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ABSTRACT  

This paper proposes a reduced sigma point transformation for a FastSLAM framework. The sigma point 

transformation is used to estimate robot poses in conjunction with generic particle filter used in standard FastSLAM 

framework. This method can estimate robot poses more consistently and accurately than the current standard particle 

filters, especially when involving highly nonlinear models or non-Gaussian noises. In addition, this algorithm avoids the 

calculation of the Jacobian for motion model which could be extremely difficult for high order systems. We proposed a 

sampling strategy known as a spherical simplex for sigma point transformation to estimate robot poses in FastSLAM 

framework. Simulation results are shown to validate the performance goals.  
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INTRODUCTION 

In recent years, a research on SLAM were 

introduced by Smith and Cheesman [1], in which the use 

of the extended Kalman filter (EKF) was proposed for 

solving SLAM and it was firstly implemented by [2]. 

However, there are two limitations of the EKF approach. 

One is the high computational cost to maintain a 

multivariate Gaussian vector which requires quadratic 

time in the dimension of the map. Therefore, it was 

proposed in [3] and [4] to build a set of smaller maps and 

then combined them to build a large one. The other is 

related to the data association problem. It is critical to 

choose the correct data association hypotheses because 

different data association hypotheses lead to different 

maps. Maintaining posteriors over multiple data 

associations makes the SLAM algorithms more robust. 

Unfortunately, Gaussian distributions cannot represent 

multi-modal ones, so only the most likely data association 

can be incorporated. As a result, the approach tends to fail 

catastrophically when the incorporated data association is 

incorrect. 

Alternative family of SLAM algorithms is called 

FastSLAM [5]. It was pointed out in [6] that the errors of 

the feature estimates would be independent if a robot path 

was given. This property is a base of FastSLAM 

algorithms to solve the SLAM problems. Particle filters 

are used to estimate the robot path. Conditioned on these 

particles, the mapping problem is factored into separate 

problems. Therefore, one EKF for each feature is used to 

update the feature estimate. However, the standard 

FastSLAM frameworks used an EKF to improve the 

accuracy of a proposal distribution, but the EKF involves 

Jacobian matrices and the linear approximations of the 

nonlinear functions. Calculating the Jacobian is uninvited 

effort, and inaccurate approximation to the posterior 

covariance deteriorates the estimate accuracy and the filter 

consistency. Therefore, in this paper we introduce a sigma 

point transformation in the FastSLAM framework to 

eliminate the linearization as well as the Jacobian 

calculation. In Kim et al. [7], the authors proposed a sigma 

point transformation for all components of FastSLAM 

framework. This will increase total computational cost 

especially in calculation number or sigma points for each 

component of FastSLAM known as robot pose estimation, 

landmark estimation and weight calculation. In our 

proposed method, we are focusing the sigma point 

transformation for robot pose estimation only and the 

others remain unchanged. In addition, we also proposed a 

different sampling strategy known as a spherical simplex 

to unscented transformation to estimate robot poses in 

FastSLAM framework. We then compared conventional 

types of standard sigma point FastSLAM with proposed 

sampling method known as spherical simplex sigma point 

FastSLAM, respectively. 

The structure of this paper is as follows. In next 

section, we generally describe about the FastSLAM 

framework follows by presenting proposed sampling 

strategy of the sigma point transformation for the 

FastSLAM. A simulation setup for a SLAM problem is 

shown in next following section, as well as discussion on 

the simulation results. The paper is concluded in last 

section. 

 

SIGMA POINT FastSLAM 

In general, the FastSLAM2.0 framework consists 

of three parts: the robot state estimation, the feature state 

estimation, and the importance weight calculation as 

deeply discussed in [8, 9]. In this section, the sigma point 

transformation to the robot state estimation is discussed in 

detail. The last two parts still remain unchanged as 

applying to FastSLAM2.0 and will be not covered in this 

paper. We proposed two different sampling strategies to 

sigma point transformation known as symmetrical sigma 

point and spherical simplex sigma point and they are 

discussed in detail in the following subsection. In our 

mind, the robot state estimation is crucial to develop 

accurate maps as well as to reduce overall computational 

cost. In addition, this project is an extension of previous 

work that can be referred to in [10]. 
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Symmetrical sigma point FastSLAM framework 

The FastSLAM uses a particle filter to sample 

over robot paths and each particle processes N low-

dimensional EKFs, once for each of the N landmarks. 

Instead of using linearizing through the ͳst-order Taylor 

series expansion used by EKF, the proposed method 

introduces a set of deterministic points known as sigma 

points to propagate them through nonlinear model [11]. In 

other word, we replace the EKF used in the standard 

FastSLAM by sigma point transformation method. To 

avoid confusion, the use of a particle is referring to the 

component used by particle filter to sample robot paths, 

while a sigma point is referring to the component used by 

an unscented transformation to replace the work 

performed by the EKF in standard FastSLAM framework. 

Since an observation is not always detected, 

constructing the proposal distribution and sampling from 

this prior have two steps. One is the prediction step and 

the other is the measurement update step. At first, the state 

vector is augmented with a control input and the 

observation. 
 

     
 

Here, ࢞௧−ଵ௔[�]
 and ࡼ௧−ଵ௔[�]

 are the augmented vector 

for the state and related covariance, respectively. ࢞௧−ଵ[�]
  is 

the previous mean of the robot as well as it covariance, ࡼ௧−ଵ[�]
௧ࡾ ௧ andࡽ .  are the control noise covariance and the 

measurement noise covariance, respectively. 

A symmetric set of ʹ� + ͳ sigma points �௧−ଵ௔[�][�] for the 

augmented state vector can be calculated as 
 

     (1) 
 

where γ = √� +  and � is the augmented state   ߣ

vector dimension. The ߣ = �ଶሺߙ + ሻߢ − �  and ߙ value 

between zero and one should be a small number to avoid 

sampling nonlocal effects when the nonlinearities are 

strong. ߢ is a scaling parameter that determines how far 

the sigma points are separated from the mean and a good 

default choice is ߢ = Ͳ [14]. 

 The set of sigma points �௧−ଵ௔[�][�] is then propagated 

through the motion model ࢎ ሺ·ሻ given by 
 

     (2) 
 

Here,  �̅௧−ଵ[�][�] is the transformed sigma points of the 

robot state.  �௧−ଵ[�][�]
 and �௧௨[�][�]

 are the part of augmented 

sigma points related to the robot poses and control 

component, respectively. 

The first two moments of the predicted robot 

state are computed by the following equations: 
 

      (3) 

 

    (4) 
 

where the constant weights ���  and ���  are 

parameters related to computing mean and covariance 

given as follows in [14].  As some features are observed, 

the data association provides their identities, and the 

updating step can be performed. The measurement sigma 

points  �̅௧[�][�] are calculated using the observation model ࢍሺ·ሻ, function of sigma points of robot poses �̅௧[�][�]  and 

measurement 

noise �௧௭[�][�] given below: 
 

      (5) 
 

Then, the measurement mean  �̂௓�[�], covariance  ∑௓�[�]
 

, and cross covariance  ∑࢞���[�]
 as well as the Kalman gain K[m] 

t can be computed as follows: 

 

       (6) 
 

   (7) 
 

   (8) 
 

    (9) 

 

The estimated mean and its covariance of the 

robot state at time ݐ are calculated by 
 

   (10) 
 

     (11) 
 

However the computational cost highly depended 

on the number of sigma points used, as shown in Equation. 

(1). In order to reduce this number of sigma points used, 

we propose the spherical simplex sigma point 

transformation sampling technique in the following 

section. 

 

Spherical simplex sigma point transformation 

approach 
The selection criterion of spherical simplex sigma 

points is a new and better sampling strategy for the 

unscented transformation [12-13], which significantly 

allows reducing the number of sigma points propagated. 

By this fact, the implementation of filters becomes more 

suitable for real-time systems, where the limitations of 

computational cost are extremely restrictive. 
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This sampling strategy defines a minimum set of 

points located in a hyper-sphere. For an �-dimensional 

space, only � +  ʹ sigma points are required. These sigma 

points are in a radius that is proportional to √�, and the 

weight applied to each point is proportional to ͳ/�. 

In a case of a FastSLAM, a set of � + ʹ sigma 

points �௧−ଵ௔[�][�]  for the augmented state vector can be 

calculated as 
 

   (12) 
 

Where √ࡼ௧−ଵ௔[�]
 indicates the square root of the covariance 

matrix ࡼ௧−ଵ௔[�]  , and �݅  is the ݅th column of the spherical 

simplex sigma point matrix. �݅ can be computed by the 

following algorithm: 

 Choose the value Ͳ ≤  �଴ ≤  ͳ. 

 The sequence of weights is chosen as �݅ = ଵ−���+ଵ  

 In order to use the advantages of the scaled 

transformation, the previous weights are transformed 

by the following way [16]: 

 

 
where ߙ is the sigma points scalar factor ሺͲ <  .ͳሻ, which allows to minimize the higher order errors ≥ ߙ 

 The vector sequence is initialized as 

 

 
 The vector sequence is expanded for  ݆ =  ʹ, … , � 

according to 

 

 
 

 Finally, in order to incorporate information of higher 

order, define in [14]: 
 

 
 

where ߚ denotes a parameter that affects the 

weight of the zeroth sigma point for the calculation of the 

covariance, allowing to minimize higher order errors if a 

previous knowledge of the distribution is provided for x. 

Once the sigma points have been calculated such as in 

Equation. (12), the predicting and updating steps can be 

accomplished using standard unscented transformation as 

mentioned in previous subsection. This can be computed 

from Equation. (2) to Equation. (11). 

 

SIMULATION  

In order to verify the performance of the proposed 

framework, some experiments were conducted using 

simulation data with 20 feature landmarks and known data 

association. The simulator was developed based on the 

work in [14]. The exploration area of the vehicle is 40 

meters wide and 100 meters long, and the landmarks are 

randomly located in the area. 

 

 
 

Figure-1. True trajectory and landmark. 

 

Figure-1 shows the landmarks and true vehicle 

trajectory setup for this simulation. The vehicle starts at 

the initial pose (Ͳ ݉, Ͳ ݉, Ͳ�) and travels with a nominal 

speed and a steering angle of ͵ ݉/ݏ and ͵Ͳ�, respectively. 

The nominal control values are corrupted with Gaussian 

noises with standard deviations Ͳ.͵ ݉/ݏ and ͵�, 

respectively for each Ͳ.Ͳʹ5 ݏ sampling interval. The 

sensor takes measurements for each Ͳ.ʹ ݏ time interval and 

the nominal measurement values are also assumed to be 

corrupted with Gaussian noises with standard deviations Ͳ.ͳ ݉ and ͳ଴, respectively. In this simulation, we 

computed and compared a symmetrical sigma point 

FastSLAM (SSPFastSLAM) and a spherical simplex 

sigma point FastSLAM (SSSPFastSLAM). As initial 

conditions, we set the number of particles equal to ͳͲͲ for 

both of these estimators. 

 

Motion and observation model 

In our simulation, we consider a simple 

Ackerman steered vehicle model as shown in Figure. 2. 

This vehicle is equipped with a set of dead-reckoning 

sensors that measure the back wheel speed and the steering 

angle. The nomenclatures are as follows: 
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Figure-2. Vehicle in process of observing a feature. 

 

The motion model of the vehicle is assumed to be 

described as follows: 

 
 

This vehicle is equipped with a range and bearing 

sensor. It can sense an object bounding in ±͵Ͳ degree 

semi-circle with the maximum range of ͵Ͳ meter. The 

measurement equation is as follows: 

 

 
 

where ሺ �݂,௫ , �݂,௬ሻ is a landmark feature available in 

Cartesian coordinate system at time when the sensor takes 

a measurement. ݐ࢝ ∼  �ሺͲ,  ሻ is a zero-mean Gaussianݐࡾ

white measurement noise with ݐࡾ = ݀݅�݃ሺͲ.ͳଶ, ͳଶሻ in 

unit [݉ʹ, ݀݁݃ଶ]. 

 

Experimental results 

Figure-3 shows the results of a SSPFastSLAM 

and a SSSPFastSLAM compared to true vehicle trajectory, 

respectively. Every estimator has been similarly performed 

at the beginning of the trajectory. However, their 

performances become different when the vehicle enters a 

first corner. 

 

 
 

Figure-3. Estimates by symmetry sigma point FastSLAM, 

(SSPFastSLAM) and a spherical simplex sigma point 

FastSLAM (SSSPFastSLAM). 

We cannot see a significant difference among 

both estimation methods because the axis scales used are 

quite large but in some place, we can clearly see that the 

proposed estimators drawn with a green-line respectively 

performed better than the standard symmetry sigma point 

FastSLAM. To obtain more promising result, we have 

computed the rms vehicle position error using the 

following equation,  
 

 
where ̂ݔ� and ̂ݕ� are estimates for the vehicle 

position. 

 

 
 

 

 
 

 
 

Figure-4. RMS error for vehicle pose estimates by 

SSPFastSLAM, and SSSPFastSLAM with 10, 50 and 100- 

particles cases, respectively. 

 

Furthermore, we investigate the effect of the 

number of particles used in estimation, we have reduced 

this particle number from 100 particles to 50 particle and 
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finally to 10 particles. Other simulation setup remains 

unchanged as previous one. We then calculated the root 

mean square (rms) error of ݔ-axis, ݕ-axis and vehicle 

position each filtering estimation method and with 

different number of particles as shown in Figure-4. 

For overall rms errors, the proposed method, 

although the number of particles was reduced, remain at 

better performance compared to the standard symmetrical 

sigma point FastSLAM. It can be shows in Tables-1 which 

give a solid proved that the proposed method had better 

performance over the original sigma point FastSLAM. 

We further analyze the impact of the number of sigma 

points used by the standard sigma point FastSLAM and 

the spherical simplex sigma point FastSLAM for 

processing time. By using build-in MATLAB function 

known as profiler and PC with 2.GHz CPU and 3.0GB 

RAM, processing time for both methods for the case of 

10-, 50- and 100-particle has been calculated as shown in 

Table-2. From the table, it is clearly found that the 

required processing time depends on the total particle and 

also the number of sigma points used. As expected, the 

time required by the SSPFastSLAM was longer than the 

time spent by the SSSPFastSLAM. This is due to the fact 

that the SSSPFastSLAM uses only ݊ + ʹ sigma points 

while the SSPFastSLAM uses more sigma points (ʹ݊ +ͳ). In general, although both methods have nearly the 

same performance in estimation, the SSSPFastSLAM has 

the advantage of fast in processing time. 

 

Table-1. RMS errors with difference number of particle 

particle Error item Numb. of particl 

SSPFastSLAM SSSPFastSLAM. 
 

 
 

Table-2. Processing time for both FastSLAM. Numb. of 

particle SSPFastSLAM SSSPFastSLAM. 
 

 
 

CONCLUSIONS 

In this paper, sigma point transformation for 

robot pose estimation has been applied to a FastSLAM 

framework and its performance has been also evaluated. 

The standard symmetrical sampling technique and a 

spherical simplex sampling technique used in sigma point 

transformation were evaluated.  The simulation showed 

that the proposed methods gave better estimation, 

compared to the previous standard sigma point 

FastSLAM. Furthermore, we reduced the number of 

particles from 100 particles to 50 and 10 particles. As a 

result, the proposed methods still maintained its better 

performance compared to standard FastSLAM. The rms 

errors of ݔ-axis, ݕ-axis, and robot position then also 

clearly proved that the proposed methods had better 

performance than the standard FastSLAM. 

 

ACKNOWLEDGEMENTS 

This work was supported by the Ministry of 

Higher Education (Malaysia) and Universiti Malaysia 

Pahang under grant no. RDU130140. 

 

REFERENCES 

 

[1] Smith C. R. and Cheeseman. P. 1986. On the 

representation and estimation of spatial 

uncertainty. Int. Journal Robotics Research. Vol. 5(4). 

pp. 56–68. 
 

[2] Moutarlier P. and Chatila R. 1989. Stochastic 

multisensory data fusion for mobile robot location and 

environment modeling. 5
th

 Int. Symposium on 

Robotics Research, Tokyo. pp. 207–216.  
 

[3] Thrun S., Koller D., Ghahramani, D., Durrant-Whyte 

H., and Ng, A.Y. 2004. Simultaneous mapping and 

localization with sparse extended information 

filters. Int. Journal of Robotics Research, vol. 23(7-8). 

pp. 693–716. 
 

[4] Leonard J. J. and Feder H. J. S. 1999. A 

computationally efficient method for large-scale 

concurrent mapping and localization. J. Hollerbach 

and D. Koditschek, editors, Proc. Of the Ninth 

International Symp. on Robotics Research, Salt Lake 

City, Utah. pp. 169–176. 
 

[5] Montemerlo M. and Thrun S. 2003. Simultaneous 

localization and mapping with unknown data 

association using FastSLAM, Proc. of the IEEE Int. 

Conf. on Robotics and Automation (ICRA). Vol. 2. 

pp. 1985–1991. 
 

[6] Murphy K. 1999. Bayesian map learning in dynamic 

environments. Advances in Neural 

Information Processing Systems (NIPS). MIT Press. 
 

[7] Kim C., Sakthivel R., and Chung, W. K.  2008. 

Unscented FastSLAM: a robust and efficient solution 

to the SLAM problem. IEEE Transactions of 

Robotics. Vol. 24(4). pp. 808–820. 
 

[8] Montemerlo M. 2003. FastSLAM: A factored solution 

to the simultaneous localization and mapping problem 

http://www.arpnjournals.com/


                              VOL. 11, NO. 10, MAY 2016                                                                                                                     ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
6702 

with unknown data association. Ph.D. dissertation. 

Carnegie Mellon Univ., Pittsburgh, PA. 
 

[9] Montemerlo M., Thrun S., Roller D. and Wegbreit B. 

2003. FastSLAM2.0: an improved particle filter 

algorithm for simultaneous localization and mapping 

that provably converges, Proc. of the 18th Int. Joint 

Conf. on Artificial Intelligence, San Francisco, CA, 

USA. pp. 1151–1156. 
 

[10] Razali S., Watanabe K. and Meayama S. 2012. 

Unscented transformation for a FastSLAM 

framework. Int. Conf. on Artificial Life and Robotics 

(AROB 17
th

 2012), Oita, Japan. pp. 196–199.  
 
[11] Van der Merwe R.  2004. Sigma point Kalman filter 

for probabilistic inference in dynamic state-space 

models. Ph.D. dissertation, Oregon Health & Science 

University, Portland.  
 
[12] Julier S. J. 2003. The spherical simplex unscented 

transformation, Proc. of the American Control 

Conference, Denver, Colorado, USA. pp. 2430–2434. 
 
[13] Julier S. J. and Uhlmann, J. K.  2002. The Scaled 

Unscented Transformation. Proc. of the American 

Control Conference, Anchorage, Alaska, USA. pp. 

4555–4559. 
 
[14] Bailey T. 2002. Mobile robot localization and 

mapping in extensive outdoor environments. Ph.D. 

dissertation, University of Sydney, Australian Center 

for Field Robotics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.arpnjournals.com/

