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STOCHASTIC BIFURCATIONS AND TIPPING PHENOMENA OF

INSECT OUTBREAK SYSTEMS DRIVEN BY α-STABLE LÉVY

PROCESSES

Shenglan Yuan1, Yang Li2,* and Zhigang Zeng3

Abstract. In this work, we mainly characterize stochastic bifurcations and tipping phenomena of
insect outbreak dynamical systems driven by α-stable Lévy processes. In one-dimensional insect out-
break model, we find the fixed points representing refuge and outbreak from the bifurcation curves,
and carry out a sensitivity analysis with respect to small changes in the model parameters, the sta-
bility index and the noise intensity. We perform the numerical simulations of dynamical trajectories
using Monte Carlo methods, which contribute to looking at stochastic hysteresis phenomenon. As for
two-dimensional insect outbreak system, we identify the global stability properties of fixed points and
express the probability density function by the stationary solution of the nonlocal Fokker-Planck equa-
tion. Through numerical modelling, the phase portrait makes it possible to detect critical transitions
among the stable states. It is then worth describing stochastic bifurcation associated with tipping
points induced by noise through a careful examination of the dynamical paths of the insect outbreak
system with external forcing. The results give new insight into the sensitivity of ecosystems to realistic
environmental changes represented by stochastic perturbations.
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1. Introduction

Ecology takes biology from the relative simplicity of individuals to explain the complexity of interactions
between organisms and their environments [7, 30]. Its significant implications stretch beyond biology into
environmental science and the grand challenges facing society [34]. The full spectrum of ecological biology
encompasses the approaches at the molecular, organismal, population, community and ecosystem levels, as well
as relevant parts of the social sciences.

Dynamical system descriptions can help us understand complex natural systems that are only coarsely
observed [4, 27]. The nonlinear dynamics [13, 18] of biological phenomena are frequently influenced by unpre-
dictable components due to the complexity and variability of environmental conditions [20]. Because Gaussian
noise cannot describe intermittent environmental noisy fluctuations, certain complex phenomena are not suitable
to be modeled as stochastic differential equations with Gaussian noise. However, a large number of dynamical
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systems with bursting or intermittent features arise in various scientific fields due to peculiar dynamical features
such as the abrupt events in the climate system and the burst-like events in the transcription process of gene
regulation. It is more appropriate to model these discontinuous systems associated with a complex structure
of the environment using non-Gaussian Lévy processes with càdlàg trajectories. Introducing Lévy noise into
the biological insect outbreak system to simulate impulses caused by external disturbances is more near to
reality [8, 16]. Various challenging factors can bring about sudden changes in the number of insects, including
many abrupt climatic changes, environmental damages, high-toxic pesticides, etc. The most interesting Lévy
noise is given by the α-stable one, arising in local limit theorems for heavy-tailed random walks. For example,
coronavirus superspreading is fat-tailed [31].

It is of great practical importance to delve into the underlying dynamics behind in the insect outbreak system
as well as other ecological systems [3, 11]. The insect called spruce budworm is a serious pest and attacks the
leaves of the balsam fir tree, which can be a nuisance for some orchardists and farmers. When an outbreak
occurs, an impressive amount of harmful budworms can defoliate and kill most of the fir trees in the forest in a
few years’ time. It is worth mentioning that the budworm population may be affected by sudden environmental
noises [22], such as earthquakes, temperature, and hurricanes. We should work harder to discover how habitat
loss and climate change are affecting the insects [21, 29].

Ludwig et al. [17] analytically modeled the insect outbreak problem by exploiting a slow-fast system: the
budworm population evolves on a fast time scale, whereas the trees grow and die on a slow time scale. They
qualitatively analyzed the dynamics of a practical model of the interaction between the quickly reproducing
budworms and the slowly recovering forest. Grafke and Vanden-Eijnden [12] precisely discussed the slow manifold
and bifurcation structures of stochastic insect outbreak model driven by Brownian motion. They numerically
investigated the effect of fluctuations on the dynamics, leading to noise-induced transitions between metastable
fixed points captured by large deviation theory.

In the current work, we aim to tackle stochastic insect outbreak systems with α-stable Lévy noises. For such
complicated systems, stochastic bifurcations and tipping phenomena occur if some external parameters or noise
are varied. We would like to explore in detail the rich and subtle interplay of the nonlinear dynamics and the
jump behavior in terms of the Lévy noise of the stochastic perturbation. This procedure is a comprehensive
treatment both from a technological and scientific point of view, and requires a diversified approach.

This work focuses on the stochastic bifurcations and tipping phenomena for one- and two-dimensional insect
outbreak systems affected by α-stable Lévy noises. We partition the bifurcation diagram into different regions
“Refuge”, “Bistable” and “Outbreak”. We especially look at parameter-dependence of the saddle-node bifur-
cation in one-dimensional insect outbreak model. We revolve around the equilibria, stability and bifurcation of
stochastic slow-fast systems. We chiefly analyse nonlinear dynamics and tipping phenomena stemming from the
mathematical biology of the tree foliage area and the budworm population in nature. Moreover, we numerically
compute system trajectories with Monte Carlo simulations as well as probability density functions based on the
nonlocal Fokker-Planck equations in such one- and two-dimensional setups. The results shall be applicable to a
wide range of nonlinear ecosystem models under the influence of noise and parameter changes, where stochastic
bifurcations and tipping points are of interest.

The remainder of the article is organized as follows. Sections 2 and 3 are the heart of the paper. In Section 2
we consider one-dimensional insect outbreak model given by nonlinear system with α-stable Lévy noise. We also
examine saddle-node bifurcation and noise-induced tipping that arise from the key nonlinearity and changing
stochastic perturbations. In Section 3 we perform the bifurcation analysis of two-dimensional stochastic insect
outbreak system, and describe non-trivial tipping mechanisms in the coupled dynamics of the tree foliage area
and the budworm population. Section 4 summarises our findings and presents our conclusions, as well as a
number of directions for future study.
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2. One-dimensional insect outbreak model

For a biological system of bifurcation and catastrophe, we now turn to a model for the sudden outbreak of
an insect. The proposed stochastic model for the budworm population dynamics is

dx = f(x)dt+ σdLαt , (2.1)

where x ≥ 0 is the spruce budworm, f is the nominal system, Lαt is the α-stable Lévy process and σ is the noise
intensity. In the one-dimensional insect outbreak system (2.1), f describes a deterministic nonlinear system with

f(x) = rx
(

1− x

k

)
− x2

x2 + 1
.

The logistic part rx
(
1 − x

k

)
of the dynamics has growth rate r, and carrying capacity k that depends on

the amount of foliage left on the trees. The predation part x2

x2+1 represents the death rate due to predation,
chiefly by birds. The noise term Lαt stands for α-stable Lévy process with the index α ∈ (0, 2) of stability, which
characterizes the external change of environment. The constant σ ≥ 0 denotes the intensity of noise. An α-stable
Lévy motion moves mainly by small jumps if α ∈ (1, 2) is closed to 2, and mainly by big jumps if α ∈ (0, 1] is
closed to 0; see [24]. When α ∈ (0, 2), the number of the big jumps increases with decreasing α. The large jumps
lead to large error terms that cannot be controlled uniformly in time.

In the absence of predators and stochastic fluctuations, i.e., in the case

ẋ = rx
(

1− x

k

)
,

with the help of the method of separation of variables, we calculate the explicit solution

x(t) =
kx0

x0 + (1− x0)e−rt
.

The budworm population x(t) grows logistically approaching k. This means the fact that all the individuals are
competing for a finite set of resources, and so the growth rate must decrease as the population grows.

When σ = 0, we want to compute the fixed points of the deterministic system ẋ = f(x). Of course, one fixed
point always occurs at x∗ = 0; it is unstable. The intuitive explanation is that the predation is extremely weak
for small x, and so the budworm population grows exponentially for x near zero. We are looking for the other
nontrivial fixed points of ẋ = f(x), which are given by the solutions of

r
(

1− x

k

)
=

x

x2 + 1
. (2.2)

The left-hand side of (2.2) represents a straight line y = r
(
1− x

k

)
with a x-intercept equal to k and a y-intercept

equal to r, and the right-hand side of (2.2) depicts a curve y = x
x2+1 that is independent of the parameters;

their intersections correspond to the nontrivial fixed points for the system ẋ = f(x). The graphs of the line and
the curve are shown in Figure 1a. For the fixed parameter r, as we vary the parameter k, the line moves but
the curve doesn’t.

The key thing to realize is that as we increase k with r = 0.4 fixed, the line rotates counterclockwise about
r. However, we can have one, two, or three intersections in (2.2), depending on the value of k. If k is sufficiently
small, for instance, k = 5, there is exactly one intersection. While if k is sufficiently large, for instance, k = 15,
there exist three intersections a, b and c. Then the fixed points b and c approach each other and eventually
coalesce at some critical value around k ≈ 9.561 (in a saddle-node bifurcation) when the line intersects the curve
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Figure 1. (a) Deterministic bifurcation: the blue curve is the graph of y = x
x2+1 , whereas the

purple line represents y = r
(
1 − x

k

)
with r = 0.4, k = 5 in the refuge region; the dashed line

shows the saddle-node bifurcation when k ≈ 9.561; the red line with k = 15 depicts bistable
behavior. (b) We identify regions with qualitatively different dynamics. The deterministic sys-
tem ẋ = f(x) is bistable in the middle region. A saddle-node bifurcation occurs on the left
boundary of the bistable region. The critical threshold is formed at the right boundary of the
bistable region. The outbreak (refuge) region locates on the right (left) of the bistable region.

tangentially. After the bifurcation, the line becomes steeper, the only remaining fixed point is a (in addition to
x∗ = 0, of course). Similarly, a and b can collide and annihilate as r is increased.

The deterministic system ẋ = f(x) has at most four equilibria. We recall that x∗ = 0 is unstable, and also
observe that the stability type must alternate as we move along the x-axis. We determine the stability of the
nontrivial fixed points: a is stable, b is unstable, and c is stable. Thus, for r and k in the range corresponding to
three positive fixed points, the smaller stable fixed point a is called the refuge level of the budworm population,
while the larger stable point c is the outbreak level. From the point of view of pest control, one would like to
keep the population at a and away from c. The fate of the system is determined by the initial condition x0; an
outbreak occurs if and only if x0 > b. In this sense, the unstable equilibrium b plays the role of a threshold.

An outbreak can also be triggered by a saddle-node bifurcation. If the parameters r and k drift in such a way
that the fixed point a disappears, then the population will jump suddenly to the outbreak level c. The situation
is made worse by the hysteresis effect, even if the parameters are restored to their values before the outbreak,
the population will not drop back to the refuge level.

Now we compute the bifurcation curves in (k, r) space where the system undergoes saddle-node bifurcations.
But we run into a difficulty since we can not write r explicitly as a function of k (or k explicitly as a function
of r). In the calculation, the bifurcation curves will be written in the parametric form (k(x), r(x)), where x
determines the position of saddle-node bifurcation point and runs through all positive values.

As discussed earlier, the condition for a saddle-node bifurcation is that the line y = r(1− x
k ) becomes tangent

to the curve y = x
x2+1 . Thus we demand that both the equality (2.2) of the functions and their derivatives

d

dx

[
r
(
1− x

k

)]
=

d

dx

[ x

x2 + 1

]
. (2.3)
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After differentiation, (2.3) reduces to

r

k
=

x2 − 1

(x2 + 1)2
. (2.4)

We substitute this expression (2.4) for r
k into (2.2), which allows us to express r solely in terms of x:

r =
r

k
x+

x

x2 + 1
=

(x2 − 1)x

(x2 + 1)2
+

x

x2 + 1
=

2x3

(x2 + 1)2
. (2.5)

Then inserting (2.5) into (2.4) yields that

k =
r(x2 + 1)2

x2 − 1
=

2x3

(x2 + 1)2
· (x2 + 1)2

x2 − 1
=

2x3

x2 − 1
. (2.6)

The condition k > 0 implies that x must be restricted to the range x > 1. This fact can be well understood.
Since x represents the tangent point of the curve and the line in Figure 1a, the infimum of x is corresponding
to the maximum of the curve where the line is parallel to x-axis, which means that k approaches infinity.

Together (2.5) and (2.6) define the bifurcation curves. For each x > 1, we plot the corresponding point
(k(x), r(x)) in the (k, r) plane. The resulting curves determine the limiting behavior of r(x) and k(x) as x→ 1
and x→∞. The different regions separated by the bifurcation curves in Figure 1b are labeled according to the
stable fixed points that exist. The refuge level a is the only stable state for low r, and the outbreak level c is the
only stable state for large r. In the bistable region, both two stable states a and c exist. Characteristic events
are near-threshold excitations. When they showup, we should deploy adaptive and prudent strategies, and take
more preemptive and precautionary measures to prohibit the situation from getting worse and protect existing
trees. Catastrophes are excitations well beyond threshold. We have to deal with the challenges posed by insect
outbreak and do what is necessary to prevent wholesale destruction of the forest when the parameters exceed
the dangerous threshold value.

By means of Monte Carlo Simulation, several trajectories of stochastic model (2.1) with growth rate r = 0.4
and carrying capacity k = 9.5 are depicted in Figure 2, where the system is monostable with one stable state a.
When the noise intensity σ = 0, Figure 2a is effectively commensurate with 50 trajectories of the deterministic
system ẋ = f(x). In the presence of noise, from Figure 2b–d with fixed σ = 0.02, the decrease of the index of
stability α = 1.99, 1.9 and 1.5, leads to the increase of the relaxation time to the only stable state in comparison
to the deterministic case. In other words, the decrease of the index of stability α ∈ (1, 2) results in the increase
of the time for the system remaining in the position that a saddle-node bifurcation occurs, and then a large
bistable region is produced.

More interestingly still, the orbital relaxation time is shorter as α is smaller and close to 0 in the case
α ∈ (0, 1]. Only in a very short time the trajectories can be seen if α is too small. This fact was not the same
as we had expected in Figure 2a–d. The insect outbreak system is most vulnerable and susceptible to a noise-
induced abrupt change that is nearly instantaneous. When α = 1, the system relaxes to the vicinity of the
fixed point with qualitatively different paths before T = 400, as illustrated in Figure 2e. The trajectories might
diverge and jump out of the area of concern due to occasional rogue jumps. As seen in Figure 2f with α = 0.5,
the flow changes direction. There are many jumps from the bottom to the top before T = 180, which can be
seen as the upward tipping from the bottom steady state to the top place x = 60 or other positions, evidenced
also by the discrepancy, complexity and unpredictability. The emergence of large divergences makes the original
fixed point unattractive such that many paths leave it and escape from one domain of attraction. The impact
of Lévy noise shows an interesting stochastic hysteresis phenomenon in insect outbreak system. This is what
we refer to as N-induced tipping (N-tipping) associated with a bifurcation, i.e., a loss of stability of a stable
state or attractor with respect to changing stochastic perturbations. The clear definition can be found in the
Appendix.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Consider 50 trajectories obtained from Monte Carlo Simulation in the monostable
case close to saddle-node bifurcation with growth rate r = 0.4 and carrying capacity k = 9.5:
(a) σ = 0; (b) α = 1.99, σ = 0.02; (c) α = 1.9, σ = 0.02; (d) α = 1.5, σ = 0.02; (e) α = 1,
σ = 0.02; (f) α = 0.5, σ = 0.02.
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Figure 3. (a) Probability density function of system (2.1) with the index of stability α = 1.9
and the noise intensity σ = 0.02. (b) Probability density function for model (2.1) under varying
time T = 5, 20, 30, 80, 100.

To be honest, the x = 60 or other positions is not a stable stochastic equilibrium state. However, the bottom
steady state near x = 0 becomes unstable in Figure 2f. At this point, the sudden change in stochastic stability
indicates the N-tipping. If we fix r = 0.4 and choose the value of k which is great than 9.561, then there are two
metastable states of system (2.1) influenced by Lévy noise. The transition from one stochastic equilibrium state
to the other one doesn’t always happen as we expected. More specifically, several trajectories starting from one
of metastable states do not go to the other one as predicted but travel to other places in different ways. In other
words, metastable states in stochastic model (2.1) sometimes lost attractiveness rapidly and unpredictably. It
conforms to N-tipping again.

Assume that the solution x of stochastic dynamical system (2.1) has a conditional probability density
p(x̂, t|x̂0, 0). For convenience, we drop the initial condition and simply denote it by p(x̂, t). Using similar calcu-
lations as specified in the reference [32], the nonlocal Fokker-Plank equation quantifying the behaviors of system
(2.1) is

∂

∂t
p(x̂, t) =

( 2x̂

(x̂2 + 1)2
− r +

2rx̂

k

)
p(x̂, t) +

[ x̂2

x̂2 + 1
− rx

(
1− x̂

k

)] ∂
∂x̂
p(x̂, t)

+ σα
∫
R\{0}

(p(x̂+ y, t)− p(x̂, t))να(dy),

with the initial condition p(x̂, 0) = δ(x̂− x0). As this set of nonlocal Fokker-Planck equations is impossible to
be solved analytically, they are usually simulated algorithmically; see discussion in the reference [9].

We numerically compute probability density function based on the nonlocal Fokker-Planck equation, as
shown in Figure 3a. The shape of the probability density does not change much after T = 80. About T = 100,
the probability density function approaches the stationary probability density function. The shapes at T = 80
and T = 100 are almost the same, only the peak drops slightly due to the probability churn at the origin.
Approximately the unchanged density p(x̂, t) at T = 100 can be seen as a stable pattern. Figure 3b demonstrates
that the deterministic system is monostable, but the probability density function has two peaks, making it
analogous to a bistable system. Thus it can be regarded as a bifurcation induced by Lévy noise.

As α = 1.5, 1.1 and 0.8 decreases, the left peak of the stationary probability density function becomes lower
and the right one remains the same magnitude. Therefore, the decreasing α leads to the bigger portion of the
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(a) (b)

Figure 4. (a) Stationary probability density function for model (2.1) with α = 1.5, 1.1, 0.8,
and σ = 0.02. (b) Probability density function of system (2.1) with α = 0.8, σ = 0.02 and
T = 15, 40, 100.

probability of the right peak. In other words, the insect has a higher probability to be outbreak. We can observe
this phenomenon from Figure 4a. Specifically, we examine probability density function in the case α = 0.8,
σ = 0.02 and T = 15, 40, 100. The probability flows to the left peak initially and then flows to the right peak,
which is clearly presented in Figure 4b.

3. Two-dimensional insect outbreak system

The two-dimensional stochastic insect outbreak system is obtained by adding α-stable Lévy noise terms as
follows: {

dX = εX
(
1− X

S

)
dt+ σ1dLα1

t ,

dY =
[
Y
(
1− Y

FX

)
− Y 2

X2+Y 2

]
dt+ σ2dLα2

t ,
(3.1)

where (X,Y ) ∈ R2, and 0 < ε� 1 is a small positive parameter measuring slow and fast time scale separation,
meaning that in a formal sense

|dX
dt
| � |dY

dt
|.

where | · | denotes the Euclidean norm. Since dX
dt is small except if X

(
1− X

S

)
= 0, the X-dynamics is called slow

in contrast to the fast dynamics in Y . Here the tree foliage area X recovers slowly on time scale O(ε−1) to its
long time limit S. For the quickly reproducing budworm population Y , the carrying capacity FX of its logistic
growth depends on the tree foliage area available. Both populations are subject to stochastic fluctuations. The
stochastic terms {Lαit : t ≥ 0}, i = 1, 2 are independent real-valued symmetric α-stable Lévy processes with Lévy
triplets (0, 0, ναi) on probability spaces (Ωi,F i,Pi), where αi ∈ (0, 2) are the indexes of stability. The positive

constants σi are the intensities of noise. Note that Lαt =

(
Lα1
t

Lα2
t

)
is a two-dimensional α-stable Lévy process

with the Lévy triplet as l =

(
0
0

)
, Q =

(
0 0
0 0

)
and να(du,dv) = να1

(du)δ0(dv) + να2
(dv)δ0(du).
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Figure 5. Vector field of the two-dimensional deterministic system: ε = 0.05, S = 0.3 and
F = 20. Brown and light green curves denote X- and Y -nullclines, respectively. The three
equilibrium points are located where all of the nullclines intersect.

For the choice ε = 0.05, S = 0.3 and F = 20, a phase portrait of the two-dimensional deterministic system

{
Ẋ = εX

(
1− X

S

)
,

Ẏ = Y
(
1− Y

FX

)
− Y 2

X2+Y 2 ,
(3.2)

is sketched in Figure 5. The X-nullcline is the line X = 0.3. The Y -nullcline is the geometric shape for which

Y
(
1 − Y

20X

)
− Y 2

X2+Y 2 = 0. The nullclines intersect in three fixed points on the plot of two-dimensional vector
field showing the position and stability of equilibria.

Locate the fixed points by solving the equations Ẋ = Ẏ = 0. Hence Ẋ = 0 if X = 0.3. Thus, Ẏ = 0 if
1 − Y

6 −
Y

0.09+Y 2 = 0, which has approximate solutions Y = 0.1, Y = 1.2 and Y = 4.7. Therefore, there are
three fixed points Za = (0.3, 0.1), Zb = (0.3, 1.2) and Zc = (0.3, 4.7). The stability of the fixed points can be
determined by performing a linearization using partial derivatives. Linearize by finding the Jacobian matrix

J =

(
0.05− X

3 0
Y 2

20X2 + 2XY 2

(X2+Y 2)2 1− Y
10X −

2X2Y
(X2+Y 2)2

)
.

When evaluated at the fixed point Za = (0.3, 0.1), the Jacobian matrix J becomes

J(0.3,0.1) =

(
−0.05 0

0.6 −0.83

)
.

There exist two distinct negative eigenvalues λ1 = −0.05 and λ2 = −0.83, and hence the fixed point Za is stable.
For the second fixed point Zb = (0.3, 1.2),

J(0.3,1.2) =

(
−0.05 0
1.17 0.51

)
.
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There is one negative eigenvalue λ1 = −0.05 and one positive eigenvalue λ2 = 0.51, and so this fixed point Zb
is an unstable saddle point. Evaluating J at the third fixed point Zc = (0.3, 4.7) leads to

J(0.3,4.7) =

(
−0.05 0
12.3 −0.57

)
.

The eigenvalues λ1 = −0.05 and λ2 = −0.57 are negative, and then this fixed point Zc is stable. The stable
fixed points Za and Zc provide two different configurations of tree foliage area and budworm density: one with
a relatively low presence of budworms, and the other with a budworm outbreak. The insect outbreak model
(3.2) exposes bistability between the equilibria Za and Zc.

The slow-fast system (3.2) has a slow manifold M = {(X,h(X)) : X ≥ 0} foliated by the slow variable X.
Here h : X 7→ Y is a nonlinear mapping describing the fast variable Y by using the slow variable X as control
parameter. In fact, the graph of the nonlinear mapping h is the slow manifold M for the ecosystem (3.2). It
means that for a given available tree foliage area X, the budworm population quickly adjusts to a compatible
population density h(X). The stable fixed points Za and Zc lie on the slow manifold M that connects both
fixed points. A saddle-node bifurcation occurs at the point ZX = (0.2, 1.9) separating the basin boundary of
two attractors, where a stable and an unstable branch of the slow manifold M emerge.

We get the following Fokker-Planck equation for the probability density function p(x, y, t) of the solution
(X,Y ) in system (3.1) as

∂

∂t
p(x, y, t) =

[
ε
(2x

S
− 1
)

+
( 2x2y

(x2 + y2)2
− 1 +

2y

Fx

)]
p(x, y, t)

+ εx
( x
S

− 1
) ∂
∂x
p(x, y, t) +

( y2

x2 + y2
− y
(
1 − y

Fx

)) ∂
∂y
p(x, y, t)

+ σα1
1

∫
R\{0}

(p(x+ u, y, t) − p(x, t))να1(du)

+ σα2
2

∫
R\{0}

(p(x, y + v, t) − p(x, t))να2(dv).

Stochastic bifurcation may be described by a qualitative change of the stationary probability distribution.
Because of nonlocal Fokker-Planck equation for the solution of stochatic model (3.1), the probability density
function p(x, y, t) is computed by utilizing the numerical simulations. For a fixed time T = 10, the simulations
in Figure 6a–c with the Lévy noise intensities σ1 = 0 and σ2 = 0.5 reveal different qualitative behaviors. The
decrease of the stability index α2 = 1.8, 1, and 0.4 leads to sharper peak of top stable state and higher peak
of bottom state. This indicates the change of shape of the probability density function p(x, y, t) in response to
the stability index α2 of noise fluctuation on budworms. In the absence of the noise, that is, when σ2 = 0, the
graph of p(x, y, t) is single-peaked as clarified in Figure 6d. If we compare Figure 6c–d, the probability focuses
on the vicinity of X−nullcline for σ1 = 0 and on the vicinity of slow manifold for σ2 = 0, respectively. Moreover,
the transition of the probability follows X−nullcline for σ1 = 0 or slow manifold for σ2 = 0, respectively. The
Fokker-Planck equation yields quantitative information about the distribution of tipping events.

For each t ∈ [0, 100], we plot the time-varying point (X(t), Y (t)) describing the coexistence between the tree
foliage area X(t) and the budworm population Y (t) under the influence of noise in the presence of the stability
index α2 = 1.8 with the Lévy noise intensities σ1 = 0 and σ2 = 0.05 by the (X,Y ) plane in Figure 7a. We
notice that the natural timescale of X(t) is slower than Y (t). It should be pointed out that the noise is only
applied to the Y variable accompanied by the noise-free X variable. There exist two possible types of curves
with qualitatively different dynamics depending on the settings of X and Y , which are validated by Monte Carlo
simulations. To be more specific: there are 4 trajectories of stochastic system (3.1) that display counterintuitive
behaviors, where the budworm population Y increases for monotone increasing X but tips to a dangerous and
vicious break; and 5 trajectories are exponential decline curves, where the number of Y reduces exponentially
due to a slow increase in the tree growth rate of X.
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(a) (b)

(c) (d)

Figure 6. Probability density function of stochastic model (3.1) with fixed time T = 10: (a)
α2 = 1.8, σ1 = 0, σ2 = 0.5. (b) α2 = 1, σ1 = 0, σ2 = 0.5. (c) α2 = 0.4, σ1 = 0, σ2 = 0.5. (d)
α1 = 0.4, σ1 = 0.01, σ2 = 0.

From an ecological perspective, the budworms live in the tree foliage area eating leaves [25]. If the number
of the budworms is small, they can only graze a few leave so that the trees are able to thrive and reproduce.
When there are a large number of trees and a small number of budworms, the faster-growing budworms have
a sufficient supply of food to eat, and thus the number of budworms increases fast enough. Ultimately, the
massive budworms damage and outstrip their food supply. If the increasing insects break out, large quantities
of trees will be eaten in a short of time. The plentiful trees is reduced to extremely low numbers. This is an
unusual biological phenomenon. The overgrown budworms no longer have enough food to eat, causing them
to die of starvation, and their number will decrease amazingly. The populations of budworm and tree can get
infinitesimally close to zero and still recover.

Specifically, we fix the stability parameter α2 = 1.8 and consider non-trivial dynamics of the budworm pop-
ulation Y (t) that varies in time t for the noise strength σ2 = 0.05 in Figure 7b. Along 4 trajectories undergoing
exponential growth, the fluctuating Y (t) becomes noticeably larger and moves to a qualitative collapse of the
budworm population past the critical level as t increases. However, the value of Y (t) undergoes a sudden and



12 S. YUAN ET AL.

(a) (b)

(c) (d)

Figure 7. Use Monte Carlo Simulation to simulate 9 trajectories of stochastic system (3.1):
(a) α2 = 1.8, σ1 = 0, σ2 = 0.05, (X,Y )-plane. (b) α2 = 1.8, σ1 = 0, σ2 = 0.05, (Y, t)-plane. (c)
α1 = 1.8, σ1 = 0.001, σ2 = 0, (X,Y )-plane. (d) α1 = 1.8, σ1 = 0.001, σ2 = 0, (Y, t)-plane.

abrupt transition from 1.6 to low-level 0.1 in other 5 paths, and becomes small but nonzero as time tends to
t = 10. It is important to stress that Lévy noise makes Y (t) fluctuate and induces tipping phenomena.

To further perform a systematic analysis for the effect of the α-stable Lévy process and the strength of noise,
we provide an outlook for the interplay between the tree foliage area X(t) and the budworm population Y (t)
with the parameters (α1, σ1, σ2) = (1.8, 0.001, 0) in Figure 7c. Noise is not applied to the Y variable. It turns
out that a small amount of noise in X cause fluctuations of the 9 trajectories of stochastic system (3.1) with the
results of Monte Carlo simulations. There are 5 trajectories that increase too fast, where the explosive growth of
the budworm population Y essentially corresponds to insect outbreak. Other 4 trajectories decay exponentially,
where Y asymptotically approaches 0.1 after X = 0.25.
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Figure 7a together with c effectively showcase that slow-fast system (3.1) appears to be particularly sensitive
to the magnitudes of environmental change which are assumed to be α-stable Lévy noises. We detect quantitative
and qualitative changes of stochastic system (3.1) by examining the position and stability type of 9 trajectories.
Firstly, we see that 4 curves are growing rapidly in regime (α2, σ1, σ2) = (1.8, 0, 0.05), as suggested by Figure 7a.
When we consider the stability index α1 = 1.8 associated with the Lévy noise intensities σ1 = 0.001 and σ2 = 0,
there exist 5 exponentially increasing curves obtained from Monte Carlo simulations in Figure 7c. These plots
illustrate the change of the number of “explosive” trajectories for insect break in different parameter regimes.
Secondly, we find that 5 trajectories dwindle at an exponential rate and stay around Y = 0.1 after X reaches
0.23; see Figure 7a. But 4 trajectories exponentially decay to Y = 0.1 and maintain at a low level for a slightly
bigger value of X = 0.25, as demonstrated in Figure 7c.

In Figure 7a, noise is not applied to X(t) but stochastic disturbance of the budworm population Y (t)
can longitudinally influence the dynamics of the whole model. In Figure 7c, noise is not applied to Y (t) but
a small amount of noise in the tree foliage area X(t) cause horizontal fluctuations of the 9 trajectories of
stochastic system. For both X(t) and Y (t) subjected to the effects of noises, the paths are more complicated
and unpredictable than that of the circumstance where only X(t) (or Y (t)) is catalyzed by stochastic noise.
The special case for α = 2 corresponds to a Brownian motion. There are stochastic variations within a narrow
range, but the trajectories are continuous without jumps. It is the main difference.

Lastly, there is a strong need to better understand the deterministic dynamics of the budworm population
Y . Figure 7d highlights the noise-free Y parameterized by time t ∈ [0, 100] ( the noise intensity σ2 = 0). We
make the following observations: The initial stage of growth of Y (t) along 5 logarithmic curves is approximately
exponential, then the growth slows to arithmetic as time goes to t = 25. The value of Y (t) with small variations
is in between 4 and 5 after t = 25. Along other 4 paths undergoing exponential decay, the budworm population
Y (t) changes from 1.6 to 0.1 through time and holds the line if the time is in close proximity to t = 20. Even
more interestingly, external α-stable Lévy noise can drive Y (t) to tipping by comparing Figure 7b and d. The
trajectories of Y (t) under the influence of noise present stochastic variations, which can be thought of as N-
tipping. Furthermore, the effects of stochasticity accelerate the speed of rising or decreasing budworm population
and force Y (t) to move faster, where the value of Y (t) approaches 0.1 at an earlier time t = 10 than expected.

Fortunately, we could go further using similar numerical experiments and probe a myriad of samples to
establish a sufficiently accurate result illustrating the effect of noise intensity and the slow manifold on the
system behavior through changing of many trajectories. This will lead to the effectiveness and accuracy of
science and math simulations in terms of trajectory statistics.

4. Conclusions and future challenges

This section is dedicated to drawing the conclusion of this work and to presenting future research perspectives.
Mathematically, we established the bifurcation analysis and studied N-tipping of one- and two-dimensional

insect outbreak dynamical systems in which the noise source was a Lévy process. The environmental changes were
suitably assumed to be α-stable symmetric Lévy motions. We conducted numerical simulations of probability
density functions and system trajectories, and then formulated the dynamics of the insect outbreak systems.

Let us comment here briefly on possible extensions of those results for further study. N-tipping is intrinsically
unpredictable. To predict tipping point is an outstanding and extremely challenging problem. Early-warning
signals can be helpful to constrain tipping mechanisms and mathematical biology. It is very meaningful to
get early warning signals near some tipping threshold, and the possibility of preventing tipping in real world
ecosystems. Quantifying insect outbreak dynamical systems driven by general Lévy processes and examining
the effect of external forcing on system’s dynamics would be of particular useful for scientific computation and
further analysis. In addition, it would be interesting to extend the present additive noise considerations to the
case of multiplicative Lévy noise. The viewpoint presented here seems also promising for investigating a more
complex biology model, where the jumps multiply the variables. We plan to show those sophisticated contents,
simulations and experiments in the future publications.
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Data availability

All analysis code that support the findings of this study are openly available in GitHub, reference [33].

Appendix A. The preliminary concepts

Probabilistic prediction and scenario evaluation are powerful and beneficial instruments in the description
of complex systems of interest. In this section, we recall some facts about α-stable Lévy process, stochastic
bifurcation and tipping phenomena. Those concepts and tools provide useful insights into the dynamics for
stochastic dynamical system driven by non-Gaussian α-stable Lévy noise.

A.1 α-stable Lévy process

A stochastic process Lt : Ω→ Rd on probability space (Ω,F , {Ft}t∈R,P) is a (d-dimensional) Lévy process
[24] if L0 = 0 almost surely, Lt has stationary and independent increments, and t 7→ Lt(ω) is cádlág (right-
continuous with finite left limits) for almost all ω ∈ Ω. Based on Lévy-Khinchine formula, a Lévy process is
uniquely characterized in distribution by its characteristic exponent ψ : Rd → C, i.e.,

Eeiξ·Lt = etψ(ξ) t ≥ 0, ξ ∈ Rd.

The characteristic exponent ψ has the Lévy-Khinchine representation

ψ(ξ) = il · ξ − 1

2
ξ ·Qξ +

∫
Rd\{0}

(eiy·ξ − 1− iy · ξχ{|y|<1})ν(dy),

where (l, Q, ν) is the Lévy triplet consisting of a vector l ∈ Rd (drift coefficient), a symmetric positive semi-
definite matrix Rd×d (diffusion matrix) and a measure ν on (Rd \ {0},B(Rd \ {0})) satisfying

∫
Rd\{0}(|y|

2 ∧
1)ν(dy) <∞ (Lévy measure). It is worthwhile to point out that there is a one-to-one correspondence between
the characteristic exponent ψ and the Lévy triplet (l, Q, ν).

We now introduce a special but important class of Lévy processes, the symmetric α-stable Lévy processes
Lαt with Lévy triplet (0, 0, να), α ∈ (0, 2); see [23]. They are purely jump Lévy processes and have the same
characteristic function by Lévy-Khinchine formula, i.e.,

Eeiξ·L
α
t = e−t|ξ|

α

, t ≥ 0, ξ ∈ Rd.

The Lévy symbol is given by

−|ξ|α =

∫
Rd\{0}

(eiξy − 1− iξyχ{|y|<1})να(dy).

The Lévy measure να satisfies
∫
Rd\{0}(|y|

2 ∧ 1)να(dy) <∞, which is determined by

να(dy) = c(1, α)
1

|y|1+α
dy and c(1, α) =

αΓ( 1+α
2 )

21−α
√
πΓ(1− α

2 )
,

where Γ is the Gamma function. For t ≥ 0 and B ∈ B(Rd \ {0}), define the Poisson random measure of Lαt by

N(t, B) =
∑
s≤t

χB(Lαs − Lαs−) = #{s ≤ t : Lαs − Lαs− ∈ B},
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where Lαs− is the left limit of Lαs at time s. The function να(B) = E(N(1, B)) of the Lévy measure is to describe
the expected number of jumps of a certain size at time interval (0, 1]. Furthermore, define the compensated
Poisson measure of Lαt via

Ñ(t, B) = N(t, B)− tνα(B).

According to the Lévy-Itô decomposition, Lαt can be expressed as

Lαt =

∫
|y|<1

uÑ(t,dy) +

∫
|y|≥1

uN(t,dy).

In particular, Lαt −Lαs and Lαt−s have the same stable distribution S((t− s) 1
α , 0, 0), for t > s ≥ 0. For α ∈ (0, 1),

Lαt has larger jumps with lower jump probabilities, while for α ∈ (1, 2), it has smaller jumps with higher jump
frequencies, and it is a Cauchy process for α = 1. The special case for α = 2 corresponds to a Brownian motion.

A.2 Stochastic bifurcation

At present, there are two main definitions for stochastic bifurcations [1]. One is based on the sudden change
of shape of the stationary probability density function, i.e., the so-called phenomenological (P) bifurcation; and
the other is based on the sudden change of sign of the largest Lyapunov exponent, i.e., the so-called dynamical
(D) bifurcation. D bifurcation is a dynamical concept, which is similar to deterministic bifurcations, while P
bifurcation is a static concept. Unfortunately, these two definitions do not agree well, and this means that a
new definition of stochastic bifurcation need to be explored.

In contrast to bifurcations in deterministic dynamical systems [14], stochastic bifurcations, sometimes associ-
ated with noise-induced transitions, are far from well understood. This applies to noises with different statistics
and a collective action of different types of external noises. There are few rigorous general theorems and criteria
to detect stochastic bifurcations, which are often only verified by computer simulations [19] or for some particu-
lar models. While stochastic bifurcations may be characterized numerically by considering the transformation of
the shape of the stationary probability distributions of the associated fractional Fokker-Planck equation when
the system and noise parameters change, e.g., a transition from unimodal to bimodal (or from bimodal to
unimodal) distribution.

A.3 Tipping phenomena

Tipping points are strongly nonlinear phenomena which can be described in layman’s terms as large, sudden
and often unexpected changes in the state of a system, caused by small and slow changes in the external inputs.
The tipping points have been classified, according to whether they involve, predominantly, a bifurcation, noise,
or parameter drift. The notion of a tipping point was popularised by Gladwell [10] and has been used in a wide
range of applications including ecology [5, 26] and climate science [6, 15]. For example, the tipping point is used
by climate scientists to identify vulnerable features of the climate system. If the systems tip, they are likely to
have severe impacts on human society.

There are 3 general classes of tipping [28] generated by a family of stochastic non-autonomous systems

dx = f(x, µ(t))dt+ g(x)dLt,

where L represents a Lévy process and µ(t) is a time-varying input. Bifurcation-induced tipping (B-tipping)
occurs when system goes through a bifurcation point as µ(t) changes, in which the output from system changes
abruptly or qualitatively owing to a bifurcation of a quasi-static attractor. Noise-induced tipping (N-tipping)
happens in multistable system when solution switches randomly from one stable state to another, in which
noisy fluctuations result in the system departing from a neighbourhood of a quasi-static attractor. Rate-induced
tipping (R-tipping) would come into play when system fails to track quasi-static attractor which continuously
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changes with control parameter µ(t). Furthermore, stochastic nonlinear systems may exhibit tipping phenomena
that result from a combination of several of the above [2].

Acknowledgements. The authors are happy to thank Professor Dirk Blömker and Professor Jinqiao Duan for fruitful
discussions on stochastic dynamical systems driven by Lévy processes. The authors gratefully acknowledge support from
the NSFC grant 12001213.
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