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Lay summary  

Proteomics is widely utilized to understand the function of cellular processes at the 
molecular level. Using liquid chromatography interfaced to mass spectrometry (LC-
MS)-based proteomics, thousands of proteins can be identified and quantified in a 
single experiment and their relationship and interactions can be analyzed. This 
makes the analysis of high-throughput proteomics data a corner-stone in the 
escalating field of translational medicine. Our group has been conducting deep-
mining LC-MS-based proteomics studies on two complex medical conditions that 
affect a high rate of the world population, female infertility and malignant 
melanoma (MM). To study female reproductive disorders, our group profiled the 
protein composition of the ovarian follicular fluid (FF) since it constitutes the 
microenvironment in which the oocyte develops during antral stages until follicular 
rupture at ovulation. In addition, it is believed that the FF mirrors what happens at 
the molecular level in the ovary and plasma due to pathological disorders. In the 
case of MM, we profiled the protein composition of metastatic tumor tissue from 
patients with BRAF mutation. The large amount of data generated from these 
experiments involves challenges related to data processing, analysis, and 
visualization of the results. The main challenge in complex disease pathology is the 
unraveling of the data from experimental outputs. In most cases the answer lies 
within that biological sample – the challenge is to analyze it and understand the 
meaning of the data.  

In this thesis, I performed data analyses to interrogate proteomics data (high-
resolution LC-MS expression data sets) from a bioinformatics and biostatistical 
point of view. Using different workflows, analyses and mathematical principles, I 
combined biological knowledge with bioinformatics and biostatistical approaches 
to integrate proteomics, clinical, and histopathological data in order to obtain new 
relevant biological insights from protein profiles of ovarian follicular fluids and MM 
tissues. 

The strategy applied in paper I, allowed us to describe progressive proteomic 
changes occurring in the FF during the ovulation process linked with oocyte 
maturation, hormone regulation and release of the oocyte. Here, we studied the most 
detailed temporal ovulatory interval, which included five time points. Paper II 
constituted the first large-scale proteomic characterization of FF extracted from 
small antral follicles (SAF) (6.1±0.4 mm) in their natural state. Using a multivariate 
approach, a signature of proteins appeared to play a role in oocyte maturation and 
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oocyte meiotic resumption already from the early follicular stage. As a follow-up, 
paper III reported for the first time evidence of proteomic alterations occurring in 
the FF of SAF of polycystic ovaries (PCO). Alterations were associated with the 
dysfunction of follicular growth and subsequent oocyte competence usually 
observed in PCO syndrome. Furthermore, uncharacterized or poorly characterized 
proteins identified in the FF of unstimulated SAF were assessed and their 
functionality during folliculogenesis was described in paper IV (manuscript). 

In paper V, data analysis revealed for the first time that the high expression, in the 
MM tumor, of the B-raf V600E (mutated) protein could be a significant risk factor 
for poorer prognosis of patients with stages 3 or 4 of MM. A follow-up of this 
finding was performed on a larger cohort of patients with BRAF mutation, in which 
subgroups of patients with different mortality risks were identified and associated 
with the activation of different BRAF-related pathways, such as the immune 
response.    

Supported by data-driven results, this thesis characterized the protein profile 
dynamics of human ovarian FF during folliculogenesis (paper I-IV) and malignant 
melanoma tissue of patients with BRAF mutation (paper V). Findings from paper 
I to IV may open up new pathways for augmenting or attenuating subsequent oocyte 
viability in the pre-ovulatory follicle when it is ready to undergo ovulation, which 
may be of importance to future advances in reproductive medicine. On the other 
hand, findings from paper V may enable the eventual delineation of patient 
response therapy for MM with BRAF mutation. 
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Poulärvetenskaplig sammanfattning 

Mekanismerna bakom många sjukdomar är ofullständigt kända och för att bättre 
kunna förebygga, diagnostisera och behandla dem krävs en kartläggning av vad som 
sker i kroppens olika celler på ett molekylärt plan. En av de viktigaste typerna av 
molekyler, som finns i alla celler, är proteiner (äggviteämnen) och kartläggningen av 
proteiner kallas ofta proteomics. Med modern analysteknik, s.k. masspektrometri, kan 
tusentals proteiner identifieras och det krävs endast mycket små mängder vävnad eller 
blod. Analysen resulterar i mycket stora datamängder vilka kräver avancerade 
dataprogram för att bearbeta – ett arbete som brukar kallas bioinformatik.  
Vi har studerat två mycket vanliga medicinska problem – infertilitet, en 
folksjukdom som berör 10-15 procent av barnönskande individer, samt malignt 
melanom (en form av hudcancer), den femte vanligaste cancerformen i Sverige som 
under långtid årligen ökat i förekomst (>4000fall/år). 
För att bättre förstå processerna som leder fram till ägglossning har vi studerat 
vätskan i den follikel (vätskeinnehållande blåsa i äggstocken) i vilken ägget 
utmognar. I första och andra delarbetena kartlade vi förändingar i follikelvätskans 
sammansättmning i samband med ägglossning – kunskapen kan ligga till grund för 
såväl behandling av störningar i äggutmognaden, utveckling av nya preventivmedel 
samt till förbättrade resultat vid provrörsbefruktning. I det tredje delarbetet visar vi 
att follikelvätskans sammansättning är annorlunda hos kvinnor med cystor i 
äggstockarna, en vanlig orsak till minskad fertilitet. I fjärde delarbetet identifieras 
proteiner som tidigare aldrig karakteriserats.  
I det femte delarbetet har vi studerat proteininnehållet i malignt melanom  och visar 
att ökad förekomst av en mutation i ett protein kallat B-raf är associerat med en mer 
aggressiv tumör. Resultatet har stor betydelse för behandlingen av patienter med 
malignt melanom.  
Sammanfattningsvis visar avhandlingens resultat betydelsen av att studera proteiner 
i patientprover. Många mediciner utövar sin effekt på proteiner varför en 
kartläggning av dessa är av största vikt för framgångsrik behandling. Dagens 
analysteknik kan generera mycket stora informationsmängder– information som 
kan ligga till grund för såväl diagnostik och behandling av olika sjukdomstillstånd 
som för utveckling av ny, skräddaresydd behandling av t.ex. cancer. En översikt 
över dessa två projekt kan ses på YouTubes plattform genom att följa länkarna:  
European Cancer Moonshot Lund: https://youtu.be/QQVuvB8VMSo  
ReproUnion: 
https://www.youtube.com/watch?v=NyZNvTIO13c&t=17s&ab_channel=ReproUnion  
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Introduction  

Continuous advances in the fields of life and medical sciences, as well as 
technology, have resulted in a torrent of data that fueled the emerging growth of 
data science as an indispensable discipline in the field of translational medicine. 
Specifically, the so-called ‘omics’ fields (such as proteomics, genomics, and 
transcriptomics), are one of the biggest generators of data. These technologies 
produce high-throughput data, therefore their link to data science is eminent. Data 
science combines various tools, algorithms, and machine learning principles to 
discover hidden patterns from raw data. However, in translational medicine, this 
discipline gains importance when the discoveries are relevant to human diseases, 
and as a consequence, an improvement in human health can be achieved. 
Nowadays, the need to integrate data from different platforms utilized in 
translational medicine to reach more accurate conclusions about human diseases is 
increasingly evident. The integration of different omics data has drawn attention as 
it captures the interconnection between different molecular levels and has proven to 
be more efficient when trying to understand complex disease pathologies[1–3]. The 
biggest challenge in the study of complex diseases is the unravelling of the data 
from experimental outputs. When selecting the sample to evaluate, in most cases 
the answer often lies within the selected biological sample – the challenge is to 
analyze it and understand the meaning of the data.  
During the course of this thesis, I will present two common and complex medical 
conditions that are studied in our group. These are: 1) female infertility and 2) 
malignant melanoma (MM). I will also present different data analysis strategies 
carried out to characterize the protein profiles of ovarian follicular fluid and MM 
tissues to obtain relevant biological insights that may benefit these patients. 
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Medical conditions involved in this thesis 
According to the WHO, around 50 % of the cases of infertility, faced by a couple, 
are due to female reproductive factors. These conclusions stems from data generated 
from 186 million ever-married women of reproductive age in developing countries 
(https://www.who.int/). Considering cancer diseases, MM is one of the most 
aggressive and heterogeneous cancers and is the most frequently mutated tumor 
type. Specifically, in Sweden, it is the fifth most prevalent type of cancer and more 
than 4000 cases are diagnosed annually.  Its also predicted that the incidence of MM 
in Sweden is expected to increase by 21%, whereas the mortality is expected to 
increase 35%, by 2040  [4] (https://gco.iarc.fr/tomorrow). Next, I will be expanding 
further on these two medical conditions and the biological mechanisms that are 
central within the progressive developments of these diseases. 

Female Infertility 
People in general may have heard of infertility, but not many are aware that since 
2009, the WHO considers this condition to be a disease. This is “a disease of the 
reproductive system defined by the failure to achieve a clinical pregnancy after 12 
months or more of regular unprotected sexual intercourse”(WHO). Like most other 
diseases, this condition has a negative impact on the patient’s quality of life. 
Particularly women are at greater risk of having not only physical but also emotional 
negative consequences. In some cases, they are victims of violence, divorce, 
depression and anxiety. But what really causes female infertility? 

Several medical conditions may lead to infertility. Some have to do with structural 
problems of the reproductive system, which usually involve the fallopian tubes 
and/or uterus (https://www.nichd.nih.gov/). Infections located in the reproductive 
system can also cause infertility. Another abnormality occurs when the cells that 
normally line the endometrium (uterine cavity) are found outside the uterus. This 
phenomenon is called endometriosis. The uterus sometimes develops noncancerous 
growths, called fibroids that may cause infertility depending on their size and 
location [5]. In addition, some autoimmune diseases may impact fertility. This 
occurs because the immune system does not recognize endogenous tissue/fluids of 
the body as normal, and ends up attacking them [6]. However, the most common 
causes of infertility are related to ovary dysfunction and its relationship with the 
brain. A failure during the ovulatory process occurs in 40 % of women with 
infertility issues [7]. This failure may be due to a diminished number of eggs in a 
woman's ovaries (also called ovarian reserve), or an incapability of the egg to 
mature. It may also be due to gynecological conditions such as polycystic ovary 
syndrome (PCOS). PCOS is one of the most common causes of female infertility 
with a prevalence of ~21% [8]. This condition refers to increased androgen 
production by the adrenal glands that interfere with the development of ovarian 
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follicles and the release of eggs during ovulation. To study abnormalities related to 
ovary function, it is essential to understand the folliculogenesis process and the 
physiology of the female reproductive axis.  

The Female Reproductive Axis 
The female reproductive system interacts with a complex network of endocrine-, 
paracrine- and autocrine-feedback loops that originate in the brain, specifically from 
the hypothalamus and the pituitary glands [9]. Coordinated communication between 
the nodes of this network is essential to ensure a proper function of the reproductive 
system. In this communication, hormones are used by the body to relay signals from 
one organ to another. During the reproductive age of women, the role of the ovary 
in this process is to prepare an oocyte (egg) every month for fertilization. Thus, the 
ovary is responsible for the recruitment, maturation and release of this oocyte, 
whereas the uterus will be working in parallel to prepare the optimal environment 
in which the embryo resulting from successful fertilization of the oocyte by the 
sperm, is going to be implanted to start a pregnancy. These events happen every 
month as part of a cyclic process in which the hypothalamus and pituitary gland play 
a key role.  

During embryonic development, the gonadotropin-releasing hormone (GnRH) is 
produced by neurons that migrate from the olfactory area to their primary location 
within the hypothalamus. During this process, also the pituitary gland develops 
composed of an anterior and a posterior part. Later, during fetal life, oocytes begin 
to develop as germ cells (e.g. oogonia) inside a follicle composed of circumferential 
layers of granulosa- (inner layer) and thecal (outer layer) cells (GCs and TCs). These 
oocytes are arrested in the prophase of the first meiotic division until after puberty 
and the initiation of ovulation.  

At puberty, women start having a monthly menstrual cycle during their reproductive 
age. At this point, a women’s ovary contains ~300,000 resting primordial follicles 
(oocytes surrounded by pregranulosa cells) [10], however, only a few of them will be 
activated each month to start growing until ovulation. Before activation of the follicles 
at poverty, granulosa cells and theca cells are non-steroidogenic. At puberty, the 
previously suppressed hypothalamus triggers the pituitary by releasing GnRH which 
leads to the release of gonadotropins, the follicle-stimulating hormone (FSH) and 
luteinizing hormone (LH) (Figure 1). The gonadotropins will stimulate the ovary to 
start the production of steroid hormones. This production takes place in the ovarian 
follicles (ovarian sacs containing the oocyte and delineated by GCs and TCs). Once 
the LH binds to its receptors in the follicular TCs, it will stimulate the intracellular 
conversion of cholesterol to androgens. These androgens are then transported from 
the TC layer into the GCs to serve as substrates for estrogen production. The binding 
process between FSH and its receptor (FSH receptor), located in the cellular 
membrane of the GCs, stimulates the production of aromatase enzymes to convert 
these androgens into estrogens. Each month, this process begins with a cohort of three 
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to eleven follicles that start to grow. However, only one becomes the dominant follicle 
that carries the oocyte's full maturation and ovulation. GCs of the activated follicles 
upregulate the anti-Müllerian Hormone (AMH) expression to suppress the maturation 
of the non-activated follicles.  

 

Figure 1. Schematic representation of the Hypothalamic-Pituitary-Gonadal Axis in women. An expanded view of an 
antral follicle indicates the composition of a typical antral follicle.    

Every month, increasing levels of FSH induce the GCs to increase the number of 
FSH receptors, which results in an exponential increase in the GC’s sensitivity to 
gonadotropins. The follicle that develops the most FSH receptors in response to  
FSH will become the dominant follicle. The dominant follicle will begin to grow, 
thereby increasing the number of LH receptors on its TCs. This fact leads to 
increased production of steroids available for conversion to estrogen. Subsequently, 
the dominant follicle secretes large amounts of estrogen that support the developing 
oocyte. Ultimately, LH promotes the follicular rupture and release of the oocyte by 
upregulating a cascade of proteolytic enzymes and decreasing the gap junction 
proteins [10].  

Follicular Fluid 
During this lengthy period of follicular development, the avascular follicle increases 
from approximately 45 µm to about 20 mm in diameter. This process involves several 
developmental checkpoint stages, one of which is the development of the follicular 
fluid (FF)-filled antrum that begins to form when the human ovarian follicles reach a 
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diameter of approximately 250 µm [11]. The FF is comprised of secretions from the 
oocyte, GCs (including cumulus and mural GCs), TCs and transudates from 
circulation that are filtered through the basal membrane (Figure 1). TC secretions are 
diffused across the basal membrane surrounding the follicle. The basal membrane acts 
as a molecular filter and proteins with a relatively high molecular weight can only 
penetrate the FF to a limited extent [11]. For instance, FF does not coagulate due to 
low concentrations of the high molecular weight fibrinogen. The composition of FF 
is highly-variable and associated with the follicles' developmental stage. In particular, 
FF reflects GC activity, which is also highly variable and strongly dependent on 
gonadotropins, other hormones and growth factors. For example, the TGF-β growth 
factor anti-Müllerian hormone (AMH) is present at very high concentrations in small 
antral follicles (SAF) with a peak in follicular content around a diameter (size) of 8 
mm [12]. Conversely, sex steroids such as estradiol and progesterone accumulate at 
very high concentrations in the pre-ovulatory follicles, in orders of magnitude higher 
than in small antral follicles [12].  

The FF and GCs constitute the microenvironment in which oocytes develop. In 
particular, FF affects the development of immature oocytes.  Consequently, the 
protein composition of GC and oocyte together with the FF have attracted 
considerable interest and several proteomics studies have been conducted [13–17]. 
Figure 2 shows a ‘hypothetical’ representation of the normal and abnormal ovarian 
function and possible studies to be performed. The proteomics study of the FF from 
different follicular stages and specific medical conditions (such as PCOS) could 
give new insights into ovarian function that may be relevant for the advancement in 
reproductive medicine. 

 

Figure 2. Hypothetical representation of a normal and abnormal ovarian function and possibles studies to carry out. 
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Malignant Melanoma  
Malignant melanoma is the most aggressive and lethal form of all skin cancers [18]. 
It develops from melanocytes which are the cells that produce pigmentation 
(melanin). Melanocytes are derived from the neural crest and colonized in the skin, 
the eyes, and several tissues during the development of the human body [18]. Most 
melanoma tumors arise in the skin, however, they may also arise from mucosal 
surfaces or eyes. The cause of this disease may be attributed to a multitude of risk 
factors, where ultraviolet (UV) exposure is one of the most common, together with 
genetics. Increased exposure to UV light (e.g, sun light) plus a genetic susceptibility 
may induce the accumulation of genetic mutations in melanocytes. These mutations 
may activate oncogenes that inactivate tumor suppressors genes and interrupt DNA 
repair. Ultimately leading to an induction of melanocytes to proliferate, blood vessel 
growth, tumor invasion, and diminished immune response [19]. Clinical subtypes 
of this tumor are classified according to cancer's location, morphology, color and 
pathophysiology. Melanoma classification according to WHO includes superficial 
spreading melanoma (the most common), nodular melanoma, lentigo MM and acral 
lentiginous melanoma.  

The optimal treatment for MM patients depends primarily on the stage of the 
disease. According to the TNM classification (globally recognized standard 
classification of malignant tumors), MM can be classified into five major stages 
(with subcategories). These stages are assigned based on the thickness of the tumor, 
whether there are metastases in nearby lymph nodes and whether there are distant 
metastases. Stage 0 (also called in situ) is the less aggressive form. During this stage, 
the cancer is confined to the epidermis, the outermost skin layer. Stage IV is the 
most aggressive form and indicates that the disease is spread and there are 
metastases in lymph nodes and other parts of the body. Therapy options includes 
surgery as the front-line therapy to remove the tumor. Unlike other cancer types, 
chemotherapy and radiation are rarely used due to their poor efficacy and side 
effects [20]. The second frontline therapies for MM are immunotherapy and targeted 
therapy. Immunotherapy is mainly used for advanced MM; specifically, the PD-1 
antibody has generated promising results in patients with metastatic disease. This 
antibody inhibits the PD-1 immune checkpoint protein, a well-known regulator of 
the immune system stimulated by cancer cells to evade attacks from the immune 
system [21]. Based on the same principle, cytotoxic T-lymphocyte antigen 4 
(CTLA-4) antibodies are used for tumors with low PD1 expression. In addition, 
tyrosine kinase inhibitors are used to counter the BRAF V600E mutation that many 
patients harbor. Immunotherapy and BRAF inhibitors are commonly used in 
combination for optimal patient outcomes.   

Genetically defined subgroups have also been described [18], presenting different 
mutational profiles, e.g., BRAF, RAS, NF1, as well as triple wild-type (WT). The 
first two (the most common) are oncogenes within the mitogen-activated protein 
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kinase (MAPK) pathways. No universal mutation for all cutaneous melanomas has 
been identified. However, oncogene and/or tumor suppressor mutations often result 
in the MAPK pathway's constitutive activation [22]. In addition, among the most 
common pathways affecting MM is the phosphoinositol 3-kinase (PI3K) pathway, 
along with the Wnt signaling pathway. An intratumoral variation has also been 
observed in MM tissues. In a previous study performed with the most extensive 
melanoma data repository [23] collected from 500 tumor samples, we observed an 
interplay between stromal and tumoral cells in primary tumors. In addition, a 
diversity of clonal evolutionary pathways of metastatic tumors have been previously 
reported [23]. The field of digital pathology is making rapid progress using artificial 
intelligence (AI) to characterize MM tumors at the single-cell level to associate 
individual cells characteristic to a specific phenotype [24].  Our group was one of 
the first to outline digital pathology and AI for melanoma patients [23]. 

In general, MM is considered one of the most heterogeneous diseases.  Variations 
in clinical symptoms, appearance, morphology and molecular profile of the tumor 
makes it difficult to perform an accurate diagnosis of the disease. Consequently, it 
makes the therapy decision-making hard. [25].  While patients diagnosed at an early 
stage may be cured through surgical excision, those who develop metastasis, rapidly 
progress to regional lymph nodes (stage 3) and distal organs (stage 4). This 
evolvement accelerates the tumor progression and reduces survival time, often to 
less than 1-year [26]. Figure 3 illustrates the heterogeneity that may be observed in 
patients with BRAF mutated tumors. Some patients develop a homogenous tumor 
(Figure 3A), while others present a more heterogeneous and dispersed B-raf 
expression (Figure 3B).   

 

Figure 3. Immunohistochemical images of mutated B-raf V600E, displayed from two patients with MM. (A) a patient 
with homogeneous B-raf expression, (B) two IHC images generated from two different areas of the same tumor with 
heterogeneous and dispersed B-raf expression, highlighted by brown colorimetric reaction.  
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Patients with BRAF mutation  
Approximately 40-50 % of MM patients harbor the BRAF mutation [27] and about 
90% of these are BRAF V600E [28]. B-raf is a serine/threonine protein kinase 
encoded by the BRAF gene on chromosome 7q34 that activates the MAP 
kinase/ERK-signaling pathway to induce cell growth and proliferation. The 
mutation is located to codon 600 and consists of a single nucleotide mutation 
resulting in the substitution of glutamic acid for valine (V600E). Current therapies 
aim to reduce both the activity and subsequent development of metastases by 
targeting BRAF V600E; and above all, lowering of the tumor burden of the patient.  

BRAF inhibitors (e.g., Vemurafenib, Dabrafenib) combined with MEK inhibitors 
(Trametinib) constitute the effective therapy to counter BRAF V600E mutation in 
patients with MM. However, after a period of successful treatment, most patients 
develop resistance, and/or get a relapse, which induces an accelerated progression 
of the disease. The reactivation of the MAPK pathways and ERK1/2 activity have 
been suggested as possible causes of this resistance.  Although there are several 
studies on the potentially underlying factors causing resistance to BRAF inhibitors, 
many clinical questions require alternative research approaches to address the 
molecular mechanisms resulting in metastasis development and treatment-resistant 
melanoma. Even within a genetically defined subgroup of patients (such as 
BRAFmut patients), heterogeneity still exists. Clone-specific expression diagnosis 
can be made by digital pathology, whereby the heterogeneity patterns is defined. 
Proteomics is a highly promising research field that can be applied in order to 
generate new insights into the microenvironment of metastatic tumors with BRAF 
mutation. In particular, this can be achieved using a minimal amount of sample at 
single clone levels. 

Studying diseases at the molecular level 

What happens in the cell? 
Our body is made up of functional systems and organs, which in turn are made up 
of cells that have the power to control our health status. What happens at the cellular 
level to control our health status is intricate and beautiful. The cells continuously 
replicate themselves not only to ensure the growth of tissues that comprise the 
human body, but also to ensure procreation. Specifically, germ cells (precursors of 
gametes, either eggs or sperm) undergo a nuclear division process called meiosis. 
During this process, gametes are produced in male and female gonads. Involving 
two rounds of nuclear division and an ordered series of events, meiosis produces 
four cells that are genetically different. Ultimately, during a process of fertilization, 
cells produced by meiosis from a male and female will fuse to create the zygote (a 
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cell that contains the genetic information of a new individual organism). On the 
other hand, somatic cells (non-sex cell) replicate themselves through mitosis. Unlike 
meiosis, during mitosis, the genetic material (DNA) in a cell is duplicated and 
divided equally to generate two identical daughter cells.  

Both during replication and when other cellular functions are carried out, the protein 
molecules are key players. Proteins can be regarded as cellular workhorses, 
responsible for many of the various cell actions needed for function. The cell carries 
in its nucleus, the DNA that stores our phenotypical information and instructions to 
produce proteins and RNA molecules. The DNA distributes this information among 
chromosomes which are made up of segments of DNA, called genes. These genes 
are the unit of heredity but they only come to life after being translated to proteins.  

Proteins are the gene’s products and are considered as the main functional actors in 
the human body. They perform a broad range of functionalities including 
biochemical reactions, signaling, transport, and structural support. For a gene to be 
translated into a protein, it first has to be transcribed into a molecule called RNA 
(ribonucleic acid). Briefly, transcription and translation are the two processes that 
transform a sequence of nucleotides (genes) from DNA into a sequence of amino 
acids to build a protein (Figure 4). During transcription (carried out in the nucleus), 
a strand of DNA is used as a template to build a similar molecule of RNA 
(transcripts), which in turn will constitute the link between the DNA and the 
production of proteins. During the translation process carried out in the cytoplasm, 
the transcript is converted into an amino acid sequence which will constitute the 
building blocks of functional proteins.  

Proteins do not function in isolation, they must interact with each other and with 
other types of molecules (e.g DNA, RNA) in order to mediate not only cellular 
processes but also metabolic- and signaling- processes [29]. Some of them remain 
in the cell after being synthesized to perform intracellular functions, whereas others 
are transported out of the cell to carry out different extracellular functions. 
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Figure 4. Protein syntesis. The transition from DNA to protein within the cell. 

Due to the important role that proteins have in the human body, the way they act or 
interact also influences the mechanisms leading to diseases. This is the main reason 
why an increasing number of proteomic studies are being carried out in the field of 
translational medicine. Most of them aim to illustrate the relationship between 
protein expression and clinical phenotypes. 

Clinical Proteomics  
Clinical proteomics has an enormous impact and potential in generating knowledge 
on the molecular mechanisms of diseases. This field studies the proteome of cells 
and other clinical specimens such as human tissues and body fluids. In general, 
proteomics deals with the large-scale determination of gene and cellular function 
directly at the protein level [30]. A valuable characteristic of this discipline is the 
capacity it has to evaluate hundreds to thousands of proteins simultaneously. At the 
core of proteomics is the technique LC-MS, which provides a sensitive analysis of 
complex mixtures of proteins and reveals the qualitative and quantitative status of 
the molecular profile in a given clinical sample. 

Mass spectrometry-based proteomics 
MS-based proteomics is a technology established to interpret the information 
encoded in genomes. It is used to study protein-protein interactions, do mapping of 
numerous organelles, perform quantitative protein profiling of diverse species and 
specimens and detect post-translational modifications (PTM) [30]. MS is today's 
method of choice for the analysis of complex protein samples. This analytical 
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technique detects the presence and abundance of ionized peptides (or other 
biomolecules such as metabolites, lipids and proteins),  by measuring their mass-to-
charge ratio (m/z) [30,31]. This process begins with a step of sample preparation in 
which the biological specimens at hand are biochemically enriched by extracting 
the proteins. The overall goal of sample preparation is to obtain a mixture of 
peptides, thus, the extracted solubilized proteins are enzymatically digested with a 
sequence-specific protease; in most cases with trypsin alone or in combination with 
other enzymes. The complex peptide mixture is then injected into a sensitive LC-
MS system with high resolving power to separate and ultimately quantify the 
peptides. 

High-Resolution Liquid Chromatography Separation 
Proteomic studies usually utilizes a chromatographic separation of peptides 
generated from the protein content of samples, rather than proteins separation. The 
reason being, that proteins are more difficult to separate and analyze, than peptides. 
This also holds true for the MS part of the data generation. 

The principle of chromatographic separation of a peptide’s mixture, is based on the 
interaction of the solutes with the solid support (stationary phase) and the mobile 
phase[32]. The remarkable volume of peptides generated in proteomic experiments 
outperforms direct mass spectral analyses. The high-performance liquid 
chromatography approach in proteomics aims to fractionate peptide mixtures to 
allow and maximize peptide identification and quantification by mass spectrometry. 
The analysis constitutes a challenge, even for the most advanced chromatographic 
separation equipment and mass spectrometers. The simplest and most direct way to 
combine the system is using a single chromatography method (online reverse phase 
column coupled to MS). However, the peptide mixture is still very complex and 
multidimensional liquid chromatography (MDLC) analysis are often necessary to 
increase the overall peak capacity, resolution and consequently the proteome 
coverage by mass spectrometry [33,34]. MLDC is the process of separating peptides 
using two or more physical properties with different chromatographic separation 
schemes (columns or dimensions). The separation is considered orthogonal when 
these methods are independent [35]. The most commonly exploited physical 
properties and their associated chromatography methods are mass (size-exclusion 
chromatography (SEC)), charge (ion exchange chromatography), hydrophilicity 
(normal chromatography), hydrophobicity (reverse phase chromatography), and 
biological interaction (affinity chromatography) [33,34,36,37]. The most efficient 
approach to generate separation is nano-chromatography, and its elution into the 
MS.  Thus, it has to be emphasized that there is no separation technology available 
today that manages to separate and isolate hundreds of thousands of peptides in for 
instance a tumor sample. This is still a limiting factor for clinical proteomics. 
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Mass spectrometry 
The analytical instrument of this technology is the mass spectrometer, which 
simultaneously holds a powerful capacity for peptide separation. This instrument 
consists of an ion source, a mass analyzer and a detector that registers the number 
of ions at each m/z value. The most common way mass spectrometers are used to 
analyze complex samples is by integrating high-performance liquid 
chromatography (HPLC) with an ion source called electrospray ionization (ESI) 
[38]. This interfaced system is commonly referred to as LC-MS. Peptide mixtures 
are commonly separated based on their hydrophobicity and charge using the HPLC 
system. Here, the eluent is introduced into the MS and volatilized and ionized using 
ESI. Although other ionization methods exist, such as matrix-assisted laser 
desorption/ionization (MALDI), ESI is often the preferred method for analyzing 
complex mixtures of proteins. ESI converts peptides from the liquid phase to 
gaseous ions by pumping, at high voltage, the liquid containing the peptides through 
a micrometer-sized orifice. This induces the disintegration of the liquid, leaving 
peptide ions in the gas phase (John Fenn received the Nobel Prize in 2002 for this 
discovery) [31]. Depending on the hydrophobicity and charge of the peptides, they 
will diffuse through the chromatography column at different velocities. The time a 
peptide is retained in the column before being eluted into the mass spectrometer is 
called the retention time (RT). 

The mass analyzer of the spectrometer aims to separate ions by modulating their 
trajectories in electrical fields. The most common are the Quadrupoles, usually 
combined with a time-of-flight (TOF)-, and an Orbitrap- analyzer. The first one 
separates ions using an oscillating electrical field between four cylindrical rods in a 
parallel arrangement. After an induced acceleration, the TOF mass analyzer 
separates the ions based on the velocities they reach and their subsequent arrival 
times at the detector. In the case of the Orbitrap mass analyzer, it distinguishes ions 
based on their oscillation frequencies. Ions are tangentially injected and then trapped 
in the Orbitrap, moving along the length axis of a central metal spindle [31]. A 
quantitative readout of the strength of individual ion packets is then achieved after 
transforming (Fourier transformation) the so-called ‘image current’ induced by the 
rapidly oscillating ions into a frequency domain.  
Finally, the MS instruments sequence peptides by using precursor ions, firstly 
isolated by the quadrupole, and subsequently fragmented through collision with 
inert gases to break them apart at the lowest energy bonds. This process generates 
the MS/MS spectrum that shows the amino acid sequence of the peptides after 
sequencing. 

Large-scale MS-data acquisition and quantification 
Different methodologies are used for data acquisition. They can be divided into two 
main categories: targeted proteomics and discovery proteomics. Targeted 
proteomics focuses on hypothesis-driven methods that use a predefined set of 
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peptides; in this case, the protein(s) of interest is/are known. The two most common 
strategies for targeted proteomics are based on approaches where the triple 
quadrupole mass analyzer is operated in multiple reactions monitoring (MRM) 
mode [39], or in parallel reaction monitoring (PRM) mode [40–42]. Both methods 
simultaneously perform relative or absolute quantitative detection of multiple target 
proteins in complex biological samples. Peptides of interest are selected based on 
their precursor ion mass in the first quadrupole (Q1). Differences between these two 
methods lie in the second step for protein detection. MRM detects specific product 
ions after the fragmentation of the precursor ions, and qualitatively quantifies the 
protein through the one-to-one correspondence between the precursor and product 
ions. PRM detects all the product ions through a high-resolution detector after 
fragmenting the precursor ions. Overall, both methods are widely used; however, 
PRM has been described as more accurate than MRM, with much less ion 
interference [43,44]. 

Discovery proteomics comprises approaches not limited to the large-scale 
identification of a predefined set of proteins (in this case, the proteins of interest are 
unknown). The data acquisition can be dependent or independent.  The data-
dependent acquisition (DDA) is based on user-defined rulers (e.g m/z, charge, 
intensity, and cross-section) followed by the mass spectrometer which selects as 
many peptides as possible for acquiring MS/MS spectra. This method has a 
stochastic nature since during the selection of the peptides there are more peptides 
than analysis time, resulting in the generation of missing values. On the other hand, 
data-independent acquisition (DIA) is a relatively new approach that promises to 
solve this limitation. Unlike DDA, DIA fragments every single peptide in a sample. 
This leads to very complex MS/MS spectra and demands high-performance 
instruments.   

Discovery proteomics commonly relies on the relative quantification of peptides. 
The strategies divides into two classes referred to as label-free quantification (LFQ), 
and label-based quantification. The former type implies spectral counting and ion 
intensity-based quantification, and the label-based strategies such as tandem mass 
tag  (TMT) include metabolic, enzymatic, or chemical labeling strategies[45]. LFQ 
is experimentally the most straightforward and cost-efficient of the two methods. 
The major advantage of TMT is the ability to evaluate multiple samples within a 
single LC–MS/MS run; nowadays even up to 16 samples [46,47]. 

Data analysis for MS-based proteomics  
The output generated by the mass spectrometer will include MS1 and MS2 data. 
This information is later processed using software that contains a search engine 
(such as SEQUEST or X!Tandem, FragPipe [48], Andromeda [49], among others) 
responsible for matching MS/MS spectra to peptide sequences stored in empirical 
or spectral databases. Here, proteins are inferred using algorithms to assemble the 
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peptides back to proteins and finally, the quantification at the peptide or protein 
levels is obtained. To indicate the matching quality between experimental- and 
theoretical- spectra of peptides in the database search, a score is calculated for each 
peptides spectrum match (PSM). Several techniques have been created to validate 
the search results and assigns a FDR for a given threshold. The most common 
method is based on decoy searching. It reverses all the protein sequences in a protein 
database and appends the reversed ‘decoy’ proteins to the target proteins. Then, an 
estimation based on the frequency of matches to decoy proteins allows one to 
estimate the specificity of the search [50]. This strategy is based on the premise that 
the decoy sequences correspond with possible incorrect search results generated by 
the search engines.  

The final output from all these processes is a matrix with a list of proteins and their 
corresponding abundances per sample, that is filtered using false-discovery rate 
(FDR) cut-offs. This matrix is used to address the biological questions in the study 
at hand. 

Data analysis to address biological questions 
The analysis of the output from MS-based proteomics experiments may involve 
drawing conclusions from the derived protein list's nature, protein abundance 
analysis, or comparisons with other studies [50]. No standard workflows exist for 
the analysis of data generated from proteomics experiments. The proteomics data 
analysis can be very specific to a particular research area. However, three major 
steps are typically followed when analyzing high-throughput proteomics data 
(Figure 5). These are 1) data pre-processing, 2) statistical analysis to select relevant 
proteins, and 3) functional enrichment analysis [51]. Data pre-processing includes 
considerations on handling missing values and data normalization to obtain a matrix 
with comparable and reliable data for downstream analysis.  

When performing downstream analysis, one can either generate a new hypothesis 
out of existing data (data-driven hypothesis), or produce new data for an existing 
hypothesis (hypothesis-driven analysis). Although both approaches are widely used 
in clinical proteomics, the first one has emerged as crucial when working with large-
scale data (such as LC-MS data).  In this context, correlation replaces causation, and 
complex statistical algorithms are capable of finding patterns not visible to the naked 
eye. Depending on each case, different methods are used for featuring extraction 
(i.e., selection of relevant proteins for further analysis). These methods are classified 
into several categories depending on their mechanisms and purpose. For example, 
algorithms based on supervised learning (such as sPLS-DA) can be used to uncover 
relationships between proteins and clinical outcomes or phenotypes. Whereas 
unsupervised algorithms (such as PCA and hierarchical clustering) uncover 
naturally occurring patterns or grouping in the data [52]. 
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Figure 5. General workflow of bioinformatics analysis in MS-based proteomics  

On the other hand, statistical methods can also be classified as univariate or 
multivariate. The first one, including popular tests such as ANOVA and Student t-
Test, analyzes proteins individually. In proteomics data analysis, these previous 
tests should be followed by tests aimed at controlling the FDR generated for 
multiple testing. However, the FDR method must be carefully selected because 
some aim to control the false positive rate and others the false negative rate. On the 
other hand, multivariate analysis (such as sPLS-DA) considers the expression of all 
proteins in a matrix simultaneously. These methods are computationally more 
demanding but also more resistant to errors during protein selection. Other tests 
based on empirical Bayes approaches are used for the detection of differentially 
expressed proteins. For example, LIMMA (linear models for microarray data) R 
package was implemented to account for the realistic distribution of biological 
variance. This approach was introduced to analyze gene expression data and later 
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expanded into the field of proteomics. Although this approach can achieve better 
results, it seems susceptible to missing values commonly obtained in proteomics 
experiments, such as those based on label-free quantification [53].  

The resulting outcomes obtained from the statistical tests are then analyzed based 
on the functional classification of the proteins and their previously studied 
relationship. Several bioinformatics tools are available today (such as DAVID  [54], 
FunRich[55], STRING[56], PANTHER [57]) to perform functional enrichment and 
over-representation analyses that permit information on cellular, molecular 
functions, biological processes, and pathways in which our proteins of interest are 
involved. Other algorithms (implemented in GSEA, PSEA, and Perseu tools) are 
based on computational methods that determine whether an a-priori-defined set of 
genes/proteins statistically shows significant differences between two biological 
states[58–61]. Overall, many of these analyses are implemented as packages in R 
free-platform. Two examples are the Bioconductor software [62] for examining and 
comprehending high-throughput data generated by wet lab experiments and the 
mixOmics package [63], which perform, among other things, multi-omic 
integration.  

In general, the effectiveness of a data-driven system goes beyond a measure of 
performance, such as an AUC or a p-value. A data-driven approach is practical when 
it produces actionable outputs for suitable patients at the right time. For instance, 
when the output is able to predict relevant information that can help a clinician 
decide the most effective treatment for a particular patient as soon as a diagnosis is 
made, we are in the presence of an effective data-driven system. Furthermore, when 
evaluating the clinical implementation of such a system, it is important to know 
whether it has been tested in an experimental setting and whether it has shown a 
meaningful impact in a population similar to the one for which it is being 
considered. The latest cancer treatments involves an oncological team 
consideration, where molecular expression data such as proteogenomics data are 
taken into consideration, for therapy decision-making. 
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Aims of the thesis  

The overall aim of this thesis was to interrogate proteomics data from a 
bioinformatics and biostatistical point of view to discover insights into the protein 
profile dynamics of the human ovarian follicular fluid and BRAF mutated metastatic 
melanoma tissue. 

Using different workflows, analyses, and mathematical principles, this thesis aimed 
to combine biological knowledge with bioinformatics and biostatistical approaches 
to integrate proteomics, clinical, and histopathological data to expand on biological 
insights.  

The specific aims of this thesis were to:  

I. Map dynamic changes in FF protein composition during ovulation in 
humans using a sensitive quantitative proteomic approach to develop a 
detailed understanding of the annotated proteins and pathways; 

II. Create a detailed fingerprint of proteins present in FF from hSAF to identify 
from the early follicular stage, candidate proteins that support follicular 
growth and development; 

III. Identify proteomic alterations in the FF of unstimulated hSAF from 
polycystic ovaries; 

IV. Identify folliculogenesis-related functionalities of uncharacterized or 
poorly characterized proteins identified in the FF of hSAF; and 

V. Discover and define the association between protein expression, clinical 
outcome and tumor phenotypes in MM patients with BRAF mutation. 
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Material and Methods 

Data origin and subjects 
Data analyzed in this thesis originated from research projects where FF and MM 
cancer tumor tissues have been analyzed by MS-based proteomics to get insight into 
the female ovarian function and MM metastatic tumors. Raw files obtained from 
label-free (paper I-IV) and tandem mass tag (TMT) (paper V) quantification were 
processed using search engine the SEQUEST HT serch engine integrated into 
Proteome Discovery (Thermo Scientific, San Jose, CA, USA) software. The output 
data was subjected to data analysis. 

To map FF dynamic changes during ovulation (paper I), a cohort of 25 women 
(age: 18-35 years) was selected. These women were previously hormonally 
stimulated in connection with IVF-ICSI treatment. Using vaginal ultrasound-guided 
puncture, a FF sample was collected from a large antral follicle (>14 mm of 
diameter) from each woman. In addition, descriptive clinical parameters and results 
from hormonal analyses were collected.  

To investigate fingerprints of proteins present in FF from SAF (size 6.1±0.4 mm), a 
first study (paper II) included a cohort of 31 unstimulated women (age: ~28 years) 
undergoing unilateral ovariectomy for fertility preservation whose ovary had a 
macroscopically normal appearance. Only women with diseases unrelated to the 
ovary were considered. Proteomics data was obtained in three blocks. Firstly, FF 
samples from 15 of the 31 women were pooled and evaluated. Next, ten other 
samples were individually evaluated for protein verification, and ultimately, 13 FF 
from 6 women were evaluated.        

Furthermore, we evaluated FF from SAF (size 4.6–9.8 mm) of polycystic ovaries 
(paper III). Proteomic data from this study was obtained from ten women (5 with 
PCO and 5 with non-PCO, age: 17-33 years) who donated in total 20 FF samples.  

The folliculogenesis-related functionalities of uncharacterized or poorly 
characterized proteins identified in SAF (paper IV) were assessed by analysing FF 
samples collected from different stages of ovarian antral follicles. Samples were 
extracted from 50 women (only one sample per woman). FF from small antral 
follicles (diameter: 5-13 mm) was extracted from 30 women (non-hormone 
stimulated) undergoing unilateral ovariectomy for fertility preservation. Only 
patients with diseases unrelated to the ovary were included, and in all cases, the 
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ovary had a macroscopically normal appearance. FF from large antral follicles 
(diameter: >15 mm) were extracted from 20 women undergoing assisted 
reproductive therapy (IVF- or ICSI). Ten out of 20 women were non-hormone 
stimulated; they were only treated with an ovulation trigger (hCG) to induce 
ovulation.  

To get insight into the protein profile of MM metastatic tumors (paper V), 56 
patients (24-89 years old, mean = 64, 40 men, 16 women) diagnosed with metastatic 
MM were evaluated. Only two received targeted B-raf treatment with Vemurafenib. 
The overall survival was 2.9 ± 3.5 (0.1–17.4) years. The majority of the studied 
metastatic tissues were from the lymph nodes (82%), while the remainder were 
cutaneous, subcutaneous and visceral. Four patients younger than 40 years of age at 
diagnosis were excluded from the analysis since, as described in several 
studies[64,65], these young patients presented an imbalance towards a much higher 
overall survival.   

 

Ethical approvals 
Informed consent was obtained from all participants included in this thesis. The 
studies were approved by:  
Paper I - The Danish Data Protection Agency and the Scientific Ethical Committee 
of Region Zealand, Denmark (SJ-530). 
Paper II-III-IV - The Ethics committee of the municipalities of Copenhagen and 
Frederiksberg (H-2-2011-044).  
Paper V - The Regional Ethical Committee at Lund University, Southern Sweden 
(DNR 191/2007, 101/2013 and 2015/266, 2015/618).  
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Data analysis  
Data pre-processing  
Output from Proteome Discoverer software (raw data) was filtered based on missing 
values to work with proteins quantified in at least 70% of the samples of at least one 
condition. Considering the low number of samples and quantified proteins in paper 
I, missing values were replaced following two approaches for imputing missing 
values. The first approach imputed values similar to the measured data. This 
approach assumed that missing values were at random as a result of ion suppression 
or from the stochastic nature of the DDA methods. The second approach considered 
that missing values were not at random. It assumed that values were missing due to 
low abundance of ions (below the instrument's detection limit). In this case, missing 
values were replaced by simulating low signals, meaning that the new values were 
biased toward the lower part of the normal distribution of the measured data.  

Data pre-processing included a normalization step in which protein intensities were 
log2 transformed and centred (i.e., standardized) across samples to perform 
subsequent parametric statistical testing as needed. From paper I to IV where label-
free quantification was performed, the data standardization consisted of subtracting 
the sample median from each intensity value, the median of its sample. In the case of 
paper V, a TMT (labeled) approach for protein quantification was applied. To enable 
comparison across the entire sample set, relative protein abundances were calculated 
as the ratio between the protein intensity in the sample and the intensity of the protein 
in the reference.  

Selection of relevant proteins 
Univariate and multivariate tests were used to select relevant proteins (Table 1). p-
values from the univariate tests were adjusted to control the FDR generated from 
multiple testing (i.e., multiple proteins tested or multiple pair-wise comparisons). 
FDR < 0.05 were accepted. Specifically, in paper I, the FDR was controlled using 
Tukey HSD post-hoc test [66] to control the family error rate provoked by multiple 
pair-wise comparisons.  Tukey HSD is suitable when the sample sizes for each 
group are equal. The remaining univariate tests were followed by an FDR control 
based on the Benjamini-Hochberg method [67]. This test calculates the expected 
proportion of false discoveries amongst the rejected hypotheses (i.e., the proportion 
of proteins falsely reported as significantly different between groups). Proteins 
included in the functional enrichment analysis performed in paper V were selected 
based on significance levels of 1% (i.e., p-values <0.01).   

Multivariate analyses performed in paper I and paper V were unsupervised. These 
allowed us to corroborate the discriminative nature of the differentially expressed 
proteins detected from the univariate analysis. The multivariate analyses carried out 
in papers II and III were supervised (sPLS-DA) to detect discriminative proteins 



39 

using methods based on feature selection (LASSO penalization). sPLS-DA is a 
multivariate analysis that classifies the samples by performing a multivariate 
regression using the protein expression matrix as predictors and the sampling origin 
or phenotype as the response. To carry out this analysis, I used the mixOmics R 
package[63], which includes a LASSO penalization method to select the most 
informative predictors (e.g., proteins) responsible for discriminating samples.  

Table 1. Statistical tests for discovering relevant proteins. *Tests followed by a false discovery rate test. 

  Univariate analysis Multivariate analysis 
Paper I ANCOVA* 

Tukey HSD post hoc* 
PCA 

Hierarchical clustering 

Paper II Pearson correlation* 
paired Student t-Test* 

sPLS-DA (mixOmics) 
LASSO penalization 

Hierarchical clustering 

Paper III Student t-Test* sPLS-DA (mixOmics) 
LASSO penalization 

Hierarchical clustering 
Paper IV Pearson correlation*  - 

Paper V Kaplan–Meier 
ROC curve  

Student t-Test 

PCA 
Hierarchical clustering 

 

Functional enrichment analysis 
Table 2 shows the different bioinformatics tools used to interpret the results from 
the statistical analyses. Except for IPA-QIAGEN software, the tools are free (non-
commercial) to use by the scientific community. FunRich [55] was mainly used for 
GO annotations and enrichment analysis to identify altered pathways in paper II. 
DAVID tool was used to perform functional annotation clustering. January 2022). 
In this type of analysis, proteins with similar GO/pathway terms are most likely 
involved in similar biological mechanisms [54,68]. R package clusterProfiler 
[69,70] was utilized in paper IV to perform GO analysis and significant pathways 
were assessed by applying the 1D annotation enrichment algorithm proposed by 
Cox & Mann [60] and available in Perseus platform [71].  
Table 2. Bioinformatics tools utilized for functional enrichment analysis 

  
Gene  

ontology 

Functional 
annotation 
clustering 

Protein  
network Pathways 

Paper I FunRich  - STRING  - 

Paper II FunRich DAVID IPA  
(QIAGEN) 

FunRich 

Paper III FunRich DAVID  - 1D annotation enrichment 
(Cox & Mann) 

Paper IV clusterProfiler  - IPA  
(QIAGEN) 

 - 

Paper V IPA  
(QIAGEN) 

 - IPA  
(QIAGEN) 

IPA  
(QIAGEN) 
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Data analysis performed in paper V  
Data analysis workflow for paper V, and its extended analysis is shown in Figure 
6. From a cohort of 49 patients with BRAF mutation (transcript), the mutated protein 
B-raf V600E was quantified in 16 patients. 

Association between B-raf V600E expression and patient survival 
The receiver operator characteristic (ROC) curve was used in paper V to detect a 
cut-off point based on the ability of the expression of B-raf V600E protein to 
discriminate between patients with less than and more than three years of survival. 
This variable was used to generate a KM curve which showed an association 
between high expression of the B-raf V600E mutated protein and significantly 
reduced overall survival.  

 

Figure 6. Workflow to determine the association between B-raf V600E expression and patient survival. Green 
rectangles indicate statistical test 
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Identification of mortality risk subgroups of BRAF V600E mutated patients 
Subgroups of patients with different mortality risk rates were identified using an R 
package called ‘InGRiD’ [72]. This package provides a pathway-guided 
identification of patient subgroups based on protein expression while utilizing 
patient survival information as the outcome variable. Proteins belonging to 
pathways that emerged as altered between the two groups of patients with different 
levels of BRAF mutation were selected, and their expression was used in the 
analysis. The survival information was the patient survival time from sample 
collection to death or censoring. All default parameters of 'InGRiD' were kept. 
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Results and Discussion 

The methodology for proteomic data analysis approached in this thesis was applied 
to two different fields of translational medicine: women’s reproductive disorders 
and malignant melanoma. For each field, different cohorts of patients were analyzed 
to characterize the proteomic profile of the ovarian follicular fluid and the tumor 
tissue of patients with BRAF mutation to obtain new biological insights that help to 
alleviate these medical conditions.  

In this section, I present a general workflow established for proteomic data analysis 
and a summary of the results presented in the scientific articles included in this 
thesis. A complete presentation of the results can be found in the original papers 
attached at the end of this thesis. In addition, I present a brief discussion of the 
generated results.  

General workflow for data analysis 
Clinical proteomics research is based on data generated from analysis of patient 
samples and other types of clinical information (e.g., age, sex, disease stage). In 
some cases, the clinic can provide relevant data collected from clinical chemistry 
analyses and/or histopathology, the latter being common in cancer research. The 
integration of these different types of information is crucial in order to obtain 
relevant and meaningful results.  

In this thesis, a global adaptable workflow was established to perform the clinical 
proteomic data analysis (Figure 7). The workflow is composed of three major parts 
that were adapted to each study (i.e., paper) presented in this thesis. The first part 
(blue color) is performed prior to the real data analysis. Here we meet with all parties 
involved in the project to be aware of how much data we can collect from the clinic, 
what is the clinical/biological problem and/or hypothesis and which patient cohort 
will be included in the study. 
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Figure 7. General workflow for clinical proteomic data analysis 

This first part generates an experimental design and a data analysis workflow 
adapted for the specific study. The second part (green color) of the overall workflow 
starts with data pre-processing, where quality control and data cleaning are 
performed. Relevant features (e.g., proteins) or patterns are detected by applying 
biostatistical tests and/or machine learning machine techniques in the second part. 
This part could include the combination of several statistical strategies and tools. 
The third part of the workflow aims to investigate the biological functionalities of 
the detected relevant features or patterns. This part may include the combination of 
several bioinformatic analyses procedures using public databases and/or laboratory 
know-how. We proposed four major outputs derived from this workflow. The data 
analysis could provide 1) the discovery of new knowledge/insights, 2) the proposal 
of new experiments, both for discovery and/or validation of the results, 3) new 
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questions derived from unexpected results, or 4) the identification of features with 
unknown functions which will require a deeper analysis to obtain biological 
insights.  

Throughout the workflow, several challenges may emerge. For example, choosing 
the most appropriate statistical test to perform a comparative analysis can be 
challenging. Sometimes we have to decide beforehand whether the data should be 
transformed or not to a specific probabilistic distribution (e.g., normal distribution), 
which in turn will affect the decision on which test to choose. On the other hand, 
the generated data may not exactly fit into the designed pipeline. This is the case 
with some pipelines published as packages on R or Python platforms, that 
sometimes are tested on data generated from genomic experiments. In order to apply 
the proposed scientific methodology to your data (e.g., proteomic data), one needs 
to adapt the pipeline to consider a different type of data. The challenge here is not 
only the adaptation, but making sure that your changes reveal reliable results. At 
this point, the researcher not only needs computational skills to adapt the code and 
handle the data, there is also a need to understand the nature of the data, but also the 
analytical technique from which it was generated, and the problem that needs to be 
overcome. Another difficulty, not often discussed but very important, is the 
representation of the results. How to represent high-throughput data is cumbersome. 
The results should be illustrated in a figure that is easy to understand not only by 
researchers working in the field of molecular biology but also by non-expert 
collaborators, like clinicians, collaborators from other disciplines, and sponsors. 

Hereafter, I will be presenting new biological insights, which were obtained after 
applying different workflows to the analysis that combine biological information 
with bioinformatics and biostatistical solutions. 

The proteome of the ovarian follicular fluid  

Proteomic changes during ovulation 
Ovulation constitutes the final step of folliculogenesis and is crucial in order to 
ensure women's reproductive health. In an attempt to investigate the protein profile 
dynamics of the ovarian FF during folliculogenesis, we first focused on what 
happens during the last stage of ovulation (Paper I). The study was designed (Figure 
8) to assess the FF protein profile dynamics at five different time points (before 
ovulation induction (OI) and at 12h, 17h, 32h and 36h respectively after OI).  

A comparative analysis performed beforehand with clinical and endocrine 
parameters (paper I) concluded that the size of the follicles aspired at 32h was 
significantly larger (adjusted p-value < 0.05, Kruskal-Wallis test followed by 
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Bonferroni post hoc test). Therefore, ‘follicular size’ was included in the ANCOVA 
test as a covariable.  

 

Figure 8. Study design to assess the protein profile dynamics of the ovarian FF during ovulation 

Quantitative large-scale proteomics allowed the identification of 400 proteins of 
which 342 were detected at all time points. As determined by an univariate 
(ANCOVA followed by post hoc Tukey HSD) analysis, 24 proteins changed 
significantly (FDR less than 5%) at least at one time point during ovulation. Out of 
these 24 proteins, 15 were most likely considered to be secreted by follicle cells 
since they were only present in the FF when compared to a high-confidence human 
proteome plasma (HPP) library constructed from 91 LC-MS/MS datasets [73]. A 
second approach based on missing values highlighted 16 additional proteins as 
turned on or shut off at least at one time point during ovulation (referred to as ‘on-
off proteins’). Multivariate analyses based on PCA and unsupervised hierarchical 
clustering revealed a distinguished difference throughout the time course, observing 
that the major changes occurred immediately after OI (Figure 9a). The heat map and 
dendrogram generated by the hierarchical clustering manifested different patterns 
of protein expression across the studied time points.  

According to the gene ontology categorization, the altered proteins, which most 
likely represent the contribution of GC and TC to FF, are mainly involved in 
biological processes such as cell growth and/or maintenance and cell 
communication (Figure 9a). The 15 proteins in FF (superior in FF compared to 
plasma) were mainly matrix stabilizers, inflammatory factors and growth factors. 
The combination of bioinformatics tools for protein-protein interaction and 
functional enrichment analyses revealed an enrichment of extracellular proteins 
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with molecular functions such as protein binding, receptor binding and growth 
factor activity (Figure 9b). In addition, these were proteins involved in biological 
processes related to inflammatory immune functions, secretion and extracellular 
structural organization. Furthermore, based on known and predicted interactions 
[74], the altered proteins conformed to a network where a protease system 
(conformed by metalloproteinase and plasminogen) interacts with inflammatory 
factors and the insulin-like growth factors system.  

 
Figure 9. Hierarchical clustering of altered proteins during ovulation and their functionality. a) Heatmap and 
dendrogram of 40 altered proteins (24 differentially expressed and 16 on-off proteins). The right panel shows a 
summary of the functionality of some dysregulated proteins. This figure combines results shown in Figure 2b, Figure 4 
and Table 4 of paper I. b) Functional enrichment analysis performed with the altered proteins. Only the top GO terms 
are displayed. This figure illustrates the results shown in Table 3 of paper I.  

Overall, we were able to conclude that some proteins were associated to well-known 
processes that occur during ovulation (Figure 9a). The first one was ‘oocyte 
maturation’ involving proteins that increased their expression right after OI, reaching 
a significant peak mostly at 17 hours (AREG, IGFBP1, MDK, HSPG2, LDHB, 
ACPP). AREG transduces the LH signal from GC to the oocyte, which then resumes 
meiosis [75]. IGFBP1 may be secreted by GC [76,77] to dampen the effect of IGF 
proteins acting in the FF to drive ovulatory-related changes (e.g., steroidogenesis). 
MDK and HSPG2 proteins were suggested to have a common purpose. The growth 
factor binding properties of HSPG2 may play a role during ovulation by retaining the 
oocyte maturation effect of MDK inside the follicle. Interestingly, MDK expression 
decreased after 17h.  
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The second process we observed was ‘follicle hormone regulation’ involving 
proteins inhibin alpha chain (INHA), inhibin beta A chain (INHBA), which peaked 
at 12h-17h. It also included the peptidyl-glycine alpha-amidating monooxygenase 
(PAM) peaking at 17h-32h. Although the midovulatory peak (12h-17h) of INBA 
and INHBA has not been reported previously, we hypothesized that it might serve 
to terminate the FSH secretion, to induce oocyte maturation or to briefly intensify 
the androgen production. Lastly, the ‘release of the oocyte’ process was linked to 
proteins which mostly peaked (increased) at 36h (SERPINE1, TIM1, SPARC (32h-
36h), NPTX2, C4A, CFHR2, SAA2) and protein TNFAIP6 peaking at 12h-17h.  
TNFAIP6 is a matrix stabilizer protein that, together with NPTX2 seems to be 
involved in cumulus expansion [78]. The remained proteins were linked to 
inflammatory-like processes involved in the follicle rupture and coagulation. 

Follicular fluid from small antral follicles. Proteomic characterization  
Historically, the proteomic study of ovarian FF has been conducted on FF from pre-
ovulatory large antral follicles. This is because the most accessible way to obtain 
these samples is during assisted reproductive procedures. At this follicular stage, the 
FF contains a high number of plasma constituents transferred through the follicular 
basal membrane (due to a follicular expansion), which attenuates the detection of 
low abundant proteins and, therefore, the number of identifications fluctuates 
around hundreds of proteins. The second proteomics study (paper II) presented in 
this thesis was thought following the hypothesis that by using mass spectrometry-
based proteomics, a wider range of functional proteins could be detected in FF from 
small antral follicles compared to large follicles. As a consequence, in paper II we 
reported the first large-scale proteomic characterization of the FF from human SAF 
(hSAF) (size 6.1±0.4 mm).  

The characterization was based on 2461 identified proteins, out of which 1108 were 
found for the first time in human FF (Figure 10a). This constituted the largest 
number of proteins reported to date in human FF. 94% of the proteins were 
previously found at the transcript level in GC [14] and 39% were identified at the 
protein level in oocytes [16], which leads us to presume that those were possibly 
secreted from GCs and the oocyte.  

According to the GO classification, 19% were extracellular proteins, while 38% 
were cytosolic and nuclear proteins. The presence of intracellular proteins in the 
follicular fluid may be due to cellular apoptosis of follicular cells, which usually 
occurs during follicular development [79,80]. A high number of proteins with 
catalytic activity (36%) were identified, such as hydrolases (16%), transferases 
(5%), oxidoreductase (4%), and enzyme modulators (11%). On the other hand, we 
found that 43% of the proteins had a binding molecular function. These proteins 
included nucleic acid binding proteins (12%), signaling molecules (8%), receptors 
(4%), and calcium-binding proteins.  
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Figure 10. Proteins identified in human follicular fluid (FF) studies. a) Venn diagram comparing the number of proteins 
identified in our study and proteins previously identified in FF. The yellow circle (‘Literature’) denotes proteins 
identified in previous FF studies (up to 2020). The circles in light blue and green colour, represent the two proteomics 
studies that had previously identified the largest number of proteins in FF using mass spectrometry. Magenta color 
represents the number of proteins identified in FF from unstimulated small antral follicles (paper II). b) Biological 
pathways significantly enriched (BH method: adjusted P-value <0.05) by proteins correlated positively or negatively 
with MDK and VIM. c) Sparse partial squares discriminant analysis performed with 750 proteins quantified in 13 
paired FF samples extracted from small antral follicles coming from six women. The analysis discriminated between 
FF surrounding oocytes capable of achieving metaphase II (MII) after IVM (n=7, blue) and FF surrounding oocytes 
unable to mature (n=6, orange) after in vitro maturation. d) Top 100 proteins that contributed to Component 1 of 
sPLS-DA to discriminate between FF samples. Positive and negative sPLS-DA scores mean that the protein is up- 
and down-regulated in FF surrounding oocytes capable of reaching M2, respectively. The bar chart indicates each 
protein's contribution in Component 1 (sPLS-DA) to discriminate between groups. 

The workflow designed to identify high abundant proteins possibly more accessible 
by MS in FF from SAF as compared to the high abundant proteome of FF from large 
follicles highlighted a list of 24 non-plasma proteins, of which four were secreted 
proteins; AMH, MDK, HTRA1 and LOXL2. This comparison also confirmed the 
superiority (i.e., more abundant) of candidate proteins AREG, TNFAIP6, 
SERPINE1, and ACPP (ovulatory-related proteins) in large antral follicles. The 
presence of the 24 proteins in FF from SAF was verified by data-dependent 
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acquisition (DDA) and/or parallel reaction monitoring (PRM) in 23 different 
samples collected from 16 women. Specifically, AMH, MDK, and vimentin (VIM) 
were grouped (according to the functional annotation clustering) in a cluster of 
proteins involved in ovarian follicle development.  

A further analysis based on protein expression correlations and functional 
enrichment analysis suggested that specifically MDK and the protein pair 
MDK/VIM might play a fundamental role in follicle development and oocyte 
maturation already from early antral follicles. Expression correlation is known as an 
indication of a functional association between genes and proteins [81]. Proteins 
positively correlated (r ≥ |0.7|, adjusted p-value < 0.02) to MDK and VIM (evaluated 
in a subgroup of 10 individual FF samples) belong to gene regulation pathways such 
as transcription, chromosome maintenance, and meiosis and may act as part of the 
chromosomal organization of GC that supports the progression of follicular growth 
and maturation (Figure 10b). In addition, these proteins enriched the epithelial-to-
mesenchymal transition (EMT) pathway, which is well known to play a crucial role 
during folliculogenesis (Kim et al. 2014).  

The association of MDK and VIM with subsequent oocyte maturation was further 
confirmed in an additional cohort of six women. From each woman, we collected at 
least two FF samples: One FF sample from a follicle containing an oocyte that was 
capable to mature to metaphase II (MII) after IVM, and a FF sample from another 
follicle containing an oocyte incapable of maturing to MII. After a discriminative 
multivariate analysis based on the sPLS-DA method, a total of 100 proteins, 
including MDK, VIM and IGF1, were dysregulated in FF from hSAF surrounding 
oocytes capable of maturing (Figure 10c,d). A functional annotation clustering 
made with these proteins grouped nine secreted proteins (SFRP1, SFRP4, FRZB, 
MDK, AGT, PCOLCE, ANG, OLFM1, VCAN) in a cluster of EMT up-regulated 
processes such as development, growth factors and Wnt signal. Furthermore, these 
cell-secreted proteins correlated with proteins involved in transcription, signaling 
by NOTCH and EMT pathways.  

Altogether, these results provide evidence that a broader range of functional proteins 
can be found in FF from SAF. The experimental design combined with the 
methodology applied for data analysis revealed that changes at the protein level 
occur already in FF from small antral follicles related to subsequent oocyte 
maturation. We demonstrated that the ability of the enclosed oocyte to sustain 
meiotic resumption could be predicted from SAF.  
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Follicular fluid proteomic alterations linked to polycystic ovaries. 
Small antral follicles 
A polycystic ovary (PCO) is characterized by having antral follicles that arrest at a 
size of 3 to 11 mm in diameter. This fact affects the selection of the dominant follicle 
and therefore the subsequent ovulatory process. In the previous paper (paper II), we 
demonstrated that the ability of the oocyte to sustain meiotic resumption can be 
detected at a non-selected stage of the follicle (i.e., small antral follicles). This led 
us to a follow-up where we aimed to detect possible proteomic alterations occurring 
in the FF of unstimulated SAF from PCO associated with a disruption of 
folliculogenesis.  

Paper III constitutes a pilot study (20 FF samples from 10 women were evaluated) 
that describes the first large-scale proteomics study performed in FF of SAF (4.6-
9.8 mm), collected from unstimulated PCO. Here, we performed a multivariate 
analysis based on the sPLS-DA method to discriminate the protein profile of FF 
samples (n=10) collected from five PCOs from the protein profile of FF samples 
(n=10) collected from five normal ovaries (i.e., non-PCO). The analysis was 
performed based on the log2 protein expression of 850 proteins quantified in at least 
70% of the samples of one of the two conditions. The LASSO penalization included 
in the sPLS-DA method for feature selection detected 115 dysregulated proteins. 
Furthermore, unsupervised clustering of the samples confirmed the discriminative 
nature of these proteins.  

The bioinformatics strategy carried out to investigate the functionality of the 
dysregulated proteins in FF from PCO samples included a GO overrepresentation 
analysis, a pathway enrichment analysis (1D annotation enrichment analysis) and 
functional annotation clustering of the secreted proteins. Results obtained from the 
comparative analysis showed alterations at the protein level in the FF of PCO related 
to the immune and inflammatory systems, extracellular matrix (ECM) receptor 
interaction, collagens-containing the extracellular matrix, regulation of signaling, 
response to oxidative stress and growth factor/hormone activities. Significantly 
dysregulated proteins involved in these processes are depicted in Figure 11.  

We suggested that an altered cell signaling and communication is present in  SAF’s 
FF of PCO that interrupts the crosstalk among paracrine follicular cells. On the other 
hand, increased immune and inflammatory processes were observed in PCO 
samples. This may be related to an activation of the pro-inflammatory nuclear 
factor-kappa B (NF-kB) signaling pathway mediated by inflammatory cytokines 
derived from the peripheral circulation that enter into the follicles through the 
ovarian circulation system to activate the NF-kB factor in FF [82,83]. In addition, 
an increased GC inflammatory cascade provokes mitochondrial damage [84], which 
exacerbates the generation of reactive oxygen species (ROS)-induced oxidative 
stress and, thereby, leads to a reduction of cell proliferation, ultimately affecting the 
growth and development of oocytes. Specifically, secreted proteins SFRP1, THBS4, 
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and C1QC significantly decreased their expression in PCO FF. This downregulation 
was associated with impaired future oocyte competence since these proteins were 
found in paper II as down-regulated in SAF’s FF surrounding oocytes incapable of 
maturing to MII. 

Overall, the data analysis carried out in this study allowed us to identify proteomics 
alterations occurring in the FF of PCO hSAF that may be related to the dysfunction 
of follicular growth and subsequent oocyte competence, finally affecting the 
selection of the dominant follicle. 

 

Figure 11. Follicular fluid proteomics alterations are associated with a disruption in follicular growth of polycystic 
ovaries (PCO). Red and blue colors in arrows and letters represent upregulation and downregulation in PCO 
respectively.  

Folliculogenesis-related uncharacterized proteins.  
Disruptions in the folliculogenesis process may lead to medical conditions related 
to female infertility. The dynamic molecular changes that occur in the follicular 
fluid (FF) must be well coordinated to ensure correct folliculogenesis. Almost 
nothing is known about the function of uncharacterized/hypothetical proteins acting 
in the FF of antral follicles. In this study, we aim to discover folliculogenesis-
associated uncharacterized or poorly characterized proteins present in the FF of 
antral follicles. Figure 12, shows the study design. Using mass spectrometry (MS)-
based proteomics, We evaluated FF samples collected from different sizes (5-13 
mm) of unstimulated small antral follicles of 30 women and two pools of FF samples 
collected from large antral follicles (>15 mm) of 10 hormonal stimulated women or 
10 unstimulated women which were compared with a pool of 15 FF from 
unstimulated SAF. 
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Figure 12. Study design. Uncharacterized or poorly characterized proteins were screened from a previous proteomics 
study performed in follicular fluid (FF) from unstimulated small antral follicles (SAF). Their behaviour in different 
follicular stages was evaluated after performing mass spectrometry (MS)-based proteomics using FF from three new 
different cohorts. 

A total of 1641 proteins were identified and 107 were significantly correlated to 
follicular size. After screening for proteins with no functional domains/regions 
assigned or unknown functions and proteins without or with very generic GO 
annotations, fourteen proteins uniquely identified in our previous study (paper II) 
were selected as functionally-uncharacterized or poorly-characterized. Six 
additional proteins were also selected, taking their novelty in FF into account despite 
being functionally characterized up to a certain point. The six proteins are adhesion 
G-protein coupled receptor G6 (ADGRG6), adhesion G-protein coupled receptor 
G2 (ADGRG2), adhesion G-protein coupled receptor F5 (ADGRF5), extracellular 
serine/threonine-protein kinase (FAM20C), putative kinase FAM198B and sushi 
repeat-containing protein SRPX (SRPX). Some of these proteins were associated 
with follicle-stimulating hormone and follicular growth (Figure 13) and fourteen 
(70%) out of 20 (uncharacterized or poorly characterized proteins) were verified by 
PRM in ten individual samples.  

To dig into the functionality of these proteins, the global proteome detected in each 
cohort was used to perform bioinformatics and statistical analyses. A total of 107 
proteins were found to be significantly correlated to follicular size (adj.p<0.05, |r| > 
0.5). Twenty-eight proteins were positively correlated to follicular size (e.i. 
increased their expression while the follicular size was higher), and 79 proteins were 
negatively correlated to follicular size. Enrichment of the collagen-containing 
extracellular matrix was observed. The ECM provides structural support to the 
follicle, maintains cellular organization and connectivity, and provides biochemical 
signals that promote follicle development and maturation [85]. Specifically, the 
ECM collagen content decreases as the follicle develops [86,87]. Three 
uncharacterized proteins appeared to correlate to follicular growth (FAM3C, 
AN32B, STIP1). Four of these proteins decreased their expression in large follicles 
(ANP32A, ANP32B, STIP1, GPR116), behaving like AMH and INHBB; three 
increased together with INHBA and INHA in FF from large follicles (SRPX, 
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FAM3C, C1orf123). Taken altogether, the selected, poorly-characterized proteins 
detected in the current follicular proteomic study provide an opportunity to delineate 
novel markers to dissect the status of follicular regulatory processes. 

 

Figure 13. Functional relationships involving the selected uncharacterized/poorly-characterized FF proteins (in red) and 
follicle-stimulating hormone (FSH), based on IPA analysis. Included are proteins that link FSH to this protein set. 
Subcellular locations are indicated. Underlined proteins were validated by PRM. Continuous lines indicate a direct 
interaction, while dashed lines represent indirect relationships and lines without arrows indicate binding events only. 
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※ 
Until here, I have summarized the results of the study where proteomic data 

analysis was applied to get insights into the ovarian follicular fluid. From here, I 
will be presenting the results of the proteomic data analysis applied in the field of 

skin cancer, Malignant Melanoma. 
※ 
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Malignant melanoma – Patients with BRAF mutation 
Malignant Melanoma is the most frequently mutated tumor type. Around 50% of 
the cases harbor activating BRAF mutations [27]. In these cases, a targeted inhibitor 
is given as treatment; however, these patients develop therapy resistance after a 
while. This indicates that much remains to be understood about what happens at the 
molecular level in this type of patient.  

We performed TMT quantitative proteomics to study the BRAF mutational status 
of 56 MM metastatic tumor samples (paper V). More than 12000 proteins were 
quantified, including the mutated B-raf V600E protein, which was quantified for the 
first time in 22 MM tumor samples. The proteomic BRAF mutational status was 
confirmed by genomics in 50 samples previously analyzed at DNA and mRNA 
levels. Specifically, 20 of the 22 B-raf V600E positive tumors found by proteomics 
were confirmed by genomics (Figure 14), while the negative cases were all 
confirmed. This indicated that the applied MS strategy could truly detect the BRAF 
V600E mutational status with a sensitivity of 100 % and a specificity of 91%.  

Interestingly, the relative abundance of the B-raf V600E protein revealed a high 
degree of variability (CV=57%) across the samples (Figure 14, red color).  This led 
us to analyze the correlation between different expression levels of the B-raf V600E 
protein and patient survival.  

 

Figure 14. Patient clinical data and BRAF status for metastatic melanoma. Heat map representation of patient clinical 
data and BRAF determination by genomic and proteomics techniques. 
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Association between B-raf V600E expression, immune system and 
patient survival. 
Based on the relative expression of the protein B-raf V600E and the overall survival 
information of sixteen patients, we did set up a data analysis strategy to understand 
the effect of this protein on patient survival.  

Patient’s metastatic tumors were categorized as having low and high B-raf V600E 
mutation. This was done by applying a ROC curve to detect a cut-off point based 
on the ability of the expression of B-raf V600E protein to discriminate between 
patients with less than, and more than three years of survival. This variable was used 
to generate a KM curve which showed an association between high expression of 
the B-raf V600E mutated protein and significantly reduced survival (Figure 15a). 
The histological images of mutation-positive metastatic melanoma samples 
confirmed the differences between these two groups of tumors by observing 
different morphological patterns (Figure 15b). The global differential proteome 
between patients with low and high B-raf V600E expression was assessed and 697 
differential expressed proteins emerged (Student t-test, p<0.01) (Figure 15c). 
Overall, high expression of the B-raf V600E protein was associated with more 
aggressive tumor progression and shorter survival. After a functional enrichment 
analysis, we associated this event with the downregulation of proteins involved in 
immune response pathways, while proteins belonging to pathways associated with 
a proliferative nature of the tumor were upregulated. 

 

Figure 15. B-raf V600E expression correlated with patient survival and tumor phenotype. a) Overall survival (OS) of 
malignant melanoma patients according to B-raf V600E mutation levels (log-rank p = 0.001, Breslow p = 0.002 and 
Tarone Ware p = 0.001). b) Histological images of mutation-positive metastatic melanoma samples: (I and II) tumors 
with high expression of the B-raf V600E mutated protein; and tumor III and IV are tumors with low expression of the B-
raf V600E mutated protein. For all images the magnification and scale were 10x and 50 µm, respectively. c) Hierarchical 
clustering and heat map of 697 differentially expressed proteins between the two groups of mutation-positive metastatic 
melanomas.  
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Furthermore, we extended the analysis to find subgroups with different mortality 
risks within a cohort of 49 patients with BRAF mutation (transcript). Considering 
that the B-raf V600E protein variant was not quantified in 33 out of 49 tumors, we 
could not repeat the same strategy. Instead, we used the list of pathways that 
emerged as actives in the previous analysis and performed a pathway-guided 
identification of patient subgroups based on the expression of the proteins that 
belong to these pathways while utilizing patient survival information as the outcome 
variable. As a result, patients were classified into low, medium and high mortality 
risk groups (median survival was 5.1, 2.3 and 0.5 years, respectively) (Figure 16a). 
Notably, 8 out of 9 of the patients with high levels of B-raf V600E mutated protein 
were in the high and medium risk groups (Figure 16b). In contrast, most of the 
patients with low levels of B-raf V600E mutated protein had a low mortality risk (4 
out of 5). This indicated that the mortality risk classification might be strongly 
associated with the expression level of the B-raf V600E protein variant. In other 
words, patients with high levels of B-raf V600E seem to have a higher risk of 
mortality. Overall, proteins involved in the classification of subgroups of patients 
were mostly enriched in pathways related to metabolism, immune system and signal 
transduction (Figure 16c). Specifically, the observation of the immune system 
pathways in this extension of the study corroborated that an imbalance of the 
immune system in MM patients with BRAF mutation may induce an aggressive 
tumor progression and shorter survival. Although proteins that enriched these 
pathways were not only downregulated proteins, as observed in the previous study, 
but also key regulating proteins such as proteasome activator complex appeared to 
decrease in the group of high mortality risk. This complex is the main degradation 
system for oxidatively damaged proteins and low expression of these proteins has 
been associated with short survival of cancer patients (www.proteinatlas.org). 
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Figure 16. Identification of subgroups of patients with BRAF mutation. a) Kaplan-Meier curves of the molecularly-
defined subgroups of BRAF mutated patients. Survival probabilities color subgroups: red (high risk of mortality, n=16), 
green (medium risk, n=12) and blue (low risk, n=21). Median survival times for the three groups is shown. b) Distribution 
of BRAF patients dead or alive after 1 to 5 years from sample collection. On x-axis, patient distribution is stratified 
according to mortality risk classification. The number of patients in whom the levels of mutated B-raf V600E protein 
could be quantified is indicated in yellow (low) and green (high). c) Proteins from the most significant pathways enriched 
in mortality risk subgroups of patients with BRAF mutation.(Figure also published on thesis ISBN: 978-91-7895-919-8 
(pdf)). 
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Conclusions and Future Perspectives 

Data science has emerged as an indispensable discipline in most fields of life science 
research, especially in the field of translational medicine. The integration of 
proteomics and clinical data carried out in this thesis allowed us to obtain new 
information that may be of importance for future advances in reproductive medicine 
and an eventual delineation of patient responders/non-responders to therapy for 
malignant melanoma with BRAF mutation.  

Results from paper I confirmed that dynamic changes occur in the protein 
composition of the ovarian FF during ovulation. Changes occur right after ovulation 
induction from 12 h until 36 h to impact processes such as oocyte maturation, 
follicle hormonal regulation and release of the oocyte. Proteins involved in these 
processes could be screened after ovulation induction in women undergoing IVF 
therapy to predict a successful outcome of the treatment. However, there is a long 
way to go to get to this point. First, changes in these proteins during ovulation must 
be assessed in a larger cohort of patients and further analyses should be done to 
validate the results in the clinic. Considering the difficulty of obtaining 
homogeneous groups of patients, the data analysis strategy should be designed so 
that models can be adjusted/corrected to avoid the effect of confounding variables. 

Paper II-IV demonstrated that by doing MS, a larger number of functional proteins 
can be identified in FF from SAF compared to large follicles. FF from large follicles 
has a high dynamic range, which attenuates the ability to detect low abundant 
functional proteins. The study described in paper II revealed that significant 
differences exist in the FF from SAF, predicting the ability of the enclosed oocyte 
to sustain meiotic resumption. If this can be confirmed in further studies, it 
demonstrates that the viability of the oocyte is determined early on in follicular 
development and may open up new pathways for augmenting or attenuating 
subsequent oocyte viability in the pre-ovulatory follicle when ready to undergo 
ovulation. The direct impact of protein midkine (MDK) on oocytes in-vitro 
maturation is being tested in the clinic. Preliminary results confirming an increase 
in the rate of oocyte maturation by adding MDK to the culture medium have already 
been patented by our group. The final goal is to augment the number of good-quality 
oocytes available for IVF treatment. 

Paper III revealed that proteomics alterations related to PCOS occur already at the 
non-selected stage of the follicle to affect the follicular growth and subsequent 
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oocyte competence. This study proved that signatures of proteins indicative of 
women's health status can be identified in the FF of SAF. Following this concept, 
we are currently testing FF from SAF to discriminate between ovarian cancer 
patients and other types of cancer.   

The study described in paper IV revealed a novel association between FSH and 
uncharacterized or poorly characterized proteins. Furthermore, this study captured 
the proteomic dynamics of the FF associated with follicular growth during the 
middle follicular phase. In order to have a broader picture of the system involved in 
folliculogenesis, we planned a joint proteomics evaluation of FF, GC and the oocyte 
collected from the same follicle.   

Paper V provided evidence that a higher expression level of the B-raf V600E 
mutated protein is associated with a more aggressive tumor progression in MM 
patients with BRAF mutation. This event may be linked to an imbalance in the 
immune system of these patients. The analysis of the B-raf V600E protein, and 
associated proteins, together with a histopathological characterization of the tumor 
isolated from MM patients with BRAF mutation, may enable the delineation of 
patients who will respond or not to the treatment. Furthermore, a subsequent 
treatment combining BRAF inhibitors with immune therapy could increase the 
survival rate of those patients.  

Many others studies are being carried out in our group to get insights into MM 
disease. They include several ‘omics’ strategies such as proteogenomics, 
transcriptomics and metabolomics. The most efficient, albeit challenging, way to 
study MM-related biological systems is to integrate the data generated from these 
platforms. This may lead, for instance, to the discovery of new biomarkers or drug 
target proteins.   
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