Journal of Chemical Health Risks

www.jchr.org

ORIGINAL ARTICLE

The Prevalence of *Clostridium difficile* and *Clostridium perfringens* in Minced and Ground Beef in Iran

Samaneh Hassani¹, Razzagh Mahmoudi^{*2}, Ata Kaboudari³, Peyman Ghajarbeygi⁴, Amir Peymani², Shagayegh Mousavi⁵, Saeed Shasavari⁶

¹Department of Food Hygiene and Safety, School of Public Health, Qazvin University of Medical Sciences, Qazvin, Iran ²Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran

³Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

⁴Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran

(Densities de 11 Carréense de 2020

⁵Department of Molecular Medicine, Faculty of Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran ⁶Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

	(Received: 11 September 2020 Accepted: 21 November 2020)
	ABSTRACT: In this study, due to the importance of human societies, the prevalence of <i>Clostridium difficile</i> and
KEYWORDS	Clostridium perfringens in minced and ground beef was investigated in Qazvin city, Iran. All samples were collected
Clostridium Difficile;	randomly by sampling method. The number of samples taken was estimated based on statistical methods and
Clostridium	according to previous studies. Clostridium difficile moxalactam norfloxacin (CDMN) culture media was used to
Perfringens;	isolate <i>Clostridium difficile</i> and TCS Agar and TPGY culture media was used for <i>Clostridium perfringens</i> . After
Meat;	isolation, a PCR (Polymerase Chain Reaction) test was used to confirm the species diagnosis. According to the results,
PCR;	
Qazvin	21.26% of all samples were infected with these two bacteria. The prevalence of <i>Clostridium perfringens</i> (18.04%) was
	significantly ($p < 0.05$) higher than Clostridium <i>difficile</i> (3.22%). Given the results and the pathogenicity of
	Clostridium species, especially Clostridium difficile and Clostridium perfringens, special attention should be paid to
	the methods reducing the contamination of these pathogenic bacteria in raw food.

INTRODUCTION

Clostridia are anaerobic, gram-positive, and sporeproducing bacilli important for pathogenesis, especially food-borne diseases [1]. *Clostridia* are widely distributed in nature and they can be considered a food-borne pathogen important to public health because of their abilities to produce spores, grow very rapidly in food, and produce toxins. *Clostridia* are found everywhere in the environment, including in the soil (as the main source), the bodies of animals and humans, plants and vegetables. Therefore, due to their presence in the environment, the probability of disease in humans and animals is very high [2, 3].

The pathogenic potential of *Clostridium perfringens* is attributed to their ability to produce at least 29 types of toxins and enzymes. *C. perfringens* are classified into five different types (A, B, C, D, and E) based on their ability to produce four major deadly toxins, including alpha, beta, iota, and epsilon [4, 5]. *C. perfringens* require various amino acids for growth and survival, which are essential for