-Bonnet theorem by showing that the curvature form in the right-
hand side of (3.1.21) lifted to the sphere (circle) bundle is exact. In this section
we shall prove a similar result for the form suggested by (4.1.17). Thus let M be
a compact oriented Riemannian manifold of even dimension n, let Py (M) be the
positively oriented part of the frame bundle, and let S(M) be the unit sphere bundle
{(z,e);x € M,e € T,M,(e,e) = 1}. We can regard P, (M) as a fiber space over
S(M) with the projection (eq,...,e,) +— e,. Indices running from 1 to n — 1 will
be denoted by «, 5. The restrictions of the differential forms w,, to the fibers of
P.(M) — S(M) are equal to 0 by the discussion of Fy(V, W) in Section 4.1, with
V =T,M and W = Re,,. We can therefore regard them as linear combinations with
coefficients depending on e, ..., e,_1 of forms lifted from S(M). The same is true for
Q in view of (4.2.5). If a linear combination of products of these forms is invariant
under SO(n — 1) operating on ey, ..., e,_1, it follows that it is the pullback of a form

on S(M).

Lemma 4.3.1. If the pullback F of a form f on S(M) to Py(M) can be written
F = Z”_ﬁlzl Wap A Fop, then it is equal to 0.

«

Proof. We may assume that a < 8 in the sum. The restriction of these forms wq.gs
to a fiber of P(M) — S(M) are linearly independent (cf. Section 1.4). If 7 is the
projection P(M) — S(M) we can therefore for every tangent vector ¢t of S(M) find
a unique tangent vector 7 of P(M) such that n'7 =t and wap(7) =0, @ < B. Since
the multilinear form F' vanishes on the linear space of such tangent vectors at any
p € P(M), it follows that f vanishes on the tangent space of S(M) at 7(q), which
proves the lemma.

The form we wish to integrate is the one in (4.1.17):

(431) AO = Zsil---ingillé /\Qigi4 A A

tn—1%n "
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We shall first verify that it is the pullback of a form on M. Since (4.2.5) shows that Ag
is a linear combination with coefficients in C*°(P(M)) of pullbacks of forms on M, it
suffices to show that A is invariant under the map of P(M) into itself replacing a frame
e1,...,en by €, = > .O;pe; where O € SO(n) is constant. Since ) wrer = Y wy.e},
we have w; = Y O;xwj, then, hence

/ / / /
dw; = E Oikdwk = — E Oikwkl ANwp = — E Oikwkl A WjOjl,
k k,l 3k,
/ /
50 Wij = E Oikojlwkla Qij = E Oikolekb
k,l k,l

and we obtain

! /
Ao = Z €iy.in Qi - 'OianQJuz A an 1Jn "

The sum over 71,...,%, of the coefficients is the determinant of n columns in the
orthogonal matrix O; and since O € SO(n) it follows that it is equal to €5, ;,. This
proves the invariance of Ay, so it is the pullback to P(M) of a form of degree n on M,
which we also denote by Ag. Hence it is a closed form.

In the same way we verify for k < § — 1 that the n — 1 form

(4-3-2> Q) = Zgal...ozn—lQaloQ ARERRA Qa2k—1a2k N Wazpq1n N ANWa,_in

is the pullback to P(M) of a form on S(M). It suffices to note that a rotation of the
first n — 1 elements in a frame to e/, = > Opaep keeping e, = e}, transforms Q,p as
in the discussion of Ay above while w,, = ZOaﬁwlgn- We leave the details of the
repetition of the argument as an exercise and form the differential of ®;. We claim
that

(4.3.3) dk =k €aranQaras A AdQay, yan, AWagyyin A AWay,_in
+(n_2k_ 1) Z€a1man—1Qa1O¢2 AN '/\Qa2k710¢2k /\dwazk+1n/\wa2k+2n/\' “NWa, _in-

Here we have used that there will be no change of sign in terms where d acts on a factor
Q). Differential forms of even degree commute, so the differential of such a factor can be
moved to the right of the others without any sign change, and this corresponds to an
even number of inversions of the indices a;;. Thus we obtain k identical contributions
when differentiating on the ) factors. When the factor wa,,  ;» is differentiated we
obtain a sign factor (—1)7~! which is compensated by j — 1 inversions if it is moved
to the left of the other factors w, so we get n — 2k — 1 identical contributions of this
kind, which proves (4.3.3).
We shall now calculate the right-hand side of (4.3.3) using that

anﬁ = Z Qoz] A wig — Zwaj N QJﬁ’

dwan = g Waj N\ Win-
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In view of Lemma 4.3.1 we may omit terms containing a factor w,s when simplifying
(4.3.3), so we may replace dQ3 by Qan Awng —wan Ang = —Qan Awgn + Qsn Awan
and dwan by Qarn. To handle the first sum in (4.3.3) we now introduce for 0 < k < 4
the n forms

(4.3.4)

Uy = Q(k + 1) Z€a1man—1Qa1O¢2 ARRRA Qa2k710¢2k A Qa2k+1n A Wasktan N NWa, n-

As for the forms @y, one verifies at once that they are forms on S(M) pulled back to
P(M). In view of Lemma 4.3.1 we obtain

(4.3.5) A%, = U1 — ((n— 2k — 1)/(2k + 2)) ¥y,

for the difference between the two sides is the pullback to P(M) of a form on S(M),
and every term contains a factor weg. For k = 0 we must interpret ¥_; as 0, for then
there are no factors €2 to differentiate.

When k£ = p — 1 where p = § (recall that n is even) we obtain
\ij—l = nzgal...an,lgalag JAERWAN Qan,ln = AO:
so we can write A as a differential by successive elimination of ¥y, k = p—1,p—2,...,0

using (4.3.5). This gives

(4.3.6) Ag=dd, &= i(—l)l’—’f@k 1:[ (25 +2)/(n —2j —1)).
k=0 j=k

Using (4.3.6) instead of (3.1.21) we can now proceed as in the proof of Theorem
3.1.7. Choose f € C°°(M) with only non-degenerate critical points, and let F =
(df)* = grad f be the corresponding vector field. We recall that

I'={(z, F(x)/|[F(x)[]); F(z) # 0} € S(M),

is a manifold with boundary OI' consisting of the fibers S, over the finitely many
critical points of f, with positive or negative orientation when the sign of the Hessian
of f at x is negative or positive, respectively. The integral of Ay over M is equal to the
integral over I' of the pullback to S(M), which by Stokes’ formula and (4.3.6) is equal
to the sum of the integrals of ® over S, (M) when f’(z) = 0. Since the restriction of
Qap to Sz(M) is equal to 0, we only get contributions from @,

(—1)P /Sm(M) ® =27pl/(2p — D /Sx(M) ®o = —(27p!/(2p — D) (n — 1)lwol ("7 1)

by the calculation which led to (4.1.17). As in (4.1.17) we shall divide by nlvol(S™).
Note that if B™ is the unit ball in R" then

1
vol(S")/vol(S"_l) =((n+ 1)/n)vol(B"+1)/vol(B") =(n+ 1)/n/ (1-— tQ)% dt

—1

—_

=(n+ 1)/n/ (1-9)%s2ds = (2p+ 1)l (p+ 1)I(3)/(2pL(p + 3))

=(2p+1)p!/(2p5...(p+3)) =2"(p — 1)}/ (2p — DL
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This gives
(—1)p/(nlvol(5”))/ o= 1.
Sz (M)
Here S, (M) has been oriented so that ey, ..., e,_1 is a positively oriented frame in the
tangent space at e, € S,(M) if e1,...,e,_1, ey, is positively, that is, e,, e1,...,e,_1

is negatively oriented, so the sphere has been oriented as the boundary of its exterior.
Hence we obtain

(4.3.7) (—=1)?/(nlvol(S™)) /M No=3% ) e
/

where €, is the sign of the Hessian of f at . (We can check the sign by noting that
for M = S™, embedded in R™*! as the unit sphere, the right-hand side is equal to 1 if
f is one of the coordinates in R™*!, so the sign agrees with (4.1.17).) Using a method
of Chern we have now proved the following extension due to Allendoerfer, Fenchel and
Weil of the Gauss-Bonnet theorem:

Theorem 4.3.2. If M is a compact oriented Riemannian manifold of even dimension
n = 2p, then (4.3.7) is valid with Ay denoting the form on M with pullback to P(M)
defined by (4.3.1) and any f € C°°(M) with only non-degenerate critical points, €,
denoting the sign of the Hessian at a critical point x.

As observed after Theorem 3.1.7 we could also replace (df )* by any C°° vector field F
with only non-degenerate zeros, with the sum taken over the zeros of F' and ¢, defined
as the index of the zero. The right-hand side of (4.3.7) is the Euler characteristic of
M, which we cannot define until Chapter VI though. Without having this concept
available we can still remark that the right-hand side is completely independent of the
Riemannian metric, so the integral in (4.3.7) can only depend on the differentiable
structure of M.

4.4. Pontrjagin forms and classes. The proof that the form A defined by (4.3.1)
is the pullback of a form on M suggests the definition of other forms on P(M) with
the invariance properties which guarantees that they are such pullbacks. The most
important ones come from the determinant
(441) det(éij + AQij)Z]’:l?
where A is an indeterminate. The determinant is well defined since differential forms
of even order commute. If as in the discussion of Ay we make a rotation of P(M)
with O € O(n), then ;; is replaced by Zk,l OO, which means that (4.4.1) is
multiplied by the square of det O, which is equal to 1. This proves that the coefficient
of any power of X in (4.4.1) is the pullback to P(M) of a form in M. (Note that we
have not assumed here that M is oriented.) We can write the coefficient of \* in the
form

I
(4.4.2) ngn (J) Qigju N A Qi K
1,J
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where I = (i1,...,1,) and J = (j1,..., jk) are sequences of k different indices between
1 and n, and sgn (ﬁ) is defined as 0 if they are not permutations of each other and
as the sign of the permutation otherwise. The sum (4.4.2) is equal to 0 if k is odd,
for if we exchange I and J then sgn ({,) does not change but the following differential
forms are multiplied by —1. It follows from the Bianchi identities (4.2.6) that the forms
(4.4.2) are closed. In fact, since the restrictions of the forms wjx, j < k, to the fibers
of P(M) are linearly independent, an obvious analogue of Lemma 4.3.1 shows that we
may calculate the differential as if d€);, were equal to 0. With a normalization which
will be explained later on, we introduce:

Definition 4.4.1. The Pontrjagin form Pj of a Riemannian manifold M is the form on
M of degree 4k which pulled back to the frame bundle P(M) is the term of degree 4k
in det(d;; + Q;;/2m) where Q;; are the curvature forms (4.2.3). Thus P} is given by
(4.4.2) with k replaced by 2k, divided by (27)?*. The de Rham cohomology class of
the closed form Py is called the Pontrjagin class of M.

The definition of the Pontrjagin form depends heavily on the Riemannian metric,
but we shall now prove that the Pontrjagin class is independent of it. On any C*
manifold one can define a Riemannian metric by ) ¢;g; where {¢;} is a partition of
unity subordinate to a covering with coordinate patches and g; is the Euclidean metric
in the local coordinates. Thus the Pontrjagin classes are well defined on arbitrary
compact C'*° manifolds.

Theorem 4.4.2. If My and M, are Riemannian manifolds with metrics g1 and ga,
respectively, and if My x My is given the metric g1 + ga, then the sum > PM of the
Pontrjagin forms of M is equal to p; ZPéWl A D5 ZP,?@, where p; is the projection
M, x My — M;. The Pontrjagin class of a differentiable manifold is independent of
the metric.

Proof. On P(M) x P(Ms) C P(M; x My) it is clear that the matrices w;; and Q;j,
are block matrices (S 2) where the diagonal entries are the corresponding matrices
for My and Mo, lifted to P(M; x Ms). This proves the first statement. Now denote by
M a C'*° manifold with two different metrics go and g;. Choose an increasing function
x € C°(R) with y =0 in (—o00,1/3) and x = 1 in (2/3,00). On M x R we introduce
the metric

9= x()g1 + (1 = x(t))go + (dt)?,

where t is the coordinate in R. From the first part of the proof it follows that on
M x (—00,1/3) (resp. M x (2/3,00)) the Pontrjagin forms P, on M x R are equal to
the Pontrjagin forms Py (resp. P}) of (M, go) (resp. (M, g1)) pulled back to M x R.
If

it(x) = (x,t) € M xR, x €M, teR,

then P} = if Py, t = 0,1. Since iy and i; are homotopic and P is closed, it follows
that PY and P! are in the same cohomology class. The proof is complete.
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CHAPTER V

CONNECTIONS, CURVATURES AND CHERN CLASSES

Summary. This chapter is not restricted to Riemannian geometry but rather a discus-
sion of analogues for a general vector bundle of the study in Chapters III and IV of the
tangent bundle of a Riemannian manifold. In Section 5.1 we introduce connections as
differential operators on sections of a vector bundle and define the curvature as in Section
3.1. We also give an analogue of the arguments in Chapter IV using exterior differential
forms, for this is essential in Section 5.2 when we define Chern classes, generalizing the
Pontrjagin classes in Section 4.4. A brief introduction to Lie groups is given in Section 5.3
in preparation for a study of principal bundles and associated vector bundles in Section
5.4.

5.1. Connections in vector bundles. The essential point in the expression for
the Riemann curvature tensor in (3.1.6) was the covariant differentiation V. Recall
that for a vector field uw on M, that is, a section of the tangent bundle TM, Vu is a
section of T*M ® T'M such that for p € C°(M)

(5.1.1) V(pu) = oVu + (dp) ® u,

and u — Vu is a linear operator. Here T'M can be replaced by any other vector bundle:

Definition 5.1.1. Let M be a C'°° manifold and E a C"*° vector bundle over M. Then
a linear map V : C° (M, E) — C®°(M,T*M ® FE) is called a connection if (5.1.1) is
valid for u € C*°(M, E) and ¢ € C*(M).

In this definition E' may be a real or a complex vector bundle provided that ¢ is
in the same category. From (5.1.1) it follows at once that Vu = 0 in a neighborhood
of z if u = 0 in a neighborhood of x, for we can then choose p € C*°(M) equal to 0
in a neighborhood of = so that u = pu. Thus V is a local operator. If ey,...,exy €
C>° (M, E) form a basis in E, for all x in an open set w C M, then

VO e =Y @iVe; + Y dp; .

which proves that V is a first order differential operator.

To put Definition 5.1.1 in the right context we digress to discuss linear differential
operators between sections of vector bundles. If M is a C'°° manifold and F, F' two
vector bundles over M, then a linear map P : C*°(M, E) — C°°(M, F) from sections
of E to sections of F' is a differential operator if supp Pu C suppu for all u. By a
theorem of Peetre this means that if ', ..., 2" are local coordinates in an open subset
w of M where E is identified with w x RY and F is identified with w x RY', then P
is given by a matrix of partial differential operators in the usual sense:

(5.1.2) (Pu)j(z) =Y Ppup(z), j=1,...,N.
83
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(We could also have taken (5.1.2) as our definition for it is obvious that this property
is invariant under change of local coordinates and bases for E and F.) If all Pj; are
of order m, then P is said to be of order m, and the principal part is defined as the
matrix of principal parts of P}, obtained when (0, ...,0,) is replaced by (&1, ...,&,)
in the terms of order m. An invariant formulation is that if 0 # £ € T and we choose
p € O with dp = £ at x, then

(5.1.3) p(&u(x) = tll>nolo t~ e P P(e'u)(x) € Fy.

In fact, using the local representation (5.1.2) we see immediately that this limit exists
and is linear in u(x) and a homogeneous polynomial of degree m in . The invariance
of (5.1.3) shows that p(¢) € L(E,, F},) is invariantly defined. In the particular case of
a first order operator, p is also linear in &, so p can be considered as a vector bundle
map from TM ® E to F', and then we have

(5.1.4) P(pu) = oPu+ p(dy ® u).
A connection in F is therefore a first order differential operator from sections of F to

sections of T" M ® E whose principal symbol is the identity map in T*"M ® E.

Proposition 5.1.2. There exist connections in any vector bundle E. If V is a con-
nection in E, then every connection in E can be written in the form V + A where A
is a section of Hom(E, T"M @ E) = T*M ® E ® E*.

Proof. If E is a trivial vector bundle M x C¥, say, then we can define
V(ul, .. .,uN) = (dul, .. .,duN).

If we take a covering of M with open subsets U, where F is a trivial bundle, the
trivialization gives a connection V, for E restricted to U,. If yx, is a subordinate
partition of unity, it is clear that V = >, V, is a connection. If A is the difference
between two connections, it follows from (5.1.1) that

A(pu) = @ Au,

so A is a bundle map, as claimed.

If X is a vector field and u € C°°(M, E) we shall just as in the Riemannian case
write Vxu = (X, Vu) € O (M, E). Motivated by (3.1.6) we take another vector field
Y and form

(5.1.5) RY(X,Y)u= (VxVy - VyVx — Vixy))u.

RY(X,Y)u(z) depends only on the values of X, Y and u at z, for the proof of this
fact for covariant differentiation only used that it is a connection. Thus (5.1.5) is at =
a skew symmetric bilinear form in the tangent vectors X (z), Y (z) and a linear form
in u(r) € E,, with values in E,, so RY is a two form with values in E, ® E.
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Definition 5.1.3. The curvature RV of the connection V in E is the two form with
values in £ ® E* defined by (5.1.5).

In the spirit of Chapter IV we can also argue more elegantly by extending the
connection to forms, that is, sections of APT*M ® E. Note that if u is such a section
and 1) is a scalar ¢ form, then ) A u € AYPT*M ® E can be uniquely defined so that
the multiplication is bilinear and ¥ A (¢ ® v) = (Y A p) ® v, if v is a section of F and
 is a scalar p form.

Proposition 5.1.4. Given a connection V in the vector bundle E, there is a unique
differential operator d¥ : C®° (M, \PT*M ® E) — C®°(M,APY'T*M ® E), for any p,
such that

(5.1.6) d¥(p Au) = (=1)Po A Vu+ (dp) Au,

if  is a scalar p form and u is a section of E. We have d¥ =V if p =0, and (5.1.6)
remains valid if u is a section of NT*M ® E and Vu is replaced by d¥ u.

Proof. Uniqueness is obvious so it suffices to prove the other statements locally, as-
suming that E is a trivial bundle. If also V is trivial, the statement is just standard
calculus of exterior differential forms. If we add to the trivial connection an operator
A of order 0, as in Proposition 5.1.2, then d¥u just gets an additional term (—1)P Au
if u is a section of APT*M ® E, and these contributions on the two sides of (5.1.6)
cancel.

If u is a section of FE, it follows from (5.1.6) for scalar ¢ that
dVdY (pu) = dY (pVu +dp Au) = ed¥dYu+de ANVu —de A Vu = pd> d¥ u,

which shows that dVdV is a two form with values in Hom(E, E) = E ® E*. We claim
that

(5.1.7) dvVdY = RV.

For the proof we note that in terms of local coordinates '

d/027, we have

,..,x™ in M, with ¢; =

dVu = Z daziVEiu, dVdVu = — Zdwi A da:jVEjVEi;
if X => X' and Y = YJe; this means that

(@VdVu)(X,Y) = =) (XY = XYV, V.,u
=Y XYYV, V., - V.,V )u=RY(X,Y)u,

which proves (5.1.7).
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One can also argue as in Sections 4.1 and 4.2. Since we are only interested in forms
on the base manifold we shall study pullbacks of forms analogous to those studied
there. Note that if s is a local section of P(M) and we write s*e, = FE,, which is a
local basis for T'M, we saw in the proof of (4.1.13) that s*w,3 = (VE,, Eg), that is,
VE, =) (s*wap)Es. We take this as our starting point now.

Let e1,...,en be a local basis for the vector bundle F, that is, sections of E over
an open set U which form a basis in the fiber E, for every x € U. Omitting the tensor
product sign ®, we can then write

N
(5.1.8) Vei:ijiej, iZl,...,N,
Jj=1

where w;; are one forms. Thus

N
(5.1.9) dVdYe; = Z (dwji)e; Zw;ﬂVek = ZQWGJ, i=1,...,N,
j=1

N
(5110) jS:dwji—l—ijk/\wki, 2,]21,,N
k=1

If u = > wuje; is a general local section of E, it follows that

N
d¥dVu = Z u§dje; = Z ZQWUJ )es,

1,7=1 =1 gj=1
so () is the matrix of RV.
FEzercise 5.1.1. Verify by direct computation that if e; = > b;;e; is another local basis,
then Q' = B~1QB for the corresponding matrices of curvature forms and B = (b;;).

From (5.1.10) we obtain the differential Bianchi identity
N N
(5.1.11) dQ]Z = Z ij N Wgi — ijk A Qi
k= k=1

by repeating the proof of (4.2.6). With matrix notation this can be written more
succinctly

(5.1.11)" Q0 = [Q, w),

where the matrix multiplication is made using the wedge product of course. (See also
the discussion following (5.3.8).)

The characterization of the covariant differentiation in Theorem 3.1.2 involved the
conditions (3.1.3) and (3.1.4). The first is only meaningful for the tangent bundle, but
the second has a general analogue:

Definition 5.1.5. A real (complex) vector bundle is called Euclidean (Hermitian) if in
each fiber there is given a Euclidean (Hermitian) scalar product (-,-) such that (e, e)
is a C'°° function on F.
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Proposition 5.1.6. In every real (complex) vector bundle it is possible to introduce a
Euclidean (Hermitian) structure.

Proof. In a coordinate patch U where the bundle is & U x R (=2 U x CY), we can just
take the standard Euclidean (Hermitian) form in RY (in CV). By piecing together
with a partition of unity as in the proof of Proposition 5.1.2, we obtain a global form.

Proposition 5.1.7. In a real (complex) vector bundle with Euclidean (Hermitian)
structure, it is always possible to find a connection V such that

(5.1.12) d(u,v) = (Vu,v) + (u, Vo),

when u and v are sections of E. For the corresponding curvature matrices in terms of

orthonormal bases this implies that 2;; = —€;;, thus ;; = —;; in the real case.

Proof. By the Gram-Schmidt orthogonalization procedure one can in some neighbor-
hood U of any point find an orthonormal basis for E, which means that the identifi-
cation of E over U with U x RY (resp. U x C¥) carries the Euclidean (Hermitian)
form in the bundle to the standard form in R¥ (in CV). The trivial connection in
U xRY (in U x CY) obviously has the property (5.1.12), so we have such a connection
in the restriction of the bundle E to U. Piecing together such local connections by a
partition of unity as in the proof of Proposition 5.1.2, we obtain a global connection
such that (5.1.12) holds.
If e, ..., en is a local orthonormal basis, it follows from (5.1.8) that

wji = (Vei, ej).

Since (e;, ej) = d;;, we obtain using (5.1.12) that

N
Wij +w—j¢ =0, hence jS = —dwij — E W N Wi = —Qij,
k=1

which completes the proof.

So far we have only discussed connections in a fixed bundle. However, applying a
connection to a section of a bundle one gets a section of another bundle, the tensor
product with the cotangent bundle, so we must also examine how to obtain a connection
there. Thus consider now two C'*° vector bundles E and F' over M, with connections
denoted V¥ and V¥. In E @ F we get an obvious connection: A section consists of
one section of E and one section of F', and we can apply V¥ and V¥ to them. The
tensor product is not quite so obvious:

Proposition 5.1.8. Given connections V¥ and V¥ in E and in F, there is one and
only one connection V in £ ® F such that

(5.1.13) Viu®v)=(VEPu) @v+ue (Vi),

if w and v are sections of E and of F'.
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Proof. The uniqueness is obvious so it suffices to prove existence locally. Thus we may
assume that there is a global basis vy,...,vy for sections of F. Every section s of

E ® F can then uniquely be written in the form s = Ziv u; ®vj, where u; is a section
of E. If (5.1.13) holds we must have

N N
Vs=> (VPu) @v; +> u; @ (VFv)),
1 1

and we define V now by this equation. If v = Zf] @;jv; with scalar p; € C°, and if u
is a section of E/, we have by definition

V(u®wv) = ZVE(goju) ® v + ngju@) (VEv;)
= VEu®ngjvj +Zd<pj(u®vj) +Zu®4,0j(Vij) = (VEuw) @v+u® (Viv),

where we have used first that V¥ is a connection, then that V¥ is a connection. Thus
(5.1.13) is valid which shows that the construction is independent of the choices made.
That V is a connection follows at once from (5.1.13) if we replace u by pu and use
that VZ is a connection.

If E is a vector bundle with connection V and E* is the dual bundle, with fiber £
equal to the dual space of F,, then there is a unique connection V* in E* such that

(5.1.14) d(u,v) = (Vu,v) + (u, V*v)

for arbitrary sections v and v of £ and E*. We leave for the reader the simple verifi-
cation that (5.1.14) defines a connection V*.

5.2. Chern classes. If T is a linear transformation in a finite dimensional vector
space V', then the determinant of T can be defined as the determinant of the matrix
A representing T with respect to a coordinate system in V. This is independent of
the choice of coordinates, for if ' = Bz, where B is an invertible matrix, is another
system of coordinates, then the matrix BAB~! for T in the new coordinates has the
same determinant.

Now let ¢ be any polynomial in the vector space M(NN) of N x N (complex) matrices
which is invariant in the sense that

(5.2.1) 0(A) = o(B"*AB)

for every B € GL(N), the group of invertible matrices in M(N). This is of course
equivalent to

(5.2.1)’ @(AB) = p(BA)

for all A, B € M(N). An example is ¢(A) = det(I + AA) for an arbitrary A, hence also
the coefficient of A* for any k. (Every invariant polynomial is in fact a polynomial in
these special ones, but we shall not give the proof here.)
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Lemma 5.2.1. If ¢ is an invariant polynomial, then the derivative of p(A) in the
direction [A, C] vanishes for any C € M(N).

Proof. If B = I + eC, then B™'AB = A + ¢[A,C] + O(¢?). Since (p(BAB™!) —
p(A))/e = 0, the statement follows when ¢ — 0.

When we use the lemma below it is convenient to assume that ¢ is homogeneous,
of degree m, and use the symmetric multilinear form ®(A, ..., 4,,) such that p(A) =
®(A,..., A). The conclusion in the lemma is then that

(5.2.2) m®([A,C], A,...,A) =0, A,CeM(N).

Now let €2 be the matrix of curvature forms for a vector bundle E with fiber dimension
N, defined by means of a local basis. Since all two forms commute, we can form ¢((2)
unambiguously, and since another choice of local basis just replaces Q by B~1QB for
some invertible matrix B (cf. Exercise 5.1.1), it follows that ¢(2) is independent of
the choice of local basis, so we obtain a globally defined differential form for which we
shall also use the notation ¢(€2).

Theorem 5.2.2. If ¢ is an invariant polynomial in M(N) then () is a closed
differential form, and its cohomology class does not depend on the choice of connection.

Proof. Locally we write
Q) = B, Q)

where the curvature matrix 2 satisfies the Bianchi identity (5.1.11)". Since the forms
2;; have even degree, we can apply d separately to each argument in the multilinear
form ®. Two forms commute with arbitrary differential forms so we obtain using
(5.2.2)

dp(Q2) = m®(dQ,Q ..., Q) =md([Quw],Q,...,Q)=0.

The proof that the cohomology class is independent of the choice of connection is
essentially the same as the proof of Theorem 4.4.2. We keep the notation used there.

If V? and V! are two connections for E over M, and E is the vector bundle E pulled
back to M x R by the projection M x R — M, then

V =(1-x)V°+xV!+09/8tdt

is a connection for £ on M x R. Note that if 2 € M then the fiber of E over (z,t) is
always equal to E,, so the derivative of a section with respect to t is well defined. It
is now obvious that the matrices of curvature forms for the connections V° and V! on
M are pullbacks from M to M x R by the homotopic maps ig and i; of the matrices of
curvature forms for 6, which proves that the cohomology class of ¢(€2) is independent
of the choice of connection.

Definition 5.2.3. If E is a complex vector bundle over M and € is the (local) matrix
of curvature forms with respect to a connection, then the cohomology class of

(5.2.3) det(I +iQ/2),
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where [ is the unit matrix, is called the total Chern class of E. It can be written
1+c1 +c2+ ..., where ¢; is of degree 25 and is called the jth Chern class.

If E is the complexification of the tangent bundle of a Riemannian manifold with
the covariant differentiation as connection, it is clear that (—1)7cy; is the Pontrjagin
class of degree 4j and that cy;41 = 0. More generally, if I is the complexification of
a real vector bundle, it follows from Propositions 5.1.6 and 5.1.7 that we can choose

a connection such that Q;; = —€;; is a real form. That was all we used to prove
that (4.4.2) vanishes for odd k. For a general complex vector bundle it follows from
Propositions 5.1.6 and 5.1.7 that we can choose a connection such that Q;; = —Q;,

which implies that complex conjugation preserves (5.2.3). Hence we obtain:

Proposition 5.2.4. The Chern classes of any complex vector bundle are real. For the
complexification of a real vector bundle the Chern classes c; vanish when j is odd.

This proposition motivates the factor 7 in (5.2.3). To explain the factor 27 we shall
now discuss the case of a complex line bundle L in a manifold M. We introduce a
Hermitian structure in L and choose an open covering {U;} such that L is trivial, that
is, has a section s; with norm 1 at every point in U;. An arbitrary section can then in
U; be written in the form u;s;. In U; N Uy, we have ujs; = uysy then, hence writing
gjkS; = Sk we obtain |g;x(x)| =1, z € U; N Uy, and

Uj = gjkUk-

The functions g;;, are the transition functions of L. With a connection V in L satisfying
(5.1.12) we now set

where il'; is a real one form in U; by (5.1.12). The curvature form is then
Q:dFj+Fj/\Fj :dFj in Uj,

so c; is the cohomology class of the two form equal to idl';/(2m) in U; for every j.
Note that
Iisp = Vsg = V(gjrs;) = gjxl'js; + s;dgjr  in U; N U,

which means that
Ty =T +dgjx/gjr, dlj=dly  in U;NUy.

If the cohomology class is equal to 0, then there is a global one form I' in M such
that d(I'=T";) = 0 in U; for every j. If U; has been chosen simply connected, it follows
that we can find a function ¢; in U; such that I' = I'; = dy; in U;; we can choose I'
and ¢; purely imaginary. Since I'y, —I'; = dy; — dyy, in U; N Uy, this means that

dgik/ 9k = dpj — dpy,

so ¢ji, = g;jke¥* %7 is locally constant, that is, constant in each component of U; N Uy.
If we replace the sections s; by s;e¥i, we get new transition functions which are locally
constant. But in a line bundle with locally constant transition functions we can define
a connection V by Vs; = 0 in Uj, and then all I'; become 0. Thus we have proved:
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Proposition 5.2.5. The Chern class of a line bundle vanishes if and only if it can be
defined by locally constant transition functions.

We shall now consider the example where M is the sphere S? of dimension 2. If L
is a complex line bundle on S?, we can find a non-zero section s; in a neighborhood
U; of the upper hemisphere and another s, in a neighborhood Us of the lower one. We
write as before Vis; = I'js; and recall that the Chern form is idl'; /27 in Uj,

I't =Ty +dg21/g21 in UyNUs.

Choose a one form I' in S? equal to I'; in a neighborhood of the lower hemisphere.
Then the Chern class contains the form ¢ = i(dl'y — dI')/2m in U; which vanishes in
the lower hemisphere, and by Stokes’ theorem

/Sz = Z./2”/@1 -T)= Z./2”/@1 —T9) = _i/27r/d912/912:

the last three integrals taken over the equator. This is the winding number of g5 on
the equator, thus an integer. In this example the effect of the factor 2 is therefore that
[ ¢ can precisely take integer values, so that the Chern class is an integer cohomology
class. It would take us too far into a discussion of cohomology theory to give a general
form of this result here; the example should suffice as a motivation.

5.3. Lie groups. In Section 4.1 we worked systematically with forms on the or-
thonormal frame bundle of a Riemannian manifold. Each fiber becomes isomorphic to
the orthogonal group O(n) when a point in it is distinguished. In Section 5.4 we shall
clarify the results by putting them in a more general context. In order to cover the
results in Sections 5.1 and 5.2 we shall also need other groups than O(n). Subgroups of
the full linear groups suffice for our purposes, but the arguments become conceptually
more transparent in an abstract setting where O(n) is replaced by an arbitrary Lie
group, so we shall give a brief introduction to this concept here.

Definition 5.3.1. A group G which has also the structure of a C'°° manifold is called
a Lie group if
GxG>(ab)—ablcG

is a C°° map.

In particular, the hypothesis implies that b +— b~! and (a, b) — ab are C* maps. It
would suffice to make the latter assumption:

FEzxercise 5.3.1. Show that if G is a group which is also a C'*° manifold, then G is a
Lie group if G X G 3 (a,b) — ab € G is a C* map.

Let L, be the left translation L,z = ax, a,x € G, which maps the identity e € G
to a, thus L/, : T, — T,. If Xy € T., we define a C* vector field X on G by

X(a) = L. X, € Th.
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For arbitrary a,b € G we have L), X (b) = L, L} Xo = L/, Xo = X (ab) because L,L; =
L.y, by the associative law. Thus X is a left invariant vector field. If wy € T, we define
similarly a C'* one form on G so that w is equal to wy at the identity and w(X) is a
constant if X is a left invariant vector field. Then we have L}w = w for every a € G,
and this left invariance together with the value wy at e determine w.

Let Xi,...,X,, be left invariant vector fields such that Xi(e),..., X,(e) form a
basis for T,, and let w', ..., w™ be the left invariant one forms which are biorthogonal
at e and hence at any a € G. Then we have

n
(5.3.1) dw' =1 Z iy’ AwP,
J,k=1
for some constants cé-k with cé- = —c};j. In fact, this is obviously true at the identity,

and both sides are left invariant, hence equal everywhere. The constants cé- .. are called
the structural constants of the Lie group. (They depend in an obvious way on the

choice of basis in T>*.) We can also express (5.3.1) in terms of the left invariant vector
fields if we use that by (C.4)

(X5 A Xy dw'y = X5(Xp, 0') = Xp( X, 0) + ([Xi, Xj], w") = ([ Xk, Xj], 07).

The left-hand side is cék, so we obtain

(5.3.1) [Xn, Xj] =Dy X

Proposition 5.3.2. In the tangent space g of a Lie group G at the identity, there is
a natural bilinear antisymmetric product g x g 3 X, Y +— [X,Y] defined by taking the
commutator of the left invariant vector fields extending X and Y. We have the Jacobi
identity

(5.3.2) IX,[Y,Z)] + [V, 2, X]] + |Z,|X,Y]] =0, X,Y,Ze€g.

This means that the structural constants satisfy the conditions

n

(5.3.2) Z( ChiCi + Cpicri T o) =0, p=1,....n

v=1
One calls g a Lie algebra.

Proof. Only the Jacobi identity remains to prove, and it follows since it is valid for
commutators of arbitrary vector fields just by the associativity of the products.

In Section 1.4 we discussed one parameter subgroups of the orthogonal group and
of the general linear group. We shall now do the same for an arbitrary Lie group, so
let us assume that ¢ : R — G is a C! function such that

(5.3.3) o(s+1t) =@(s)p(t), s,teR.
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This implies that ¢(0) = e, and differentiation with respect to t gives when ¢t = 0, if
we write p(s)p(t) = Lys)p(t),

¢'(s) = Ly Xo = X (#(5)),

where Xy = ¢/(0) and X is the left invariant vector field with X(e) = X,. This
system of differential equations in the local coordinates of G at e has a unique solution
with ¢(0) = e, when |s| < 26, say. We claim that (5.3.3) is then valid if |s| < J and
|t| < d. Fix s and denote the left (right) side of (5.3.3) by ¢1(t) (resp. ¢2(t)). Then

©1(0) = 2(0) = ¢(s), and
e1(t) = X(p1(1),  ©5(t) = Loy X (0(t) = X(0(s)(t)) = X (p2(2)),

so the uniqueness theorems for ordinary differential equations show that o1 (t) = @2 (t)
when |t| < d. Now we can define ¢(s) uniquely for arbitrary s by setting

p(s) = ¢(s/N)¥

where N is a positive integer so large that |s/N| < 6. This does not depend on N,
for p(s/N) = p(s/NM)M for every positive integer M, hence o(s/N)N = ¢(s/M)M
if |s/M| < 6 too. It is clear that (5.3.3) is valid for all s, t.

Proposition 5.3.3. There is a unique C'°° map exp from the Lie algebra g of G to
G such that the differential at the origin is the identity g — T.(G) =g and R > t —
exp(tX) is a one parameter subgroup for every X € g. For X,Y in a neighborhood
of 0 in g we have exp X expY = expp(X,Y) where o(X,Y) is a C* function with
values in g defined in a neighborhood of 0 in g X g such that

(5.3.4) P(X,Y)=X+Y + X, Y]+ O(X||[Y|(|X] + |Y])).

Proof. Let X1,..., X, be a basis for the left invariant vector fields. The one parameter
subgroup with derivative ) a’ X;(e) at 0 is the solution of the Cauchy problem

(t)/dt =Y @’ X;(p(1),  #(0) =e.

There is a unique solution for [¢| < d if |a| < 1. It is a C'*° function of a and t depending
only on ta which we define to be exp(ta). The extension of the map is done as before
by writing exp X = (exp(X/N))¥ for large N.

By the implicit function theorem the exponential map is a diffeomorphism of a
neighborhood of the origin in g on a neighborhood of the identity in G. The function
@ is therefore well defined as the composition of exp X expY with the inverse of the
exponential map, ¢ € C®, and p(sX,tX) = (s + t)X for small sX, tX. Hence it
follows from Taylor’s formula applied first in X, then in Y, that

P(X,)Y)-X-Y = // Oy (sX,tY)(X,Y) ds dt
0<s,t<1

= B(X,Y) + O(IX||[Y[(|X] + |Y]))
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where B(X,Y) is a bilinear g valued form with B(X, X) = 0, hence skew symmetric.

If X is the left invariant vector field equal to X at the identity, pushed back to g from
G by the inverse of the exponential map, then

X(Z)=L%0)X, Lz=¢(Z-), hence
X(Z)=X+B(Z,X)+0(|Z)?), as Z—0.

If Y is a left invariant vector field equal to Y at 0, then we have a similar formula for

Y, hence
[X,Y](0) = B(X,Y) — B(Y,X) = 2B(X,Y).

The left-hand side is [X, Y], which completes the proof.

Note that for the full linear group the definition of the exponential map here agrees
with the exponential of matrices used in Section 1.4.

Proposition 5.3.4. If X € g and a € G, then
(5.3.5) a(exp X)a™! = exp(Ad(a)X),

where Ad(a) € GL(g) is the differential at e of the map G > z — aza™' € G. In a
neighborhood of the identity Ad(a) is given by

Ad(expY) =exp(adY), adY X =]Y, X].

Proof. The map R > t — a(exp(tX))a~! € G is a one parameter group, hence equal
to t — exp(tZ) where Z is the derivative at 0 of t — a(exp(tX))a=™! € G, hence
equal to Ad(a)X, which is a linear function of X. It is also clear that R 3 ¢ —
Ad(exp(tY)) € GL(g) is a one parameter subgroup, hence equal to exp(tad(Y)) for
some linear transformation ad(Y) in g.To determine ad(Y’) we use that by Proposition
5.3.3

exp(tY) exp(sX) exp(—tY) = exp(sX + st]Y, X]+ O(st(|s| + |t]))),

and this implies that Ad(exp(tY))X = X + t[Y, X] + O(¢?), hence that ad(Y)X =
[Y, X]. The proof is complete.

Formula (5.3.4) can be refined to the Campbell-Hausdorff formula

p(X,Y) =) ()"t Y (ad X)™ (ad V)P L (ad X)* (ad V)P Y Jeag,
v=1 o +6: #0
Cap = Y (ai+ Bi) [ [ es!Bi,
=1 =1

for X and Y in a neighborhood of 0. (When (5, = 0 the last factor should be replaced
by (ad X)®~1X.) In particular this shows that the Lie algebra determines the group,
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and using (5.3.4) one can also show that there is a local Lie group with any given Lie
algebra. We shall not prove the Campbell-Hausdorff formula here but shall give another
proof that the group operation is uniquely determined near e by the Lie algebra.

Introducing in a neighborhood of the identity in G the canonical coordinates in g
provided by the exponential map has the advantage that the one parameter groups
become rays through the origin. Identifying g with R"™, we denote by X,..., X,, the
left invariant vector fields which are equal to the unit vectors in R™ at the origin. Then
we know that for a € R™, s € R and |al|s| small enough the map s — sa is a one
parameter subgroup. The derivative is a, and the left invariant vector field with this
value at the origin is Y a/ X}, so it follows that a = > a/ X, (sa), that is,

(5.3.6) =Y 21X;(x), o<

In the left-hand side = denotes of course the radial vector field o = >~ 279/0x7. Taking
the scalar product with the left invariant forms w* gives (o, w*) = z¥. We shall derive
differential equations for the determination of w® by writing down (5.3.1) explicitly.
With w? = Y w!dz” the equation means that

(5.3.1)” 6w’/8x — 0w’ JOoxt = Z cjkw,/ w L, u=1,...,n,

7,k=1

or if we multiply by # and add, recalling that > z¥w! = z°,

(04 Dw —62 —i—chkxj

This means that 5
5 (tw),(t0)) = 6, + > clyp 07t (t0)

which is a system of ordinary differential equations with constant coefficients for twL (t0)
from which ch can be uniquely obtained. It follows that wL is uniquely determined and
analytic in a neighborhood of 0 in the canonical coordinates. We shall now prove that
also the multiplication law is uniquely determined and analytic in a neighborhood of the
identity. (Additional arguments using the conditions (5.3.2)’ show that all equations
(5.3.1)" are fulfilled and that there is a local Lie group with arbitrarily prescribed Lie
algebra. However, we shall not give the details here but content ourselves with the
local uniqueness of the group.) To do so we note that if ¢(¢) = aexp(tX), where a € G
and X € g, then

() = L,y X = X(p(1), ©(0)=a,

if X is the left invariant vector field equal to X at the identity. This has a unique
solution which is analytic in a and ¢X, when a is in a neighborhood of e in G and tX
is in a neighborhood of 0 in g. The proof that the structure constants determine the
multiplication uniquely in a neighborhood of the identity is now complete. Note that it
would have been enough to assume that G is a C® manifold with C® group operations
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to conclude that it is actually an analytic manifold. Hilbert’s fifth problem was to
show that it suffices to assume that G is a topological manifold with continuous group
operations. The proof was completed in the early 1950’s by Gleason, Montgomery and
Zippin. The proof also showed that any topological group having a neighborhood of
the identity containing no subgroup # {e} is a Lie group. In particular, every closed
subgroup of a Lie group is a Lie group, which is also easily proved directly (cf. Exercise
1.4.5).

The special case of formula (5.3.1) for the orthogonal group is (4.1.3). Before return-
ing to a discussion of connections we shall put (5.3.1) in another form which avoids the
explicit use of a basis in g. Recall that having chosen a basis X;,..., X, for g =T.G,
we defined the left invariant form w’ at a € G by

W(LLX)=a!, if X =) 2/X; €T.G.
1

Thus > X;w/ (L, X) = X, X € T.G, so the differential form w = X;w’/ with values
in g is simply defined by

(5.3.7) wl.X)=X, Xecg=T.G.

In T,G it is therefore the pullback by L,-1 of the identity in g = T. G.
We can now write (5.3.1) in the compact form

(5.3.1)" dw = — 3w Aw],

where by (5.3.1) and (5.3.1)'
(5.3.8) wAw] =— Z c;kXiwj AwhF = Z[Xj, Xi]w? AWk

To justify the notation we note that in general, if wq,ws are differential forms with
values in finite dimensional vector spaces W7 and W5, then we can define wq A wo
uniquely as a form with values in the tensor product W7 ® W5 so that it is equal to
(w1 ®wa)or Nog if wj = wjoj, j = 1,2, with w; € W; and scalar differential forms o;.
In fact, this expression is bilinear in wq, o1 and in ws, 09, and the space of forms with
values in W; is the tensor product of W; and the space of scalar forms. If we have
a bilinear map 8 : W7 x Wy — W3, a third vector space, then composition with the
corresponding map B : W1 @ Wy — W3 gives a form Bwl A wo with values in W3. In
particular, if W7 = W5 = g and [ is the Lie bracket we get precisely the definition of
[w A w] in (5.3.8). Of course the equation (5.3.1)"”" has the same contents as (5.3.1) or
(5.3.1)” but it is much more compact thanks to the coordinate free notation.
In g there is a natural symmetric bilinear form

(5.3.9) B(X,Y)=Tr(ad X adY), X,Y €y,
called the Killing form. It is invariant under the adjoint action,

(5.3.10) B(Ad(a)X,Ad(a)Y) = B(X,Y), a€G, X,Y €g.
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In fact, it follows from (5.3.4) that

(5.3.11) [Ad(a)X, Ad(a)Z] = Ad(a)[X, Z],

if we expand aexp X exp(—Z)exp X exp Za~! at X = Z = 0 inserting factors a~la

between the exponentials. With A = Ad(a) (5.3.11) means that (ad(AX))A = Aad X,
hence

B(AX,AY) = Tr (ad(AX) ad(AY)) = Tr (A(ad X adY)A™ ') = B(X,Y),

which proves (5.3.10). In many cases of interest to us the Killing form gives a natural
Euclidean metric in g, invariant under Ada, a € G:

Proposition 5.3.5. If G is a compact Lie group, then the Killing form is negative
semi-definite; we have B(X, X) =0 if and only if ad X = 0.

Proof. The compactness of G guarantees that there is a Euclidean scalar product
(X,Y), X, Y € g which is invariant under Ada for every a € G. (If (X,Y) is
an arbitrary Euclidean scalar product we just have to replace it by the integral of
(AdaX,AdaY) over G with respect to the invariant measure on the group.) With
corresponding orthonormal coordinates in g, the matrix of Ad a is then orthogonal for
every a € G, hence the matrix (Xj;) of ad X is skew symmetric for every X € g, as
proved in Section 1.4. But then Tr(ad X ad X) = Y X, Xy, = —ZX?k < 0, with
equality only if ad X = 0.

Definition 5.3.6. A Lie group is called semi-simple if the Killing form is non-degenerate.

For a semi-simple compact Lie group changing the sign of the Killing form therefore
gives a natural Euclidean metric in the Lie algebra. Let us look at the examples which
will be needed later on; to deal with them we do not really need Proposition 5.3.5 since
everything is done quite explicitly. The first example is the orthogonal group O(N).
As we saw in Section 1.4, the Lie algebra consists of the skew symmetric matrices so
the Killing form is negative definite (see the proof of Proposition 5.3.5). Let us now
consider instead the unitary group U(N) of N x N unitary matrices. The Lie algebra
consists of the matrices iH where H is hermitian symmetric. If ad Hh = [H,h] = 0
for every Hermitian symmetric matrix h, then H is a multiple of the identity. This
is clear if H has diagonal form, and we can always reduce to that case by a unitary
transformation. Hence the Killing form vanishes in a one dimensional space, so U(V)
is not semi-simple. However, the subgroup SU(N) is semi-simple, for its Lie algebra
consists of the matrices iH where H is Hermitian with zero trace. If [H, h| = 0 for all
h satisfying the same condition, we conclude again that H is a multiple of the identity,
and since the trace vanishes it follows that H = 0. At least the groups SU(N) with
N = 2,3,4,5,8,16 have been proposed by physicists in connection with unified field
theories.

5.4. Principal and associated bundles. Let us begin by recalling the definition
of a C'"*° complex vector bundle F with fiber dimension N over a C'°° manifold M.
First of all, F is supposed to be a C'*° manifold with

(i) a C* map 7w : E — M, called the projection;

(ii) a vector space structure in each fiber E, = 7~ 1(x).



98 V. CONNECTIONS, CURVATURES AND CHERN CLASSES

These data are required to be locally trivial which means that

(iii) for every point in M there is a neighborhood U and a C*° diffeomorphism
o : 7Y (U) — U x C¥ such that ¢ restricts to a linear isomorphism E, —
{z} x CN = CV for every z € M.

Let {U, };c1 be an open covering of M such that for every i € I there is a diffeomorphism

©; : mH(U;) — U; x CN with the properties listed above. Then we can regard

gij = ip; "

as a C>® map U; NU; — GL(N,C), called a transition function, and we have the
cocycle conditions

9ij9ji = identity in U; N U;
(5.4.1) identity 1
9ij9ikgki = identity in U; NU; N Uy.

The bundle E can be reconstructed using the system of transition functions g;;. In

fact, let E be the set of all (i,z,w) € I x M x CV with x € U; and the equivalence
relation

(5.4.2) (i,;(;, w) ~ (], .’E/, w/) if x = aj/ and u)/ = gj;W.

The reflexivity and symmetry of this relation follow from the first part of (5.4.1), and
the second part of (5.4.1) gives the transitivity. For any given family of transition func-
tions with values in GL(V, C) satisfying (5.4.1), it is clear that the space of equivalence
classes of E, with the projection induced by the map E> (i,z,w) > x € M isa C®
complex vector bundle of fiber dimension N. (The linear structure is inherited from
CV of course.) If the transition matrices are obtained from a given vector bundle E
as above, it is also clear that we get back an isomorphic bundle.

For a real vector bundle there is no real change in the argument except that the
transition functions g;; will take their values in the smaller group GL(N,R). The
group can be reduced further if we recall that by Proposition 5.1.6 it is always possible
to introduce a Hermitian (Euclidean) structure in a complex (real) vector bundle. The
local trivializations can then be chosen so that they respect the structure, for the local
frames in an arbitrary local trivialization can be orthonormalized using the Gram-
Schmidt procedure. If only such trivializations are used, then the transition functions
take their values in U(N) (resp. O(N)). If we have a real vector bundle which is
oriented, that is, each fiber is oriented and there exist local trivializations respecting
the orientation, then g;; takes its values in SO(N).

To avoid looking at a large number of cases we now consider an arbitrary Lie group
G. Assume that we have an open covering {U,};c; of the C°° manifold M and C'*
transition functions g;; : U; N U; — G satisfying (5.4.1). Let o be any representation
of G in a finite dimensional vector space F', that is, o(g) is for every g € G a linear
transformation in F' such that

(5.4.3) o(g1)(e(g2)w) = o(g1g2)w, w € F, g1,92 € G.
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Following the reconstruction of E above we now form the set of all (i, z,w) € I x M x F’
with x € U;. Then

(5.4.2)' (i,z,w) ~ (j,z',w'") if x =2 and w' = p(gj;)w,

is an equivalence relation, for if (i,x,w) ~ (j,z,w’) ~ (k,z,w”), then

1

w” = o(gij)w = 0(gr;)(0(gji)w) = 0(grjgji)w = o(gr:)w,

so (i, z,w) ~ (k,x,w"). The set of equivalence classes is a vector bundle F, with fiber
dimension dim F' and the projection induced by the map (i,z,w) — =z € M. The
restriction 71 (U;) is identified with U; x F by the map

Ui x F >3 (z,w) — (i,z,w)” € F,,

and the corresponding transition functions are p(g;;). If the representation p of G on F’
is faithful, so that o(g) =identity implies g = e, this means that the transition functions
gi; can be recovered from F,. It is clear that changing coverings and trivializations
gives an isomorphic bundle F},, for if we have two such sets then each defines a bundle
which is isomorphic to that defined by the union.

In the preceding discussion we assumed that F'is a vector space, but the discussion
of the equivalence relation used only (5.4.3), so we could use any space where G
acts. In particular, taking F' = G and p equal to left multiplication, we obtain a
principal bundle P. Note that if (i, x, g) ~ (j,z,g’), then (i, x, ga) ~ (4, z, g’a), so right
translation by a € G will be defined on the set P of equivalence classes. Thus the
conditions in the following definition are all fulfilled:

Definition 5.4.1. Let P and M be C°° manifolds, let 7 : P — M be a C°° map, and
let G be a Lie group. Then P is called a principal G bundle over M with projection
m if
(i) G acts freely to the right on P, that is, we have amap Px G 2 (p,g) — pg € P
such that (pg1)g2 = p(g192) if 91,92 € G, pe = p, and pg # p for every p € P
if G2 g#e;
(ii) For every p € P the set pG = {pa;a € G}, which is in one to one correspon-
dence with G, is equal to the fiber 7~!((p)) containing p;
(iii) P is locally trivial, that is, for every point in M there is a neighborhood U and
a C* diffeomorphism ¢ : 771(U) — U x G such that

¢(pg) = ¢(p)g, pen'(U), g<€G,
if we define (z,a)g = (x,ag) when z € M and a,g € G.

For the principal bundle constructed above using the transition functions g;; we
have obvious trivializations of 7=1(U;) which give back the transition functions. Now
we can pass directly from the principal bundle to any one of the bundles F,; they are
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said to be associated to the principal bundle. To do so we note that G acts to the right
(see Definition 5.4.1, (i)) on P x F by

(Px F)x G 3 ((p,w),a) — (pa, o(a™ )w) = b, (p, w).

In fact,

Wab(p, w) = (p(ab), o((ab) ™ w) = ((pa)b, o(b™")(e(a™ w)) = ¥y (Ya(p, w)),

which is just the definition of action to the right. We define two elements in P x F' to
be equivalent if they are carried into each other by some element in G, thus (pa, w) ~
(p, 0(a)w), and form the quotient (P x F')/G by this equivalence relation. The map

U xGXxXF>3(z,g,w)— ((x,i,9)",w) € (P X F)y,

is a bijection, and each equivalence class under the right action of G contains precisely
one element with g = e; (z,1, g, w) is equivalent to (z,1, e, o(g)w) under the G action.
If x € Uj also, then (x,7,e,w) and (z, j, gji, w) define the same element in P x F, and
under the G action the latter is equivalent to (z, j, e, 0(gj;)w). Thus our trivializations
of (Px F')/G over U; and U; are related by the transition function o(g;;), which means
that (P x F')/G is isomorphic to F,. We have now proved:

Proposition 5.4.2. If P is a principal G bundle over M, and o is a representation
of G on a vector space F', then the quotient of P x F' by the right G action defined by

(Px F)x G 3 ((p,w),g) — (pg, o(g”"w)

is a vector bundle with fiber dimension dim F', said to be associated with P and o,
denoted by P x, F'.

Let us now as an example consider the case of a real vector bundle E of fiber
dimension N over M. Let P be the frame bundle over M with fiber P, consisting
of all bases (t1,...,ty) for E,. The full linear group GL(N,R) acts to the right
on P, mapping (t1,...,tn) € P, and A = (a;z) € GL(N,R) to (t},...,ty), where
t = > agjtg, and it is clear that P is a principal GL(N, R) bundle. The vector bundle
associated to P and the natural action of GL(N,R) in RY is isomorphic to E. In
fact, the map

N
P, xRN 3 (t1,... tn, 2t ... 2N) |—>Za:jtj € E,
1

is constant on the G orbits, for

N N N
ijt;- = Z x ay ity = Z(Ax)ktk.
j=1

j.k=1 k=1
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Hence it defines an isomorphism (P x R™)/G — E. If we instead take o(A) = A~
then the associated bundle is the dual bundle of E.

After introducing a Euclidean structure in F, we can instead consider the orthonor-
mal frame bundle P which is a principal O(N) bundle. The bundle associated to the
natural action of O(N) on R¥ is again E.

We shall now carry the notion of connection over from a real vector bundle E to the
corresponding frame bundle P. This will lead to a natural definition of a connection
in a principal bundle which induces a connection in the sense already defined on every
associated vector bundle. Let V be a connection in E, choose a basis eq,...,ey for
the sections of E on a coordinate patch U C M, and write

N
Vei: E Wji€j, izl,...,N,
Jj=1

as in (5.1.8). For a general section u = Zf] u;e; we have

N N N N
Vu= Z duiei + Z UiWwji€j = Z(duz + Z ijij)ei.
i=1 i,j=1 i=1 j=1
The equation Vu = 0 can therefore be written
N
(544) du; + Z WijU; = 0.
j=1

We say that u is parallel along a curve t +— ~(t) if (Vu)(y(t)) = 0. This is a
linear system of N differential equations for N unknowns, so the unique solvability of
the Cauchy problem means that there is a unique parallel section of E along ~ with
prescribed value at a point on 7.

We can apply this to make a parallel transport of a frame E; = Zivzl aije;, j =
1,..., N, along 7. By (5.4.4) the equations VE; = 0 can be written

N
(5.4.5) daij + Y wikar; =0, i,j=1,...,N.
k=1

If Y A\;E; = 0 at some point on 7 then this is true everywhere, so if we prescribe
linearly independent initial data we get a frame along ~.

Now we can regard the local coordinates z!,..., 2™ in M together with the coordi-
nates a;; with det(a;;) # 0 as coordinates in the frame bundle P over U. The equations
(5.4.5) have an invariant meaning independent of the choice of these coordinates. If
they are satisfied for the restriction to a regular curve I' C P, then I' cannot be a
tangent to a fiber, for if do = 0 it follows from (5.4.5) that da;; = 0, contradicting that
the curve is regular. Thus the equations (5.4.5) define at every point p € P a plane in
T, P of dimension n which is mapped bijectively on T (,yM by the differential of the
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base projection 7 : P — M. The right action of an element g = (g;x) € GL(N,R)
maps the frame Ei,..., En to > gxjEr = > ;O k @ikgrj)ei, 7 =1,..., N, which just
means that the coordinates A = (a;x) are replaced by Ag. The equations (5.4.5) are
obviously invariant under this right multiplication, so the “horizontal” planes defined
by (5.4.5) have the properties in the following definition:

Definition 5.4.3. If P is a principal G bundle over the n dimensional manifold M,
with projection w : P — M, then a connection on P is a differentiable assignment
P>pw— H, CT,P, where H, is an n dimensional subspace such that

(i) 7' : Hy — Ty M is bijective;

(ii) Hpq = R, Hp, a € G, where R, denotes the right action on P of a € G.
One calls H,, the horizontal space at p.

In the example of the frame bundle of a real vector bundle F with fiber dimension
N, we saw above that the horizontal space is defined by the vanishing of N2 differential
forms (5.4.5), and N? is the dimension of the group GL(N,R). We shall now show
that in the general case the horizontal space is defined by means of a natural differential
form on P with values in the Lie algebra g of G. This is a consequence of the following
two facts.

(a) If p € P then the tangent space 1), P is by (i) in Definition 5.4.3 the direct sum
of H, and the kernel of 7' : H, — T}, (,)M, that is, the tangent space TI?P at
p of the fiber 7=1(w(p)) through p. Thus we have a well defined projection

(5.4.6) v : Ty = TP, vpH, =0, (Id —v,)T,) =0.

(b) The right action G 3 a — pa is by Definition 5.4.1 for every p € P a diffeomor-
phism of G on the fiber of P through p. Hence the differential at the identity
is a linear bijection

(5.4.7) v(p) : g = T P.

The composition w, = vy(p) v, of the projection (5.4.6) with the inverse v(p)~! is

thus a linear map from T, P to g, that is, a one form on P with values in g, which
vanishes precisely in the horizontal spaces H,. To define it we have used part (i) of
Definition 5.4.3, but we must also express condition (ii) there in terms of w. To do so
we note that the condition means that

vpa = RLv,(RL)™,  hence wy, = y(pa) ' RLv,(RL) ™! = ~v(pa) 'Ry (p)wy(R,) .

If X,Y € gand

Ryy(p)X = 7(pa)Y
then ¢t — pexp(tX)a and t — paexp(tY) have the same derivative for ¢ = 0, hence
t — pexp(tX)and t — paexp(tY)a~! = pexp(Ada (tY)) have the same derivatives for
t = 0. By the injectivity of v(p) we conclude that X = Ada Y, thatis, Y = Ad(a™1)X,
S0

wpa R, = Ad(a™Hw,.

The left-hand side is the pullback R}w in T),. We have now proved the first half of the
following;:
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Theorem 5.4.4. For a connection in a principal G bundle P, the projection on the
tangent space of the fiber along the horizontal space followed by the inverse of (5.4.7)
1$ a one form on P with values in the Lie algebra g of G such that

(5.4.8) Riw=Ad(a Hw, acG,
wp(y(P)X) =X, Xeg,

where R, s the right action of a on P. Conversely, if w is a one form on P with
values in g satisfying (5.4.8) and (5.4.9), then H, = {t € T,P;(t,w) = 0} defines a
connection in P in the sense of Definition 5.4.3. One calls w the connection form.

Proof. If w satisfies (5.4.9) then H, is transversal to the fiber and of codimension
dim g in T, P, which proves (i) in Definition 5.4.3. Condition (ii) follows from (5.4.8)
by reversing the proof of (5.4.8).

The next goal is to show that a connection in a principal G bundle P gives rise to
a unique connection in every associated vector bundle. This must be done so that in
the motivating example of a real vector bundle above we get back the connection we
started from. Let s be a section over an open set U C M of the vector bundle F,
associated to P, F' and the representation o of G on F, and let t € T, M, x € U. We
may assume that there is a section p of P in U, and this defines a map w : U — F such
that s is the image (p, w)™ of the section (p,w) of P x F. (Recall that P, is the set of
equivalence classes of P x I under the right G action (p, w) — (pa, o(a™Hw), a € G.)
If p'(x)t € Tpy(z) were horizontal, we would in the special case of the frame bundle of
a vector bundle E have p = (eq,...,en) with Viej(z) =0, and w = (w1, ..., wn), so
we would have Vs = > (t,dw;)e;. This leads us to require that

(5.4.10) Vis(x) = (p, (t,dw))™, if p'(x)t € Hpy).

((t,dw) is well defined since w is a function with values in a vector space.) If p/(z)t
is not horizontal, we replace p and w by p = pexp(—¢) and W = p(exp ¢)w where
p0:U =g, p(x)=0.If (t,¢'(z)) = X € g, then

Pt =p'(2)t —v(p)X, (t,dw) = (t,dw) + o' (X)w,

where ¢’ = g/, is a linear map from g to linear maps in F'. Thus p'(z)t € Hp(, if and
only if vpp'(z)t = y(p) X, that is, X = (p'(2)t, wp(z)) = (t,p*w), so (5.4.10) leads to

(5.4.11) Ves(z) = (p(z), (t, dw(z)) + o' ({t, p*w))w(z)) .

The preceding arguments show that (5.4.11) is the only definition satisfying (5.4.10),
but it remains to show that it does not depend on p(z). To do so we must prove that
(5.4.11) does not change if p is replaced by pa = R,p and w is replaced by o(a™!)w
with a constant a € G. If we do that then (¢, p*w) is replaced by

(t,p*Riw) = (t,p* Ad(a™Hw),
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by (5.4.8), and since o(a~1ba) = o(a=1)o(b)o(a) we have

¢ (Ad(a™M)X) =o(a ' (X)ola), X €g.

Thus the second component in (5.4.11) is replaced by

(t,do(a™"w) + o(a™")o'({t, p*w))o(a)o(a™ )w

which is precisely o(a™!) times the value in (5.4.11). The first component is replaced
by p(z)a, so the equivalence class under the G action is unchanged. Hence (5.4.11)
gives a unique definition of V;s(x), t € T, M, when s is a section of F,. It is obvious
that Vys(z) is linear in ¢ and linear in s, and we have for ¢ € C>

Vi(is) = pVes + (t, dip)s,

so V is a connection in Fj,.

To motivate the definition of the curvature form of a principal bundle with connec-
tion we shall write the preceding formulas explicitly in the case of the frame bundle P
of a vector bundle, which is a principal G = GL(N, R) bundle. As above we choose a
basis eq,...,eyn for the sections of F in a coordinate patch U C M and define forms
w;;j by (5.1.8). As coordinates in P| we use the local coordinates x!,...,2" in U and
the components A = (a;;) € G of a general frame

Ej:Zaijei, jzl,,N

The Lie algebra g is identified with the space M(N) of N x N matrices, which is
mapped bijectively to the tangent to the fiber of P at E1,..., En by

d
M(N) > X

(A )]0 = AX.

The horizontal space is defined by the equations (5.4.5), hence

(AW = dCLU Z wzkak]

if w denotes the connection form in Definition 5.1.3, with values in M(N), for both
sides vanish in the horizontal space and are equal in the fiber direction. If w® denotes
the matrix (w;;), this means that the connection form w satisfies

Aw = dA 4+ WA,
which should be compared to the solution of Exercise 5.1.1. Hence

dANw + Adw = (dw®)A — w® N dA,
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or after insertion of dA = Aw — w°A
(5.4.12) A(dw + w A w) = (dw® + w® A w®)A.

The matrix of two forms dw® + w® A w® in the right-hand side of (5.4.12) is the matrix
Q in (5.1.10).

It is now clear that we should define the curvature form €2 for a principal G bundle
with g valued connection form w by

(5.4.13) Q=dw+ iwAw].

Here the right-hand side is defined as explained in Section 5.3, using the bracket in
g. When G = GL(N,R), g = M(N), this is equal to w A w. We shall now prove a
general analogue of (5.4.12) where transformation by the matrix A is replaced by the
adjoint action.

Theorem 5.4.5. Let P be a principal G bundle with connection form w. The curva-
ture form Q) defined by (5.4.13) is then for every p € P an antisymmetric bilinear form
in T,P/T) P with values in g, and

(5.4.14) RQ=Ad(a")Q, acG,
(5.4.15) Qt1,t2) = dw(t1, ta), ift1,t2 € Hp.
Proof. (5.4.15) is obvious since
[wAwl|(t,t2) = [w(t1),w(t2)] =0 when t; € Hp.
For a € G we have in view of (5.4.8) and (5.3.11)
RiQ =dRiw+ 3[Riw, Riw] = Ad(a™ ")

by (5.4.8). What remains is to prove that Q(t1,t2) = 0if t; € T,P and t, € T)P. If
also t; € TP then this follows from (5.3.1)"”, for if we identify a fiber of P with G,
then it follows from (5.4.9) that the restriction of the connection form w to the fiber
is the form w in Section 5.3. Hence it suffices to prove that

Qt1,t2) =0, ifte€ H,P, ty € T)P.

Since w(t1) = 0 we have [wAw]|(t1,t2) = 0, so the claim is that dw(t1,t2) = 0. To prove
this we choose a horizontal vector field h with h(p) = t1, write to = v(p) X, and denote

by X the vector field equal to v(q) X at ¢ € P, corresponding to the infinitesimal right
action of G in the direction X. By (C.5) we must show that

—([h, X],w) + h(X,w) — X (h,w) = 0.



106 V. CONNECTIONS, CURVATURES AND CHERN CLASSES

Now (h,w) = 0 since h is horizontal, and (X,w) = X is constant by (5.4.9), so the

last two terms vanish. The proof will be complete if we prove that [h, X] is horizontal.
Now

[hv X] = gl_I)I(l) ((Rexp(aX))*h - h)/E

as is immediately seen in a coordinate system where the vector field X is constant.
Here

(Ra)*h(p> = Rgh(pa_l)

is horizontal for every a € G, by condition (ii) in Definition 5.4.3, which proves that
[h, X] is also horizontal.

Theorem 5.4.5 means that at every p € P we can regard the curvature form €2 as the
pullback of a two form with values in g at the base point 7(p), and this form transforms
by Ad(a~?!) under right translation by a. Thus we have obtained an extension of
(5.4.12) with considerable precision added when we can reduce the group G to a
subgroup.

Ezercise 5.4.1. Show using (5.4.14) that if o : G — F is a representation and ¢’ = ¢/,
then o' (p*Q?) is a two form which at z € M only depends on p(z), and that

o ((pa)*Q) = o(a™")d' (p* ) o(a),

which means that ¢'(p*(2) defines a two form on M with values in End(P x, F').

For a Riemannian manifold of dimension n the tangent bundle is associated to the
principal O(n) bundle of orthonormal frames. So are all tensor bundles and more
generally the subbundles associated to O(n) invariant subspaces of tensor products
of a number of factors R". All the covariant differentiations discussed in Section
3.1.5, including that in Exercise 3.1.5, are therefore induced by the same Riemannian
connection in the orthonormal frame bundle, and its curvature form is essentially
equivalent to the Riemann curvature tensor by (4.2.5).



CHAPTER VI

LINEAR DIFFERENTIAL OPERATORS
IN RIEMANNIAN GEOMETRY

Summary. In Section 6.1 we discuss second order elliptic operators on sections of a
vector bundle such that the principal part is a multiple of the identity. Such operators
occur frequently in geometry, and their analysis is particularly elementary thanks to a
classical construction of a parametrix due to Hadamard. In the later sections we shall
apply the conclusions to the de Rham complex and to Dirac operators. Section 6.2 is a
digression where we discuss from a purely algebraic point of view topics such as the *
operator on differential forms. Section 6.3 is then devoted to Hodge theory, culminating
in a discussion of the Hirzebruch signature operator, Weitzenbock decomposition and
Bochner’s vanishing theorem. The corresponding heat equations are studied in Section
6.4. Gilkey’s theorem on invariant forms with non-negative weights is proved in Section
6.5; the required background in invariant theory is developed in Appendix D. This the-
orem implies that there is a local index formula for the Hirzebruch signature operator.
Rather than determining coefficients we then pass to a discussion of Dirac operators,
started in Section 6.6 and leading in Section 6.10 to Getzler’s completely constructive
proof of the local index theorem for such operators. This requires a great deal of back-
ground material concerning Clifford algebras and spinors given in Sections 6.7 and 6.8.
We also need the classical Mehler formula for Hermite polynomials and some extensions
presented in Section 6.9.

6.1. Metric elliptic operators. Already in (3.4.4) and Proposition 3.4.6 we de-
fined the Laplace operator acting on a scalar function on a Riemannian manifold. It
is a second order operator with principal symbol & — Y g7%¢;&,. (See (5.1.3) for the
definition of the principal symbol.) However, in geometrical questions the most com-
mon objects are sections of vector bundles, such as tensor bundles, rather than scalar
functions. We shall therefore consider a more general class of operators here.

Definition 6.1.1. If E is a C'*° vector bundle on a C'*° manifold M, then a second order
differential operator P : C*°(M, E) — C°(M, FE) is said to be metric if the principal
symbol p(z,€) : E, — FE, is a positive multiple po(z, &), of the identity in F, for
every £ € T, M.

The positive definite quadratic form py defines a symmetric tensor of type 2,0,
and its dual tensor, of type 0,2, is a Riemannian metric. With local coordinates

xz',...,2™ in M and corresponding coordinates z!,...,z" &, ..., &, in T*M, we have
po(z, &) = g7%(2)€;&k, and the Riemannian metric is ds? = 3 g;x(z)dz?dz®, where
(g55) = (¢’F)7!. Thus a metric operator is associated with a unique Riemannian

metric, hence the term “metric operator” (which is used by some authors but not
universally).

Typeset by AMS-TEX
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An example of a metric operator is obtained if we choose a connection V¥ in E and
define

(6.1.1) Pu= Z gij(6EVEu)ij,

i,5=1

where V7 is the connection in E®@T*M defined by V¥ and the Levi-Civita connection
V (covariant differentiation) in 7*M according to Proposition 5.1.8. If ¢ € C*°(M) is
a scalar function, then with () denoting symmetrization in T*M x T*M

VEVE (pu) = VE(oV u + (dp)u) = oVIVPu + 2((dp) VFu), + (Vde)u,
hence
(6.1.2) P(pu) = pPu + 2((dp)*, VEu) + (Ap)u.

Now suppose that P is any metric operator in F, introduce the associated Riemannian
metric, and define for t € T, M

(6.1.3) (t, VEu) = 3(P(pu) — pPu — (Ap)u),

if o € C*°(M) and ¢'(x) = t*. We claim that the right-hand side only depends on ¢
and that (6.1.3) defines a connection. With local coordinates x!,..., 2™ in M and a
local basis for E, we can write

Pu = z”: gij(%aju + z”: cjaju + cu,

4,j=1 J=1

where v = (u1,...,uy) and ¢!, ..., c" care N x N matrices. Then the right-hand side
of (6.1.3) can be written

n

> gi0pdiu+ 1> (=972 9(979"))dpu
i=1 Jj=1

1,j=1

which is a linear function of ¢, hence of t = ¢'f, with principal part equal to the
identity. If we write

P = Zg”(%EvEU)Z] + Q,

it follows from (6.1.2) and the way we have defined V¥ that Q(pu) = ¢Qu, ¢ € C>,
so @ is a differential operator of order 0. We have proved:
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Proposition 6.1.2. If P is a metric differential operator in the vector bundle E on
M, then there is a Riemannian metric in M, a connection V¥ in E, and a section c
of Hom E = E ® E*, such that

(6.1.4) Pu= Zgij(ﬁEVEu)ij +cu, uweC®(ME),

where VE is the connection in EQT*M defined by V¥ and the Levi-Civita connection.
The Riemannian metric, VE and ¢ are uniquely determined by P.

Note that no first order terms are visible in (6.1.4); they have been absorbed in
the connection V. We shall see many explicit formulas of the type (6.1.4) where c is
related to the Riemannian curvature tensor.

Using a classical approach due to Hadamard we shall now construct a parametrix
for any metric operator, that is, a distribution section F, of E such that PF — ad,
for given € M and a € FE, is in C* or at least highly differentiable. Here the
Dirac function is defined in terms of coordinates such that g = det(g,x) =1 at =. For
general local coordinate z', ..., 2" it must be defined as 6(z!,...,2")/,/g; division by
the Riemannian density changes the distribution density §(x!, ..., z") to a distribution
independent of the coordinates. In our construction we shall use geodesic coordinates
centered at x, so g;,(0) = d;, which makes g(0) = 1. To simplify the construction one
should also use a frame in £ which is adapated to the geodesic coordinates.

With local coordinates z!,...,z"™ in M and a local frame for E we write u =
(u1,...,uy) and
(6.1.5) Pu= Z g_%ﬁj(g%gjkﬁku) + Z JOu + cu,
7,k=1 j=1

where u is differentiated componentwise as a function in R™ with values in R". Then
(6.1.3) means that

(t, VFu) = L(P(pu) — pPu — (Ap)u) = (dp, du) + 3> (9;0)u,

hence

VEu = du+ % Z cjgjkdajku.

Jk=1

Ifo=3Y7 ) 0; is the radial vector field, we obtain

n n
(6.1.6) Vfu = ou + % Z cprtu, e = Z gjk-
k=1 Jj=1
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Lemma 6.1.3. In a neighborhood of the origin in the local coordinates one can choose
the local frame eq,...,en for E so that ery =0, v =1,...,N, where o is the
radial vector field. Such a frame is called synchronous; it is uniquely determined by
61(0), ceey 6]\](0).

Proof. By (6.1.6) we want all e, to be solutions of the system of differential equations

n n
E 2/ Qju+ & E crrtu = 0.
j=1 k=1

We shall prove that there is a unique solution with given value at the origin. At the

origin the equations imply that 9;u(0) = £¢;(0)u(0), so we set

n

v = exp(3 Z c;(0)z)u.

J=1

Then

n

ijﬁjv = exp(% cj(O)xj)(Za:jﬁju + % cj(0)rlu + O(|zz:\2)u),
j=1

n

so the equation becomes

Za:jﬁjv + Rv =0,
j=1

where R vanishes of second order at the origin. But this equation is of the form
discussed in the proof of Lemma 3.3.4, which completes the proof.

Remark. We have assumed aboved that the vector bundle is real, but there is no
difference in statements or proofs if it is complex.

In the following construction we shall use geodesic coordinates and a frame for E
satisfying the conclusions in Lemma 6.1.3, that is,

(6.1.7) > gin(@)d (@)z" = Y gin(0)d (2)2* =) ep(z)2b =0.
k=1

Jk=1 Jik=1

The operator is then so well approximated by the constant coefficient Laplacian A
that a fundamental solution of A is a good first approximation for a parametrix of P.
To get higher order approximations we shall also have to use fundamental solutions of
powers of A. To avoid some minor technical difficulties and at the same time prepare
for a study of heat equations later on, we shall consider A 4+ z and P + z instead of A
and P for suitable z € C.
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Lemma 6.1.4. Ifz € C\R, then there is for every integer v > 0 a unique distribution
F, € S'(R"™) such that

(6.1.8) (A4 2)" T, = 6.

2P0%F, is a bounded continuous function if |a| < |B| +2(v +1) —n, and

(6.1.9) (A+2)F, =F,_1, v>0,
(6.1.10) 200F, /0x = zF,_1, v>0.

Proof. The equation (6.1.8) means that (z — |¢|2)T1F, = 1 if F), is the Fourier trans-
form of F,,. Hence

Fy(z) = (2n) " / @0 (2~ |g2) v de

with the integral taken in the sense of distribution theory. Thus 2POYF, is the inverse
Fourier transform of (i0¢)?(i€)*(z — |£]?)7¥~! which is integrable if || — 8] — 2(v +
1) < —n, so 2°0%F,, is then a bounded continuous function. (6.1.9) is an obvious
consequence of the fact that F,, is the unique solution of (6.1.8). The Fourier transform
of OF, /0x; is

i€; (2 — €)™ = ide, (= — [€]) ™ /2w,

which proves (6.1.10) and ends the proof of the lemma.

The uniqueness implies that F, is a function of |z| = (22 4 - - - +22)2, and it would
be easy to express F,, in terms of Bessel functions. We shall not do so but note that
F,(x) = O(|z|>?**+*)="1og|z|) as z — 0, where the logarithm can be dropped if n is
odd or 2(v + 1) < n. This follows from the corresponding well known facts for the
Laplacian. In particular, F}, € L.

If f € D'(R), we have for x # 0

n

Zgﬂk )i f(la?) = 2f'(1z*) ) g* (2)a"*

k=1
=2f'(|z[*)2? = 0;f(|z[*), j=1,...,n,
for >, gjk(«??)xk = 27 since the coordinates are geodesic. When f(|x|?) is replaced

by F, the first and last expressions are equal as distributions in R"™ since both are
locally integrable functions. Hence it follows from (6.1.9), (6.1.10) that

Zgjk VoL F, = (2v) Y2 F,_y, ifv>0;

Za IK(2)0uF,) 4+ 2F, = F,_y, ifv >0,
J,k=1
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where F_1 = §g. If u, € C°° with values in C, it follows now from (6.1.5) that

(P+ 2)(u, F,) = (Pu,)F, + (u, + u_l(hul, + Za:jﬁju,,))Fl,_l, v>0;

(6.1.11) .
(P + 2)(uoFo) = (Puo)Fo + uo(0)do + 2(huo + »_ 27 9;u0) f'(|2]?),

where Fy = f(|z|?). Here we have used (6.1.7) and introduced the notation

(6.1.12) h = %ijg_% jg%.
If we sum the equations (6.1.11) for v =0, ..., u, we obtain
o
(6.1.13) (P+2)Y _ uF, =uo(0)d + (Pu,)F),
v=0

if the coefficients u, satisfy the differential equations

(6.1.14) vu, + hu, + Z:cjﬁju,, +vPu, 1=0, v=0,...,u

j=1

here the undefined term Pu_; should be omitted when v = 0. These equations are
chosen so that the terms involving Fy, ..., F,,_1 drop out. Note that the error term
(Puy,)F,, in the right-hand side of (6.1.13) is as smooth as desired if y is chosen large.
The first equation (6.1.14) can be integrated explicitly, for

(6.1.12) h=3Y alg 20,9 =g 1) al9(g%).
J=1 j=1

This means that

Bl

(6.1.15) uo(x) = uo(0)g(z) "7,

and that the other equations (6.1.13) can be written in the form

(6.1.14) (v + ijﬁj)(g%uy) YvgiPu, 1 =0, v=1,..., 4
j=1

A differential equation of the form
(6.1.16) v+ 279;)v=f
1

in a starshaped neighborhood of the origin in R™ has a unique smooth solution if v is
a positive integer and f is smooth. In fact, with polar coordinates it can be written

(v +7rd/0r)v = f, thus O(r’v)/Or =r""1f,
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which gives the unique smooth solution

(6.1.17) v(z) = /01 t= f(tx) dt.

Thus the equations (6.1.14) have a unique solution when u((0) is prescribed.

The functions u, obtained depend linearly on ug(0) = e(0), so we can write them
in the form 4, (x)e(0), where @(z) is a N x N matrix. The corresponding linear trans-
formation from Ey to E,, both of which have been identified with C¥, is independent
of the choice of basis made. In fact, by the uniqueness in Lemma 6.1.3 the basis is
uniquely determined up to a linear transformation independent of x. From now on we
drop tilde from the notation, so u,(x) € L(Ey, E,) = E,® E§ and u((0) is the identity
in Fy. Note that u, is independent of z but the distributions F, depend on z.

For every y € M the exponential map T, M > X + expy(X ) at y gives geodesic
coordinates centered at y when we introduce an orthonormal basis in T),M. Using
Lemma 6.1.3 we then construct a synchronous local frame for E, so that P can be
written in the form (6.1.5) with (6.1.7) fulfilled, in a neighborhood of the origin. The
functions u, obtained depend of course in a C*° fashion on the parameters y. Now
the distributions F, (X) pull back to distributions F,(x,y) defined in a neighborhood
of the diagonal in M x M, which only depend on the geodesic distance between x and
y, and are locally integrable in y for fixed x, hence also in x for fixed y. We multiply
the functions u, by a C* cutoff function which is 1 near the center of the geodesic
coordinates and has support in a small neighborhood and pull them back to M x M.
Since F,(X) € C> when X € R™\ {0}, this does not introduce any new singularities
in (6.1.13). We have then obtained C*° functions u, € C*(M x M, E X E*) where
EX E* is the vector bundle with fiber £, @ E}; at (z,y) € M x M, such that F,(z,y)
is defined in a neighborhood of supp u, and for every u

)7
(Pr+2)> u,F, = giag € C* 7" (M x M, ER E”).
v=0

Here 4iag is the kernel of the identity map in C*° (M, E), that is, the distribution in
D'(M x M, EX E*) such that

/ a2, ¥)(y) dvol(y) = p(z), ¢ € C (M, E),

which means that in terms of local coordinates dgiag(z,y) is equal to 6(z — y)/\/9(vy)
times the identity matrix. We can choose F' € D'(M x M, EX E*) so that

pn—1
F—=> wF,cC*"""MxMERE"), Vu.
vr=0

In fact, since u, F, € C?**T1=" we can choose 1, € C°(M x M, E X E*) so that all
seminorms in C?**1=" of u, F, — 1, over a compact set K, in M x M are < 27V, If
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K, contains an arbitrary compact set in M x M when v is large enough, this implies
that the series F =Y " (u, F, — 1) converges in D'(M x M, EX E*), and F has the
required properties. Thus

(6.1.18) (P +2)F(x,y) =0+ R(x,y), ReC*(M x M,EXE™).

If M is not compact it is useful to take the cutoffs in the definition so close to the
diagonal that the maps

supp F' 3 (z,y)—x €M and suppF > (z,y)—ye M

are proper. One calls F' a proper right parametriz then.
If h € C*>°(M, E) then

N / Fla, y)h(y) dvol(y) = (Fh)(z) is in C(M, E).

Since F'is in C'*° outside the diagonal, it is sufficient to verify this in local coordinates.
Introducing geodesic coordinates Y centered at z as integration variables we see that
the terms u, (z,y)F,(x,y) give a C°° contribution, for with these coordinates F, will
only depend on Y and not on z, and u, and h are in C'*° as functions of Y and z.
This proves the assertion. In the same way we see that the operator F* defined by
the kernel F(y,x) maps C° (M, E*) to C*°(M,E*). We have (Fp,1) = {(p, F*),
e CP(M,E), ¢ € C (M, E*), where (-, -) is the integral with respect to dvol(z) of
the scalar product between the fibers F, and E’;.Hence both F' and F'* have continuous
extensions to D’.

The adjoint operator P* : C°°(M, E*) — C°°(M, E*) is defined similarly so that
(Pp, ) = (@, P*1). From the equation (6.1.18), which for the corresponding operators
means that

(6.1.18)’ (P+2)Fo=9+ Ry, ¢eCy(M,FE),
it follows by taking adjoints that F* is a left parametrix of P* + z,
(6.1.18)" F*(P*+2)Y=¢v+ R, ¢eCy°(M,E").

The principal symbol of P* is pg(x, §) times the identity in E*, so if we apply (6.1.18)”
with P replaced by P* we obtain a distribution G € C*°(M x M, E X E*) with the
same regularity properties as F' which is a proper left parametrix of P. Then

Fo—Gp=(G(P+z)—S)Fp—G(P+z2)F—R)p=(GR—SF)p, ¢ecC°(M,E),

where R and S have C°° kernels. Hence F' — G is the kernel of GR — SF', which is in
C*° since one of the factors in each term is. (The compositions are well defined since
we take properly supported parametrices.) We may therefore conclude that F' is also
a left parametrix, so (6.1.18) can be strengthened to

(6.1.18)"  (P+2)Fp=9+Rip, F(P+2)p=9¢+Rp,  ¢€Cy(ME),
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where both R; and Ry have kernels in C*°(M x M, E X E*). We have now forged
all the tools required to discuss existence and uniqueness theorems for the operator P
when M is a compact manifold. However, we first observe that the condition 2 ¢ R,
is easily removed here. In fact, for any z we can modify the definition of F,, in Lemma
6.1.4 to the inverse Fourier transform of (1 — x(€))(z — |£[*)7*~! where x € C§° is
equal to 1 in a neighborhood of the real zeros of z — |£]|%. Then &y is replaced by dy — R
in (6.1.8), where R = x, hence R € S; (6.1.9) remains valid, and in (6.1.10) we just get
an additional term in §. The new smooth terms do not affect the arguments above,
so (6.1.18)" holds for arbitrary z. In what follows we take z = 0, but we shall use
general z later on to handle heat equations.

Theorem 6.1.5. If M is a compact C* manifold, E a C°° wvector bundle over M,
and P a smooth metric differential operator in C*°(M, E), then

(i) Ker P ={u € C>*(M, E); Pu= 0} is finite dimensional;
(ii) w e D'(M,E), Puc C®(M,E) impliesu € C*(M, E);
(iii) the equation Pu = f € D'(M,E) has a solution uw € D'(M,E) if and only
if (f,vy = 0 for all v € Ker P*, which is a finite dimensional subspace of
C> (M, E*).

Proof. To prove (ii) we note that F'f = FPu = u + Rou by (6.1.18)", and F f € C,
Rou € C* since f € C*° and Ry € C*°. Hence u € C*. It follows also that if
u € Ker P, then u+ Rou = 0, so Fredholm theory for the operator Ro with C'°° kernel
proves that Ker P is finite dimensional. If Pu = f then

(f,v) = (Pu,v) = (u, P*v) =0, if v € Ker P*,

and Ker P* is finite dimensional by (i) applied to P*. To solve the equation Pu = f
with f € D/(M, E) we set u = v+ F f and get the equivalent equation Pv = f— PFf =
—R;yf. Since Ry f € C* it follows that it suffices to discuss solvability of Pu = f when
f e C*°. With u = Fw the equation becomes w—+ Ryw = f, which by Fredholm theory
can be solved for all f such that (f,h;) =0, j=1,..., N, where hq,...,hy is a basis
in C*°(M, E*) for solutions of h + R7h = 0. Thus the equation Pu = f can be solved
if (f,h;)=0,7=1,...,N. Hence it can be solved if ((f, h1),...,(f,hn)) €V,

V = {{Pu,hj);u € C°(M,E)} c CV.

If (A,...,An) is a normal of the linear space V, then Ziv Ajh; € Ker P*, so
YN (f. hj) = 0if (f,Ker P*) = 0. Hence ((f, h1),...,(f,hn)) € V, which completes
the proof.

It is easy to give other spaces than C*° and D’, such as Sobolev spaces and Holder
spaces, for which (ii) and (iii) in Theorem 6.1.5 are true, but we shall postpone intro-
ducing these spaces until we need them.

Theorem 6.1.5 has an important corollary for first order operators:
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Corollary 6.1.6. Let M be a compact C* manifold, E and F two C* vector bundles
over M, and

P:C®(M,E) = C®(M,F), Q:C®(M,F)— C=(M,E)

first order differential operators such that QP is a metric operator. Then
(i) Ker P ={u € C>*(M, E); Pu= 0} is finite dimensional;
(ii) w e D'(M,E), Puec C®(M,F) impliesu € C*(M,E);
(iii) the equation Qu = g € D'(M,E) has a solution v € D'(M,F) if and only
if (g,u) = 0 for all u € Ker Q*, which is a finite dimensional subspace of
C>(M, E*).

Proof. Pu =0 implies QPu = 0, and Pu € C*°(M, F) implies QPu € C>*(M, E), so
(i), (ii) follow from (i), (ii) in Theorem 6.1.5. Since P*Q* = (QP)* is a metric elliptic
operator, the finite dimensionality of Ker Q* follows from (i). The equation Qv = g has
a solution if the equation Q Pu = g can be solved, which by Theorem 6.1.5 is possible
if g is orthogonal to the finite dimensional space Ker(QP). As at the end of the proof
of Theorem 6.1.5 it follows that the equation Qv = ¢ can be solved precisely when
(v, Ker @*) = 0.

If p and ¢ are the principal symbols of P and @, then the hypothesis implies that

(6.1.19) q(&)p(§) = r(€)1p,, where r(§) >0, 0# & e T M.

Conversely, if P is given and such a linear symbol ¢ exists, then we can choose @) so
that the hypotheses in the theorem are fulfilled. When F and F' have the same fiber
dimension, then (6.1.19) implies that p(§)q(§) = r(&)1Ip,, for p(&)q(&)p(§) = r(&)p(§)
and p(§) is invertible. Hence the roles of P and () may be interchanged, so the equation
Pu = f € D'(M,F) has a solution v € D'(M, E) if and only if u is orthogonal to
Ker P*, which is a finite dimensional subspace of C*°(M, F*); we have statements
analogous to (i) and (ii) for Q.

6.2. The exterior algebra of a Euclidean vector space. As a preparation for
the Hodge theory in Section 6.3 we shall discuss here some elementary algebraic aspects
of exterior differential forms. Let V be a vector space of dimension n < oo over R,
and denote its dual space by V*. Recall that the space APV* of alternating p linear
forms on V' is spanned by the forms 61 A---A68,, 0; € V*, defined by

(6.2.1) Vix oo x Vs (vr,...,0p) = det(og, 0;)] .

p times
In fact, if L is such a form and eq,...,e, is a basis for V, 01,...,6, the dual basis for
V*, then

L(vy,...,vp) = L (v1,05,)e5,,- .. > (vp,05,)e;,)
= Z<Ul, 9j1> e <Up, 9jp>L(€j1, caey 6jp> = Zdet(vk, le>£’l:1L(ej1, ceey 6jp>/p!.
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Thus the forms (6.2.1) give a basis for APV* even if 01, . .., 6, are restricted to elements
in a fixed basis for V*.
The forms
(6.2.1) Vix.o.xV*3(6q,...,0,) — det(vy, 9j>§k:17
D ¥ —— )
p times

span APV for reasons of symmetry. We have used the duality between APV and APV*
such that

(6.2.2) (Vi A Avp, 01 A= A By) = det(uy, 0;)1 ).

(Many authors use another definition where the right-hand side is divided by p!, for
that is the duality inherited from the natural duality of the tensor products. See
Sternberg [1, p. 19] for a discussion of this point. Kobayashi and Nomizu [1] use the
division by p!, which should be kept in mind when comparing identities.) The existence
and uniqueness of a bilinear form on APV x APV* such that (6.2.2) holds is obvious,
for there is a unique bilinear form such that (6.2.2) holds when v are chosen in a fixed
basis for V and 6; in a fixed basis for V*, and in view of the multilinearity and skew
symmetry of the two sides they must then be equal for arbitrary vi,...,v,,041,...,0,.

Assume now that V' is a Euclidean vector space with scalar product denoted by (-, ).
The linear form v” : V 3 v’ + (v,’) is an element # 0 in V*, so we have a bijection
V 3 v 0’ € V* with inverse denoted by f; these are the musical isomorphisms we
used already in Chapter III. In particular, this gives a norm in V*, which is of course
the dual norm

10l = sup [(v,0)|/]]v]],
0#veV
and the scalar product of 61,0, € V* is
(917 92) = <9§7 92> = (6§7 9%)

where we have used the convention that (-,-) denotes scalar product in a Euclidean
space while (-,-) denotes the bilinear form in a space and its dual. The map 6 — 6°
extends to a map APV* 3 ¢ — ¢f € APV, and we define

(6.2.3) (0, 0) = (¢%,9), @, € NPV,

!

If €1,...,€ey, is an orthonormal basis in V* then e; = €5 1s an orthonormal basis for V

which is biorthogonal to the basis in V*, so we obtain

(6.2.4) ()= D prdr/pl, o= grer/pl, v =" wrer/p,

|I|=p |T|=p |1|=p

where ¢ and 1y are antisymmetric in the p indices of I = (iy,...,4,), all ranging
from 1 to n, and e; = &;; A--- Ag;,. In fact, <€§,6J) equals 0 unless the indices in
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I are different and J is a permutation of them; in that case, we have the sign of the
permutation. This means that for every I we get p! equal non-zero terms ¢ ; <€ﬁ1, ey)
which proves (6.2.4). By (6.2.4) it is clear that (6.2.3) gives a Euclidean structure in
APV*. We can suppress the factorials in (6.2.4) if we sum only for strictly increasing
multiindices I, that is, ¢; < --- < i,; when we do that we shall use the notation Z/.
Note that our definition (6.2.3) did not use a basis for V or V*. If O is an orthogonal
transformation in V' and we define

(O*¢)(v1,...,0p) = @(Ovy,...,00p), v1,...,0p €V,
it follows that we have orthogonal invariance:

(6.2.5) (O, 0"Y) = (p,¥), @, e NPV

A™V* is a one dimensional Euclidean vector space so it contains precisely two ele-
ments € with ||¢|| = 1. A choice of one of them means choosing an orientation of V*;
a basis €1, ...,¢&, for V* is defined to be positively oriented if e; A --- A g, is a positive
multiple of . If we fix an orientation ¢ then

AN = B(p,P)e, @€ NV e NPV

defines a non-degenerate bilinear form on APV* x A"7PV* hence a duality between
these spaces. Thus we obtain a linear isomorphism of APV* on the dual of A"7PV*,
which we have identified with A”"PV* using (6.2.3), so we have an isomorphism x* :
APV — A"7PV* such that

(6.2.6) OAY =ce(xp, ), @ NPV* e NPV

If e1,..., &, is an orthonormal basis in V* with e; A--- A e, = ¢, then
(627) *(811/\"'/\€¢p>:0€¢p+1/\-'-/\Ein,

if (i1,...,1,) is a permutation with sign o of 1,...,n.

Ezxercise 6.2.1. Show that (v A w) is the usual vector product if v, w are vectors in
R3.

It is obvious that the square of the * operator must be an automorphism of APV*
for every p. Under the hypotheses of (6.2.7) we obtain

$(Epr1 Ao Aep) = (1P Py A A gy,

for the permutation (p+1,...,n,1,...,p) of (1,...,n) has p(n — p) inversions. This
means that

(628) * % (0 = (_1)19(71—17), Y€ AP.
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This is independent of the choice of orientation, for changing the orientation means
replacing % by —sx, which preserves any formula where there is an even number of
factors .

It is often convenient to write (6.2.6) in a different way. If we replace ¢ by *p, we
obtain

e(p ) = (1P P (xp) Ah = 9 A kg,
hence

(6.2.6)’ VAxp=c(p,¥), @, e NPV

Using this formula it is easy to write down the % operator explicitly for an arbitrary
basis €1, ...,&, in V*. Set g/* = (g, ¢ex), and let I, J be multiindices of length p, n—p,
such that I, .J is a positive permutation of 1,...,n. If the basis 1, ..., ¢, is positively
oriented, that is, e =1 A+~ Aen/|ler A+ Aeynl|, then taking ¢ = &7 in (6.2.6)" gives
(6.2.9)

/
1
(k¢)s = (pren)/ler A= Neall = D IK| = ppre det (g™ )7 /(det(g")},—1) %

If n is even, n = 2l, then * maps A'V* into itself, and the square is (—1)l2. For a
positively oriented orthonormal basis 61, ...,60 in V* we have

$(OL A AO + O A AB) =01 A Al + (—1) ey A A0

If [ is even, then taking ¢ = &1 we see using such elements in A'V* that A'V* = AL DA_
where A, and A_ are subspaces of the same dimension %(%l) and *A = +\ when
A € Ax. This is the general form of the decomposition we noticed in Lemma 2.3.3
when n = 4. If [ is odd, we must take ¢ = =+, so it is the complexification /\lVé which
is the direct sum of the eigenspaces of * with eigenvectors =:.

To generalize this to A*V* = &) AP V™, still with n = 2I, we define
(6.2.10) m(p) = PPV s e APV

Since p(p — 1) is even this is real if [ is even and purely imaginary if [ is odd, so it is
necessary to go to the complexification then. When ¢ € A%, we have

20 = iP(P=1)+1+(2l=p)(2l—p—1)+l (_1)p(2l—p)gp'

The exponent of —1 here is congruent to p?> mod 2 and the exponent of i is 41% —
4lp + 2p* = 2p* mod 4, so T2p = . If p # [ it follows that APVE @ /\2l_pVé‘ is the
direct sum of the eigenspaces of 7 corresponding to the eigenvalues +1, and these must
have the same dimension (?Dl) since none intersects APVE @ {0}. Summing up, we have
proved:

Proposition 6.2.1. If the oriented Fuclidean vector space V' is of even dimension 21,
then the complexification N*VE of N*V* is the direct sum of the eigenspaces N+ of the
operator T defined by (6.2.10) corresponding to the eigenvalues 1. Ay and A_ have
the same dimension, and Ay is the direct sum of its intersections with APV + APV
when 0 < p < 1.
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6.3. The Hodge decomposition. Let M be a C"° Riemannian manifold. Then
the exterior powers APT M are the fibers of a vector bundle APT™* M with the obvious
trivializations provided by the basis dz?, ..., dz™ in T* M over a local coordinate patch.
We shall denote by AP the space of sections C'°° (M, A\PT* M), that is, the C*° p forms
on M. If p,¢ € AP, then (¢,v)(z) is a C*° function on M as defined in Section 6.2
using the Euclidean metric in 7, M. We set

(6.3.1) (p,¥) = /M(%w)(w) dvol(x), ¢, € A, supp  Nsuppy € M.

If M is oriented we can use (6.2.6)" to write the integral in a more convenient way in
terms of the * operator. With local coordinates !, ..., 2" which are positively oriented
we have

e=dx* Ao Adax"/||dzt A Ada™|| = (detgjk)%dxl Ao ANdz",

which means that
(6.3.1) (p,9) = / @ Axp, @, € NP, suppyp Nsuppy € M.
M

This formula makes it easy to compute the formal adjoint of the exterior differential
operator d : \P — A\P*1. It is defined by

(dp, ) = (p,d*p), p €N, € NT supppNsuppy € M.

By Stokes’ formula we obtain

(o) = [ty nso = [dlonsw) = (1P [ondxy

_ (_1>p+1+p(n—p) /Sp A * % d x ).

Since p? — p = p(p — 1) is an even number, it follows that
(6.3.2) d* = (=1)""" s« dx on APTL

Since the right-hand side contains two factors x it does not change if the orientation
is changed, so the formula can also be used for non-oriented manifolds if one keeps in
mind that intermediate products such as dx make no sense.

Assume now that M is a compact Riemannian manifold. Recall that the de Rham
cohomology groups are defined by

HP(M) = {¢) € NP;dep = 0} /dI\P~L,

Since AP is a pre-Hilbert space with the scalar product (6.3.1) it is natural to try to
find in each class an element with minimal norm, for if it exists it must be unique. If
dy = 0 and 1 minimizes the norm in its cohomology class, then

[9]? < | +de||?, ¢,

or equivalently,
(V,dp) =0, e ITh
Thus the minimum property is equivalent to d*y = 0.
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Theorem 6.3.1. On a compact Riemannian manifold the equations dip =0, d*y =0
for € NP(M) are equivalent to Ay =0, where A is the Hodge Laplacian

A=dd" +d*d: NP — NP,

Proof. 1t is obvious that Ay = 0 if dy = 0 and d*yp = 0. On the other hand, if
Ay = 0, then

0= (AY,9) = (dd"¢, ) + (d"dip,¥)) = (d"¢, d"™p) + (dip, dyp),

so d*p =dy = 0.

Definition 6.3.2. The differential forms satisfying the equation Ay = 0 are called
harmonic forms.

To justify the notation A and the term “harmonic” we shall calculate the Hodge
Laplacian, starting with the case where ¢ € AP(R"™) and the metric in R™ is the
standard Euclidean. Write

/
p=> | =pprda’

/ . . . . .
where " denotes summation over increasing sequences I = (iy,...,i,) and dz! =
dz"* A\ --- ANdx'». Then

/ /
do = ZI, i0;prdx’ Ndxl, xp = ZI, Jordx? sgn(I,.J)

where J is an increasing sequence of n — p indices and I, J is a permutation of 1, ..., n.
For the Dirichlet integral we now obtain if ¢ € AP has compact support

/
x 1
(@pvp) = gl + 100l = [ (Cosrduorsen (1)
- J I J
+ 0010501 sgn <j, J’) sgn <I’ J’) ) dx.

If I # I’ then the contribution is 0 unless the difference is in just one index. Assume
for example that I = (2,...,p+ 1), I’ = (1,...,p). Then we must have i = j' = 1,
' =j =p+ 1, and we obtain

i I\ 12 .op+l)
Sgn(i/ I/)_Sgn<p+1 1 p )_(_]‘)7
i JY . (p+l 1 p+2 L\
Sgn(j' J’)_Sgn< 1 p+l pr2 ... )=

I Jy\ _ 2 ... p+1 I p+2 ...\ _ ., \»
Sg“(l’ J')_Sgn(1 . P p+l p+2 ...)_( b?.



122 LINEAR DIFFERENTIAL OPERATORS IN RIEMANNIAN GEOMETRY

If we integrate by parts moving derivatives to the first factor the two terms will therefore
give contributions which cancel each other, and the only remaining terms are those with
I=I'andi=1¢€Jorj=j €1, hence

/ n
(B¢.0) = el +ld"elP = [ STI(Y~0%er)pr da.
i=1

Since A is formally self-adjoint, polarization gives that

/ n
(6.3.3) Np =Y 1> —0}p;da’.
=1

Thus the Hodge Laplacian operates componentwise as minus the classical Laplacian;
the minus sign is natural since the Hodge Laplacian is a positive operator by its defi-
nition. We shall write Ay whenever confusion seems possible.

To compute A generally we can use the formula

A= (—1)"P Vg d s +(=1)"P xdxd on NP,

which follows from (6.3.2) and can be used locally even if M is not orientable. Choose
geodesic coordinates x!, ..., z™ centered at the point where we want to calculate A.
Then gjx(z) = §;1 + O(|z|?), by (3.1.15) the second derivatives of g, are linear func-
tions of the Riemann curvature tensor, and g;i + ¢'% — 26, = O(|z|?). We can use
(6.2.9) to express the x operator. When we compute App(x) the result will be the
same as for the Euclidean metric unless two derivatives fall on a coefficient involving
g7%. Hence (6.3.3) only needs modification by a term of order 0.

Since ¢ can also be regarded as a skew symmetric tensor field, we could also form
another Laplacian by the contraction Y g/%¢ ;. At the center of a geodesic coordinate
system this will also apart from lower order terms be the classical Laplacian acting on
each component of ¢, so

Agp+ Zgjkgo,jk is of order 0.

When p = 0 there is no term d * d* so no second order derivatives of g;, can occur,
hence —Agp = ¢’ kgp,jk is the standard Laplace-Beltrami operator. We shall return
to the exact calculation for p # 0 later on in this section. For the moment it suffices
for us just to observe that the calculation of the leading term just made shows that
the principal symbol of the Hodge Laplacian is —|¢|?. Hence Ay (or rather —Apg)
satisfies the hypotheses of Theorem 6.1.5. Thus the space H? of harmonic p forms is
finite dimensional, and every 1 € AP can be written in the form

Y =h+ Ay

where h is the orthogonal projection of ¥ on HP and ¢ € AP is uniquely determined
mod HP. Here we have of course used that Ag is formally self-adjoint. With ¢, = dy
and ¢_ = d*yp, it follows that

(6.3.4) Y=h+do_+d'op, heM’, o_ eIl oL eIt
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The three terms in this decomposition are mutually orthogonal, for dh = d*h = 0 by
Theorem 6.3.1 and

(h7 d(,O_) = (d*h7 (:0—) =0, (hv d*<,0_|_> = (dh7 (;O—I—) =0,
(do—,d*py) = (dPp_, ) = 0.

Hence the decomposition (6.3.4) is unique (but ¢_ and ¢, are not). If d¢p = 0 then
dd*p4 = 0, which implies

(dd*p, 1) = (d"p4,d"p4) =0,
so dy = 0 is equivalent to d*¢p = 0. Hence we have proved:

Theorem 6.3.3 (Hodge). Every C* p form on a compact C*° Riemannian manifold
has a unique decomposition (6.3.4) as the sum of one harmonic p form, one form in
the range of d, and one form in the range of d*. Fvery de Rham cohomology class
contains exactly one harmonic form, so HP(M) can be identified with the space HP of
harmonic p forms.

An immediate consequence is of course that HP(M) is finite dimensional. If M is
oriented we also conclude that HP(M) is isomorphic to H""P(M) (Poincaré duality).
In fact, we have Ax = xA since

(Ap, ) = (dip, dp) + (%d * @, %d x ) = (xd * %, xd x x) + (d x p, d % V) = (A * @, x1)),

which implies

(Axp,h) = (A s xp, %) = (x x Ap, xp) = (*Ap, ).

Hence * gives an isomorphism H? — H" 7P,
Assume now that M is a compact oriented C'°° Riemannian manifold. Then the
operator
D=d+d :\* =\

is defined, and it satisfies the hypotheses of Corollary 6.1.6 since
(6.3.5) D? = dd + dd* + d*d + d*d* = dd* + d*d = A.

From (6.3.5) it follows that the kernel consists of the harmonic forms, and D is formally
selfadjoint by its definition. Hence the range is the orthogonal space of the harmonic
forms, and the index is equal to 0. However, one can obtain operators with non-trivial
index by restricting D to suitable subbundles of A*T™ M.

First note that D maps forms of even (odd) degree to forms of odd (even) degree.

If we write
even — EB)\Qp’ )\odd — @A2p+1,

it follows that the restriction D to A\°¥e" is a differential operator from A¢Ve" to \°dd
with adjoint equal to the restriction of D to A°d4, with values in A°¥*". Hence the



124 LINEAR DIFFERENTIAL OPERATORS IN RIEMANNIAN GEOMETRY

kernel of D® is @H?P, and the range is the orthogonal space of ®H?P*+! in X\°d4, This
means that

(6.3.6) mdD“::f]—mmmnﬂpzﬁépﬂwdmuﬁuw%

p=0 p=0

which is the Euler characteristic of M. If we accept the fact that the Euler characteristic
is equal to the number of critical points of functions on M, counted with signs, then
Theorem 4.3.2 means that the index of D can be expressed in terms of the curvature
forms. This is the model for the index theorems which will be a major subject of this
chapter.

Assume now that M is a compact oriented C*° Riemannian manifold of even dimen-
sion n = 2l. By Proposition 6.2.1 the map 7 defined in A*T; for every x € M gives a
decomposition

(NT*M)c = Ay & A,

where A4 are complex vector bundles of fiber dimension 27~!. We claim that
(6.3.7) Dt =—71D,

which will prove that D maps sections of AL (A_) to sections of A_ (Ay). To prove
(6.3.7) we let ¢ be a p form. Since the dimension n is even, we have d* = — % dx, hence

Drp = PPV (d — wds) % o = PP=DH (g 5 p — (—1)1”2 * dp)
TDp = T(d(p — xd % (P) — i(p+1)10+l * do — i(p—l)(P—Q)-H s xd %
= Z'p(p—l)+l((_1>p wdp — (—1)P~H(—1)2PH g 4 90)

— PP+ (—1)Pxdp —dx* ).

This proves (6.3.7).

We shall now determine the index of the restriction D : C° (M, Ay) — C(M,A_)
of D. The adjoint of DT is the restriction D~ : C®°(M,A_) — C(M,A), so the
kernels H* of D* are the harmonic forms h with 7h = £h, and by definition

ind D" =dimH T — dimH .

HE, @”Hél_k is mapped to itself by 7, and if k& < [ then the eigenspaces with eigenvalues
+1 are
{h+7Th;h € HE}

so they have the same dimension. What remains is to examine how 7 splits HL,. There
we have 7 = i % which is equal to x if [ is even and equal to % if [ is odd. For odd [ this
means that ch is split according to the eigenspaces of the operator * corresponding
to eigenvalues +i, and since * is a real operator in H', they have the same dimension
which gives no contribution to the index. On the other hand, if [ = 2k is even, that is,
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n =0 mod 4, then 7 is a real operator and it suffices to consider the eigenspaces of *
acting in the real vector space H' corresponding to eigenvalues £1. If ¢ € H' then

(6.3.8) (%w)z/MsM*w:/sMw

is positive (negative) when ¢ is in the eigenspace of x with eigenvalue +1 (—1), so the
index of DV is equal to the index of the quadratic form

(6.3.9) H S o / © A Q.
M

(If 1 is odd then ¢ A ¢ = 0 since ¢ A ¢ = (—1)" ¢ A @, so (6.3.9) vanishes then.)
We can give (6.3.9) an interpretation which does not involve harmonic forms. To
do so we note that the bilinear form

(6.3.10) (o, 1) = /Mso/\zb

on {# € Al;df = 0} induces a bilinear form on H'(M). In fact, if ¢ = df, then
wAY = d(0A) so (6.3.10) vanishes then, and the same is true if ) = df. Interchanging

¢ and 1 multiplies the integrand in (6.3.10) by (—=1)"", so the form is symmetric if [ is
even and it is skew symmetric if [ is odd.

Definition 6.53.4. The signature of a compact oriented Riemannian manifold M of even
dimension 2! is the signature of the quadratic form induced in H'(M) by (6.3.10), if I
is even, and it is 0 if [ is odd.

With this definition we have proved
(6.3.11) ind D™ = the signature of M.

The expression of ind DT in terms of Pontrjagin classes will be discussed later on.
We shall close this section by making a few additional calculations involving *, d*
and A. Let ¢ be a one form and write ¢ = Y p;dz? in local coordinates. By (6.2.9)

* Q= Z @kgki(—l)i_lda:l Ao NN A dx"\/g

k77':1 omit

= Zl O —1) "Lzt AL AdTEN - A dam /g,

omit

where ® = ¢*. Hence d* p =Y, (0;(®*\/g)dz' A--- A dx™, so

(6.3.12) dp=—xdxp=—g 2y 0i(dg?)=—dive,

i=1
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where the last equality is a definition. The invariance of div® when & is a vector field
is also clear since for x € C§°(M) we have

(6.3.13) —/ Xdiv@dvol:/ (P, dx) dvol.
M M

This is also true if y = 1 and ® has compact support, that is, the integral of the
divergence of a vector field with compact support is equal to 0. We can also write

(6.3.14) dive =) @,

for (6.3.14) is true in a geodesic coordinate system. (See also the proof of (3.4.15) and
Exercise 3.4.2.) Thus

(6.3.14)’ / > @ dvol =0,
M =1

which is a convenient formula to use for partial integration of expressions involving
covariant differentiation.
For the one form ¢ we have

= Z 8i<pjda;i Adx’ = Z <pj’ida:i A da?

since p;; = 0;pj + >y Fijkgok and Fijk = Fﬂk. However, one must remember when
using this expression that ¢; ; is not antisymmetric in general. We shall now compute
d*de by taking another one form 1 with compact support and calculating (dep, di)).
At a point where g;; = d;; the pointwise scalar product is

n

2 Z Pji — i) (Wji — i j) = Z (@550 — i i) = (Ve, Vi) — Z o0,

,j=1 i,j=1 1,j=1

where ® = ¢f and U = ¢)¥. We have written

(Vo,Vi)(@) = > g7 g7 g0

1,5,8,3'=1

for the natural scalar product in Ty M @ Ty M. The last expression is invariant so it is
always equal to (dy, dv)(x), which proves that

(d, dip) = / (Ve, Vi) dvol — / > @0 dvol.
M M =1
In the last integral we can integrate by parts using (6.3.14)" applied to the vector field
>, @ U7, which gives

d'de =V'Vep+ Y ' jidal,

i’j
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Here V* is the adjoint of the operator V from one forms, that is, sections of T* M, to
sections of T*M & T*M , with the scalar product above. Now we add

dd*(p = —dzn:(ﬁiﬂ' = — zn: q)i,ijdl’j
i=1

ij=1
It follows from (3.1.6) (see Exercise 3.1.4) that

n

Z(‘pi,g’z‘ — P ) = Z R @' = ZRUQ)Z’
=1

i=1 il=1

where the last R is the Ricci tensor. Thus we have proved

(6.3.15) App=V*"Vo+ > R;j®'da’.

1,7=1

This makes the remarks following (6.3.3) explicit. The identity (6.3.15) is of the form
(6.1.4), corresponding to the Levi-Civita connection in 7* M, and ¢ has been identified
as the Ricci curvature. There are similar formulas for forms of degree p > 1, due to
Weitzenbock [1]; see also de Rham [1, p. 131]. Formulas of the same structure as
(6.3.15) are called Weitzenbock decompositions in general.

To show the importance of (6.3.15) we now assume that M is compact and con-
nected, and take the scalar product of (6.3.15) with ¢. This gives

(6.3.16) (Anp,©) = ||Vel? + /M Z R;j®'® dvol, e A\, ® = ¢F.

If ¢ is a harmonic one form, that is, Ay = 0, and the Ricci tensor is non-negative, it
follows from (6.3.16) that both terms in the right-hand side must vanish. Hence the
covariant differential of ¢ is equal to 0, and ¢ is at every point contained in the kernel
of the Ricci tensor. If the Ricci tensor is strictly positive definite at some point, then ¢
must vanish in a neighborhood. But ||¢(z)|| is a constant since Vi = 0, so we obtain
the following theorem of Bochner:

Theorem 6.3.5. If h is a harmonic one form on a compact, connected Riemannian
manifold M with non-negative Ricci tensor, then Vh = 0 and h* is in the kernel of R
at every point. Hence dim HY(M) < n. If in addition R is strictly positive definite at
some point, then h =0, hence H' (M) = 0 then.

Theorem 6.3.5 has been the starting point of much work on the connection between
the topology of a manifold and its curvature.

6.4. Heat equations. The first step to a calculation of the index of the operators
D®° and DT introduced in Section 6.3 is to study the heat equations associated with the
corresponding metric elliptic operators. Let P be a metric differential operator acting
on sections of the C*° vector bundle F over the compact C*° Riemannian manifold
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M. By E we shall also denote the lifting of £/ to R x M. We want to solve the Cauchy
problem to find u € C* (R4 x M, E) such that

(6.4.1) Opu = Pu in [0,00) x M, u(0) = v,

where v is given in C*°(M, E). Formally this means that u = ¢/"v, t > 0, where

—tz

tP N—1 €
e (27i) /pz-i-P z

with an integration contour I' such as a sector < m of the unit circle with the two
tangents in the direction of the bisector of the first and fourth quadrants. (We have
defined the principal symbol without the customary factors 7, so our conventions make
P bounded above.) The distributions F,, () in (6.1.8), which depend on z € C\ R,
are inverse Fourier transforms of £ — (z — [£]?)7¥ 7!, and

(2mi) ! /F(z — €A e dr = e (— )Y 0.

If we multiply F, by e~**/(27i) and integrate over I', we thus obtain at least formally
the inverse Fourier transform of (—t)e~!€I" /u1, that is,

(6.4.2) H,(t,x) = (—t)"Ho(t,x)/v!, where Hy(t,x) = (47rt)_”/26_|x|2/4t, t>0,

is the fundamental solution of the scalar heat equation. The identities (6.1.9), (6.1.10)
are transformed to the obvious identities

(A =) ((—t)"Ho(t,z)/v!) = (=) Ho(t,z) /(v — 1)L,
—2t0H(t,x)/0x = xHy(t, x).

Recall that in (6.1.13) the coefficients u, were independent of z. Repeating the proof
of (6.1.13) we now obtain with the same coefficients u,

(6.4.3) (P —d,) XM:UVHV = (Pu,)H,.
0

Since ze™* = —d;e~'*, this can easily be justified also by an integration of (6.1.13)

multiplied by e~**. Since Hy(t,-) — 0 as t — +0, it is clear that > f u, H, — & as
t — +0. If we define H, (t,7) = 0 when t < 0, then H, € C¥(RxU), if v > k+n/2 and
U is a geodesic coordinate patch in M. Every H, is C* outside (0, 0), so Y& u, H, (¢, )
is a good parametrix for (0; — P) when p is large.

Using a parametrix it is easy to solve the Cauchy problem (6.4.1). At first we put the
inhomogeneity in the equation instead of the data and consider the Cauchy problem

(6.4.1) (0 — P)u=f, wu(t,-) =0 when t <0,
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where f(¢,-) =0 when ¢t < 0 and f is smooth. To do so we define H locally by cutoffs
of the sum > ° u, H, with the terms approximated by C°° functions vanishing in the

lower half space, just as in the parametrix F' in Section 6.1. Thus H is a section of
EXE*on Rx M x M with t > 0 in the support and

(8; — P)H(t,z,y) = R(t,z,y) whent>0; H(t,- -)— ddiag as t — +0,

where R € C*°(R x M x M, EX E*) and R(t,z,y) = 0 when ¢t < 0. Now set

u(t,x) = //Kt H(t — s, z,y)w(s,y) ds dvol(y).

The integral with respect to y converges to w(t,z) as s — t, so we obtain

(0y — P)u(t,z) = w(t,z) + //<t R(t — s, z,y)w(s,y) ds dvol(y).

The equation (6.4.1)" now becomes a Volterra integral equation

w(t,z) + //<t R(t — s,z,y)w(s,y) dsdvol(y) = f(t,z)

with C'*° kernel, translation invariant in ¢, so by simple iteration one obtains a unique
solution

w(t,z) = f(t,z) + //<t K(t—s,x,y)f(s,y)dsdvol(y).

Here K € C*(R x M x M, EX E*) also vanishes when ¢t < 0. Hence

H(t,z,y) = H(t,z,y) + // H(t = s,2,2)K(s, 2,y) ds dvol (2)
0<s<t

is an exact fundamental solution for the Cauchy problem. (The product here is the
duality between E} and E,.) The correction term is infinitely differentiable and van-
ishes for t < 0, so the asymptotic behavior at the diagonal is still given by the sum in

(6.4.3).
Now the Cauchy problem (6.4.1) has the exact solution

u(t,xz) = /H(t,x,y)v(y) dvol(y).

There is no other solution. In fact, for the scalar product with a solution U of the
adjoint equation (0; + P*)U = 0 we have

O {u, U) = (O, U) + (u, 0;U) = (Pu,U) + (u, —P*U) = 0.
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We can choose U as a solution for ¢t < T" which is equal to a given section of F* when
t = T by the preceding existence proof, for the change of sign in front of 9; changes
the direction of “time”. Since

it follows that w(7,-) is uniquely determined by the initial data v. Hence H is also
uniquely determined. (It would therefore have been enough to start from an approx-
imation Y u, H, with a fixed large y; the resulting H is then independent of x.) In
particular it follows that

(6.4.4) H(t,z,x) ~ Y 7" ?hj(x), t— 40,
0

where h; € C>*(M,E ® E*). If one introduces geodesic coordinates at y € M and
a corresponding synchronous frame for E, with the connection defined in Proposition
6.1.2, then the coefficients in the expansion at y are given by (6.1.15) and the recursion
formulas (6.1.14). For operators such as DT which are entirely determined by a Rie-
mannian geometry in M, it follows from Theorem 3.3.5 that h;(y) can be expressed
as a polynomial in the Riemann curvature tensor and its covariant derivatives at y.
(The trivialization of the bundles AL is then given by the Levi Civita radial parallel
translation.) This will be the starting point for the discussion of the corresponding
index in the following section.

6.5. Hirzebruch’s index formula and Gilkey’s theorem. Let M be an oriented
Riemannian manifold of even dimension, and consider the operator DT from sections
of Ay to A_ defined in Section 6.3, using the decomposition of the exterior algebra by
the eigenvalues of the map 7 defined in Section 6.2. Let H* (¢, z, %) be the fundamental
solutions of 9; + DT*D¥ constructed in Section 6.4; recall that DT is the adjoint of
D*. In (6.3.11) we expressed the index of DT in terms of the intersection form of the
cohomology in the middle dimension. We shall now give an analytical expression in
terms of the heat kernels:

Proposition 6.5.1. For every t > 0 we have
(6.5.1) ind Dt = /(TrH+(t,x,x) —TrH (t,z,x)) dvol(x).

Here H*(t,x,z) is a linear transformation in NAi,.

Proof. Let us consider the decomposition of C*°(M, A ) given by the eigenspaces of
the self-adjoint operator D™*D™. The spectrum is discrete, for if

ID** DYl pz + flulle < 1,
then u belongs to a compact subset of L?. In fact, there is a parametrix F such that

w=FD™D%u+ Ru



HIRZEBRUCH’S INDEX FORMULA AND GILKEY’S THEOREM 131

where R is an integral operator with C*> kernel, and F is continuous from L? to
the space of sections with first derivatives in L2, because first derivatives of F are
integrable. The set I'Y of eigenfunctions with eigenvalue X is a subset of C*°(M, A4),
and

L*(M,Ay) = @rT'f (A4).

Ifpe F;\F then
o=FXp+Rp=---=(FNNo+ T +Frx+- -+ (FN""HRp.

When N > n/4 the kernel of FV is square integrable in each variable, so we obtain
(65.2) sup p(a)] < CL+ N ¥z, @ €T
The eigenspaces I'y of D™*D~ = D" D** have similar properties and their orthogonal
direct sum is L2(M,A_).

Since DY*D%u = Au implies DY D**(D%u) = AD u, and D" u = 0 implies v = 0
if A # 0, the restriction of D to Fj\' is then an injective map into I'y. In the same

way we see that D™* defines an injective map I'y — F;\r, so these spaces have the same
dimension if A # 0. Since I'T = Ker D¥, it follows that

(6.5.3) ind D¥ = dimT§ — dimTy =) x(A)(dimT§ — dimTy),
if x(0) = 1. We shall prove that 3 x(\) dim T converges when x(\) = e~**, t > 0,

and that the sum is equal to [ Tr H*(t, z, z) dvol(x). This implies (6.5.1).
If o € Iy then (9, + DY*D%) (e~ ) = 0, hence

() = / H* (1,2 y) () dvol(y).

If a € Ay, it follows that

e (p(x), ) = / (o(y), H*(t, 2,9)" ) dvol ().

If we let ¢ run through a complete orthonormal system of eigenfunctions ¢;, with
corresponding eigenvalues A;, then Parseval’s formula gives

Yo (pn )P <Ot lal?, 0<t <1,
and if we sum over all o in an orthonormal basis in A4, we get for 0 <t < 1
(6.5.4) Z e 2N |p;(2))> < C't™™,  hence Z e A dim T} < 0"t

The last bound follows by integrating the first over M, and it proves the convergence
of the sum in (6.5.3) when x(A\) = e7**, ¢ > 0.
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If f is a finite linear combination of the eigenfunctions ¢;, then

/H+(t,a:,y) ) dvol(y Ze Yoi(x)(f, ¢4)-

Since such sections of A4 are dense in the continuous sections it follows in view of
(6.5.2) and (6.5.4) that for every f € Ay,

Ttz z)f = Ze N () (f, ().

Let f,, v = 1,...,2""! be an orthonormal basis in A;,. If we choose f = f,, take
the scalar product with f, in Ay, and sum, it follows that
TrH"(t,z,x) Ze_“‘ |(pj(x Ze‘”‘ﬂhpj

Integration over M gives
/TrH+(t x,z) dvol(x Ze A dim T

We have an analogous formula for H™, so (6.5.1) follows from (6.5.3).

By (6.4.4) there is an asymptotic expansion
TrHY (t,z,2) — Tr H (t,z,2) Zt‘fh

where h; is a polynomial in the components of the Riemann curvature tensor and its
covariant derivatives. The product h;(z) dvol(x) is a density on the oriented manifold
M. If we reverse the orientation, then 7 is replaced by —7, which means that the
spaces At and A_ and therefore the kernels H™ and H™ are interchanged. Thus h; is
replaced by —h;, which means that we can regard h;(x) dvol(z) as a n form w;. From
(6.5.1) it follows then that

(6.5.5) /wj:o, i<n/2,
M

(6.5.6) / wp/2 =ind D
M

Our aim now is to prove that w; = 0 when j < n/2, which is a very much stronger
statement than the integral condition (6.5.5), and that w,, /o is a polynomial in the
Pontrjagin forms. The following simple observation is crucial:
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Lemma 6.5.2. If the metric ds? is replaced by \>ds® where X\ is a positive constant,
then A is multiplied by \=? and w; is multiplied by \"~27.

Proof. In a local coordinate system g;y, is replaced by A%g;x and ¢ ¥ by A72¢7%, which
means that A is replaced by A™2A. Now

A2DY* DT + 9, = A 3(DT* DT 4 9,),

if 7 = A72t. Hence the initial value problem for A=2D1* D% + 9, has the solution

/ HY(t/0%, 2, 9) f (y) dvol (y)

where H' and dvol(y) belong to the metric ds®. For the metric \2ds® the vol-
ume element is A\"dvol(y), so the new fundamental solution is HT(t/\2, x,y)A~".
The product of H*(t/A2, z,2)A\~™ by the new volume element \"dvol(z) is equal to
HY(t/)%, 2, x) dvol(z), so

th_%wj is replaced by Z A2 '_%wj,

which proves the lemma.

When j < n/2 the weight of w; is positive in the sense that the power of A in Lemma
6.5.2 is positive, and the weight is 0 when j = n/2. We shall prove a theorem of Gilkey
which states that this suffices to make the conclusions about w; mentioned above. Of
course we also have to use that if z!,..., 2" is a geodesic coordinate system centered
at p, then

w;i(p) = ®;(R,R,...,R®)dax' A Ada™,

where ®; is a polynomial in the curvature tensor R and its covariant derivatives of
order < k when x = 0. Note that the local definition of w; makes these forms defined
for every Riemannian manifold of even dimension.

Definition 6.5.3. A q form invariant of Riemannian manifolds M of dimension n is a
function which to every such manifold assigns a ¢ form w on M such that for every
p € M and geodesic coordinate system z',...,z" centered at p we have for some &

/
(6.5.7) w(p) =Y _|I| =q®(R,...,R"™)da’,

where ®; is a polynomial in the curvature tensor and its covariant derivatives of order
< k at p, which is independent of M and p. The invariant is said to have weight k if
w is multiplied by A\* when the first fundamental form is multiplied by 2.

Let V' be the Euclidean vector space R". We can regard the curvature tensor R as
an element of @'V and RY) as an element of @77 V, so (6.5.7) is a polynomial map

k 4+j
WAV, W=FWw;, W=QQV
j=0
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The orthogonal group operates both in W and in AV, and we denote the operation of
O by O* in both cases. Since an orthogonal transformation of z!,..., 2" gives a new
geodesic system of coordinates centered at p, we must have

B(0*w) = 0*®(w)

if w=(R,...,R®) for some choice of a Riemannian metric. (Note that already the
Bianchi identities show that R is not an arbitrary element in @4 V.) Hence we have

for all such w. Taking the average of the right-hand side over the orthogonal group,
we obtain a polynomial ® which can still be used in (6.5.7) and has the advantage of
being equivariant, that is,

(0*w) = O*d(w), Yw e W.

To simplify notation we assume in what follows that ® already has this property. It
is clear that if we split ® into a sum of polynomials which are homogeneous in each of
the variables w; € Wj, then all the terms will be equivariant.

A polynomial map ¥(w) of degree v in w € W; can be written in one and only one
way in the form ¥, (w, ..., w) where ¥,(w1,...,w,) is a symmetric multilinear map
in wy,...,w, € Wj; the polarization ¥, is given by

v

Uy (wy,. .., w,) = [ [(w;, 0/0w)¥(w)/v!.

J=1

U, defines a linear map on Q" W; which is equivariant if ¥ is. If we use polarization
for each W; we may conclude that ® is a sum of polynomials each of which is induced
by a linear equivariant map

N
gp:®V—>/\qV.

The fundamental theorem on O(n) invariants, Theorem D.1, gives a complete descrip-

tion of such maps when ¢ = 0. One calls a linear form ¢ on ®N V' elementary if
N = 2k and
(V1 ® - @ vag) = (v1,v2) ... (Var—1,V2z),

that is,

N
P€) =Y barmasazarar, € QV,

or if ¢ differs from this linear form just by a permutation of the indices.

Theorem 6.5.4. FEvery invariant linear form ®N V — R is a linear combination of
elementary forms; in particular there are no such forms # 0 unless N is even.

This is just a reformulation of Theorem D.1, so we pass to:
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Corollary 6.5.5. Ify: ®N V' — ATV 1s equivariant and not identically 0, then N —q
is an even integer 2r > 0, and ¢ is a linear combination of elementary maps, that is,
maps which apart from a permutation of the indices are of the form

@(S) = Z§a1041ozzoz2...ozrozr[,81...Bq]dlﬁl VANCIERIVAN da:ﬁq,
B

where [...] denotes alternation over the enclosed indices, that is, summation over all
permutations after multiplication by the sign of the permutation.

Proof. We define an invariant form ¢ : ®N+q V — R by

P01 ® - @ UN4q) = (@(V1,. .., UN), UN$1 A - AUNLq)-

It follows from Theorem 6.5.4 that ¢ = 0 unless N + ¢ is even. If N + ¢ is even then
@(v1,...,UN4q) is a linear combination of elementary forms and is preserved by alter-
nation of the last ¢ vectors followed by division by ¢!. This eliminates elementary forms
containing a scalar product of two vectors vn41,...,UN4q, for if they are interchanged
the sign of the permutation is changed but the term is not affected otherwise. Hence
p=0ifg> N. If N =g+ 2r, where r > 0 is even, then ¢ is a linear combination of
forms of the type

(U1, s 7UN+q) = (U17U2) <. (U2r—17v2r)(UN+1—q7UN+l) <. (UN,UN+q)-

Alternation gives the forms in the corollary.

We shall now apply the corollary to the ¢ form invariant w in Definition 6.5.3. When
a=(ai,...,q,) is a sequence of |a| = v indices between 1 and n, we shall denote by
R, the corresponding components of the v — 4th covariant derivative of the Riemann
curvature tensor R;;x;. By an elementary monomial of degree r in R we shall mean an
expression of the form

(6.5.8) m(R) =Y RaiRa:...Rar,
q

where the summation indicates alternation of precisely ¢ indices and pairwise contrac-
tion of the others in the total index sequence a'a?...a", where the number of indices
shall exceed ¢ by an even number (or 0). What we have proved so far is that with
coefficients a,, € R we have

(6.5.7)’ w(p) =Y amm(R).

The number of possible terms is reduced if one examines the weights:
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Lemma 6.5.6. The weight of m(R) is 2r + q — |a| where |a| = |a}| + ... |a"]|.

Proof. With a fixed system of local coordinates the Christoffel symbols I';;; are mul-
tiplied by A2 if the metric is multiplied by A2, but the Christoffel symbols I';;’ remain
unchanged. By (2.1.13) it follows that R;j; is multiplied by A?, and so are the covari-
ant derivatives. If ¢1,...,¢, are tangent vectors, then m(R) evaluated with respect to
these in a fixed coordinate system is

(6.5.8)" S Ret ... Rarg™iz 4]t
q

where for each pair i1is of indices to be contracted there is a factor g% while j1, . .., j,
correspond to indices to be alternated. In fact, (6.5.8)" is invariant under coordinate
changes and agrees with (6.5.8) at the center of a geodesic coordinate system. The
number of indices in the contraction is |a| — ¢, so replacing g by A?g multiplies (6.5.8)’
by A2"A~(2l=9) which proves the lemma.

Write || = 4 + ¢; where ¢; is the number of covariant differentiations which occur
in R,i, and let € = > ¢; be the total number of them. Then it follows from Lemma
6.5.6 that for the terms in (6.5.7)" the weight of m(R) is equal to ¢ — 2r — . Thus
one must alternate with respect to a larger number of indices to get a higher weight,
which explains why invariants of higher weight have a simpler structure.

Theorem 6.5.7 (Gilkey). FEvery q form invariant of positive weight for Riemannian
manifolds is equal to 0, and every q form invariant of weight 0 is contained in the ring
generated by the Pontrjagin forms, which all have weight 0.

Proof. The curvature tensor and its covariant derivative have the symmetry properties

(6.5.9) Rijii = —Rjiri, Rijii = —Rijik,  Rijri = Riuij,
(6.5.10) Rijjk) =0,  Rijiki,m) =0 (the Bianchi identities).

Such identities are preserved by covariant differentiation since it commutes with the
permutation group acting on the tensor product. Thus differentiation of the first
Bianchi identity gives

Rijrim + Rijk,m + Rikijom =0

if we write out all terms explicitly. The alternation of R;;;; over three arbitrary indices
is zero by the first Bianchi identity and the symmetries (6.5.9), and this is also true
for R;jri,m.- When one alternates over mij or mkl this is the second Bianchi identity.
If one alternates over jkm and notes that

Rijri,m — Rikji,m + Ritjk,m = 0,

it follows that two times the alternation is 0, for exchanging k and j changes the sign
of the permutation. This proves the claim. By covariant differentiation we conclude

that the alternation of R, over three of the first four or five indices is always equal to
0.
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If the term m(R) is not zero it follows that the alternation in (6.5.8) involves at
most two of the first four indices in each factor. Altogether we can then alternate in
at most 2r + ¢ indices, hence ¢ < 2r 4 ¢, which means that the weight of m(R) is
< 0. This proves the first part of Gilkey’s theorem. If the weight is 0 we have also
found that ¢ = 2r + ¢ and that we must alternate over all indices corresponding to
covariant differentiation and in addition two of the first four indices in each factor. If
a covariant differentiation occurs in some factor, it follows that we alternate over three
of the first five indices in it, which implies that m(R) = 0. Hence ¢ = 0, that is, no
covartant derivatives occur. Furthermore we have alternation with respect to precisely
two indices in each factor R;ji;. If they are the first two, we can use the symmetry
Rijri = Rpiii; to replace them by the last two. If they are the middle two, we can use
that

Rijki — Rikji = Rukj = (Rikj — Ritjr)/2

to replace them by the last two indices, at the expense of a factor % Hence it follows
that in a geodesic coordinate system w is a sum of products of expressions of the form

> Rijigjijo Rivisjaie - - Rigirjox_1jar @’ A=+ A da??®.
0,7
With the notation in (4.1.13) we recognize this as 2% times the form
(6.5.11) Qiyin A Qigig Ao A Qi -

Hence the Gilkey theorem is now a consequence of the following:

Lemma 6.5.8. The Pontrjagin forms are wuniversal polynomials in the forms
(6.5.11).

Proof. We proved in Section 4.4 that the forms (6.5.11) are closed forms on M, lifted
to P(M). The Pontrjagin forms are the forms of degree 4,8, ... in

det(éij + (271')_191']').

Let us now note that for n x n matrices A;; with complex coefficients we have

det(Ady; — Ay) = [[A = A)) = SN (~1)e,
1 0

where \; are the eigenvalues and c; the elementary symmetric functions of them. We
have for every positive integer k

n
S = )‘j = AiligAigig .. 'Aikiu
j=1

for the sum is invariant under conjugation of the matrix A, and the formula is valid
for diagonal matrices. Since ¢; = s1, and by Newton’s formulas

Sk =C18h-1 — Casp—2 + -+ (=1)Fkey, 2<k <,
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we can for every k < m express s, as a polynomial in cq,...,c; and express cp as
a polynomial in sq,...,s;. But these polynomial identities in the coefficients of A;;
remain valid if we replace A;; by the commuting forms €2;;, which completes the proof
of the lemma and of the Gilkey theorem.

For an oriented compact manifold M of dimension 4k we can apply the Gilkey
theorem to the forms w; in (6.5.5), (6.5.6) which occur in the expansion

Tr (H*(t,z,2) — H (t,z,2)) dvol(z) ~ th_zkwj.
§=0

The conclusion is that

5)’ Wi =0, j<2k
war = Lk(p1, ..., D).

Here Lj, is a polynomial of weight k if p; are indeterminates of weight j, so replacing
pj by the Pontrjagin form of degree 4j gives a a form of highest degree 4k which is
equal to woy. Integration of (6.5.5) gives back (6.5.5), and integration of (6.5.6)" gives
by (6.5.6) and (6.3.11)

(6.5.6)" ind D = sign M = / Li(p1,---,pk)
M

for every oriented manifold M of dimension 4k. One can now determine the coefficients
of L by specializing M to manifolds for which the signature and the Pontrjagin classes
are easy to describe, such as products of complex projective spaces. We refer to Atiyah,
Bott and Patodi [1] for the calculation of Lj and only give the result. Set

(6.5.12) ZLk = Ha:j/tanha:j, where H(l + x?) = Zpk.

This should be understood as follows. To calculate Lj we take m > k variables z;
and note that z;/tanhz; is a power series in x? Collecting the terms of degree 2k
in the product for j = 1,...,m gives a polynomial L; in the elementary symmetric
functions py, pa, ... of the z%,... 22 which has weight k¥ when p; is given the weight
J. The polynomial is independent of the choice of m > k, and one verifies that it is the
only polynomial which makes (6.5.6)" valid for products of complex projective spaces.

Apart from the verification of this we have now proved

Theorem 6.5.9 (Hirzebruch). The signature of an oriented Riemannian manifold
M of dimension 4k is given by (6.5.6)" where the polynomial Ly, is defined by (6.5.12)
and py, ... are the Pontrjagin forms of M.

We also refer to Atiyah, Bott and Patodi [1] for an extension of Theorem 6.5.9 to the
signature operator with coefficients in a vector bundle, and for the arguments required
to go from there to the general index theorem for elliptic pseudo-differential operators.
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We have followed that paper here apart from substituting the Hadamard construction
of a parametrix for pseudo-differential operator theory. The Hadamard construction
is not only more elementary, it fits precisely with the differential geometric context.
For the operator D®° having the Euler characteristic as index, it was first proved by
Patodi [1] that a corresponding phenomenon occurs, leading to the Gauss-Bonnet-
Chern formula. A variant of his proof using ideas of supersymmetry from physics is
given in Cycon, Froese, Kirsch and Simon [1, Chapter 12]. (See page 258 for a criticism
of the methods used here which do not go all the way to a direct computation of the
coefficients in the index formula.) More recently, a direct computational proof has
been obtained for twisted Dirac operators by Bismut [1] and Getzler [1,2]. Our next
aim is to give an exposition of the methods of Getzler.

6.6. Operators of Dirac type. We started this chapter with a study of second
order metric elliptic operators, but all the geometric applications in Sections 6.3 and
6.5 concerned first order operators D such that —D*D is metric. (The minus sign
comes from the convention for defining the principal symbol introduced in Section 5.1,
which does not contain the factor ¢ which is customary in pseudo-differential operator
theory.) The rest of this chapter will be devoted to a more systematic search for such
operators.

Definition 6.6.1. If M is a C'"*° manifold and Fy, F7 two C'°° Hermitian vector bundles
on M with the same fiber dimension, then a first order differential operator

D : OOO(M, E()) — OOO(M, El)

is said to be of Dirac type if —D*D : C*>°(M, Ey) — C*°(M, Ep) is a metric differential
operator.

Here the formal adjoint D* is defined using the hermitian metrics in Ey, Ep, and
some positive density in M; the definition is independent of the choice of density since
it only influences terms of lower order. If o(x,§) : Eo, — E1. is the symbol of D at
(x,€) € T*M, then o(z, &) is a linear transformation depending linearly on £, and the
definition means that

(6.6.1) o(z,8) 0(2,§) = p(x, )1k,

where o(x,£)* : E1, — Fo, is the adjoint with respect to the Hermitian metrics and
p(x, ) is a positive definite quadratic form in 7)) M. Since Ey, and Fj, have the same
dimension, it follows from (6.6.1) that

(6.6.1)" o(z,§)o(z,&)" = p(z,)1Ek,,,

so D* is also of Dirac type. When D is an operator of Dirac type on M, we give M
the Riemannian structure defined by the dual of the quadratic form p(x,§).

A Dirac type operator D : C*° (M, Eg) — C°°(M, E1) is called symmetricif Fy = Ey
and D* = D. Thus —D? is then a metric operator. This is the context in which Dirac
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originally introduced what is now known as a Dirac operator. He wanted to write the
Klein-Gordon equation

02/t — 0% /0x2 — 02/y? — 02)02% + m?

as the square of a first order operator in order to obtain a relativistically invariant
operator similar to the Schrédinger equation, and found that this could be done using a
4 x 4 system of first order operators. Our Dirac operators are analogous but correspond
to a positive definite metric rather than one of Lorentz signature. In part of Section
6.7 we shall avoid making assumptions on the signature in order to cover the original
case also.

For a general operator D : C*°(M, Ey) — C°°(M, E;) of Dirac type, a symmetric
operator of Dirac type C*(Ey ® E1) — C°(Ey @ E;) is defined by

(6.6.2) (g %*); the symbol is (0(:25) "(‘%5)*).

It maps sections of £y C Eg® FE; to sections of £1 C Ey® FE; and vice versa. Conversely,
a symmetric Dirac type operator with this property in C*° (M, E), E = Ey ® Eq, is
always obtained from a Dirac type operator C>° (M, Ey) — C°(M, E;) as in (6.6.2).

If o(x, &) is the principal symbol of a symmetric Dirac type operator in C*° (M, E),
then

(6.6.3) o(z,8) =o(x,6)",  o(x,6)?=p(z,&)IE,.

The first step in the study of (symmetric) Dirac operators is to determine matrices
o(z,&) depending linearly in &, which satisfy (6.6.3) for a fized x. This leads to the
definition of Clifford algebras and spinors, which will be studied in Section 6.7. We can
then define (twisted) Dirac operators in Section 6.8, where we also prove an analogue
of the Weitzenbock formula due to Lichnerowicz. Section 6.9 is an analytical interlude
devoted to the classical Mehler formula giving the heat kernel for the harmonic oscil-
lator explicitly, and to some extensions needed here. We are then prepared to prove
the local index theorem for Dirac operators in Section 6.10.

6.7. Clifford and spinor algebra. Let V be a real vector space, ¢ a quadratic
form in V', E' a complex vector space, and ¢ : V — End(F) = L(E, E) a linear map
such that

(6.7.1) o(v)? = q(v)Ig,

as in (6.6.3). Every linear map o : V' — End(F) can be uniquely extended to a linear
map & from the tensor algebra @,° @*V to End(E) with

v ®@---@ug)=0(vy)...o(vg), v1,...,05 €V,

for the right-hand side is a multilinear function of vy,...,v;. The condition (6.7.1)
means that for v € V and arbitrary tensors ¢, to

G(t ®vRVQty) —d(t ®q(v) @ty) =0,
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that is, o vanishes on the two sided ideal Z generated in the tensor algebra by all
elements of the form v®v—¢(v)-1 with v € V, so & induces an algebra homomorphism
from the quotient algebra to End(E). Note that with the notation ¢ also for the
polarized form

(v £v2) ® (v1 £v2) —q(vg £v2) 1 €T = v1 Qug + vy ®vp — 2q(v1,v2) -1 €Z.

If we choose a basis ¢1,...,&, in V which diagonalizes ¢,
(672) q(z fjé‘j) = quéf, § - Rn,
1 1

it follows that Z is generated by all elements of the form
(6.7.3) EjRep+er®ej, j#Fk e, ®e;—¢q;-1; jk=1,...,n
Every element in the tensor algebra is a linear combination of tensor products of
€1,...,En, SO using (6.7.3) we see that modulo Z it is congruent to an element of the
form
(674) Zail,,,,,ijsh ®"'®5ij7 11 <lg < --- <ij.

J<n

Here a;, .. ;; is a linear form on the tensor algebra vanishing in Z, defined by

J
Qiy,...i;(€ky @+ B ep,) = (1) Hq;u7
i=1

if the indices 41, ...,7; occur 1+ 2p;,,...,1 + 2u;; times among k1, ..., k,, the other
indices ¢ < n occur 2u; times, and ¢ is the number of index pairs in k1, ..., k, which
occur in the wrong order. Otherwise a;, ., (g, ® -+ ®eg,) = 0. This follows since
the definition makes the form a;, . ;. vanish on Z while it gives the desired coefficient
for tensors of the form (6.7.4).

J

Definition 6.7.1. If V is a real vector space of dimension n and ¢ a quadratic form
in V, then the Clifford algebra Cl(V,q) is defined to be the quotient of the full tensor
algebra @, @*V by the twosided ideal Z generated by the elements v ® v — q(v) - 1,
v € V. Elements in V are identified with their images in Cl(V,¢q), and the product of
two elements x and y in CI(V, q) is denoted z - y.

We have already proved most of the following result:

Theorem 6.7.2. Ifeq,...,&, is a basis for V giving q the form (6.7.2), then every
element in the associative Clifford algebra C1(V,q) can be written in one and only one
way in the form (6.7.4), with coefficients in R, so the dimension of C1(V,q) over R is
2", The images C1°(V,q) and C1*(V,q) in CI(V,q) of the tensors of even (odd) rank
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are represented by sums (6.7.4) with j even (odd), so the dimensions are 2"~ 1. We

have . . o
CIZ(V7 Q) ' CIJ(V, Q> C CIH_J med 2(V7 Q)7

which gives a Zy grading of the algebra CL(V,q). The set Cl[j](V, q) of elements of the
form (6.7.4) with j fized € {0,...,n} is a linear subspace of CI(V, q), equal to the linear
span of all images of elements of the form

(6.7.5) Z SN V(1) @+ @ Ur(j), V1,...,05 €V,
where w is any permutation of 1,...,7; thus it is independent of the choice of diago-
nalizing basis €1, ...,e,. We have

Cl’(V,q) = @ a¥l(v,q), CI'(V,q) = @ Cl¥(v,q).

j even j odd

There is a unique linear map CI(V,q) > z — tx € CI(V,q) (transposition) such that
Ha-y) =ty -tz and'x = x if v € V. The constant term Q(z) in 'z - x is equal to
the constant term in x -'z and defines invariantly a quadratic form Q on Cl(V,q) such

that Q(1) =1 and
Q) =q(v), Qz)=Q('z), Qv-z)=Q(z-v)=q(v)Q(z),
ifveV,xze ClV,q). If x is the class of (6.7.4) and (6.7.2) holds, then

qul' qu 21 13

i<n

Proof. The transposition is inherited from the maps v1 ® -+ - @ v = vy ® -+ - ® v7 in
the tensor algebra, for they vanish on Z. Only the statement about C1Y) remains to
be verified. If j is fixed in (6.7.4) we can extend the sum to all indices 41,...,7; €
{1,...,n} provided that we divide by j! and extend the definition of the coefficients in
a skew symmetric way. Hence every such element is a linear combination of elements
of the form (6.7.5). On the other hand, suppose that v; = >, _  viker, i = 1,...,7.
Then the tensor (6.7.5) can be written

Z (ngnﬂ—vﬂ-(l)akl "'Uﬂ(j)vkj)gkl ® .'.®€kj7
kl,...,kj ™

and since the sum over 7 is skew symmetric in £y, ..., k;, we have an element of the
form (6.7.4) with j fixed.

If x is the class of the form (6.7.4) with a basis €1, ...,&, satisfying (6.7.2), then
'z and 'z -z both have the constant term >- a7, gi, - @i, for e, -~ €i; - ep, -+ ex,
can only be a constant if there is some v € {i1,...,4;} N {k1,...,ki} with ¢, = 0 or
{i1,...,i;} = {k1,...,ki}. The definition of @ is obviously invariant since it makes
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no reference to the choice of a basis, and the other statements are obvious since for
example (v -z)-(v-2) =tz -v-v- 2.

Note that C17). C1¥] is not contained in CLIV+F] pug may also have components in
ClY with i < j + k.

Ezercise 6.7.1. Show that when vy,...,v4 € V we have with all products taken in

CL(V,q)
[U1 V2 — 2 01,0304 — Vg - V3] = 4(q(v1, v4) (V2 V3 — 3 - V2) —q(v1,V3) (V2 - Vg — Vs - V2)
+ q(v2,v3)(v1 - v4 — Vg - V1) — q(v2,v4) (V1 - V3 — V3 - 01)).

Thus CI[Z](V, q) is a Lie algebra. Deduce that if ¢ is positive definite and €1, ..., &, is
an orthonormal basis, then

[Z CLijé‘i . é‘j, Z bk’lé‘k . é‘l] = 42[@, b]ijéfi 'é‘j
%, k,l ]

if a and b are skew symmetric matrices. (Compare with the Lie algebra of SO(n).)

When ¢ = 0, the Clifford algebra becomes the exterior algebra A*V on V. However,
the case of interest to us here is primarily the case where ¢ is positive definite. The
negative definite case is often preferred but the difference is not important in the
arguments below where we introduce the complexification of Cl, for all non-degenerate
quadratic forms in a complex vector space are equivalent. However, before doing so
we introduce an element in the Clifford algebra which will be very important later on.

Theorem 6.7.3. If V is oriented and q is non-degenerate, then

(6.7.6) v=e1--en/ ][] \/@

is independent of the choice of positively oriented diagonalizing basis €1, ...,e, for V.
We have

6.7.7) 2 =(-1)2" D [sengs, vu=(-1)"""Duy, ifueClV(V,q).
1

Proof. As in the proof of Theorem 6.7.2 we have

1 n
- > sgnmeq) - -€7r(n)/1:[ \/1451-

If & = > cirer is another diagonalizing positively oriented basis, then det(c;z) > 0
and

n
n! H \/ |ij|5 = ngnﬁéﬂ(l) . -éﬂ(n)
1 ks
= Z ngn’ﬂ'cﬂ(l)’kl - - Cr(n),kn€ky " "€k,
kl,...,kn ™

= det(c; 1) Z sgn(ky,. .., kn)ek, - €k,
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where all kq, ..., k, are different in the last sum. Now we have
> a8 =a> &e) =a)_GE) =D 45, &= ik
Hence [} G; =TI ¢j| det(c; x)|* which proves that

det(c; k) ﬁ M = ﬁ \/|§7j\,

since the determinant is positive. Thus 7 = v. The proof of (6.7.7) is straightforward:

n

n
]/2 =1 +EpEl-"Ep H |qg| — (_1)n—1+~~~—|—1€% .. gi/H |qg|
1

1
Loy TT 9
= (=12 V][5,
1:[\%'\

i
.751 .. 'Ej—1Qj5j—|—1 c e Ep,

\0glve; = (=1)
V0gilejy = (1) e gj1g5e 541 e

Hence ve; = (—1)" 'e;v, which immediately gives the second part of (6.7.7).

I
I

A complete description of the real Clifford algebras is fairly complicated (see Atiyah,
Bott and Shapiro [1]) so we content ourselves with discussing the complexification
Clc(V, q) obtained by allowing the coefficients in (6.7.4) to be complex, or equivalently,
replacing V' by the complexification Vi in the definition by the tensor algebra. All non-
degenerate quadratic forms in a complex vector space are equivalent under complex
linear coordinate transformations, and we shall only discuss Clg(n) = Clc(R™,e)
where e is the Euclidean quadratic form in R™.

Theorem 6.7.4. There are complex algebra isomorphisms

(6.7.8) Cle(2k) = End(C2"), Cle(2k + 1) 2 End(C?") & End(C?").

Proof. We start with dimensions 1 and 2. The algebra Clg(1) consists of all (o, ) € C?
with componentwise addition and

(o, B)(, B) = (a0 + BF', " + Ba).

Since

ad’ + " £ (af' + a’) = (a £ B) (o £ '),
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the map («, 8) — (a+ 3, a— ) changes the operations in Clg(1) to the coordinatewise
operations in C ¢ C.
To determine Clg(2) we define a linear map o : R?> — End(C?) by

o=y 5). o= (2 4)

where €1, €9 are the basis vectors in R?. Since

o(e1)? = 0(2)2 = I, o(e1)o(ea) = —o(ea)o(er) = (S é) ,

it follows that o extends to a bijective homomorphism Clg(2) — End(C?).
For larger n we shall obtain (6.7.8) inductively if we prove that

(6.7.9) Clg(n+2) 2 Clg(n) ® Cle(2), n>1.
To prove (6.7.9) we define a linear map o : R"*? — Clg(n) @ Clg(2) by

( ) i&?j ®€n+1 *En+2, lfj < n,
o(e;) =
/ 1®e¢y, ifj=n+1,n+2.

Since 0(g;)? =1®1 for j <n+2 and o(g;)o(er) + o(ex)o(e;) = 0 if j # k, the map
o induces a homomorphism & : Clg(n + 2) — Clg(n) ® Cle(2). The range of G is a
subalgebra containing 1 ® Clg(2) and Clg(n) ® 1, so & is surjective, henced bijective
because the dimensions agree. Now the isomorphisms (6.7.8) follow inductively since
for arbitrary (complex) vector spaces E and F' we have

(End E) ® (End F) = End(E ® F).

In fact, EndE X EQE*, EndF X FQ F*, End(FE®Q F) 2 F® F ® E* ® F*, and the
resulting isomorphism ¢ respects the product structure for if Sy, S € End(FE), T1,Ts €
End F, then ¢(S; ® T1) times ¢(Sy ® Ts) and ¢(S15 @ T1T3) bothmap e® f € E® F
to (S152¢) @ (T1T>f). The proof is complete.

If we identify R?* with C*, we get a natural isomorphism
(6.7.10) 1 : Clg(2k) = End(A*CF),

where A*CF denotes the full complex exterior algebra over C*. (Since A*CF has
complex dimension 2%, the two sides of (6.7.10) are isomorphic by Theorem 6.7.4.)
To define the isomorphism we must recall a construction made in Section 6.2. For
w € W = CF we denote by T}, the exterior multiplication T,u = w Au, u € A*W, and
by T we denote the adjoint with respect to the natural hermitian scalar product in
AN*W. If w is the basis vector e; € W, then

Twu =e1 Nug, if u=wug+er Auq,
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where ug,u; are in the subalgebra generated by es,...,ex. If u is of degree v and
v =1vg + e1 Avy is of degree v + 1, then

(Twu,v) = (ex ANug,vo +e1 Avy) = (e1 Aug,er Avy) = (ug,v1),
which means that 7);v = v;. Hence
|1 Twoll? + T30l = llex Avoll® + [[oal* = [lool® + loa[|* = Jlv]*.
By unitary invariance and homogeneity we conclude that
TiTw 4+ ToTE = |w* I, weW,

where [ is the identity in A*W, and |w|? is the square of the norm of w as an element
in C*, or equivalently as an element in R?*. Since T2 = 0 and T}*? = 0, it follows that

(6.7.11) pw)? = |w?I, if p(w) =T, + T

It is clear that u is real linear, so we can extend p first to an algebra homomorphism
Cl(2k) — End(A*C*), and then to a complex algebra homomorphism (6.7.10). It is
actually an isomorphism, for both sides are isomorphic to End(CQk ), by Theorem 6.7.4,
and the kernel of p must vanish by the following well known lemma:

Lemma 6.7.5. If E is a vector space and J is a two sided ideal in End(FE), then
J = {0} or J =End(F).

Proof. Let E = CN and T € J, rankT = r > 0. The product ATB € J consists of
an invertible matrix 77 in the upper left r X r corner with zeros elsewhere, if A, B are
non-singular, B maps the last N — r basis vectors to the kernel of 7" and A maps the
range to the plane spanned by the first r basis vectors. Multiplying once more to the
left we make T equal to the identity. Adding such matrices for different choices of
basis vectors we conclude that the identity is in J, so J = End(E).

Summing up, we have proved:

Theorem 6.7.6. The complex extension of u, defined by (6.7.11) gives a natural iso-
morphism (6.7.10).

Recall that our purpose is to find linear maps V' — End(F) satisfying (6.7.1). We
have found that the existence of such a map means precisely that £ is a C1(V, ¢) module.
Theorem 6.7.6 gives an example, for the map p makes A*(C*) a CI(R?*, ¢) module. To
define an associated vector bundle on a Riemannian manifold we would need to have
a representation of O(2k) on A*(CF). To define the appropriate representations we
digress to discuss the relation between the orthogonal group and the Clifford algebra.

Proposition 6.7.7. If q is a positive definite quadratic form in the real vector space
R, then

Pln(V7Q) = {Ul T V5504 € VvQ(Ul) = ]-7 fOT‘i = ]-7 .. 7]} C CI(V7Q)7
Spin(V, Q) = {1)1 T U2550; € V,Q(Ui) =1, fori=1,.. 72]} = PIH(V, Q) A ClO(V7 Q)7
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are multiplicative groups.
Proof. The transpose v; ---vy of vy ---v; is an inverse.

If veV, q(v) =1, then
vex-v=v-(—v-x+2qv,x)) =—x+2q(v,x)v, xTEV.

Now = — 2¢(v,z)v is the orthogonal reflection of x in the plane orthogonal to v, so
x +— v - x - v is this reflection followed by reflection in the origin. If we define

uw* = (=1)7tu ifue CY(V,q), j=0,1,
thus (vy---v)* = (=)l - 01, v1,...,v €V, it follows if u € Pin(V, ¢) that
(6.7.12) Voz—u-xz-u", xze€V,

is a product of orthogonal reflections in V', and it preserves orientation if and only if
u € Spin(V, ¢q). Hence (6.7.12) defines a homomorphism

7: Pin(V,q) — O(V, q),

such that Spin(V, q) is the inverse image of SO(V,q). The maps Pin(V, q) — O(V, q)
and Spin(V, q) — SO(V, q) are surjective by the following lemma, which is very close
to Exercise 1.4.3:

Lemma 6.7.8. Every element in O(n) is a product of at most n orthogonal reflections
in R™.
Proof. We can extend an orthogonal transformation O in R™ to a unitary transforma-

tion in C™. The projection in R™ of an eigenvector in C” is an invariant subspace V;
for O of dimension 1 or 2, and the orthogonal space V" is also invariant since

OV, V) = (Vi 0711) =o.

Hence it suffices to prove the lemma in dimension 1 and dimension 2. In the first case
an orthogonal transformation is a reflection or the identity, in the second case it is a
reflection or a rotation by an angle # and therefore the product of reflections in two
lines with an angle 6/2 between them.

Theorem 6.7.9. If q is a positive definite quadratic form in 'V, then the homomor-
phisms T : Pin(V,q) — O(V,q) and 7 : Spin(V,q) — SO(V,q) are surjective with
kernel {£1}. Both Pin(V, q) and Spin(V, q) are compact subsets of C1(V, q), Spin(V, q)
is arcwise connected and so is Pin(V,q) \ Spin(V, q). If dimV > 3 then Spin(V, q) is
simply connected.

Proof. We have already proved surjectivity, and it is clear that 41 is in the kernel.
Suppose that v € Pin(V, ¢) and that u -z - u* = x, x € V. Then u € Spin(V, ¢q) since
7(u) preserves the orientation, so u* -u = 1, hence u -z = z - v and

r-u-x=q(x)u.
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With an orthonormal basis €1, ...,&, in V, we can write (see (6.7.4)

U = E Ay, i;€0p " Eiyy U1 <0 <lj, Jeven.

If we take x = ¢; and note that ;- ¢;, - - “€j; -& = *&;, -+ - &;; with the minus sign when
l € {i1,...,4;}, we conclude that only a term with j = 0 can occur. This means that
u is a real number, and since uzu = z, x € V, we have u = +1.

The compactness follows from the bound for the number of reflections in Lemma
6.7.8. To prove that Spin(V,g) is connected it suffices to note that vy - - - vo, where
v; € V and ¢(vj) = 1, is connected to vy - v1 ---v; = 1 if each v; is connected to vy in
the connected unit sphere in V.

What remains is to prove that Spin(V,q) is simply connected if dimV > 3. In
the proof we shall need that 7 is a local homeomorphism. It suffices to prove that at
+1. Take disjoint compact neighborhoods Uy of +1 in Spin(V, q) with U_ = —1- U,
and, using the compactness, a compact neighborhood U of the identity in SO(V, q)
such that 771U C U, UU_. By the results already proved it follows that 7 maps the
neighborhoods U}, = U+ N771U of %1 bijectively, hence homeomorphically, on U. For
the proof we shall also need the following elementary lemma:

Lemma 6.7.10. FEvery closed loop in SO(n), n > 2, is homotopic to a loop in SO(2),
embedded in SO(n) as SO(2) x I,_s.

Proof. Let R/Z >t — O(t) € SO(n) be the given loop, n > 3. If &, = (0,...,0,1) is
left fixed by O(t) for every ¢, then O(t) € SO(n — 1) x 1, and the lemma follows by
induction from lower dimensions. In the general case we first regularize O(t) to a C*
map. Then the curve {O(t)e,;t € R/Z} is of measure 0 in S™"1, so we can choose
€ € S"~ ! such that ¢ ¢ {O(t);t € R/Z}. Let Oy € SO(n) map & to g,. Our loop is
homotopic to the loop ¢t — O10(t) = 5(t), and 5(t)5n # +e,, for every t. Hence

O(t)en, = encosO(t) + £(t) siné(t)

with uniquely determined continuous 6(t) € (0,7) and £(t) € S™! orthogonal to
en.Denote by Os(t, s) the rotation by the angle —sf(t) in the £,£(¢) plane. Then

(R/Z) x [0,1] > (t,s) — Oa2(t,s)O(t)

is a homotopy connecting the loop ¢ — O(¢) to the loop ¢ — Oa(t, 1)O(t) which leaves
e, fixed. As observed at the beginning of the proof, the lemma is then proved by
induction.

End of proof of Theorem 6.7.9. Let R/Z > t — x(t) € Spin(R",e) be a closed loop.
Then t — 7(z(t)) is a closed loop in SO(n), so by Lemma 6.7.10 there is a homotopy
to a loop in t — O(t) X I,_2 where O(t) € SO(2) consists of rotation in R? by the
angle 2wkt. We can lift the homotopy to one in Spin(R™, e) connecting the given loop
to the loop

t+— (1,0,...,0) - (cos(mkt), —sin(mkt),0, ..., 0).
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Since it is closed it follows that k is even. When n > 3 a homotopy to a constant loop
is given by

(t,s) — (1,0,...,0) - (cos(37s) cos(mkt), — cos(3ms) sin(rkt), sin(37s),0,...,0)

where t € R/Z, s € [0,1]. Hence Spin(R", e) is simply connected.

Remarks. 1. Comparison of the result with Exercise 1.4.6 shows that Spin(R3,e) =2
SU(2). We could also have proved that Spin(R"™, e) is simply connected starting from
this fact.

2. Any closed loop v : R/Z > t — O(t) € SO(n), n > 3, can be lifted to an arc
[0,1] 5 t — z(t) € Spin(R",e), and z(1) = £2(0) by Theorem 6.7.9. If z(1) = =(0)
we have a closed loop in Spin(R™, e), so it is homotopic to a point, hence ~ is trivial.
However, if (1) = —z(0) we do not have a closed loop in Spin(R", e), and this remains
true for the lifting of any loop homotopic to . This proves that the fundamental
group of SO(n) is Zs, with the element # 0 represented by the projection of any arc in
Spin(R™, e) connecting 1 to —1. The proof of Theorem 6.7.9 would have been shorter
if we had assumed the fundamental group of SO(n) known, but we have chosen to
determine it at the same time.

3. Since SO(2) = S(1) = Spin(R?, €), the fundamental group is equal to Z and the
correspondence is given by the winding number of a loop, when n = 2.

Using Exercise 1.4.5 it is easy to see that Spin(V,q) and Pin(V,q) are analytic
manifolds in Cl(V,q). However, we prefer to give a direct proof which also gives an
explicit correspondence between the Lie algebras of Spin(V, ¢) and SO(V, q), which of
course are isomorphic since the groups are locally isomorphic.

Theorem 6.7.11. If A = (a;i) is a real skew symmetric n X n matriz, and €1, . .., &,
1s an orthonormal basis in V', then

(6.7.13) exp( Y ajie; - ex),
3 k=1

defined by the Taylor expansion which converges in CI(V, q), is an element in Spin(V, q).
The image in SO(V, q) has the matriz exp(4A) in the basis €1, ...,,. Thus (6.7.13)
gives a bijection of a neighborhood of 0 in the space of skew symmetric matrices on a
neighborhood of the identity in Spin(V, q), which is therefore an analytic manifold with

tangent space Cl[z](V, q) at the identity, and
s0(n) 3 4(ajk)lhey = Y ajrejer € CIP(V, q)
g k=1

is the isomorphism of Lie algebras corresponding to the local isomorphism of
SO(V,q), identified with SO(n), and Spin(V, q).

Note that this explains Exercise 6.7.1, including the factor 4.
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Proof. Choose a norm ||| in C1(V, ¢) such that ||z-y|| < ||z|||ly||. The formal expansion
expz =y, x¥/v! converges for every x € C1(V, g), for the norm of the term is bounded
by ||z||¥/v!. The sum is an analytic function of x, and we obtain expx - exp(—z) =
exp 0 = 1 by rearranging the terms in the product. For small t € R let

n

P(t) = H Plj(t), PZ](t) =& (\ /1 — afjt%i + aijtaj),

4,5=1

with the product taken say in the lexicographical order. We have P;; = 1, P;;(t) €
Spin(V, q) for any i, j, and

n
Pz‘j(t> =1+ a;jte; - €5+ O(tz), hence P(t) =14+tz+ O(tz), xr = Z aij€; * €5,
ij=1

which implies that P(1/v)” — expz as v — oo, for
1P1/v)" = (L +z/v)’| < (1 + |lzll/v)" (1 +O1/v*))” = 1) =0,

(1+z/v)" Zx“ 1-1/v)...1 = (p—1)/v)/u! — expz.

Hence expx € Spin(V,q). To find the corresponding orthogonal transformation we
note that by (6.7.12)

0, i kAi k]
T(Pij(t»{fk = Pij (t)&’fkpij(t)* =€ + —2akjt€j + O(tz), itk =1 7&] , hence
T(P(t)){-jk =L —2 Zakjtej + 2 Zaiktf‘:i + O(t2> =€+ 4tzaik5i + O(tz).
j i i
This implies that 7(P(1/v)") = (7(P(1/v)))” — e** where A is the skew symmetric
operator in V' with Aey, = ). a;xe;, that is, with matrix (a;) in the basis €1,. .., .

The proof is complete.

From now on we shall use the abbreviated notation Pin(n) and Spin(n) for
Pin(R", e) and Spin(R"™,e). The composition

(6.7.14) 0 : Pin(2k) — Cl1(2k) — Clc(2k) & End(A*CF))

with p as in (6.7.10) is a representation since it is a homomorphism mapping 1 to
the identity. It is not quite the desired representation of O(2k), but just a projective
representation, determined up to a factor +1; we shall come back to this point in
Section 6.8.
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Proposition 6.7.12. The representation o of Pin(2k) defined by (6.7.14) is unitary
and irreducible.

Proof. That g is unitary follows from (6.7.11), for pu(v) is self-adjoint with p(v)? =1
if v € V and |v| = 1. Irreducibility is a consequence of the fact that Pin(2k) generates
the algebra Cl(2k), for p is an isomorphism.

The map p(v) in (6.7.11) takes forms of even (odd) degree to forms of odd (even)
degree. Hence the degree of p(z)w has the same parity as w € A*(CF) if z € C1°(2k)
while it is opposite if z € Clg(2k). This means that the restriction of o to Spin(2k)
splits into the direct sum of two representations

(6.7.15) D;} : Spin(2k) — Aut(SL(2k)), Sy (2k) = A°(CF), S_(2k) = A°dd(CP),

called the half-spin representations. One calls (6.7.14) the spin representation.
Proposition 6.7.13. The half-spin representations are unitary and irreducible.

Proof. If W C S, (2k) is an invariant subspace for DT, then W @& (o(g1)W) C A*(C¥)
2

is an invariant subspace for g, so W = {0} or W = S, (2k) by Proposition 6.7.11,
which also shows that the representations are unitary.

In the odd dimensional case we can use the isomorphism Clg(2k — 1) — Clg(2k)
mapping v € R%~1 to v - £95, where €95, is the last basis vector in R?*. This means

that the elements in Cg] (2k — 1) are multiplied by i/ 2, followed by right multiplication
by gy, if 7 is odd. Hence we get an inclusion Spin(2k —1) — Spin(2k), so (6.7.15) gives

a representation
+
D

Spin(2k — 1) — Spin(2k) — Aut(S,(2k)),

which is also denoted by D7. Similarly we get a representation D in S_(2k), but
2 2

since

Dy pear) = p(e2x) DY on Sy (2k),

it is an equivalent representation.

For reasons analogous to Proposition 6.5.1 we shall have to calculate the difference
between the traces of an endomorphism K of S;(2k) and one K_ of S_(2k). We
combine them to

K = (If; [g_) € End(S(2k)) = End(A*(C*)) = Cle(2k),

and we write
(6.7.16) StrK =TrK, —TrK_.

One calls Str K the supertrace of K; it is defined for any endomorphism in a space S
with a given decomposition S = Sy @& S_.
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Theorem 6.7.14 (The Berezin-Patodi formula). If z € Clc(2k) and v is the

“volume element” e1---eo (as in (6.7.6)), then the component of z in Cl[ék] is

((24) 7% Str pu(2))v.

Before the proof we shall discuss some properties of v in addition to those given in
Theorem 6.7.3. In doing so we must make our identification of R?* with C* explicit.
We shall use the identification

R* 5 (&,..., &) — (&1 +i&, ..., Copo1 + i) € CF

which is customary in complex analysis.

Lemma 6.7.15. The center of Spin(2k) is equal to {£1, tv}. The restriction of o(v)
to S+ (2k) is equal to +i¥.

Proof. The image 7(x) in SO(2k) of an element x in the center of Spin(2k) commutes
with every O € SO(2k). For every w € S?¢~1 it follows that O(7(z)w) = 7(2)Ow =
T(z)w, if O € SO(2k) leaves w fixed. Hence 7(z)w = f+w, and it follows that 7(z) is
+ the identity. By Theorem 6.7.9 we conclude that there are at most four elements in
the center. From the second part of (6.7.7) it follows that vu = wv if u € Spin(2k), so
+1, v are in the center and it can contain no other elements.

Since v € Spin(2k) we know that Si(2k) is invariant under po(v), and since the
restriction of ¢ to Spin(2k) is an irreducible representation on Sy (2k) commuting with
o(v), it follows that o(v) is a constant in each of these spaces. From (6.7.7) we know
that o(v)? = o(v?) = (—1)*, so the constant values must be +i¥. By (6.7.7) we have
€1 v = —v - €1, hence p(e1)o(v) = —o(v)o(e1) which proves that we have opposite
signs in Sy (2k). To find the sign in S; (2k) it suffices to calculate o(v)1. Recall that
€1,...,e95 are the basis vectors in R?*, and that we have identified €9;—1 with e; and
€95 with iej, if e, ..., e, are the basis vectors in C*. By induction for decreasing j it
follows from (6.7.11) that

Q(Egj . '52k>1 = ik_j+16j N Aeg,

for 17, _, annihilates the right-hand side. Starting from the case j = 1 we obtain by
induction for increasing j

-k
Q(E2j—1"'51'52"'52k>122 ej-l—l/\"'/\eka

for T,

€j+1

j = k we obtain o(v)1 = i, for

annihilates the right hand side while T~ removes the factor ;4. When

Eok—1"""€1 €2 &2k =E€1°-€2°E3 &4 E2k—1"E2%

since €1 - €9, €3+ €4, ... commute with the other factors which allows us to to move them
out to the left starting from the middle. The lemma is proved.

Proof of Theorem 6.7.14. From Lemma 6.7.15 it follows that

(6.7.17) i* Str p(2) = Tr(p(v)u(2)) = Tr p(vz).



CLIFFORD AND SPINOR ANALYSIS 153

If we set w = vz, then 2 = (—=1)*vw by (6.7.7), so the component of z in Cl[ék] is
(—1)*wov where wy is the constant term in w. We shall prove that

(6.7.18) Tr p(w) = 25wy.

In view of (6.7.17) this will show that (—1)*wg = (—2)7* Tr u(w) = (2i) 7" Str u(2),
which is the Berezin-Patodi formula. To prove (6.7.18) we note first that u(1) is the
identity in a space of dimension 2*, so the trace is 2. We also have to show that for
j=1,...,2k we have Tr u(w) = 0 if

W= Ej * &y, 1§i1<"'<ij§2k.
If j is even we write w = ¢;, - w3 = —w; - &;, and obtain

Tr p(w) = Tr(p(es, )pu(wr)) = Tr(p(wi)p(ei,)) = = Trpu,  hence Trpu(w) =0,

for Tr(AB) = Tr(BA). If j is odd we choose i € {1,...,2k}\ {i1,...,%;}. Then we
have w =¢; - ¢, -w = —¢; - w - €;, and it follows that

Tr pu(w) = Tr(u(e:)*p(w)) = Tr(p(er) p(w)pler)) = — Tr p(w),
hence Tr pu(w) = 0. The proof is complete.

The important feature of the Berezin-Patodi formula is that the information about
the supertrace is contained in the highest part of the Clifford algebra. As we shall
see in Section 6.10, the parametrix construction will show that the jth term has no
component above the level Clgg ], and that the term there can be calculated for j < k;
we shall precisely need the kth term to compute an index.

6.8. Clifford and spinor analysis. Let M be a (C'°° Riemannian manifold of
dimension n. For every x € M we have defined in Section 6.7 a Clifford algebra
Cl, (M) = CUT}, gt), where g} is the quadratic form in 7 M dual to the metric form
9. in T, M. Tt is clear that Cl,(M) is the fiber at x of a vector bundle CI(M ), which
is a quotient of ®;<, ® T*M. We can also view Cl(M) as a bundle associated to the
orthonormal frame bundle and the representation of the orthogonal group on CI(R",e)
induced by the natural action of O(n) on R™. In either way we see that the Levi-Civita
connection is defined in CI(M).

As motivated in Section 6.6, Dirac operators involve bundles with a special structure:

Definition 6.8.1. A (complex) vector bundle E on M is called a Clifford bundle if for
every x € M we have a map

Cl,(M)x E, > (v,p)—v-p€E,

which makes F, a Cl,(M) module, and the map CI(M) & E — E is in C*°. We shall
say that E is a Hermatian Clifford bundle if E is provided with a Hermitian metric
such that the map o(v) : ¢ — v - ¢ in End E, is self-adjoint for every v € T M.

Note that the last assumption implies that (o(v)p,o(v)p) = (o(v)?p, ) =
[v|2(p, ), where |v|, is the norm in T}M, so o(v) is an isometry if |v], = 1.
This implies that the whole group Pin(7}, g¥) acts as a group of isometries on F,.
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Proposition 6.8.2. In a Hermitian Clifford bundle one can always define a connec-
tion V¥ compatible with the metric in the sense of (5.1.12) such that for every vector
field X, one form v and section ¢ of E we have

(6.8.1) VEW- )= (Vxv) - ¢+v-Vip.

Here V is the Levi-Civita connection.

A connection compatible with the metric and satisfying (6.8.1) is called a Clifford
connection.

Proof. 1f (6.8.1) is valid and v € T}, |v|, = 1, then it follows that
Vxg(z) =v-VX(V o)),

if the one form V is chosen with VV = 0 and V = v at x. This determines V up to
second order terms which do not affect the right-hand side. Repeating this argument
we obtain

(6.8.2) VEe(r) =u - VE(u' - ¢)(z), wuePin(T,g}),

where u* should be extended so that Vu* = 0 at z. By Proposition 5.1.7 we can
always choose a connection V¥ which is compatible with the Hermitian metric. There
is no reason why it should satisfy (6.8.2), but we can force it to do so by passing to
the connection

VEe(w) = [u- VR o)(a)du

where du is the invariant measure on the compact group Pin. Since the metric is
invariant under Pin by assumption, this is still a connection compatible with the metric,
and (6.8.2) is now valid for VZ, which means that (6.8.1) holds at # when Vo = 0 at
z. In general we can for any given point z write v = | %;v; in a neighborhood of z,
where Vv; = 0 at  and ¢; € C°°. Then we obtain

VRW-9) =Y (X¢j)v-o+ Y vv;- Vie=(Vxv)-o+v-Vig,

where we have used first that %?2 is a connection, then that V is a connection. This
completes the proof.

For any connection V¥ in a Clifford bundle E we can define a first order differential
operator D in C*°(M, E) by composing

VE . C®(M,E) = C®(M, T* ® E)
with the Clifford multiplication map

m: C=(M,T* ® E) — C=(M, E)
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extending the bilinear map 7)) X E, 3 (v,¢) — v - € E,. For ¢y € C*°(M) and
p € C°(M, E) we have

e D(e"p) = m((dp) ® ¢) + Dy
so the principal symbol as defined in Section 5.1 is at (z,£) € T, the map
E,>ww— & w.
In other words,
(6.8.3) D(p) = YDy + (dip) - o, b € CF(M), ¢ € C*(M, E).

The square of the symbol is equal to |£|? times the identity in FE,, and if F is a
Hermitian Clifford bundle it follows that D is of Dirac type. We can say more if the
connection is well chosen:

Proposition 6.8.3. If V¥ is a Clifford connection in the Hermitian Clifford bundle
E, then D 1is skew symmetric.

Proof. We must show that if ¢ and ¢ are in C§°(M, E), then

(6.8.4) / (D, ) + (¢, D)) dvol = 0.

M
At any point we can find an orthonormal basis ey, ..., e, for the vector fields, hence
a dual orthonormal frame €4, ...,e, for the one forms, with Ve; = 0 for all j at the

chosen point. Since
VE<,0 = Zaj & VeEjgo,
1
we have .
Dy = Z €5+ ij_(p
1
Define a (complex) vector field X by

X(’U) :(’UQO,@ZJ) :((;071)'7»[])7

where v is a one form. Taking v = ¢; we obtain at a point where Ve; = 0 for every j,
using (6.8.1) and (5.1.12),

Z(ver>(5j) = Z(gj ’ ijw?w) + (Ej 2 veEJ¢> = (D%ﬁb) + (907 D¢>

Since X has compact support and the divergence in the left-hand side is independent
of the choice of frames (cf. (6.3.14)), we conclude using (6.3.14)’ that (6.8.4) holds.
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Remark. Usually one includes a factor ¢ in the definition to make D symmetric. How-
ever, we have stayed here with the definition of principal symbol given in Section 5.1
and hope to be consistent.

We shall say that a Clifford module F is graded if a direct sum decomposition
E = E'@E" is given which is compatible with the grading in C1(M), that is, Cl% -EJ C
Eiti mod 2 The Clifford connection can clearly be chosen so that it respects this
decomposition, and then the Dirac operator takes the form (6.6.2).

FEzercise 6.8.1. Prove that if V¥ is a Clifford connection and v is a one form, then
(6.8.5) D(v-¢)=—v-Dp+2VEp+ (Dv) ¢

where D is the Dirac type operator corresponding to the Clifford module Cl(M ), that
is, with the notation in the proof of Proposition 6.8.3,

Dv = Zej Ve, 0.
Prove that D(dy) = Ay if p € C°°(M), and conclude that

(6.8.6)  D*(pp) = D% + 2V gyye 0 + (DY), ¢ € C(M), p € C%(M, E).

We shall now prove Weitzenbock type formulas, similar to (6.3.15), for a Dirac type
operator D corresponding to a Hermitian Clifford bundle F with a Clifford connection.
Then D is skew adjoint and the principal symbol of D? is |£|2. For the connection
V:C®(M,E)— C®(M, T* ® E) we can form the adjoint with respect to the metric
in £ and the metric in 7" ® E such that

n n
1Y ey @wi|> = llw;ll?, w; € Ex,
1 1

ifey,..., ey, is an orthonormal basis in 7. (This is the Hilbert-Schmidt metric; prove as
an exercise that it is independent of the choice of basis 1, ..., e,.) Then the principal
symbol of V*V is —|£|?, which proves that D? + V*V is of order < 1. We shall now
show that it is of order 0, which is no surprise in view of Proposition 6.1.2. For the
proof we take y € C5°(M,R), p € C*>°(M, E) and recall from Exercise 6.8.1 that

(6.8.7) D?*(xp) = xD*¢ 4+ 2Vxp + (Ax)p, X = (dx)".
Since V is a connection we have
Vixe) = xVe + (dx) @ .

If ¢ € C>°(M,R) it follows that

(V*V(xe),¥) = (Vixe), V¥) = (xVe, Vi) + ((dx) @ ¢, Vi) = (Ve, V(x¥))
— (Vo,(dx) @ ¥) + ((dx) ® ¢, Vi) = (XV*Vp, ) = (Vxe,¥) + (¢, Vxi).
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Since the connection is compatible with the Hermitian metric we have with scalar
products in the fiber at x

(0, Vx¥)(2) + (Vx o, ¥)(x) = Vx (@, ¢)(2),

so using (6.3.13) to integrate by parts we obtain

(V*V(xe),¥) = (XV'Ve,9) = 2(Vxp, ) — ((div X)p, 1),

that is,
V*V(xg) = xV*'Vp = 2Vxp — (div X)e.

Combining this result with (6.8.7) we conclude that
(D? +V*V)(xp) = x(D* + V*V)g,

which means that D? + V*V is of order 0. More precisely, we have

Proposition 6.8.4. If D is the Dirac type operator in a Hermitian Clifford bundle E
over M corresponding to a Clifford connection V, then

(6.8.8) Do+ V*'Vo=1 > e R (ex,e5)p, o € C™(M,E),
4,k=1
where €1,...,6, and eq1,...,e, are local dual orthonormal frames for the one forms

and the vector fields, and RY is the curvature of E with the connection ¥V, defined by
(5.1.5).

Proof. Writing V¥ for the connection in E to distinguish it from the Levi-Civita
connection in T* M, we have

n
Dy = Zej -ijgp, hence
1

DQ(p: Z €k ~V6Ek(€j 'VeEj(P) = Z €k '(Vekgj)'vfjgp—i— Z €k &) -Vivg%

J,k=1 7,k=1 J,k=1

since V¥ is a Clifford connection. The second sum is equal to

n
Y VEVEe+Y en-e - (VEVE —=VEVE)p, and
Jj=1 j>k

E
(Ve VE = VeV e =RY (ex,e))p + Vi, 19

k

by (5.1.5). Since Vo = > ¢; ® VeEjgp we obtain if ¢ € C3°(M, E) has support in the
coordinate patch U where the local frames are defined

(V*V,¢) = (Veo, Vib) = > (VE@, VE).
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When x € U we have with scalar product taken only in the fiber at x
(VE@,VE)(2) = VE(VE o, ¢)(x) — (VEVE 0,9)(2).

If x € C3°(U) then

/Vejxdvol:/<ej,dx> dvol = —/Xdivej dvol,
U U

which proves that

n

V'Ve == VEVEQ - (dive;)VEe.
j=1

j=1

Summing up, we have found that

(D*+V*V)p— 1 Z €k - €; -RVE(ek,ej)gp
Jk=1

n n n
= Z ek - (Verg5) -ijgp — Zdiveijjap-l— : Z k€5 V[b;k,ej](ﬂ-
k=1 =1 =1

For any point x € U we can choose ¢ with given value and Vi = 0 at x, which makes
the right-hand side equal to 0 at . But we have already proved that the left-hand side
only depends on ¢(x), which completes the proof of (6.8.8).

As an example we shall derive (6.3.16) again by applying Proposition 6.8.4 to the
Dirac type operator d + d* in C*> (M, M) (see (6.3.5)). Recall that by Exercise
3.1.2 and (5.1.5) the matrix of RV(X,Y) for the cotangent bundle with the Levi-
Civita connection is — Zk,l R X*Y' i,5=1,...,n, in the coordinate frame. With
R! ik denoting the components of the Riemann curvature tensor in the frame 4, ..., ¢,
instead, we obtain if ¢ = > ¢, is a one form

RY (ex,ej)p = — Z Ry piel.
I

Hence the right-hand side of (6.8.8) becomes

(6.8.9) - er &5 1R i

©,7,k,1=1

N

If j,k,l are different then €y - €; - £ is invariant under circular permutations, so the
first Bianchi identity shows that the sum of such terms is equal to 0. If £ = j then
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R'1x; = 0 so the only contributions come when k = [ or j = [; the terms common to
these cases vanish. Hence (6.8.9) is equal to

n

(6.8.10) —% Z (—éjRikkj + €kRijkj)<,0i = — Z €jRikjk:90i = - Zijij(ph
i,7,k=1 i,j,k=1

where R denotes the Ricci tensor in the last formula. This gives (6.3.16). The
Weitzenbock formulas for forms of higher degree could be obtained in the same way,
but then we would have to work out the curvature form in the higher exterior powers
using Exercise 5.4.1.

We shall now pass to the main examples of Dirac operators, based on the half spin
representations DT in (6.7.15). These are not representations of SO(2k) but of the

2
covering group Spin(2k), so we cannot define associated vector bundles for an arbitrary
Riemannian manifold.

Definition 6.8.5. An oriented Riemannian manifold M of dimension n has a spin struc-
ture if there exists a principal Spin(n) bundle Pon M , which is a double cover of the
oriented orthonormal frame bundle P, such that with the map Spin(n) — SO(n) de-
fined by (6.7.12) we have a commutative diagram, with horizontal arrows defined by
the right group action,

P x Spin(n) —— P

! J

PxSO(n) —— P.

In a neighborhood U of any point in M we can choose a spin structure just by
identifying P with U x SO(n) and P with U x Spin(n). However, the existence of
a spin structure in the large requires the vanishing of an element in H?(M,Zs) (the
Stiefel-Whitney class), and there may exist inequivalent spin structures when this
condition is fulfilled.

Assume now that M is an oriented manifold of dimension n = 2k with a spin
structure. Then the half spin bundles

S.(P)=P X p= S (2K)

and the full spin bundle S(P) = S, (P) @ S_(P) are defined. The latter is associated
with the direct sum p of the representations Df, which is the restriction of (6.7.14)
2

to Spin(2k). The Clifford bundle can be regarded as the bundle associated with the
representation of Spin(2k) on Cl(2k) by the representation

Spin(2k) x C1(2k) > (a,w) — awa* € C1(2k)

for this is a representation since a* is the inverse of a € Spin(2k), and it gives the
orthogonal transformation 7(a) when applied to an element in R?*.
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Proposition 6.8.6. The spin bundle S(]S) is a Hermitian Clifford bundle, and the

Levi-Civita connection is a Clifford connection in S(P) For the corresponding Dirac
operator we have the Lichnerowicz formula

(6.8.11) D? + V*V = —S/4,

where S is the scalar curvature.

Proof. Since the spin representation is unitary, the Hermitian metric in S(2k) induces
one in S(P). The map
Cl(2k) x S(2k) — S(2k)

defined by the identification of Clc(2k) with End(S(2k)), induces for every z € M a
Clifford module structure Cl, (M) x S, (P) — S, (P). In fact, when

(p,z,w) € P, x CL(2k) x S(2k)

and (pa~!,2’,w') with a € Spin(2k) define the same element in Cl, (M) x S,(P), then
2’ =a-x-a* and w' = a-w, which implies that 2’ - w’ = a- (x-w), hence that (p,z - w)
and (pa~',2' - w') = (pa~',a- (z - w)) define the same element in S(P). It is clear
that the multiplication so defined depends smoothly on x. Multiplication by a vector
v € T M is self-adjoint, since by our original definition it is the sum of an operator
and its adjoint, so S (]5) is a Clifford module. At the center of a geodesic coordinate
system the Levi-Civita connection cannot be distinguished from the flat connection in
any of the bundles involved, so it is obvious that we have a Clifford connection.

With Rijkl denoting the components of the Riemannian curvature tensor in the

oriented orthonormal frame ¢e4,...,e, of T}, with dual frame e;,...,e, in T, we
have seen above that the curvature RV (e, e;) of the cotangent bundle has the skew
symmetric matrix —(Rlikj)éj”::"’z = —(Rlikj)éj"_‘_‘_”z. By Theorem 6.7.11 this skew

symmetric matrix as an element in so(n) corresponds in the Lie algebra of Spin(n) to
—% Zi,l Ryirjei - €1. Hence the right-hand side of (6.8.8) becomes

1 § : _ 1§ : _ 1
) Rlikjék'éj R — €lej cEl = _ZS’

i7j7k7l

where we have used (6.8.10). This proves (6.8.11).

The Lichnerowicz formula has a corollary completely parallel to Bochner’s Theorem
6.3.5:

Corollary 6.8.7. If M is a compact Riemannian manifold of dimension 2k with spin
structure and non-negative not identically vanishing scalar curvature, then there are
no harmonic spinors in M, that is, if ¢ € D'(M,S) and Dy = 0, then ¢ = 0. If
the scalar curvature is identically 0, then the space of harmonic spinors has dimension
< 2k,



HERMITE POLYNOMIALS AND MEHLER’S FORMULA 161

Proof. If Dy = 0 it follows that ¢ € C since D is elliptic, and taking the scalar
product of (6.8.11) with ¢ we obtain

IVell* + 3(Se, ) = 0.

Hence ¢ is parallel, and if .S is not identically 0 we obtain ¢ = 0 since ¢ must vanish in
some open set. If S is identically 0 we can just conclude that ¢ is uniquely determined
by its values at a point.

If F'is a Hermitian vector bundle over the Riemannian manifold M of dimension
2k with spin structure defined by the principal Spin(2k) bundle P, then the tensor
product E = S(P)® F is a Clifford bundle with C1(M) acting on the first factor. If F
has a connection V" compatible with the metric, then the connection V¥ in E, given
according to Proposition 5.1.8 by the Levi-Civita connection in S (]5) and V¥ in F,
is a Clifford connection. The easy verification is left as an exercise. Hence we get a
twisted Dirac operator Dy in C*°(M,E) = C>®(M, E;) @ C*>(M, E_), interchanging
sections of By = S4 (]5) ® F'. Since the curvature of E is the sum of the curvature of
S(P) and that of F, tensored respectively with the identity in F and that in S(P), the
Weitzenbock formula (6.8.8) now takes the form

(6.8.12) D%gp + V*Vgp = —ngp - %ZEZ : 6j[® Rvp(ei,ej),

where I is the identity in the spin bundle. We shall need (6.8.12) in Section 6.10.

6.9. Hermite polynomials and Mehler’s formula. The proof of the local index
formula for twisted Dirac operators will culminate in an identification of the difference
of the traces of the heat kernels involved with the heat kernel belonging to an operator
closely related to the harmonic oscillator. As a preparation we shall now give the
classical background.

The Hermite polynomial H,(z), x € R, of order n is defined by

(6.9.1) Hy(z) = e* (—d/dz)"(e™™ ) = (22)" + .. .,

which by Taylor’s formula for e~ (z=2)° implies that we have the generating function

00 Hn
(6.9.2) 3 n('x) o= 20
n=0 ’

x

They are orthogonal with respect to the weight function e~ 2, for if n < m we have

/ H,y () Hop ()e"" da = / H, (2)(—d/dz)™e="" dz = 0
R R

since the integrand vanishes after n + 1 < m integrations by parts. When n = m we
obtain instead

/ Hy(2)Hy(z)e ™ dz = / HM e dg = 2™nl /.
R R
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Summing up,
(6.9.3) / Hpy(2)Hm(z)e ™™ dz = 6pm2™nly/z
R

Hence the functions e_%x2Hn(x)/\/2”n!ﬁ form an orthonormal system in L*(R). It
is complete, for if u € L2(R) is orthogonal to all of them, then U(z) = u(z)e™2* is
orthogonal to all polynomials; the Fourier transform is then an entire analytic function
with all derivatives equal to 0 at 0, hence identically 0, which proves that u = 0.

If in the identity

2

[o.@]
Z Hn(l’)e_%m2zn/n' — e_%mz‘i‘z’ﬂz—z
0

we apply the differential operator
(6.9.4) L=—d?/dz* + 2% — 1,

noting that —(2z — z)? + 2?2 = 22(2z — 22), it follows that
oo d oo
ZL(Hn(a:)e_%QCQ)z”/n! = Qp— 3™ T2wz—2" ZHn(a:)e_%IQan”/n!,
0 dz 0

which means that

2

(6.9.5) (L — 2n)(H,(z)e 2% ) =0,

so we have a complete set of eigenfunctions of L, with eigenvalues 2n.
To calculate the polynomials we introduce a convenient formalism. We can write

(6.9.6) e =3 ha"/nl, hangr =0, ha, = (—1)"(20)!/nl.
0

The right-hand side is obtained from the power series " h"2z"/n! = e* when A" is
replaced by h,,. Such a substitution is legitimate in any equality between two power
series in h provided that no convergence difficulties occur, for the coefficients of corre-
sponding powers of h are identical. If we apply this to the identity

oo

eszehz _ esz—i—hz _ 2(233 + h)nzn/nl
0

we obtain with £ denoting the substitution of h,, for A™
(6.9.7)

Hy(z) =EQz+h)" = ) (22)" *Fhy ( ”) =n! > (22)" 2 (=1)F/((n — 2k)!K!).

2k
2k<n 2k<n
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tL

Now we wish to determine the kernel of e™** when ¢ > 0, which is equal to

> e Hy (2) Ha(y)e ™57 (2"l /).

This means that we must calculate

(6.9.8) ZH y)(s/2)"/n!, when 0 < s < 1.

By (6.9.7) and (6.9.2) the left-hand side is £ applied to

oo

(6.9.9) Z(h +2x)"H,(y)(s/2)"/n! = ey (h+22)s—(h+22)"s%/4.
0

where the exponent simplifies to
—h%s% /4 + h(ys — xs?) + 2xys — 25>

The expansion of the right-hand side is not obvious unless the coefficient of h vanishes,
that is, y = xs, but then we can use that

£/ = Y (1) (s2/4)" = 30 T 52y,

n!2
0 0

Since (2n)!/(4"n1?) =33 .. (A +n—1)/nl = (—1)”(7%), we conclude that

(6.9.10) e Z1/\/1 - &2,
We have now proved that
ZH y)(s/2)" /n!:ezxyg_x%z/\/l—sz, if y = xs.

In view of the symmetry we may exchange x and y in our earlier calculations which

gives
2.2 2 2.2 2.2 .
ge—h s°/44+h(xs—ys®)+2zys—y“s emes—m s / /1 — 82, 1fy = 1rs.

With the notation v = zs — ys? = xs(1 — s?) we have (y? — 22)s? = 2%(s%2 — 1)s? =
—v2/(1 — s?) and conclude that for any v

(6.9.11) e s /Athy — o—v*/(1=5%) 1\ /1 _ g2,

This is the expansion we needed, so we now obtain for arbitrary z,y

S Ho(@)Ha(y)(s/2)" n) = e~ Wsas)/ Omstaps—a®s® ) /1 g2
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This simplifies to
(6.9.12) ZH y)(s/2)" /nl = e~ (@ Hy7s* ~2wys)/(1=s%) 1 /1 g2

which is known as Mehler’s formula. 1 owe the trick in the proof to Marcel Riesz who
showed it to me in a private conversation with him in 1952. My notes state that the
proof goes back to the 1920’s. I have inserted the operator &£ to justify the formal
argument.

From (6.9.12) it follows that

l\JI»—A

775y Hy(2)Hy(y)(s/2)"e” 2@+ /)
0

= e 3@ )47 days)((1=%) S By

t

2t we obtain the kernel of et~ as

and with s = e~
exp ( - (%(5’32 + y2) cosh 2t — zy)/ sinh 2t) e’ /v/27 sinh 2t.

The factor e is caused by the term —1 in L = —d?/dz?® + 22 — 1. If we define
Ly = —d?/dxz* + 22, it follows that the kernel of e *£1 is

K(t,z,y) = exp ( — 1((2* 4+ y*) cosh 2t — 2zy)/sinh 2¢)) /v/2m sinh 2¢.

To find the kernel of the operator L, = —d?/dz? + a?x? we take & = x+\/a as new
variable so that L, = aL;. Then

(e7tEe f)(z) = (e~tb1 f) (& / K (ta, 7, 5) £ (§/v/a)dj
- / K (ta, 2v/a, y/a) f(y)v/a dy,

so the kernel of e~*Le is \/aK (ta, z+/a, y\/a), that is,

1 2at < 1 2at
exp | — —
/At V sinh 2at P 4t sinh 2at

This formula gives immediately the kernel of a harmonic oscillator

—A+ (Az, x)

(6.9.13) ((z* + y?) cosh 2at — 23:y)>

when A is a positive diagonal matrix, the only difference is that we get a product of
such factors. By the orthogonal invariance the kernel is therefore in general, when the
dimension is n,

1 2V/ At
(6.9.14) e \/ det ———— NoT
A A A
_4i<< 2v/ At > < 2/ At >_2< 2V At >)>

X ex ——x, )+ (——————, —,
P tanh 2v/ At tanh2\/Zty Y sinh 2v/At Y

VS
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This is how the result is stated by Getzler.
We shall encounter a somewhat different operator, namely

(6.9.15) L=-) (-0;—i) Q">
k=1

j=1

where (2 is a real skew symmetric matrix and ¢ is the imaginary unit. At least formally
we can write L = Lo + L1, where

Lo=—> 07+ (Qu,Qx), Ly=-2i) Qa*o;.
1

Formally the operators commute, for

(A, Ly] = —4i Y Qx0;0; = 0,
Ly, (%, )] = —4i Y Qua® (QPx); = —4i(Qx, Q(Qa)) = 0.
Formally this means that e~/ = e~*foe=tIl1 but this is rather delicate since L; is a
formally self-adjoint operator not bounded from below. To proceed, at first formally,
we shall now assume that n = 2, which is no essential restriction since every skew

symmetric {2 is the direct sum of such operators and trivial ones.
With n = 2 we now assume that

o 0 a 2 CL2 0
Q_(—a 0), hence — () _<O a2)’

Lo = —A+a®z]*, L= —2i(Qx,0).

The kernel of e~ tLo ig

1 2at 1 2at
b (

47t sinh(2at) AP~ EM((MQ + |y[?) cosh(2at) — 2<x,y>)>,

The vector field (Qx, 0) = ax20/0x1 — ax10/0x2 is infinitesimal generator of rotation
with the speed a, so for real s we conclude that e*2%:9) is rotation by the angle sa,
that is, composition with the map = — (z1 cos(sa) — x5 sin(sa), 1 sin(sa) + x5 cos(sa)),
so we can calculate e5(9%:9) ¢=tLo by just composing in the z variables with this map.
By analytic continuation to s = 2it this gives for the inner parenthesis in the exponent

cosh(2at)(\x|2 + |y\2 — 2x1y1 — 2w2y2) + 2isinh(2at)(z2y1 — z1Y2)
= cosh(2at)|z — y|? + 2isinh(2at)(Qx, ) /a,

and leads to the kernel
1 2at 1 2at
p (=

47t sinh(2at) . 4t \tanh 2at

m |x—y|2+4it<Qaz,y))>.
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By analytic continuation it follows at once that /0t + L, annihilates the kernel, and
taking + = y + 2/t we find at once that it converges to § as ¢ — 0, which easily
justifies that we have indeed found the fundamental solution. With the suggestive

notation |2 = v—2 it follows that the heat kernel for the operator (6.9.15) with a
general real skew symmetric € is

1 210t 1 20t ,
(6916) 757y | det ezl &P (— o (<m(a:—y),x —y) +4it(Qz, y>))

Note that z/sinh z and z/ tanh z are analytic functions of 22 in a neighborhood of the
real axis. For small ¢ the right-hand side of (6.9.16) is therefore well defined even if €2,
are not real valued but take their values in some commutative finite dimensional alge-
bra, such as A*C¥, and it will still be a fundamental solution. This will be important
in Section 6.10.

6.10. The local index formula for twisted Dirac operators. Let M be a
Riemannian manifold of even dimension n with a spin structure, and let F' be a Her-
mitian vector bundle on M with a connection compatible with the metric. At the end
of Section 6.8 we defined the skew adjoint twisted Dirac operator Dp in C*°(M, E)
where E = E, ® E_ and Ey = S.(P) ® F. It maps sections of E4 to sections of E-.
By Proposition 6.5.1 we know that the index of DS : C®(M, E,) — C*(M, E_) for
t > 0 is equal to the difference between the trace of e*? F on C> (M, E) and the trace
on C°°(M, E_). Thus it is the supertrace of e!PF on € (M, E) with the grading by
E, and E_. Let K(t,z,y) € Hom(E,, E,) be the kernel of e!P% . We want to show
in analogy to (6.5.5)" and (6.5.6)" that the supertrace of K (¢, z,x) for fixed x, without
integration over M, has an asymptotic expansion in non-negative integer powers of
t and calculate the constant term. The crucial point is the Berezin-Patodi formula
(Theorem 6.7.14), which has an obvious extension to Cl,(M)c ® F,. Let

ﬁ(xj) = @yﬁmin(j,n/?) Clgczy](M)C ® End F‘r’

be the natural filtration of the even part of End E; recall that End S(P) = Cl(M)c.
When j > n/2 then £§£) is the whole even part.

We have seen in Section 6.4 that using geodesic coordinates centered at y and
synchronous frames for F and T*M, hence for S (f’), we have for fixed y an asymptotic
expansion

K(t,2,y) ~ Ho(t,x) > _(—t)"u,(x)/V!
0

where Hj is the fundamental solution of the scalar heat equation, ug = g(x)_% and
Uy, Usg, ... are determined successively by integrating the equations (6.1.14) (or equiv-
alently (6.1.14)"). What makes the supertrace on the diagonal accessible to explicit
calculation is the following fact:
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Lemma 6.10.1. The coefficients u, (0) are in Eg(f) forv=20,1,...

This is clear when v = 0 and will be proved by induction for increasing v. The
statement is void when v > n/2, but in the course of the proof we shall isolate the
terms which are not better than the lemma states, and when v = n/2 this will give u,
mod L;j_l, which is all that we need. Before the proof we need some preliminaries. The

first point is to express D% in terms of geodesic coordinates and synchronous frames
€1y...,6n for T*M, f1,..., fx for F. With the dual frame ey, ..., e, in TM we write
forl=1,....n

n N

(6.10.1)  Vee; =Y Tyfer, j=1,...,n, Ve f;=> TfFfi, j=1,...,N.
e k=1

Here fljk = —flkj since the frame is orthonormal, and by Theorem 3.3.6 we have
(6.10.2) If(x) =1 ZRkﬂz '+ O(|z[?).

Note that since Vie; = ke, at 0, it follows that €;(x) —g,(0) = O(|z|?). (fljk are not
quite the Christoffel symbols since they refer to the synchronous frame for 7" M and
not the frame dz?,...,dz"™.) Since V,f; = Y., 2V, fj(z) = 0, taking the first order
terms in the Taylor expansion shows that Vy, f;(0) = 0 for all j and &, hence

(6.10.3) IfF0)=0, forl=1,...,n; jk=1,...,N.

In the cotangent bundle we have

el Z(Pjgj el7 (P] + Z Fl] PjCk-

7,k=1

The matrix (flj )i :.i " is in so(n) for fixed [, and as in the proof of Proposition 6.8.6

it corresponds to mu1t1phcat1on by —i > ik fljkéj - gk in the Clifford algebra, so

n n N
(6.10.4) V(,O = ZS[ (%9 ((el,é) — % Z Fljki-jj cEk + Z Flljk)
=1 Jk=1 j.k=1
To find the adjoint acting on ) = > &; ® ¢ we form

(¢7V90) = Z(d]l: el: ) Z Flj 53 Ek + Z F

=1 7,k=1 7,k=1
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Here the scalar product is of course taken using the Riemannian volume form, which
is 1+ O(]z|?) times the Lebesgue measure. Hence we obtain by partial integration

n o _ N
V==Y ((e,0) =1 > Tiibe; - ex + > I5*) o,

J.k=1 J.k=1

where fljk and ff;k also satisfy (6.10.2), (6.10.3) but include the terms arising when
derivatives fall on e; or on the Riemannian volume density. Summing up, we obtain in
view of (6.8.12)

(6.10.5) Dp =-15-1 Z ;- 6ijF(ei,ej)

Q=1
n noo N noo_ N
+Z ((el,8>—% Fljkej Ek + Z Ff;k)(<el,8>—% Z FZJ €€+ Z F{;k)
=1 j k=1 j k=1 j k=1 j k=1

The coefficients can be viewed as elements in Clg] ® End Fy, or just End F,.

Proof of Lemma 6.10.1. We are now ready to prove that for the coefficients u, con-
structed for D% as in Section 6.1 we have

(6.10.6) Uy = Z Upps, Upy € Eé“), Uy, = O(Jx[*72Y), if u > v.

n<2v

This is obvious when v = 0. Assuming that (6.10.6) holds for a certain v we shall
prove that

(6.10.6)" D2u, = Z Upps  Upy € E?(j‘), vy = O(|zPF~272), if u > v+ 1.
p<2(v+1)

This is obvious for the terms coming from the terms in (6.10.5) after the first sum. To
handle the others we observe that multiplication by Ff; k¥ does not raise the Clifford

degree but increases the order of the zeros. Multiplication by fljksj - €, may raise the
Clifford degree by at most 2, but at the same time one gets a factor vanishing at 0.
Differentiation reduces the order of the zero but does not affect the Clifford degree.
Altogether, in the terms coming from the first sum in (6.10.5) where the Clifford degree
is raised 4 units we also get a compensating factor O(|x|?), and O(|z|*#~2¥2) =
O(|z|?#+2)=2(»+1)) " In those where the Clifford degree is raised 2 units we do not
lose any zero at 0, and O(|z|**~%) = O(|z[**+D=2("+1))  In the terms where the
Clifford degree is not raised we cannot lose more than two zeros, and O(|z|*#~2~2)
O(|z|?#=2+1)) which completes the proof of (6.10.6)".

The integration of the transport equations (6.1.14) for u,,1, using (6.1.14)" and
(6.1.17), does not affect the order of the zeros at 0, so (6.10.6) follows by induction,
which proves the lemma.
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In the proof the estimate for the order of the zeros was always too low except for
terms coming from the simplified operator

(6.10.7) j{:(éﬁ-— : j{: Ryju(y)a'e; -ex)” — 3 j{: e ;R (ei,¢5)(y),

=1 i,5,k=1 1,7=1

where we have put in the argument y instead of 0 since 0 was the geodesic coordinate
of y. Hence lim;_,o Str K (¢,y,y) exists and depends only on the Riemann curvature
tensor and the curvature forms of F' at y.

An explicit computation can be obtained from the results related to Mehler’s for-
mula given in Section 6.9. As a first step we observe that in the computation of the
component of u,, /o in Cl?[f] c ® End F, there will be no contributions where two equal
factors ¢; in the Clifford algebra have been multiplied, and different ¢; anticommute.
The component is therefore equal to the term of degree n obtained if one replaces
Clifford multiplication by exterior multiplication throughout. With the notation

(6.10.8) Qi =—1 Z Riju(y)dz? Ada®, QF = —%RVF(ei,ej)(y)dxi Ada?

7,k=1

we must therefore determine the form of degree n in the fundamental solution of
0/0t — L where

(6.10.9) L=> (04> Qpa®)*+0F
=1 k=1

acts on functions in R™ with values in (A*C") ® F,,. The second term acts only in the
factor F,, and commutes with the first, so it only contributes to e'* a factor etQF, and
for the other part we get the fundamental solution from (6.9.16) with € replaced by

Q/i. This means that |[Q2|? is replaced by Q2, so the kernel with the pole at 0 is

1 200 1 20 F
6.10.10 _y/det ——— <_ _< ’ >) t0r
( ) (4mt)= “ sinh 20t 4t \tanh 20t /)¢

which simplifies to

n 2Qt F
.10.10) T2 T et®
(6.10.10) (4mt) ™2 ¢/ det SR 20 ¢

when x = 0. By the Berezin-Patodi formula the limit as ¢ — 0 of Str K(¢,y,y) is
(2i)™/? times the coefficient of da' A--- Ada™ here, which does not depend on t. Recall
now that the total Chernclass of F is det(I + iQ¥ /27); one calls

Ch(F) = Trexp(iQ* /27)
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the Chern character of F. The term independent of ¢ in (6.10.10)" can be calculated
using any convenient choice of ¢, and we choose t = i/27. After multiplication by
(24)™/2 this gives the form

(Qi/7)
\/det Snh (5% /7) Ch(F).

Introducing the Riemann curvature matrix
(6.10.11) Off = 3> Ryjuda’ ndz®, Q7)) =" g*0f

instead of {2 we obtain finally the form

(QR /471)
(6.10.12) \/det @i O

We have proved the local index theorem:

Theorem 6.10.2. The index of the twisted Dirac operator D;E in the even dimensional
spin manifold M 1is the integral of the form (6.10.12) over M. More precisely, the term
in (6.10.12) of maximal degree divided by the normalized positively oriented n form is
equal to the limit as t — 0 of the supertrace of the kernel of e!PF on the diagonal.

We refer to Atiyah-Bott-Patodi [1] for the topological arguments required to derive
the general index theorem from Theorem 6.10.2; see also Roe [1] for a discussion of the
passage to the Hirzebruch signature theorem.



APPENDIX A. PREREQUISITES FROM MULTILINEAR ALGEBRA

Let V be a vector space over K = R or K = C of finite dimension n. Then we can
choose a basis eq,...,e, € V so that every x € V is a linear combination

n
r = E {leej
1

with uniquely determined coordinates x; € K. If e} is another basis then

n
/
€ = E :Cjkej
1
for some ¢, € K with non-zero determinant; if we write

T = Z xhen.
it follows that

n
_ -~y
T = E CikT}
1

so bases and coordinates are transformed by inverse transposed matrices.
The dual vector space V' (sometimes denoted V*) is the space of linear forms on V,
with values in K. With a basis in V' as above a linear form L can be expanded as

L(z) =L _axer) = > _ Llex)wr = Y _ Ller)ex(x)

where
ex() wje;) =k, that is, ex(e;) = O

Thus e1,...,g, form a dual basis in V' which is also a vector space of dimension n
with the natural definition of addition of linear forms and multiplication of them by
scalars. When ¢ € V/ and = € V we usually write (z,&) for the linear form &(z) to
emphasize that it is bilinear, that is, linear in « for fixed £ (because £ is a linear form)
and linear in ¢ for fixed = (by definition of the vector operations in V). The bilinear
form is non-degenerate, that is

(2, &) =0Vr eV = £=0; (2,)=0V¥¢eV' = z=0.
171
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By the symmetry here we can identify (V')" with V.
If T: Vi — Vs is a linear map, then a unique linear map 7" : V; — V{ (also denoted
T* or 'T) called the adjoint or transposed map is defined by

<TCB:77>:<$:T/77>: 93€V1,77€V2/,

for the left-hand side is for fixed n a linear form on Vj, hence an element 7'n € V/,
and it depends linearly on 1. T} and 7] have the same rank.

If V and W are two vector spaces and B : V x W 3 z,y — B(x,y) € K is a bilinear
form, then we get in the same way a map W — V' and an adjoint map V — W'.
The form is called non-degenerate if one (and therefore both) are bijective. Thus the
bilinear forms on V' x W can be identified either with the linear maps L(WW, V") or the
linear maps L(V, W’).

Every bilinear form B on V' XV can in one and only one way be written B = By+ B;
where

BO(x7y) = Bo(y,fll), z,y € V; B1<f13,y) = _Bl(y7x)7 z,y € V;

one calls By symmetric and By skew symmetric, and we have

Bo(z,y) = (B(x,y) + B(y,x))/2, Bi(z,y) = (B(x,y) — B(y,x))/2; v,y € V.

With a basis ey, ..., e, for V and corresponding coordinates

B(Y wjej. ) yrer) = Y bikwsys, bk = Blej ex).
1 1

Jk=1

From the matrix (b;;) for B one obtains the matrices for By and By as (bj, = by;)/2.
Only By is determined by the quadratic form B(z,x) = ) bjrzjzi; we have

Bo(z,y) = (B(x+y,z+vy) — B(zx —y,x —y))/4 (polarization).

Thus we have a one to one correspondence between quadratic forms and symmetric
bilinear forms. A quadratic form @ is called non-degenerate if the corresponding
symmetric bilinear form B is non-degenerate. If the bilinear form is degenerate we
can find z # 0 so that B(V,z) = 0, B(z,V) = 0, which implies that Q(z + tz) =
B(x+tz,x+tz) = B(z,z) = Q(x) for any t € K, so @ is defined in the quotient space
V/Kz. In what follows we shall use the same notation for a quadratic form and the
corresponding symmetric bilinear form.

If G is a non-degenerate quadratic form in V', then the polarized form defines a
bijection g : V' — V'’ and we can define a dual quadratic form G’ in V' by

G'(gz) =G(z),z € V.

If we introduce dual bases in V' and V' and (g,) is the symmetric matrix for G, then
the matrix for G’ is (¢7%) if (¢7%) is the inverse of the matrix g;y.
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If H is another quadratic form in V, then a linear transformation 7' : V — V is
defined by the identity
H(z,y) = G(Tz,y), =zy€eV,

for the corresponding symmetric bilinear forms. With the notation g, h for the maps
V — V'’ defined by G and H, we have T = g~ 'h. The map T is self-adjoint with
respect to the bilinear form G since H is symmetric.

There is a unique linear form on L(V, V'), called the trace and denoted Tr, such that
for all x, £ € V x V'

TrT, e = (x,&), if Ty is defined by T, ey = 2(y, &), yeV.

In fact, if e; and ¢, are dual bases and 7' € L(V, V), then
Ty = T(i ej{y,€5)) = iTej@@j) = Tre, e;v;
1 1
so the condition requires that
TrT = ﬁ:(Tej,ej).
1

If we define Tr T by this sum for a fixed basis, we obtain for arbitrary z = Y | zje; € V
and £ = Z? £j€j eV’

TrToe = Y (w(ej ), 65) = Y (w,e5){e6) = O _ejlw,e;),€) = (x,€)

which proves the existence of the form Tr with the required properites, independent
of the choice of basis. Note that if T} is the matrix of T" in terms of a basis then
TrT = Z;L Tj g+

Let V and W be two finite dimensional vector spaces over K. The bilinear forms on
V' x W' form another vector space called the tensor product of V and W and denoted
V @ W, and we have a bilinear map V x W — V ® W mapping x,y € V x W to the
bilinear form

VIXW 26 (2,8(y,m)
which is denoted z®y. (Recall that V' is identified with the dual of V' and W with the
dual of W’ which is behind the definition.) If e,..., e, is a basis of V with dual basis
€1,..,&n, and f1,..., fn, ©1,...,n are dual bases for W and W', then a bilinear
form on V’ x W’ can be written

n N

B(&n) =B (ej,€)e5, > (fumher)
n N

= 3N Blejopr) ey ) framy EmeV x W,

j=1k=1
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which means that
N

B=Y "% Blejpr)e; @ fr.

j=1 k=1

This proves that V ® W is a vector space of dimension dim V' dim W with basis e; ® fx,

j=1...,n, k=1,...,N. If zq,...,x, are the coordinates of an element in V in
the basis e, ..., e, and y1,...,ynx are the coordinates of an element in W in the basis
fi,..., fn, then z;y; are the coordinates of x ® y.

If T is a linear map from V ® W to a third vector space Z, then
S:VxWaz,y—T(xRy) € Z

is a bilinear map. Every bilinear map S : V' x W — Z has a unique representation of
this form: If eq,...,e, and f1,..., fn are bases in V and W we define T' as the linear
map with T'(e; ® f) = S(ej, fr) on the basis elements in V ® W, and conclude that if

x =Y xzjej, y = Ypfr then

S(x,y) =D wjuT(e; @ fr) = T wjyre; © fr)
=T()_zje;) @ O _uefr) =T(z @ y).

Thus the bilinear map V xW 3 z,y — x®y € V@ W is universal in the sense that all
other bilinear maps from V x W can be factored through it. The dual space of V@ W
is identified with V' ® W’ in a natural way so that (x®y,{®n) = (z,&)(y,n) ifz € V,
EeVi,yeWandne W'

The linear transformations L(V, W) from V to W were identified above with bilinear
forms on W’ x V, that is, elements of W @ V,

L(V,W)=W ®V’; in particular, L(V, V)2V V.
We can now look at the trace in a new way. The bilinear form
VxV' sz & (x,€)

defines a linear map L(V,V) 2V ® V' — K, which is precisely the trace.

We can continue to define tensor products of more than two vector spaces. For
example V; ® Vo ® V3 is the space of trilinear forms on V{ x Vi x V3; it is isomorphic to
(V1 ®V2)® V3 and to V1 ® (Vo ® V3) and is universal for trilinear maps in V; x V4 x V3.
The verification is left as an exercise. Also the trace map can be generalized: If W
and V are finite dimensional vector spaces then the trilinear map

WxVxV' swz & wxé)eW

defines a linear map W @ V @ V! — W called contraction. If T;;,, i@ = 1,..., N,
4,k = 1,...,n, are the coordinates of an element in W ® V ® V' with respect to a
basis f1,..., fy in W and dual bases eq,...,e, and €1,...,g, in V and V', then the
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coordinates of the contraction are Z?:l T;;;. This contraction operation can of course
be applied to any tensor product

WM Ve -V Wy

containing two dual vector spaces; contraction gives an element in the tensor product
where they are both removed.

In Riemannian geometry where V' is the tangent space and V' the cotangent space, it
is customary to put coordinate indices corresponding to factors V' in a tensor product as
superscripts and to put indices corresponding to factors V' as subscripts. Contraction
then means putting a superscript equal to a subscript and summing over it.

If B is a bilinear form in V®V and a non-degenerate quadratic form G is given in V,
then we can define the trace of B with respect to G as follows: We have B € V' @ V’,
and G gives an identification V' = V' so B can be identified with an element in V ® V'
for which the trace is defined. In terms of the matrices (b;;) and (gjx) for B and G
with respect to a basis, the trace is ) bjkgkj where (¢’%) is the inverse of the matrix
(95k)-

We have defined the tensor product V@V as the space of bilinear forms on V'. Now
every bilinear form on V' can be written as the sum of one symmetric and one skew
symmetric bilinear form in one and only one way. We shall denote by S%(V) Cc V@V
the space of symmetric bilinear forms on V'’ and by A2V C V ® V the space of skew
symmetric bilinear forms on V’. Thus the tensor product V ® V is the direct sum of
the symmetric tensor product S?(V') and the exterior product AV,

VeV =5%V)oe A V.

For an arbitrary positive integer k& we define the symmetric tensor product S*(V) as
the space of symmetric k linear forms L on V'’ x --- x V', that is, forms such that for
every permutation w of 1,...,k

L(Sl: s 76]6‘) = L(Sﬂ(l)? s 7§7r(k)>7 517 s 7§k eV’

If L € S¥(V), then
L:V' 3¢ LE, ... 6

is a homogeneous polynomial of degree k in the sense that
(tl, .. .,tj) — E(tlfl 4+ -4 tjgj)

for arbitrary &1,...,&; € V' is a polynomial in (t1,...,t;) € R7; it suffices of course to
have this for a basis in V/. We can recover L(q,...,&) as the coefficient of klty ... ¢x

in E(tlgl + -+ t1&k). Conversely, given a homogeneous polynomial Lin V' of degree
k, we can define L(&1, ..., &) as the coefficient of klty ... ¢g in L(t1&1 +- - - +tx&k). The
definition is symmetric in &7, ..., &;. Since

L(ti&+ -+ t5€) = (t1 + - + ) L(€),
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this implies that L(¢,..., &) = L(€), and since L(¢1&1 + -+ - + tjp1&x41) has no terms
except
k'tq .. .tkL(fl, ey §k> + -+ k.. .t}H_lL(fg, ey §k+1>

not containing the square of any t;, it follows by taking t,41 = t1 that L(&,...,&)
is linear in & . Thus L € S¥(V), so we have identified S*(V) with the space of homo-
geneous polynomials of degree k in V’; this is the general meaning of the polarization
discussed above for quadratic forms.

EXERCISE A.1. Determine the dimension of S¥(V') in terms of dimV and k.

Similarly we define AV as the space of alternating forms L on V', that is, forms
with
L<£17 SRR £k) = Sgnﬂ—L(&ﬂ'(l)? <. 7§W(k))7 §1,--, &k € V.

If as before eq,...,e, is a basis of V and ¢1,...,&, the dual basis of V’, then we can
write

L&, &) = L _(Enei)en, 0 > (G ej)es)
= (&,e) (&) Llegy, - re5) = Y det(& i)k Ligj, - . e5,) /R
Thus the forms
(A1) VFE S (&, &) m det(ai, §)F 4.

give a basis for A*V if we restrict z1,..., 25 to €j.,---,€j, Where eq,..., e, is a fixed
basis for V and 1 < j; < -+ < jx < n. (The linear independence of the forms follows
since (A.1) is the only one which is not 0 on €;,,...,¢;,.) Thus the dimension of AFV
is (Z), defined as 0 if k& > n.

The form (A.1) is denoted by 1 A -+ A zi. The map

VES (z1,... k)~ 21 A Ay,

is obviously multilinear and alternating. If W is another vector space and T : AFV —
W is a linear map, then

(A.2) S:Vk9(xl,...,a:k)l—>T(a:1/\~-~/\a:k)GW

is also multilinear and alternating. Conversely, every alternating multilinear map S :
VF — W has as unique representation of the form (A.2). For if e1,...,e, is a basis
for V', with dual basis €1, ...,&, for V', then

S(x1,. . wx) = S(Z<x175j1>€j17 SRR Z<xk’6jk>ejk)
= Z S(eju SRR ejk) det<xi7€jz>§,l:17

1< < <gr<n

k
TIN- AT = E €4, /\/\e]kz det<xi7€jl>i,l:1
1<j1<<jr<n



APPENDIX A. PREREQUISITES FROM MULTILINEAR ALGEBRA 177
so S is of the form (A.2) if T is the linear map A¥V — W defined by
T(ej, N---Nej) =85(ejy,--€5), 1<j1<--<jr<n,
for the basis elements in A*V. (However, S is of course independent of the choice of

basis.)
The alternating multilinear map

yhte 5 (T1, o Thar) P TIN AT AT Ao AN Tpyy € i
is for fixed 231, ..., Tr4, an alternating multilinear map from V¥, so it defines a linear
map
T(.’L‘].H_l, e ,.C(Jk_|_,$) : /\kV — /\k—'—n‘/.

For every w € AFV the map
V53 (@ks1s s Thgn) = T(@ps1s - Topw)w € APV

is alternating and multilinear so it defines a linear map 7" (w) : A*V — AFFEV. Tt
depends linearly on w, so

APV X ARV 3 (w,w') = T (w)w' € AFTRY
is a bilinear map. It is characterized by the fact that it maps z1 A--- Az, € AFV and
Tl N ANZpy EANV tOTI AN ANTpqy € AR With the notation A also for
this map, we have thus found that there is a uniquely defined bilinear map
(A.3) APV X ARV 3 (w,w) = w Aw' € AFTRY
such that

(Ad) (1 A ANxp) AN (Tpr1 A AThar) =TT A ATty Tlye-nsThin € V.

It is called the exterior product. It makes

where A%V = K, an associative algebra. Since
TINA AT ATpgr A A Tpg = (=) Tpq1r Ao ATpgn AT1 A - A T,
the algebra is not commutative but we have

(A.5) wAw = (=) Aw, if weAFV, w € A"V
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Note that w and w’ commute unless the degrees k£ and x of w and w’ are both odd,
then they anticommute.

If V; and V5 are finite dimensional vector spaces, then every linear map A : Vi — V4
induces a linear map A*A : AFV] — A*V5. In fact, the map

VES (z1,...,21) = (Az)) A - A (Axy) € ARV,

is alternating and multilinear so there is a unique linear map A*A : A¥V; — AV}, such
that

(A.6) (AFAY(zy A Aag) = (Az) A=+ A (Azg), 21,...,28 € V.

We can define the exterior powers A*V' of the dual V’ of V in the same way. The
multilinear map

k k k

VExV'E 3 (1‘1, Y S T ,fk) = det<xi7§j>i,j:1

is alternating in the first k£ and in the last k£ variables. Hence it induces a bilinear form

on A*V x ARV’ Tt defines a duality for if eq,..., e, and €1, ..., &, are dual bases for V

and for V', then the bases e;, A---Aej, and g;, A---Ag;, withl <j; <---<jr<n

and 1 <11 < --- < i, <n are dual with respect to this form. Thus we have a natural
duality between AFV and A¥V’ such that

(A?) <$1/\"'/\$k,£1/\"'/\£k> :det<xi7£j>§,j:17 X1y T €V, &1, & € V.

(Many authors use another definition where the right-hand side is divided by k!, for
that is the duality inherited from the natural duality of the tensor products. See
Sternberg [1, p. 19] for a discussion of this point. Kobayashi and Nomizu [1] use the
division by k!, which should be kept in mind when comparing identities.)
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Let M be a C* manifold of dimension n. Then the exterior power A¥T* M of the
cotangent space at x € M is a real vector space of dimension (Z) If M c R", then

T:M = R"™, and AT M has the basis dz/* A --- A dz?*, where 1 < j; < -+ < jp < m;
this is the alternating multilinear form

R™F > (1, ..., te) = det(t)F ;.

For any C! map f: N — M, where N is another smooth manifold, the adjoint of the
differential
f/(y) : TyN — Tf(y)M

is a map T}‘(y)M — T,y N inducing a map
(B.1) NTf M = ATy N,

which is bijective if f’(y) is bijective. In particular, if f is a coordinate system, R™ D
w — f(w) C M, we obtain an identification of Uxef(w) ART* M and wx A*R™. Thus the
vector spaces AFT*M define a vector bundle A¥T*M over M. In a coordinate patch
with local coordinates x',...,z", a local frame for A*T*M is given by the exterior
products

dle/\---/\da:j’“, 1< < <Jr <n.
We shall denote the space of sections of A¥T* M by A*(M); in terms of local coordinates
a section u can thus be written
(B.2) u= Z ajy .o (2)dzt A A dadk
1<ji1 < <gr<n

Exterior multiplication of forms is done just by formal multiplication observing the
anticommutation rule dx* A dx? = —dx? N dx*.
If f: N — M is a smooth map, then the map (B.1) defines for every k a linear map

f* XF(M) — NF(N).

One calls f*u € \¥(N) the pullback of u € A¥(M), from M to N. If x and y are local
coordinates in M and N and wu has the form (B.2), z = f(y), then

(B.3) Fru= " Y a5 (F@)A ) A AP (y),
1<j1 < <gp<n

179
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where df’(y) = > 0f7(y)/0y'dy’. In fact, if ¢ is a function on M (such as a local
coordinate), then

(frdo,t) = (dp, f't) = (d(wo f),t) = (d(f*p),t), tecTN,

by the chain rule, which means that f*dp = d(f*p). We have natural rules of com-
putation such as (fg)* = ¢*f*; the notation with the upper star is meant to be a
reminder of this reversal of factors.

We shall now define the exterior differential of a k form. We do this first in a
fixed local coordinate system and verify the independence of the chosen coordinates
afterwards. For the form w in (B.2) we thus define

(B.4) du = Z daj, . (z) Ndzi* A - A dain.
1<ji1 < <gr<n

It follows at once from this definition that

(B.5) duAv) = (du) Av+ (=) uAdv, uwe I, vel,

in view of the linearity it suffices to verify (B.5) when u = adz?* A --- A dz7* and
v = bdzI*+1 A -+ A dak+= | and then it follows from the fact that d(ab) = adb + bda;
commutation of db through u gives the sign (—1)*. If u is a smooth function we have

(B.6) d*u = 0.
In fact, du =Y djudz’, so
d*u = Z d(Oju) A dx! = Z OOjudz® A dxd =0

since dz® A dx? is antisymmetric in k and j while 9,0;u is symmetric. In view of (B.2)
and (B.5) it follows at once that (B.6) is valid for v € A\* for any k.
Repeated use of (B.5) shows that for arbitrary smooth functions fo, ..., fx we have

d(fodfy A=+~ Adfi) = dfo Adfy A==~ Adf.

If u € \¥(w), where w is an open subset of R", and f : w’ — w is a smooth map from
an open subset w’ of R™ | it follows that

(B.7) fH(du) = df*u, u € N\ (w).

In fact, if u is given by (B.2), then du is given by (B.4) and f*u is given by (B.3),
hence ‘ .
df “u(x) = > dag, 5 (F@) N Y) A A dfE(y),

1<ji1 < <gr<n

which proves (B.7). In particular, it follows from (B.7) that our definition (B.4) of the
exterior differential is independent of the choice of local coordinates.
Locally there is a converse of (B.6):
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THEOREM B.1 (POINCARE’S LEMMA). Let v € A¥1(X) where X is a convex open
set in R™, assume that the coefficients of v are in C* and that dv = 0. Then there is
a form u € N*(X) with C* coefficients such that du = v.

PROOF. We may assume that 0 € X. Then X = {(z,t) e R" x R;txr € X} is an
open set containing X x [0, 1], and f(z,t) =tz is a C* map from X to X, so we can
form

ffo=fllv+dt Nw,

where f; is the pullback of v when t is regarded as a parameter, so it is a differential
form which only involves the differentials of the coordinates in X. Since df*v = f*dv =
0 it follows that

0=dt A (O(f{v)/Ot —dywy) + ...

where the dots indicate a form which has no factor dt and d,w; is the differential of
w, for fixed ¢. Hence

A(fiv)/0t = dywy,

and integration from 0 to 1 gives

1
fiv— fov =du, u:/ wydt.
0

But ffv =wv and fjv = 0 since f; is the identity and fy maps X to {0}, which proves
the theorem.

Poincaré’s lemma reflects the fact that the topology of a convex set in R"™ is very
simple; in general there is a topological obstruction:

DEFINITION B.2. If X is a smooth manifold then the quotient H*(X) of the closed
forms {u € A*(X);du = 0} by the linear subspace {dv;v € A*"1(X)} of ezact forms,
k > 0, is called the de Rham cohomology of degree k. The residue class in H*(X) of
a form u € \*(X) with du = 0 is called the cohomology class of u.

EXERCISE B.1. Prove that if M and N are smooth manifolds, f : M x [0,1] — N
is a smooth map, and u € A¥(V) is a closed form, then the forms f(-,t)*u € A\*(M)
are in the same cohomology class for all ¢ € [0, 1].

Poincaré’s lemma is closely related to Stokes’ formula, which we shall now discuss.
First we define the integral of a form u € A" (M) with compact support over M when
M is an oriented manifold of dimension n. To do so we first assume that the support
is contained in a local coordinate patch with positively oriented local coordinates x €
w C R™. In terms of these coordinates we can then write

u=a(x)de' A--- Adx"

/u: /a(a:)da:,

and we define
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where dz is the Lebesgue measure. If the support of u is also contained in a coordinate
patch with positively oriented local coordinates y, then

u=a(z(y))dz'(y) A Ada"(y) = a(z(y)) det(&ci(y)/ﬁyj)zj:l

so in terms of these coordinates f u should be

/ a(z(y)) det(0z' (4) /07?1 dy.

The positive orientation means precisely that the Jacobian here is positive, so the
definitions in terms of the two coordinate systems agree. Now we can define [u
in general by using a partition of unity 1 = ) ¢, to split u into a finite sum u =
> w;ju where each term has support in a local coordinate patch and using these local

coordinates set
=3[

The definition is independent of the choice of partition of unity and corresponding
local coordinates, for if we have another partition of unity 1 = > ¢ with each term
supported by a coordinate patch, then [ u has the same value if we use the
coordinates associated with ¢; or those associated with 1), and summing over %k or
over j we conclude that the definition using the partition of unity {¢;} is equivalent
to that using {1y }.

REMARK. We have not given a precise definition of orientation above. One way
to do so is to say that an orientation on a manifold of dimension n is a n form o,
the orientation form, which is everywhere different from 0; orientation forms differing
by multiplication with a positive function are considered equivalent. A system of
local coordinates z!,...,z" is then positively oriented if with these coordinates o =

g(z)dz' A -+ A dx™ where g(x) > 0. The manifold is said to be oriented by o > 0.

The integral over M of a k form is defined as 0 if £ < n, so we have a definition
of the integral of any form with compact support. The definition of the integral over
a submanifold N of M is an immediate consequence: For a submanifold we have an
embedding ¢ : N — M, and for a form v on M we define fNu = fN t*u if 7*u has
compact support.

Now assume that X is an open subset of the oriented manifold M, with a C*
boundary 0X for the sake of simplicity. At any boundary point we can then choose
local coordinates in M varying over the unit ball B in R", say, such that the points
in X correspond to B_ = {z € B;z; < 0}. If u € A»"}(B) has compact support in B,
it follows that

(B.8) /Bou:/B du,
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where By = {zx € B;x; = 0}. In fact,

U = Z(—l)j_IUj([L'>dx1 A Adr? VA dRT TN A da
1

du = (Z djuj)dxt A+ A da™,
1

so the statement is that with 2’ = (22,...,2")

/ul(O,x') dx’ :/ Zajuj dz,

1<0 1

which is obvious.

Now we can orient 0X uniquely by using at points in 0.X positively oriented local
coordinates in M such that X is located as just described where x1 < 0; the coordinates
To,...,T, in X are then by definition positively oriented. From the local formula
(B.8) it follows by using a partition of unity that

(B.9) / u:/ du, Stokes’ formula,
X X

if v is a form with compact support in M. The same formula holds if X is an open
subset with C!' boundary in an oriented submanifold of M; this is an immediate
consequence in view of the definition of integration over a submanifold.

Given a k + 1 form v with dv = 0 it follows from (B.9) that there does not exist a k
form u with du = v unless [ v =0 for any compact oriented submanifold X without
boundary. This is the starting point of homology theory, but it would take us too far
to pursue the matter here.
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APPENDIX C. THE FROBENIUS THEOREM

To study flat structures we shall need the Frobenius existence theorem for first order
systems of differential equations. One of the standard forms of this result is as follows:

THEOREM C.1. Let vq,...,v, be C> wector fields in a neighborhood of 0 in R™
such that

(C.1) v1(0),...,v.(0) are linearly independent,

r
(C.2> [vi,vj] = Zcijkvk, i,j = 1,...,7“,

where [v, w| denotes the commutator of v and w, and c;j, € C*°. Then there exist new
local coordinates vy, . ..,yn in a neighborhood of 0 such that

6/6yi:2bijvj, iZl,...,T.
j=1

Thus the solutions of the equations vju =0, j =1,...,7 are in a neighborhood of the
origin precisely the functions of Yry1, ..., Yn-

PrROOF. The proof, which can be found in Hérmander [1, Appendix C1], is by
induction with respect to n. Invariance under change of variables and non-singular
recombinations of the v; shows that one may assume that v; = 9/0x; while

v = Zvﬂ@/axl, j=2,...,r

By the inductive hypothesis we may also assume that v;; =0 for j =2,...,rif I > r
and z; = 0. By (C.1)

.
0vji/0x1 = [v1,v5]@; = g C1jKVET] = g CljkVki, J=2,...,m.
k=2

Hence v;; = 0 in a neighborhood of 0 if [ > r since this is true when z; = 0, which
proves the theorem.
185
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The geometric interpretation is as follows: The vector fields vy, ..., v, span at every
point = a linear space F, of dimension r in the tangent space. The condition (C.2)
is the necessary and sufficient condition in order that through every point there is a
manifold M of dimension r such that the tangent plane of M is F, at every x € M.
Now we can also define the linear space F, by means of its orthogonal spaces F;- in
the cotangent space, that it, by n — r conditions

(C.3) wj =0, j=r+1,...,n,

where wy41,...,w, are linearly independent differential one forms at the origin. We
want to rewrite the Frobenius condition (C.2) in terms of these forms. To do so we
need a lemma:

LEMMA C.2. If X and Y are C' vector fields and w is a C' one form, then

(C.4) (X NY, dw) = ([Y, X],w) + X(V,w) — Y (X, w).

PRrROOF. If w = du for some u then (C.4) is the definition of the commutator vector
field. If w is replaced by ¢w, then both sides are multiplied by ¢ and in addition we
get on the left-hand side a term (X A'Y, dp A w) which is equal to the additional term

<X7 d@) <Y7 w> - <Yv d90> <X7 w>

in the right-hand side. Hence (C.4) follows in general.

Let us now return to the Frobenius theorem. In a neighborhood of the origin we
can extend the system of vector fields vy,...,v, to a basis vy,...,v,. Let w; be the
biorthogonal basis of one forms, that is,

<vj,wk): ks j,kzl,...,n.
Then
(05) [vi,vj] :Zcijkvk, i,j: 1,...,n - dwk = —% Z cijkwi/\wj,
k=1 ij=1
for it follows from (C.4) that
(vj A vy, dwi) = Zcijl<vl7wk> + v (vi, wi) — vi{vj, W)
= Cijk = %(vl A vy, chkwu Awy).

We can reverse the implication in (C.5) if we demand that ¢;;;, is antisymmetric in 4, j
(which is automatic in the left-hand side). The Frobenius condition (C.2) stating that
cijr. = 0 if k> r and 4,5 < r is therefore equivalent to

(C.2) dw; is in the ideal of forms generated by wy41,...,wy, if j>r.
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Another equivalent formulation of the Frobenius theorem concerns complete inte-
grability of a system of differential equations

(C.6) 0y, (z)/0x, = F(x,y), v=1,....,n, p=1,...,m,

where F),, are smooth functions defined in a neighborhood of (x¢,yo) € R™™™. The
system is called completely integrable if there is a smooth solution in a neighborhood
of xg with y(z¢) given in a neighborhood of 1. Since the equations give

0%y, /02,03, = OF /01, + Y OF 0/ 0yo Fo

o=1

a necessary condition is that in a neighborhood of (xg,y) we have for p = 1,...,m
and v,k =1,...,n

(C.7) OF /0 + Y OF ) 0yoFor = 0F /0, + Y OF s /0yoFoy.

This condition is also sufficient. In fact, the equations (C.6) mean precisely that the
graph of y(z) shall be defined by the equations

wy, = dy, — Z F,dx, = 0.

v=1

Since

dw, = — Z O0F,,/0x.dx, N dx, — Z O0F ./ 0yo(ws + Z F,dx,) Ndzx,

K,V

= — Z OF 1/ 0Ysws

when (C.7) holds, the condition (C.2)" is fulfilled. Hence we have:

THEOREM C.3. For the system (C.6) to have a solution in a neighborhood of xo with
y(xo) arbitrarily prescribed near yq it is necessary and sufficient that the integrability
condition (C.7) is valid near (xo,yo). The solution is then unique.
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APPENDIX D. INVARIANTS OF O(n)

A polynomial f(z1,...,zy)inz; € V=R",j=1,...,N,is called a O(n) invariant
if

(D.1) f(Ozq,...,0xN) = f(x1,...,2N), O € O(n).

Sometimes f is then called an even invariant, and one calls f an odd invariant if

(D.2) f(Oxy,...,0xy) =detOf(z1,...,zNn), O € O(n).

In both cases we have

(D.3) f(Oxy,...,0xy) = f(x1,...,2N), O € SO(n).

where SO(n) = {O € O(n);det O = 1}. On the other hand, it follows from (D.3) that
f(Oxy,...,0xy) = g(x1,...,2n), O € 0O(n), detO = —1,

where g is independent of the choice of O and satisfies (D.3). Hence f = 3(f + g) +
5(f — g) is the sum of one even and one odd invariant.

THEOREM D.1. FEwvery even invariant f(x1,...,xN) i a polynomial in the scalar
products (zj,x), j,k = 1,...,n. Every odd invariant is a sum of such polynomials
multiplied by the determinant det(z;,,...,x;,) of n vectors x;. In particular, there are
no odd invariants # 0 if N < n.

PrROOF. The proof is by induction. The statement is obvious when n = 1 so we
assume that n > 1 and that the theorem has already been proved when n is replaced
by n — 1. Let V; = R™™!, identified with the plane {z € R";z, = 0}. If we choose
for O the reflection in V; which just changes the sign of z,, and leaves V; fixed, it
follows that f(xi,...,zn) = 0 if all z; € V; and f is an odd invariant; if f is an
even invariant then f(z1,...,2n) = p((xj,xk);j k=1,..~) by the inductive hypothesis.
Since every hyperplane can be carried to the special position V; by a transformation
in SO(n), these statements remain true for arbitrary zi,...,zy which do not span
V. In particular, the theorem is true if N < n. When N > n the proof requires an
identity due to Capelli which will now be discussed.

The Capelli identity concerns the differential operators

Dj 1 = (x;,0/0z)
189
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which operate on polynomials f(z1,...,zy) in N vectors z1,...,xzy € V = R". If
f is homogeneous in each vector z;, then D;} increases the degree in z; by 1 and
decreases that in xp by 1, if j # k, but changes no degree if j = k. We shall write
D; i Dj: o for the standard composition of the operators, but write D, ,#D;: ;s for
the formal (commutative) multiplication, defined as if the coefficients were constant.
Capelli’s identity states that

Dnyn+N -1 Dy n-1 ... Dnn
Dy_1.n Dny_in-1+N—-=2 ... Dn;
(D.4) . . . )
D N Di N1 ... Dig
B { 0, it N >n
| det(zy, ..., x,)det(d/0x1,...,0/0x,) f, if N =n.

The diagonal elements are here Dy, i, + (k — 1), the off diagonal elements are D; ;, and
the expansion of the determinant shall be made so that the elements are multiplied in
the order of their columns. To prove (D.4) we first consider the “minors” formed from
the last two columns. We have

DjoDy1— Dy oDj1 = Djo# Dy — Dy o#Dj1 + 0 2Dj1 — 052D 1,
that is,
(Dj2+6;2)Di1 — (Dio~+0k2)Dj1 = Djo#Dr1 — Dy o#Djq.

Thus the minors of (D.4) in the left-hand side are the same as in a determinant with
diagonal elements Dy, ;, expanded using the formal product. We shall prove by induc-
tion for increasing k that this is true for the minors taken from the last £ > 2 columns.
When k£ = N this will prove (D.4), for

0, if N >n

det(z;, &) Ny =
e <£C] §k>],k—1 { det(zy,...,z,)det(&1, ..., &), if N =n.

By the inductive hypothesis we have to calculate

(Diy i + (k=1)6, k) Diy y k—1F ... #Di 1

=D, k#Di, k—1# .. . #Diy 1+ (k—1)0i, xDi, , k-1 ... #Di, 1
k—1
+ Z 6iV,kDik_1,k—1# c #Diy+1,V+1#Dik,V#D’iy,1,V—1# R #Dil,l'
v=1

We shall let 41, ..., 4, run through all permutations of k£ fixed indices, multiply by the
sign of the permutation and sum. Now the permutations

iy,ik_l, .. .,iy+1,ik,iy_1, .. .,il and ik,ik_l, .. .,il
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have opposite signs since they differ by one inversion. Hence the terms in the last sum
will cancel the preceding one, which completes the proof of the inductive statement
and hence of the Capelli identity.

END oF PROOF OF THEOREM D.1. With the Capelli identity available we can now
finish the proof. By the first part of the proof we may assume that N > n and that
the theorem has already been proved when N is replaced by N — 1. Furthermore we
may assume that f is homogeneous in each of the vectors x1,...,zy, for if we split f
into a sum of polynomials of such separate homogeneities, then each term must be an
invariant. Let r; be the degree of homogeneity with respect to x;, and let |r| = Zf[ r;
be the total degree of homogeneity. We order all multiindices r = (r1,...,7ry) first
for increasing |r|, and then lexocographically for fixed |r|, that is, first according to
increasing rq, then for fixed r; according to increasing 79, and so on. If 71 = 0 then
f depends on N — 1 vectors so the theorem is true then by inductive hypothesis. By
still another inductive argument we may therefore assume that r; > 0 and that the
theorem has already been proved for lower values of r.

Now consider (D.4). If N = n, then g = det(9/0z1,...,0/0x,)f is an odd (even)
invariant if f is an even (odd) invariant, and the degree of g is lower than the degree
of f, so we know that g has the form stated in the theorem. Since

det(zy,...,2,)% = det(zj, Tx)} k=1

it follows that the right-hand side has the stated form for any N > n. In the left-hand
side of (D.4) the diagonal term is ¢f where ¢ = ri(ro+1)...(rny + N — 1) # 0 since
r1 # 0. All other terms contain some factor D;; with j # k. For a given term we
choose the factor D, with j # k which is furthest to the right. To the right of it we
then have only the factors Dy_q x—1...D;,1 which multiply f by r1...(rx—1 +k —2).
We must have 7 > k since two factors must not be chosen in the same row. The full
expression of the term is of the form a;, D, f where aj; is a product of operators
D, . But Djf is also an invariant and its total degree is equal to that of f while
its lexicographic order is lower since D;; lowers the degree in xj, at the expense of
a raise of degree in x; for some j > k. Thus D;; has the desired form by inductive
hypothesis. So has a;,D; 1 f, for

Dpvq(xrv Ts) = ($p7378>5q,7" + (l'pv xv")(squv

D, ,det(zi,, ...,z ) = g Og,i; Aet(@iy s oo Ty Tp, Ty sy Ty )

Hence this is also true of f, which completes the proof.
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NOTES AND REFERENCES

Chapter 1. Starting with the notion of curvature for a curve, which is as old as
calculus, we study the tangent and normals associated to a curve which leads up to a
first encounter with the idea of moving orthogonal frames. It goes back to Euler and
is basic for the methods of E. Cartan presented in Chapter IV. We introduce it in the
elementary context of curves in a Euclidean space and take the opportunity to give at
the same time a first introduction to Lie groups, restricted to subgroups of the linear
group. A more extensive discussion is given in Section 5.3, and the reader who wants
more information is referred to Chevalley [1], Helgason [1], Sternberg [1], Warner [1]
and Weyl [1].

Chapters 2, 3. Principal curvatures of surfaces in R?® were also known to Euler,
but it was Gauss [1] who discovered that the total curvature is an inner property of the
surface. Reading Gauss [1] is still very pleasant, and one will recognize many of the
ideas presented in Chapters 2 and 3 there. The extension to higher dimensions outlined
in Riemann [1], with emphasis on ideas rather than formulas, is equally enjoyable to
read. The later formal development of his ideas by Bianchi, Christoffel, Ricci and
others is the main theme of Chapters 2 and 3. Our presentation is in the same spirit as
Klingenberg [1,2] and to some extent the classic Eisenhart [1,2]. One can find a good
presentation in Berger, Gauduchon and Mazet [1], and excellent summaries are given in
Aubin [1], Besse [1]. Chapter 2 ends with some detailed analysis of the curvature tensor
at a point taken from Atiyah, Hitchin and Singer [1], where much more information is
available.

To give a bridge between the study of submanifolds of R™ in Chapter 2 and abstract
manifolds in Chapter 3 we have devoted much space in Chapter 3 to the problem of
embedding an abstract manifold in a Euclidean space. After the classical results of
Cartan and Janet for the analytic case, the big advance on the problem was made by
Nash [1,2]; recently a technically simpler variation has been found by Giinther [1,2].
For additional information on global embedding theorems we refer to Gromov and
Rohlin [1], Griffiths [1], Griffiths and Jensen [1], Jacobowitz [1,2] and references in
these papers.

The discussion of spaces of constant curvature in Section 3.3 has been taken to
a large extent from Kobayashi and Nomizu [1]. This is a very careful and useful
presentation of basic differential geometry, though provided with very little motivation
for the reader.

Chapter 4. In this chapter we leave the Ricci tensor calculus which dominated
Chapter 3 and introduce differential forms in the spirit of E. Cartan. The reader can
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194 NOTES AND REFERENCES

consult Chern [1,2], Kobayashi and Nomizu [1] and Sternberg [1] for a more thorough
discussion of these topics. Section 4.3 is almost entirely taken from Chern [1].

Chapter 5. We have started the chapter with a discussion of connections in a vector
bundle, as they are encountered naturally by an analyst. However, at the end we also
give the more geometrical approach using connection forms on a principal bundle. The
purpose of this material is to give the language required to state index theorems for
elliptic differential operators and to give the basic concepts required in gauge theory.
Also in this chapter one can consult Kobayashi and Nomizu [1] or Sternberg [1] for
most of the topics covered.

Chapter 6. The term “metric operator” is taken from Giinther [3], and Proposition
6.1.2 can also be found there. The Hadamard construction of parametrices (Hadamard
[1], see also e.g. Hormander [1, Chapter 17]) is made more transparent by using the
connection provided by the operator itself, and this is useful in the proof of the local
index theorem in Section 6.10. Section 6.2 is devoted to the algebra of differential
forms, and Hodge theory is presented in Section 6.3. For a more detailed discussion
of differential forms on a Riemannian manifold including Hodge theory, the reader can
also consult de Rham [1] or Warner [1]. In Section 6.4 the Hadamard construction of
parametrices is adapted to heat equations associated to metric operators. This gives
the analytical tools required for the discussion of Hirzebruch’s signature theorem in
Section 6.5. (For additional background to this result one should consult Hirzebruch
[1].) The presentation here follows Atiyah, Bott and Patodi [1] in principle, but we
have substituted the parametrix construction of Hadamard for the application of pseu-
dodifferential operators. Sections 6.6-6.10 are devoted to a direct proof of the local
index formula for Dirac operators, following Bismut [1] and particularly Getzler [1, 2].
The presentation owes much to Roe [1], and we have also benefited from some lecture
notes of M. Taylor.

Unwritten chapters. One of the possible directions for a continuation is to cover
the solution of the Yamabe problem, following the excellent exposition in Lee and
Parker [1]. After this introduction to non-linear problems in geometry one might
study some gauge theory. Another natural direction is to study pseudo-Riemannian
manifolds of Lorentz signature. There are a number of papers exploiting conformal
invariance to prove global existence theorems for non-linear hyperbolic systems, most
recently Christodoulou and Klainerman [1] where the stability of Minkowski space un-
der small perturbations is proved. This requires of course some preparations concerning
general relativity theory. The classical survey by Pauli [1] is still very readable. More
recent information can be found in Bergmann [1], but this reference is directed towards
mathematical physicists rather than mathematicians interested in physics. With some
background from these sources, including the Schwarzschild solution, the way is also
open to discuss the interesting proof of the positive mass conjecture in Schoen and Yau
[1,2], Witten [1] and Parker and Taubes [1].
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