
A Review of High Utility Itemset Mining for

Transactional Database

Eduardus Hardika Sandy Atmaja1,2[0000-0003-1739-0116] and Kavita Sonawane1[0000-0003-

0865-6760]

1 St. Francis Institute of Technology, Mumbai, India

eduardus@student.sfit.ac.in, kavitasonawane@sfit.ac.in
2 Sanata Dharma University, Yogyakarta, Indonesia

Abstract. High utility itemset mining (HUIM) is an expansion of frequent

itemset mining (FIM). Both of them are techniques to find interesting patterns

from the database. The interesting patterns found by FIM is based on frequently

appeared items. This approach is not that efficient to identify the desired pat-

terns, as it considers only existence or non existence of items in database and

ignores utility. Whereas the patterns are more meaningful for the user if the util-

ity is considered. The utility can be quantity, profit, cost, risk or other factors

based on user interest. HUIM is another approach to find interesting patterns by

considering utility of items along with the frequency. It uses minimum utility

threshold to determine if an itemset is high utility itemset (HUI) or not. There

are several challenges to implement utility from traditional pattern mining to

HUIM. Lately, there are many research contributions that proposed different al-

gorithms to solve these issues. This review work explores various HUIM tech-

niques with detailed analysis of different strategies like Apriori, Tree based,

Utility Lists based, and Hybrid. These strategies are used to implement various

HUIM techniques in order to achieve the effectiveness in pattern mining. The

observations and analytical findings based on this detailed review done with re-

spect to various parameters can be recommended and used for further research

in the pattern mining.

Keywords: Frequent itemset ∙ High utility itemset ∙ Apriori ∙ Tree based ∙

Utility List based ∙ Hybrid

1 Introduction

FIM is a technique to find interesting patterns by finding items which frequently ap-

pear together in the transaction [1]. It has been experimented by many researchers [2-

6]. These research are the basic techniques to solve FIM problem. The general prob-

lem is solved by finding interesting patterns using frequency of items in transaction.

Minimum threshold of support is applied to decide whether or not an itemset is fre-

quent. For every frequent itemsets that has confidence higher than minimum threshold

of confidence becomes association rule. For example, a rule: Pencil, Eraser  Pen

[Support = 10%, confidence = 90%]. It means that 10% customers bought pencil,

eraser and pen together in one transaction. The value 90% for confidence interprets

that customers who bought pencil and eraser together also bought pen. This infor-

mation can be used by the manager to set up marketing strategies by putting the items

together in the display to increase sales. FIM only considers frequency to discover

interesting patterns, but in reality there are many factors that affect meaningfulness of

the patterns. Utility is an important factor that can make the generated patterns more

meaningful. It can be quantity, profit, cost, risk or other factors based on user interest.

FIM does not consider these factors, as a result there are many items with high utility

cannot be detected. HUIM is then introduced to solve the problem. It finds interesting

patterns not only by considering frequency but also the utility. Minimum threshold of

utility is applied to determine whether an itemset is HUI or not. With this approach,

the undiscovered items which has high utility can be found.

The main challenge being faced by researchers in HUIM is that how to discover in-

teresting patterns effectively and efficiently. Effective means that the interesting

patterns truly represent the real life conditions, for example, patterns should have high

profit and correlation when they are appearing together in the transaction. Efficient

means that the algorithms should produce interesting patterns by consuming less time

and memory. The main efficiency problem is that the number of item combinations

may be huge. To solve that problem, many research have been proposed such as

Apriori based [7, 8], tree based [9-17], utility list based [18-23, 26-31, 33, 34, 36-38]

and hybrid based algorithm [24, 25]. Moreover, there are several HUIM variations

such as high average utility itemset mining (HAUIM) [16, 35], HUIM in incremental

databases [17, 32], HUIM in sequential database (HUSPM) [18-20, 37, 38], HUIM in

regular occurrence [34], Close HUIM [29, 31, 33], and correlated HUIM [28, 30].

These kinds of HUIM are introduced to make the results more meaningful.

In the last phase of pattern mining, once the HUIs are generated, post processing

steps can be applied to generate association rules leading to final validation of identi-

fied patterns. To evaluate performances of various strategies and techniques re-

searcher have used different interestingness measures. These measures have a signifi-

cant role to decide whether a rule is interesting or not. It also can be used to rank the

rules [1, 28, 30, 39]. With this interestingness measures we can get patterns based on

the user’s potential interest. Along with this, performance of HUIM systems can be

evaluated in terms of memory consumption and execution time. However, with the

existing challenges HUIM is found to be very interesting area to explore. With this

objective in mind this review work tried to explore major HUIM algorithms along

with their algorithmic details and performance comparisons to mine HUI.

2 Literature Review

The objective of this review is to explore, analyze and compare various research con-

tributions in HUIM. This paper presents the detailed study and analysis of different

strategies with respect to working principle, its experimentation and the performance

observations for each algorithm. All the major findings are summarized along with

advantages and disadvantages into six different sections (Point 2.1-2.6) as follows.

2.1 Apriori Based Algorithm

Apriori [2] is an algorithm that introduces downward closure property on FIM. It

means that if an itemset is frequent then every subset must be frequent and if an item-

set is infrequent then every superset is infrequent. The pseudocode of Apriori is given

in Algorithm 1. The function in line 3 has an important role to generate candidate k-

itemsets by pairing between itemsets from (k-1)-itemsets then the unnecessary

candidates are removed by line 9. The main advantage of Apriori is that it can gener-

ate all significant patterns but it needs a lot of time to generate candidate itemset.

Apriori also needs database scan every iteration, it makes the algorithm inefficient.

The candidate generation also consumes much memory to save the candidates.

Algorithm 1: Apriori

Input : database D, minimum support threshold minSup

Output : frequent itemsets Fk

1 F1={i|i ∈ I ˄ i.count ≥ minSup}//frequent 1-itemsets

2 for(k=2; Fk-1≠Ø; k++){

3 Ck=apriori_gen(Fk-1);//generate candidate k-itemsets

4 for each transaction t ∈ D {
5 Ct=subset(Ck, t);//identify all candidates

6 for each candidate c ∈ Ct
7 c.count++;//increment support count

8 }

9 Fk={c ∈ Ck|c.count ≥ minSup}//frequent k-itemsets
10 }

11 return ∪Fk;//return all frequent itemsets

UMining and UMining_H [7] work similar to the origin Apriori to mine HUI but

there are three steps modified viz. first in the pruning step, utility upper bound in Eq.

1 is used instead of calculating actual utility which is similar process to line 4-7 in

Algorithm 1. Second, it uses utility values instead of frequent values. Third, in the

generating step, since it does not assure downward closure property, the line 3 in

Algorithm 1 cannot be adapted. The k-itemsets are created by combining (k-1)-

itemsets with list items 𝐼 scanned from database. UMining_H uses same framework

as UMining but it uses Eq. 2 instead of Eq. 1 to calculate the upper bound. It also may

prune some HUIs, although it produces correct HUIs. Both algorithms do not apply

downward closure property so it produces a large number of candidate itemset.

 𝑏(𝑆𝑘) =
∑𝑆𝑘−1∈𝐶𝑘−1𝑢(𝑆𝑘−1)

|𝐶𝑘−1|−1
 (1)

 𝑏′(𝑆
𝑘) =

𝑠𝑚𝑖𝑛

|𝐶𝑘−1|−1
× ∑

𝑢(𝑆𝑘−1)

𝑠(𝑆𝑘−1)𝑆𝑘−1∈𝐶𝑘−1 (2)

where 𝑆𝑘is an itemset of 𝑘, 𝐶𝑘is candidate itemset of 𝑘, 𝑠 is support, and |𝐶𝑘−1| is

cardinality of 𝐶𝑘−1.

Two Phase [8] has similar concept to downward closure property in Apriori name-

ly transaction weighted downward closure (TWDC) property. It means that whenever

an itemset is not HUI, every its superset is not HUI. This concept reduces the search

space because all supersets from low transaction weighted utilization (TWU) itemsets

can be cut down. Although in the first phase there is a TWU pruning to save execu-

tion time but in the second phase it needs more time to extra database scan.

root

1
3 134

3
1 31

2
2 103

3
1 57

4
1 46

4
1 35

2
1 35

3
1 48

5
1 48

4
1 48

4
1 30

5
1 30

a. UP-Tree

root

1 {(T1:13,0), (T2:18,0),

(T3:13,0)}

{(T1:13,0), (T2:18,0),

(T3:13,0)}

3 {(T1:18,13)}{(T1:18,13)}2 {(T2:22,18),

(T3:17,13)}

{(T2:22,18),

(T3:17,13)}

3 {(T2:17,40)}{(T2:17,40)} 4 {(T3:16,30)}{(T3:16,30)}

2 {(T4:15,0)}{(T4:15,0)}

4 {(T4:20,15)}{(T4:20,15)}

5 {(T5:18,30)}{(T5:18,30)}

5 {(T6:16,14)}{(T6:16,14)}4 {(T5:16,14)}{(T5:16,14)}

4 {(T6:14,0)}{(T6:14,0)}3 {(T5:14,0)}{(T5:14,0)}

b. PU-Tree

1

2

4

3
123 57 18 22 17

3
13 31 13 18

4
124 46 13 17 16

24 35 15 20

5
345 48 14 16 18

45 30 14 16
c. CUP-Tree

Fig. 1. Tree Representations

2.2 Tree Based Algorithm

To reduce search space in Apriori based algorithm, tree structure algorithm based on

pattern growth approach is proposed [12, 13]. UP-Growth [12] and UP-Growth+

[13] are extension of FP-Growth [4] in FIM. It uses a compressed tree namely UP-

Tree to store crucial information about the utility. Fig. 1a shows UP-Tree

representation. There are four proposed strategies called discarding global unpromis-

ing items (DGU), discarding global node utilities (DGN), discarding local unpromis-

ing items (DLU) and decreasing local node utilities (DLN). These strategies are used

to reduce candidate itemset. UP-Growth+ added two new strategies called discarding

local unpromising items and their estimated node utilities (DNU) and decreasing local

node utilities for the nodes of local UP-Tree by estimated utilities of descendant nodes

(DNN).

Table 1. Tree based algorithms comparison

Algorithm Key Principle
Parameters: execution time, memory usage

Advantages Disadvantages

UP-

Growth

An extension of FP-

Growth to mine HUI

with compressed tree

structure called UP-

Tree and four new

strategies: DGU,

DGN, DLU, and

DLN.

Faster algorithm: The four

strategies support in

reducing the overestimation

of utilities and candidates.

- Dataset with distinct

items, the tree grows

bigger.

- Leads to high

memory consumption.

- High traversal and

mining time.

UP-

Growth+

An extension of UP-

Growth with two

new strategies: DNU

and DNN.

Two additional strategies

are effectively helping to

reduce overestimation

utilities and candidates and

performs better than UP-

Growth.

The disadvantage is

same as UP-Growth

because it has same tree

structure.

CHUI-

Mine

A pattern growth

approach by

dynamically pruning

and mining the tree

during the tree

construction.

- It reduces both: the

number of candidates

and the search space.

- The dynamic pruning

helps to reduce the

memory consumption.

- Concurrent mining

makes it faster.

If the tree structure

grows widely and

deeply, in some cases it

makes the algorithm

slower.

MIP A pattern growth

approach with

PUtree and PUN-

List data structures.

- PUN-list avoids costly

and repeated utility

computation.

- PUN-list generates

candidates efficiently.

In sparse dataset, it

consumes more

memory because the

PUtree is grown bigger.

CTU-

Mine

An extension of CT-

PRO to mine HUI

with compact tree

structure namely

CTU-Tree.

It can mine complete HUI

and performs good in dense

datasets.

It overestimates the

potential HUI, then it

increases the memory

consumption and

computational process.

CTU-

PRO

A variant of CTU-

Mine with more

compact tree

structure namely

CUP-Tree.

- It has compact tree

structure that can reduce

the database size.

- It also efficient in sparse

and relatively dense

datasets.

- It needs more time to

do the local mining

due to several global

tree scanning.

- It needs more

memory consumption

during local mining.

CTU-

PROL

A parallel version of

CTU-PRO by using

paralel projection to

the transactions.

- It uses parallel projection

effectively handles very

large database.

- Concurrent mining

makes it faster.

- It is slower for high

utility threshold.

- Parallel Processing of

data leads more

memory consumption.

CHUI-Mine [14] is an algorithm that can dynamically prune the tree during tree

construction by reducing count of items. It uses tree structure similar to UP-Growth.

When the count of an item is zero, then nodes having that item and its descendants

can be removed. The pruned nodes are moved to the buffer and ready to mine using

pattern growth approach in concurrent time without waiting for the tree insertion pro-

cess finished. MIP [15] is also based on pattern growth approach. PUN-list is the new

data structure. PUN-list which is node in PUtree contains list of transactions (using

vertical data format). MIP works in PUtree with depth first search approach to explore

and mine HUI. Fig. 1b shows PUtree representation.

CTU-Mine [9] is an extension of CT-PRO [5] in FIM. Compressed Transaction

Utility Tree (CTU-Tree) is the proposed data structure which is very compact and

efficient because it maps transactions into an ascending sequence of integers without

generating more branch. CTU-Tree is similar to CUP-Tree used by CTU-PRO but it

sorts the items into TWU ascending order. It also does not have link node for the pre-

fix item and it can be mined using top-down approach. CTU-PRO [10] and CTU-

PROL [11] are variant of CTU-Mine. CTU-PRO has new structure namely Com-

pressed Utility Pattern Tree (CUP-Tree). Fig. 1c shows CUP-Tree representation.

CUP-Tree has link node to the prefix item so it can be mined quickly using bottom-up

approach. CTU-PROL is similar to CTU-PRO, but it mines LocalCUP-Tree separate-

ly in concurrent time. CTU-PROL divides transactions into several parallel projec-

tions and generates its LocalCUP-Tree from GlobalCUP-Tree. Table 1 shows tree

based algorithms comparison.

2.3 Utility List Based Algorithm

Utility list based is proposed to improve performance of tree based algorithms. HUI-

Miner [21] is the former of utility list inspired by ECLAT [3] in FIM. The utility list

is built to produce k-itemset similar to Apriori but there is no candidate generation. It

uses enumeration tree to extend the search space. HUI-miner prunes the search space

by applying minimum utility threshold. FHM [22] proposed a novel structure namely

EUCS (Estimated Utility Co-Occurrence Structure). It is a matrix in triangular shaped

that consists of items with its co-occurrence with other items. With EUCS, candidate

itemset can be easily found without joining any item from utility list. EUCP (Estimat-

ed Utility Co-occurrence Pruning) is the proposed strategy to prune candidate itemset

from EUCS. IMHUP [23] is proposed to improve HUI-Miner and FHM. Indexed

utility list (IU-List) is proposed to maintain the database efficiently. Two new tech-

niques called reducing upper-bound utilities in IU-Lists (RUI) by decreasing upper-

bound utilities in IU-List and combining HUI without creating IU-List (CHI) are ap-

plied.

HMiner [26] has two new data structures called compact utility list (CUL) and vir-

tual hyperlink. It is used to store and determine duplicate transactions. The algorithm

also uses three strategies to accelerate the mining process, viz. initial TWU computa-

tion and 1-itemset CUL generation, search tree exploration, and k-itemset CUL con-

struction. It also uses several pruning properties such as U-Prune and EUCS to

decrease the search space and mine HUI efficiently.

ULB-Miner [27] has a new structure called utility list buffer. It is used for storing

the potential HUI by temporarily inserting the data in the data segment. StartPos and

EndPos are two pointers that express start and end index of data segments. It helps to

access the data quickly. Whenever an itemset is not needed anymore, it can be re-

placed by other candidate to maintain efficient memory management.

SPHUI-Miner [36] has a new data format called high utility-reduced transaction

pattern list (HUI-RTPL) which consumes small memory. It has two data structures,

selective database projection utility list (SPU-List) to reduce the scanning process and

maintain information of the database and Tail-Count list which helps to prune the

search space efficiently. It has two new upper bounds (tup and pu) that also help to

reduce the search space effectively. Table 2 shows utility list based algorithms

comparison.

Table 2. Utility list based algorithm comparison

Algorithm Key Principle
Parameters: execution time, memory usage

Advantages Disadvantages

HUI-

Miner

The first utility list

based algorithm.

It reduces execution time by

avoiding candidate

generation and utility

calculation.

It need more time to

join k-itemset

among utility lists.

FHM An extension of HUI-

Miner with a new

pruning mechanism

namely EUCP.

EUCP helps to reduce

execution time by reducing

join operations.

The performance

decreases for dense

dataset.

IMHUP Indexed utility list-(IU-

List) based algorithm

with two strategies

namely RUI and CHI.

- It reduces execution time

by reducing join

operations and search

space.

- It reduces memory usage

by reducing utility list

construction.

The upper bound

utility should be

tighten.

HMiner A utility list algorithm

with two new data

structures namely CUL

and virtual hyperlink.

The new data structures

reduce memory usage.

It consumes more

memory for creating

CUL for every

itemset in sparse

dataset.

ULB

Miner

Another utility list

algorithm that uses

utility list buffer to

reuse memory

whenever possible.

- It reduces execution time

by accessing and mining

the data structure quickly.

- The utility list buffer

consumes less memory.

More distinct items

leads to high

memory usage.

SPHUI-

Miner

A projection utility list

based with a new data

format namely HUI-

RTPL and two new data

structures namely SPU-

List and Tail-Count.

- The data structure

reduces memory usage.

- It reduces execution time

by reducing database

scan and search space.

The memory

consumption

increases when the

minimum utility is

decreased.

2.4 Hybrid Based Algorithm

It is possible to combine tree and utility list based algorithm [24, 25]. mHUIMiner

[24] is an algorithm that combines HUI-Miner and IHUP-tree [17]. IHUP-tree is used

to avoid expanding items that do not appear in database. It makes the mining faster.

The tree does not contain utility information, it is used only to escort the mining and

extension process. It needs low memory consumption, because there is no calculation

and storing of utility in the tree. The concept of utility list from HUI-Miner is used to

maintain information about utility of the items. These two strategies work together in

the mining process, the tree helps to traverse and expand the search space and the

utility list is used to prune the candidate based on minimum utility. These two strate-

gies make the algorithm more efficient, but it is weak on dense dataset.

The other hybrid based algorithm is UFH [25] that combines UP-Growth+ and

FHM. UP-Growth+ is used to construct and mine the tree. FHM is called after UP-

Growth+ builds the conditional pattern base. The utility list is built based on condi-

tional pattern base. Then FHM is called to mine the utility list. It means that FHM

works with this utility list in local tree to mine HUI. The hybrid framework performs

better because in UP-Growth+ there is a transaction merging process to reduce the

memory consumption, it also provides actual utility calculation to prune the tree effi-

ciently. Then, FHM mines the utility list efficiently because the size of utility list is

reduced by UP-Growth+.

2.5 Other Variations

The other HUIM problem is that it may produce long itemsets which gets an

inconsistent predicted profit opposing the actual value. This condition is happen if the

count of distinct items is huge and the transactions contain many items. To overcome

this challenge HAUIM [16, 35] is proposed. It considers the average utility (consider

both length and utility) of itemsets to decrease itemsets with unreasonable estimated

profit. The earlier concept of HUIM assumes that transactional databases are static

especially the utilities. In real-life, the utilities may change over time. For example,

mask is cheaper before a pandemic, the price is increased because of high demand.

This issue may produce inaccurate results on real datasets. Moreover, transactional

databases also can be manipulated such as additions, deletions, and modifications.

This kinds of problem can be solved by HUIM in incremental databases [17, 32].

Sequence dataset is the other problem in HUIM. Different from the usual dataset,

sequence dataset maintains the order of the item that cannot be reordered. For exam-

ple, DNA sequence cannot be reordered because it represents the important infor-

mation about someone DNA. To overcome the problem, HUSPM which maintains the

important sequence of items is proposed [18-20, 37, 38]. Regular occurrence of items

in HUIM [34] is also interesting to investigate. It can be used to investigate the occur-

rence behavior of itemsets with their utility values. For example, in the retail dataset,

we can explore regular purchases items which have high profit. Close and maximal

HUI are compact representation of HUIM [29, 31, 33]. It helps to decrease the num-

ber of candidate itemset. Close HUI means that if an itemset is HUI then its supersets

do not have the same frequency. Maximal HUI means that if an itemset is HUI then

its supersets are not HUI. It can prune redundant patterns efficiently.

2.6 Interestingness Measures

Interestingness measure is very essential in data mining. It can be used in HUIM ei-

ther for pruning or ranking the patterns based on user specific preferences [39]. A

HUI may has low correlation to each items since there is only utility threshold calcu-

lation to prune the candidates. Some of the HUIM algorithms use interestingness

measures to prune the candidate during the mining process [28, 30]. In [28], all confi-

dence and bond measures are used and in [30], Kulczynski measure is used to prune

weakly correlated candidate itemsets. There are another interestingness measures such

as X2, lift, jaccard, cosine, and max confidence [1]. Interestingness measure can be

used to rank the generated patterns by sorting the measure value either in ascending or

descending order. The ranking represents patterns from the most interesting to the less

interesting. This may provide more meaningful patterns because it has high

correlation that represents the real condition.

2.7 Overall Observations and Analytical Key Findings

Based on review of high utility itemset algorithms above, the overall observations and

analytical key findings can be described as follows:

i. Utility threshold plays significant role in HUIM algorithms as selection of this

threshold directly impacts the search space, memory utilization and the processing

time.

ii. Changes in utility threshold values are based on the transactional databases as per

the buying selling properties and strategies being applied the real time retail store

transactions.

iii. Many researchers have contributed to handle these dynamics mentioned in point

ii. This leads to trade off among various parameters while trying address the prob-

lems associated with the changing pattern in the utilities.

iv. So it still remains a challenge to handle such dynamics and come to the completed

and generalized solution for HUIM.

v. Observations based on contribution from various researchers indicating that the

positive finding of various algorithms can be combined. The process of determin-

ing the threshold can be automated and can be generalized to gain interesting pat-

terns leading to high profit.

vi. This should be experimented with the new real time application areas where the

utilities are changing dynamically and also huge transactions are being generated.

vii. This study leads to the suggestion that, there is need of changing not only the algo-

rithm but also the strategy of applying the various key solutions in distributed

manner to handle different problems with dedicated key solutions in parallel fash-

ion in order to improve the overall performance.

3 Conclusion

HUIM is found to be effective over FIM as it considers the utility of every item and

not just the frequency. This leads to benefits in terms desired pattern generation along

with the effective association rules. This mining approach is investigated by many

researchers using several data structures such as array, tree, utility list and hybrid

based. Each data structures has its own advantages and disadvantages or constraints

with respect to the processing and handling of different data sets. Based on the review

of literature in this work, we found that most of the research done had aimed to im-

prove the existing algorithms and also to address the issues so the HUI can be mined

efficiently. Various challenges identified in this area are running time, memory con-

sumption, generation of desired patterns and association rules. We can delineate that,

there are basically three strategies named apriori, tree based, utility list based and

hybrid approaches. Most of the papers have discussed about how to create pruning

techniques to reduce the search space. Some algorithms applied more than one prun-

ing mechanisms to eliminate irrelevant candidate. The pruning techniques greatly help

the main algorithm to reduce the candidate itemset. We can state that, a qualified

pruning technique is also necessary to efficiently produce the HUIs

Overall study of this research survey is opening the door towards new research di-

rections along with the existing techniques 1) using efficient data structure such as

tree and/or utility list based, 2) using efficient mining and pruning strategies, 3) work-

ing on utility thresholding and its impact in order to improve, 4) application of paral-

lel programming/processing strategies, 5) effective use of interestingness measures

either to prune or rank the pattern that may help in final decision making or recom-

mendations.

References

1. Han, J., Kamber, M., Pei, J.: Data mining: concepts and techniques 3rd edition. Morgan

Kaufmann, Waltham (2012)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: 20th Int. Conf.

on Very Large Data Bases, pp. 487-499. Morgan Kaufmann, San Francisco (1994)

3. Zaki, M.J.: Scalable algorithms for association mining. IEEE Trans. on Knowl. and Data

Eng. 12(3), 372–390 (2000). doi:10.1109/69.846291

4. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: 2000

ACM SIGMOD Int. Conf. on Management of Data, pp 1-12. Association for Computing

Machinery, New York (2000). doi:10.1145/335191.335372

5. Sucahyo, Y.G., Gopalan, R.P.: CT-PRO: a bottom-up non recursive frequent itemset

mining algorithm using compressed fp-tree data structure. In: IEEE ICDM Workshop on

Frequent Itemset Mining Implementations. (2004)

6. Aryabarzana, N., Bidgoli, B.M., Teshnehlab, M.: negFIN: an efficient algorithm for fast

mining frequent itemsets. Expert Systems with Applications. 105, 129-143 (2018).

doi:10.1016/j.eswa.2018.03.041

7. Yao, H., Hamilton, H.J.: Mining itemset utilities from transaction databases. Data &

Knowl. Eng. 59(3), 603-626 (2006). doi:10.1016/j.datak.2005.10.004

8. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high utility

itemsets. In: 9th Pacific-Asia Conf. on Knowl. Discovery and Data Mining, pp. 689-695.

Springer, Berlin (2005). doi:10.1007/11430919_79

9. Erwin, A., Gopalan, R.P., Achuthan, N.R.: CTU-Mine: an efficient high utility itemset

mining algorithm using the pattern growth approach. In: 7th IEEE Int. Conf. on Computer

and Information Tech., pp. 71-76. IEEE, Fukushima (2007). doi:10.1109/CIT.2007.120

10. Erwin, A., Gopalan, R.P., Achuthan, N.R.: A bottom-up projection based algorithm for

mining high utility itemsets. In: 2nd Int. Workshop on Integrating Artificial Intelligence

and Data Mining, pp. 3-11. Australian Computer Society, Australia (2007)

11. Erwin, A., Gopalan, R.P., Achuthan, N.R.: Efficient mining of high utility itemsets from

large datasets. In: 12th Pacific-Asia Conf. on Knowl. Discovery and Data Mining, pp. 554-

561. Springer, Berlin (2008). doi:10.1007/978-3-540-68125-0_50

12. Tseng, V.S., Wu, C.W., Shie, B.E., Yu, P.S.: UP-Growth: an efficient algorithm for high

utility itemset mining. In: 16th ACM SIGKDD Int. Conf. on Knowl. Discovery and Data

Mining, pp. 253-262. Association for Computing Machinery, New York (2010).

doi:10.1145/1835804.1835839

13. Tseng, V.S., Shie, B.E., Wu, C.W., Yu, P.S.: Efficient algorithms for mining high utility

itemsets from transactional databases. IEEE Trans. on Knowl. and Data Eng. 25(8), 1772-

1786 (2013). doi:10.1109/TKDE.2012.59

14. Song, W., Liu, Y., Li, J.: Mining high utility itemsets by dynamically pruning the tree

structure. Appl. Intell. 40, 29-43 (2014). doi:10.1007/s10489-013-0443-7

15. Deng, Z.H.: An efficient structure for fast mining high utility itemset. Appl. Intell. 48,

3161–3177 (2018). doi:10.1007/s10489-017-1130-x

16. Yildirim, I., Celik, M.: An efficient tree-based algorithm for mining high average-utility

itemset. IEEE Access. 7, 144245-144263 (2019). doi:10.1109/ACCESS.2019.2945840

17. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: Efficient tree structures for high

utility pattern mining in incremental databases. IEEE Trans. on Knowl. and Data Eng.

21(12), 1708-1721 (2009). doi:10.1109/TKDE.2009.46

18. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility sequential

patterns. In: 18th ACM SIGKDD Int. Conf. on Knowl. Discovery and Data Mining, pp.

660-668. Association for Computing Machinery, New York (2012).

doi:10.1145/2339530.2339636

19. Gan, W., Lin, J.C.W., Zhang, J., Chao, H.C., Fujita, H., Yu, P.S.: ProUM: projection-based

utility mining on sequence data. Information Sciences Informatics and Computer Science

Intelligent Systems Application Journal. 513, 222-240 (2020).

doi:10.1016/j.ins.2019.10.033

20. Gan, W., Lin, J.C.W., Zhang, J., Viger, P.F., Chao, H.C., Yu, P.S.: Fast utility mining on

sequence data. IEEE Trans. on Cybernetics. 51(2), 487-500 (2020).

doi:10.1109/TCYB.2020.2970176

21. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: 21st ACM

Int. Conf. on Information and Knowl. Management, pp. 55-64. Association for Computing

Machinery, New York (2012). doi:10.1145/2396761.2396773

22. Viger, P.F., Wu, C.W., Zida, S., Tseng, V.S.: FHM: faster high-utility itemset mining

using estimated utility co-occurrence pruning. In: 21st Int. Symp. on Methodologies for

Intelligent Systems, pp. 83-92. Springer, Cham (2014). doi:10.1007/978-3-319-08326-1_9

23. Ryang, H., Yun, U.: Indexed list-based high utility pattern mining with utility upper-bound

reduction and pattern combination techniques. Knowl. and Information Systems an Int.

Journal. 51, 627-659 (2017). doi:10.1007/s10115-016-0989-x

24. Peng, A.Y., Koh, Y.S., Riddle, P.: mHUIMiner: a fast high utility itemset mining

algorithm for sparse datasets. In: 21st Pacific-Asia Conf. on Knowl. Discovery and Data

Mining, pp. 196-207. Springer, Cham (2017). doi:10.1007/978-3-319-57529-2_16

25. Dawar, S., Goyal, V., Bera, D.: A hybrid framework for mining high-utility itemsets in a

sparse transaction database. Appl. Intell. 47, 809-827 (2017). doi:10.1007/s10489-017-

0932-1

26. Krishnamoorthy, S.: HMiner: efficiently mining high utility itemsets. Expert Systems with

Applications. 90, 168-183 (2017). doi:10.1016/j.eswa.2017.08.028

27. Duong, Q.H., Viger, P.F., Ramampiaro, H., Norvag, K., Dam, T.L.: Efficient high utility

itemset mining using buffered utility-lists. Appl. Intell. 48, 1859-1877 (2018).

doi:10.1007/s10489-017-1057-2

28. Viger, P.F., Zhang, Y., Lin, J.C.W., Dinh, D.T., Le, H.B.: Mining correlated high-utility

itemsets using various measures. Logic Journal of Interest Group in Pure and Appl. Logics

(IGPL). 28(1), 19-32 (2018). doi:10.1093/jigpal/jzz068

29. Wu, C.W., Viger, P.F., Gu, J.Y., Tseng, V.S.: Mining compact high utility itemsets

without candidate generation. In: High-Utility Pattern Mining: Theory, Algorithms and

Applications, pp. 279-302. Springer: Cham (2019). doi:10.1007/978-3-030-04921-8_11

30. Vo, B., Nguyen, L.V., Vu, V.V., Lam, M.T.H., Duong, T.T.M., Manh, L.T., Nguyen, T.T.

T., Nguyen, L.T.T., Hong, T.P.: Mining correlated high utility itemsets in one phase. IEEE

Access. 8, 90465-90477 (2020). doi:10.1109/ACCESS.2020.2994059

31. Wei, T., Wang, B., Zhang, Y., Hu, K., Yao, Y., Liu, H.: FCHUIM: efficient frequent and

closed high-utility itemsets mining. IEEE Access. 8, 109928-109939 (2020).

doi:10.1109/ACCESS.2020.3001975

32. Vo, B., Nguyen, L.T.T., Nguyen, T.D.D., Viger, P.F., Yun, U.: A multi-core approach to

efficiently mining high-utility itemsets in dynamic profit databases. IEEE Access. 8,

85890-85899 (2020). doi:10.1109/ACCESS.2020.2992729

33. Vo, B., Nguyen, L.T.T., Bui, N., Nguyen, T.D.D., Huynh, V.N., Hong, T.P.: An efficient

method for mining closed potential high-utility itemsets. IEEE Access. 8, 31813-31822

(2020). doi:10.1109/ACCESS.2020.2974104

34. Amphawan, K., Lenca, P., Jitpattanakul, A., Surarerks, A.: Mining high utility itemsets

with regular occurrence. Journal of ICT Research and Applications. 10(2), 153-176 (2016).

doi:10.5614/itbj.ict.res.appl.2016.10.2.5

35. Wu, J.M.T., Lin, J.C.W., Pirouz, M., Viger, P.F.: TUB-HAUPM: tighter upper bound for

mining high average-utility patterns. IEEE Access. 6, 18655-18669 (2018).

doi:10.1109/ACCESS.2018.2820740

36. Bai, A., Deshpande, P.S., Dhabu, M.: Selective database projections based approach for

mining high-utility itemsets. IEEE Access. 6, 14389-14409 (2018).

doi:10.1109/ACCESS.2017.2788083

37. Lin, J.C.W., Li, Y., Viger, P.F., Djenouri, Y., Zhang, J.: Efficient chain structure for high-

utility sequential pattern mining. IEEE Access. 8, 40714-40722 (2020).

doi:10.1109/ACCESS.2020.2976662

38. Viger, P.F., Li, J., Lin, J.C.W., Chi, T.T., Kiran, R.U.: Mining cost-effective patterns in

event logs. Knowl. Based Systems. 191, 1-25 (2020). doi:10.1016/j.knosys.2019.105241

39. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A Survey.

Association for Computing Machinery (ACM) Computing Surveys. 38(3), 9 (2006).

doi:10.1145/1132960.1132963

