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Preface

These lectures might have been called applied linear functional analysis, for the
purpose is not to present functional analysis for its own sake but rather as a tool
for the working analyst. The general results are therefore illustrated by a large
number of examples. They are on the whole taken from natural contexts. However,
functional analysis alone rarely solves an analytical problem; its role is to clarify
what is essential in it. It has therefore been necessary to simplify and modify
many of the examples so that they can be handled by elementary arguments. In
spite of that the reader may not always have the necessary background to follow
the analytical details, but he should then rest assured that the examples are not
strictly necessary for the understanding of the main theme.

It is not possible to draw a sharp dividing line between analysis and functional
analysis. On the contrary, the vital parts of functional analysis have always devel-
oped from proofs of theorems in analysis. When some arguments are felt to occur
frequently they are isolated and put in an abstract form, involving rather little
structure so that they can be applied in apparently different circumstances. This
development is still going on, and what is perceived as central in functional analysis
depends to some extent on what parts of analysis that one is interested in. These
lecture notes are undoubtedly biased towards applications to differential equations
and harmonic analysis, but nevertheless I hope that the material chosen is of a wide
interest. They are a slightly edited version of lectures given at the University of
Lund in 1969 and in 1988.

I am grateful to Anders Melin who read the whole manuscript and suggested
a number of improvements. I would also like to thank the students in the course
just finished for their attention to details which has helped improve the exposition.
Some of the exercises added at the end have been taken over from earlier courses
on the same subject given in Lund or in Copenhagen.

Lund in February 1989

Lars Hörmander
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Chapter I

Linear Algebra

1.1 Vector spaces and linear transformations. Let K be a field. (Later on K
will always be either the field R of real numbers or the field C of complex numbers.)
We recall the following definition:

Definition 1.1.1. A vector space V over K is an abelian group, with elements called
vectors and group operation denoted by +, such that to any x ∈ V and a ∈ K there
is assigned an element ax ∈ V such that

a(x+ y) = ax+ ay for all x, y ∈ V and a ∈ K,

(a+ b)x = ax+ bx for all x ∈ V and a, b ∈ K,

(ab)x = a(bx) for all x ∈ V and a, b ∈ K,

1 · x = x for all x ∈ V.

Here 1 is the unit element in K.

These conditions are of course not independent of each other. Note that they
imply that x = (1 + 0)x = 1 · x + 0 · x = x + 0 · x, thus 0 · x = 0 for every x ∈ V .
Here 0 denotes both an element in K and one in V , the origin.

Example. Let M be an arbitrary set and denote by V the set of all functions on M
with values in K, sometimes denoted KM . With the operations defined by

(af + bg)(m) = af(m) + bg(m); a, b ∈ K, f, g ∈ V, m ∈M,

it is clear that V is a vector space over K. If M = {1, . . . , n}, the space is usually
denoted by Kn and is the set of all n-tuples of elements of K. Similarly the set
VM of functions from M to a vector space V over K is a vector space over K.

More general examples are obtained as follows:

Proposition 1.1.2. Let W be a subset of a vector space V over K such that for
all x, y ∈ W and a, b ∈ K we have ax + by ∈ W . Then W is a vector space with
the operations inherited from V .

The proof is obvious. One calls W a linear subspace of V .

Example. The set V of all f ∈ KM such that
∑
M |f(m)| < ∞ is clearly a linear

subspace of KM . (Here K = R or K = C.)

Given a vector space V and a linear subspace V1 we can construct another
vector space V/V1, called the quotient space of V by V1, as follows: If x, y ∈ V and
x − y ∈ V1, we write x ≡ y and say that x is congruent to y mod V1. This is an
equivalence relation. Since x ≡ x1 and y ≡ y1 implies that ax+ by ≡ ax1+ by1, the
addition and multiplication by scalars in V induce such operations in V/V1 which
will clearly inherit the properties required in Definition 1.1.1.

1
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Proposition 1.1.3. If V2 ⊂ V1 ⊂ V where V is a vector space and V1, V2 linear
subspaces, then the map V/V2 → V/V1 gives an isomorphism

(V/V2)/(V1/V2) → V/V1.

The simple proof is left to the reader. Instead we pass to introducing the appro-
priate maps between vector spaces.

Definition 1.1.4. Let V1 and V2 be two vector spaces over K. A map T from V1 to
V2 is called a linear map (or linear transformation) if it commutes with the vector
operations, that is,

T (ax+ by) = aTx+ bTy; x, y ∈ V ; a, b ∈ K.

The linear maps from V1 to V2 form a vector space L(V1, V2), which is a linear

subspace of V V1
2 . Thus

(a1T1 + a2T2)x = a1T1x+ a2T2x when a1, a2 ∈ K and x ∈ V1.

It is also obvious that the composition of two linear maps is a linear map.
Recall that a (linear) map T from V1 to V2 is called:

(1) injective if Tx = Ty implies x = y,
(2) surjective if for every y ∈ V2 we have Tx = y for some x ∈ V1,
(3) bijective if it is both injective and surjective, and thus an isomorphism.

Since Tx = Ty is equivalent to T (x − y) = 0, injectivity means precisely that
Tx = 0 implies x = 0.

Example. If V1 is a linear subspace of V , then the inclusion map V1 → V is injective,
and the quotient map V → V/V1 is surjective.

In general a linear map T from V1 to V2 is of course neither injective nor surjec-
tive, so one has to consider the kernel

KerT = {x;x ∈ V1, Tx = 0}

and the range
ImT = {Tx;x ∈ V1}.

It is obvious that the kernel is a linear subspace of V1 and that the range is a linear
subspace of V2. The map T induces a bijection T ′ from V1/KerT to ImT since T
maps two elements x1, x2 in V1 to the same element in V2 if and only if x1 and x2
are congruent modulo KerT . Often we shall somewhat incorrectly denote T ′ by T ,
although T is really a composition

V1 → V1/KerT
T ′

−→ ImT → V2

where the first map is the quotient map and the last the inclusion.

Definition 1.1.5. If V1 and V2 are linear subspaces of a vector space V , then V is
said to be the direct sum of V1 and V2 if every x ∈ V in one and only one way can
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be written x = x1 + x2 with xj ∈ Vj . One also calls V2 a supplement of V1. We
write V = V1 ⊕ V2.

Let Pi be the map x 7→ xi. This is then a linear map, and we have ImPi = Vi,
KerP1 = V2, KerP2 = V1. Moreover, the restriction of Pj to Vj is the identity map
of Vj . It is obvious that, with I = identity map,

(1.1.1) I = P1 + P2; P1P2 = P2P1 = 0; P 2
j = Pj .

Conversely, given a linear map P : V → V with P 2 = P , if we set P1 = P and
P2 = I − P , then the relations (1.1.1) are fulfilled. If V1 = KerP2, V2 = KerP1,
then x = P1x + P2x = P1x when x ∈ V1, and x = P2x when x ∈ V2. Thus Pj
leaves the elements of Vj fixed. The equation x = x1 + x2 with xj ∈ Vj implies
that Pjx = Pjxj = xj . Conversely, x = x1 + x2 if we set xj = Pjx ∈ Vj . Thus V
is the direct sum of V1 and V2, and P1, P2 are precisely the maps corresponding to
this decomposition. We have thus found that there is a one-to-one correspondence
between direct sum decompositions of V and projections:

Definition 1.1.6. A linear map P : V → V is called a projection if

P 2 = P.

That V is the direct sum of V1 and V2 means precisely that the restriction to
V2 of the map V → V/V1 is a bijection, in other words, that each equivalence class
modulo V1 contains a unique element of V2.

Note that given two vector spaces V1 and V2 we can construct a vector space

V = {(x1, x2);xj ∈ Vj}

with vector operations obtained from those in Vj for each component. We can
regard V1 (resp. V2) as the subspace of V for which x2 = 0 (resp. x1 = 0). Then
we have the situation in Definition 1.1.5.

1.2. Dimension and rank. We shall now assign to every vector space V over K
its dimension dimK V or dimV for short. This shall be a non-negative integer or
+∞ with the following properties:

a) dimKn = n,
b) If T : V1 → V2 is a surjective (injective) linear map, then

dimV1 ≥ dimV2 (resp. dimV1 ≤ dimV2).

We shall see that this is possible in one and only one way.
Indeed, let V be a vector space over K and consider linear maps

T : Kn → V.

Such a map is completely determined by the vectors Tei = xi ∈ V , where ei is the
element in Kn with ith coordinate 1 and the other coordinates 0. For using the
linearity of T we obtain

(1.2.1) T (a1, . . . , an) =
n∑
1

ajxj , aj ∈ K;
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conversely, given x1, . . . , xn ∈ V the equation (1.2.1) defines a linear map Kn → V
with Tei = xi. We recall the following terminology:

Definition 1.2.1. The vectors x1, . . . , xn ∈ V are called linearly independent if the
map T defined by (1.2.1) is injective; they are said to generate V if T is surjective;
and they are called a basis if T is bijective.

To use conditions a) and b) above we shall consider both surjective and injective
maps from spaces Kn to V . To relate them we need the following lemma — the
only non-trivial point in the discussion.

Lemma 1.2.2. If T1 : Kn → V is a surjective and T2 : Km → V is an injective
linear map, then m ≤ n.

Proof. Since T1 is surjective, we can choose a linear map T : Km → Kn such that
T2 = T1T . In fact, it suffices to choose Tej with T1(Tej) = T2ej when ej is a basis
vector in Km. Then T is injective since T2 is injective, so it suffices to prove that if

T : Km → Kn

is an injective linear map, then m ≤ n (or equivalently that a homogeneous system
of equations with fewer equations than unknowns always has a non-trivial solution).
This is obvious if n = 1 since two arbitrary elements in Kn are proportional then.
We prove the statement in general assuming that it is already known for smaller
values of n. Define Q : Kn → Kn−1 by

Q (a1, . . . , an) = (a1, . . . , an−1)

and Rk : Km−1 → Km for 1 ≤ k ≤ m by

Rk(a1, . . . , am−1) = (a1, . . . , ak−1, 0, ak, . . . , am−1).

If QT : Km → Kn−1 is injective it follows by the inductive hypothesis that m ≤
n− 1. Otherwise, if a and b are two non-zero elements in KerQT , then Ta and Tb
are proportional and not zero, so a is proportional to b since T is injective. Choose
k so that the kth coordinate ak ̸= 0, hence bk ̸= 0. Then the map QTRk : Km−1 →
Kn−1 is injective, so m − 1 ≤ n − 1 by the inductive hypothesis. The proof is
complete.

Theorem 1.2.3. Let V be a vector space over K such that there exists a surjec-
tive map T : Kn → V for some n. Every system of linearly independent vectors
x1, . . . , xk in V can then be extended to a basis x1, . . . , xk, xk+1, . . . , xd. Every
system of generators contains a basis. All bases in V have the same number of
elements d. The number d is also the smallest such that there exists a surjective
linear map Kd → V as well as the largest such that there exists an injective linear
map Kd → V ; such maps are automatically bijective.

Proof. Let D be the smallest integer such that there is a surjective map KD → V ,
and let d be the largest integer such that there is an injective map Kd → V . The
existence of D is guaranteed by the hypothesis, and it follows from Lemma 1.2.2
that d is defined and ≤ D. Let now x1, . . . , xk be a system of linearly independent
elements in V . Then we have k ≤ d. If they do not form a basis we can choose
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xk+1 which is not a linear combination of x1, . . . , xk. Then x1, . . . , xk+1 are linearly
independent, for if

a1x1 + · · ·+ ak+1xk+1 = 0

we cannot have ak+1 ̸= 0 since division by ak+1 would then show that xk+1 is a
linear combination of x1, . . . , xk. Thus ak+1 = 0 and since x1, . . . , xk are linearly
independent it follows that a1 = · · · = ak = 0 also. We can thus extend the system
x1, . . . , xk until we get a basis x1, . . . , xN . Then we have N ≤ d ≤ D ≤ N , so
N = d = D.

Now assume that x1, . . . , xk is a system of generators. If they are not linearly
independent then one of them, say xk is a linear combination of the others, so
x1, . . . , xk−1 is also a system of generators. We can continue dropping elements
until we have a linearly independent system of generators, that is, a basis. The
theorem is proved.

The proof also shows that if there is no surjective map Kn → V for any n, then
one can find an injective map Kn → V for any n. The following definition of the
dimension is therefore the only one which can have the properties a) and b) stated
at the beginning of the section.

Definition 1.2.4. A vector space V over K is said to have finite dimension (over
K) if there exists a surjective linear map Kn → V for some n. The smallest such
integer n is equal to the largest integer n such that there is an injective linear map
Kn → V . It is called the dimension of V . If V does not have finite dimension we
say that V is infinite dimensional and write dimV = ∞.

Remark. In case there may be some doubt which scalar field K is being used we
shall make this clear by writing dimK V for the dimension of V as a vector space
over K.

It is clear that the dimension of Kn is equal to n as desired, and we also have
the property b):

Theorem 1.2.5. If the linear map T : V1 → V2 is surjective resp. injective or
bijective, then

dimV1 ≥ dimV2 resp. dimV1 ≤ dimV2 or dimV1 = dimV2.

Proof. Let T be surjective. There is nothing to prove unless dimV1 < ∞. From
any surjective map Kn → V1 we then obtain by composition with T a surjective
map Kn → V2, which proves that dimV1 ≥ dimV2. If T is injective, we conclude
that dimV1 ≤ dimV2 if we consider injective maps Kn → V1 instead. This proves
the theorem.

In particular, the dimension of a subspace or a quotient space of V is thus smaller
than or equal to the dimension of V . If we recall that a linear map T : V1 → V2
gives rise to a bijection T ′ : V1/KerT → ImT , hence that

(1.2.2) dim(V1/KerT ) = dim(ImT ),

we recover Theorem 1.2.5 from these special cases. The number occurring in (1.2.2)
is so important that it has a special name:
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Definition 1.2.6. If T is a linear map V1 → V2, then the rank of T is defined as
dim(ImT ) or equivalently as dim(V1/KerT ).

In a moment we shall write (1.2.2) in various other ways, but first it is useful to
introduce another concept:

Definition 1.2.7. If V is a vector space and W a linear subspace, then the codi-
mension of W in V , denoted codimV W or simply codimW , is defined to be the
dimension of the quotient space V/W .

In finite dimensional spaces this notion is not indispensable, for we have

Theorem 1.2.8. If V is a vector space and W a linear subspace, then

dimW + codimW = dimV.

Proof. Since dimW ≤ dimV and codimW ≤ dimV , we may assume in the proof
that the left hand side is finite. Let T1 : Kn → W and T2 : Km → V/W be
bijections, thus n = dimW and m = codimW . We lift T2 to a map T ′

2 : Km → V
such that the composition with the quotient map V → V/W is equal to T2. Then

T = T1 ⊕ T ′
2 : Kn+m = Kn ⊕Km ∋ (a, b) 7→ T1a+ T ′

2b ∈ V

is bijective. In fact, if T (a, b) = 0 then composition with the quotient map V →
V/W shows that T2b = 0, hence b = 0. It follows that T1a = 0 so a = 0 also. In a
similar way one concludes that T is surjective, which proves the theorem.

We can write (1.2.2) in the form

(1.2.2)′ codimKerT = dim ImT.

Using Theorem 1.2.8 we therefore obtain

Theorem 1.2.9. Let T : V1 → V2 be a linear map. Then

dim ImT + dimKerT = dimV1, codim ImT + codimKerT = dimV2.

If V1 and V2 have finite dimension, then

(1.2.3) dimKerT − dimCokerT = dimV1 − dimV2.

Here we have used the notation CokerT = V2/ ImT . In the special case when
dimV1 = dimV2 the result (1.2.3) is classically phrased as follows:

The number of linear conditions for solvability of the equation Tx = y is equal
to the number of linearly independent solutions of the equation Tx = 0.

One of our main goals is to discuss infinite dimensional extensions of this rule or
the more general formula (1.2.3). In the algebraic case this discussion will begin in
the following section. We shall then need some identities concerning dimensions of
vector spaces which will now be derived.

Let

(1.2.4) 0 → V0
T0−→ V1

T1−→ V2
T2−→ . . .

TN−1−→ VN → 0

be a sequence of vector spaces and linear maps, starting with the 0 dimensional
vector space consisting of the origin only and ending in the same way. One calls
(1.2.4) a complex if Tj+1Tj = 0 for every j. This means that

ImTj ⊂ KerTj+1.

The complex is called exact if ImTj = KerTj+1 for every j, which in particular shall
mean that T0 is injective and that TN−1 is surjective. If N = 1 exactness therefore
means that T0 : V0 → V1 is bijective, and then we know that dimV0 = dimV1. This
fact is generalised as follows:
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Theorem 1.2.10. If (1.2.4) is an exact complex of vector spaces and linear maps,
then

(1.2.5)
∑
j

dimV2j =
∑
j

dimV2j+1

or, if all dimensions are finite,

(1.2.6)
∑
j

(−1)j dimVj = 0.

Proof. Let Rj = KerTj = ImTj−1. By Theorem 1.2.8 and (1.2.2) we have

dimVj = dimRj + codimRj = dimRj + dimRj+1

which shows that both sides of (1.2.5) are equal to
∑

dimRj .

As a first example we note that given a linear map T : V1 → V2 we have an exact
sequence

0 → KerT → V1 → ImT → 0

where the first map is a restriction of T and the second is a quotient map. Hence
we obtain

dimKerT + dim ImT = dimV1.

Similarly, we have an exact sequence

0 → V1/KerT → V2 → V2/ ImT → 0

where the first map is induced by T and the second is a quotient map. This gives

codimKerT + codim ImT = dimV2

as we already knew from Theorem 1.2.9. Further important examples are given in
the following

Theorem 1.2.11. Let V1 and V2 be linear subspaces of the vector space V , and let
V1 + V2 be the subspace {x1 + x2; x1 ∈ V1, x2 ∈ V2}. Then we have

dim(V1 ∩ V2) + dim(V1 + V2) = dimV1 + dimV2,(1.2.7)

codim(V1 ∩ V2) + codim(V1 + V2) = codimV1 + codimV2,(1.2.8)

dim(V1 ∩ V2) + codimV2 = codim(V1 + V2) + dimV1.(1.2.9)

Note that these equalities are equivalent if V has finite dimension but not oth-
erwise.

Proof. We have an exact sequence

0 → V1 ∩ V2 → V1 ⊕ V2 → V1 + V2 → 0
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where the first map is V1 ∩ V2 ∋ x 7→ (x, x) ∈ V1 ⊕ V2, and the second map is
V1 ⊕ V2 ∋ (x1, x2) 7→ x1 − x2. The trivial verification of exactness is omitted. This
gives (1.2.7). Similarly the exact sequence

0 → V/(V1 ∩ V2) → (V/V1)⊕ (V/V2) → V/(V1 + V2) → 0

leads to (1.2.8). Finally (1.2.9) is obtained from the exact sequence

0 → V1 ∩ V2 → V1 → V/V2 → V/(V1 + V2) → 0.

The definition of the various maps and the proof of exactness are left as an exercise
for the reader.

Finally we shall make a remark on duality:

Definition 1.2.12. Let V1 and V2 be two vector spaces over K, and let V1 × V2 ∋
(x, y) 7→ ⟨x, y⟩ ∈ K be a bilinear form, that is, a function which is linear in x (resp.
y) when y (resp. x) is fixed. The form is said to define a duality between V1 and
V2 if

⟨x, y⟩ = 0 ∀y ∈ V2 =⇒ x = 0,(1.2.10)

⟨x, y⟩ = 0 ∀x ∈ V1 =⇒ y = 0.(1.2.11)

An example is V1 = V2 = Kn and

(1.2.12) ⟨x, y⟩ =
n∑
1

xjyj ; x = (x1, . . . , xn), y = (y1, . . . , yn).

This is more than an example:

Theorem 1.2.13. If V1 and V2 are two vector spaces which are dual with respect
to a bilinear form ⟨·, ·⟩, then dimV1 = dimV2. If this dimension is finite, then
(1.2.12) holds for the coordinates with respect to suitable bases in V1 and V2.

Proof. There is nothing to prove unless one of the spaces, say V1, is finite dimen-
sional. Then we choose a basis e1, . . . , en for V1 and consider the linear map

φ : V2 ∋ y 7→ (⟨e1, y⟩, . . . , ⟨en, y⟩) ∈ Kn.

φ is injective since ⟨ej , y⟩ = 0, j = 1, . . . , n, implies ⟨x, y⟩ = 0, x ∈ V1, hence y = 0.
This proves that dimV2 ≤ n = dimV1, and interchanging the roles of V1 and V2 we
conclude that dimV1 = dimV2. Thus φ is bijective. The inverse can be written

Kn ∋ (y1, . . . , yn) 7→
n∑
1

yifi,

where f1, . . . , fn is a basis for V2. Hence

⟨
∑

xjej ,
∑

yifi⟩ =
∑

xj(φ(
∑

yifi))j =
∑

xjyj

as claimed.
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1.3. The index of linear transformations. We shall now resume the discussion
of the quantity which occurs in the left-hand side of (1.2.3), without assuming that
dimV1 and dimV2 are finite. If T : V1 → V2 is a linear map such that either
dimKerT or dimCokerT is finite, we thus define the index of T by

(1.3.1) indT = dimKerT − dimCokerT.

The index has a stability property generalizing (1.2.3).

Theorem 1.3.1. If T and S are linear maps from V1 to V2 such that indT is
defined and S has finite rank, then ind (T + S) is defined and

(1.3.2) indT = ind (T + S).

Before the proof of Theorem 1.3.1 we give another property of the index, some-
times referred to as the logarithmic law, which is convenient in computations in-
volving the index.

Theorem 1.3.2. Let T1 : V1 → V2 and T2 : V2 → V3 be linear maps. For the linear
map T2T1 : V1 → V3 we have

(1.3.3) ind (T2T1) = indT2 + indT1

provided that the right-hand side is defined, that is, either dimKerTj < ∞ for
j = 1, 2 or dimCokerTj <∞ for j = 1, 2.

Proof. It suffices to verify the exactness of the complex

(1.3.4)
0 → KerT1

i−→ KerT2T1
T ′
1−→KerT2

q−→ V2/ ImT1

T ′
2−→V3/ ImT2T1

q−→ V3/ ImT2 → 0,

where i and q denote inclusion and quotient maps and T ′
1 and T ′

2 are derived from
T1 and T2 in an obvious way. For then it follows that the left-hand side of (1.3.3)
is defined if the right-hand side is, and using Theorem 1.2.10 we obtain (1.3.3).
The easy verification that (1.3.4) is an exact complex is left for the reader except
for the exactness at V2/ ImT1 which may be somewhat less trivial than the other
statements. So assume that x2 ∈ V2 and that the class of x2 in V2/ ImT1 is
mapped to 0 by T ′

2. This means that T2x2 = T2T1x1 for some x1 ∈ V1. Thus
x2 − T1x1 ∈ KerT2, and since x2 − T1x1 is equal to x2 modulo ImT1, this proves
the statement.

The following special case of Theorem 1.3.2 is often useful:

Corollary 1.3.3. Let T : V1 → V2 be a linear map such that indT is defined, let
W1 be a subspace of V1 of finite codimension and W2 a subspace of V2 of finite
dimension. Let i : W1 → V1 and q : V2 → V2/W2 be the inclusion and quotient
maps. Then the index of qT i :W1 → V2/W2 is defined and equals

indT + dimW2 − codimW1.



10

Proof of Theorem 1.3.1. By hypothesis W1 = KerS has finite codimension. With
the notation of Corollary 1.3.3 we have ind (Ti) = indT + ind i, if i is the inclusion
W1 → V1. Since Si = 0, it follows that

ind ((T + S)i) = ind (Ti) = indT + ind i,

which shows that either Ker (T + S) or Coker (T + S) has finite dimension, for by
(1.2.9) we have dimKer (T+S) ≤ dimKer ((T+S)i)+codimW1, and dimCoker (T+
S) ≤ dimCoker ((T +S)i). Thus ind (T +S) is defined, and another application of
Theorem 1.3.2 shows that

ind ((T + S)i) = ind (T + S) + ind i,

hence that ind (T + S) = indT .

When T is a linear map V → V and dimV < ∞ we know that indT = 0. This
is not always true in the infinite dimensional case, however, which is one of the
reasons for the interest of the index.

Example 1.3.4. Let V = K{1,2,... }, that is, the set of all sequences x = (x1, x2, . . . )
with elements in K, the vector operations being defined coordinatewise. Let n be
a fixed integer and set

Tx = (xn+1, xn+2, . . . )

where coordinates with index ≤ 0 should be read as 0. Then we have

dimKerT = max (n, 0), dimCokerT = max (−n, 0),

and it follows that indT = n.

1.4. Hyperplanes and linear forms. A linear subspace W of a vector space V
is called a hyperplane if codimW = 1. Equivalently, this means that W is a proper
subspace of V contained in no strictly larger proper subspace. A hyperplane can
always be defined by one linear equation. For if V/W has dimension 1, there is a
bijection V/W → K. By composition we get a linear form

L : V → V/W → K

such that W is the inverse image of 0 in K. Thus we have

(1.4.1) L(x+ y) = L(x) + L(y), x, y ∈ V ; L(ax) = aL(x), a ∈ K,x ∈ V ;

and L(x) = 0 if and only if x ∈W . Conversely, assume that we have a linear form
L, that is, a map V → K satisfying (1.4.1), and that L does not vanish identically.
Then W = {x;L(x) = 0} is a hyperplane, for the map V/W → K induced by L is
a bijection.

Now consider a linear subspace W of finite codimension n. Composing the
quotient map V → V/W with a bijection V/W → Kn we then get a linear map
L : V → Kn such that L is surjective and Lx = 0 is equivalent to x ∈ W . Writing
L = (L1, . . . , Ln), where Lj are linear forms, we conclude that W can be defined
by n linear equations, that is, W is the intersection of n hyperplanes. On the other
hand, the intersection of k hyperplanes has codimension ≤ k in view of (1.2.8).
Thus we have
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Theorem 1.4.1. A linear subspace W of V of codimension n can always be ob-
tained as the intersection of n but not fewer than n hyperplanes.

We shall now discuss an analogue of Theorem 1.4.1 for spaces of arbitrary codi-
mension.

Theorem 1.4.2. Every linear subspace of V is the intersection of hyperplanes.

An equivalent statement is the following:

Theorem 1.4.2′. If V1 is a subspace of V and x an element in V \ V1, then one
can find a hyperplane V2 in V such that V1 ⊂ V2 but x /∈ V2.

Proof. a) We prove first that if codimV1 > 1 then one can choose V2 containing V1
strictly but not containing x. To do so we note that V/V1 has dimension > 1 and
that the residue class ẋ of x there is not 0. We can therefore find another element,
say the residue class ẏ of some y ∈ V , which is linearly independent of ẋ. Now set

V2 = {z + ty; z ∈ V1, t ∈ K}.

This is a linear subspace of V which contains V1 strictly since y ∈ V2 \ V1. On the
other hand, x /∈ V2 for the image of V2 in V/V1 is generated by ẏ so it does not
contain ẋ.

b) Now consider the set F of all linear subspaces V2 of V containing V1 but not
x. The union of a completely ordered subset of F is obviously an element of F .
According to Zorn’s lemma it follows that there exists at least one maximal element
V2 ∈ F . Since x /∈ V2 we have codimV2 ≥ 1, and by a) we know that V2 would not
be maximal if codimV2 > 1. Hence codimV2 = 1, which proves the theorem.

With V1 = {0} we conclude in particular that hyperplanes exist and that for
every x ∈ V \ 0 there is some linear form L on V with L(x) ̸= 0. Another useful
consequence is given by

Corollary 1.4.3. If W1 ⊂ V is a linear subspace of finite dimension, then there
exists a linear subspaceW2 ⊂ V with codimW2 = dimW1 such that W1∩W2 = {0}.
Thus V is the direct sum W1 ⊕W2.

Proof. The assertion is obvious ifW1 = {0}. If 0 ̸= x ∈W1 we can find a hyperplane
H1 with x /∈ H1, thus dim(W1 ∩H1) = dimW1 − 1 by (1.2.9) since H1 +W1 = V .
Repeating the argument we obtain hyperplanes Hk, k = 1, . . . , d, d = dimW1, such
that

dim (W1 ∩H1 ∩ · · · ∩Hk) = d− k, k = 1, . . . , d.

Thus W1 ∩W2 = {0} if W2 = H1 ∩ · · · ∩Hd, and d ≤ codimW2 ≤ d by (1.2.9) and
(1.2.8).

Remark. Using Zorn’s lemma it is also easy to prove directly that Corollary 1.4.3
holds for an arbitrary linear subspace W1. We leave this as an exercise for the
reader.

As an application we prove a supplement to Theorem 1.3.1.
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Theorem 1.4.4. Let T : V1 → V2 be a linear map of index 0. Then one can find
a linear map S : V1 → V2 of finite rank such that T + S is a bijection.

Proof. Using Theorem 1.4.3 we choose a linear subspace W1 of V1 such that W1 ∩
KerT = {0} and codimW1 = dimKerT . The range of T is then equal to the range
of the restriction of T to W1, which is injective. Now choose a linear subspace
W2 ⊂ V2 such that W2 ∩ ImT = {0} and dimW2 = dimCokerT . We just have
to take W2 spanned by vectors whose images in CokerT form a basis there. By
hypothesis

dimKerT = dimCokerT = dimW2;

hence we can define S so that S vanishes on W1 and the restriction to KerT is a
bijection with range W2. Then the image of T + S contains ImT and W2 so it is
equal to V2. The construction also shows that T + S is injective. This proves the
theorem.

The origin in V belongs to every linear subspace. Sometimes it is convenient to
remove this special role of the origin by introducing the following concept:

Definition 1.4.5. A subset W of the vector space V is called an affine subspace
(hyperplane) ifW can be transformed to a linear subspace (hyperplane) by a trans-
lation.

The definition means that {x− y;x ∈ W} is a linear subspace (hyperplane) for
every fixed y ∈W , and that this set is independent of y. Conversely, if {x− y;x ∈
W} is a linear subspace (hyperplane) for some fixed y , thenW is an affine subspace
(hyperplane) through y. With this terminology Theorem 1.4.2′ extends immediately
to affine spaces.

Every linear form L on Kn is obviously of the form

Kn ∋ (a1, . . . , an) 7→
n∑
1

cjaj

for some cj ∈ K. However, in an infinite dimensional space there may be so many
linear forms that they are hard to describe. This is one reason for the study of vector
spaces with topology where one only has to consider continuous linear forms. As a
preparation for that we shall now give an extension of Theorem 1.4.2′ with K = R
and the point x replaced by a larger set.

Definition 1.4.6. A subset A of the vector space V over R is called convex if for
arbitrary x, y ∈ V the set {t; t ∈ R, x+ ty ∈ A} is an interval (open, closed or half
open; finite or infinite). We say that A is convex and linearly open if the interval is
always open.

Theorem 1.4.7. (Geometric form of the Hahn-Banach theorem.) Let A be a con-
vex, linearly open set in the vector space V over R, and let V1 be a linear subspace
which does not intersect A. Then there exists a hyperplane V2 such that V1 ⊂ V2
and V2 ∩A = ∅.

Proof. This is analogous to the proof of Theorem 1.4.2′ although the 2-dimensional
case is not equally trivial now. We discuss it first.

a) dimV = 2. Then V1 = {0} or else there is nothing to prove. From the
convexity of A it follows that if a half ray {tx; t ≥ 0} through 0 intersects A, then
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the opposite half ray {tx; t ≤ 0} does not. Identifying half rays with points on the
unit circle by means of a basis in V , we denote by O+ and O− the set of half rays
intersecting A and their opposites. These are open sets since A is linearly open,
and we have just seen that they are disjoint. Since the unit circle is connected, it
follows that it cannot be the union of O+ and O−, so we can find a half ray which
is neither in O+ nor in O−. The corresponding line has no point in common with
A then.

b) Assuming that codimV1 > 1 we now prove that there exists a strictly larger
subspace V2 which does not intersect A. Thus form V ′ = V/V1 and let A′ be the
image of A in V ′. Then A′ is convex and linearly open. For if ξj ∈ A′ for j = 1, 2, we
can find xj ∈ A with residue class ξj for j = 1, 2. Thus we have tx1+(1− t)x2 ∈ A
for all t in an open interval I containing [0, 1], hence tξ1 + (1 − t)ξ2 ∈ A′, t ∈ I,
which proves the assertion. In view of a) we can find a straight line W ′ in V ′ which
does not intersect A′. In fact, we can choose W ′ in any two dimensional subspace
of V ′ (which by assumption has dimension > 1). But then the inverse image of W ′

in V by the quotient map V → V ′ has the required properties.
c) We can now apply Zorn’s lemma precisely as in part b) of the proof of Theorem

1.4.2′. The repetition is left as an exercise for the reader.
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Chapter II
Topological vector spaces

2.1. Topological and metric spaces. Let us first recall that a set E is called a
topological space if there is given a family O of subsets, which are said to be open,
such that

a) E ∈ O,
b) the union of the sets in any subfamily of O is always a set in O,
c) the intersection of finitely many sets in O is also in O.

The space E is called a Hausdorff space if in addition
d) for two arbitrary different points x, y ∈ E one can always find two disjoint

sets in O containing x and y respectively.
The complements in E of the open sets are said to be closed. According to b)

and c) arbitrary intersections and finite unions of closed sets are closed. For every
set M ⊂ E the intersection M of all closed sets containing M is therefore closed,
hence the smallest closed set containing M .

A subset N of E is called a neighborhood of x ∈ E (and x is said to be an
interior point of N) if x ∈ O ⊂ N for some O ∈ O. The neighborhoods of x have
the following properties:

i) E is a neighborhood of x, and x belongs to every neighborhood of x,
ii) the intersection of a finite number of neighborhoods of x is a neighborhood

of x,
iii) if N is a neighborhood of x and N ′ ⊃ N , then N ′ is a neighborhood of x,
iv) if N is a neighborhood of x then there is another neighborhood N ′ of x such

that N is a neighborhood of every y ∈ N ′.

From the neighborhoods one can reconstruct the open sets: If O is a subset of E
then O ∈ O if (and only if) O is a neighborhood of all of its points. In fact, for
every x ∈ O we can then find Ox ∈ O with x ∈ Ox ⊂ O. Hence ∪x∈OOx = O is in
O by condition b).

Suppose now instead that for every x ∈ E we are given a family Vx of subsets of
E, called neighborhoods of x, so that i) and ii) are fulfilled. We can then define a
topology T in E by declaring that a set O ⊂ E is open if for every x ∈ O we have
N ⊂ O for some N ∈ Vx. Then a) follows from i), b) is trivial, and c) follows from
ii) or even the weaker version

ii)′ the intersection of a finite number of neighborhoods of x contains a neigh-
borhood of x.

If N is a neighborhood of x in the topology T thus defined, then we can find an
open set O with x ∈ O ⊂ N , hence some N ′ ∈ Vx with x ∈ N ′ ⊂ O ⊂ N , so N
contains one of our original “neighborhoods”. Now suppose that also

iv)′ If N ∈ Vx then there is a set N ′ ∋ x such that N contains a neighborhood
of y for every y ∈ N ′.

Let V̂x be the family of subsets of E containing some set in Vx. Then (i) and (iii)
are fulfilled, (ii)′, (iv)′ reduce to (ii) and (iv), and the topology T is also defined

by the families V̂x.

Let N ∈ Vx, and denote by O the set of all y ∈ N such that N ∈ V̂y. By iv)

we can then find N ′
y ∈ V̂y such that N ∈ V̂z for every z ∈ N ′

y, thus N
′
y ⊂ O. This
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means that O is open in the topology T , and since x ∈ O ⊂ N we see that N is also
a neighborhood of x in the topology T . The neighborhoods of x in the topology
T are therefore precisely the sets containing some set belonging to Vx. If iii) is
fulfilled the neighborhoods are precisely those we were given from the beginning.

To define a topology we can therefore either give a family of open sets satisfying
a), b), c) or give the families Vx of neighborhoods satisfying at least i), ii)′, iv)′.
If condition iii) is not required one calls the sets Vx a neighborhood basis or a
fundamental system of neighborhoods. The neighborhoods of x in the topology

defined are precisely the sets V̂x which contain some set belonging to Vx.
Any subset E1 of E is itself a topological space with the restriction of the topology

in E: The open sets in E1 are by definition the sets O ∩ E1 with O ∈ O.
A map f : E1 → E2 between topological spaces is called continuous if for every

open set O ⊂ E2 the inverse image

f−1(O)
def
= {x ∈ E1; f(x) ∈ O}

is an open set. Equivalently this means that for every neighborhood N2 of f(x) one
can find a neighborhood N1 of x with f(N1) ⊂ N2.

A sequence xj ∈ E is said to converge to x ∈ E if for any neighborhood N of x
all but a finite number of the points xj belong to N . If the Hausdorff separation
axiom d) above is satisfied, then this cannot happen for more than one value of x.
A closed set F ⊂ E contains all limits of sequences contained in F , for E \ F is a
neighborhood of all of its points and contains no element of such a sequence.

A topology can sometimes be defined by means of a metric, that is, a function
d on E × E with values in the non-negative reals such that

a) d(x, z) ≤ d(x, y) + d(y, z), (the triangle inequality),
b) d(x, y) = d(y, x),
c) d(x, y) = 0 ⇐⇒ x = y,

for all x, y, z ∈ E. The metric gives rise to a system of neighborhoods of x,

Nx,ε = {y ∈ E; d(x, y) < ε}, 0 < ε ≤ ∞, x ∈ E,

satisfying i), ii), iv)′ above, so the metric defines a topology. It follows from a)
that d(x, y) is a continuous function of x (or y) in this topology. It is clear that
the topology satisfies the Hausdorff separation condition d) above. (Note that all
topologies cannot be defined by a metric, and that different metrics may define the
same topology.)

A metric space is called complete if for every Cauchy sequence, that is, every
sequence xn ∈ E with d(xn, xm) → 0 as n,m→ ∞, there is an element x ∈ E such
that xn → x, that is, d(xn, x) → 0. The real numbers R and the complex numbers
C with the usual distance d(x, y) = |x − y| for x, y ∈ C are examples of complete
metric spaces.

Some of the most important theorems in functional analysis follow from a fun-
damental classical theorem of Baire concerning complete metric spaces:

Theorem 2.1.1. (Baire) Let E be a complete metric space, and let Fn, n =
1, 2, . . . , be closed subsets containing no interior points. Then the union ∪∞

1 Fn
has no interior point either.

Proof. For any x ∈ E and ε > 0 we want to show that

Nx,ε = {y ∈ E; d(x, y) ≤ ε}
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is not contained in ∪Fn. To do so we want to choose sequences xj ∈ E and εj > 0
so that

Nx,ε ⊃ Nx1,ε1 ⊃ Nx2,ε2 ⊃ · · · , Fj ∩Nxj ,εj = ∅ for every j.

When j < k this implies that xk ∈ Nxj ,εj , hence d(xj , xk) < εj , so xk is a Cauchy
sequence if εj → 0. The limit y belongs to Nxj ,εj for every j since Nxj ,εj is closed.
Hence y /∈ ∪Fj so the theorem will follow if we show that the sequences xj , εj can
be constructed. Suppose that x1, ε1, . . . , xj−1, εj−1 have already been chosen. By
hypothesis the ball Nxj−1,εj−1/2 contains some point xj which is not in Fj . Since
Fj is closed we can choose εj so that Fj ∩ Nxj ,εj = ∅. If εj < εj−1/2, we have

Nxj ,εj ⊂ Nxj−1,εj−1 by the triangle inequality, and εj < 21−jε1 → 0. This proves
the theorem.

Example. We give an example with E = R. Let f be a function from R to R which
is differentiable at every point. The example f(x) = x2 sin(x−2), x ̸= 0; f(0) = 0;
shows that limy→x |f ′(y)| need not be finite for every x. However, we shall prove
that

E = {x ∈ R; lim
y→x

|f ′(y)| <∞}

is an open dense set (that is, the complement is closed and has no interior point).
That E is open is obvious. Let I be a closed interval in R, not reduced to a point,
and set

Fn = {x ∈ I; |f(x)− f(y)| ≤ n|x− y|, y ∈ I} ⊂ {x ∈ I; |f ′(x)| ≤ n}.

Since f is continuous it is clear that Fn is closed, and ∪Fn = I since f ′(x) exists for
every x. Hence Fn has an interior point for some n, so I ∩ E is not empty, which
means that E is dense in R.

Definition 2.1.2. A subset A of a complete metric space is said to be of the first
category if there exist countably many closed sets F1, F2, . . . in E without interior
points such that A ⊂ ∪∞

1 Fj . All other sets are said to be of the second category.

The definition implies that any countable union of sets of the first category is of
the first category, and so is any subset of a set of the first category. By Theorem
2.1.1 a set of the first category has no interior point, so the complement is dense.
One is therefore justified in thinking of sets of the first category as quite small
although they may of course be dense (such as the set of rational numbers ⊂ R).

We shall finally recall the main facts concerning compact spaces. A topological
space E is called compact if it is a Hausdorff space and the Borel-Lebesgue lemma
is valid, that is, if for every family of open subsets Oα, α ∈ A, with ∪AOα = E it
is possible to find a finite subfamily Oα1

, . . . , Oαn
with union equal to E. Here A

may be any set of indices. An equivalent property is that for closed subsets Fα of
E with ∩AFα = ∅ a finite number of the sets already have an empty intersection.
This follows by considering the complements. Negation gives a third equivalent and
useful statement:

If Fα are closed subsets of the compact set E and if any finite number of the sets
Fα have a non-empty intersection, then all have a non-empty intersection.

It is obvious that a closed subset of a compact space is compact. The converse is
contained in the following:
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Theorem 2.1.3. (i) Every compact subset of a Hausdorff space is closed. (ii) If
f : E → F is continuous, E is compact and F is Hausdorff, then f(E) is compact.
(iii) If in addition f is injective, then f is a homeomorphism E → f(E), that
is, the inverse is also continuous. (iv) If E is compact, then every x ∈ E has a
fundamental system of compact neighborhoods.

Proof. (i) Let K be a compact subset of the Hausdorff space E and let x ∈ E \K.
For every y ∈ K we can choose disjoint open sets O′

y ∋ x and O′′
y ∋ y. Since K is

compact, we can find y1, . . . , yk so that K ⊂ O′′
y1 ∪ · · · ∪O′′

yk
. Then O′

y1 ∩ · · · ∩O′
yk

is an open set containing x which does not intersect K. Hence E \K is an open
set. (ii) If Oα are open subsets of F with f(E) ⊂ ∪Oα, then E ⊂ ∪f−1Oα, so
E ⊂ ∪k1f−1Oαj for suitable α1, . . . , αk. This implies that f(E) ⊂ ∪Oαj so f(E) is
compact since it is clearly Hausdorff. (iii) From (ii) it follows that f maps closed
subsets of E to closed subsets of f(E), hence open subsets to open subsets, which
means that f−1 is continuous. (iv) If O is an open neighborhood of x then the
proof of (i) applied to K = E \ O shows that there are disjoint open sets O′ ∋ x
and O′′ ⊃ K; then O′ ⊂ N = E \ O′′ ⊂ O, and since N is closed, hence compact,
the statement is proved.

Let A be an arbitrary set and let Eα be a compact set for every α ∈ A. The
infinite product

E =
∏
α∈A

Eα

is defined as the set of all systems {xα}α∈A with xα ∈ Eα. Let pα be the projection
E → Eα on the αth component. A topology in E is defined by taking as a basis
for open sets the finite intersections of sets of the form p−1

α Oα where Oα is open in
Eα; note that this makes the projections pα continuous.

Theorem 2.1.4. (Tychonov) The infinite product E =
∏
α∈AEα is compact if

each Eα is compact.

Proof. Let F be a family of closed subsets of E such that finitely many members
of F never have an empty intersection. Using Zorn’s lemma we can extend F to
a maximal family F ′ having the same property. In particular, finite intersections
of sets in F ′ are themselves in F ′. Since Eα is compact we can find xα ∈ Eα so
that xα ∈ pαF for every F ∈ F ′, where the bar denotes closure. If Uα is a compact
neighborhood of xα, then it follows that p−1

α Uα ∈ F ′ since F ′ is maximal. Hence
xα is uniquely determined. Choosing all Uα except finitely many equal to Eα, we
obtain ∏

Uα =
∩
p−1
α Uα ∈ F ′, hence

(∏
Uα

)
∩ F ̸= ∅ if F ∈ F ′.

Thus an arbitrary neighborhood of x = {xα}α∈A intersects F , for every F ∈ F ′,
and since F is closed this implies that x ∈ F . The proof is complete.

2.2. Vector space topologies. A vector space V which is also a topological
space is called a topological vector space if the vector operations

(2.2.1) V × V ∋ (x, y) 7→ x+ y ∈ V ; K × V ∋ (a, x) 7→ ax ∈ V
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are continuous. Here and in what follows K denotes the field R of real numbers
or the field C of complex numbers with the usual metric topologies. In particular,
(2.2.1) implies that for fixed y and fixed a ∈ K, a ̸= 0, the maps

x 7→ x+ y (translation) and x 7→ ax (dilation)

are homeomorphisms. Thus the open sets are invariant under translations, so the
topology is completely determined by the neighborhoods of 0. Since

x+ x0 + y + y0 = x+ y + x0 + y0, (a+ a0)(x+ x0) = ax+ ax0 + a0x+ a0x0,

the continuity of the operations (2.2.1) reduces to the following conditions on the
neighborhoods of 0:

(2.2.1)′

(x, y) 7→ x+ y is continuous at (0, 0);

(a, x) 7→ ax is continuous at (0,0);

a 7→ ax0 is continuous at 0 for every x0;

x 7→ a0x is continuous at 0 for every a0.

Explicitly the first three conditions mean that for every neighborhood N of 0 in V
there shall exist a neighborhood N1 of 0 and ε > 0 such that

(2.2.2)
N1 +N1 = {x+ y; x, y ∈ N1} ⊂ N ; ax ∈ N if |a| ≤ ε and x ∈ N1;

for every x ∈ V ∃εx > 0 such that ax ∈ N if |a| < εx.

The last condition in (2.2.1)′ is a consequence of (2.2.2), for the second part of
(2.2.2) gives a0x ∈ N if 2kx ∈ N1 for some integer k > 0 with 2−k|a0| < ε, and
repeated use of the first part of (2.2.2) shows that there is a neighborhood N2 of 0
such that 2kN2 ⊂ N1, thus a0x ∈ N if x ∈ N2.

To use the second part of (2.2.2) we form

N2 =
∪

|a|≤ε

aN1 ⊂ N.

This is also a neighborhood of 0, and we have aN2 ⊂ N2 if |a| ≤ 1.

Definition 2.2.1. A set M in a vector space V over K is called balanced if ax ∈M
for all x ∈ M and a ∈ K with |a| ≤ 1. It is called absorbing if for every x ∈ V we
have ax ∈M when |a| is sufficiently small.

Every neighborhood of 0 is absorbing, and we have found that there is a fun-
damental system of balanced neighborhoods of 0. Conversely, for any system of
balanced absorbing sets satisfying the first condition in (2.2.2) the finite intersec-
tions can be taken as a fundamental system of neighborhoods of 0 for a vector space
topology in V .

So far we have not required the Hausdorff separation axiom to be valid. This
axiom is equivalent to

(2.2.3) the intersection of all neighborhoods of 0 is equal to {0}.
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In fact, (2.2.3) is obviously a consequence of the Hausdorff axiom. On the other
hand, if (2.2.3) is valid we can for every x ̸= 0 find a balanced neighborhood N of
0 such that x /∈ N + N . The neighborhoods N and {x} + N of 0 and x are then
disjoint, for if x+ y = z; y, z ∈ N ; then x = z + (−y) ∈ N +N .

It follows from (2.2.2) that in any topological vector space V the intersection
V0 of all neighborhoods of 0 is a linear subspace. If O is an open set in V and if
x ∈ O, y ∈ V0, it follows that x + y ∈ O. The open sets in V are therefore unions
of residue classes modulo V0. We obtain a vector space topology in V/V0 if we take
as open sets there the maps of the open sets in V into V/V0; conversely, the open
sets in V are the inverse images of the open sets in V/V0. The definition of V0 and
(2.2.3) imply that V/V0 satisfies the Hausdorff axiom.

IfW is any linear subspace of a topological vector space V , we can also topologize
V/W by taking as open sets the images of the open sets in V . It is clear that V/W
is a Hausdorff space if and only if 0 is closed there, that is, W is a closed linear
subspace of V .

Theorem 2.2.2. If V is a finite dimensional Hausdorff topological vector space
and if T : Kn → V is a linear bijection, then T is a homeomorphism if Kn is given
the product topology.

Thus there is only one Hausdorff vector space topology possible in the finite
dimensional case.

Proof. Since for some x1, . . . , xn ∈ V

Ta =

n∑
1

ajxj , a = (a1, . . . , an) ∈ Kn,

it follows from (2.2.1) that T is continuous. To prove that T−1 is continuous we
have to show that T maps open sets to open sets. This follows if we prove that TI
is a neighborhood of 0 when

I = {a ∈ Kn; |aj | < 1, j = 1, . . . , n}.

If ∂I is the boundary of I then

I = {a ∈ Kn;wa /∈ ∂I when w ∈ K and |w| ≤ 1}.

Thus
T (I) = {x ∈ V ;wx /∈ T (∂I) when w ∈ K and |w| ≤ 1}.

Since T (∂I) is a compact set which does not contain 0 (Theorem 2.1.3), it follows,
again by Theorem 2.1.3, that there is a neighborhood N of 0 with N ∩ T (∂I) = ∅.
If we take N balanced it follows that N ⊂ T (I).

Corollary 2.2.3. Let W be a linear subspace of finite codimension in a topological
vector space V . Then all linear forms vanishing in W are continuous if and only if
W is closed.

Proof. It follows from Theorem 1.4.2 that W is the intersection of the zero sets of
linear forms vanishing on W , so W is closed if these are all continuous. On the
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other hand, if W is closed then V/W is a finite dimensional Hausdorff space. A
linear form f on V vanishing on W is a composition

V → V/W
f̃−→ K

where f̃ is continuous by Theorem 2.2.2. Hence f is also continuous.

Let N be an open and balanced neighborhood of 0 in the topological vector space
V . Then there is a unique function p : V → R+ (the non-negative reals) such that

(2.2.4) p(ax) = |a|p(x), a ∈ K,x ∈ V ; N = {x ∈ V ; p(x) < 1}.

Moreover, the function p is continuous at 0. In fact, if N is defined by p in this way
and if t > 0, then

p(x) = tp(x/t) ≥ t if x/t /∈ N ; p(x) < t if x/t ∈ N,

hence

(2.2.5) p(x) = inf{t;x/t ∈ N}.

Conversely, the function defined by (2.2.5) obviously satisfies (2.2.4) ifN is balanced
and absorbing. If p(x) < 1 we have x/t ∈ N for some t < 1, hence x ∈ N , and if
p(x) ≥ 1 then x/t /∈ N if t < 1. Since N is open we may conclude that x /∈ N .
Finally p(x) < ε if x ∈ εN , so p is continuous at 0.

If N1 is another neighborhood of 0 of the same kind, and if N1 +N1 ⊂ N as in
(2.2.2), we have p(x + y) < 1 if p1(x) < 1 and p1(y) < 1, where p1 is defined by
(2.2.5) with N replaced by N1. In view of the homogeneity it follows that

p(x+ y) ≤ max (p1(x), p1(y)).

Conversely, if we give a family P of functions from V to R+ satisfying (2.2.4) such
that for every p ∈ P

p(x+ y) ≤ Cmax(p1(x), p1(y)), x, y ∈ V,

for some p1 ∈ P and some constant C, then the finite intersections of the sets

Np,ε = {x; p(x) < ε}, ε > 0, p ∈ P,

are a basis of neighborhoods of 0 for a vector space topology in V . The verification
is left for the reader.

Example. Let V be the space of K valued continuous functions on [0, 1] ⊂ R, and
set for some r > 0

∥f∥r =
(∫

|f |r dx
)1/r

.

Then ∥f∥r satisfies (2.2.4) and

∥f + g∥r ≤ 2(r+1)/rmax(∥f∥r, ∥g∥r).
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Thus the sets {f ; ∥f∥r < ε} form a basis for neighborhoods of 0 in a vector space
topology.

The general spaces discussed so far are of little use in analysis so we shall nar-
row down our discussion to more and more special classes of spaces which occur
frequently and have useful properties. The first condition we impose is the exis-
tence of a fundamental system of convex neighborhoods. This is required for the
application of the Hahn-Banach theorem proved in Section 1.4.

Definition 2.2.4. A topological vector space is called locally convex if there is a
fundamental system of neighborhoods of 0 which are open, convex, balanced and
absorbing.

Let N be such a neighborhood and define again a function p by means of (2.2.5).
Then we have

(2.2.6) p(ax) = |a|p(x), a ∈ K,x ∈ V ; p(x+ y) ≤ p(x) + p(y), x, y ∈ V.

For if s, t > 0 and x/s ∈ N, y/t ∈ N , then the convexity of N gives

(x+ y)/(s+ t) = (s/(s+ t))(x/s) + (t/(s+ t))(y/t) ∈ N,

thus p(x + y) ≤ s + t, which implies the second part of (2.2.6). The first part is
just (2.2.4). It follows from (2.2.6) that p is continuous, for

|p(x+ y)− p(y)| ≤ p(x)

and p is continuous at 0. Conversely, (2.2.6) implies that {x; p(x) < 1} is convex,
balanced and absorbing.

Definition 2.2.5. If V is a vector space over K = R or C, then a function p : V →
R+ satisfying (2.2.6) is called a semi-norm.

In a locally convex topological vector space V the sets

Np = {x ∈ V ; p(x) < 1},

where p is a continuous semi-norm, will thus form a fundamental system of neigh-
borhoods of 0. Conversely, assume that in the vector space V over K we are given
a family of semi-norms pi, i ∈ I. Finite intersections of sets of the form

Npi,ε = {x ∈ V ; pi(x) < ε}, i ∈ I, ε > 0,

are then a fundamental system of neighborhoods of 0 in a locally convex topology
in V . A semi-norm p in V is continuous if and only if

(2.2.7) p(x) ≤ C

J∑
1

pij (x), x ∈ V,

for some constant C and a finite subset i1, . . . , iJ of I. The sufficiency of (2.2.7) is
obvious. To prove the necessity we note that if p is continuous then one can find ij
and ε such that

pij (x) < ε, j = 1, . . . , J =⇒ p(x) < 1.
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Replacing x by tx, t > 0, we find that tp(x) < 1 if tpij (x) < ε, j = 1, . . . , J , hence

p(x) ≤ max pij (x)/ε ≤ ε−1
∑

pij (x).

Another system of semi-norms {qk}k∈K may of course define the same topology;
it defines a weaker topology if and only if for any k an estimate (2.2.7) is valid with
p = qk. The topologies are the same if this remains true when the roles of the p’s
and the q’s are reversed.

Example. The continuous functions on R form a locally convex vector space V with
the topology defined by the semi-norms

pn(f) = sup
|x|≤n

|f(x)|, n = 1, 2, . . . .

(This is designed so that fj → f means that fj → f uniformly on any bounded
interval.) The topology cannot be defined by means of a single semi-norm p(f).
For then there would exist a constant Cn such that

pn(f) ≤ Cnp(f), f ∈ V.

In particular, |f(n)| ≤ Cnp(f). Since we can choose a continuous function f with
f(n) = nCn for every n, this is a contradiction when n is large.

Remark. In the example preceding Definition 2.2.4 there is no continuous semi-
norm p except 0 if r < 1. In fact, if p(f) ≤ C∥f∥r and we write f = f1 + · · ·+ fN
it follows that

p(f) ≤
N∑
1

p(fj) ≤ C
N∑
1

∥fj∥r.

If we allowed fj to have a jump, we could subdivide the interval [0,1] into N
intervals and take each fj equal to f in one of the intervals and 0 in the others, so

that
∫ 1

0
|fj |r dx is equal to

∫ 1

0
|f |r dx/N ; smoothing out the discontinuities we can

certainly achieve that∫ 1

0

|fj |r dx ≤ 2∥f∥rr/N, j = 1, . . . , N.

Hence p(f) ≤ CN(2/N)1/r → 0 as N → ∞, if r < 1, which proves the assertion.
On the other hand, ∥f∥r is a semi-norm if r ≥ 1 (Minkowski’s inequality). In

fact, let ∥f∥r ≤ 1, ∥g∥r ≤ 1, and let a, b ≥ 0, a+ b = 1. Then

|af + bg|r ≤ (a|f |+ b|g|)r ≤ a|f |r + b|g|r

since the function t 7→ tr is convex when t ≥ 0. Hence ∥af+bg∥r ≤ 1, so {f ; ∥f∥r ≤
1} is convex which means that f 7→ ∥f∥r is a semi-norm.

We shall next discuss the conditions required when we want to apply Baire’s
theorem. Let V be a locally convex topological vector space over K such that
the topology can be defined by means of a metric. Then the topology has to be
Hausdorff, and there must exist a countable fundamental system of neighborhoods



23

of 0. Thus there must exist at most countably many semi-norms p1, p2, . . . which
define the topology of V . That the topology is Hausdorff means that pj(x) = 0 for
every j implies that x = 0. Conversely, suppose that V has a topology defined by
countably many semi-norms with no common zero ̸= 0. Then the function

(2.2.8) d(x) =
∞∑
1

2−npn(x)/(1 + pn(x)), x ∈ V,

has the properties

(2.2.9)

d(x+ y) ≤ d(x) + d(y); x, y ∈ V ;

d(ax) ≤ d(x); |a| ≤ 1, x ∈ V ;

d(x) > 0; 0 ̸= x ∈ V

In particular, d(x, y) = d(x − y) is a metric. To prove (2.2.9) we need only verify
that the function f(t) = t/(1 + t), t ∈ R+ has the properties

f(t) ≤ f(t+ s) ≤ f(t) + f(s) if s, t ∈ R+.

The first inequality is clear since f(t) = 1− (1+ t)−1. To prove the second we note
that f(t)/t = 1/(1 + t) is decreasing. Hence

f(s)/s ≥ f(s+ t)/(s+ t), f(t)/t ≥ f(s+ t)/(s+ t),

which gives f(s) + f(t) ≥ f(s+ t)(s+ t)/(s+ t) = f(s+ t).
The topology defined by the metric d(x− y) is identical to the topology defined

by the semi-norms p1, p2, . . . . In fact, we have on one hand

d(x) < ε2−N =⇒ pn(x) < ε/(1− ε) if n ≤ N,

and on the other hand

pn(x) ≤ ε/2 for n ≤ N =⇒ d(x) < ε, if 2−N < ε/2.

We sum up our conclusions as a theorem:

Theorem 2.2.6. A locally convex topological vector space is metrizable if and only
if the topology is Hausdorff and can be defined by a countable number of semi-
norms. The metric can then be chosen translation invariant, that is, of the form
d(x, y) = d(x − y), where d satisfies (2.2.9). For given seminorms p1, p2, . . . the
metric may be defined by (2.2.8).

Most of the spaces encountered in analysis have all the properties discussed so
far:

Definition 2.2.7. A locally convex metrizable and complete topological vector space
is called a Fréchet space.

Note that a sequence xj ∈ V is a Cauchy sequence if and only if for every n

pn(xj − xk) → 0 as j, k → ∞.
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When using the completeness one can therefore avoid working with the metric; the
important point is just to know that it exists.

If the topology can be defined by finitely many semi-norms, it can of course also
be defined by a single semi-norm, for instance their sum, but an example above
shows that a topology defined by countably many semi-norms may not be possible
to define by a single semi-norm.

Definition 2.2.8. If the topology in a vector space V can be defined by a single
semi-norm p we shall say that V is a semi-normed space. If V is in addition a
Hausdorff space, that is, if

(2.2.10) p(x) = 0 =⇒ x = 0

then p is called a norm and V a normed space. Usually we write ∥x∥ instead of
p(x) then. A complete normed space is called a Banach space.

If q is another semi-norm defining the same topology as p then there is a constant
C such that

C−1p ≤ q ≤ Cp;

conversely, this implies that q defines the same topology as p. Such (semi-)norms
are called equivalent.

If V is a semi-normed space and V0 = {x ∈ V ; p(x) = 0}, then V0 is a linear
subspace and V/V0 is a normed space with ∥ξ∥ = p(x) if x is in the residue class
ξ ∈ V/V0. A familiar example of this is when V is the set of all measurable functions
on R with

∫
|f | dx < ∞. Then V0 consists of the functions which vanish almost

everywhere, and V/V0 is the space of equivalence classes of integrable functions
which are equal almost everywhere. This is the space which is usually denoted by
L1(R); it will be discussed further below.

If V is a semi-normed vector space and W ⊂ V is a linear subspace, then V/W
is semi-normed with

p̃(ξ) = inf
x∈ξ

p(x), ξ ∈ V/W.

p̃ may not be a norm even if p is a norm; clearly p̃ is a norm if and only if W is
closed in V .

A linear transformation T : V1 → V2 where V1, V2 are locally convex topological
vector spaces is continuous if and only if {x ∈ V1; q(Tx) < 1} is a neighborhood
of 0 in V1 for every continuous semi-norm q in V2. Thus x 7→ q(Tx) shall be a
continuous semi-norm in V1, that is, (2.2.7) shall be valid with p(x) replaced by
q(Tx) and suitable continuous semi-norms in V1 on the right. The continuous linear
transformations form a linear subspace L(V1, V2) of the vector space L(V1, V2) of
all linear transformations from V1 to V2.

If V1 and V2 are semi-normed spaces, then a linear transformation T : V1 → V2
is continuous if and only if for some C

∥Tx∥2 ≤ C∥x∥1, x ∈ V1,

where ∥ · ∥j is the semi-norm in Vj . The smallest possible constant C is called the
semi-norm of T ,

∥T∥ = sup{∥Tx∥2; ∥x∥1 ≤ 1}.
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It is a norm if V2 is a normed space. When both V1 and V2 are normed spaces one
usually calls the elements in L(V1, V2) bounded operators (from V1 to V2). We leave
as an easy exercise for the reader to verify that L(V1, V2) is a Banach space if V1 is
a normed space and V2 is a Banach space.

We shall finally consider a still more special class of spaces

Definition 2.2.9. A vector space H over K is called a pre-Hilbert space over K if
there is given a function (·, ·) from H ×H to K with the properties

(x1 + x2, y) = (x1, y) + (x2, y); x1, x2, y ∈ H,(2.2.11)

(ax, y) = a(x, y); x, y ∈ H, a ∈ K,(2.2.12)

(x, y) = (y, x); x, y ∈ H,(2.2.13)

(x, x) ≥ 0; x ∈ H.(2.2.14)

It follows from these conditions that

(a1x1 + a2x2, y) = a1(x1, y) + a2(x2, y), (x, b1y1 + b2y2) = b̄1(x, y1) + b̄2(x, y2).

Moreover, since

0 ≤ (ax+ by, ax+ by) = aā(x, x) + ab̄(x, y) + bā(y, x) + bb̄(y, y),

we have the Cauchy-Schwarz inequality

(2.2.15) |(x, y)|2 ≤ (x, x)(y, y).

This follows if we take a = w
√
(y, y), b =

√
(x, x) where w ∈ K, |w| = 1, and

w is chosen so that w(x, y) ≤ 0. (If (x, x) or (y, y) is 0 we obtain (x, y) = 0 by
choosing either b or a small.) By (2.2.15) we have |(x, y)|2 ≤ (x, x) if (y, y) ≤ 1,

and if (x, x) ̸= 0 then equality is attained when y = x/
√
(x, x). Hence

(2.2.16)
√
(x, x) = sup{|(x, y)|; (y, y) ≤ 1}.

Since x 7→ |(x, y)| is a semi-norm, it follows that x 7→
√

(x, x) = ∥x∥ is a semi-
norm. A pre-Hilbert space can therefore always be considered as a semi-normed
space with this semi-norm. If

(2.2.17) (x, x) = 0 =⇒ x = 0,

the semi-norm is a norm.

Definition 2.2.10. A pre-Hilbert space where (2.2.17) is valid and which is complete

with respect to the topology defined by the norm ∥x∥ =
√
(x, x) is called a Hilbert

space.

We end this section with a diagram which recalls the different levels of generality
of the spaces we have introduced, and with some examples.
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Topological vector spaces
⇓

Locally convex topological vector spaces
⇓ ⇓

Semi-normed space
⇓ ⇓ ⇓

Normed spaces Pre-Hilbert spaces
⇓ ⇓ ⇓

Fréchet spaces =⇒Banach spaces =⇒ Hilbert spaces

Here the spaces in the last line are complete.

A linear subspace W of a topological vector space is itself a topological vector
space. W is locally convex, semi-normed, normed or pre-Hilbert if V is. If W is
closed it also inherits completeness from V , so W is in any one of the classes in the
diagram where V is. The quotient space V/W is also a topological vector space.
As already observed, it is Hausdorff if and only if W is closed in V . The reader
should verify as an exercise that completeness properties of V are then inherited
by V/W .

We shall now give some examples.
1) IfM is an arbitrary set, then the bounded functions f :M → K form a linear

subspace l∞(M) of KM with the norm

∥f∥∞ = sup
x∈M

|f(x)|.

This is a Banach space. For if fj ∈ l∞(M), ∥fj − fk∥∞ → 0 as j, k → ∞, then

|fj(x)− fk(x)| ≤ ∥fj − fk∥∞ → 0

for every x so limj→∞ fj(x) = f(x) exists. For every ε > 0 we have |fj(x)−fk(x)| <
ε, x ∈ M , if j, k > N(ε). Letting k → ∞ we obtain |fj(x) − f(x)| ≤ ε, x ∈ M ,
when j > N(ε). Hence f ∈ l∞(M) and ∥fj − f∥∞ ≤ ε for j > N(ε), which proves
that ∥fj − f∥∞ → 0.

The set c(M) of all f ∈ l∞(M) such that for every δ > 0 there are only finitely
many x ∈ M with |f(x)| > δ is a closed subspace and therefore also a Banach
space. — When M = {1, 2, . . . } one usually drops M from the notation.

2) WhenM is a topological space then the continuous functions in l∞(M) form a
closed subspace and therefore a Banach space. In fact, a uniform limit of a sequence
of continuous functions is continuous.

3) If Ω is an open subset of Rn then the set C(Ω) of all continuous functions in
Ω is a Fréchet space with the topology defined by the semi-norms

u 7→ sup
x∈K

|u(x)|

where K is a compact subset of Ω. In fact, the topology is metrizable since it is
enough to consider a sequence K1,K2, . . . of compact sets in Ω such that every
compact subset of Ω is contained in the union of finitely many Kj . We may for
example take all closed balls ⊂ Ω with rational center and radius. If uj is a Cauchy
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sequence it follows from 2) that uj converges uniformly to a continuous function
on every compact set in Ω. Thus there is a function u ∈ C(Ω) such that uj → u in
C(Ω), so C(Ω) is complete.

4) If j is a positive integer or +∞ then the space Cj(Ω) of all j times continuously
differentiable functions in Ω is a Fréchet space with the topology defined by the
semi-norms

u 7→ sup
x∈K

|∂αu(x)|,

whereK is a compact subset of Ω and α = (α1, . . . , αn) is an n-tuple of non-negative
integers with |α| ≤ j. We have written

|α| =
∑

αk, ∂α = (∂/∂x1)
α1 . . . (∂/∂xn)

αn .

The metrizability follows as in 3). If ui is a Cauchy sequence it follows from 3) that
for every α with |α| ≤ j there is a continuous function uα such that ∂αuj → uα

uniformly on every compact set. But then it is well known that u0 ∈ Cj and that
∂αu0 = uα, |α| ≤ j, which proves that uj → u0 in Cj(Ω).

5) Let M be an arbitrary set and let 1 ≤ r < ∞. Then the space lr(M) of all
functions M → K with

∥f∥r =
( ∑
x∈M

|f(x)|r
) 1

r

<∞

is a Banach space. The proof that ∥f∥r is a norm is essentially the same as in the
integral case discussed in a remark after Definition 2.2.5, so it is left as an exercise for
the reader. If fj ∈ lr(M) is a Cauchy sequence then |fj(x)−fk(x)| ≤ ∥fj−fk∥r → 0
as j, k → ∞, so f(x) = limj→∞ fj(x) exists for every x ∈ M . For every ε > 0 we
have for j, k > N(ε) and an arbitrary finite subset F of M(∑

x∈F
|fj(x)− fk(x)|r

) 1
r ≤ ε.

Letting k → ∞ we conclude since F is arbitrary that( ∑
x∈M

|fj(x)− f(x)|r
) 1

r ≤ ε, j > N(ε),

so f ∈ lr(M) and ∥fj − f∥r → 0 as j → ∞. This proves the completeness.
When p = 2 we have a Hilbert space with the scalar product

(f, g) =
∑
x∈M

f(x)g(x).

6) Let dµ be a positive measure in an open set Ω ⊂ Rn, and let Lp(dµ) be the
space of functions measurable with respect to dµ such that

∥f∥r =
(∫

Ω

|f |r dµ
) 1

r

<∞,

or more correctly the quotient by the subspace of functions with ∥f∥r = 0, that is,
vanishing almost everywhere. Here 1 ≤ r <∞. When r = ∞ we introduce instead
∥f∥∞ = ess sup |f |, that is, the smallest upper bound for |f | valid almost every-
where with respect to dµ. For the proof of completeness we must refer to a textbook
on Lebesgue integration; the completeness is the main reason for introducing the
Lebesgue integral; it is not true for the Riemann integral. In the examples below
we shall use that Lr(dµ) is a Banach space and follow the tradition of neglecting
the distinction between a measurable function and its equivalence class.
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2.3. The Hahn-Banach theorem. Already Theorem 1.4.7 gives a geometrical
statement of the Hahn-Banach theorem. Here we shall specialize it to locally convex
vector spaces and derive several variants which are important in the applications.

Theorem 2.3.1. Let A be a convex non-empty open set in the topological vector
space V over K = R or C, and let F be an affine subspace with F ∩ A = ∅. Then
there exists a closed affine hyperplane H which contains F and does not meet A
either.

Proof. We may assume that 0 ∈ F . First assume that K = R. According to
Theorem 1.4.7 there exists a hyperplane H ⊃ F with H ∩ A = ∅, for an open
convex set is clearly linearly open and convex. The closure H is also a linear
subspace. It contains H so the codimension must be 0 or 1. Since A is open we
have H ∩ A = ∅ which proves that the codimension cannot be 0. Hence H = H,
which proves the theorem if K = R.

If K = C we can also regard V as a vector space over R, so there is a closed
real hyperplane H ⊃ F with H ∩ A = ∅. The intersection H1 = H ∩ (iH) is
then a vector space over C since it is invariant under multiplication by arbitrary
complex numbers. The quotient space V/H1 is a vector space over C with real
dimension ≤ 2, hence complex dimension ≤ 1. It follows that H1 is a closed
complex hyperplane, and the theorem is now completely proved.

Theorem 2.3.1 is obviously of little interest if there are no non-trivial convex
open sets in the space V . In the following theorem we therefore restrict attention
to locally convex spaces.

Theorem 2.3.2. Let A be a closed convex set in the locally convex topological
vector space V , and let x /∈ A. Then there exists a continuous linear form f on V
such that

inf
y∈A

|f(y)− f(x)| > 0.

In particular, the affine hyperplane {y; f(y) = f(x)} does not intersect A.

Proof. Choose an open balanced convex neighborhood N of 0 such that x+N does
not intersect A. The set

N +A = {y + z; y ∈ N, z ∈ A}

is then open (for it is the union of the open sets N + z when z ∈ A), and it is
obviously convex since both N and A are convex. Furthermore, x /∈ N +A in view
of the choice of N . Hence there exists a closed hyperplane through x which does
not intersect N + A. By Corollary 2.2.3 there is a continuous linear form f on V
such that the hyperplane is {y; f(y − x) = 0}. Thus

f(x) ̸= f(y) + f(z) ∀y ∈ A, z ∈ N,

and since f(N) ̸= {0} is a balanced subset of K, the theorem follows.

The following simple but important consequence should be compared with The-
orem 1.4.2.
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Theorem 2.3.3. Let W be a linear subspace of the locally convex topological vector
space V . Then the closure W of W consists of all x ∈ V such that f(x) = 0 for all
continuous linear forms on V vanishing on W .

Another formulation is that a closed linear subspace is the intersection of all
closed hyperplanes containing it.

Proof. Every continuous linear form f vanishing on W must also vanish on the
closure W . On the other hand, if x /∈ W it follows from Theorem 2.3.2 since W is
closed and linear, hence convex, that one can find a continuous linear form f with
f(y) ̸= f(x) for all y ∈ W . Since y ∈ W implies that ay ∈ W for all a ∈ K, we
obtain af(y) ̸= f(x) for every a ∈ K, hence f(y) = 0 ̸= f(x) for all y ∈ W . This
proves the theorem.

The last but equally important formulation is the following one.

Theorem 2.3.4. Let V be a vector space, W a linear subspace and f a linear form
defined in W such that

(2.3.1) |f(x)| ≤ p(x), x ∈W,

where p is a semi-norm in V . Then there exists a linear form f1 on V which
coincides with f on W and has the same bound on V ,

(2.3.2) |f1(x)| ≤ p(x), x ∈ V.

Proof. Let W1 be the affine subspace of W which is defined by the equation f(x) =
1. (We may assume that f is not identically 0 since the statement is trivial then.)
By (2.3.1) W1 does not meet the convex set

A = {x; p(x) < 1}

which is open for the topology defined by p. Hence there exists a hyperplane

V1 = {x ∈ V ; f1(x) = 1}

which contains W1 and does not meet A. Thus af1(x) = f1(ax) ̸= 1 if p(ax) =
|a|p(x) < 1, which proves that |f1(x)| ≤ p(x). Now W is the smallest linear space
containing W1. Since f1 = f in W1 it follows that f1 = f in W , and the theorem
is proved.

Before passing to examples of applications we shall discuss the special case of
a Hilbert space where simple alternative proofs are available which also give addi-
tional information.

Theorem 2.3.5. Let H be a Hilbert space, A a closed convex subset of H, and x
a point /∈ A. Then there exists one and only one point y ∈ A such that

(2.3.3) ∥x− y∥ ≤ ∥x− z∥, ∀z ∈ A.

The continuous linear form L(z) = (z, x − y), z ∈ H, does not vanish identically,
and we have

(2.3.4) ReL(z − y) ≤ 0, z ∈ A,
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which implies that

|L(z)− L(x)| ≥ |L(y)− L(x)| = ∥x− y∥2 > 0, z ∈ A.

Proof. Let d = inf{∥x − y∥; y ∈ A}, and choose a sequence yn ∈ A so that
∥x − yn∥ → d. We claim that the sequence yn converges. To prove this we note
that if zn = x− yn then

∥zn − zm∥2 + ∥zn + zm∥2 = 2(∥zn∥2 + ∥zm∥2),

which is the classical “diagonal theorem”. We have ∥(zn + zm)/2∥ ≥ d since (yn +
ym)/2 ∈ A. Hence

∥zn − zm∥2 ≤ 2(∥zn∥2 + ∥zm∥2 − 2d2) → 0 when n,m→ ∞.

It follows that the limit y = limn→∞ yn exists, that y ∈ A (since A is closed) and
that ∥x− y∥ = limn→∞ ∥x− yn∥ = d. That y is unique follows from the fact that
if y′ is another point in A with ∥x − y′∥ = d, we have proved that the sequence
y, y′, y, y′, . . . converges.

If z ∈ A we have (1− t)y + tz ∈ A when 0 ≤ t ≤ 1. Hence

∥x− y∥2 ≤ ∥x− (1− t)y − tz∥2 = ∥x− y − t(z − y)∥2

= ∥x− y∥2 − 2tRe(x− y, z − y) + t2∥z − y∥2, 0 < t < 1.

If we divide by t and let t → +0, it follows that Re (x − y, z − y) ≤ 0, that is,
ReL(z − y) ≤ 0. Since

L(z)− L(x) = L(z − y) + L(y − x) = L(z − y)− ∥y − x∥2,

the last assertion follows immediately.

Corollary 2.3.6. Let H be a Hilbert space, G a closed subspace, and set

G⊥ = {x ∈ H; (x, y) = 0 for all y ∈ G}.

Then G⊥ is a closed subspace and H is the direct sum of G and G⊥. When x ∈ H
is written in the form x = y + z with y ∈ G and z ∈ G⊥, then

∥x∥2 = ∥y∥2 + ∥z∥2.

One calls G⊥ the orthogonal complement of G in H.

Proof. If x = y + z and (y, z) = 0, then

∥x∥2 = (y + z, y + z) = (y, y) + (z, z) = ∥y∥2 + ∥z∥2.

In particular, y = z = 0 if x = 0. Since G⊥ is obviously closed, it is therefore
sufficient to show that every x ∈ H can be written x = y + z with y ∈ G and
z ∈ G⊥. To do so we apply Theorem 2.3.5 with A = G assuming as we may that
x /∈ G. For the closest point y ∈ G we have

Re (w − y, x− y) ≤ 0, w ∈ G.

Since w− y is an arbitrary element in G, it follows that z = x− y ∈ G⊥, and since
x = y + z, this gives the required decomposition.
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Corollary 2.3.7. Every continuous linear form on a Hilbert space H can in one
and only one way be written in the form

(2.3.5) x 7→ (x, y)

where y ∈ H. The norm of the linear form is ∥y∥.

Proof. (2.2.16) shows that the norm of the form (2.3.5) is ∥y∥ so it only remains
to show that every continuous linear form L can be written in this way. This is
obvious if L ≡ 0. If not, then

G = {x ∈ H;L(x) = 0}

is a closed linear subspace of codimension 1. Hence G⊥ is one dimensional. Take
y ∈ G⊥, y ̸= 0. Then the linear form

x 7→ L(x)− (x, y)L(y)/(y, y)

vanishes in G and for x = y so it is identically 0. Replacing y by yL(y)/(y, y) we
have proved the statement.

We have now given alternative proofs of Theorems 2.3.2 and 2.3.3 in the case of
a Hilbert space. There is also a simple proof of Theorem 2.3.4 when V is a Hilbert
space. In fact, if |f(x)| ≤ C∥x∥, x ∈W , we can first extend f by continuity to the
closure W . In view of Corollary 2.3.7 there exists then a unique element y ∈ W
with ∥y∥ ≤ C such that f(x) = (x, y), x ∈ W . The form x 7→ (x, y) is defined on
H and has the required properties. We remark that it is the only extension of f
which vanishes on the orthogonal complement of W . When dealing with extension
of forms depending on parameters it is often essential to use this unique extension
in order to control the dependence on the parameters.

We shall now give some examples of applications of the Hahn-Banach theorem.
This requires knowledge of the continuous linear forms on some spaces, so we first
recall some such results. Proofs may be found in textbooks on integration theory.
For the notation see the end of Section 2.2.

1) For any set M and 1 ≤ r < ∞ every continuous linear form L on lr(M) can
be written in the form

L(f) =
∑
x∈M

f(x)g(x)

where g ∈ lr
′
(M) and 1/r + 1/r′ = 1. The norm of the linear form is ∥g∥r′ . Every

continuous linear form L on c(M) can be written in the same way with g ∈ l1(M),
and the norm of the form is ∥g∥1.

2) Let dµ be a positive measure in an open set Ω ∈ Rn. Every continuous linear
form L on Lr(dµ), 1 ≤ r <∞, can be written in the form

L(f) =

∫
f(x)g(x) dµ(x)

where g ∈ Lr
′
(dµ). The norm of the form is ∥g∥r′ .

3) Let V be the space C0(Ω) where Ω is an open set in Rn. This is defined as
the set of continuous functions f in Ω tending to 0 at ∞ in the sense that to every
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ε > 0 there is a compact set K ⊂ Ω such that |f(x)| < ε in Ω \K. V is a Banach
space with the norm ∥f∥ = sup |f |. A continuous linear form L on V can be written

L(f) =

∫
f dµ

where dµ is a measure with finite total mass
∫
|dµ|, equal to the norm of the linear

form. An analogous statement is valid for the space C(K) of continuous functions
on any compact space, with maximum norm.

We now give some examples of approximation theorems which can be proved
using Theorem 2.3.3 in combination with various uniqueness theorems.

Example 2.3.8. Let ζ1, ζ2, . . . be a sequence of different complex numbers, and let
N(t) be the number of ζj with |ζj | < t. If

lim
t→∞

N(t)/2t > 1

it follows that the linear combinations of the exponentials x 7→ eixζj are dense in
C([−π, π]), that is, the closed linear hull of these exponentials is equal to C([−π, π]).

Proof. We have to show that every continuous linear form vanishing for the expo-
nentials must vanish identically. Such a linear form can be written

C([−π, π]) ∋ f 7→
∫
f dµ

where dµ is a measure on [−π, π], so what we must prove is that if∫
eixζj dµ(x) = 0, j = 1, 2, . . .

then dµ = 0. Introduce the Fourier-Laplace transform

F (ζ) =

∫
eixζ dµ(x), ζ ∈ C,

which is an entire analytic function of exponential type:

|F (ζ)| ≤ Ceπ| Im ζ|, ζ ∈ C.

If F is not identically 0 and N1(t) is the number of zeros of F in the disc {ζ; |ζ| <
t}, counted with multiplicites, then a classical theorem of Titchmarsh states that
N1(t)/2t converges when t→ ∞ to the distance between the extreme points in the
support of dµ, divided by 2π. Hence limN1(t)/2t ≤ 1. Now our hypothesis that
F (ζj) = 0 implies that N(t) ≤ N1(t). This is a contradiction which proves that
F = 0, hence µ = 0.

Example 2.3.9. (Müntz-Szász) Let ζn be a sequence of different complex numbers
with Re ζn > −1/2. Then the closed linear hull in L2(0, 1) of the functions x 7→ xζn

is equal to L2(0, 1) if (and only if)

∞∑
1

Re(ζn + 1
2 )/(1 + |ζn|2) = ∞.
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Proof. If we set x = e−t, the interval (0, 1) is transformed to (0,∞) and∫ 1

0

|f(x)|2 dx =

∫ ∞

0

|f(e−t)|2e−t dt =
∫ ∞

0

|F (t)|2 dt,

where F (t) = f(e−t)e−t/2. If ηn = ζn + 1
2 we have Re ηn > 0 and the problem

is reduced to showing that the exponentials exp(−tηn) are dense in L2(0,∞). By
Theorem 2.3.3 this means that we must show that a function F ∈ L2(0,∞) must
vanish almost everywhere if∫ ∞

0

F (t)e−tηn dt = 0, n = 1, 2, . . . .

Introduce the Fourier-Laplace transform

F̂ (ζ) =

∫ ∞

0

F (t)eitζ dt,

which is analytic for Im ζ > 0 and satisfies∫ ∞

−∞
|F̂ (ξ + iη)|2 dξ = 2π

∫ ∞

0

|F (t)|2e−2tRe η dt ≤ 2π

∫ ∞

0

|F (t)|2 dt, Re η > 0.

If F̂ ̸≡ 0 it is well known that the zeros λ1, λ2, . . . satisfy the condition for conver-
gence of a Blaschke product in the upper half plane, that is,∑

Imλj/(1 + |λj |2) <∞.

Now iη1, iη2, . . . are zeros of F̂ , so if F̂ is not identically 0 we must have∑
Re ηj/(1 + |ηj |2) <∞.

If this sum diverges, which is the condition in the statement, we can therefore

conclude that F̂ = 0 and that the exponentials are dense. On the other hand, if
the sum converges, then the Blaschke product

B(ζ) =
∞∏
1

ζ − iηj
ζ + iη̄j

eiθj , θj = arg(1 + η̄j)/(1− ηj),

is analytic and |B(ζ)| < 1 in the upper half plane. Hence it follows by the Paley-
Wiener theorem that ζ 7→ (ζ + i)−2B(ζ) is the Fourier-Laplace transform of a

function F ∈ L2(0,∞). Since F̂ (iηj) = 0 for all j it follows that the exponentials
are not dense then.

From the preceding result it is easy to make a conclusion on density in C([0, 1])
with the maximum norm when Re ζn > 0. For density in that space implies density
in L2, hence that ∑

(Re ζn +
1

2
)/(1 + |ζn|2) = ∞.
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Conversely, if this condition is satisfied and limn→∞ Re ζn >
1
2 , the numbers ζn− 1

with Re ζn >
1
2 will satisfy the same condition. For every f ∈ C1([0, 1]) and every

ε > 0 we can then find an approximation to f ′ with∫ 1

0

|f ′(x)−
∑

ajx
ζj−1|2 dx < ε2

where the sum is finite and Re ζj >
1
2 for every term. Since

f(x) = f(0) +

∫ x

0

f ′(t) dt,

we conclude that
sup
(0,1)

|f(x)− f(0)−
∑

ajx
ζj/ζj | < ε.

When limRe ζj >
1
2 the condition∑

Re ζj/(1 + |ζj |2) = ∞

is therefore necessary and sufficient for C([0, 1]) to be the closed linear hull of the
functions 1 and x 7→ xζj , j = 1, 2, . . . .

Example 2.3.10. Let K be a compact set in C with connected complement, and let
f be a function which is analytic in a neighborhood of K. Then one can for every
ε > 0 find a polynomial g in the complex variable z such that |f − g| < ε on K.
(By a famous theorem of Mergelyan it suffices to assume that f is analytic in the
interior of K, but that requires much more delicate arguments than the classical
Runge theorem stated here.)

Proof. By Theorem 2.3.3 we have to show that if dµ is a measure on K with∫
zn dµ(z) = 0, n = 0, 1, 2, . . . ,

then
∫
f(z) dµ(z) = 0. Let φ ∈ C1 be a function which is equal to 1 in a neighbor-

hood of K and vanishes outside a compact subset of another neighborhood where
f is analytic. By the Cauchy integral formula we have, dλ denoting the Lebesgue
measure in C = R2,

f(z)φ(z) = −1/π

∫
f(ζ)∂φ(ζ)/∂ζ(z − ζ)−1 dλ(ζ).

Since φ = 1 on K this gives after a change of order of integration∫
f(z) dµ(z) = −1/π

∫
f(ζ)∂φ(ζ)/∂ζ dλ(ζ)

∫
(z − ζ)−1dµ(z).

The assertion would therefore be proved if we show that

M(z) =

∫
(z − ζ)−1 dµ(ζ)
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vanishes in the complement of K. Now M(z) is clearly analytic in the complement
of K, and at infinity the Laurent series expansion is

M(z) =
∞∑
0

z−j−1

∫
ζj dµ(ζ).

All the coefficients here are 0 by hypothesis, soM(z) = 0 for large |z| and therefore
in the entire complement of K, for it is connected by hypothesis. This proves the
Runge theorem

We now pass to examples of existence theorems which illustrate the use of The-
orem 2.3.4.

Example 2.3.11. Let α > 1 and let a0, a1, . . . be a sequence of complex numbers
with

|an| ≤ Cn+1
0 nαn, n = 0, 1, . . . ,

for some constant C0. Then there exists a function f ∈ C∞(R) such that f (n)(0) =
an for every n and for another constant C1

|f (n)(x)| ≤ Cn+1
1 nαn, n = 0, 1, . . . , x ∈ R.

Proof. We want to represent f as a Fourier-Stieltjes transform

f(x) =

∫
eixξ dµ(ξ).

Since |f (n)(x)| ≤
∫
|ξ|n |dµ(ξ)|, we conclude that if

(2.3.6)

∫
ec|ξ|

1/α

|dµ(ξ)| <∞,

then |f (n)(x)| ≤ C sup |ξ|ne−c|ξ|1/α . The supremum is attained when we have
n/|ξ| = (c/α)|ξ|(1/α)−1, that is, |ξ|1/α = αn/c. Thus

|f (n)(x)| ≤ Ce−αn(αn/c)αn

which is a bound of the desired form. That f (n)(0) = an means that∫
ξn dµ(ξ) = i−nan, n = 0, 1, . . . ,

so if p(ξ) =
∑
pjξ

j is a polynomial, we must have∫
p(ξ) dµ(ξ) =

∑
i−jajpj = L(p).

Here the last equality is a definition. Now let V be the Banach space of all contin-

uous functions u on R such that u(ξ)e−c|ξ|
1/α → 0, ξ → ∞, and set

∥u∥ = sup |u(ξ)|e−c|ξ|
1/α

.
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The continuous linear forms on this space can be written

u 7→
∫
u(x) dµ(x)

where dµ is a measure satisfying (2.3.6). The proof is therefore reduced to the
construction of a continuous linear form L′ on V which coincides with L on the
subspace of polynomials. By Theorem 2.3.4 there exists such a linear form if (and
only if) the estimate

|L(p)| ≤ C∥p∥

is valid for all polynomials p.

Now the inequality |p(ξ)|e−c|ξ|1/α ≤ ∥p∥, valid for real ξ, implies by the maxi-

mum principle applied to ζ 7→ p(ζ)e−c
′(ζ/±i)1/α in the upper and lower half planes

respectively that

|p(ζ)|e−c
′ Re(ζ/±i)1/α ≤ ∥p∥, ζ ∈ C.

Here c′ = c/ cos(π/2α). Hence

|p(ζ)| ≤ ec
′|ζ|1/α∥p∥, ζ ∈ C,

which by Cauchy’s inequalities implies that

|pj | ≤ ∥p∥ inf
r>0

ec
′r1/αr−j = ∥p∥ejα(αj/c′)−αj .

It follows that

|L(p)| ≤ ∥p∥
∑

Cj+1
0 jαjejα(αj/c′)−αj = ∥p∥C0

∑
(C0e

αc′αα−α)j .

If we choose c so small that the geometric series converges, we have proved the
desired estimate and so the existence of the function f .

Example 2.3.12. Let P (ξ) = P (ξ1, . . . , ξn) be a polynomial with complex coeffi-
cients not all zero, and let P (D) be the differential operator obtained if every ξj
is replaced by Dj = −i∂/∂xj . For every f ∈ L2(Rn) with respect to the measure

e−|x|2 dx one can then find a solution u of the equation P (D)u = f (in the sense of
distribution theory) such that u is also in L2(Rn) with respect to this measure.

Proof. That P (D)u = f in the sense of distribution theory means, if Q(D) =
P (−D), that ∫

uQ(D)v dx =

∫
fv dx, v ∈ C∞

0 (Rn).

In other words, the unknown linear form L(v) =
∫
uv dx shall have the property

L(Q(D)v) =

∫
fv dx, v ∈ C∞

0 (Rn).

Moreover, L shall be a continuous linear form on L2 with respect to the measure

e|x|
2

dx. By the Hahn-Banach theorem (Theorem 2.3.4) the existence of such a
form L is equivalent to the estimate

|
∫
fv dx|2 ≤ C

∫
|Q(D)v|2e|x|

2

dx, v ∈ C∞
0 (Rn).
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By the Cauchy-Schwarz inequality this follows if we prove that

(2.3.7)

∫
|v|2e|x|

2

dx ≤ C

∫
|Q(D)v|2e|x|

2

dx, v ∈ C∞
0 (Rn).

This will be done by means of an identity based on commutation relations.
First we assume that n = 1. We shall integrate by parts noting that∫

(Dv)wex
2

dx =

∫
vδwex

2

dx; v, w ∈ C∞
0 ; δw = Dw − 2ixw.

If Q is the polynomial obtained by taking complex conjugates of the coefficients of
Q, we conclude that∫

|Q(D)v|2ex
2

dx =

∫
(Q(δ)Q(D)v)vex

2

dx, v ∈ C∞
0 .

Here we want to change the order of the two operators. To do so we note that
δD = Dδ + 2. Since

δDk = (δD −Dδ)Dk−1 +D(δD −Dδ)Dk−2 + · · ·+Dk−1(δD −Dδ) +Dkδ

= 2kDk−1 +Dkδ,

it follows that for every polynomial p we have δp(D) = p(D)δ + 2p′(D). More
generally, for every polynomial q we have

q(δ)p(D) =
∑

p(j)(D)q(j)(δ)2j/j!.

In fact, if this is true for q and if q1(δ) = δq(δ), then

q1(δ)p(D) = q(δ)(p(D)δ + 2p′(D))

=
∑

p(j)(D)q(j)(δ)δ2j/j! +
∑

p(j+1)2j+1q(j)(δ)/j!

=
∑

p(j)(D)(δq(j)(δ) + jq(j−1)(δ))2j/j! =
∑

p(j)(D)q
(j)
1 (δ)2j/j!,

so the assertion follows in general by induction. Hence we obtain∫
|Q(D)v|2ex

2

dx =
∑

2j/j!

∫
|Q(j)

(δ)v|2ex
2

dx.

A similar identity is valid in the case of several variabales. Then we just introduce
the operators δjw = Djw − 2ixjw, which commute with each other and with all
Dk for k ̸= j; we have

δjDj −Djδj = 2.

Writing p(α)(ξ) = ∂αp(ξ) and α! = α1! . . . αn! when α = (α1, . . . , αn) is a multi-
index, we have

q(δ)p(D) =
∑

p(α)(D)q(α)(δ)2|α|/α!,
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for this follows from the one-dimensional case when p and q are monomials. This
leads to the identity∫

|Q(D)v|2e|x|
2

dx =
∑

2|α|/α!

∫
|Q(α)

(δ)v|2e|x|
2

dx, v ∈ C∞
0 (Rn).

Since Q
(α)

is a constant ̸= 0 for some α with |α| equal to the order of Q, the
inequality (2.3.7) follows.

Example 2.3.13. Let V be a semi-normed space and T a linear transformation from
V to V with ∥T∥ ≤ 1, that is, ∥Tx∥ ≤ ∥x∥ for all x ∈ V . Assume that T has a fixed
point, that is, Tx0 = x0 for some x0, ∥x0∥ ̸= 0. Then there exists a continuous
linear form f on V with f(x0) = ∥x0∥, ∥f∥ = 1, and f(Tx) = f(x), x ∈ V .

Before the proof we make an application. Let V be the space of all bounded
sequences x = (x1, x2, . . . ) with xj ∈ C, and define ∥x∥ = sup |xj |. Denote by T
the shift operator (Tx)j = xj+1. The sequence (1, 1, . . . ) is then a fixed point of
T , so we obtain a continuous linear form f on V with f(x) = c if x = (c, c, . . . ).
Moreover, ∥f∥ ≤ 1 and f(Tx) = f(x), x ∈ V . This implies that for every x ∈ V

|f(x)| = |f(Tnx)| ≤ sup
j>n

|xj |, hence |f(x)| ≤ lim
n→∞

|xn|.

It follows that for every c ∈ C

|f(x)− c| ≤ lim
n→∞

|xn − c|,

that is, f(x) lies in every closed disc containing all limit points of the sequence x.
In particular, f(x) = limj→∞ xj if the limit exists, and

lim
n→∞

xn ≤ f(x) ≤ lim
n→∞

xn

if the sequence is real. One calls f(x) a generalized Banach limit of the sequence
x = (x1, x2, . . . ). We sum up its properties:

1) f(x) is defined for every bounded sequence x and is equal to limn→∞ xn if
the limit exists.

2) f(x) depends linearly on x.
3) f(x) = f(y) if x and y only differ by a power of the shift operator.

Proof of the claim in Example 2.3.13. Introduce a new semi-norm in V by

|||x||| = inf ∥
∞∑
0

snT
nx∥

where the infimum is taken over all non-negative s0, s1, . . . with sum 1 such that
only finitely many are ̸= 0. This is a semi-norm. For if

∥
∑

snT
nx∥ < |||x|||+ ε, ∥

∑
tnT

ny∥ < |||y|||+ ε,
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it follows that

∥(
∑

snT
n)(

∑
tmT

m)(x+ y)∥ < |||x|||+ |||y|||+ 2ε,

since
∑
snT

n and
∑
tmT

m have norms ≤ 1. This gives the triangle inequality, and
the homogeneity of ||| · ||| is evident. We have |||Tx− x||| = 0 for all x, for

∥n−1(I + T + · · ·+ Tn−1)(Tx− x)∥ = ∥Tnx− x∥/n ≤ 2∥x∥/n→ 0, n→ ∞.

Since Tx0 = x0 we have |||x0||| = ∥x0∥. By Theorem 2.3.4 it follows that there
exists a linear form f on V with f(x0) = ∥x0∥ and

|f(x)| ≤ |||x|||, x ∈ V.

This implies that |f(x)| ≤ ∥x∥ and that f(Tx) − f(x) = f(Tx − x) = 0 for all
x ∈ V .

As an application of Corollary 2.3.6 we shall now discuss the spectral theory of
the operator on L2(0, 2π) consisting of multiplication by eiθ.

Example 2.3.14. In H = L2(0, 2π) let T be the operator defined by

(Tf)(θ) = eiθf(θ), f ∈ H.

Let G be a closed subspace of H with TG ⊂ G. Then either

(1) there exists a measurable set E ⊂ (0, 2π) such that G consists of all f ∈ L2

vanishing almost everywhere in E, or
(2) there exists a function f0 ∈ G with |f0| = 1 almost everywhere such that

every f ∈ G is of the form f = f0φ where φ ∈ H+, that is, φ ∈ H and the
Fourier coefficients

cn = (2π)−1

∫ 2π

0

φ(θ)e−inθ dθ = 0

vanish when n < 0. This means that φ is the boundary value of the analytic
function

z 7→
∞∑
0

cnz
n, |z| < 1.

Proof. Since ∥Tf∥ = ∥f∥, it is clear that TG is a closed subspace of G.
1◦ If TG = G we have TnG = G for every integer n. Hence f ∈ G implies

uf ∈ G if

u(θ) =
∑

ake
ikθ

is an arbitrary trigonometrical polynomial. Since these are dense in the space of
continuous periodic functions, we have uf ∈ G for all continuous periodic u if
f ∈ G. If h ∈ G⊥, then the fact that∫ 2π

0

ufh̄ dθ = 0,
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for every continuous periodic function u, implies that fh̄ = 0 almost everywhere.
Let Ef be the set where f = 0. Since h vanishes almost everywhere in the com-
plement of Ef , it follows that every F ∈ H which is 0 almost everywhere in Ef
must be orthogonal to G⊥ and so belong to G. More generally, let f1, f2, . . . be a
dense set in G. Then h = 0 almost everywhere in the complement of E = ∩Efj , so
we conclude that G contains the set HE of all f ∈ H vanishing almost everywhere
in E. HE is a closed set, and since fj ∈ HE for every j, we have G ⊂ HE . This
proves that G = HE .

2◦ Assume that TG ̸= G. Then we can choose some f0 ∈ G with ∥f0∥ =
√
2π

and f0 ⊥ TG. This implies that f0 is orthogonal to Tnf0 if n > 0, thus

(2π)−1

∫ 2π

0

|f0(θ)|2e−inθ dθ = 0, n > 0.

By complex conjugation it follows that the Fourier coefficient also vanishes for
n < 0, and for n = 0 it is equal to 1. Hence |f0(θ)| = 1 almost everywhere. If
there exists another function g0 with the same properties as f0 and orthogonal to
f0, then

|f0(θ)| = |g0(θ)| = |af0(θ) + bg0(θ)| = 1 for almost all θ if |a|2 + |b|2 = 1.

Thus Re ab̄f0(θ)g0(θ) = 0 which implies that f0(θ)g0(θ) = 0 almost everywhere.
This is a contradiction which proves that

G = Cf0 ⊕ TG (orthogonal sum)

where Cf0 is the space spanned by f0. Since (f, g) = 0 implies (Tf, Tg) = 0, we
conclude after n applications of our result that

G = Cf0 ⊕CTf0 ⊕ · · · ⊕CTnf0 ⊕ Tn+1G.

The intersectionG0 = ∩n>0T
nG is a closed linear space with TG0 = G0. Accord-

ing to 1◦ it must therefore consist of all f ∈ H vanishing on a certain measurable
set E. Since all such f must be orthogonal to f0 and |f0| = 1 almost everywhere,
we conclude that the complement of E is of measure 0 and that G0 = {0}.

For an arbitrary f ∈ G we can now write in a unique way

f = af0 + a1Tf0 + · · ·+ anT
nf0 +Rn

where Rn ∈ Tn+1G and

∥f∥2 = 2π(|a0|2 + · · ·+ |an|2) + ∥Rn∥2.

It follows that the partial sums of
∑
ajT

jf0 form a Cauchy sequence, hence that
Rn has a limit. This limit belongs to G0 so it must be 0. Thus

f =
∞∑
0

ajT
jf0,

which proves the statement.
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We shall finally use the Hahn-Banach theorem to study direct sum decomposi-
tions.

Definition 2.3.15. A topological vector space V is said to be the direct topological
sum of two subspaces V1 and V2 if V = V1 ⊕ V2 and the projection P1 on V1 along
V2 (and therefore the projection P2 on V2 along V1) is continuous. One calls V2 a
topological supplement of V1.

We recall that P1 + P2 = I, that V1 is the kernel of P2 and that V2 is the kernel
of P1. If V is a Hausdorff space which is the direct topological sum of V1 and V2, it
follows therefore that V1 and V2 are closed. On the other hand, repeating the proof
of Corollary 1.4.3 with Theorem 2.3.3 substituted for Theorem 1.4.2′ we obtain

Theorem 2.3.16. Let V1 be a finite dimensional subspace of the locally convex
Hausdorff topological vector space V . Then there exists a continuous projection
V → V1, thus a topological direct sum decomposition V = V1 ⊕ V2. In particular,
V1 is closed.

The corresponding theorem where V1 has finite codimension is completely ele-
mentary and does not require local convexity:

Theorem 2.3.17. Let V1 be a closed subspace of finite codimension of the topo-
logical vector space V . Then there exists a topological supplement V2 of V1; in fact,
any algebraic supplement is a topological one.

Proof. Let V2 be a space spanned by elements x1, . . . , xn whose equivalence classes
mod V1 form a basis for V/V1. Then V2 is an algebraic supplement. The projection
P2 : V 7→ V2 vanishes on V1 so it can be factored

V → V/V1 → V2.

Here V/V1 is a finite dimensional Hausdorff topological vector space, since V1 is
closed, so the second map and therefore the composed map P2 is continuous. This
proves the statement.

2.4. Applications of Baire’s theorem. We shall now prove some results which
often make it possible to derive quantitative information from a qualitative one.
For example, if it is known that a certain equation has a solution for arbitrary data
one may conclude that the solution necessarily depends continuously on the data.

Theorem 2.4.1. (Banach) Let T be a continuous injective linear map from a
Fréchet space F1 to another Fréchet space F2. Then either ImT is of the first
category or else ImT = F2 and T is a homeomorphism. (By Baire’s theorem F2 is
not of the first category.)

Proof. If U is a convex symmetric neighborhood of 0 in F1 and nU = {nx; x ∈ U},
then

ImT =

∞∪
1

T (nU) ⊂
∞∪
1

T (nU).

If ImT is not of the first category it follows that T (nU) has an interior point for

some n, and since these sets are homothetic it follows that T (U) = n−1T (nU)
also has an interior point. We can therefore choose a point y ∈ F2 and a convex
symmetric neighborhood V of 0 so that V + {y} ⊂ T (U). Since T (U) is symmetric
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with respect to 0, it follows that V + {−y} ⊂ T (U), and since T (U) is convex we
have

V = 1
2 (V + {y}) + 1

2 (V + {−y}) ⊂ T (U).

Now choose a fundamental system U1 ⊃ U2 ⊃ . . . of convex symmetric neighbor-
hoods of 0 in F1 such that 2Uk ⊂ Uk−1. For every k we can find a convex symmetric

neighborhood Vk of 0 in F2 such that Vk ⊂ T (Uk), and we can make sure that they
form a fundamental system of neighborhoods of 0 in F2. To prove that ImT = F2

it suffices to show that every y ∈ V1 belongs to ImT . Now we can choose x1 ∈ U1

so that
y1 = y − Tx1 ∈ V2

and then x2 ∈ U2 so that
y2 = y1 − Tx2 ∈ V3.

Continuing in this way we get a sequence xn ∈ Un such that

yn = yn−1 − Txn ∈ Vn+1.

The sequence Xn = x1 + · · ·+ xn is convergent in F1, for

xn+1 + · · ·+ xn+m ∈ Un+1 + · · ·+ Un+m ⊂ 2−1Un + · · ·+ 2−mUn ⊂ Un,

since 2−1 + · · ·+ 2−m < 1 and Un is convex and symmetric. Let X be the limit of
the Cauchy sequence Xn. Since addition of the preceding equations gives

yn = y − TXn

and yn → 0 when n → ∞, we conclude using the continuity of T that y = TX.
Thus ImT = F2. Moreover, we have found that if y ∈ V1 then the unique solution
x of the equation Tx = y belongs to 2U1. Since this may be taken as an arbitrarily
small neighborhood of 0, we have also proved the continuity of the inverse of T .

Corollary 2.4.2. If T is a continuous linear map F1 → F2, where F1, F2 are
Fréchet spaces, then ImT is either of the first category or else equal to F2.

Proof. The quotient space F1/KerT is also a Fréchet space, and T induces a con-
tinuous map T ′ : F1/KerT → F2 with the same range as T . Since T ′ is injective,
the statement now follows from Theorem 2.4.1.

Example 2.4.3. Let P (D), D = −i∂/∂x, be a partial differential operator with
constant coefficients and order m. Assume that for some open non empty set
Ω ⊂ Rn every solution u ∈ Cm(Ω) of the equation P (D)u = 0 is in fact in Cm+1(Ω).
Then we have Im ζ → ∞ if ζ → ∞ on the surface in Cn defined by the equation
P (ζ) = 0. (Conversely, if P has this property then every distribution solution of
the equation P (D)u = 0 is in C∞, but we shall not prove that here.)

Proof. Let F1, F2 be the set of all u ∈ Cm+1(Ω) resp. Cm(Ω) satisfying the equation
P (D)u = 0. As closed subspaces of Cm+1(Ω) and Cm(Ω) these are Fréchet spaces.
Our hypothesis is that the inclusion map F1 → F2 is surjective. By Theorem 2.4.1
it follows that the inverse map is continuous. For every compact set K ⊂ Ω one
can therefore find another compact set K ′ ⊂ Ω and a constant C such that∑

|α|≤m+1

sup
K

|Dαu| ≤ C
∑

|α|≤m

sup
K′

|Dαu|, u ∈ F1 = F2.
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In particular, we can choose u(x) = ei⟨x,ζ⟩ if P (ζ) = 0, ζ ∈ Cn, for P (D)u =
P (ζ)u = 0 then. If A is the maximum distance between points in K ′ and points in
K it follows that ∑

|α|≤m+1

|ζα| ≤ CeA| Im ζ|
∑

|α|≤m

|ζα|.

Since the quotient of the sum on the left by that on the right converges to ∞ as
(1 + |ζ|) when ζ → ∞, we conclude that Im ζ → ∞ then.

As an example we obtain that the Schrödinger equation (D2
1 − D2)u = 0 has

solutions u ∈ C2 \ C3.
We shall now give a variant of Banach’s theorem which is often more convenient

in applications.

Definition 2.4.4. If T is a map from a subset DT of a Fréchet space F1 to a Fréchet
space F2, then T is said to be closed if xn ∈ DT , xn → x, Txn → y implies that
x ∈ DT and Tx = y. Equivalently, this means that the graph of T

G = {(x, Tx), x ∈ DT }

is a closed subset of the direct sum F1 ⊕ F2.

If T is linear, the graph is thus a Fréchet space too. Note that the two projections

G ∋ (x, Tx) 7→ x, G ∋ (x, Tx) 7→ Tx

are continuous and that the first is injective. If we apply Theorem 2.4.1 to the first
map and Corollary 2.4.2 to the second map, we obtain:

Theorem 2.4.5. (Closed graph theorem) If T is a closed linear map from F1 to
F2 where F1 and F2 are Fréchet spaces, then either the domain DT is of the first
category or else it is equal to F1 and T is continuous. The range ImT is either of
the first category or equal to F2.

Example 2.4.6. Let P (D) = Pm(D)+Pm−1(D)+ . . . be a partial differential oper-
ator where Pk is a homogeneous polynomial in D = −i∂/∂x of degree k. Assume
that for some real ξ ̸= 0 we have

Pm(ξ) = 0, 0 ̸= P ′
m(ξ) = gradPm(ξ) ∈ Rn.

Let L = {tP ′
m(ξ), t ∈ R} (a bicharacteristic line). Then one can find u ∈ Cm(Rn)

such that P (D)u ∈ C∞(Rn) and u ∈ C∞({L) whereas u is not in Cm+1 in any
open set which intersects L. Thus L is the set of singularities of the function u.

Since the equation P (D)v = f has a solution v ∈ C∞ for every f ∈ C∞ (see
Example 2.6.38 below), it is easy to modify the function u in the example so that
P (D)u = 0. If for example P (D) is the wave operator, the example then shows that
there is a solution of the wave equation with singularities precisely on any given
light ray.

Proof. Let F be the set of all u ∈ Cm(Rn) such that u ∈ C∞({L) and P (D)u ∈
C∞(Rn). This is a Fréchet space with the topology defined by the semi-norms

u 7→ sup
K

|Dαu|, where
{ |α| ≤ m, K is compact in Rn, or

α is arbitrary and K is compact ⊂ {L,
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in addition to the semi-norms

u 7→ sup
K

|DαP (D)u|, K compact in Rn and α arbitrary.

The verification of completeness is left as an exercise for the reader. Let V be an
open set in Rn containing some point x0 ∈ L. We shall prove then that

MV = F ∩ Cm+1(V )

is of the first category in F . Taking the union of the setsMV when V varies over all
balls with radius r > 0 and center tP ′

m(ξ) where r and t are rational, we conclude
that the set of all u ∈ F belonging to Cm+1(V ) for some V intersecting L is also
of the first category, so the assertion follows.

Assuming thatMV is not of the first category we apply the closed graph theorem
to the restriction map

T : F → Cm+1(V )

with domain equal to F ∩Cm+1(V ). That T is closed is obvious. It follows that T
must be continuous. Hence we can find a constant C, an integer N , and compact
sets K ⊂ Rn, K ′ ⊂ {L, such that

(2.4.1)

∑
|α|≤m+1

|Dαu(x0)| ≤ C(
∑

|α|≤m

sup
K

|Dαu|+
∑

|α|≤N

sup
K

|DαP (D)u|

+
∑

|α|≤N

sup
K′

|Dαu|), u ∈ F.

To show that this is impossible we must construct good approximate solutions of
the equation P (D)u = 0.

To do so we set
ut(x) = eit⟨x,ξ⟩vt(x)

where t shall → ∞. Then

P (D)ut(x) = eit⟨x,ξ⟩P (D + tξ)vt(x).

Since Pm(ξ) = 0 we obtain using Taylor’s formula

P (D + tξ) = tm−1(⟨P ′
m(ξ), D⟩+ a+Rt(D))

where a is a constant and Rt is a polynomial in 1/t without constant term. Thus
we should choose vt so that

(⟨P ′
m(ξ), D⟩+ a+Rt(D))vt

is very small. This can be done by successive approximation. We take v0 as a
solution of the first order differential equation

(⟨P ′
m(ξ), D⟩+ a)v0 = 0, v0(x0) = 1.

Since this is a differential equation which only involves differentiations in the direc-
tion of L, we can choose v0 ∈ C∞ so that the support, which is a cylinder Γ with
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the generator in the direction L, does not meet K ′. Then we choose successively
v1,t, v2,t, . . . so that

(⟨P ′
m(ξ), D⟩+ a)vk,t = −Rt(D)vk−1,t.

Then vk,t will be a finite sum of terms each of which contains a factor t−j with
j ≥ k. We can choose all vk,t with support in Γ. Now set

Vk,t = v0 + v1,t + · · ·+ vk,t.

Then
(⟨P ′

m(ξ), D⟩+ a+Rt(D))Vk,t = Rt(D)vk,t,

and all semi-norms in C∞ of the right-hand side are O(t−k−1). With u(x) =
eit⟨x,ξ⟩Vk,t the left-hand side of (2.4.1) is ≥ ctm+1 for some c > 0. The first
sum on the right is O(tm), the second is O(tN+m−1−k−1) and the third is 0. If
m + 1 > N +m − k − 2, that is, k > N − 3, we conclude that (2.4.1) is not valid
and have proved the statement.

Before passing to the next consequence of Baire’s theorem we must introduce
some notation.

Definition 2.4.7. A subset M of a locally convex topological vector space V is said
to be bounded if for every neighborhood U of 0 in V there exists some ε > 0 such
that εM ⊂ U .

Since U is absorbing it is clear that every finite set is bounded. We can set
U = {x; p(x) < 1} where p is a continuous semi-norm. That εM ⊂ U means that
p(εx) < 1 for all x ∈M , that is, p(x) < 1/ε, x ∈M . In a locally convex topological
vector space an equivalent definition is therefore: M is bounded if every continuous
semi-norm is bounded on M . If V is a normed space, a set M ⊂ V is therefore
bounded if and only if the norms of its elements are bounded.

Now let V1, V2 be two locally convex topological vector spaces and let Φ be a
subset of the space L(V1, V2) of continuous linear maps from V1 to V2. We shall
say that Φ is equi-continuous if for every neighborhood U2 of 0 in V2 there is a
neighborhood U1 of 0 in V1 such that TU1 ⊂ U2 for every T ∈ Φ. If U1, U2 are
defined by the semi-norms p1, p2, this means that p2(Tx) ≤ p1(x) for x ∈ V1 and
T ∈ Φ. If V1, V2 are normed spaces, the definition of equi-continuity thus means
that

∥Tx∥2 ≤ C∥x∥1, x ∈ V1, T ∈ Φ,

for some constant C, that is, ∥T∥ ≤ C for every T ∈ Φ.

Theorem 2.4.8. (Banach-Steinhaus; the principle of uniform boundedness) Let F
be a Fréchet space and V a locally convex topological vector space. If Φ is a subset
of L(F, V ) such that {Tx; T ∈ Φ} is a bounded subset of V for every fixed x ∈ F ,
then Φ is equi-continuous. On the other hand, if Φ is not equi-continuous, then the
set of all x ∈ F such that {Tx; T ∈ Φ} is bounded forms a set of the first category.

Proof. Let U be a convex, closed, symmetric neighborhood of 0 in V and set

A = {x ∈ F ; Tx ∈ U for every T ∈ Φ}.
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Then A is convex and symmetric, and A is closed since every T ∈ Φ is continuous.
We now distinguish two different cases.

1◦ A has an interior point for every choice of U . As in the proof of Theorem
2.4.1 we conclude that 0 is an interior point of A. Since TA ⊂ U for all T ∈ Φ, the
family Φ is thus equi-continuous.

2◦ If for some U the set A has no interior point, then ∪∞
1 (nA) is of the first

category and contains all x such that {Tx; T ∈ Φ} is bounded. Indeed, for such x
we have εx ∈ A for some ε > 0, hence x ∈ nA if nε > 1. This completes the proof.

Corollary 2.4.9. Let F be a Fréchet space and V a locally convex Hausdorff topo-
logical vector space. If T1, T2, · · · ∈ L(F, V ) and Tjx → Tx for every x ∈ F , it
follows that T ∈ L(F, V ).

Proof. Passing to the limit in the equation Tj(ax + by) = aTjx + bTjy; x, y ∈ F ,
a, b ∈ K; we obtain T (ax + by) = aTx + bTy since V is Hausdorff. By Theorem
2.4.8 the sequence Tj is equi-continuous which implies that T is continuous.

The following statement is closely related to Theorem 2.4.8 but it is quite ele-
mentary.

Theorem 2.4.10. Let Tj ∈ L(F, V ), j = 1, 2, . . . , be equi-continuous, F and V
locally convex topological vector spaces. If T0 ∈ L(F, V ) then

F1 = {x ∈ F ; Tjx→ T0x, as j → ∞}

is a closed linear subspace of F .

Proof. The linearity is obvious. Assume that x is in the closure of F1. Let U be
any convex symmetric neighborhood of 0 in V and choose a neighborhood U ′ of 0
in F such that TjU

′ ⊂ U when j ≥ 0. For some y ∈ F1 we have y − x ∈ U ′. Then

Tjx− T0x = Tjy − T0y + Tj(x− y)− T0(x− y) ∈ 3U

if j is sufficiently large. Hence x ∈ F1.

Example 2.4.11. There exists a continuous function with period 2π such that the
partial sums of its Fourier series are not bounded at 0.

Proof. The space C of continuous functions with period 2π is a Banach space with
the maximum norm ∥f∥ = max |f(x)|. The Fourier coefficients of f are

ck = (2π)−1

∫ π

−π
f(x)e−ikx dx

and the partial sums are

sn(f, x) =
n∑
−n

cke
ikx.

In particular, we have

sn(f, 0) =

n∑
−n

ck =

∫ π

−π
f(x)Dn(x) dx
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where the Dirichlet kernel Dn is given by

Dn(x) = (2π)−1
n∑
−n

eikx = (2π)−1 sin((n+ 1
2 )x)/ sin(

1
2x).

The norm of the linear form f 7→ sn(f, 0) on C is equal to
∫ π
−π |Dn(x)| dx. By

splitting the interval of integration where (n + 1
2 )x = kπ with k an integer, we

obtain since sin( 12x) ≤
1
2x∫ π

−π
|Dn(x)| dx ≥ 4π−2

n∑
1

1/k = (4 log n)/π2 +O(1).

Thus the norm of the linear form f 7→ sn(f, 0) tends to ∞ with n, so Theorem
2.4.8 shows that the set of all f ∈ C such that sn(f, 0) is bounded must be of the
first category.

Example 2.4.12. LetMn be a sequence of positive numbers such thatMn/ log n→ 0
as n → ∞. Then there exists a continuous function f with period 2π such that
sn(f, x)/Mn is unbounded for every rational number x.

Proof. The proof in the preceding example shows that the set of all f ∈ C such
that sn(f, 0)/Mn is bounded is of the first category. The same conclusion is valid
for sn(f, x)/Mn for every fixed x in view of the translation invariance. If we let x
vary over any countable set A, the union of the sets of f ∈ C for which sn(f, x)/Mn

is bounded for some x ∈ A and all n will be of the first category, hence ̸= C. This
proves the assertion.

Let us note that sn(f, x) = o(log n) uniformly in x for f ∈ C since sn is bounded
for f in the dense subset of C1 functions and the lower bound for

∫
|Dn| dx in

Example 2.4.11 is also valid apart from a constant factor as an upper bound. Fur-
thermore, Carleson has proved that sn(f, x) → f(x) for almost every x if f ∈ C, so
we could not extend the conclusion in Example 2.4.11 to any set of positive measure
or any Mn of faster increase.

Example 2.4.13. Let ajk; j, k = 1, 2, . . . ; be a matrix of complex numbers which is
row finite, that is, ajk = 0 for large k when j is fixed. For every sequence s1, s2, . . .
of complex numbers we set

(As)j =
∑

ajksk, j = 1, 2, . . .

and say that the sequence sk is summable with the method (A) if (As)j has a limit
when j → ∞. Every convergent sequence is then summable to the usual limit with
the method (A) if and only if for some constant M∑

k

|ajk| ≤M, j = 1, 2, . . .(2.4.2)

lim
j→∞

ajk = 0 for fixed k; lim
j→∞

∑
k

ajk = 1.(2.4.3)

Proof. Assume that every convergent sequence is summable to the usual limit.
Then (2.4.3) follows if we consider the sequence sj = 1, j = k; sj = 0, j ̸= k, or
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the sequence with sj = 1 for every j. To prove the necessity of (2.4.2) we consider
the Banach space B of all sequences with sn → 0 and ∥s∥ = sup |sn|. The map

B ∋ s 7→ (As)j ∈ C

is then for fixed j a linear form with the norm
∑
k |ajk|, and since (As)j → 0 when

j → ∞ for every fixed s ∈ B, we conclude in view of Theorem 2.4.8 that the norms
must be uniformly bounded. This means that (2.4.2) must be valid. — To prove
the sufficiency of (2.4.2), (2.4.3) we note that (2.4.2) gives

lim |(As)j | ≤ sup |(As)j | ≤M∥s∥, s ∈ B.

For every N we can write s = s′ + s′′ where s′j = sj for j ≤ N and s′′j = sj for
j > N . From (2.4.3) it follows then that (As′)j → 0, as j → ∞, hence

lim |(As)j | = lim |(As′′)j | ≤M∥s′′∥ =M sup
j>N

|sj |.

Thus (As)j → 0 if s ∈ B. The second part of (2.4.3) allows us to conclude that
(As)j → c if sj → c, for sj − c→ 0 then. This proves the statement.

As an example we can take ajk = 1/j, k ≤ j, ajk = 0, k > j. Then (As)j is
the arithmetic mean of the first j elements in the sequence. Note that (As)j may
then converge even if sj does not converge. An example is sj = (−1)j for which
(As)j → 0.

We shall now discuss a result on the continuity of bilinear maps which is closely
related to Theorem 2.4.8. Let E,F,G be topological vector spaces and B : E×F →
G a bilinear map. This means that B(x, y), x ∈ E, y ∈ F , is linear in x for fixed y
and linear in y for fixed x. If B is continuous at the origin, then we can for every
neighborhood UG of 0 in G find neighborhoods UE , UF of 0 in E and in F such that
B(x, y) ∈ UG when x ∈ UE and y ∈ UF . Then it follows that B(x, y) is continuous
everywhere in E × F . In fact,

B(x+ x0, y + y0) = B(x, y) +B(x, y0) +B(x0, y) +B(x0, y0).

We can choose ε > 0 so that εx0 ∈ UE and εy0 ∈ UF . Then we have

B(x, y0) ∈ UG if x/ε ∈ UE , B(x0, y) ∈ UG if y/ε ∈ UF .

Hence

B(x+ x0, y + y0)−B(x0, y0) ∈ UG + UG + UG if x ∈ UE ∩ εUE , y ∈ UF ∩ εUF .

If E,F,G are locally convex, then the continuity means that for every continuous
semi-norm pG in G one can find continuous semi-norms pE and pF in E and in F
so that

pG(B(x, y)) ≤ pE(x)pF (y); x ∈ E, y ∈ F.

In fact, if the neighborhoods UG, UE , UF are the sets where pG, pE , pF are < 1,
the preceding inequality follows in view of the homogeneity.

A bilinear form is called separately continuous if the linear forms obtained by
giving one of the arguments a fixed value are continuous.
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Theorem 2.4.14. Let E be a locally convex metrizable vector space, F a Fréchet
space and G a locally convex topological vector space. Every separately continuous
bilinear map from E × F to G is then continuous.

Proof. Let U be a closed, convex, symmetric neighborhood of 0 in G. Choose a
fundamental system V1 ⊃ V2 ⊃ . . . of neighborhoods of 0 in E, and set

Aj = {y ∈ F ; B(x, y) ∈ U for every x ∈ Vj}.

It is then clear that Aj is convex and symmetric. Since U is closed and B is
continuous with respect to y for fixed x, the sets Aj are closed. Since B is continuous
with respect to x for fixed y, we have ∪∞

1 Aj = F . Hence some Aj has an interior
point, and as in the proof of Theorem 2.4.1 we conclude that 0 is an interior point.
Now B(x, y) ∈ U if x ∈ Vj and y ∈ Aj , so B is continuous.

The proof did not require G to be Hausdorff, and it also gives

Theorem 2.4.15. Let E be a locally convex metrizable vector space, F a Fréchet
space and G a locally convex topological vector space. Let B be a bilinear map from
E × F to G such that B(x, y) is a continuous function of y for fixed x. If B is not
continuous, then the set of all y ∈ F such that B(x, y) is continuous with respect
to x is of the first category.

We shall use this improvement in the following example.

Example 2.4.16. For some f ∈ C∞(R3) the differential equation

Pu = (D1 + iD2 + 2i(x1 + ix2)D3)u = f

does not have a distribution solution u in any open set in R3.

Proof. If Ω is open in R3 and the equation has a solution in Ω, the definitions of
differentiation and multiplication in the space of distributions mean that

⟨u,−Pv⟩ = ⟨f, v⟩, v ∈ C∞
0 (Ω).

If K is a compact subset of Ω the definition of distributions shows that

(2.4.4) |⟨f, v⟩| ≤ C
∑

|α|≤m

sup |DαPv|, v ∈ C∞
0 (K),

where C and m depend on f . Let E be the space C∞
0 (K) with the topology defined

by the semi-norms occurring in the right-hand side of (2.4.4). Only countably many
occur. Let F be the Fréchet space C∞(R3). The bilinear form

B : E × F ∋ (v, f) 7→
∫
fv dx

is continuous with respect to v in view of (2.4.4) if the equation Pu = f has a
solution u ∈ D′(Ω). On the other hand, the map is automatically continuous with
respect to f for fixed v. If we prove that B is not continuous it follows therefore
from Theorem 2.4.15 that the set of all f ∈ F such that the equation Pu = f has
a distribution solution in Ω is of the first category.
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Assume that B is continuous. Then we have for some C and m
(2.4.5)

|
∫
fv dx| ≤ C

∑
|α|≤m

sup |DαPv|
∑

|α|≤m

sup |Dαf |, v ∈ C∞
0 (K), f ∈ C∞(R3).

Our aim is to prove that this estimate is not valid if K has interior points. First
we assume that 0 is an interior point of K. We want to choose v so that Pv is
nearly equal to 0 while v is not. To do so we note first that the equation Pv = 0 is
satisfied by v = x1 + ix2 and by v = x21 + x22 + ix3, hence also by all polynomials
in these two solutions. In particular,

w(x) = −x21 − x22 − ix3 + (x21 + x22 + ix3)
2

satisfies the equation Pw = 0, and w(x) = −ix3 − |x|2 + O(|x|3), as x → 0. In a
neighborhood of 0 it follows that Rew(x) ≤ −|x|2/2.

Now choose χ ∈ C∞
0 (K) so that χ = 1 in a neighborhood of 0 and Rew(x) ≤

−|x|2/2 in suppχ. Writing

vt(x) = χ(x)etw(x)

we have Pvt = (Pχ)etw, hence |DαPvt| = O(e−ctt|α|) when t → ∞, where c is a
positive constant. Set

ft(x) = eitx3t3h(tx)

with h ∈ C∞
0 and

∫
h dx = 1. With v = vt and f = ft the limit of the left-hand

side in (2.4.5) when t→ ∞ is equal to 1, for∫
ftvt dx =

∫
h(x)χ(x/t)etw(x/t)+ix3 dx→

∫
h(x) dx = 1.

On the other hand, the right-hand side of (2.4.5) can be estimated by Ct3+2me−ct →
0 as t→ ∞, which contradicts (2.4.5).

Since the origin has a countable fundamental system of neighborhoods we have
now proved that the set of all f ∈ C∞(R3) such that the equation Pu = f can
be solved in some neighborhood of 0 is of the first category. We shall now prove
that this is also true for any other point. This will show that the set of all f ∈
C∞(R3) such that Pu = f can be solved in some open set (and therefore in some
neighborhood of a rational point) is also of the first category.

To study the equation Pu = f near y ∈ R3 we replace x by x + y and obtain
the equation

(D1 + iD2 + (2i(y1 + iy2) + 2i(x1 + ix2))D3)u = f.

This we write in the form

((D1 − 2y2D3) + i(D2 + 2y1D3) + 2i(x1 + ix2)D3)u = f.

If we introduce as new coordinates x′1 = x1, x
′
2 = x2, x

′
3 = x3 + 2y2x1 − 2y1x2, the

equation assumes its original form and our assertion is proved.
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2.5. Fredholm theory. In this section we shall study the index of linear operators
between topological vector spaces. For the sake of simplicity we study only Banach
spaces at first and make some comments on more general spaces afterwards.

If T is a continuous linear map from a Banach space B1 to another B2, it is clear
that the kernel

KerT = {x ∈ B1;Tx = 0}

is a closed linear subspace of B1. On the other hand, the range ImT need not be
closed. For example, it is not closed if B1 = B2 = the space of continuous functions
of t ∈ [0, 1] and T is integration from 0 to t or multiplication by t. However, we
can easily prove

Theorem 2.5.1. If T ∈ L(B1, B2) and codim ImT <∞, then ImT is closed.

Proof. We may assume that T is injective, for otherwise we can consider instead
the map from B1/KerT to B2 induced by T . If n is the codimension of ImT , we
can choose a linear map

S : Kn → B2

such that ImS is an algebraic supplement of ImT . Then the map

T1 : B1 ⊕Kn ∋ (x, y) 7→ Tx+ Sy ∈ B2

is a continuous bijection so by Banach’s theorem it is a homeomorphism. It follows
that ImT = T1(B1 ⊕ {0}) is closed.

Passage to the graph of T shows that the preceding result is also true if T is just
closed and not necessarily continuous.

Definition 2.5.2. An operator T ∈ L(B1, B2) is called a Fredholm operator if
dimKerT and dimCokerT are both finite, thus

indT = dimKerT − dimCokerT

is a finite integer.

In Section 1.3 we proved the stability of the index under perturbations of finite
rank. For continuous linear operators we shall now prove that the index is stable
under perturbations which are small in various other respects.

Theorem 2.5.3. Let T ∈ L(B1, B2) be a Fredholm operator. If S ∈ L(B1, B2) and
∥S∥ is sufficiently small, it follows that T + S is a Fredholm operator with

(2.5.1) ind (T + S) = indT, dimKer (T + S) ≤ dimKerT.

More generally, if T ∈ L(B1, B2), dimKerT < ∞ and ImT is closed, then T + S
has the same properties and (2.5.1) holds if ∥S∥ is sufficiently small.

The extension stated here will be convenient in the proofs; the obvious lack of
symmetry in kernel and cokernel will be removed in Section 2.6. We first prove a
simple special case:



52

Lemma 2.5.4. Let I be the identity operator in the Banach space B and let S be
an operator in L(B,B) with ∥S∥ < 1. Then it follows that I − S has an inverse in
L(B,B), hence that ind(I − S) = 0.

Proof. The Neumann series

R =
∞∑
0

Sk

converges in L(B,B) since

∞∑
0

∥Sk∥ ≤
∞∑
0

∥S∥k ≤ 1/(1− ∥S∥).

Since R(I − S) = (I − S)R = I, the lemma is proved.

Proof of Theorem 2.5.3. a) First assume that T is bijective. Then T−1 is continuous
by Banach’s theorem and

T + S = T (I + T−1S).

When ∥T−1∥∥S∥ < 1 this is a product of two invertible operators, so T + S is
invertible and the index is 0.

b) If T is a general Fredholm operator then B1 = V1⊕KerT and B2 = V2⊕ImT ,
by Theorems 2.3.16 and 2.3.17, where V2 is finite dimensional, V1 is closed and the
sums are direct topological. If T ′ and S′ denote the maps V1 → B2/V2 induced by
T and S, then T ′ is bijective and ∥S′∥ ≤ ∥S∥. From a) it follows then that T ′ + S′

is bijective when ∥S∥ < ε. Hence

dimKer (T + S) ≤ dimKerT, dimCoker (T + S) ≤ dimV2 = dimCokerT.

Since T ′ + S′ is the composition of the injection V1 → B1, T + S, and the quotient
map B2 → B2/V2, Theorem 1.3.2 gives

0 = ind (T ′ + S′) = dimV2 + ind (T + S)− dimKerT = ind (T + S)− indT,

which proves (2.5.1).
c) Assume now that dimKerT <∞ and that ImT is closed, dimCokerT = ∞.

Choose V1 as in case b) above. Then T is a bijection of V1 on ImT , so it follows
from Banach’s theorem that

∥x∥ ≤ C∥Tx∥, x ∈ V1.

Hence
∥x∥ ≤ C∥(T + S)x∥+ C∥S∥∥x∥, x ∈ V1,

and if S ∈ Ω = {S ∈ L(B1, B2); ∥S∥ < 1/2C} it follows that

∥x∥ ≤ 2C∥(T + S)x∥, x ∈ V1.

Hence T +S is then injective with closed range on V1, which implies that (T +S)B1

is closed and that dimKer (T + S) ≤ dimKerT . It remains to prove that

Σ = {S ∈ Ω; dimCoker (T + S) <∞}
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is empty. Σ is the union of the sets Σn = {S ∈ Ω; ind (T +S) = n}, which are open
by part b) of the proof. If Σn is not empty, then Ω \Σn is not open, for 0 ∈ Ω \Σn
and Ω is connected. Hence Σn must have a boundary point S0 ∈ Ω. Since Σk
are open and disjoint, it is clear that S0 /∈ ∪Σk. Thus dimCoker (T + S0) = ∞,
but in every neighborhood of S0 one can find S such that dimCoker (T + S) =
dimKer (T + S)− n ≤ dimKerT − n. Choose a finite dimensional subspace W of
B2 with dimW > dimKerT − n which intersects Im (T + S0) only at the origin.
Then the composed map

V1 → B1
T+S−→ B2 → B2/W

is injective with closed range when S = S0, hence also when S is close to S0. Thus
the index is ≤ 0, so we obtain by Theorem 1.3.2

0 ≥ ind (T + S)− dimKerT + dimW = n− dimKerT + dimW > 0

which is a contradiction completing the proof.

We shall now extend Theorem 2.5.3 to certain perturbations which, like operators
of finite rank, may have a large norm:

Definition 2.5.5. A linear operator T from a Banach space B1 to a Banach space B2

is called compact (or completely continuous) if the closure of the image of the unit
ball of B1 is compact in B2. Equivalently: If xn ∈ B1 and ∥xn∥ ≤ 1, n = 1, 2, . . . ,
then the sequence Txn has a convergent subsequence.

Compactness obviously implies continuity, which motivates the term complete
continuity.

Example 2.5.6. Let B1 and B2 be the Banach spaces Ck(I) and Cj(I) where I is
a compact interval on R. Then we have a continuous inclusion map B1 → B2 if
j ≤ k, and it is compact by Ascoli’s theorem if j < k.

Proposition 2.5.7. The compact linear operators from a Banach space B1 to an-
other B2 form a closed subspace Lc(B1, B2) of the Banach space L(B1, B2). If
T1 ∈ L(B1, B2) and T2 ∈ L(B2, B3) where B3 is another Banach space, and if
either T1 or T2 is compact, then T2T1 ∈ Lc(B1, B3). Every T ∈ L(B1, B2) of fi-
nite rank is compact. In particular, Lc(B1, B2) = L(B1, B2) if B1 or B2 is finite
dimensional.

Proof. Let Tn ∈ Lc(B1, B2) and T ∈ L(B1, B2), ∥T − Tn∥ → 0. To prove that
T is compact we consider a sequence xk ∈ B1 with ∥xk∥1 ≤ 1. Then there exists
an increasing sequence k(1, j), j = 1, 2, . . . of indices such that T1xk(1,j) converges
in B2 when j → ∞. This sequence in turn has a subsequence k(2, j) such that
T2xk(2,j) has a limit when j → ∞, and so on. For the diagonal sequence x′j = xk(j,j),
which apart from a finite number of elements is a subsequence of all the sequences
constructed, we know then that Tnx

′
j converges in B2 for every n as j → ∞. Now

we have for every n

lim
i,j→∞

∥Tx′i − Tx′j∥ ≤ lim
i,j→∞

∥Tnx′i − Tnx
′
j∥+ 2∥T − Tn∥ ≤ 2∥T − Tn∥,

so Tx′j is a Cauchy sequence. Hence T is compact. The next statement in the
proposition is trivial and it implies the last if we observe that the identity operator
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in a finite dimensional space is compact since the unit ball is compact. Now a
continuous operator T of finite rank can be factored as a product of continuous
operators

B1 → B1/KerT → B2

where the space in the middle is finite dimensional. Hence T is compact.

The following classical theorem of F. Riesz shows that the last statements in
Proposition 2.5.7 cannot be improved, and it will also be of crucial importance
later on.

Theorem 2.5.8. If the identity map in the Banach space B is compact, then B
has finite dimension.

The theorem is an immediate consequence of the following

Lemma 2.5.9. If B1 ⊂ B2 ⊂ . . . is a strictly increasing sequence of finite dimen-
sional subspaces of the Banach space B, then one can find xj ∈ Bj so that

∥xj − x∥ ≥ ∥xj∥ = 1, when x ∈ Bj−1.

In particular, ∥xk − xj∥ ≥ 1 when k < j, so the sequence xj has no convergent
subsequence.

Proof. Choose yj ∈ Bj \ Bj−1. Since ∥y − yj∥ is a positive continuous function of
y ∈ Bj−1 which → ∞ at ∞, it has a minimum point zj ∈ Bj−1. Thus

0 < ∥zj − yj∥ ≤ ∥x+ zj − yj∥, if x ∈ Bj−1.

It follows that xj = (yj − zj)/∥yj − zj∥ has the desired properties.

Remark. If B is a Hilbert space H there is an even simpler proof of Theorem
2.5.8. For any sequence x1, x2, . . . of linearly independent vectors gives rise to an
orthonormal sequence e1, e2, . . . by the Gram-Schmidt orthogonalisation procedure:

e1 = x1/∥x1∥, . . . , ek = yk/∥yk∥; yk = xk −
k−1∑
j=1

ej(xk, ej).

It is an easy exercise to verify inductively that (ej , ek) = 0 when j ̸= k and that
(ej , ej) = 1. Since ∥ej − ek∥2 = 2 when j ̸= k it is not possible to find a convergent
subsequence, so the identity map is not compact unless H is finite dimensional.

If B1 and B2 are Hilbert spaces it is known that Lc(B1, B2) is equal to the
closure of the space of continuous operators of finite rank, but a theorem of Per
Enflo states that this is false in general. However, we shall nevertheless find that
the index is stable for all compact perturbations.

Theorem 2.5.10. Let T ∈ L(B1, B2) be a Fredholm operator and S ∈ Lc(B1, B2).
Then the operator T + S is also a Fredholm operator, and

(2.5.2) ind (T + S) = indT.

More generally, if T ∈ L(B1, B2), dimKerT < ∞ and ImT is closed, then T + S
also has these properties and (2.5.2) holds.

This important theorem is due to I. Fredholm and F. Riesz when B1 = B2

and T = I. The general version has been given by many authors, notably by
F. V. Atkinson. We shall prepare the proof with two lemmas.
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Lemma 2.5.11. Let T ∈ L(B1, B2) and assume that dimKerT < ∞ and that
ImT is closed. If xj ∈ B1 is bounded and Txj is convergent, then the sequence xj
has a convergent subsequence.

Proof. Write B1 as a topological direct sum V1 ⊕ KerT , and let P be the corre-
sponding projection on V1. Then Txj = TPxj . Since the restriction of T to V1 is
a homeomorphism on ImT , by Banach’s theorem, it follows that Pxj converges.
But (I − P )xj is a bounded sequence in the finite dimensional vector space KerT ,
so it has a convergent subsequence. This proves the lemma.

Lemma 2.5.12. Let S ∈ Lc(B1, B2), T ∈ L(B1, B2), dimKerT <∞, and assume
that ImT is closed. If xj ∈ B1 is a bounded sequence and (T + S)xj → y in B2,
then the sequence xj has a limit point x ∈ B1 with (T + S)x = y.

Proof. For a subsequence such that Sxj converges, it is clear that Txj converges,
so xj converges by Lemma 2.5.11 for some still sparser sequence.

Proof of Theorem 2.5.10. Every sequence xj ∈ Ker (T + S) with ∥xj∥ ≤ 1 has a
convergent subsequence by Lemma 2.5.12. Hence Ker (T + S) is finite dimensional
by Theorem 2.5.8. If B1 = V1 ⊕ Ker (T + S) then (T + S)B1 = (T + S)V1, and
there is a constant C such that

∥x∥ ≤ C∥(T + S)x∥, x ∈ V1,

For otherwise we could find xj ∈ V1 with ∥xj∥ = 1 and ∥(T+S)xj∥ → 0; by Lemma
2.5.12 a subsequence has a limit x ∈ V1 with ∥x∥ = 1 and (T + S)x = 0, which
contradicts the choice of V1. Hence Im (T +S) is closed. If we apply Theorem 2.5.3
to the operators T + λS with 0 ≤ λ ≤ 1 it follows that the index is independent of
λ, which completes the proof.

Example 2.5.13. Let a and b be continuous functions in [0, 1], and consider the
boundary problem

u′′ + au′ + bu = f, u(0) = u(1) = 0,

where u ∈ C2([0, 1]) and f ∈ C([0, 1]). Then the number of linearly independent
conditions for solvability is equal to the number of linearly independent solutions
of the problem when f = 0, thus at most equal to 1.

Proof. Let B1 be the set of all u ∈ C2([0, 1]) with u(0) = u(1) = 0 and the norm
inherited from C2([0, 1]), and let B2 = C([0, 1]) with maximum norm. Then B1

and B2 are Banach spaces. The operator

T : B1 ∋ u 7→ u′′ ∈ B2

is clearly bijective so it has index 0. By Example 2.5.6 the operator

K : B1 ∋ u 7→ au′ + bu ∈ B2

is compact. Hence T + K is a Fredholm operator with index 0, which proves
the assertion. If a is real valued and b < 0, then a solution of the homogeneous
problem must be 0. In fact, since u′ = 0 and u′′ ≤ 0 (resp u′′ ≥ 0) at a maximum
(minimum) point in (0,1), the equation u′′ + au′ + bu = 0 shows that u ≤ 0 (resp.
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u ≥ 0) there. Since u(0) = u(1) = 0 it follows that u = 0. (A slight elaboration of
this maximum principle argument shows that it suffices to assume b ≤ 0.) Hence
the inhomogeneous problem is always solvable then.

Example 2.5.14. Let H be the subspace of L2(0, 2π) consisting of functions u with∫ 2π

0

u(θ)einθ dθ = 0, n > 0.

This means thatH consists of boundary values of analytic functions in the unit disc.
Let P be the orthogonal projection on H. If f is a continuous periodic function we
define Tf : H → H by

Tfu = P (fu), u ∈ H.

Thus the equation Tfu = v means that fu = v + w where u and v are boundary
values of analytic functions in the unit disc and w is the boundary value of an
analytic function outside the unit disc vanishing at ∞. We claim that if f has no
zeros, then Tf is a Fredholm operator and the index of Tf is the winding number
of 1/f , that is, the argument variation of f(θ) when θ varies from 0 to 2π, divided
by −2π.

Proof. A standard proof (Wiener-Hopf) is based on factorization of f with one
factor analytic inside and another analytic outside the unit disc. This also gives
the values of the dimensions of kernel and cokernel, but we shall give a different
proof which is also applicable if H consists of functions with values in CN and the
values of f are invertible N ×N matrices.

First we prove that for all continuous f and g

Tfg − TfTg is a compact operator.

To do so we first assume that f and g are trigonometric polynomials, that is, finite
sums

f =
∑

ane
inθ, g =

∑
bne

inθ.

Then Tgu = gu, TfTgu = fgu and Tfgu = fgu if sufficiently many Fourier coeffi-
cients of u are equal to 0. Hence Tfg−TfTg is of finite rank and therefore compact.
Now ∥Tf∥ ≤ sup |f |, so if we approximate f and g uniformly by trigonometric poly-
nomials it follows in view of Proposition 2.5.7 that Tfg − TfTg is always compact.
If f is never 0 we can take g = 1/f and conclude that TfTg − I and TgTf − I are
compact. Hence the cokernel and kernel of Tf are finite dimensional. We have also

indTf + indTg = indTfg

for arbitrary continuous f and g without zeros. Moreover, when f(θ) = einθ the
index is −n. (This is essentially Example 1.3.4.) Therefore it only remains to show
that the index of Tf is 0 when the argument variation of f is 0. Then we can write
f = expF where F is also a continuous periodic function. If we set ft = exp (tF ),
Theorem 2.5.3 shows that indTft is independent of t so indTf = indTf1 = indTf0 =
ind I = 0.

When the two Banach spaces B1 and B2 coincide one can give more specific
information:
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Theorem 2.5.15. (F. Riesz) Let S be a compact operator B → B. Then

(2.5.3) N = {x ∈ B; (I + S)kx = 0 for some k > 0}
is a finite dimensional subspace of B, thus N = Ker(I+S)j when j ≥ J . Moreover,

(2.5.4) F =
∞∩
1

(I + S)kB = (I + S)jB, j ≥ J,

is a closed subspace of B, and B is the direct topological sum of N and F . The
restriction of I + S to N is a nilpotent operator N → N , and the restriction of
I + S to F is a bijection F → F .

Proof. The spaces Nk = Ker (I + S)k are finite dimensional, N1 ⊂ N2 ⊂ . . . , and
(I + S)Nk ⊂ Nk−1. If they were all different we could by Lemma 2.5.9 choose
xk ∈ Nk with ∥xk∥ = 1 so that ∥xk − x∥ ≥ 1, x ∈ Nk−1. If j < k we can take
x = (I + S)xk − Sxj and obtain ∥Sxk − Sxj∥ ≥ 1, so the sequence Sxk has no
convergent subsequence contrary to the hypotheses. Hence Nk = Nk+1 for some k,
which inductively implies Nk = Nj if j > k, thus N = Nk. Since ind (I + S)j = 0
for every j, it follows that (I + S)jB = (I + S)kB, j > k, for the codimensions are
the same and one space contains the other. Thus F = (I +S)kB so it follows from
Theorem 2.5.10 that F is closed and codimF = dimN . Since S maps F into F
and I + S is a surjective map F → F , it follows from Theorem 2.5.10 that I + S is
a bijection F → F . Hence N ∩ F = {0}, which completes the proof.

The operator I+λS is a bijection of F for λ close to 1 in view of Theorem 2.5.3,
and I + λS is a bijection of N for every λ ̸= 1 since (I + λS)x = 0, x ∈ N , gives

0 = (λI + λS)kx = (λ− 1)kx.

It follows that I +λS is a bijection of B for λ ̸= 1 sufficiently close to 1. Replacing
S by a constant times S, we conclude more generally that I + λS is a bijection of
B except for a closed set of isolated values of λ, which leads to the following:

Theorem 2.5.16. Let T ∈ L(B1, B2) be a Fredholm operator and S ∈ Lc(B1, B2).
Set

k = min
λ∈K

dimKer (T + λS), w = min
λ∈K

dimCoker (T + λS).

Then we have dimKer (T + λS) = k and dimCoker (T + λS) = w except when λ
belongs to a closed set with only isolated points.

Proof. We may assume that dimKerT = k, for we can otherwise replace T by
T + λS for a suitable λ to make this come true. Since the index of T + λS is
independent of λ it suffices to prove that for all λ outside a closed set with only
isolated points we have dimKer (T +λS) ≤ k. We can follow the proof of Theorem
2.5.3.

a) If T is a bijection then T +λS = T (I+λT−1S) is bijective except for a closed
set of isolated values of λ.

b) In the general case B1 = V1 ⊕ KerT and B2 = V2 ⊕ ImT where V2 is finite
dimensional, V1 is closed and the sums are direct topological. If T ′ and S′ denote
the maps V1 → B2/V2 induced by T and S, then T ′ is bijective and S′ is compact,
so T ′ + λS′ is bijective except when λ is in a closed set with only isolated points.
Then we have dimKer (T + λS) ≤ dimKerT = k, which completes the proof.

Theorem 2.5.15 also gives precise information concerning the resolvent (S−zI)−1

when z ̸= 0:
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Theorem 2.5.17. Let S be a compact operator B → B. For arbitrary λ ̸= 0 such
that Ker (S − λI) = {0} we have, with Aj ∈ L(B,B) and convergence in operator
norm for small z, a power series expansion

(2.5.5) (S − (λ+ z)I)−1 =
∞∑
0

Ajz
j .

At any other λ ̸= 0 we have for small z ̸= 0 a Laurent series expansion

(2.5.6) (S − (λ+ z)I)−1 =
∞∑
−n

Ajz
j

where −A−1 is the projection on Nλ =
∪∞

1 Ker (S − λI)k along Fλ =
∩∞

1 (S −
λI)kB.

Proof. In the first case the resolvent is given by the Neumann series (see Lemma
2.5.4)

(S − (λ+ z)I)−1 = (S − λI)−1(I − z(S − λI)−1)−1 =

∞∑
0

zj(S − λI)−j−1,

provided that |z|∥(S − λI)−1∥ < 1. In the second case we can by Theorem 2.5.15
applied to −S/λ use this expansion on the space Fλ. On the space Nλ the resolvent
is

(S − (λ+ z)I)−1 = −z−1(I − (S − λI)/z)−1 = −z−1
∞∑
0

z−j(S − λI)j ,

where the sum is finite since high powers of (S − λI) vanish on Nλ. The first term
is −z−1 times the identity operator in Nλ. This proves the theorem.

Remark. We derived Theorem 2.5.17 from Theorem 2.5.15 but one can also argue
in the opposite direction. In fact, multiplication of (2.5.6) to the left or right by
S − (λ+ z)I gives after identification of the coefficients

(S − λI)A−n = A−n(S − λI) = 0,

(S − λI)Aj −Aj−1 =Aj(S − λI)−Aj−1 =

{
0, if j > −n, j ̸= 0

I, if j = 0.

It follows that all Aj commute with S and that A−1(S − λI)n = 0. Hence

A0(S − λI)n+1 = (S − λI)n,

which shows that (S − λI)n+1x = 0 implies (S − λI)nx = 0, so

(S − λI)nx = 0 if (S − λI)jx = 0 for some j.

Let N be the kernel of (S−λI)n. Then we know that the range of A−1 is contained
in N , and on the other hand

x+A−1x = (S − λI)A0x = (S − λI)2A1x = · · · = (S − λI)nAnx = 0, x ∈ N.
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Hence −A−1 is a projection on N . If A−1x = 0 then A−1(S − λI)x = (S −
λI)A−1x = 0, so S−λI maps the kernel of A−1 into itself. Since Ker(S−λI) ⊂ N
it follows that S − λI is a bijection on the kernel F of the projection −A−1. Thus
we have recovered Theorem 2.5.15 from (2.5.6).

Theorem 2.5.17 is closely related to the classical Jordan canonical form for ma-
trices, which is obtained by further decomposition of the space N . The details
can be found in the appendix. Instead we shall now discuss Fredholm operators
depending on parameters. The results have important applications in topology but
they are outside the scope of these notes. Let T be a Hausdorff topological space
and let Pt, t ∈ T be a Fredholm operator in L(B1, B2) which depends continuously
on t in the uniform topology, that is, ∥Pt − Ps∥ < ε for an arbitrary ε > 0 if t is
in a neighborhood of s depending on ε. When ε is sufficiently small we know from
Theorem 2.5.3 that the index is then independent of t. If CokerPt = {0}, then the
kernel varies continuously:

Lemma 2.5.18. Let Pt, t ∈ T , be a uniformly continuous family of Fredholm
operators in L(B1, B2) which is surjective for every t. For every s ∈ T one can
then find a neighborhood Ns and continuous functions xj : Ns → B1 such that
x1(t), . . . , xν(t) are a basis for KerPt for every t ∈ Ns.

Proof. We can write B1 = V1 ⊕ KerPs where V1 is closed and the sum is direct
topological. Then Ps is a continuous bijection of V1 onto B2, and by Theorem 2.5.3
this remains true for Pt when t is sufficiently close to s. Let Rt be the inverse, and
let x1, . . . , xν be a basis for KerPs. Then

xj(t) = xj −RtPtxj ∈ KerPt;

and x1(t), . . . , xν(t) are linearly independent since xj(t) ≡ xj mod V1. Since the
dimension of KerPt cannot exceed the codimension ν of V1, we have obtained the
desired basis.

In Lemma 2.5.18 we have in fact encountered the notion of vector bundle which
we shall now define and study:

Definition 2.5.19. Let T be a Hausdorff topological space. A complex vector bundle
over T is a Hausdorff topological space V together with

i) a continuous map p : V → T , called the projection,
ii) a finite dimensional vector space structure on each Vt = p−1(t), t ∈ T ,

compatible with the topology induced on the fiber Vt from V ,
iii) such that for every s ∈ T there is a neighborhood Ns and a homeomorphism

p−1(Ns) → Ns × Cn for some n, which restricts to a linear isomorphism
Vt → {t} ×Cn for every t ∈ Ns.

Two vector bundles V and W over T are called isomorphic if there exists a home-
omorphism between them which restricts to a linear isomorphism in each fiber.

Under the hypotheses in Lemma 2.5.18 the kernel is thus a vector bundle on the
parameter space, and it is natural to define the index of the family as this bundle.
To study general families it is necessary to introduce a construction which allows us
to form differences between vector bundles. This is quite analogous to the extension
from positive integers to arbitrary integers.
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First note that the set Vect T of isomorphism classes of vector bundles on a
compact space T is an abelian semi-group if we define the sum of two vector bundles
V1 and V2 as the set of all (v1, v2) ∈ V1 × V2 with p1v1 = p2v2, where pj is the
projection Vj → T , and the addition in the fiber over t ∈ T is defined as usual in a
direct sum. If A is any abelian semigroup, we can associate to A an abelian group
K(A), determined up to isomorphism, with the properties

i) there is a semigroup homomorphism A→ K(A),
ii) if G is any abelian group and A → G is a semigroup homomorphism, then

there is a unique homomorphism K(A) → G such that the map A→ G can
be factored as

A→K(A)

↓↙
G

The uniqueness of K(A) is obvious: If G is another group with the same property
as K(A), we obtain in this way homomorphisms G→ K(A) and K(A) → G which
must be inverses of each other by the uniqueness required in (ii). To constructK(A)
we let A2 be the set of all pairs (a1, a2), aj ∈ A, with the obvious addition, and
let A2

D be the subset of diagonal pairs (a, a), a ∈ A. The quotient K(A) = A2/A2
D

defined by

(2.5.7) (a1, a2) ∼ (b1, b2) if (a1 + a, a2 + a) = (b1 + b, b2 + b) for some a, b ∈ A,

is then an abelian group where the 0 element is the class of A2
D and the inverse of the

class defined by (a1, a2) is the class defined by (a2, a1). We have a homomorphism
A → K(A) mapping a ∈ A to the class [a] of (a + b, b), b ∈ A, which does not
depend on b in view of (2.5.7). Note that if a, b ∈ A then [a] = [b] if and only if
a+c = b+c for some c ∈ A. The map A→ K(A) is therefore injective if and only if
the cancellation law (a+ c = b+ c implies a = b) is valid in A. It is also easily seen
to be bijective if and only if A is a group. If B is another abelian semigroup and
A → B a homomorphism, the construction gives a unique group homomorphism
K(A) → K(B) such that the diagram

A −−−−→ K(A)y y
B −−−−→ K(B)

commutes. In particular, this shows that property ii) is fulfilled.
In particular, we can therefore introduce K(Vect T ), which we denote simply by

K(T ). If T and S are compact spaces and f : T → S is a continuous map, then we
have a homomorphism

f∗ : Vect S → Vect T

which for a given vector bundle V on S gives one on T with the fiber at t equal to
the fiber of V at f(t). More precisely, the pullback f∗V is defined by

f∗V = {(t, v) ∈ T × V ; pv = f(t)}.
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The verification that this is a vector bundle on T is an easy exercise. Now we
obtain from ii) a homomorphism f∗ : K(S) → K(T ). In particular, if T is a point,
then K(T ) is isomorphic to the integers and f∗a is an integer valued function of
a ∈ K(S), which can be regarded as the “virtual dimension” of the element a at
f(t).

We shall prove next that there is homotopy invariance in K-theory:

Proposition 2.5.20. Let X and Y be compact spaces and let f : X × I → Y
be a continuous map, I = [0, 1]; set ft(x) = f(x, t) if x ∈ X, t ∈ I. Then
f∗t : K(Y ) → K(X) is independent of t ∈ I.

Proof. It is sufficient to show that for every vector bundle V on Y the isomorphism
class of f∗t V is independent of t. Let f∗V =W be the corresponding vector bundle
over X × I. It is then sufficient to show that for every vector bundle W over X × I
the isomorphism class of the pullback Wt of W to X by the map x 7→ (x, t) is
independent of t. To do so we just have to show that Wt and Ws are isomorphic

if s is sufficiently close to t. Let W̃ (t), t ∈ I, be the bundle on X × I obtained
by pulling back W by the map X × I ∋ (x, s) → (x, t). Then there is a bundle

homomorphism φ : W̃ (t) →W , that is, a continuous map which commutes with the
projections and is linear in the fibers, such that φ is the identity over X × {t}. In
fact, the existence of such a homomorphism is trivial in a neighborhood of any point
(x, s) ∈ X × I, since bundles are locally trivial. Piecing such local constructions
together using a partition of unity we obtain the map φ. For reasons of continuity
the homomorphism is an isomorphism at (x, s) if s is sufficiently close to t, which
proves that Ws and Wt are isomorphic then. The proof is complete.

If X is a compact space, we shall say that we have a Fredholm family of operators
from a Banach space B1 to another B2, parametrized by X, if for every x ∈ X
we have a Fredholm operator Px ∈ L(B1, B2) which is uniformly continuous as a
function of x.

Theorem 2.5.21. There is a unique way of assigning to each Fredholm family P
parametrized by a compact space X an index indP ∈ K(X) such that

i) indP = [KerP ] if Px is surjective for every x ∈ X,
ii) ind (P ⊕ Q) = indP + indQ if P and Q are two Fredholm families which

are parametrized by X.
iii) the index is functorial: if Y is another compact space and f : Y → X is

a continuous map, and (f∗P )y is defined as Pf(y), y ∈ Y , then ind f∗P =
f∗ indP .

iv) if Px,t, x ∈ X, t ∈ I = [0, 1], is a Fredholm family parametrized by X × I,
then the Fredholm families on X defined by Px,1 and Px,0 have the same
index.

v) if P , Q are Fredholm families of operators from B1 to B2 and from B2 to
B3 respectively, parametrized by X, then ind (QP ) = indQ+ indP .

Proof. Concerning i) we first recall that KerP is a vector bundle by Lemma 2.5.18
if Px is surjective for every x ∈ X. Let us also recall that if Px is surjective then
Py is surjective for all y in a neighborhood of x. In fact, dimKerPy ≤ dimKerPx
when y is sufficiently close to x, by Theorem 2.5.3, and since indPy = indPx it
follows that

dimCokerPy = dimCokerPx − dimKerPx + dimKerPy ≤ 0.
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For every x ∈ X we can find a finite dimensional space W ⊂ B2 such that B2 =
W ⊕ ImPx. Thus the map

(2.5.8) Qx : B1 ⊕W ∋ (b, w) 7→ Pxb+ w ∈ B2

is surjective, so Qy remains surjective for all y near x. In view of the compactness
we can therefore find a finite number of finite dimensional subspaces W1, . . . ,Wk

such that for every x ∈ X the map (2.5.8) is surjective when W = Wj for some j.
If W is the linear hull of W1, . . . ,Wk then Qx is surjective for every x ∈ X. Thus
we must have indQ = [KerQ] in view of i). Now the operators

Q̃x,t : (b, w) 7→ Pxb+ tw ∈ B2, (x, t) ∈ X × I,

define a Fredholm family parametrized by X × I which for t = 0 reduces to the
direct sum of P and the map W → {0} which has the index [W ] and for t = 1 is
the family Q. If ii) and iv) hold, it follows that

indP + [W ] = ind Q̃0 = ind Q̃1 = [KerQ],

hence

(2.5.9) indP = [KerQ]− [W ].

Thus the index is unique if it exists.
We shall define the index by (2.5.9) after proving that the right-hand side is

independent of the choice of W . Let W0 and W1 be two such spaces W and let
Q0, Q1 be the corresponding Fredholm families defined by (2.5.8). Consider the
Fredholm family

B1 ⊕W0 ⊕W1 ∋ (b, w0, w1) 7→ Pxb+ (1− t)w0 + tw1 ∈ B2, (x, t) ∈ X × I.

It is surjective so the kernel is a vector bundle V over X × I. Thus the bundles V0
and V1 obtained by restricting to t = 0 and to t = 1 are isomorphic by Proposition
2.5.20. However,

V0 = KerQ0 ⊕W1, V1 = KerQ1 ⊕W0, hence

[KerQ0] + [W1] = [KerQ1] + [W0], that is, [KerQ0]− [W0] = [KerQ1]− [W1],

so it is legitimate to define the index by (2.5.9). ii) is then an obvious consequence
of the definition, and so is iii), which implies iv). v) follows from ii) and iii) if we
use the following homotopy of families of operators from B1 ⊕B2 to B2 ⊕B3:(

I2 0
0 Q

)(
cos(πt/2)I2 sin(πt/2)I2
− sin(πt/2)I2 cos(πt/2)I2

)(
P 0
0 I2

)
where I2 is the identity operator in B2. For t = 0 this is the family P ⊕Q and for

t = 1 the family

(
0 I2

−QP 0

)
, which is the direct sum of the identity in B2 and

−QP . It follows that indQP = indP + indQ. The proof is complete.

Remark. The preceding homotopy argument could also have been used to prove
the “logarithmic law” for the index of a single operator.

For further developments of the connections between Fredholm theory and K-
theory, and applications to geometry, we must refer to the literature. Instead we
shall discuss Fredholm theory in general locally convex topological vector spaces.
First we consider a semi-normed space.
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Lemma 2.5.22. Let E be a vector space with semi-norm q, and let S : E → E
be a linear map such that q(x) = 0 implies Sx = 0 and for every sequence xn ∈
E with q(xn) ≤ 1 there is a subsequence xnj and an element y ∈ E such that
q(Sxnj − y) → 0, j → ∞. Then Ker (I + S) is finite dimensional, Im (I + S) is
closed, in the topology defined by q, and dimKer (I + S) = codim Im (I + S).

Proof. The new features here are that q may not be a norm and that E may not
be complete. We shall remove these obstacles successively.

Set N = {x ∈ E; q(x) = 0} and E1 = E/N , which is a normed space with
∥ξ∥ = q(x) when x is in the residue class ξ ∈ E1. Since Sx = 0 on N , the
operator S induces an operator S1 : E1 → E1, and S1ξj contains a subsequence
converging in E1 for every bounded sequence ξj ∈ E1. If I1 is the identity in E1

then ξ ∈ Ker (I1 + S1) means that (I + S)x = y for some y ∈ N , if x is in the
class of ξ. Thus x− y is the only element in ξ belonging to Ker (I +S), so the map
E → E/N restricts to a bijection Ker (I+S) → Ker (I1+S1). Similarly, Im (I+S)
is the inverse image of Im (I1 + S1). It is therefore sufficient to prove the lemma
for S1, and we are then in a normed space.

We can complete the space E1 to a Banach space E2 where E1 is a dense subset.
This familiar procedure consists in forming the space C of all Cauchy sequences
X = (ξ1, ξ2, . . . ) in E1, that is, sequences with ∥ξj − ξk∥ → 0 as j, k → ∞. We
define ∥X∥ = limj→∞ ∥ξj∥. This is a semi-normed space where the subspace C0 =
{X ∈ C; ∥X∥ = 0} consists of sequences converging to 0. The quotient E2 = C/C0

is a Banach space; mapping ξ ∈ E1 to the class of (ξ, ξ, . . . ) in E2 gives an isometric
embedding of E1 as a dense subset. The proof of the completeness of E2 and the
other statements are the same as for the completion of rational numbers to real
numbers, and they are left for the reader.

The hypotheses imply that ∥S1ξ∥ ≤ M∥ξ∥, ξ ∈ E1, so S1 can be extended by
continuity to a linear map S2 : E2 → E2. Since every element of E2 is the limit of
a sequence ξj ∈ E1 and S1ξj has a subsequence converging in E1, it follows that
S2E2 ⊂ E1. If (I2 +S2)ξ = η, where ξ ∈ E2 and η ∈ E1, we can therefore conclude
that ξ ∈ E1. Hence

Ker (I1 + S1) = Ker (I2 + S2), Im (I1 + S1) = E1 ∩ Im (I2 + S2).

The second equality shows that the obvious map

E1/ Im (I1 + S1) → E2/ Im (I2 + S2)

is injective, and it is surjective since E1 is dense in E2 and E2/ Im (I2 + S2) is
finite dimensional. The assertions concerning S1 are therefore consequences of the
corresponding statements about S2 contained in Theorem 2.5.10. The lemma is
proved.

Definition 2.5.23. If E and F are locally convex topological vector spaces, then a
linear operator S : E → F is called compact if there is a neighborhood U of 0 in E
such that SU is contained in a compact subset of F .

If U = {x ∈ E; q(x) ≤ 1}, where q is a continuous semi-norm in E, then the
hypothesis means that {Sx;x ∈ E; q(x) ≤ 1} is contained in a compact subset of
F .
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Theorem 2.5.24. Let E be a locally convex, Hausdorff topological vector space and
S a compact linear operator E → E, I the identity operator in E. Then Ker (I+S)
is finite dimensional, Im (I + S) is closed, and

dimKer (I + S) = dimCoker (I + S), that is, ind (I + S) = 0.

Proof. Let q be a continuous semi-norm such that {Sx;x ∈ E, q(x) ≤ 1} is con-
tained in a compact set. Then q(x) = 0 implies that tS(x) belongs to that set for
all scalars t, hence Sx = 0. By Lemma 2.5.22 it follows that dimKer (I + S) <∞,
that the range of I + S is closed even in the topology defined by the semi-norm q
alone, and that ind (I + S) = 0.

Theorem 2.5.25. Let E,F be Fréchet spaces and let T : E → F be a continuous
linear operator with finite dimensional kernel and cokernel, that is, a Fredholm
operator, Let S be a compact linear operator E → F . Then T+S is also a Fredholm
operator, and indT = ind (T + S).

Proof. The proof of Theorem 2.5.1 shows that ImT is closed. The rest of the proof
follows the lines of the proof of Theorem 2.5.10 and will be left for the reader to
carry out.

2.6. Duality. We shall first restrict ourselves to duality of Banach spaces but at
the end of the section the most important results will be extended to locally convex
topological vector spaces.

If B1, B2 are Banach spaces, then the space L(B1, B2) of continuous linear maps
T : B1 → B2 is a Banach space with the norm

∥T∥ = sup
0̸=x∈B1

∥Tx∥/∥x∥ = sup
∥x∥≤1

∥Tx∥.

The completeness follows from the completeness of B2; we could have allowed B1

to be any normed space. In fact, if ∥Tj − Tk∥ → 0, then ∥Tjx − Tkx∥ → 0, so
the completeness of B2 shows that Tx = limj→∞ Tjx exists for every x ∈ B1.
Obviously T is linear and

∥Tx− Tjx∥ = lim
k→∞

∥Tkx− Tjx∥ ≤ lim
k→∞

∥Tk − Tj∥∥x∥,

which proves that T − Tj and therefore T is continuous and that

∥T − Tj∥ ≤ lim
k→∞

∥Tk − Tj∥ → 0, j → ∞.

(See also Corollary 2.4.9.)

Definition 2.6.1. If B is a Banach space over K = R or C, then the dual space B∗

of B is the Banach space L(B,K) of continuous K-linear forms on B.

If x ∈ B and ξ ∈ B∗ we shall use the notation ⟨x, ξ⟩ instead of ξ(x) to denote
the value of the linear form ξ at x. The reason for this is that we shall see that
there is a farreaching (though not complete) symmetry between the roles of B and
B∗. First note that the map x 7→ ⟨x, ξ⟩ is linear for fixed ξ since ξ is a linear form.



65

Secondly the map ξ 7→ ⟨x, ξ⟩ is linear for fixed x in view of the definition of addition
and multiplication by scalars in B∗. Thus the form

B ×B∗ ∋ (x, ξ) 7→ ⟨x, ξ⟩

is bilinear. There is a fundamental flaw in the symmetry though, for there may exist
continuous linear forms on B∗ which are not of the form ξ 7→ ⟨x, ξ⟩ for any x ∈ B.
An example is given by B = L1(R), B∗ = L∞(R). In fact, by the Hahn-Banach
theorem there exists a continuous linear form L on L∞(R) such that

L(u) = u(0), if u ∈ C(R) ∩ L∞(R).

If we assume that for some f ∈ L1(R)

L(u) = ⟨f, u⟩, u ∈ L∞(R),

then we must have

u(0) =

∫
u(x)f(x) dx, u ∈ C ∩ L∞,

which implies f(x) = 0 for almost every x, which is a contradiction.
The definition of the norm of a linear form means that

(2.6.1) ∥ξ∥ = sup
0̸=x∈B

|⟨x, ξ⟩|/∥x∥, ξ ∈ B∗,

(Note that the same notation is used for the norm in B and for that in B∗. This
should cause no confusion since we shall use the latin alphabet for elements in B
and the greek alphabet for elements in B∗.) In (2.6.1) the roles of B and B∗ may
be reversed:

Theorem 2.6.2. For every x ∈ B we have

(2.6.2) ∥x∥ = sup
0̸=ξ∈B∗

|⟨x, ξ⟩|/∥ξ∥.

Proof. By (2.6.1) we have |⟨x, ξ⟩| ≤ ∥x∥∥ξ∥ for all x ∈ B, ξ ∈ B∗. Hence

sup
0̸=ξ∈B∗

|⟨x, ξ⟩|/∥ξ∥ ≤ ∥x∥.

On the other hand, according to the Hahn-Banach theorem there is a continuous
linear form ξ with ∥ξ∥ = 1 such that the value of ξ at x is equal to ∥x∥. This proves
(2.6.2) and shows at the same time that the supremum in (2.6.2) is attained (which
is not always true in (2.6.1)).

Theorem 2.6.2 means that the natural map B → (B∗)∗ = B∗∗ of B into the dual
of B∗, obtained by assigning to x ∈ B the linear form B∗ ∋ ξ 7→ ⟨x, ξ⟩, is a linear
isometry, that is, norm preserving. Thus the range is closed but as we have seen in
an example above it may be strictly smaller than B∗∗.

Definition 2.6.3. If the isometry B → B∗∗ is bijective, that is, if every continuous
linear form on B∗ can be written ξ 7→ ⟨x, ξ⟩ for some x ∈ B, then B is called
reflexive.

For reflexive spaces the symmetry between B and B∗ is thus perfect. Later on
we shall give a characterization of reflexive spaces.

Having discussed the duality of Banach spaces we pass to studying maps between
them.
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Theorem 2.6.4. For every T ∈ L(B1, B2) there exists one and only one operator
T ∗ ∈ L(B∗

2 , B
∗
1) such that

(2.6.3) ⟨Tx, η⟩2 = ⟨x, T ∗η⟩1, x ∈ B1, η ∈ B∗
2 ,

where ⟨·, ·⟩j denotes the bilinear form in Bj ×B∗
j . The map

L(B1, B2) ∋ T 7→ T ∗ ∈ L(B∗
2 , B

∗
1)

is a linear isometry. It is surjective if B2 is reflexive.

Proof. For fixed η ∈ B∗
2 the map

B1 ∋ x 7→ ⟨Tx, η⟩2

is a linear form on B1 with norm ≤ ∥T∥∥η∥2. Thus there exists a unique element
ξ ∈ B∗

1 such that
⟨Tx, η⟩2 = ⟨x, ξ⟩1, x ∈ B1,

and we have ∥ξ∥1 ≤ ∥T∥∥η∥2. The map η 7→ ξ is then linear and the norm is
≤ ∥T∥. This shows that there exists a unique operator T ∗ satisfying (2.6.3) and
that ∥T ∗∥ ≤ ∥T∥. Taking the supremum of the two sides of (2.6.3) when ∥x∥1 ≤ 1,
∥η∥2 ≤ 1, we conclude that there is in fact equality.

The argument can be reversed if B2 is reflexive. Given T ∗ ∈ L(B∗
2 , B

∗
1) the

equality (2.6.3) defines an element Tx which is a continuous linear form on B∗
2 ,

hence can be identified with an element in B2. The proof is complete.

Note that if we take B1 = K, then L(B1, B2) = B2, L(B∗
2 , B

∗
1) = B∗∗

2 , and the
map T 7→ T ∗ is the embedding of B2 in B∗∗

2 . Thus the last conclusion in Theorem
2.6.4 is false unless B2 is reflexive.

Definition 2.6.5. The operator T ∗ defined by (2.6.3) is called the adjoint operator
of T .

Theorem 2.6.6. If T1 ∈ L(B1, B2), T2 ∈ L(B2, B3) then (T2T1)
∗ = T ∗

1 T
∗
2 .

The proof is obvious. We shall now study the relations between T and T ∗ starting
with an important special case.

Theorem 2.6.7. Let W be a closed linear subspace of the Banach space B and let
W ◦ be its annihilator in B∗, that is,

W ◦ = {ξ ∈ B∗; ⟨x, ξ⟩ = 0 for all x ∈W},

which is a closed linear subspace of B∗. Let i, i◦ be the inclusion maps W → B and
W ◦ → B∗, and let q, q◦ be the quotient maps B → B/W and B∗ → B∗/W ◦. Then
i∗ : B∗ →W ∗ vanishes onW ◦ and induces an isometric bijection B∗/W ◦ →W ∗. If
we identify W ∗ with B∗/W ◦, it follows that i∗ = q◦. Furthermore, q∗ : (B/W )∗ →
B∗ is an isometry with range W ◦. If we identify (B/W )∗ with W ◦ it follows that
q∗ = i◦.

Thus inclusions and quotients are dual to each other.

Proof. If ξ ∈ B∗ then i∗ξ is by definition the restriction of the linear form ξ to W ,
so it is 0 if and only if ξ ∈ W ◦. Since every continuous linear form on W can be
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extended to a continuous linear form on B with the same but not with a smaller
norm, it follows that i∗ : B∗ →W ∗ is surjective with kernel W ◦ and that

∥i∗ξ∥W∗ = inf
η∈W◦

∥ξ − η∥.

This proves the first assertion. If η ∈ (B/W )∗ then q∗η is the linear form B ∋
x 7→ ⟨qx, η⟩ which vanishes on W , hence belongs to W ◦. Conversely, every linear
form B → K which vanishes on W can be factored through B/W to a linear form
B/W → K which by definition of the norm in a quotient space has the same norm.
This shows that q∗ is an isometry with range W ◦ and completes the proof.

We shall always use the natural identifications of W ∗ with B∗/W ◦ and (B/W )∗

with W ◦ given in Theorem 2.6.7 without mentioning this explicitly.
Theorem 2.6.7 implies that

W ◦◦ = {x ∈ B; ⟨x, ξ⟩ = 0, ξ ∈W ◦} =W.

In fact, Im q∗ =W ◦ so x ∈W ◦◦ if and only if

⟨qx, θ⟩ = ⟨x, q∗θ⟩ = 0, θ ∈ (B/W )∗,

which means that qx = 0, that is, that x ∈W . This gives

Corollary 2.6.8. If W is an arbitrary linear subspace of B, closed or not, then
W ◦◦, the annihilator in B of the annihilator W ◦ of W in B∗, is equal to the closure
in B of W .

Proof. The annihilator of W is equal to the annihilator of the closure W , so the
assertion follows from the preceding remarks. The corollary is of course just another
way of stating Theorem 2.3.3.

It should be emphasized that if we start with a closed subspace W of B∗, take
its annihilator W ◦ in B and then the annihilator W ◦◦ of W ◦ in B∗, we may obtain
a strictly larger space than W . This question will be discussed later. Obviously it
only comes up for non-reflexive spaces.

Theorem 2.6.9. Let T ∈ L(B1, B2) and assume that ImT is closed. Then it fol-
lows that ImT ∗ is closed. The annihilator of KerT is ImT ∗ and the annihilator of
ImT is KerT ∗. Hence dimKerT = dimCokerT ∗ and dimCokerT = dimKerT ∗.

The same conclusion is valid if ImT ∗ but not ImT is assumed to be closed.
However, the proof is much more difficult and has to be postponed to Theorem
2.6.31 below.

Proof. Assume first that T is bijective. According to Banach’s theorem we have a
bounded inverse S ∈ L(B2, B1) then. Thus ST = I1, TS = I2, which implies

T ∗S∗ = I∗1 , S∗T ∗ = I∗2 ,

so T ∗ is a bijection. In the general case we can write T = T3T2T1 where T1 is the
quotient map from B1 to B1/KerT , T2 is the bijection B1/KerT → ImT induced
by T , and T3 is the inclusion ImT 7→ B2. Then we have T ∗ = T ∗

1 T
∗
2 T

∗
3 where

by Theorem 2.6.7 T ∗
1 is the inclusion map (KerT )◦ → B∗

1 and T ∗
3 is the quotient
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map B∗
2 → B∗

2/(ImT )◦. According to the first part of the proof T ∗
2 is a bijection,

which proves that ImT ∗ = (KerT )◦ and that KerT ∗ = (ImT )◦. Since KerT and
CokerT ∗ (resp. KerT ∗ and CokerT ) are dual, the last statement follows from
Theorem 1.2.13.

The reader should also give a direct proof using the Hahn-Banach theorem,
Banach’s theorem, and the definition of the adjoint operator.

Corollary 2.6.10. If T satisfies the hypotheses of Theorem 2.6.9 and indT is
defined, then indT ∗ = − indT .

The advantage of passing to the adjoint operator, which will be more clear later
on when we have perfected Theorem 2.6.9, is that T ∗ may often be easier to study
than T . For example, if we expect that T is surjective but has a kernel of infinite
dimension, then T ∗ should be injective. By Banach’s theorem the question whether
ImT ∗ is closed is then equivalent to the question whether there is an estimate of
the form ∥ξ∥ ≤ C∥T ∗ξ∥, ξ ∈ B∗

2 . Thus the proof of existence theorems may be
transferred to the proof of estimates, which is a much more concrete problem.

We shall now show the advantage of duality arguments by using them to give a
partly different derivation of Fredholm theory.

Theorem 2.6.11. If T ∈ L(B1, B2) has finite rank, then T ∗ has also finite rank.
If T ∈ Lc(B1, B2) then T

∗ ∈ Lc(B∗
2 , B

∗
1).

Proof. The first assertion is a trivial consequence of Theorem 2.6.9. To prove the
second assertion we need a lemma.

Lemma 2.6.12. If T ∈ L(B1, B2) is compact, then ImT has a dense countable
subset.

Proof. Let A = {Tx;x ∈ B1, ∥x∥1 ≤ 1}. We have ImT = ∪(nA) so it suffices
to show that A and therefore nA has a dense countable subset. To prove this
we note that for every ε > 0 there exist finitely many y1, . . . , yN ∈ A such that
∥yj − yk∥2 ≥ ε for j ̸= k but ∥y − yj∥ < ε for some j = 1, . . . , N for any y ∈ A.
This follows from the compactness of T since there would otherwise exist an infinite
sequence in A which has no limit point. If we choose such elements y1, . . . , yN for
a sequence of values of ε converging to 0, the assertion follows.

Proof of Theorem 2.6.11 continued. Let ηn ∈ B∗
2 , n = 1, 2, . . . and ∥ηn∥2 ≤ 1. For

every fixed y ∈ B2 we can choose a subsequence ηnk
such that

(2.6.4) lim
k→∞

⟨y, ηnk
⟩2

exists. Using the Cantor diagonal procedure as in the proof of Proposition 2.5.7 we
can select the subsequence so that the limit (2.6.4) exists for every y in the dense
countable subsetM of ImT constructed in Lemma 2.6.12. The sequence T ∗ηnk

is a
Cauchy sequence. For otherwise there would exist subsequences ηn′

k
and ηn′′

k
with

∥T ∗ηn′
k
− T ∗ηn′′

k
∥1 ≥ c > 0 for all k. We can choose xk ∈ B1 with ∥xk∥1 = 1 and

|⟨xk, T ∗ηn′
k
− T ∗ηn′′

k
⟩| > c/2

for every k. Since T is compact the sequence Txk contains a convergent sub-
sequence. Changing notation if necessary we may assume that Txk → y where
y ∈ ImT =M . Then we have for every Y ∈M

⟨xk, T ∗ηn′
k
− T ∗ηn′′

k
⟩ = ⟨Txk − y, ηn′

k
− ηn′′

k
⟩+ ⟨y − Y, ηn′

k
− ηn′′

k
⟩+ ⟨Y, ηn′

k
− ηn′′

k
⟩.
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When k → ∞ we obtain c/2 ≤ 2∥y − Y ∥. Since y ∈ M this is a contradiction
proving the theorem.

Fredholm theory can now be developed in the following way. Let T ∈ L(B1, B2)
be a Fredholm operator and S ∈ Lc(B1, B2). Then the kernel of T + S is finite
dimensional, by Lemma 2.5.12 and Theorem 2.5.8, and so is the kernel of T ∗ + S∗

in view of Theorem 2.6.11. The range of T + S is closed. For if F is a topological
supplement of Ker (T + S) and xn ∈ F , (T + S)xn → y, then the sequence xn
must be bounded. In fact, otherwise there exists a subsequence xnk

such that
(T + S)xnk

/∥xnk
∥ → 0. We can choose the subsequence so that also Sxnk

/∥xnk
∥

converges. Then Txnk
/∥xnk

∥ converges, so Lemma 2.5.11 shows that a subsequence
of xnk

/∥xnk
∥ converges to a limit x ∈ F . Since ∥x∥ = 1 and (T +S)x = 0 we obtain

a contradiction. In the same way we then conclude that the sequence xn has a
convergent subsequence. If the limit is x then (T +S)x = y, so Im (T +S) is closed.
In view of Theorem 2.6.9 it follows that dimCoker (T + S) = dimKer (T ∗ + S∗)
which is finite. Hence T + S is a Fredholm operator. By Theorem 2.5.3 the index
of T + tS is therefore independent of t, thus equal to indT .

The adjoint operator can also be defined for certain unbounded linear operators.
By an unbounded operator from B1 to B2 we shall mean a linear operator with
domain DT contained in B1 and range contained in B2. We want to define T ∗ so
that η is in the domain of T ∗ and T ∗η = ξ if and only if (2.6.3) is valid, that is,

⟨Tx, η⟩2 = ⟨x, ξ⟩1, x ∈ DT .

In other words, if

GT = {(x, Tx);x ∈ DT } ⊂ B1 ⊕B2

is the graph of T , we want to have

⟨x, ξ⟩1 − ⟨y, η⟩2 = 0, if (x, y) ∈ GT .

Now B∗
1 ⊕B∗

2 is the dual space of B1 ⊕B2 with respect to the bilinear form

⟨(x, y), (ξ, η)⟩ = ⟨x, ξ⟩ − ⟨y, η⟩; x ∈ B1, y ∈ B2, ξ ∈ B∗
1 , η ∈ B∗

2 .

In fact, if B1 ⊕ B2 ∋ (x, y) 7→ L(x, y) is a continuous linear form, then L(x, 0) =
⟨x, ξ⟩, x ∈ B1, −L(0, y) = ⟨y, η⟩, y ∈ B2, where ξ ∈ B∗

1 , η ∈ B∗
2 . This proves that

L(x, y) = ⟨x, ξ⟩ − ⟨y, η⟩. (The minus sign is introduced for the sake of convenience
later on.) The desired definition of T ∗ then means that GT∗ shall be the annihilator
of GT . Denote the annihilator of GT by W . In order that W shall be the graph
of a function from B∗

2 to B∗
1 it is necessary and sufficient that (ξ, 0) ∈ W implies

ξ = 0. But (ξ, 0) ∈ W means precisely that ξ is orthogonal to DT , so the adjoint
operator T ∗ exists if and only if T is densely defined, that is, DT is dense. If B2 is
reflexive then T ∗ is densely defined if and only if the only element (0, y) orthogonal
to W is (0, 0). But we know that the annihilator of W in B1 ⊕ B2 is the closure
of GT . Thus T

∗ is densely defined if and only if the closure of GT is a graph, that
is, if T has a closed extension. One calls T preclosed then. Summing up, we have
proved:
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Theorem 2.6.13. If T : B1 → B2 is a closed, densely defined linear operator,
then (2.6.3) defines a closed operator B∗

2 → B∗
1 ; η is in the domain of T ∗ and

T ∗η = ξ if and only if

⟨Tx, η⟩2 = ⟨x, ξ⟩1, for all x ∈ DT .

Conversely, x is in the domain of T and Tx = y if and only if

⟨y, η⟩2 = ⟨x, T ∗η⟩1 for all η ∈ DT∗ .

T ∗ is densely defined if B2 is reflexive.

It is often convenient to note that T is closed if and only if DT is a Banach space
with the graph norm

x 7→ ∥x∥1 + ∥Tx∥2.

In fact, this means that GT is complete which is equivalent to GT being closed as
a subset of B1 ×B2.

We shall now discuss some important special features of the Hilbert space case.
Let H be a Hilbert space. Then H ∋ x 7→ (x, y) is for every fixed y ∈ H a linear
form with norm ∥y∥, and by Corollary 2.3.7 every continuous linear form on H can
be written in this way. Thus we have an isometric bijection θ : H → H∗ assigning
to y ∈ H the linear form above. θ is antilinear, that is,

θ(ax+ by) = āθ(x) + b̄θ(y), x, y ∈ H, a, b ∈ K.

It follows that H is reflexive.
If T : H1 → H2 is a closed densely defined linear map between Hilbert spaces,

then the diagram

H2
T̃−−−−→ H1

θ

y yθ
H∗

2
T∗

−−−−→ H∗
1

defines a closed densely defined map T̃ : H2 → H1. This is also called the adjoint
of T ; we have

(Tx, y)2 = (x, T̃ y)1, x ∈ DT , y ∈ DT̃ .

T and T̃ determine each other by this relation just as T and T ∗ above. In what

follows we shall use the conventional notation T ∗ instead of T̃ since it will always
be clear from the context if we are defining the adjoint operator with respect to
Hilbert space scalar products.

Definition 2.6.14. If H is a Hilbert space and T : H → H is a densely defined linear
operator, then T is called self-adjoint if T ∗ = T ; this implies that T is closed.

In Chapter III we shall give a detailed study of the structure of self-adjoint
operators. Here we shall content ourselves with some additions to Theorem 2.6.13
which follow from inspection of the proof.

Let GT ⊂ H1 ⊕H2 be the graph of a closed densely defined linear map from H1

to H2. Then (x1, x2) is orthogonal to GT if and only if

(x1, x) + (x2, Tx) = 0, x ∈ DT .
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This means that x2 is in the domain of T ∗ and that T ∗x2 = −x1. By Corollary
2.3.6 we now conclude that every element (ξ, η) ∈ H1 ⊕H2 can be written in one
and only one way in the form

(ξ, η) = (x, Tx) + (−T ∗y, y), x ∈ DT , y ∈ DT∗ .

Thus ξ = x − T ∗y and η = Tx + y. If we take ξ = 0 it follows that T ∗y = x, so y
is in the domain of TT ∗ and (I2 + TT ∗)y = η. Scalar product with y gives

(y, y) + (T ∗y, T ∗y) = (η, y) ≤ ∥η∥∥y∥,

which implies that ∥y∥ ≤ ∥η∥ and that ∥T ∗y∥ ≤ ∥η∥. Thus the inverse of I2 + TT ∗

is an everywhere defined operator of norm ≤ 1, so its graph and therefore the graph
of I2 + TT ∗ is closed. I2 + TT ∗ is a self-adjoint operator. For let (x, y) belong to
the graph of the adjoint. This means that

(x, (I2 + TT ∗)ξ) = (y, ξ), ξ ∈ DTT∗ .

We can write y = (I2 + TT ∗)η and obtain

(x, (I2 + TT ∗)ξ) = (η, (I2 + TT ∗)ξ).

Since I2 + TT ∗ is surjective this proves that x = η, that is, that (I2 + TT ∗)x = y.
On the other hand, if (x, y) and (x′, y′) are in the graph of I2 + TT ∗ then

(x, y′)− (y, x′) = (x, x′ + TT ∗x′)− (x+ TT ∗x, x′) = 0,

so the graph of I2 + TT ∗ is equal to the graph of its adjoint, that is, I2 + TT ∗

is self-adjoint. Now the sum of a self-adjoint operator and a bounded self-adjoint
operator is obviously self-adjoint, so we have proved:

Theorem 2.6.15. If T is a closed densely defined operator from a Hilbert space
H1 to another H2, then T ∗T and TT ∗ are self-adjoint operators (thus closed and
densely defined). The operators (I1 + T ∗T )−1, (I2 + TT ∗)−1, T (I1 + T ∗T )−1 and
T ∗(I2 + TT ∗)−1 are everywhere defined and of norm ≤ 1.

We shall now discuss some properties of complexes of unbounded operators in
Hilbert space. As preparation we give a variant of Theorem 2.6.9 for unbounded
operators between Hilbert spaces. Properly modified it is also valid for arbitrary
Banach spaces.

Theorem 2.6.16. Let T be a closed densely defined linear operator from one
Hilbert space H1 to another H2. Then the following conditions are equivalent:

a) ImT is closed.
b) There is a constant C such that

∥x∥1 ≤ C∥Tx∥2, x ∈ DT ∩ [ImT ∗].

Here [W ] denotes the closure of a linear space W .
c) ImT ∗ is closed.
d) There exists a constant C such that

∥y∥2 ≤ C∥T ∗y∥1, y ∈ DT∗ ∩ [ImT ].
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Proof. Let us first note that by the definition of the adjoint operator the orthogonal
space of ImT is equal to KerT ∗. The orthogonal space of KerT ∗ is therefore the
closure of ImT . Now assume that a) holds. Since the orthogonal space of [ImT ∗] is
the kernel of T , the restriction of T to DT∩[ImT ∗] is closed and injective. The range
is the closed subspace ImT of H2. Hence the inverse is continuous by the closed
graph theorem, which proves b). Conversely, b) implies a), for T (DT ∩ [ImT ∗]) =
ImT since T vanishes on [ImT ∗]⊥. In view of the symmetry between T and T ∗

it is now clear that c) and d) are also equivalent, and it suffices to prove that b)
implies d). From b) we obtain, if y ∈ DT∗ and x ∈ DT ∩ [ImT ∗],

|(y, Tx)2| = |(T ∗y, x)1| ≤ ∥T ∗y∥1∥x∥1 ≤ C∥T ∗y∥1∥Tx∥2.

Hence |(y, η)2| ≤ C∥T ∗y∥1∥η∥2 if y ∈ DT∗ and η ∈ [ImT ], and this proves d).

Let us now assume that in addition to the operator T we have another closed
densely defined linear operator S from H2 to a third Hilbert space H3 and that
ST = 0, which means that ImT ⊂ KerS. An example of this situation occurs if
T is defined by the exterior differential operator from k forms to k + 1 forms and
S by the exterior differential operator from k + 1 forms to k + 2 forms. We are
interested in studying the possible gap between ImT and KerS, the homology of
the complex.

Theorem 2.6.17. A necessary and sufficient condition for ImT and ImS both to
be closed is that

(2.6.5) ∥y∥22 ≤ C2(∥T ∗y∥21 + ∥Sy∥23), y ∈ DT∗ ∩DS ∩N⊥, N = KerT ∗ ∩KerS.

ImT and ImS are closed and N is finite dimensional if and only if from every
sequence yk ∈ DT∗ ∩ DS with ∥yk∥2 bounded and T ∗yk → 0 in H1, Syk → 0 in H3,
one can select a convergent subsequence.

Proof. First we note that

H2 = [ImT ]⊕N ⊕ [ImS∗].

In fact, since ImT ⊂ KerS and KerS is orthogonal to [ImS∗], we know that [ImT ]
and [ImS∗] are orthogonal. The intersection of their orthogonal complements is
N by definition. Now S vanishes on [ImT ], and T ∗ vanishes on [ImS∗] since
T ∗S∗ = 0. In view of Theorem 2.6.16 the estimate (2.6.5) is therefore valid for
y ∈ DT∗ ∩ [ImT ] if and only if ImT is closed, and it is valid for y ∈ DS ∩ [ImS∗] if
and only if ImS is closed. Since every y occurring in (2.6.5) can be split into two
such orthogonal components, it follows that (2.6.5) holds if and only if ImT and
ImS are both closed. Now assume that this is true and that N is finite dimensional.
If yk ∈ DT∗ ∩ DS we write yk = zk + nk where nk ∈ N = KerS ∩ KerT ∗ and zk
is orthogonal to N . Using (2.6.5) we conclude that zk → 0 if T ∗zk = T ∗yk → 0
and Szk = Syk → 0. Since N is finite dimensional we can extract a convergent
subsequence from the sequence nk, if yk is bounded.

On the other hand, assume that the compactness condition in Theorem 2.6.17 is
fulfilled. Then the unit ball in N is compact, so N is finite dimensional by Theorem
2.5.8. If (2.6.5) were not valid we could choose a sequence yk ∈ DT∗∩DS orthogonal
to N such that ∥yk∥2 = 1 but ∥T ∗yk∥1 → 0 and ∥Syk∥3 → 0. Let y be a strong
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limit of this sequence, which exists by hypothesis. Then we have ∥y∥2 = 1, y is
orthogonal to N , and T ∗y = Sy = 0 since S and T ∗ are closed. Thus y ∈ N which
is a contradiction proving (2.6.5) and so the theorem.

Theorem 2.6.17 has important applications in the theory of functions of several
complex variables. It would take us too far to develop them here, so the reader is
referred to Chapter IV of L. Hörmander, An introduction to complex analysis in
several variables.

We shall now discuss some deeper results concerning duality which are related
to the use of another topology in the dual space. We introduce this notion in a
quite general context:

Definition 2.6.18. Let F and G be two vector spaces over K = R or C, and let
⟨x, y⟩ be a bilinear form on F×G defining a duality between F and G (see Definition
1.2.12). The locally convex topology in F defined by the semi-norms

F ∋ x 7→ |⟨x, y⟩|

with y ∈ G is called the weak topology in F and denoted by σ(F,G). Correspond-
ingly we have a weak topology σ(G,F ) in G.

Note that the definitions imply that σ(F,G) and σ(G,F ) are Hausdorff topolo-
gies, and that the linear form x 7→ ⟨x, y⟩ on F is continuous for every y ∈ G. The
same is true if F and G are interchanged, but from now on we usually just mention
one of two such symmetric statements. On the other hand, we have

Theorem 2.6.19. Every linear form on F which is continuous for σ(F,G) can for
one and only one y ∈ G be written in the form

(2.6.6) F ∋ x 7→ ⟨x, y⟩.

Proof. Let L be a linear form on F which is continuous for σ(F,G). Then there
exist y1, . . . , yn ∈ G and a constant C such that

(2.6.7) |L(x)| ≤ C
n∑
1

|⟨x, yi⟩|, x ∈ F.

Thus L(x) = 0 if x ∈ N = {x ∈ F ; ⟨x, yi⟩ = 0, i = 1, . . . , n}. The forms L
and x 7→ ⟨x, yi⟩ induce linear forms L′ and Yi on the finite dimensional vector
space F/N , and 0 is the only common zero of the forms Yi. Hence L′ is a linear
combination of Y1, . . . , Yn, which proves the theorem.

We shall now examine the duality between a Banach space B and its dual space
B∗.

Theorem 2.6.20. If ξ1, ξ2, · · · ∈ B∗ and ξn−ξm → 0 in σ(B∗, B) when n,m→ ∞,
it follows that there exists an element ξ ∈ B∗ such that ξn → ξ in σ(B∗, B) when
n→ ∞.

Proof. The completeness of the scalars implies that ⟨x, ξn⟩ has a limit for every
x ∈ B, so the theorem is an immediate consequence of Corollary 2.4.9.

Now we turn to the fundamental property of the weak topology σ(B∗, B) (usually
called the weak∗ topology).
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Theorem 2.6.21 (Tychonov). If B is a Banach space, then the unit ball

U = {ξ ∈ B∗; ∥ξ∥ ≤ 1}

is compact for σ(B∗, B).

Proof. For every ξ ∈ U and x ∈ B we have |⟨x, ξ⟩| ≤ ∥x∥. If for every x ∈ B we let
Dx denote the disc {z ∈ K; |z| ≤ ∥x∥}, we therefore obtain an injective map

γ : U ∋ ξ 7→ {⟨x, ξ⟩}x∈B ∈
∏
x∈B

Dx = D.

The range consists of all f = {fx}x∈B ∈
∏
x∈B Dx = D such that

fax+by = afx + bfy ∀ x, y ∈ B, a, b ∈ K.

Each of these relations defines a closed subset of D. Thus γU is a closed subset of
D, and since D is compact (Theorem 2.1.4) it follows that γU is compact. Now a
basis for open sets in D is obtained by imposing on f = {fx}x∈B a finite number
of inequalities

|fx − cx| < εx, εx > 0.

The inverse image in U is the set of all ξ ∈ U such that

|⟨x, ξ⟩ − cx| < εx

for finitely many values of x. It follows that γ is a homeomorphism, hence that U
is compact.

Remark. Note that the proof is valid without change if B is just semi-normed.

In the cases which occur most frequently in the applications, the proof of Theo-
rem 2.6.21 is completely elementary:

Definition 2.6.22. The Banach space B is called separable if it contains a countable
dense subset.

Theorem 2.6.23. Let B be separable and let x1, x2, . . . be a dense subset. Then
the semi-norms

(2.6.8) ξ 7→ |⟨xj , ξ⟩|, j = 1, 2, . . . ,

define the same topology as σ(B∗, B) on the unit ball U in B∗.

Proof. It suffices to show that if N is a neighborhood in U of a point ξ0 ∈ U with
respect to the topology σ(B∗, B), then N contains a neighborhood in the topology
defined by means of the semi-norms (2.6.8). We may assume that

N = {ξ ∈ U ; |⟨x, ξ − ξ0⟩| < ε}; ε > 0, x ∈ B.

Choose k so that ∥x− xk∥ < ε/4. Then |⟨x− xk, ξ − ξ0⟩| < ε/2 if ξ, ξ0 ∈ U , so

N ⊃ {ξ ∈ U ; |⟨xk, ξ − ξ0⟩| < ε/2},

which proves the theorem.

Combination of Theorems 2.6.21 and 2.6.23 gives
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Theorem 2.6.24. The unit ball in the dual space of a separable Banach space is
a compact metrizable space in the weak topology σ(B∗, B).

This result can also easily be proved directly. It suffices to show that every
sequence in U has a weakly convergent subsequence. This can be proved using the
Cantor diagonal procedure and Theorem 2.6.23. The details are left as an exercise.

Example 2.6.25. From every bounded sequence fn ∈ Lp , 1 < p ≤ ∞, one can
choose a subsequence fnk

with a weak limit f ∈ Lp, that is,∫
fnk

g dx→
∫
fg dx, g ∈ Lp

′
, 1/p+ 1/p′ = 1.

An analogous “selection theorem” is valid for a sequence of measures with uniformly
bounded total mass.

We shall now prove a certain converse of the preceding theorems. The first step
is a general but elementary result concerning vector spaces in duality.

Let F , G be two vector spaces in duality with respect to the bilinear form ⟨x, y⟩.
Let A ⊂ F be convex and balanced (that is, x ∈ A and a ∈ K, |a| ≤ 1 implies
ax ∈ A). We set

A◦ = {y ∈ G; |⟨x, y⟩| ≤ 1 ∀x ∈ A},

which is called the polar of A. It is clear that A◦ is convex, balanced and closed for
σ(G,F ), so A◦◦ has the corresponding properties and contains A.

Note that if A is conic, that is, tx ∈ A if t > 0 and x ∈ A, then

A◦ = {y ∈ G; ⟨x, y⟩ = 0 ∀x ∈ A}.

In particular the polar of a linear subspace of F is its annihilator in G, so there is
no conflict with our earlier notation.

Theorem 2.6.26. A◦◦ is the closure of A in the topology σ(F,G).

Proof. Assume that x0 is not in the closure of A. According to the Hahn-Banach
theorem (Theorem 2.3.2) there exists a linear form f on F , which is continuous for
σ(F,G), such that

|f(x)− f(x0)| ≥ ε > 0, x ∈ A.

Since x ∈ A implies ax ∈ A if |a| ≤ 1, it follows that |f(x0)| ≥ |f(x)| + ε when
x ∈ A. Let g(x) = f(x)/a where |f(x0)| − ε ≤ a < |f(x0)|. Then

|g(x)| ≤ 1 < |g(x0)|, x ∈ A.

By Theorem 2.6.19 we have g(x) = ⟨x, y⟩ for some y ∈ G. Hence y ∈ A◦ and
x0 /∈ A◦◦, so the proof is complete.

We can now prove a converse of Theorem 2.6.21.

Theorem 2.6.27. Let F and G be two Banach spaces which are in duality with
respect to the bilinear form B(x, y). Assume that

(2.6.9) ∥x∥ = sup
0̸=y∈G

|B(x, y)|/∥y∥, x ∈ F,
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and that the unit ball in G is compact for σ(G,F ). Every linear form on F which
is continuous with respect to the norm topology can then be written x 7→ B(x, y)
for suitable y ∈ G, and the norm of the linear form is ∥y∥. Thus the map G→ F ∗

defined by B is a bijective isometry.

Proof. From (2.6.9) it follows that the linear form z : x 7→ B(x, y) is continuous
with norm ≤ ∥y∥. The map y 7→ z = φ(y) is therefore an injection G→ F ∗ of norm
≤ 1. Let UG be the unit ball in G, let U = φ(UG) be the image in F ∗, and denote
the unit ball in F ∗ by U∗. The theorem will be proved if we show that U = U∗.
First note that it follows from (2.6.9) that

U◦ = {x ∈ F ; |⟨x, z⟩| ≤ 1 ∀z ∈ U} = {x ∈ F ; |B(x, y)| ≤ 1 ∀y ∈ G, ∥y∥ ≤ 1}

is the unit ball in F . Here ⟨·, ·⟩ is the bilinear form on F ×F ∗. If we apply Theorem
2.6.26 to the spaces F and F ∗ with this duality, it follows that U∗ is the closure
of U in σ(F ∗, F ). By hypothesis UG is compact in the topology σ(G,F ), and φ is
continuous for the topologies σ(G,F ) and σ(F ∗, F ) since

⟨x, φ(y)⟩ = B(x, y) if x ∈ F, y ∈ G.

Hence U is compact and therefore closed in the topology σ(F ∗, F ) (Theorem 2.1.3),
so U = U∗.

Corollary 2.6.28. A Banach space B is reflexive if and only if the unit ball in B
is compact for the weak topology σ(B,B∗).

We shall now complete Theorem 2.6.9 to a more symmetric statement. The main
tool in the proof is

Theorem 2.6.29 (Banach). A linear subspace M of the dual B∗ of a Banach
space is closed for σ(B∗, B) if and only if the intersection of M and the unit ball
in B∗ is compact in this topology.

The necessity follows at once from Tychonov’s theorem. The main step in the
proof of the sufficiency is the following:

Lemma 2.6.30. Let M be a linear subspace of the dual B∗ of a Banach space such
that the intersection with the unit ball in B∗ is compact for the topology σ(B∗, B),
and let ξ0 be a fixed element ∈ B∗ \M . Then there exists a sequence xn ∈ B with
xn → 0 such that ξ /∈M if |⟨xn, ξ − ξ0⟩| ≤ 1 for all n.

Proof. LetMn = {ξ ∈M ; ∥ξ−ξ0∥ ≤ n}. Assume that we have already proved that
there exist finitely many elements x1, . . . , xk ∈ B such that

|⟨xj , ξ − ξ0⟩| ≤ 1, 1 ≤ j ≤ k =⇒ ξ /∈Mn.

We shall prove that there exist elements xk+1, . . . , xk+m ∈ B with norms ≤ 1/n
such that

(2.6.10) |⟨xj , ξ − ξ0⟩| ≤ 1, 1 ≤ j ≤ k +m =⇒ ξ /∈Mn+1.

Repeated use of this construction will of course yield a sequence with the required
properties.
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Mn+1 is compact for σ(B∗, B), for

Mn+1 = {ξ ∈M ; ∥ξ∥ ≤ n+ 1 + ∥ξ0∥} ∩ {ξ ∈ B∗; ∥ξ − ξ0∥ ≤ n+ 1},

where the first set is compact for σ(B∗, B) by hypothesis, and the second is closed.
By assumption

(2.6.11) Mn+1

∩ k∩
j=1

{ξ; |⟨xj , ξ − ξ0⟩| ≤ 1}
∩

n∥x∥≤1

{ξ; |⟨x, ξ − ξ0⟩| ≤ 1} = ∅,

for the last intersection is {ξ; ∥ξ − ξ0∥ ≤ n}. Since Mn+1 is compact for σ(B∗, B)
and the other sets are closed, it follows that already a finite number of the sets in
(2.6.11) have an empty intersection. But this means that (2.6.10) holds for suitable
xk+1, . . . , xk+m with norm ≤ 1/n, so the proof is complete.

Proof of Theorem 2.6.29. Let ξ0 /∈ M and choose a sequence xn according to
Lemma 2.6.30. Write

p(ξ) = sup
n

|⟨xn, ξ⟩|, ξ ∈ B∗.

Then the distance from ξ0 to M is at least 1 with respect to the semi-norm p, so by
the Hahn-Banach theorem there exists a linear form L on B∗ which is continuous
for p, and vanishes on M although L(ξ0) = 1. To prove the theorem we have to
show that L is the scalar product with an element of B.

Let c be the Banach space of sequences a = (a1, a2, . . . ) converging to 0 in
K, with the norm ∥a∥ = sup |aj |. The dual space is l1. We define a linear map
φ : B∗ → c by

φ(ξ) = (⟨x1, ξ⟩, ⟨x2, ξ⟩, . . . ).

Since p(ξ) = ∥φ(ξ)∥ we have L(ξ) = L′(φ(ξ)) where L′ is a continuous linear form

on the range of φ. Let L̃ be a continuous linear extension of L′ to all of c. Then

we have L(ξ) = L̃(φ(ξ)), and

L̃(a) =
∑

tjaj ,
∑

|tj | <∞.

Now
L(ξ) = L̃(φ(ξ)) =

∑
tj⟨xj , ξ⟩ = ⟨x, ξ⟩, ξ ∈ B∗,

where x =
∑
tjxj . The proof is complete.

It is now easy to complete Theorem 2.6.9.

Theorem 2.6.31. Let T ∈ L(B1, B2) and assume that ImT ∗ is closed (in the
norm topology of B∗

1). Then it follows that ImT is closed, the annihilator of KerT
is ImT ∗, and the annihilator of ImT is KerT ∗.

Proof. As in the proof of Theorem 2.6.9 we can reduce the proof to the case where
KerT = {0} and ImT is dense in B2. Then we have KerT ∗ = {0}, and we shall
first show that ImT ∗ = B∗

1 .
Since ImT ∗ is closed and KerT ∗ = {0}, it follows from Banach’s theorem that

there is a constant C such that

(2.6.12) ∥η∥2 ≤ C∥T ∗η∥1, η ∈ B∗
2 .
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Let U∗
1 be the unit ball in B∗

1 . Then we have

(2.6.13) U∗
1 ∩ ImT ∗ = U∗

1 ∩ {T ∗η; η ∈ B∗
2 , ∥η∥2 ≤ C}.

Now T ∗ is continuous for the weak topologies, for if x ∈ B1 and ε > 0, then
|⟨x, T ∗η⟩1| < ε for all η ∈ B∗

2 with |⟨Tx, η⟩2| < ε, which is a neighborhood of 0 in
σ(B∗

2 , B2). Hence the last set occurring in (2.6.13) is compact and therefore closed
for σ(B∗

1 , B1), for it is the continuous image of a compact set for σ(B∗
2 , B2). Thus

U∗
1 ∩ ImT ∗ is closed for σ(B∗

1 , B1), so Theorem 2.6.29 shows that ImT ∗ is closed
for σ(B∗

1 , B1). But if x ∈ B1 is orthogonal to ImT ∗, we have

⟨x, T ∗η⟩1 = ⟨Tx, η⟩2 = 0, η ∈ B2.

This implies that Tx = 0, hence that x = 0 since we have assumed that KerT = {0}.
By the Hahn-Banach theorem applied to B∗

1 with the topology σ(B∗
1 , B1) it follows

that ImT ∗ = B∗
1 .

Using (2.6.12) we now obtain

|⟨x, T ∗η⟩1| = |⟨Tx, η⟩2| ≤ C∥Tx∥2∥T ∗η∥1, x ∈ B1, η ∈ B∗
2

and since ImT ∗ = B∗
1 , it follows that

∥x∥1 ≤ C∥Tx∥2.

Since ImT is dense in B2 we conclude that ImT = B2, and the theorem is proved.

We can also extend Theorems 2.5.3 and 2.5.10 now so that symmetry between
kernel and cokernel is restored:

Theorem 2.6.32. Let T ∈ L(B1, B2) and assume that ImT has finite codimen-
sion. If S ∈ L(B1, B2) and ∥S∥ is sufficiently small, it follows that the range of
T + S also has finite codimension and that

ind (T + S) = indT, dimCoker (T + S) ≤ dimCokerT.

For an arbitrary S ∈ Lc(B1, B2) the range of T + S has finite codimension and

ind (T + S) = indT.

Proof. By Theorem 2.5.1 we know that ImT is closed. Hence it follows from Theo-
rem 2.6.9 that ImT ∗ is closed, and dimKerT ∗ = codim ImT = dimCokerT . When
∥S∗∥ = ∥S∥ is small, it follows from Theorem 2.5.3 that (T + S)∗ = T ∗ + S∗ has
finite dimensional kernel and closed range, and that

ind (T + S)∗ = indT ∗, dimKer (T + S)∗ ≤ dimKerT ∗ = dimCokerT.

For arbitrary S ∈ Lc(B1, B2) we have S∗ ∈ Lc(B∗
2 , B

∗
1) by Theorem 2.6.11, so we

can then conclude from Theorem 2.5.10 that (T +S)∗ has finite dimensional kernel
and closed range, and that ind (T + S)∗ = indT ∗. Now it follows from Theorem
2.6.31 that T +S has closed range and that the statements in the theorem are valid.

Before giving an example of applications we shall discuss the extension of some of
the preceding results to the case of Fréchet spaces. The dual E∗ of a locally convex
topological vector space E is always defined as the space of continuous linear forms
on E. There are several interesting topologies on E∗ but we shall only be concerned
with the weak∗ topology σ(E∗, E).
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Theorem 2.6.33. If E is a locally convex topological vector space and p is a con-
tinuous semi-norm on E, then

Up = {ξ ∈ E∗; |⟨x, ξ⟩| ≤ p(x), x ∈ E}

is compact for σ(E∗, E).

This was already observed in a remark following Theorem 2.6.21.

Theorem 2.6.34. A linear subspace M of the dual E∗ of a Fréchet space is closed
for σ(E∗, E) if and only if Up ∩M is closed for σ(E∗, E) when p is any continuous
semi-norm in E.

Proof. The necessity follows from Theorem 2.6.33. To prove the sufficiency we first
have to extend Lemma 2.6.30 and prove that if ξ0 /∈M , then there exists a sequence
xn ∈ E with xn → 0 such that ξ /∈ M if |⟨xn, ξ − ξ0⟩| ≤ 1 for all n. To do so we
take a sequence of continuous semi-norms p1, p2, . . . on E such that

{x ∈ E; pj(x) ≤ 1}

is a decreasing fundamental sequence of neighborhoods of 0 and ξ0 ∈ Up1 . Let

Mn =M ∩ (Upn + {ξ0}) ⊂M ∩ U2pn .

Assume that we have already found finitely many x1, . . . , xk ∈ E such that

|⟨xj , ξ − ξ0⟩| ≤ 1, 1 ≤ j ≤ k =⇒ ξ /∈Mn.

We claim that there exist elements xk+1, . . . , xk+m ∈ E such that pn(xj) ≤ 1,
k < j ≤ k +m, and

|⟨xj , ξ − ξ0⟩| ≤ 1, 1 ≤ j ≤ k +m =⇒ ξ /∈Mn+1.

If this were not true we would as in the proof of Lemma 2.6.30 obtain an element
ξ ∈Mn+1 such that

|⟨xj , ξ − ξ0⟩| ≤ 1, j ≤ k, thus ξ /∈Mn,

|⟨x, ξ − ξ0⟩| ≤ 1 for all x ∈ E with pn(x) ≤ 1, thus ξ ∈Mn.

The existence of the sequence xn is therefore established. The proof of Theorem
2.6.29 is now applicable with no further change, for

∑
tjxj converges in E if

∑
|tj | <

∞ since
∑

|tj |pk(xj) <∞ for every semi-norm pk.

Now let E and F be two Fréchet spaces and T : E → F a continuous linear map.
As before we can define the adjoint T ∗ : F ∗ → E∗ by

⟨Tx, η⟩ = ⟨x, T ∗η⟩, x ∈ E, η ∈ F ∗,

for this means that T ∗η is the continuous linear form x 7→ ⟨Tx, η⟩ on E.
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Theorem 2.6.35. The range of T is closed if and only if the range of T ∗ is weak∗

closed in E∗. The annihilator of ImT is then KerT ∗, and the annihilator of KerT
is ImT ∗.

In applications of this theorem one will of course use Theorem 2.6.34 in verifying
that the range of T ∗ is weak∗ closed.

Proof. a) Assume that TE is closed. Then we shall prove that ξ ∈ T ∗F ∗ if and
only if ξ belongs to the annihilator of KerT . The necessity is easy, for if ξ = T ∗η,
then

⟨KerT, ξ⟩ = ⟨KerT, T ∗η⟩ = ⟨T KerT, η⟩ = 0.

On the other hand, assume that ξ is orthogonal to KerT , and set

L(Tx) = ⟨x, ξ⟩, x ∈ E.

L is uniquely defined since ⟨x, ξ⟩ = 0 if x ∈ KerT . L is also continuous since the
map T1 : E/KerT → ImT is a homeomorphism by Banach’s theorem. Hence there
exists a continuous extension of L to all of F , that is, there is an element η ∈ F ∗

with
⟨x, ξ⟩ = ⟨Tx, η⟩, x ∈ E.

This means that T ∗η = ξ.
b) Let N be the annihilator of ImT ∗ in E. We have ⟨Tx, η⟩ = 0 for all η ∈ F ∗ if

and only if x ∈ N . Thus N = KerT . If we assume that ImT ∗ is weak∗ closed then
N◦ = ImT ∗, by Theorem 2.6.26. Let T1 be the map from E/N to F induced by
T , thus T = T1q where q is the quotient map E → E/N . Then T ∗ = q∗T ∗

1 where
T ∗
1 maps F ∗ to the dual space N◦ = ImT ∗ of E/N and q∗ is the injection of N◦ in
E∗. (Compare with Theorem 2.6.7 which immediately carries over to the present
situation.) Thus T ∗

1 is surjective.
Changing notation so that T1 is called T it is thus sufficient to prove the state-

ment when ImT ∗ = E∗, which implies that T is injective. We claim that T−1 is
then continuous, that is, Txj → 0 implies xj → 0. This will prove that the range
of T is closed and complete the proof. We need two lemmas.

Lemma 2.6.36. A sequence xj in a metrizable locally convex topological vector
space E converges to 0 if and only if there exists a sequence of positive reals εj → 0
such that xj/εj is bounded.

Proof. If xj/εj is bounded, we have p(xj/εj) ≤ Cp for every continuous semi-norm
p on E. Hence p(xj) → 0 if εj → 0, that is, xj → 0 when j → ∞. On the
other hand, assume that xj → 0. Let p1 ≤ p2 ≤ . . . be a sequence of continuous
semi-norms such that the sets {x ∈ E; pj(x) < 1} form a fundamental system of
neighborhoods of 0. By hypothesis we have pj(xk) < 1/j when k ≥ kj , where kj
is an increasing sequence. If we define εk = 1/j when kj ≤ k < kj+1, it follows
that εk → 0 when k → ∞ and that pj(xk/εk) < 1 when kj ≤ k < kj+1. Hence
pj(xk/εk) < 1 for k ≥ kj since pj increases with j. Thus xk/εk is a bounded
sequence.

Lemma 2.6.37. A sequence xj in a locally convex topological vector space E is
bounded if and only if the sequence ⟨xj , ξ⟩ is bounded for every ξ ∈ E∗.

Proof. If the sequence is bounded we have a bound for |⟨xj , ξ⟩| for every ξ ∈ E∗

because x 7→ |⟨x, ξ⟩| is a continuous semi-norm. On the other hand, assume that all
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these scalar products form bounded sequences. Let p be a continuous semi-norm
on E and let E∗

p be the set of all ξ ∈ E∗ which are continuous with respect to p,
that is,

∥ξ∥p = sup
x∈E,p(x)̸=0

|⟨x, ξ⟩|/p(x) <∞.

This is a Banach space. We have

|⟨xj , ξ⟩| ≤ p(xj)∥ξ∥p, ξ ∈ E∗
p ,

so that ξ 7→ ⟨xj , ξ⟩ is a continuous linear form on E∗
p . By hypothesis it is pointwise

bounded, so Theorem 2.4.8 proves that there is a uniform bound, that is,

|⟨xj , ξ⟩| ≤ Cp∥ξ∥p, ξ ∈ E∗
p , j = 1, 2, . . . .

In view of the Hahn-Banach theorem (see Theorem 2.6.2 or Theorem 2.6.26) it
follows that p(xj) ≤ C for every j. Hence the sequence xj is bounded.

End of proof of Theorem 2.6.35. We can now continue the discussion in part b) of
the proof. Let Txj → 0. By Lemma 2.6.36 there is a sequence εj → 0 such that
Txj/εj is bounded. Hence

⟨Txj/εj , η⟩ = ⟨xj/εj , T ∗η⟩

is bounded for every η ∈ E∗. Since every ξ ∈ E∗ is of the form ξ = T ∗η, it follows
from Lemma 2.6.37 that the sequence xj/εj is bounded, hence that xj → 0 by
Lemma 2.6.36. The proof is complete.

Example 2.6.38. (Malgrange) If P (D) is a partial differential operator with constant
coefficients in Rn then P (D)C∞(Rn) = C∞(Rn).

To prove this we observe that the adjoint is the operator P (−D) : E ′(Rn) →
E ′(Rn) where E ′(Rn) is the dual space of C∞(Rn), that is, the space of distributions
of compact support. As usual D stands for −i∂/∂x. The adjoint is injective, for
if µ ∈ E ′(Rn) and P (−D)µ = 0, taking Laplace transforms gives P (−ζ)µ̂(ζ) = 0.
Here µ̂ is an entire function so it must vanish identically, which implies that µ = 0.
By Theorems 2.6.34 and 2.6.35 it remains only to show that if q is a continuous
semi-norm in C∞(Rn), then P (−D)E ′ ∩M is weakly closed if

M = {µ ∈ E ′; |µ(u)| ≤ q(u) when u ∈ C∞(Rn)}.

We may assume that for some constants C and A

q(u) =
∑

|α|≤N

sup
K

|Dαu|, u ∈ C∞(Rn); K = {x ∈ Rn; |x| ≤ A}.

M is a set of distributions of order N with support in K, and the Paley-Wiener
theorem gives

|µ̂(ζ)| ≤ C(1 + |ζ|)NeA| Im ζ|, ζ ∈ Cn, µ ∈M.

Since the exponential functions are in C∞(Rn), the maps M ∋ µ 7→ µ̂(ζ) are
continuous for the weak topology σ(E ′, C∞). This is metrizable on M since C∞
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has a dense countable subset, say the set of all polynomials with rational coefficients.
If a sequence µj ∈M converges in the weak topology, it follows that µ̂j(ζ) converges
uniformly on every compact set in Cn, for the functions µ̂j(ζ) and their derivatives
are uniformly bounded on every compact set in Cn.

Let us now consider M ∩ P (−D)E ′, that is, the set of all µ ∈ M which can be
written µ = P (−D)ν with ν ∈ E ′. Then we have

P (−ζ)ν̂(ζ) = µ̂(ζ).

Assume the coordinates chosen so that P (−ζ) = cζm1 + . . . where c is a constant
̸= 0 and the dots indicate terms of lower order with respect to ζ1. Then we have

P (−ζ1 − t,−ζ2, . . . ) = c
m∏
1

(t− tj),

and since there are only m zeros we can choose a circle |t| = r with 0 < r < 1 such
that

∏
|t− tj | ≥ (2m)−m when |t| = r. By the maximum principle it follows that

|ν̂(ζ)| ≤ sup
|t|=r

|ν̂(t+ ζ1, ζ2, . . . )| ≤ (2m)m|c|−1 sup
|t|=r

|µ̂(t+ ζ1, ζ2, . . . )|.

Hence there is a constant C1 such that

|ν̂(ζ)| ≤ C1 sup
|ζ′|<1

|µ̂(ζ + ζ ′)|, if P (−ζ)ν̂(ζ) = µ̂(ζ).

If now µj = P (−D)νj and µj ∈ M converges in the weak topology to a limit
µ ∈ M , it follows that µ̂j − µ̂k → 0 uniformly on compact sets. Hence this is true
for ν̂j − ν̂k too, so ν̂j(ζ) converges uniformly on compact sets to an entire analytic
function f such that

|f(ζ)| ≤ C2(1 + |ζ|)NeA| Im ζ|.

By the Paley-Wiener theorem f = ν̂ for some ν ∈ E ′, and P (−D)ν = µ since

P (−ζ)ν̂(ζ) = lim µ̂j(ζ) = µ̂(ζ).

It follows thatM ∩P (−D)E ′ is weakly closed, and the assertion is therefore proved.



83

Chapter III

Spectral theory for self-adjoint
operators

3.1. Some basic facts on Hilbert spaces. In the preceding chapter we have
mainly discussed properties shared by at least general Banach spaces. Before pass-
ing to the main theme of this chapter we shall call attention to some of the special
features of a Hilbert space. First we expand Corollary 2.3.6.

Theorem 3.1.1. Let H be a Hilbert space, and let Gi, i ∈ I, be closed, mutually
orthogonal subspaces, that is,

(x, y) = 0, if x ∈ Gi, y ∈ Gj , and i ̸= j.

Set
G⊥ = {x ∈ H; (x, y) = 0 ∀y ∈

∪
i∈I

Gi}.

Then every x ∈ H can be written in a unique way as a sum

(3.1.1) x =
∑
i∈I

xi + y, xi ∈ Gi, y ∈ G⊥,

where the series is absolutely convergent: For every ε > 0 there is a finite subset Iε
of I such that for every finite set J with Iε ⊂ J ⊂ I we have

∥x−
∑
j∈J

xj − y∥ < ε.

We have

(3.1.2) ∥x∥2 =
∑
i∈I

∥xi∥2 + ∥y∥2.

In particular, {i ∈ I;xi ̸= 0} is countable.

Proof. By Corollary 2.3.6 there is a unique xi ∈ Gi such that x − xi ∈ G⊥
i . Since

G⊥
i ⊃ Gj if j ̸= i, it follows for every finite J ⊂ I that yJ = x−

∑
j∈J xj ∈ G⊥

i , for
all i ∈ J . We have

∥x∥2 =
∑
j∈J

∥xj∥2 + ∥yJ∥2 ≥
∑
j∈J

∥xj∥2,

which proves that
∑
i∈I ∥xi∥2 ≤ ∥x∥2. Thus {i ∈ I;xi ̸= 0} is countable, and

X =
∑
i∈I xi exists, for if the finite set Iε is chosen so that

∑
I\Iε ∥xi∥

2 < ε2, then

∥
∑
j∈J

xj −
∑
i∈Iε

xi∥ =
( ∑
i∈J\Iε

∥xi∥2
) 1

2 < ε, if J ⊃ Iε is finite.

By Cauchy’s convergence principle this proves the existence ofX. Since y = x−X =
x− xi + xi −X is orthogonal to Gi for every i, it follows that y ∈ G⊥, hence y is
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orthogonal to X. For any decomposition (3.1.1) we have (3.1.2), which proves the
uniqueness.

One denotes by⊕i∈IGi the set of all convergent sums x =
∑
i∈I xi where xi ∈ Gi;

this is the orthogonal space of G⊥. The notation is also used when we are just given
a family of unrelated Hilbert spaces Hi, i ∈ I; one then defines H = ⊕i∈IHi as the
set of all x = {xi}i∈I where xi ∈ Hi and

∑
i∈I ∥xi∥2 <∞. Then the scalar product

(x, y) =
∑
i∈I

(xi, yi)Hi , x = {xi}i∈I , y = {yi}i∈I ,

is well defined. H is complete, for suppose that xν = {xνi }i∈I is a Cauchy sequence.
For fixed i the completeness of Hi proves that xνi → xi ∈ Hi as ν → ∞. For
arbitrary ε > 0 we have by hypothesis∑

i∈I

∥xνi − xµi ∥
2 < ε2, if ν, µ > N(ε).

Let J be a finite subset of I, restrict the summation to J , and let µ → ∞. Then
we obtain ∑

i∈J

∥xνi − xi∥2 ≤ ε2, if ν > N(ε),

and since J is arbitrary we can replace J by I and conclude that
∑
i∈I |xi|2 < ∞

and that {xνi }i∈I → {xi}i∈I , which proves the completeness.
An example is the space l2 of sequences x = (x1, x2, . . . ) with xj ∈ C and

∥x∥2 =
∑

|xj |2 < ∞. This is a separable Hilbert space, for elements with rational
coordinates and only finitely many ̸= 0 are dense. This is more than an example:

Theorem 3.1.2. In every separable Hilbert space over C there exists an ortho-
normal basis e1, e2, . . . , that is, elements with

(ej , ej) = 1, (ej , ek) = 0 if j ̸= k,

such that H = ⊕∞
1 (Cej). This means that every x ∈ H can be uniquely written

x =
∑∞

1 xjej where xj ∈ C and ∥x∥2 =
∑∞

1 |xj |2.

Proof. Let y1, y2, . . . be a countable subset of H such that their finite linear com-
binations are dense in H. We may assume that yj are linearly independent, for
otherwise we can drop elements which are linear combinations of the preceding
ones. We can then get an orthonormal sequence by the Gram-Schmidt orthogonal-
isation procedure, already mentioned in a remark after Lemma 2.5.9,

e1 = y1/∥y1∥, . . . , ej = Yj/∥Yj∥, Yj = yj −
∑
k<j

ek(yj , ek).

Yj ̸= 0 because of the linear independence assumed. By induction we obtain
(ej , ek) = 0 for k < j, and (ej , ej) = 1. The linear combinations of y1, . . . , yj
are also linear combinations of e1, . . . , ej , so these are dense in H. Hence x = 0 if
(x, ej) = 0 for every j. By Theorem 3.1.1 it follows that H = ⊕∞

1 (Cej).

Remark. In every Hilbert space Zorn’s lemma shows that there exists a maximal
set of orthonormal vectors; by Theorem 3.1.1 it must be a basis in the Hilbert space



85

sense. There is of course an analogue of Theorem 3.1.2 for Hilbert spaces over R.
For the sake of brevity we shall usually just make statements for complex Hilbert
spaces and leave for the reader to decide if they remain true in the real case.

Definition 3.1.3. IfH1 andH2 are Hilbert spaces and T is a linear map with domain
DT ⊂ H1 and range ImT ⊂ H2, then T is called an isometry if

∥Tx∥2 = ∥x∥1, x ∈ DT ; hence (Tx, Ty)2 = (x, y)1, x, y ∈ DT .

If in addition DT = H1 and ImT = H2, then T is called unitary.

With this terminology Theorem 3.1.2 states that for every separable Hilbert
space H of infinite dimension there is a unitary map U : l2 → H. (The term
Hilbert space is often reserved for the infinite dimensional case. However, this
restriction tends to complicate statements.) More generally, we have

Theorem 3.1.4. Let H1, H2 be separable Hilbert spaces. The closure T of a linear
isometric map T with domain DT ⊂ H1 and range ImT ⊂ H2 is an isometry with
closed domain and closed range. It can be extended to a unitary map U from H1

to H2 if and only if codimDT and codim ImT are equal.

Proof. If un ∈ DT and fn = Tun, then ∥un − um∥ = ∥fn − fm∥, so un converges
to a limit u if and only if fn converges to a limit f , and then we have ∥u∥ = ∥f∥.
This proves the first statement. If U is an isometric extension of T , then

(Ux, Ty)2 = (Ux,Uy)2 = (x, y)1 = 0, if x ∈ (DT )⊥, y ∈ DT ,

so U maps (DT )⊥ to (ImT )⊥. If U is unitary then this restriction must be unitary,
which implies that the dimensions are the same. Conversely, if the dimensions
are the same it follows from Theorem 3.1.2 that we can find a unitary map U1 :
(DT )⊥ → (ImT )⊥, which gives a unitary map

H1 = DT ⊕ (DT )⊥
T⊕U1−→ ImT ⊕ (ImT )⊥ = H2.

Remark. The proof shows that the isometric map T can always be extended to an
isometric map with either the domain equal to H1 or the range equal to H2.

3.2. Symmetric and self-adjoint operators. Let H be a separable Hilbert
space over C.

Definition 3.2.1. A linear operator A with domain DA and range ImA contained
in H is called symmetric if

(3.2.1) (Au, v) = (u,Av), u, v ∈ DA.

If A is densely defined this means that the adjoint A∗ is an extension of A. If
A∗ = A then A is called self-adjoint.

Remark. In the literature one often requires symmetric operators to be densely
defined.

To clarify the difference between the notions of self-adjointness and symmetry
we shall discuss an elementary example (see also Exercise 17):
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Example 3.2.2. Let H = L2(I), I = (−1, 1), and define Au = u′′ when u ∈ C2
0 (I).

Then A is obviously symmetric and densely defined. If un ∈ C2
0 (I) and un → u,

u′′n → f in L2(I), then

u′n(t) =

∫ t

−1

u′′n(s) ds→
∫ t

−1

f(s) ds,

uniformly in I, so u ∈ C1(I), u = u′ = 0 at ±1, and u′′ = f ∈ L2(I) in the sense of
distribution theory. Conversely, these conditions imply that (u, f) is in the closure
of the graph of A, for if u, f are defined as 0 outside I, then u′′ = f on R in the
sense of distribution theory, and

un(t) = n

∫
|s|<1/2n

u(n(t− s)/(n− 1)) ds ∈ C2
0 (I),

u′′n(t) = n3(n− 1)−2

∫
|s|<1/2n

f(n(t− s)/(n− 1)) ds,

which shows that un → u, u′′n → f in L2(I) as n→ ∞.
That A∗u = f means on the other hand that u, f ∈ L2(I) and that

(u,Av) = (f, v), v ∈ C2
0 (I),

that is, u′′ = f in I in the sense of distribution theory. This implies u ∈ C1(I).
The difference between A and A∗ is that the domain of A is restricted by boundary
conditions. If u, v ∈ DA∗ , then

(A∗u, v)− (u,A∗v) = [u′v̄ − uv̄′]1−1,

which confirms that A∗ is not symmetric. (The adjoint of A∗ is of course the closure

of A.) The restriction Ã of A∗ to the set of u ∈ DA∗ satisfying boundary conditions

a−u(−1) + b−u
′(−1) = 0, a+u(1) + b+u

′(1) = 0,

with real a−, b−, a+, b+ with a2− + b2− ̸= 0, a2+ + b2+ ̸= 0, is self-adjoint though. It

is clear that Ã is symmetric, so Ã∗ must be an extension of Ã and a restriction of

A∗. It is equal to Ã for if [u′v−uv′]1−1 = 0 for all smooth v satisfying the boundary
conditions it is clear that u also satisfies them.

We shall now discuss the extension of symmetric densely defined operators A in
general, which is a great deal more complicated since the dimension of DA∗/DA is
usually infinite. However, this will give an abstract frame for discussion of boundary
conditions for partial differential operators. Since A∗ is a closed extension of A, we
can always close A to obtain a closed symmetric operator A which is a restriction
of every self-adjoint extension of A. In what follows we may therefore assume that
A is closed.

Proposition 3.2.3. Let A be a closed symmetric operator. If z ∈ C \ R then
A− zI is injective, the range is closed, and

(3.2.2) | Im z|∥u∥ ≤ ∥(A− zI)u∥, u ∈ DA.
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The codimension of Im (A− zI) only depends on the sign of Im z.

Proof. If z = x+ iy we obtain using the symmetry of A

(3.2.3) ∥(A− zI)u∥2 = ∥(A− xI)u∥2 + y2∥u∥2 ≥ y2∥u∥2,

which proves (3.2.2). If un ∈ DA and (A−zI)un → f , it follows from this inequality
applied to un − um that un → u, hence u ∈ DA and (A − zI)u = f . This proves
that the range is closed. If ζ ∈ C then

T : GA ∋ (u,Au) 7→ (A− zI)u ∈ H, S : GA ∋ (u,Au) 7→ ζu ∈ H

satisfy the hypotheses of Theorem 2.5.3, with KerT = {0}, so it follows that the
range of A− (z+ζ)I has the same codimension as that of A−zI if |ζ| is sufficiently
small. The proof is complete since the half planes {z;± Im z > 0} are connected.

Definition 3.2.4. The codimensions n± of Im(A− zI) when ± Im z > 0 are called
the defect indices of the symmetric operator A.

Since (u, (A− zI)v) = 0, v ∈ DA, is equivalent to u ∈ DA∗ and A∗u− z̄u = 0, if
A is densely defined, we also have

n± = dimKer (A∗ − zI), ± Im z < 0.

Hence n+ = n− = 0 if A is self-adjoint. Conversely, if A is closed, symmetric,
densely defined, and the defect indices n± are 0, then A is self-adjoint. In fact, if
u ∈ DA∗ and Im z > 0, we can find v ∈ DA with (A − zI)v = (A∗ − zI)u since
n+ = 0. Hence (A∗− zI)(u− v) = 0, for A∗ is an extension of A, so u− v = 0 since
n− = 0. Thus u ∈ DA and A is self-adjoint. For self-adjoint operator the resolvent
is well behaved off the real axis:

Theorem 3.2.5. If A is self-adjoint and z ∈ C \ R then the inverse R(z) =
(A− zI)−1 is defined in all of H, and ∥R(z)∥ ≤ 1/| Im z|. We have R(z)∗ = R(z̄),
and

(3.2.4) R(z)R(w)(z − w) = R(z)−R(w) = R(w)R(z)(z − w) if Im z Imw ̸= 0.

Proof. It only remains to prove (3.2.4). Since the range of R(w) is in the domain
of A, we have

((A− wI)− (A− zI))R(w) = (z − w)R(w),

and (3.2.4) follows if we multiply to the left by R(z).

The extension problem for symmetric operators can be reduced to that for iso-
metric operators already discussed in Theorem 3.1.4:

Proposition 3.2.6. If A is symmetric and densely defined then

(3.2.5) T : (A+ iI)u 7→ (A− iI)u, u ∈ DA,

is isometric, Ker (I − T ) = {0}, Im (I − T ) is dense, and

(3.2.6) DA = {v − Tv; v ∈ DT }, A(v − Tv) = i(v + Tv).
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Conversely, if T is a given isometric operator with Im (I −T ) dense, then Ker (I −
T ) = {0} and (3.2.6) defines a symmetric operator with dense domain. T is closed
if and only if A is closed.

Proof. That (3.2.5) defines an isometric operator when A is symmetric is a conse-
quence of (3.2.3). With w = Au+ iu and Tw = Au− iu we obtain 2iu = w − Tw
and 2Au = w + Tw, or u = v − Tv and Au = i(v + Tv) if we set w = 2iv. We
have v − Tv ̸= 0 if v ̸= 0, and the range of I − T is equal to the domain of A.
Now assume instead that an isometric operator T with Im (I − T ) dense is given.
If v ∈ DT and Tv = v, we have for every w ∈ DT

(w − Tw, v) = (w, v)− (Tw, v) = (Tw, Tv)− (Tw, v) = (Tw, Tv − v) = 0,

which proves that v = 0. Hence v−Tv determines v, so we can define A by (3.2.6).
Then A is symmetric, for if v, w ∈ DT then

(i(v + Tv), w − Tw) = (v − Tv, i(w + Tw)), since (v, w) = (Tv, Tw),

and A is densely defined, which completes the proof since the graphs of A and of
T are related by a continuous linear isomorphism.

Theorem 3.2.7. A closed densely defined symmetric operator A has a self-adjoint
extension if and only if the defect indices are equal.

Proof. By Proposition 3.2.6 the existence of a self-adjoint extension of A is equiva-
lent to the existence of a unitary extension of the corresponding isometric operator
T . Since the defect indices are the codimensions of Im (A∓ iI), that is, of DT and
ImT , the theorem follows from Theorem 3.1.4.

We shall finally give some sufficient conditions for the existence of a self-adjoint
extension.

Theorem 3.2.8. Let A be a densely defined symmetric operator such that for some
λ ∈ R and constant C

∥u∥ ≤ C∥(A− λI)u∥, u ∈ DA.

Then the defect indices of A are equal, so A has a self-adjoint extension.

Proof. Without restriction we may assume that A is closed. The proof of Propo-
sition 3.2.3 shows that the codimension of Im (A − zI) is constant when |z − λ| is
small, which in particular means that the defect indices are equal.

Corollary 3.2.9. If A is a densely defined symmetric operator which is bounded
from below, that is,

(Au, u) ≥ C(u, u), u ∈ DA,
then A has a self-adjoint extension.

Proof. Replacing A by A+ (1− C)I we may assume that C = 1. Then

∥u∥2 ≤ (Au, u) ≤ ∥Au∥∥u∥, u ∈ DA,

hence ∥u∥ ≤ ∥Au∥, u ∈ DA, and the assertion follows from Theorem 3.2.8.

If (Au, u) ≥ 0, u ∈ DA, one says that A is a positive operator and writes A ≥ 0.
With an obvious extension of this notation the hypothesis in Corollary 3.2.9 is that
A ≥ CI, and one calls A semi-bounded. For such operators there is in fact a natural
self-adjoint extension (the Friedrichs extension) with the same lower bound as A:
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Theorem 3.2.10. Let A be a densely defined symmetric operator such that

C = inf
u∈DA,∥u∥=1

(Au, u) > −∞.

Then there is a self-adjoint extension AD with (ADu, u) ≥ C∥u∥2, u ∈ DAD
.

Proof. As in the proof of Corollary 3.2.9 we may assume that C = 1. Set

(u, v)D = (Au, v), ∥u∥2D = (u, u)D, u, v ∈ DA.

Then DA becomes a prehilbert space. Let D be the completion of DA with the
norm ∥ · ∥D. Since ∥u∥ ≤ ∥u∥D, u ∈ DA, we have a natural map of norm ≤ 1 from
D to H. To prove that it is injective, we let uj ∈ DA be a Cauchy sequence in D
which converges to 0 in H, that is,

(A(uj − uk), uj − uk) → 0 as j, k → ∞; ∥uj∥ → 0 as j → ∞.

We must prove that (Auj , uj) → 0 as j → ∞. Now

(A(uj − uk), uj − uk) = (Auj , uj) + (Auk, uk)− 2Re(Auj , uk)

≥ (Auj , uj)− 2Re(Auj , uk) → (Auj , uj), as k → ∞.

Hence (Auj , uj) → 0 when j → ∞, as claimed. We may therefore consider D as a
subset of H.

Next we prove that

(3.2.7) (u, v)D = (A∗u, v), if u, v ∈ D and u ∈ DA∗ .

To prove this we take sequences uj , vk ∈ DA with uj → u and vk → v in D. Then

(A∗u, v) = lim
k→∞

(A∗u, vk) = lim
k→∞

(u,Avk) = lim
k→∞

lim
j→∞

(uj , Avk) = (u, v)D.

If AD is the restriction of A∗ to DA∗ ∩ D it follows that AD is symmetric. The
equation ADu = f has a unique solution u ∈ DAD

= DA∗ ∩D for every f ∈ H. For
by (3.2.7) this equation implies

(3.2.8) (u, v)D = (f, v), v ∈ D.

Conversely, if u ∈ D then (3.2.8) implies that

(u,Av) = (f, v), v ∈ DA,

so u ∈ DA∗ and A∗u = f , that is, ADu = f . Now

|(f, v)| ≤ ∥f∥∥v∥ ≤ ∥f∥∥v∥D,

so it follows from Corollary 2.3.7 that (3.2.8) is valid for a unique u ∈ D, and that
∥u∥ ≤ ∥u∥D ≤ ∥f∥. But this implies that AD is self-adjoint. For assume that
u, f ∈ H and that

(u,ADv) = (f, v), v ∈ DAD .
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Choose U ∈ DAD
with ADU = f . Then

(U,ADv) = (ADU, v) = (f, v), v ∈ DAD ,

since AD is symmetric, so

(u− U,ADv) = 0, v ∈ DAD
.

Since the range of AD is equal to H it follows that U = u, hence that ADu = f .

The Friedrichs extension constructed here is in fact independent of how the
positive lower bound was chosen, and it is in a sense the largest possible self-
adjoint extension. We shall not discuss the possible extensions systematically here
but content ourselves with an elementary example which shows the classical origin
of the construction (Dirichlet’s principle).

Example 3.2.11. The closure of the operator A in Example 3.2.2 is defined for all
u ∈ C1(I) with u = u′ = 0 at ±1 and u′′ ∈ L2(I) in the sense of distribution theory.
We have

(−Au, u) =
∫
I

|u′|2 dt, u ∈ DA,

and since for u ∈ DA∫
I

|u|2 dt = −2

∫
I

Reuu′t dt ≤ 2∥u∥∥u′∥, hence ∥u∥ ≤ 2∥u′∥,

it follows that −4A satisfies the hypotheses in the proof of Theorem 3.2.10. The
space D consists of all u ∈ C(I) vanishing at ±1 with u′ ∈ L2, so the Friedrichs
extension corresponds to the Dirichlet boundary condition u = 0 at the boundary
∂I. The analogue for the Laplacian is the classical Dirichlet principle.

Theorem 3.2.12. (Kato) Let A be a self-adjoint operator in H, and let V be a
symmetric operator with DV ⊃ DA and

(3.2.9) ∥V u∥ ≤ a∥Au∥+ b∥u∥, u ∈ DA.

If a < 1 it follows that the operator A+ V with domain DA is also self-adjoint.

Proof. It is clear that A+ V is symmetric. When u ∈ DA we have

∥(Au+ V u)∥ ≥ ∥Au∥ − ∥V u∥ ≥ (1− a)∥Au∥ − b∥u∥.

This implies that the graph norms of A and A + V are equivalent so A + V is
closed. We must prove that the defect indices are 0. Since all the maps A + tV ,
0 ≤ t ≤ 1, are closed and symmetric, it follows from Theorem 2.5.3 as in the proof
of Proposition 3.2.3 that the codimension of Im (A+ tV ∓ iI) is then independent
of t. Thus the defect indices of A+ tV remain 0 since this is true when t = 0, which
proves the theorem.

We shall give an example using Theorem 3.2.12 later on (Example 3.3.9).
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3.3. The spectral theorem. Let us first as an introduction show how the di-
agonalization of A is obtained from Theorem 3.2.5 if H is finite dimensional. In
that case we can represent R(z) by a matrix with rational functions as entries, the
denominator being given by det (A − zI). If z is a pole it follows from Theorem
3.2.5 that z must be real and that the pole is simple. Since R(z) → 0 when z → ∞,
we conclude that

R(z) =
∑

(λj − z)−1Ej ,

where λj is real, the sum is finite, and Ej ∈ L(H,H) is independent of z. Now we
obtain from (3.2.4)∑

(λj − z)−1(λk − w)−1EjEk =
∑

(λj − z)−1(λj − w)−1Ej ,

which means that

(3.3.1) EjEk = Ej if j = k; EjEk = 0 if j ̸= k.

In particular, Ej is a projection on a space Hj = EjH, annihilated by Ek when
k ̸= j. Furthermore, letting z → ∞ we see that I =

∑
Ej . Thus the whole space

H is the direct sum of the spaces Hj , and since

(A− λjI)Ej = lim
z→λj

(λj − z)(A− λjI)R(z) = lim
z→λj

(λj − z)(I + (z − λj)R(z))

we have (A − λjI)Ej = 0. Thus the elements of Hj are eigenvectors belonging to
the eigenvalue λj . Since R(z)

∗ = R(z̄) we have E∗
j = Ej , hence

(Eju, (I − Ej)v) = (u, (Ej − E2
j )v) = 0,

so Hj is orthogonal to the kernel of Ej and therefore to Hk for k ̸= j. Thus H is
the orthogonal direct sum of the eigenspaces Hj corresponding to real eigenvalues
λj .

Next we shall extend the preceding argument to compact self-adjoint operators
in a Hilbert space. The following fact is an immediate consequence of the results
of section 2.5 but also easy to prove directly.

Lemma 3.3.1. Let A be compact and self-adjoint, 0 ̸= λ ∈ R. Then Ker (A− λI)
is finite dimensional and (A − λI) restricted to the orthogonal complement is a
bijection.

Proof. If Ker (A − λI) were not finite dimensional it would contain an infinite

orthonormal sequence x1, x2, . . . . Thus Axj = λxj so that ∥Axj − Axk∥ = |λ|
√
2

when j ̸= k, which excludes the existence of a convergent subsequence. Since

(Ax− λx, y) = (x,Ay − λy) = 0, ∀x ⇐⇒ y ∈ Ker (A− λI),

the closure G of Im (A − λI) is the orthogonal space of Ker (A − λI). Hence
A−λI maps G injectively into G, and the range is dense. A standard compactness
argument now shows that the range is closed, so it is equal to G.

As in Section 2.5 (see (2.5.6)) we conclude that for z sufficiently close to λ we
have if λ ̸= 0

R(z) = (A− zI)−1 = (λ− z)−1E +R1(z)
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where R1(z) is analytic at λ and E = limz→λ(λ−z)R(z) is the orthogonal projection
on the kernel of A− λI. Hence there are at most countably many eigenvalues ̸= 0
of A, say λ1, λ2, . . . . The orthogonal projections Ej on the corresponding finite
dimensional eigenspaces are mutually orthogonal, that is, (3.3.1) is valid. This
follows as before from (3.2.4). Hence

Eu =
∑

Eju

exists for every u ∈ H (Theorem 3.1.1). E is an orthogonal projection commuting
with all Ej , EEj = EjE = Ej . Writing E0 = I − E and λ0 = 0, we claim that

R(z)u = (A− zI)−1u =
∞∑
0

(λj − z)−1Eju, Im z ̸= 0.

By Theorem 3.1.1 the right-hand side is well defined and has norm ≤ ∥u∥/| Im z|.
Thus

F (z) = (R(z)u, v)−
∞∑
0

((λj − z)−1Eju, v)

is an analytic function when z ̸= 0, and since ∥(A− zI)−1u+ z−1u∥ = O(|z|−2) we
have

|F (z)| ≤ 2∥u∥∥v∥/| Im z|, F (z) = O(|z|−2) as z → ∞.

These conditions imply that F vanishes identically. In fact, it suffices to prove that
the coefficients in the Laurent series expansion vanish, that is, that∫

|z|=R
F (z)zk dz = 0

for all k. When k ≤ 0 this follows by letting R → ∞. If k > 0 and the assertion is
already proved with k replaced by k − 2, then∫

|z|=R
F (z)zk dz =

∫
|z|=R

F (z)zk−2(z2 −R2) dz.

The second integral can be estimated by

2∥u∥∥v∥Rk
∫
|z|=1

|z2 − 1|/| Im z| |dz| → 0, R→ 0.

Hence F = 0.
As already observed, we have (A− λjI)Ej = 0, j ̸= 0, so

u =
∞∑
1

Eju− (A− zI)z−1E0u = u− z−1AE0u,

which shows that AE0 = 0. Thus, with orthogonal direct sum,

H =
∞⊕
0

Hj , Hj = EjH; (A− λj)Hj = {0}.
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Again the whole space is therefore the orthogonal direct sum of all the eigenspaces.
We shall now pass to a study of general self-adjoint operators. This requires

somewhat deeper tools from analytic function theory concerning functions analytic
outside the real axis. These shall be applied to the functions f(z) = (R(z)u, u),
u ∈ H. We note that

f(z) = (u,R(z)u) = (R(z̄)u, u), Im z ̸= 0,

so we have in view of (3.2.4)

2i Im (R(z)u, u) = (R(z)u−R(z̄)u, u) = 2i Im z(R(z)u,R(z)u) = 2i Im z∥R(z)u∥2.

Thus

(3.3.2) Im f(z) ≥ 0, Im z > 0; |f(z)| ≤ C/| Im z|;

where C = ∥u∥2. The analyticity of f(z) for Im z ̸= 0 follows immediately from
Theorem 3.2.5 which gives first that ∥R(z)−R(w)∥2 → 0 when w → z, then that

(R(z)−R(w))/(z − w) → R(z)2 when w → z.

Lemma 3.3.2. Let f be an analytic function in the upper half plane satisfying
(3.3.2). Then it follows that∫

Im f(x+ iy) dx ≤ Cπ, y > 0,

and that there is a positive measure dµ of finite mass on R such that

(3.3.3)

∫
φ(x)π−1 Im f(x+ iy) dx→

∫
φ(x) dµ(x), y → +0,

for any φ ∈ CB = C(R) ∩ L∞(R). We have

f(z) =

∫
dµ(ξ)/(ξ − z), Im z > 0,(3.3.4) ∫

dµ(ξ) = lim
y→+∞

y Im f(iy) = lim
z→∞

−zf(z),(3.3.5)

where z → ∞ with the argument bounded away from 0 and π. If dµ is a bounded
measure and f is defined by (3.3.4) then (3.3.3) and (3.3.5) hold.

Proof. Let Lc denote the line Im z = c, oriented in the direction of increasing Re z.
If 0 < c < Im z, the reflection z∗ of z in Lc is below Lc, and (z∗+z)/2 = ic+(z+z̄)/2,
so z − z∗ = z − z̄ − 2ic and

ζ − z∗ = ζ∗ − z∗ = ζ̄ − z̄, if ζ ∈ Lc.

If we apply Cauchy’s integral formula to a large half disc in the upper half plane
with the straight boundary on Lc, we obtain when the radius → ∞

f(z) = (2πi)−1

∫
Lc

f(ζ)(1/(ζ − z)− 1/(ζ − z∗)) dζ

= (Im z − c)/π

∫
Lc

f(ζ)|ζ − z|−2 dζ, hence

Im f(z) = (Im z − c)/π

∫
Lc

Im f(ζ)|ζ − z|−2 dζ.
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If we multiply by Im z and let Im z → ∞ keeping Re z fixed, it follows from (3.3.2)
and Fatou’s lemma that

π−1

∫ ∞

−∞
Im f(ξ + ic) dξ ≤ C.

Hence, by Theorem 2.6.24, we can choose a sequence cn → 0 such that

limπ−1 Im f(ξ + icn) dξ = dµ(ξ)

exists weakly, that is, in the weak∗ topology in the dual space of the space of
continuous functions vanishing at infinity, with the maximum norm. Passing to the
limit in the preceding formulas we obtain

Im f(z) = Im z

∫
|ξ − z|−2 dµ(ξ).

The difference between the two sides in (3.3.4) is a constant since the imaginary
part is 0, and letting z → ∞ along the imaginary axis we conclude that the constant
is 0, so (3.3.4) is valid.

Whenever (3.3.4) holds, multiplication by φ ∈ CB and integration gives

π−1

∫
φ(x) Im f(x+ iy) dx =

∫
dµ(ξ)y/π

∫
|ξ−x− iy|−2φ(x) dx→

∫
φ(ξ) dµ(ξ).

To justify this we note that

y/π

∫
|ξ − x− iy|−2φ(x) dx = π−1

∫
(1 + t2)−1φ(ξ + ty) dt

is bounded by sup |φ| and converges to φ(ξ) when y → 0 by the dominated con-
vergence theorem. In the same way we justify the limit of the repeated integral.
Thus ∫

φ(x) Imπ−1f(x+ iy) dx→
∫
φ(x) dµ(x), y → +0, if φ ∈ CB .

Since (3.3.5) follows at once from the representation formulas for f and Im f , the
lemma is proved.

If we apply Lemma 3.3.2 to f(z) = (R(z)u, u), u ∈ H, which satisfies (3.3.2)
with C = ∥u∥2, we conclude that for u = v the limit

(3.3.6)

e(u, v, φ) = lim
y→+0

(2πi)−1

∫
(R(x+ iy)u−R(x− iy)u, v)φ(x) dx

= lim
y→+0

y/π

∫
(R(x+ iy)u,R(x+ iy)v)φ(x) dx

exists if φ ∈ CB and is a measure with norm ≤ ∥u∥2. (The second equality follows
from (3.2.4).) Thus

|e(u, u, φ)| ≤ ∥u∥2 sup |φ|, e(u, u, φ) ≥ 0 if φ ≥ 0,(3.3.7)

e(u, v, φj) → e(u, v, φ) if φj → φ pointwise and boundedly,(3.3.8)
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by which we shall mean that there is a constant C such that |φj | ≤ C for every
j, and that φj(x) → φ(x) for every x when j → ∞. Here φ,φj ∈ CB . We obtain
(3.3.8) from (3.3.7) and the dominated convergence theorem when u = v. The
statement for arbitrary u, v follows, for if S(u, v) is linear in u, antilinear in v, then

4S(u, v) = S(u+ v, u+ v)−S(u− v, u− v) + iS(u+ iv, u+ iv)− iS(u− iv, u− iv).

(This is called polarization.) Instead of (3.3.7) we only obtain by first considering
the case where ∥u∥ = ∥v∥ = 1

(3.3.7)′ |e(u, v, φ)| ≤ 2∥u∥∥v∥ sup |φ|; u, v ∈ H, φ ∈ CB.

The factor 2 will be removed later on.
Next we shall prove that

(3.3.9) e(u, v, 1) = (u, v).

To do so we may assume that u, v ∈ DA, for this is a dense set and e(u, v, 1) is a
continuous function of u and v. But then we have

(A− zI)u = Au− zu, hence u = R(z)Au−R(z)zu,

so it follows that

R(z)u = −u/z +R(z)Au/z = −u/z +O(|z|−2), if z → ∞, with Re z fixed.

In view of (3.3.5) this proves (3.3.9) when u = v ∈ DA. By polarization we obtain
(3.3.9) for arbitrary u, v ∈ DA.

If u ∈ DA we have already observed that R(z)Au = u+zR(z)u. Taking z = x±iy
with x real and y > 0, we obtain

(R(x+ iy)−R(x− iy))Au = x(R(x+ iy)−R(x− iy))u+ iy(R(x+ iy)+R(x− iy))u,

which implies that when φ ∈ CB and φ1(λ) = λφ(λ) ∈ CB

e(Au, v, φ) = e(u, v, φ1) + lim
y→+0

∫
y

2π
((R(x+ iy) +R(x− iy))u, v)φ(x) dx.

Now we have

π−1|y|
∫

∥R(x+ iy)u∥2 dx→ e(u, u, 1) = ∥u∥2, y → 0,

and φ is square integrable, so it follows by Cauchy-Schwarz’ inequality that the
integral converges to 0. Hence
(3.3.10)
e(Au, v, φ) = e(u, v, φ1), if u ∈ DA, v ∈ H, φ, φ1 ∈ CB , and φ1(λ) = λφ(λ).

If 0 ≤ φ ∈ CB has compact support, two applications of this result give

e(Au,Au, φ) = e(u, u, λ2φ), u ∈ DA.
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Letting φ ↗ 1 we obtain if e also denotes the extension of the positive measure
φ 7→ e(u, u, φ)

(3.3.11) e(u, u, λ2) = ∥Au∥2 <∞, u ∈ DA.

The converse of (3.3.11) stating that u ∈ DA if e(u, u, λ2) <∞ will be proved later.
Before proceeding we sum up what has been proved so far concerning the trilinear

form e(u, v, φ); u, v ∈ H, φ ∈ CB ; defined by (3.3.6):

(i) e(u, v, φ) is linear in u and in φ, antilinear in v, and has the hermitian
symmetry property

(3.3.12) e(u, v, φ) = e(v, u, φ̄); u, v ∈ H, φ ∈ CB .

(ii) The continuity properties (3.3.7), (3.3.7)′, (3.3.8) are valid.
(iii) e(u, v, 1) = (u, v); u, v ∈ H.
(iv) If u ∈ DA, v ∈ H, φ,φ1 ∈ CB , φ1(λ) = λφ(λ), then

e(Au, v, φ) = e(u, v, φ1).

From these properties we have already derived (3.3.11). Our next step is to extend
the definition of e(u, v, φ) to a wider class of functions φ, namely the smallest class
B of bounded functions containing CB which has the property

(B)
If φ1, φ2, · · · ∈ B, |φj | ≤ C for some C and all j,

φj(λ) → φ(λ) for every λ as j → ∞, then φ ∈ B.

This is the algebra of bounded Borel measurable functions. Clearly B is a Banach
space with the sup norm, for it is a closed linear subspace of l∞(R). Every φ ∈ B
is measurable with respect to every measure on R, for the set of functions in B
having this property satisfies (B) and contains CB , and B is minimal. In the same
way we conclude that B is an algebra and that all properties (i)–(iv) are valid if
φ ∈ B.

For fixed φ ∈ CB and u ∈ H, the map

v 7→ e(u, v, φ)

is an antilinear form with norm ≤ 2∥u∥ sup |φ|, so there is a unique element Aφu ∈
H such that

(3.3.13) e(u, v, φ) = (Aφu, v); u, v ∈ H, φ ∈ B.

Aφ is obviously a linear operator and

(3.3.7)′′ ∥Aφ∥ ≤ 2 sup |φ|.

In view of (3.3.12) it is also clear that A∗
φ = Aφ̄. From (3.3.8) it follows that

Aφju → Aφu in the weak topology for every u ∈ H if φj → φ pointwise and
boundedly; this will be improved below.
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Let φ be a continuous function with compact support, and define φk by φk(λ) =
λkφ(λ). It follows from (iv) that

(Aφu,Av) = e(u,Av, φ) = e(u, v, φ1) = (Aφ1u, v); v ∈ DA, u ∈ H.

Hence Aφu is in the domain of A and AAφ = Aφ1 . Iteration gives AkAφ = Aφk

for every k. For every polynomial p, the product p(A)Aφ is therefore well defined
and equal to Apφ. From this we shall deduce

(3.3.14) Aψφ = AψAφ; ψ,φ ∈ B.

To do so we first assume that φ and ψ are continuous functions with compact
support, and we choose another such function χ which is real valued and equal to
1 on the supports of ψ and of φ. If p is a polynomial, we have

(Aφu,Apχv) = (Aφu, p(A)Aχv) = (p̄(A)Aφu,Aχv) = (Ap̄φu,Aχv).

Now choose a sequence of polynomials pj such that p̄jχ → ψ uniformly, hence
p̄jφ→ ψφ uniformly. Then we conclude that

(Aφu,A
∗
ψv) = (Aψφu,Aχv).

Letting χ→ 1 boundedly and using that A1 = I, we conclude that

(AψAφu, v) = (Aψφu, v),

which proves (3.3.14) for continuous functions with compact support.
Now the set of all ψ ∈ B such that (3.3.14) is valid for every continuous φ with

compact support satisfies (B) and contains CB , so it must be equal to B. Repeating
the same argument with the roles of φ and ψ reversed, we obtain (3.3.14) for all
φ,ψ ∈ B.

An immediate consequence is that

(3.3.15) ∥Aφ∥ ≤ sup |φ|, φ ∈ B.

In fact, if M = sup |φ| then
(Aφu,Aφu) = (A|φ|2u, u) = e(u, u, |φ|2) ≤ e(u, u,M2) =M2(u, u).

The factor 2 has thereby been removed from (3.3.7)′ and (3.3.7)′′. Next we note
that

(3.3.16) ∥Aφju−Aφu∥ → 0 if φj → φ pointwise and boundedly.

This follows from (3.3.8) since the square of the norm on the left-hand side is

(A|φj−φ|2u, u) = e(u, u, |φj − φ|2).
We can also prove a converse of (3.3.11) promised above. Thus assume that

e(u, u, λ2) is finite. Let 0 ≤ φ ≤ 1 be continuous with compact support. Then
AAφu = Aφ1u if φ1(λ) = λφ(λ), hence

∥AAφu∥2 = e(u, u, φ2
1).

If we take a sequence of such functions φν increasing to 1, it follows that

∥AAφνu−AAφµu∥2 = e(u, u, (φν − φµ)2λ2) → 0, as ν, µ→ ∞.

Hence f = limν→∞AAφνu exists, and since Aφνu→ u, it follows that u ∈ DA and
that Au = f . Thus we have proved the converse of (3.3.11) and in fact also that

(3.3.17)
if e(u, u, λ2) <∞, then u ∈ DA and Au = limAAφνu, if B ∋ φν → 1

pointwise and boundedly, and λφν(λ) is bounded for every ν.

We are now ready to give a first version of the spectral theorem.
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Theorem 3.3.3. Given a self-adjoint operator A in H, there exists a unique homo-
morphism α from the algebra B of bounded Borel measurable functions to L(H,H)
such that

(i) α(φ̄) = α(φ)∗, φ ∈ B;
(ii)′ ∥α(φ)∥ ≤ sup |φ|, thus ∥α(φj)− α(φ)∥ → 0 if φj → φ uniformly;
(ii)′′ If B ∋ φj → φ pointwise and boundedly, then ∥α(φj)u − α(φ)u∥ → 0 for

every u ∈ H;
(iii) α(φ1) = Aα(φ) if φ,φ1 ∈ B and φ1(λ) = λφ(λ).

An element u ∈ H is in the domain DA of A if and only if there is an upper bound
for ∥α(φ1)u∥ when φ1(λ) = λφ(λ) and 0 ≤ φ ≤ 1 has compact support. In that
case Au is the limit of α(φν1)u if we take a sequence φν converging to 1 everywhere,
such that φν has compact support and 0 ≤ φν ≤ 1.

Proof. It only remains to prove that (i)–(iii) determine α uniquely. Let Im z ̸= 0
and set Rz(λ) = (λ− z)−1. Then we have α(Rz) = R(z). In fact, since λRz(λ) =
1 + zRz(λ) we obtain from (iii)

Aα(Rz) = I + zα(Rz),

that is, (A − zI)α(Rz) = I. Hence α(Rz) = R(z). If dµ is the measure φ 7→
(α(φ)u, u) for some fixed u ∈ H, this means that∫

(λ− z)−1 dµ(λ) = (R(z)u, u).

But then the proof of Lemma 3.3.2 shows that dµ is the limit as y → +0 of
Im(R(x+ iy)u, u) dx/π, which proves the uniqueness.

Definition 3.3.4. A homomorphism B → L(H,H) with the properties (i)–(ii) in
Theorem 3.3.3 is called a spectral measure on R.

The conditions (i)–(ii) are somewhat redundant. In particular, by (i)

α(|φ|2) = α(φ)α(φ̄) = α(φ)α(φ)∗

is a positive operator, thus α(φ) is positive for every φ ≥ 0 in B. Since α(M) =MI
if M is a constant, the bound ∥α(φ)∥ ≤ sup |φ| follows immediately.

Given any spectral measure we shall now see how to obtain a corresponding
self-adjoint operator. More generally, we shall discuss how to define α(φ) as a
possibly unbounded operator if φ is any Borel measurable function which is finite
everywhere. We introduce as before for φ ∈ B

e(u, v, φ) = (α(φ)u, v),

which is a positive measure when u = v. Its extension to arbitrary positive Borel
measurable functions is denoted by ẽ(u, u, φ). Note that if φ ∈ B we have

∥α(φ)u∥2 = (α(|φ|2)u, u) = e(u, u, |φ|2).

For a general finite Borel measurable φ it is therefore natural to define the domain
of α(φ) as the set of all u ∈ H such that

(3.3.18) ẽ(u, u, |φ|2) <∞.
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When this condition is fulfilled we take any sequence φj ∈ B such that φj → φ
pointwise and |φj | ≤ Φ for some Φ with ẽ(u, u,Φ2) < ∞. For example, we can
define φj(λ) = φ(λ) if |φ(λ)| ≤ j and φj(λ) = 0 otherwise, taking Φ = |φ|. Then
α(φj)u has a limit, for

∥(α(φj)− α(φk))u∥2 = ẽ(u, u, |φj − φk|2) → 0

by the dominated convergence theorem. The limit is clearly independent of the
chosen sequence, for two sequences can be mixed alternatingly and we still have
convergence. We can therefore define α(φ)u to be the limit of α(φj)u. Since the
domain of α(φ) defined by (3.3.18) is obviously linear and α(φj) is linear, it follows
that α(φ) is a linear operator.

The domain of α(φ) is dense. For if χn is the characteristic function of the set
where |φ| ≤ n, then 0 ≤ χn ↗ 1 as n → ∞, so α(χn)u → u for every u ∈ H. On
the other hand, the definition of α(φ) shows at once that the range of α(χn) is in
the domain of α(φ) and that α(φ)α(χn) is the bounded operator α(φχn).

The adjoint of α(φ) is equal to α(φ̄). In fact,

(α(φχn)u, v) = (u, α(φ̄χn)v); u, v ∈ H;

since φχn is bounded. If u and v are in the domains of α(φ) and α(φ̄), it follows
when n→ ∞ that (α(φ)u, v) = (u, α(φ̄)v). On the other hand, assume that

(α(φ)u, v) = (u, f), ∀ u ∈ Dα(φ),

while a priori we only know that v, f ∈ H. Then we obtain

(α(φ)α(χn)u, v) = (α(χn)u, f), ∀ u ∈ H.

Since the left-hand side is equal to (α(φχn)u, v) and φχn is bounded, it follows
that α(φ̄χn)v = α(χn)f . Hence

e(v, v, |φχn|2) = e(f, f, |χn|2) ≤ ∥f∥2.

When n → ∞ we obtain e(v, v, |φ|2) < ∞. Thus v is in the domain of α(φ̄). We
have therefore proved that α(φ) is a closed densely defined operator with adjoint
α(φ̄). In particular, α(φ) is self-adjoint if φ is real valued.

It is immediately verified that

α(φ)α(ψ)u = α(φψ)u, if u ∈ Dα(ψ) ∩ Dα(φψ).

Hence condition (iii) in Theorem 3.3.3 is fulfilled if we take A = α(φ), where
φ(λ) = λ. We have therefore established a bijective correspondence between self-
adjoint operators and spectral measures.

Just as a positive measure on the real line can be described completely by means
of an increasing function, we can also describe a spectral measure completely in
terms of the operators

Eλ = α(φλ); φλ(t) =

{
1, when t < λ,

0, when t ≥ λ.
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We have

Eλ is an orthogonal projection, EλEµ = Emin(λ,µ),(3.3.19)

Eλf → Eµf if λ↗ µ; f ∈ H,(3.3.20)

Eλf → 0 if λ→ −∞; Eλf → f if λ→ +∞; f ∈ H.(3.3.21)

(3.3.19) shows that the spaces EλH increase with λ. Conversely, given projections
Eλ with these properties we can define α(φ) first for step functions which are
continuous to the right, and prove that the properties of a spectral measure are valid
then. The definition is then extended as in the definition of the Riemann integral
to all continuous functions with compact support. Since e(u, u, φ) = (α(φ)u, u)
is then defined for u ∈ H and all continuous φ with compact support, and is a
measure with total mass ∥u∥2, we can extend the definition as before to all Borel
measurable bounded functions. It is immediately verified using (3.3.21) that the
complete spectral measure thus obtained gives back the projections we started from.
This justifies the use of the formal notation

α(φ) =

∫
φ(λ) dEλ,

analogous to the notation for the Stieltjes integral. In particular, the operator A is
written in the form

A =

∫
λ dEλ.

The domain of α(φ) consists of all u with

(3.3.18)′
∫

|φ(λ)|2 d∥Eλu∥2 <∞.

This integral is also equal to ∥α(φ)u∥2.

Example 3.3.5. Let M be a locally compact topological space and dµ a positive
measure on M . Take H = L2(dµ). If a is any real valued function on M which is
measurable with respect to dµ, we define an operator A so that

Au = f means that u, f ∈ L2(dµ), and au = f.

It is clear that A is self-adjoint. The corresponding spectral measure α assigns
to the Borel function φ the operator corresponding to multiplication by φ(a). In
particular, the projection Eλ is multiplication by the characteristic function of the
set where a < λ. IfM = R and a(ξ) = ξ, the projection Eλ is multiplication by the
characteristic function of (−∞, λ). Note that the eigenvalues correspond to points
where dµ has positive mass — or in the general case level surfaces of a which have
a positive measure for dµ. There may of course be no eigenvalues at all.

Example 3.3.6. Let P (D), D = −i∂/∂x, be a partial differential operator in Rn

with constant coefficients such that P (ξ) is real for ξ ∈ Rn. We define Au = f if
u, f ∈ H = L2(Rn) and f = P (D)u in the sense of distribution theory. The Fourier
transformation F : H → H is a unitary operator when properly normalized, and the
transformed operator FAF−1 is multiplication by P (ξ) as in Example 3.3.5. This
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shows that the projections Eλ can be written as convolution with the inverse Fourier
transform of the characteristic function of the set where P (ξ) < λ, multiplied by a
constant factor.

For differential operators with variable coefficients or operators in subsets of Rn,
spectral theory consists in developing a substitute for the Fourier transformation
which will transform the operator to the special form discussed in Example 3.3.5.
We shall study two elementary examples.

Example 3.3.7. Let 0 ≤ p ∈ C0(R). With H = L2(R+) we denote by A the
operator defined by Au = −u′′ + pu when u is in

DA = {u ∈ C1(R+) ∩H;u(0) = 0, u′′ ∈ H in the sense of distribution theory}.

(That u′′ ∈ L2 in the sense of distribution theory means precisely that u′ is abso-
lutely continuous and that u′′, defined pointwise, is in L2.) We leave as an exercise
for the reader to verify that A is self-adjoint and positive if p = 0 (cf. Example
3.2.2). Since u 7→ pu is positive, bounded and self-adjoint, it follows that this re-
mains true when 0 ≤ p ∈ C0(R). There is no eigenfunction with eigenvalue 0, for if
u ∈ DA, Au = −u′′ + pu = 0, then u is a linear function for large t, which must be
0 since u ∈ H. Hence u is identically 0 by the uniqueness theorem for the Cauchy
problem. In the same way we conclude that there is no positive eigenvalue either.

To determine the spectral measure we can therefore concentrate on studying
e(u, v, φ) when φ is continuous and has compact support in (0,∞). To do so we
shall examine the resolvent of A. If f ∈ C0(R+) and Im z > 0, then u = R(z)f
means that

(3.3.22) −u′′ + pu− zu = f, u(0) = 0,

so this equation must have a unique solution in H. When t is large, u is a solution
of the homogeneous equation −u′′ − zu = 0, so u must be a linear combination of
exp(it

√
z) and exp(−it

√
z) then. But one of these is exponentially increasing so it

is ruled out since u ∈ L2. If
√
z is defined so that the imaginary part is positive,

it follows that R(z)f is the unique solution of (3.3.22) which for large t is of the
form C exp(it

√
z). We shall now show that R(x + iy)f has a limit when y → +0,

although it will not belong to H.
The solution of the Cauchy problem

(3.3.23) −v′′ + pv − zv = f, v(0) = v′(0) = 0

depends continuously on z, and for large t it is of the form

C+(z) exp(it
√
z) + C−(z) exp(−it

√
z).

Here C+ and C− are continuous functions of z when Im z ≥ 0, if
√
z is in the first

quadrant. The solution of the Cauchy problem for the homogeneous equation

(3.3.24) −w′′ + pw − zw = 0, w(0) = 0, w′(0) = 1,

is for large t of the form

A+ exp(it
√
z) +A− exp(−it

√
z)
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where A+ and A− are also continuous functions of z. (We assume that z ̸= 0.)
When z > 0 the coefficients A+ and A− are complex conjugates since w is real,
and since w is not identically 0 neither one can be 0 then. Hence A− ̸= 0 in a
neighborhood of R+. When z is in this neighborhood and Im z > 0, it follows that

u = R(z)f = v − C−w/A−.

When Im z > 0 and z → λ > 0 it follows that R(z)f converges to v − C−w/A−,

which is proportional to eit
√
λ for large t. We shall now determine this solution

fairly explicitly.
We want to write the desired solution of (3.3.22) with z = λ > 0 in the form

u(t) =

∫ ∞

0

Kλ(t, s)f(s) ds.

This requires that

Kλ(0, s) = 0; Kλ(t, s) is proportional to e
it
√
λ for large t,(3.3.25)

(− d2

dt2
+ p− λ)Kλ(t, s) = 0 when t ̸= s;

Kλ(s− 0, s) = Kλ(s+ 0, s),
dKλ(s− 0, s)

dt
= 1 +

dKλ(s+ 0, s)

dt
.

(3.3.26)

((3.3.26) means of course that (−d2/dt2 + p− λ)Kλ(t, s) = δ(t− s) in the sense of
distribution theory.) Let wλ(t) be the solution of −u′′+pu−λu = 0 which is equal

to exp(it
√
λ) for large t. Clearly wλ and w̄λ are linearly independent so they form

a basis for the solutions of this linear differential equation. We can now rewrite
(3.3.25), (3.3.26) as follows:

Kλ(t, s) = a(s)wλ(t) + b(s)wλ(t), t < s; Kλ(t, s) = c(s)wλ(t), t > s;

awλ(0) + bwλ(0) = 0, awλ(s) + bwλ(s)− cwλ(s) = 0,

aw′
λ(s) + bw′

λ(s)− cw′
λ(s) = 1.

To solve these equations for a(s), b(s), c(s) we recall that the Wronsky determinant
is a constant, thus ∣∣∣∣wλ(s) wλ(s)

w′
λ(s) w′

λ(s)

∣∣∣∣ = 2i
√
λ

since this is true for large s. (That the determinant is constant follows if one
differentiates each row and takes the differential equation into account.) This gives

c(s) = (wλ(s)wλ(0)− wλ(0)wλ(s))/2i
√
λwλ(0)

which is the only coefficient that we shall need.

Since R(z̄)f = R(z)f̄ , because A is real, the limit of R(z)f as z → λ > 0 from

the lower half plane is
∫
Kλ(t, s)f(s) ds. Hence (see (3.3.6))

e(u, v, φ) = lim
y→+0

(2πi)−1

∫
((R(λ+ iy)−R(λ− iy))u, v)φ(λ) dλ

= π−1

∫∫∫ (
ImKλ(t, s)

)
u(s)v(t)φ(λ) dλ ds dt,
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if u, v, φ ∈ C0(R+). Here

ImKλ(t, s) = (c(s)wλ(t)− c(s)wλ(t))/2i,

when t > s. But ImK(t, s) and d ImK(t, s)/dt are continuous when t = s, so this
is true for all s and t. Hence

ImKλ(s, t) = (c(s)wλ(t)− c(s)wλ(t))/2i

= c(s)(wλ(t)− wλ(0)wλ(t)/wλ(0))/2i = e(t, λ)e(s, λ)/4
√
λ,

where
e(s, λ) = wλ(s)− wλ(0)wλ(s)/wλ(0).

This is the unique solution of the differential equation −u′′ + pu − λu = 0 with

u(0) = 0 which for large s is of the form eit
√
λ + Cλe

−it
√
λ, where Cλ is a constant

(of absolute value 1). Summing up, we have found that

(3.3.27) e(u, v, φ) =

∫ ∞

0

u(s)e(s, λ) v(t)e(t, λ)φ(λ) ds dt dµ(λ),

where dµ(λ) = dλ/4π
√
λ = d(

√
λ/2π). Here it is assumed that u, v, φ ∈ C0(R+).

(3.3.27) suggests that one should introduce

(3.3.28) ũ(λ) =

∫ ∞

0

u(s)e(s, λ) ds, λ > 0; u ∈ C0(R+).

This can be regarded as a generalized Fourier (or rather sine) transform. We can
now write (3.3.27) in the form

(3.3.27)′ e(u, v, φ) =

∫ ∞

0

ũ(λ)ṽ(λ)φ(λ) dµ(λ).

Taking u = v and letting φ↗ 1 on R+, we obtain

e(u, u, φ) =

∫ ∞

0

|ũ(λ)|2 dµ(λ),

if φ is the characteristic function of R+. Since A ≥ 0 the left-hand side is 0 if φ is
replaced by the characteristic function of R−, and since A has no eigenfunction cor-
responding to the eigenvalue 0, the same is true if φ is replaced by the characteristic
function of the origin. Hence

∥u∥2 = e(u, u, 1) =

∫ ∞

0

|ũ(λ)|2 dµ(λ).

The map u 7→ ũ can therefore be extended by continuity to an isometric linear
map U : H → L2(R+, dµ). It remains to prove that it is surjective and that it
transforms A to multiplication by λ.

If φ ∈ B we have

(Aφu, v) = e(u, v, φ) =

∫ ∞

0

ũ(λ)ṽ(λ)φ(λ) dµ(λ); u, v ∈ H.
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On the other hand, the isometry of U gives∫ ∞

0

f(t)v(t) dt =

∫ ∞

0

f̃(λ)ṽ(λ) dµ(λ); f, v ∈ H;

so Ãφu must be the projection in L2(R+, dµ) of φũ on the range of U . Since

∥Ãφu∥2 = ∥Aφu∥2 = e(u, u, |φ|2) =
∫

|ũ|2|φ|2 dµ =

∫
|φũ|2 dµ,

it follows that Ãφu is equal to φũ, for the norm would otherwise be smaller. This
implies that the range of U is invariant under multiplication by functions in B. For
every λ > 0 we can choose u ∈ C0(R) with ũ(λ) ̸= 0. Using a partition of unity we
conclude that the range of U contains C0(R+), so it must be equal to L2(R+, dµ).

Summing up, we have therefore proved that the closure of the map u 7→ ũ
defined by (3.3.28) is a unitary operator U : H → L2(R+, dµ), and that UAU−1 is
multiplication by λ as in Example 3.3.5.

The same method can be used in principle to study the Schrödinger equation
for many variables when the potential is sufficiently small at infinity. However, the
technicalities are of course more difficult then. We shall instead give an example
showing how the method can be used with strikingly different conclusions when the
potential is periodic.

Example 3.3.8. Let p ∈ C(R) be real valued and periodic with period 1. With
H = L2(R) define Au = −u′′ + pu with the domain

DA = {u ∈ C1(R) ∩H;u′′ ∈ H in the sense of distribution theory}.

Since u 7→ pu is bounded and self-adjoint, it is clear by Example 3.3.6 that A is
self-adjoint. To study the resolvent we take f ∈ C0(R) and look when Im z > 0 for
the solution of

(3.3.29) −u′′ + pu− zu = f, u ∈ L2(R).

Outside a compact set we have a solution of the homogeneous differential equation,
and we introduce a basis for such solutions,

(3.3.30) −u′′j + puj − zuj = 0 on R;

(
u0 u1
u′0 u′1

)
=

(
1 0
0 1

)
at 0.

The solutions uj(t, z) are analytic functions of z ∈ C, and the determinant of the
Wronsky matrix

W (t, z) =

(
u0(t, z) u1(t, z)
u′0(t, z) u′1(t, z)

)
is independent of t, hence equal to 1. If u is a solution of the homogeneous equation
−u′′ + pu− zu = 0, then (

u(t)
u′(t)

)
=W (t, z)

(
u(0)
u′(0)

)
,
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so the periodicity of p gives for every integer n

(3.3.31) W (t+ n, z) =W (t, z)W (n, z) =W (t, z)W (1, z)n.

Since the product of the eigenvalues ofW (1, z) is equal to 1, there is an eigenvalue τ
with |τ | ≤ 1. We shall show that |τ | < 1 if Im z ̸= 0. To do so we choose (a, b) ∈ C2

with |a|2+|b|2 = 1 andW (1, z)

(
a
b

)
= τ

(
a
b

)
, and let u(t) = au0(t)+bu1(t). Since

u(t+n) = τnu(t) for integers n, it follows if we multiply the equation−u′′+pu−zu =
0 by ū and integrate from 0 to a positive integer N that

0 = u′(0)u(0)− u′(N)u(N) +

∫ N

0

(p− z)|u|2 dt+
∫ N

0

|u′(t)|2 dt,

Im (u′(0)u(0)− u′(N)u(N)) = Im z

∫ N

0

|u|2 dt = Im z

∫ 1

0

|u|2 dt
N−1∑
0

|τ |2n.

When N → ∞ we conclude that |τ | < 1 and that

| Im z|/(1− |τ |2) ≤ C

when |z| is bounded. Hence the difference between the eigenvalues of W can be
bounded from below,

(3.3.32) |τ − 1/τ | = |(τ2 − 1)/τ | ≥ (1− |τ2|)/|τ | ≥ | Im z|/(C|τ |).

The characteristic root τ(z) in the unit disc is therefore an analytic function in the
upper half plane. The characteristic equation det (W (1, z)−τI) = 0 can be written

τ2 − 2γ(z)τ + 1 = 0, 2γ(z) = u0(1, z) + u′1(1, z)

with roots γ(z)±
√
γ2 − 1. It follows that γ(z) ̸= ±1 when Im z ̸= 0, and (3.3.32)

shows that 1 − γ2 can at most have double zeros on the real axis. When λ ∈ R
and γ(λ) = 1, then the equation −u′′ + pu − λu = 0 has a non-trivial solution
with period 1, and when γ(λ) = −1 there is one with u(t + 1) = −u(t), hence
u(t+2) = u(t). There is no eigenfunction ∈ L2, for if γ(λ) = ±1 then the equation
−u′′+pu−λu = 0 has either two linearly independent periodic solutions or else one
which is periodic and one for which u(t + 1) ∓ u(t) is periodic and not identically
0, which implies that u cannot be in L2.

When Im z > 0 we denote by u±(t, z) solutions of the equation −u′′+pu−zu = 0
with

(3.3.33) u±(t+ 1, z) = τ(z)±1u±(t, z),

normalized so that the Wronsky determinant is 1,

(3.3.34)

∣∣∣∣u+ u−
u′+ u′−

∣∣∣∣ = 1.
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This can be done continuously when Im z ≥ 0 and τ(z)2 ̸= 1. When Im z > 0 the
solution of (3.3.29) is given by

u(t) =

∫ ∞

−∞
Kz(t, s)f(s) ds,(3.3.35)

Kz(t, s) =

{
u−(s, z)u+(t, z), if t > s,

u+(s, z)u−(t, z), if t < s.
(3.3.36)

In fact, Kz(t, s) decreases exponentially when t→ ±∞, (−d2/dt2+p−z)Kz(t, s) =
0 when t ̸= s, K(t, s) is continuous also when t = s, and

dKz(s− 0, s)/dt− dKz(s+ 0, s)/dt = u+(s, z)u
′
−(s, z)− u−(s, z)u

′
+(s, z) = 1

by (3.3.34). This shows that u satisfies (3.3.29) and there is no other solution
since every solution au+ + bu− ̸≡ 0 of the homogeneous equation is exponentially
increasing either at +∞ or at −∞.

If φ ∈ C0(R) and γ2(λ) ̸= 1 when λ ∈ suppφ, we obtain for u, v ∈ C0(R) (see
(3.3.6))

(3.3.37)

e(u, v, φ) = lim
y→+0

1

2πi

∫ (
(R(λ+ iy)−R(λ− iy))u, v

)
φ(λ) dλ

=
1

π

∫∫∫
ImKλ+i0(t, s)u(s)v(t)φ(λ) dλ ds dt.

Now
ImKλ+i0(t, s) = (u−(s, λ)u+(t, λ)− u−(s, λ)u+(t, λ))/2i,

for this is true when t > s and t 7→ ImKλ+i0(t, s) is a solution of the homogeneous
differential equation on all of R. At a point with γ(λ)2 > 1, the characteristic roots
are real so u± can be chosen real, hence ImKλ+i0(t, s) = 0 then. This means that
there is no spectrum in such intervals, which we could also see right away from the
fact that Kλ(t, s) is then the kernel of a bounded operator in L2, so the resolvent
exists also at λ. In intervals where γ(τ)2 < 1 the eigenvalues ofW (1, λ) are complex
conjugates, so

u−(s, λ) = cu+(s, λ).

Hence u+ and u+ are a basis for the solutions of −u′′ + pu− λu = 0. The normal-
ization condition (3.3.34) becomes

c̄

∣∣∣∣u+ ū+
u′+ ū′+

∣∣∣∣ = 1, −c−1

∣∣∣∣u− ū−
u′− ū′−

∣∣∣∣ = 1,

which shows that c is purely imaginary and that

2i ImKλ+i0(t, s) =
u+(t, λ)u+(s, λ)∣∣∣∣u+ ū+

u′+ ū′+

∣∣∣∣ − u−(t, λ)u−(s, λ)∣∣∣∣u− ū−
u′− ū′−

∣∣∣∣ .

When φ(λ) dλ tends to the Dirac measure at λ it follows from (3.3.37) that∫∫
ImKλ+i0(t, s)v(s)v(t) ds dt ≥ 0,
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and choosing v ∈ C0(R) with
∫
u−(t, λ)v(t) dt = 0 or

∫
u+(t, λ)v(t) dt = 0, we

conclude that

2i

∣∣∣∣u+ ū+
u′+ ū′+

∣∣∣∣ > 0, 2i

∣∣∣∣u− ū−
u′− ū′−

∣∣∣∣ < 0.

We can therefore change the normalization of u± so that instead of (3.3.34)

(3.3.38) 2i

∣∣∣∣u+ ū+
u′+ ū′+

∣∣∣∣ = 1, 2i

∣∣∣∣u− ū−
u′− ū′−

∣∣∣∣ = −1.

With that convention we can write (3.3.37) in the form

e(u, v, φ) =

∫
Σ

ũ+(λ)ṽ+(λ)φ(λ) dλ/π +

∫
Σ

ũ−(λ)ṽ−(λ)φ(λ) dλ/π,

where

Σ = {λ ∈ R; γ(λ)2 < 1}, ũ±(λ) =

∫
u(t)u±(t, λ) dt

provided that φ ∈ C0(R) and γ(λ)2 ̸= 1 in the support. Since we know that
the isolated zeros of γ(λ)2 − 1 carry no spectral measure, it follows when we let
φ(λ) ↗ 1 that

∥u∥2 =

∫
Σ

(|ũ+(λ)|2 + |ũ−(λ)|2) dλ/π.

As in the preceding example we conclude that the closure of the map C0(R) ∋
u 7→ (ũ+, ũ−) is a unitary map U : L2(R) → L2(Σ, dλ/π)⊕ L2(Σ, dλ/π), and that
UAU−1 is multiplication by λ. We leave for the reader to prove this by recalling
the arguments used in the preceding example.

It is instructive to consider the trivial case p = 0. Then

u0(t) = cos (t
√
z), u1(t) = sin (t

√
z)/

√
z,

W0(1, z) =

(
cos (

√
z) sin (

√
z)/

√
z

−
√
z sin (

√
z) cos (

√
z)

)
,

γ(z) = cos (
√
z), τ(z) = ei

√
z, u±(t, λ) = e±it

√
λ/(2

4
√
λ).

Hence ũ±(λ) = û(±
√
λ)/(2 4

√
λ) and∫

(|ũ+|2 + |ũ−|2) dλ/π =

∫ ∞

−∞
|û(τ)|2 dτ/2π,

where û is the Fourier transform of u, so we have just obtained Parseval’s formula.
In this example the equation γ(λ) = 1 has a simple root λ = 0 and double roots
λ = (2kπ)2, where k is a positive integer. The equation γ(λ) = −1 has the double
roots λ = ((2k−1)π)2. These alternate and are all the real zeros of det (W (2, λ)−I).
By a continuity argument using the fact that the zeros of γ(λ)2 − 1 can be at most
double, one obtains in general: The zeros of det (W (2, λ)−I), that is, the eigenvalues
of −u′′ + pu on the interval [0, 2] with periodic boundary conditions are

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . ;
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γ = −1 at λ1+4k, λ2+4k and γ < −1 in between; γ = 1 at λ3+4k, λ4+4k and γ > 1 in
between. In (λ4k, λ4k+1) we have Im τ > 0, and in (λ4k+2, λ4k+3) we have Im τ < 0.
The spectrum consists of the closure of the union Σ of these intervals.

Finally, we give an example showing how one can often prove self-adjointness
for the Schrödinger equation with many variables with the singularities which are
natural in the many-body problem.

Example 3.3.9. For the quantummechanical two body problem with Coulomb force,
the Schrödinger operator in L2(R3) is the sum of a kinetic energy part

H0 =

3∑
1

D2
j , Dj = −i∂/∂xj ,

and a potential part
V = γ|x|−1.

We have seen in Example 3.3.6 that H0 defines a self-adjoint operator in L2(R3),
and claim that H0 + V is self-adjoint with the same domain. This will follow from
Theorem 3.2.12 when γ is small, if we prove that

(3.3.39)

∫
|u|2|x|−2 dx ≤ C(∥H0u∥+ ∥u∥)2, u ∈ DH0 .

Changing scales one can then remove the restriction that γ should be small. To
prove (3.3.39) we first observe that taking Fourier transforms one obtains∫

|u′|2 dx ≤ ∥H0u∥∥u∥, u ∈ DH0 .

If χ ∈ C2
0 is equal to 1 in the unit ball and 0 outside the concentric ball with radius

2, we conclude that
∥∆(χu)∥ ≤ C(∥∆u∥+ ∥u∥).

Now χu = E ∗∆(χu), E(x) = −(4π|x|)−1, so we have

|χu|2 ≤
∫
|x|<4

|E(x)|2 dx∥∆(χu)∥2 ≤ C(∥H0u∥+ ∥u∥)2,

hence ∫
|χu|2|x|−2 dx ≤ C ′(∥H0u∥+ ∥u∥)2,

which immediately gives (3.3.39).

It is not hard to extend the argument above to the Schrödinger operator of a
general many-body system, but we leave that for the reader.

3.4. The complete spectral theorem. We shall now analyze the spectral mea-
sure further and show that every self-adjoint operator is unitarily equivalent to a
multiplication operator as described in Example 3.3.5:

Definition 3.4.1. A self-adjoint operator A1 in the Hilbert space H1 is said to be
unitarily equivalent to a self-adjoint operator A2 in the Hilbert space H2, if there
is a unitary map U : H1 → H2, such that A2U = UA1.
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Examples 3.3.6, 3.3.7 and 3.3.8 were two concrete cases of unitary equivalence.
We want to emphasize that the abstract results to be proved do not eliminate the
interest of concrete solutions for concrete operators. Indeed, scattering theory is
devoted to such results.

Let A be a self-adjoint operator in H, and let u ∈ H. If φ is a Borel measurable
function with e(u, u, |φ|2) < ∞, we have seen that φ(A)u can be defined. (We use
the notation φ(A) instead of Aφ or α(φ) which occurred in Section 3.3.) Moreover,

∥φ(A)u∥2 = e(u, u, |φ|2).

If L2
u is the space of square integrable functions with respect to the measure φ 7→

e(u, u, φ), we obtain an isometric map

L2
u ∋ φ 7→ φ(A)u ∈ H.

The range is a closed subspace Hu of H. A dense subset is of course obtained
by taking only functions φ ∈ C0. If v is orthogonal to Hu it follows that Hv is
orthogonal to Hu. In fact,

(φ(A)u, ψ(A)v) = ((φψ̄)(A)u, v) = 0; φ,ψ ∈ C0;

since (φψ̄)(A)u ∈ Hu.

Lemma 3.4.2. Let H be a separable Hilbert space and A a self-adjoint operator in
H. Then there exist finitely or countably many elements u1, u2, . . . in H such that

H =
N⊕
1

Huj ,

the orthogonal direct sum taken in the sense of Theorem 3.1.1.

Proof. Let v1, v2, . . . be a dense sequence of elements in H. Set u1 = v1, u2 =
orthogonal projection of v2 on the orthogonal complement of Hu1 , . . . , uk = or-
thogonal projection of vk on the orthogonal complement of Hu1 ⊕· · ·⊕Huk−1

. The
spaces then obtained are orthogonal to each other, and their orthogonal direct sum
contains all vj , so it must be equal to H. The lemma is proved.

By the lemma we have a unitary map

U :
⊕

L2
uj

∋ (φ1, φ2, . . . ) 7→
∑

φj(A)uj ∈ H.

If φ ∈ B and φ̇ denotes multiplication by φ in L2
uj
, then the fact that (φφj)(A) is

an extension of φ(A)φj(A) shows that

Uφ̇ = φ(A)U.

Since a spectral measure determines the corresponding operator uniquely, it follows

that U−1AU is multiplication by λ in
⊕N

1 L2
uj
. This is essentially the spectral

theorem we are aiming for, but we shall study
⊕N

1 L2
uj

further in order to obtain

an essentially unique representation for A. However, considering
⊕
L2
uj

as the L2
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space on R×{j; 1 ≤ j ≤ N} with respect to the measure which is φ 7→ e(uj , uj , φ)
when restricted to R× {j}, we already have the situation in Example 3.3.5.

A better understanding is obtained if we use the Radon-Nikodym theorem to find
a measure dµ on R such that all the measures µj(φ) = e(uj , uj , φ) are absolutely
continuous with respect to dµ. We may for example choose

µ(φ) =

∞∑
1

2−jµj(φ)/∥uj∥2,

which has total mass one. There exist non-negative Borel functions ϱj ∈ L2
loc(dµ)

such that dµj = ϱ2j dµ, j = 1, 2, . . . . If (φ1, φ2, . . . ) ∈
⊕
L2
uj

we have then

∑
j

∥φj∥2L2
uj

=
∑
j

∫
|ϱjφj |2 dµ.

We shall now remove components which never play any role.
For every λ let N(λ) be the number of integers j = 1, . . . , N such that ϱj(λ) ̸= 0.

Then we have 0 ≤ N(λ) ≤ ∞, and N(λ) is Borel measurable. Since the integrals
above do not change if dµ is replaced by the product with the characteristic function
of the set where N(λ) > 0, it is no restriction to assume that N(λ) > 0 almost
everywhere with respect to dµ. Now we set

(3.4.1) MN = {(λ, j);λ ∈ R, j positive integer ≤ N(λ)}.

This is a Borel set. On R×{1, 2, . . . } we consider the measure dν which is the direct
product of dµ and the counting measure on {1, 2, . . . }; abusing notation slightly we
denote the restriction to MN also by dν. Now we obtain a unitary map

U1 :
⊕

L2
uj

→ L2(MN , dν)

as follows: If (φ1, φ2, . . . ) ∈
⊕
L2
uj
, then U1(φ1, φ2, . . . ) is for the points in MN

over λ the sequence obtained from (ϱ1(λ)φ1(λ), ϱ2(λ)φ2(λ), . . . ) by dropping the
places where ϱj(λ) = 0. It is an easy exercise to verify that this is a unitary map.

The map UU−1
1 is then a unitary equivalence between A and multiplication by λ

in L2(MN , dν).

Theorem 3.4.3. Let A be a self-adjoint operator in a separable Hilbert space H.
Then A is unitarily equivalent to an operator Λ defined as follows: dµ is a positive
measure on R, N is a Borel measurable function on R whose values are positive
integers or +∞, and MN is defined by (3.4.1). By dν we denote the direct product
of dµ and the counting measure on the integers, restricted to MN . Then Λ is
multiplication by λ on L2(MN , dν). An operator Λ1 defined in the same way with
another choice of measure dµ1 and dimension function N1 is unitarily equivalent
to Λ if and only if the measures dµ and dµ1 are equivalent and N1 = N almost
everywhere with respect to them.

Proof. Only the uniqueness statement remains to be proved. First note that if
φ ∈ B, then φ(Λ) = 0 if and only if φ = 0 almost everywhere with respect to dµ. If
Λ and Λ1 are unitarily equivalent it follows that the null functions for dµ and dµ1
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are the same, so the measures are equivalent. Thus dµ1 = ϱ2 dµ, where ϱ is a Borel
function ̸= 0 almost everywhere and locally square integrable with respect to dµ.
The map L2(MN1 , dν1) → L2(MN1 , dν) defined by multiplication with ϱ is then a
unitary map transforming Λ1 to the operator defined with the measure dµ and the
dimension function N1. Thus we may assume that dµ = dµ1 in what follows.

Assume that U : L2(MN , dν) → L2(MN1 , dν) is a unitary equivalence, that is,
UΛ = Λ1U . With a positive integer k we denote by χ the characteristic function
of the set where N(λ) ≥ k, and set for j = 1, . . . , k

uj(λ, i) =

{
χ(λ), if i = j,

0, if i ̸= j.

Then we have for φ ∈ C0

(φ(Λ)ui, uj) = δij

∫
φ(λ)χ(λ) dµ(λ).

If vi = Uui ∈ L2(MN1 , dν), then (φ(Λ)ui, uj) = (φ(Λ1)vi, vj), so by Fubini’s theo-
rem∫ N1(λ)∑

p=1

vi(λ, p)vj(λ, p)φ(λ) dµ(λ) = δij

∫
φ(λ)χ(λ) dµ(λ), i, j = 1, . . . , k.

Hence we have
N1(λ)∑
p=1

vi(λ, p)vj(λ, p) = δijχ(λ)

for almost all λ with respect to dµ. For such λ with χ(λ) = 1 it follows that the
vectors

(vi(λ, 1), vi(λ, 2), . . . ), i = 1, . . . , k,

are orthonormal, which implies thatN1(λ) ≥ k. ThusN1(λ) ≥ k almost everywhere
in the set where N(λ) ≥ k, so N1 ≥ N almost everywhere. The proof is now
complete, for the roles of N and N1 may be interchanged.

Note that for the operator Λ in Theorem 3.4.3 the eigenvalues are the atomic
part of the measure dµ. At a point where dµ carries positive mass, the value of N
is uniquely determined and is of course the dimension of the space of eigenvectors,
that is, the multiplicity of the eigenvalue. It is therefore natural to call N(λ) the
spectral multiplicity also in the general situation. However, one should keep in
mind that N(λ) is not defined uniquely at any individual point outside the point
spectrum, but only determined almost everywhere with respect to dλ.

Example 3.3.7 is clearly a case where the spectral multiplicity is 1 onR+ and 0 on
R−. What we obtained was an explicit version of Theorem 3.4.3. In Example 3.3.8
the spectral multiplicity is 2 in Σ and 0 elsewhere. For self-adjoint operators defined
by ordinary differential operators the spectral multiplicity never exceeds the order
of the operator — simply because a homogeneous ordinary differential equation has
at most that many linearly independent solutions. For partial differential operators
the spectral multiplicities usually become infinite (see Example 3.3.6). For this
reason the rather arbitrary choice of an orthogonal decomposition in Lemma 3.4.2
does not give a satisfactory spectral representation for concrete partial differential
operators.
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Appendix

Ordered sets. A set E is called (partially) ordered if there is given a subset
P ⊂ E × E such that, with the notation x ≺ y if (x, y) ∈ P we have

i) x ≺ y and y ≺ z =⇒ x ≺ z;
ii) if x ≺ y and y ≺ x then x = y.

An example is Rn; we define (x1, . . . , xn) ≺ (y1, . . . , yn) if xj ≤ yj for every j.
Another example is the set of subsets of another set M .

An ordered set E is called linearly (or completely or totally) ordered if in addition

iii) for arbitrary x, y ∈ E either x ≺ y or y ≺ x or x = y.

In every linearly ordered finite set there is a largest (and a smallest) element; we
just have to compare the elements two by two to find one.

Definition. An ordered set E is called inductively ordered if every linearly ordered
subset E0 has an upper bound in E, that is, there is an element x ∈ E with y ≺ x
for every y ∈ E0.

With this definition we have:

Zorn’s lemma. Every inductively ordered set has at least one maximal element,
that is, an element x such that x ≺ y, y ∈ E implies y = x.

In the applications E is often a set consisting of subsets of another set M . Then
we have the following special case:

Let E be a set of subsets of another set M , ordered by inclusion, such that if F
is a linearly ordered subset of E the union of the sets in F is also in E. Then E
contains a maximal set, that is, a set contained in no strictly larger one belonging
to E.

The Jordan normal form. In this section we shall complete the discussion of
the spectral decomposition of a compact operator T ∈ L(B,B) given in Section
2.5. What remains is to study the decomposition of a nilpotent linear operator T
in a finite dimensional vector space.

Theorem. Let V be a finite dimensional vector space over C and let T : V → V
be a nilpotent linear map, that is, TN = 0 for some N . Then V can be written
V =

⊕
Vj where TVj ⊂ Vj for each j, and for every Vj there is an element xj ∈ Vj

and an integer kj > 0 such that xj, Txj, . . . , T
kj−1xj is a basis in Vj while

T kjxj = 0.

Proof. The theorem is trivial if the dimension of V is equal to 1 or, more generally,
if KerT = V , for then we just have to write V as a direct sum of one dimensional
subspaces. By induction we may thus assume that it has already been proved for
spaces of lower dimension and that KerT ̸= V . Let q : V → W = V/KerT be

the quotient map. T induces a map W → V , hence a map T̃ : W → W such

that qTx = T̃ qx, x ∈ V . The inductive hypothesis applied to W shows that

W =
⊕J

1 Wj where T̃Wj ⊂ Wj and Wj has a basis T̃ νyj , 0 ≤ ν < kj , where

T̃ kjyj = 0. Choose xj so that qxj = yj . Then T νxj are linearly independent for
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1 ≤ j ≤ J and 0 ≤ ν ≤ kj , but T
kj+1xj = 0 since qT kjxj = T̃ kjyj = 0. To prove

the linear independence assume that we have a linear relation

J∑
1

kj∑
0

ajνT
νxj = 0.

If we apply q it follows that

J∑
1

kj−1∑
0

ajν T̃
νyj = 0,

which proves that ajν = 0 if ν < kj . Thus

J∑
1

ajkjT
kjxj = 0,

which means that
∑
ajkjT

kj−1xj ∈ KerT , that is,

J∑
1

ajkj T̃
kj−1yj = 0.

Hence all the coefficients vanish and the linear independenced is proved. Set

V̂ =
⊕J

1 Vj .

Since qV̂ = W we have V = V̂ + KerT , so we can choose a subspace V0 ⊂ KerT

such that V = V̂ ⊕ V0. This completes the proof.

If with the notation in the theorem T kj−1xj , . . . , xj are taken as basis vectors in
Vj , then the matrix of T restricted to Vj takes the form

Tj =


0 1 . . . 0

0 0
. . . 0

0 0 . . . 1
0 0 . . . 0

 .

Hence a nilpotent operator always has a matrix consisting of such diagonal blocks
and zeros elsewhere. If (T − λI)N = 0 for some λ ̸= 0 the only difference is that
the diagonal elements are equal to λ. Repeated use of Theorem 2.5.15 specialized
to the finite dimensional case now proves that every linear transformation T in a
finite dimensional complex vector space V has a matrix built up by such Jordan
blocks for a suitable choice of the basis. Theorem 2.5.15 also allows one to apply
the result to arbitrary compact operators.
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Exercises to Chapter I

1. Determine dimKerT and dimCokerT when T = d/dx : V1 → V2 and
a) V1 = V2=the space of all polynomials on R.
b) V1 is the space of continuously differentiable functions on R and V2 is the space
of continuous functions on R.
c) V1 and V2 consist of the functions with period 1 in the preceding case.
d) V1 consists of the twice continuously differentiable functions on R and V2 is the
space of continuous functions on R

2. Let V1 and V2 be linear subspaces of the vector space V . Prove that dimV2 ≤
codimV1 if V1 ∩ V2 = {0}. Prove more generally that dimV2 ≤ dim(V1 ∩ V2) +
codimV1 is always true.

3. Let (1.2.4) be a complex with all Vj finite dimensional. Prove that∑
(−1)j dimVj =

∑
(−1)j dim (KerTj/ ImTj−1).

4. Show that if

V1
T1−→ V2

T2−→ V3,

is exact then

dimV1 + dimV3 = dimV2 + dimKerT1 + dimCokerT2 ≥ dimV2,

with no assumption on finite dimensionality.
5. Let V be the space of polynomials on R, and let p be a fixed element ̸= 0 in

V . Determine the index of the multiplication operator V → V : q 7→ pq.
6. Let T : V1 → V2 be a linear map such that indT is defined. Show that one

can find a linear map S : V1 → V2 of finite rank such that either dimKer (T + S)
or dimCoker (T + S) is equal to 0. What is the other dimension then? Can one
choose S of finite rank so that dimKer (T+S) and dimCoker (T+S) have arbitrary
non-negative integer values or +∞ with difference indT?

7. Let V be a vector space over K and let T : V → V be a linear map of
finite rank. Prove that one can choose aj ∈ V and K valued linear forms Lj on V ,
j = 1, . . . , k, such that

Tx =

k∑
1

Lj(x)aj , x ∈ V,

and that the rank of T is the smallest possible value for the integer k. Show that

k∑
1

Lj(aj)

is independent of the choice of representation; it is called the trace of T and denoted
TrT .
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Exercises to Chapter II

1. Let T = {z ∈ C; |z| = 1} be the unit circle and let TR be the set of functions
R → T with the product topology. Denote by M the subset consisting of the
functions fλ : R ∋ x 7→ eiλx ∈ T where λ ∈ R. Show that:
a) the closure of M in TR consists of all functions χ : R → T such that χ(x+ y) =
χ(x)χ(y) when x, y ∈ R.
b) that if λj ∈ R is a sequence such that fλj converges in TR then λj converges to
a limit in R, so M is sequentially closed.
c) Show that a function χ defined on a subspace V of R with respect to the rational
number field Q with values in T and satisfying the condition χ(x+ y) = χ(x)χ(y)
for all x, y ∈ V can be extended to R so that these properties remain valid.

2. Show that if M is a subset of a metric space E then M is closed if and only
if the limit of every convergent sequence of points in M also belongs to M .

3. Show that a metric space E is compact if and only if every sequence x1, x2, . . .
in E has a convergent subsequence. (Hint: To prove the converse show first that
there is a countable basis for neighborhoods in E.)

4. V1 ⊂ V2 are linear subspaces of the locally convex topological vector space W
such that V2/V1 is finite dimensional. Show that V2 is closed if V1 is closed. Is the
converse true?

5. Show that if F is a closed and W is a finite dimensional linear subspace of a
normed space N , and W ∩ F = {0}, then there is a constant C such that

∥x∥+ ∥y∥ ≤ C∥x− y∥, x ∈ F, y ∈W.

Use this to prove that if q is the quotient map N → N/W , then qF is closed in
N/W .

6. Show that there is a hyperplane H in C([0, 1]) containing all functions f ∈
C([0, 1]) such that f ′(0) exists. What is the closure of H.

7. Show that a linear map T : E1 → E2 where E1 and E2 are metrizable locally
convex topological vector spaces is continuous if and only if T maps every bounded
sequence in E1 to a bounded sequence in E2.

8. A locally convex topological vector space is called a Montel space if every
bounded closed subset is compact. Which of the following spaces is a Montel
space?
a) C∞(Ω) where Ω is an open subset of Rn.
b) Cm(Ω) where Ω is an open subset of Rn and m is an integer ≥ 0.
c) A(Ω), the subspace of C(Ω), Ω open in C, consisting of analytic functions.
d) A(D), the space of continuous functions in the closed unit disc which are analytic
in the interior, with the maximum norm.

9. Let M be a measurable subset of Rn with finite positive measure. Prove that
Lq(M) is of the first category in Lp(M) if 1 ≤ p < q ≤ ∞.

10. A function f ∈ C([0, 1]) is called Hölder continuous of order δ > 0 if there is a
constant C such that |f(x)− f(y)| ≤ C|x− y|δ, x, y ∈ [0, 1]. Show that the Hölder
continuous functions form a set of the first category in C([0, 1]).

11. Let V1, V2 be closed linear subspaces of a Banach space B, and assume that
B = V1+V2. Show that there is a constant C such that every x ∈ B can be written
x = x1 + x2 with xj ∈ Vj and

∥x1∥+ ∥x2∥ ≤ C∥x∥.
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12. a) Let L be a continuous linear form on l∞(M),M = {1, 2, . . . , }. Define (φL)(u) =
L(φu) if φ, u ∈ l∞(M) and show that

∥L∥ =

k∑
1

∥φjL∥

if the functions φj , j = 1, . . . , k, are characteristic functions of subsets of M with∑
φj = 1.

b) Show that if Ln is a sequence of continuous linear forms on l∞(M) with ∥Ln∥ ≤
C, then one can find characteristic functions φ1 ≥ φ2 ≥ . . . of infinite subsets of
M such that

∥φnLn∥ < 1/n, hence ∥φjLn∥ < 1/n, j ≥ n.

c) Show that if Ln is a sequence of continuous linear forms on l∞(M) with Ln(f) =
f(n) if f ∈ c(M) (the set of sequences converging to 0) then Ln(φ) ̸→ 0 for some
φ ∈ l∞(M). (Hint: Assume this is false, apply b) (legitimate?) and take a sequence
nk with φk(nk) = 1; let φ be the characteristic function of the sequence.)
d) Conclude that c(M) does not have a topological supplement in l∞(M).

13. Let B be a complex Banach space and F a function Ω → L(B), where Ω is an open
set in C. Assume that the function z 7→ ⟨F (z)u, v⟩ is analytic in Ω for arbitrary
u ∈ B and v ∈ B∗. Prove that F ′(z) = limw→0(F (z + w) − F (z))/w exists in the
operator norm for every z ∈ Ω and that

⟨F ′(z)u, v⟩ = d

dz
⟨F (z)u, v⟩, z ∈ Ω, u, v ∈ H.

Prove that if Ω is the disc {z ∈ C; |z| < R} then F (z) can be expanded in a power
series which converges in operator norm when |z| < R. (Assume that B is a Hilbert
space if you have not yet read Section 2.6.)

14. B is a complex Banach space, and T ∈ L(B,B). Prove
a) that there is a compact set σ(T ) ⊂ C (called the spectrum of T , such that the
resolvent R(z) = (T − zI)−1 exists if and only if z /∈ σ(T );
b) that R(z) is analytic in the complement of σ(T ) with the various equivalent
definitions in exercise 13;
c) that |z| ≤ ∥T∥ if z ∈ σ(T );
d) that

sup
z∈σ(T )

|z| = lim
n→∞

∥Tn∥1/n.

e) that the limit actually exists; it is called the spectral radius. (Hint: Show that

for any sequence an of positive numbers with an+m ≤ anam the sequence a
1/n
n has

a limit as n→ ∞.)
f) that M is larger than the spectral radius if and only if there is an equivalent
norm in B such that the norm of T is smaller than M with respect to this norm.

15. Let B be a Banach space and let T ∈ L(B,B). Show that if the resolvent exists
for all z with |z| = 1, then

P0 = − 1

2πi

∫
|z|=1

R(z) dz, P1 =
T

2πi

∫
|z|=1

R(z) dz/z
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are bounded operators with P0 + P1 = I, P0P1 = P1P0 = 0, and therefore pro-
jections on closed subspaces B0, B1 of B with direct topological sum equal to B.
Prove that TBj ⊂ Bj , j = 0, 1, and show that

TnP0 = − 1

2πi

∫
|z|=1

R(z)zn dz, n ≥ 0; P1 =
Tn

2πi

∫
|z|=1

R(z)z−n dz, n ≥ 1.

Deduce that T restricted to B1 has an inverse S, and that T restricted to B0 and
S both have spectral radius < 1.

16. Let an, n ∈ Z be a sequence of complex numbers such that anbn, n ∈ Z is the
sequence of Fourier coefficients of a continuous function on R/(2πZ) when this
is true for the sequence bn, n ∈ Z. Prove that there is a measure with Fourier
coefficients an, n ∈ Z.

17. Let B be a Banach space and let L be a linear form, defined on a linear subspace
DL of B. What is the closure of the graph of L if L is not continuous?

18. a) Let B1, B2, B3 be Banach spaces. Prove that if T is a closed linear map with
domain DT ⊂ B2 and range ⊂ B3, then TS is closed if S ∈ L(B1, B2). b) Prove
that if T is a linear map with domain DT ⊂ B1 and range in B2, and if ST is closed
for some S ∈ L(B2, B3), then T is also closed if T is preclosed.

19. If Hi, i ∈ I, are Hilbert spaces, we define H =
⊕

i∈I Hi as the set of all sequences
x = {xi}i∈I such that

∥x∥2 =
∑
i∈I

∥xi∥2 <∞.

Show that H is a Hilbert space with the natural scalar product. When is H
separable?

20. Let H1, H2 be Hilbert spaces and let T be a closed linear operator with domain
dense in H1 and values in H2. Prove that the projection on the graph of T in
H1 ⊕H2 has the block matrix form(

(I1 + T ∗T )−1 T ∗(I2 + TT ∗)−1

T (I1 + T ∗T )−1 TT ∗(I2 + TT ∗)−1

)
,

where Ij is the identity operator in Hj . In particular, the operator in the (j, k)
block is in L(Hk,Hj).

21. Prove that if H is a Hilbert space and B is a Banach space, then Lc(B,H) is the
closure of the set of operators in L(B,H) which are of finite rank.

22. Let B be a Banach space and let D = {z ∈ C; |z| < 1}. Assume that for every
z ∈ D we are given an operator T (z) ∈ Lc(B,B) which depends continuously on
z ∈ D in the operator norm and is analytic in D as in Exercise 13 above. Set

Σ = {z ∈ D; dimKer (I + T (z)) ̸= 0}.

Show that Σ is closed and that if Σ ̸= D then Σ∩D is discrete and {θ ∈ R; eiθ ∈ Σ}
has measure 0.

23. Let B1 and B2 be Banach spaces and let T ∈ L(B1, B2). Prove that if T is compact,
then limn→∞ ∥Tun∥2 = 0 for every sequence un ∈ B1 such that un → 0 in the weak
topology σ(B1, B

∗
1). Prove the converse when B1 is reflexive and B∗

1 is separable.
24. Prove that a Hausdorff topological vector space is a normed space if and only if it

contains a bounded, open, convex set.
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25. Let B be a Banach space and let T ∈ L(B,B) satisfy an equation p(T ) = 0 where
p is a polynomial with only simple zeros λ1, . . . , λm. Prove that

B =
m⊕
1

Bj , Bj = Ker (T − λjI),

and that pj(T ) is the projection on Bj along
⊕

k ̸=j Bk if

pj(z) = p(z)/((z − λj)p
′(λj)).

26. Let E be a locally convex topological vector space over R. If X is a non-empty
subset of E, then the supporting function H of X is defined by

H(ξ) = sup
x∈X

⟨x, ξ⟩, ξ ∈ E′.

Prove
1) thatH is convex and positively homogeneous, that is, with the convention 0·∞ =
0,

H(sξ + tη) ≤ sH(ξ) + tH(η), s, t ≥ 0, ξ, η ∈ E′,

and that H is lower semi-continuous for the topology σ(E′, E).
2) that {x ∈ E; ⟨x, ξ⟩ ≤ H(ξ), ∀ξ ∈ E′} is the smallest closed convex set ⊂ E
containing X, and that its supporting function is equal to H.
3) that for every H satisfying the conditions in 1) there is exactly one closed convex
set X ⊂ E with supporting function H.

27. Let E be a locally convex topological vector space over R, and let f be a function
defined in E with values in [0,+∞]. The Legendre transform f̃ is defined by

f̃(ξ) = sup
x∈E

(⟨x, ξ⟩ − f(x)), ξ ∈ E′.

In analogy to Exercise 26 try to give conditions characterizing Legendre transforms
f̃ , and necessary and sufficient conditions on f in order that

f(x) = sup
ξ∈E′

(⟨x, ξ⟩ − f̃(ξ)), x ∈ E.

28. What is the Legendre transform of the norm in a Banach space?
29. Determine the closed convex hull in lp(N), 1 ≤ p ≤ ∞, of the elements with one

coordinate equal to 1 and the others equal to 0.
30. Let B be a Banach space such that the norm is the sum of two norms p1 and p2;

let Bj be the completion of B with the norm pj . Prove that {x ∈ B; p1(x) = 1} is
closed in B2 if and only if B = B2.

31. Let Ω be a convex subset of a locally convex topological vector space E with dual
E′. Show that the closure in the weak topology σ(E,E′) of the boundary ∂Ω in the
original topology is either equal to ∂Ω or the closure of Ω in the original topology.
Apply the result when Ω is the unit ball in a Banach space.

32. Show that if B is a Banach space then L(B,B) ∋ T 7→ rankT is a lower semi-
continuous function with values in [0,∞].

33. Let B be a Banach space. Prove that the set of operators T ∈ Lc(B,B) such
that dimKer (T − λI)k > 1 for some λ ̸= 0 and some integer k > 0 is of the first
category. (Hint: Examine Jordan canonical forms in finite dimensions first.)
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Exercises to Chapter III

1. Let A be a bounded self-adjoint operator ≥ 0 on a Hilbert space H. Prove without
using the spectral theorem that

∥A∥ = sup
∥u∥=1

(Au, u), ∥Au∥2 ≤ ∥A∥(Au, u), u ∈ H.

2. Let A1 ≥ A2 ≥ A3 ≥ · · · ≥ 0 be bounded self-adjoint operators in a Hilbert space
H. Prove that there is a bounded self-adjoint operator A in H such that An → A
in the strong topology, that is, ∥Anu−Au∥ → 0 as n→ ∞, for every u ∈ H.

3. Let A be a bounded self-adjoint operator in the Hilbert space H, and set

a = inf
∥u∥=1

(Au, u), b = sup
∥u∥=1

(Au, u).

Prove that the spectrum of A is contained in the interval [a, b] and contains the end
points.

4. Prove that if H is a Hilbert space and T ∈ L(H,H), then each of the following
conditions is necessary and sufficient for T to be isometric:
a) (Tu, Tv) = (u, v) for all u, v ∈ H.
b) T ∗T = I.

5. Show that if U is a unitary map in the Hilbert space H, then the resolvent of U is
defined and analytic outside the unit circle.

6. Prove that if H is a complex Hilbert space and T ∈ L(H,H), then there is a unique
decomposition T = A+ iB where A and B are self-adjoint. Prove that

∥Nu∥ = ∥N∗u∥, u ∈ H ⇐⇒ AB = BA ⇐⇒ T ∗T = TT ∗.

The operator T is then called normal.
7. Prove that every bounded self-adjoint operator in a Hilbert space can be written in

one and only one way as a difference A = B − C with B, C self-adjoint, positive
and bounded, and BC = CB = 0.

8. Let H1, H2 be Hilbert spaces and let T ∈ L(H1,H2). Set A = (T ∗T )
1
2 . Prove

that KerT = KerA, that ImA is dense in the orthogonal complement of KerA,
and that there is an isometric operator U : (KerT )⊥ → H2 such that T = UA (the
polar decomposition).

9. Prove that if H1, H2 are Hilbert spaces and T ∈ L(H1,H2), then∑
∥Txj∥22 =

∑
∥T ∗yk∥21

if x1, x2, . . . and y1, y2, . . . are orthogonal bases in H1 and in H2. The square root
∥T∥HS of the sum is called the Hilbert-Schmidt norm if it is finite. Prove that
such operators form a Hilbert space with the Hilbert-Schmidt norm. Prove that
∥TS∥HS ≤ ∥T∥HS∥S∥ and that ∥TS∥HS ≤ ∥T∥∥S∥HS .

10. Let X and Y be locally compact spaces with positive measures dµ, dν, and let K
be a function in L2(X × Y, dµ⊗ dν). Prove that if f ∈ L2(Y, dν), then

(Kf)(x) =
∫
K(x, y)f(y) dν(y)
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exists for almost every x ∈ X with respect to dµ, and that K is a Hilbert-Schmidt
operator from L2(Y, dν) to L2(X, dµ) with Hilbert-Schmidt norm equal to the norm
of K in L2(X × Y, dµ ⊗ dν). Prove that every Hilbert-Schmidt operator in these
L2 spaces is of this form.

11. Let T1 ∈ L(H1,H2) and T2 ∈ L(H2,H1), and set T = T2T1 ∈ L(H1,H1). Prove
that if T1 and T2 are Hilbert-Schmidt operators then

TrT =
∑

(Tej , ej)

exists if ej is an orthonormal basis for H1, and prove that the sum is independent
of the choice of basis.

12. Let H be a Hilbert space and let A be a self-adjoint operator in H. A point
λ ∈ R is said to be in the essential spectrum of A if it is in the spectrum and is
not an isolated eigenvalue of finite multiplicity. Prove that this is equivalent to the
existence of an orthonormal sequence un with ∥(A − λI)un∥ → 0 as n → ∞, and
conclude that if K ∈ Lc(H,H) then λ is also in the essential spectrum of A+K.

13. For z ∈ C, |z| < 1 define fz = (1, z, z2, . . . ) ∈ l2. Prove that all these vectors are
linearly independent. Prove that if Z is a subset of the open unit disc then the
linear hull of {fz; z ∈ Z} is dense in l2 if and only if∑

z∈Z
(1− |z|) = ∞.

14. LetH be a Hilbert space and A a self-adjoint operator inH. Prove that if 0 ≤ A ≤ I
then the limit Px = limn→∞Anx exists for every x ∈ H, and show that P is the
orthogonal projection on the subspace of fixed points of A. Also prove that for
every A ∈ L(H,H) with ∥A∥ ≤ 1 the limit Qx = limn→∞(I − (I −A∗A)n)x exists
for every x ∈ H. Show that Q is an orthogonal projection and describe the range.

15. Let H be a Hilbert space and let P and Q be two orthogonal projections. Prove
that Rx = limn→∞(PQ)nx exists for every x ∈ H and show that R is an orthogonal
projection. What is the range?

16. In the Hilbert space l2({1, 2, . . . }) let

Tx = (
∑
j>1

xj , 0, 0, . . . ), when x = (x1, x2, . . . ), x1 = 0, and xj = 0 for large j.

Show that T is symmetric (although not densely defined), and determine the closure
of the graph. Is T preclosed?

17. In L2(I), I = (0,∞), let Au = iu′ with domain DA = C∞
0 (I). Show that A

is symmetric, and determine the closure and the defect indices. Does A have a
self-adjoint extension? What are the answers if I is a finite interval or if I = R?

18. Let H be the Hilbert space L2(I), I = [0, 1], and let for z ∈ C the operator Az be
the closure of the operator u 7→ iu′ with domain consisting of all u ∈ C1(I) with
u(1) = zu(0). Determine the values of z such that Az is self-adjoint. What is the
spectrum then?

19. Let A be the operator in L2(R) with domain DA = C∞
0 (R) defined by (Au)(x) =

i(x2u′(x) + xu(x)). Prove that A is symmetric and determine the defect indices.
Does A have a self-adjoint extension?

20. Let H be a Hilbert space and let V be a dense linear subspace. Prove that if G is
a closed subspace of finite codimension, then V ∩ G is dense in G. Prove that for
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arbitrary x, y ∈ H with (x, y) = 0 there are sequences xn ∈ V , ym ∈ V such that
xn → x, ym → y, and (xn, ym) = 0 for all n and m.

21. Let A be a closed densely defined symmetric operator in the complex Hilbert space
H. Prove that

G(A∗) = G(A)⊕W+ ⊕W−, W± = {(x,±ix);x ∈ H} ∩G(A∗),

where the sums are orthogonal and G denotes the graphs.

22. Let H be a real Hilbert space and let Ĥ be the orthogonal direct sum H ⊕ H,
viewed as a complex Hilbert space through i(x, y) = (−y, x). What is the scalar
product in this space then? Show that a linear (symmetric) operator on H gives

rise to a linear (symmetric) operator on Ĥ with equal defect indices.
23. Let I be an open interval on R, and let p ∈ C1(I), q ∈ C0(I), be real valued

functions. Show that the operator Au = −(pu′)′ + qu with domain C2
0 (I) has a

self-adjoint extension in L2(I).
24. Prove that if H is a Hilbert space and xn ∈ H is a sequence which converges weakly

to x ∈ H, then ∥x− xn∥ → 0 if and only if ∥xn∥ → ∥x∥ as n→ ∞.
25. Let 1 < p < ∞ and define q ∈ (1,∞) by 1/p + 1/q = 1. Show that there is a

positive constant Cp such that if g ∈ Lp(X, dµ) and g̃ = |g|p/g, then g̃ ∈ Lq(X, dµ)
and

∥g + f∥pp ≥ ∥g∥pp + pRe⟨f, g̃⟩+ Cp

∫
X

|f |2(|f |+ |g|)p−2 dµ, f ∈ Lp(X, dµ).

Use this to extend the result in exercise 24 to Lp, 1 < p <∞. Would it be possible
to extend it also to p = ∞?
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