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A C° INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD AND AN
EQUILIBRATED A POSTERIORI ERROR ESTIMATOR FOR A NONLINEAR
FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM OF
p-BIHARMONIC TYPE

RoNnALD H.W. Hoppgl?*

Abstract. We consider a C° Interior Penalty Discontinuous Galerkin (COIPDG) approximation of
a nonlinear fourth order elliptic boundary value problem of p-biharmonic type and an equilibrated
a posteriori error estimator. The COIPDG method can be derived from a discretization of the corre-
sponding minimization problem involving a suitably defined reconstruction operator. The equilibrated
a posteriori error estimator provides an upper bound for the discretization error in the broken W27
norm in terms of the associated primal and dual energy functionals. It requires the construction of an
equilibrated flux and an equilibrated moment tensor based on a three-field formulation of the COIPDG
approximation. The relationship with a residual-type a posteriori error estimator is studied as well.
Numerical results illustrate the performance of the suggested approach.

Mathematics Subject Classification. 35K35, 35K55, 65M60.

Received December 8, 2021. Accepted July 5, 2022.

1. INTRODUCTION

The finite element solution of the biharmonic problem is well documented in the literature. In order to avoid
computationally extremely expensive C!-conforming elements, the early work concentrated on mixed methods
(cf., e.g., [2,3,18,36,45] as well as the review article [32] and the references therein). An alternative to mixed
methods are Discontinuous Galerkin (DG) approximations which have the advantage that they only require the
numerical solution of one system of algebraic equations instead of two in case of mixed methods. In particular,
Interior Penalty Discontinuous Galerkin (IPDG) and C° Interior Penalty Discontinuous Galerkin (COIPDG)
methods have been considered in [12, 29, 30, 33, 38, 39, 46]. For IPDG and COIPDG approximations, adaptive
mesh refinement has been realized based on residual-type a posteriori error estimators in [13,19,31] and on
equilibrated a posteriori error estimators in [11]. As far as p-biharmonic problems and related nonlinear fourth
order elliptic boundary value problems of p-biharmonic type are concerned, a lot of work has been devoted
to analytical investigations [6,7, 16,21, 34, 37,49, 50], but considerably less work has been done with regard to

Keywords and phrases. CO Interior Penalty Discontinuous Galerkin approximation, nonlinear fourth order elliptic problem of
p-biharmonic type, a posteriori error estimation, equilibration.

1 Department of Mathematics, University of Augsburg, Augsburg, Germany.

2 Department of Mathematics, University of Houston, Houston, TX, USA.
*Corresponding author: rohop@math.uh.edu

© The authors. Published by EDP Sciences, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://doi.org/10.1051/m2an/2022058
https://www.esaim-m2an.org
mailto:rohop@math.uh.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0

2052 R.H.W. HOPPE

numerical solutions. Mixed methods have been developed in [35], DG methods in [40], and mesh-free methods
in [41].

In this paper, we will study an adaptive COIPDG method for a nonlinear fourth order elliptic boundary
value problem of p-biharmonic type where the mesh refinement relies on an equilibrated a posteriori error
estimator. The paper is organized as follows: After introducing some basic notations and preliminary results,
in Section 2 we consider a nonlinear fourth order elliptic boundary value problem of p-biharmonic type with
Navier boundary conditions which represents the optimality condition for the unconstrained minimization of a
second order energy functional on the Sobolev space W?2P,1 < p < 0o. The following Section 3 is devoted to the
COIPDG method which can be derived as the optimality condition for a COIPDG approximation of the related
minimization problem involving a suitably defined recovery operator. We also present a three-field formulation
of the COIPDG method which will play a decisive role in the derivation of the equilibrated a posteriori error
estimator. Section 4 deals with a computable upper bound for the global discretization error in the norm of
the broken W?2P Sobolev space by means of the associated primal and dual energy functionals which can be
derived by a general approach from [42]. In Section 5, we are concerned with the equilibrated a posteriori
error estimator. This requires the construction of an equilibrated flux and an equilibrated moment tensor which
can be done by means of Brezzi-Douglas—Marini finite elements with respect to the given triangulation of the
computational domain. In the subsequent Section 6, we obtain the relationship with a residual-type a posteriori
error estimator and finally, in Section 7 we present a documentation of numerical results which illustrate the
performance of the suggested approach.

2. THE NONLINEAR FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM OF
p-BIHARMONIC TYPE AND THE ASSOCIATED PRIMAL AND DUAL ENERGY FUNCTIONALS

We use standard notation from Lebesgue and Sobolev space theory (cf., e.g., [47]). In particular, for a
bounded Lipschitz domain Q@ C R? d € N, with boundary I' = 9 and exterior unit normal nr we refer to
Lp (Q; Rd) and LP (Q; RdXd), 1 < p < o0, as the Banach spaces of p-th power Lebesgue integrable functions and
tensors on 2 with norms || - [| 1 (q;re) and || - [| Lr(q;raxe). In case d = 1 we will write LP(€2) instead of LP(£%;R).
Matrix-valued functions in L? (Q;RdXd) will be denoted by p = (pij)gl,jzl and for p € LP(Q;RdXd),g €
L9(Q;R44) 1/p+1/q = 1, we use the notation p : q for p: q := ZZj:l pijqi;- Further, for u € W2P(Q), we
refer to D?u := (azu/awiax]—)ijzl as the matrix of second partial derivatives.

We denote by W*?(Q2),s € Ry,1 < p < 0o, the Sobolev spaces with norms || - ||y «.r() and by W5*(Q2) the
closure of C§°(€2) with respect to the norm ||-||y«»(q). Functions u € W2?(Q) have a trace u|p on the boundary
I' = 9Q with ulp € W2=Y/PP(T). For up € W2~ 1/P?(T) we set

W2P L(9) = {v € W*P(Q) | vlr = up ).

Further, we define E(p) (div, §2) and E(p) (div27 Q), 1 < p < oo, as the Banach spaces

E(z’)(div7 Q) = {I c LP(Q;Rd) |V-Te€ LP(Q)}7
H® (div?, Q) = {; e LP(R™) | V.7 e HP (div,Q)}

with the graph norms

1/p
1l vy = (I + 19 Tl e)

/p
HEHE(M (diV2,Q) = (HEHZI)}(Q;RMQ + Hv : ;HI;;,(Q;R(;) + Hv Y .;HIE,P(Q)) .
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For further properties of H® (div, Q) we refer to [1]. We refer to Egp% (div2, Q) as the subspace

E(()Zjl)“ (din’ Q) = {; c E(P) (diVQ, Q) | nr - \v4 T = 0 on ]_"}
For later use we recall Young’s inequality

£ gfq/p

a; < —al + al 2.1
[Los< St + =g E8t

for a; >0,1<i<2,and 1 <p,qg<o0,1/p+1/qg=1, and any € > 0, as well as the following inequality.
Let w; € R,1 <4 <2 and 0 <7 < co. Then it holds (cf., [44], page 136)

(lwi] + [wa])" < 2"(Jwn[" + |wo]"), 7= 0. (2.2)

Let 2 C R? be a bounded polygonal domain with boundary I' = 99 and exterior unit normal vector n,.. Further,
let 1 < p,g<oo,1/p+1/g=1,and f € LI(Q), up € W?1/PP(I"), uy € LI(T). We consider the following
nonlinear fourth order elliptic boundary value problem with Navier-type boundary conditions:

V-V (|D2u{p72D2u) =f in , (2.3a)
uU=1up on I, (2.3b)
(|D2u|p_2D2u> n.=uyn. onl. (2.3¢)

The variational formulation of (2.3) requires the computation of u € Wfff,l“ (€2) such that for all v € W2P(Q) N
W, P() it holds

/ |D2u’p_2D2u : D?vdz = £(v), (2.4a)
Q
where the functional £: V' — R is given by

L(v) = /vader/FuN n. - Vods. (2.4b)

We note that (2.4) admits a solution and represents the necessary and sufficient optimality condition for the
minimization problem

Jp(u) = eWizr*le o Jp(v), (2.5a)

where the objective functional Jp is given by

1
Jp(v) := f/ |D?v|P da —/ foda — / uy 0, - Vods. (2.5b)
pJa Q r
The dual problem of (2.5) is given by (cf., Chap. 4, Sect. 2.2 in [28])
Jp(p)= _inf Jp(q), (2.6a)

= EEE(Q)(diV2;Q)
subject to the equilibrium conditions
V-V.-p=finLYQ), pn.=uyn;in Lq(F;R2), (2.6b)

where the objective functional Jp is given by

1 q
Jp(q) ::f/‘g‘ dx—i—/uD nr-V-qds. (2.6¢)
qJa'= r =
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3. COIPDG APPROXIMATION OF THE PROBLEM

Let 75 be a geometrically conforming, locally quasi-uniform, simplicial triangulation of the computational
domain Q. Given D C 2, we denote by N, (D) and &, (D) the set of vertices and edges of 7}, in D, and we refer
to Py(D), k € N, as the set of polynomials of degree < k on D. Moreover, hi, K € Ty, and hg, E € &, stand
for the diameter of K and the length of E, respectively. We define h := min {hx | K € 7;,}. For two quantities
a,b € R we will write a < b, if there exists a constant C' > 0, independent of h, such that a < Cb.

Due to the local quasi-uniformity of the triangulation there exists a constant 0 < cg < Cg such that for all
K € 7, it holds

CRhK < hE < CRhK, FE e Eh(c’?K) (31)

We will use the following inverse inequality (cf., e.g., Thm. 3.2.6 in [17]): For 1 < p < oo there exists a constant
Ciny > 0, only depending on p, the polynomial degree k, and the local geometry of the triangulation, such that
for v, € Py(K) and E € &£,(2) it holds

vahHLP(K;R?) < Cinvh;(l HUh||LP(K)~ (3.2)

We will also use the following trace inequality (cf., e.g., [23]): For 1 < p < oo there exists a constant Cr > 0, only
depending on p, the polynomial degree k, and the local geometry of the triangulation, such that for v, € Py (K)
and K € 7p, it holds

lvnlle oy < CThj_(l/pth||LP(K)~ (3.3)

For E € &(Q), E=K,  NK_, Ky € T,(Q), and v, € V},, we denote the average and jump of v, across E by
{vn}E and [vy] g, i.e.,

{on}e == = (vnlenky +vnlenk_),  [vnle == vnlEnk, — vhlEnK_,

N | =

whereas for E € &,(T") we set
{vn}e ==uvnlE, [valE = vnls.
The averages {Vup}g, {7, }r and jumps [Vup|g, [T,]e of vector-valued functions Vv, and 7, as well as the

averages {D?vp,} g, {z, }r and jumps [D%vp] s, [z,]E of matrix-valued functions D%y, and T, are defined anal-
ogously. For E € &,(Q) it holds

/E[uhvh}E ds = /E({uh}E ['Uh]E + [uh]E {'Uh}E) ds. (34)

We further denote by ng, E € &£,(2), with E = K N K_ the unit normal on EF pointing from K, to K_ and
by ng, E € &,(T), the exterior unit normal on E.
We define the broken W2P-space W2P(Q;7,),1 < p < oo, by

W2P(QTy,) := {vp € LP(Q) | vp|x € W?P(K), K € Tp,}, (3.5)

equipped with the norm

1/p
lvrllwere ) = o7y [sompmpes : (3.6)
(K)

KeTy,
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and the broken spaces ﬂ(p)(div7 Q;75,) and H® (din, Q; ’Th) by

H®) (div, 0 T5) = {gh € LP(R%) | q,|x € H) (div; K), K € Th}
H®) (div2, 0, 7;,) = {gh € L'(%R¥?) | g |« € HP (v’ K), K € Th}

equipped with the norms
» 1/p
thHH(m(div,Q;Th) . (K; thHHm(div;K)) ’
- h

1/p
p
thHH(P)(div2 Th) = ( =h H<P)(div2»K)> '
H T, o H ;

For v € W?2P(Q; T;,) we redefine the primal energy functional (2.5b) according to

/fvdx— Z /uNnF Vuds,

KeTy, Ecén(

Jp(v / |D?v|P da —
KGT

and note that it reduces to (2.5b) for v € W2P(Q).
We consider the finite element approximation with the DG spaces

Vi, :{’UhEC )l’l}thEP]@(K),KEITh},
V= {gh Q- R?|q,lx € Pa(K)? K € Th},

._ e 2%2 9%2
lh-—{gh~9—>RX |gh|K€Pk(K) X,KG’EL}.
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(3.7a)

(3.7b)

(3.8a)

(3.8b)

(3.10a)
(3.10Db)

(3.10c¢)

We note that for k > 2 we have Vj, C W2P(Q;T;,). Moreover, for q € V,, we have V ~gh|K € Py_1(K)? and

V'V~gh|K EPk_g(K),KEITh.

For uy € V;, we define the broken gradient Vjuj, and the broken Hessian D%uh by means of

thh|K = VU;,|K, K e /Th,
Diuhh{ = D2uh|K, K €T,

Following [15,22], we further define recovery operators
R .V, oW?P(Q) -V 1<i<2,

according to

Bhl() Z /Vu@nEE {q tepds — Z ung-V- q, ds, q €V

Ee€&n () Ee&n(T)

/Eh2 = > /unEqus a,c€y,,

Ec&, ()

where Vu ® ng stands for the tensor product of Vu and ng.
Further, let u}, be chosen according to

wh € W2P(Q) such that u’|r = up.

(3.11a)
(3.11b)

(3.12a)

(3.12Db)

(3.13)
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We define the broken DG Hessians D%G’iuh7 1 < <2, as follows:

D yun = Dijup, — R, | (un), (3.14a)
Dj pun = Dbgyun — R, ,(uh). (3.14b)

s

The following auxiliary result from [15] will enable us to estimate the L? norm of R, (un) + R, ,(u}) for
up, € Vi (cf., Lem. A2 in [15]).

Lemma 3.1. For each p,q € (1,00) such that 1/p+1/q =1 there exists a constant Cig > 0, independent of h,
such that it holds

Jo (Eh L (un) +§h_2(u’b)) :q dz
1nf sup : ’

th up =h > CIS- (315)
q ~ P
Shaat lunllz (Q)th’ La(QR2x?)

Theorem 3.2. Under the assumptions of Lemma 3.1 there exists a constant Ciee > 0, independent of h, such
that for up € Vi, it holds

1/p
R, )+ R, () < Gl [ X w2 [ (9wl as
' ' Lr(yR=x?) E€En ()
1/p
+ Z hg’ pla+1) /q/ lup, —up|P ds ) (3.16a)
EEgh(F)
1/p
R, .5 <Cuc| 3 O [ puppras) (3.16b)
' Lr(yR=x?) Ee&n(T)
Proof. We have
JoR rqde
thz(uh)‘ R2x2) Sup
’ LP(R?X2)  gepa(o;R2x2) ||C1||Lq (R2%2)
JoR ‘a, dz
> sup , 1 <i<2. (3.17)
v
4= H:h’ La(Q;R2x2)
The inf-sup property (3.15) implies
JoR, (up):q dz
|, () <Cgl sup o =h (3.18)
=, 1, LP(Q;]R2><2) a GV Hq ‘
=h La(§;R2%2)
Now, observing (3.12) and setting Ey := E,, Ey := E_ for E € £,(2), we obtain
* 1
/(gh,l(uil)+§h,2(uD)) ‘a4, de < Z / hg /q| [Vun ® ng]g| hy q|{q telds
Q E€EL ()
(141 141
+ Z /h +/q)|u —up |h+/q -{V~gh}E’ds

Ec&n(T)
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1/p 1/q
< Y ([ iwmeons ras) ([ sl +ale s
Begn (@) NV E P e
1/p
4 Z (/h p(q+1)/'J|u} uD|pdS> (/ hq+1 'q
E€&n (D)

q 1/q
ds) .
h
(3.19)

Now, using (2.2), (3.1), the trace inequality (3.3) as well as the Cauchy—Schwarz inequality, the first term on
the right-hand side of (3.19) can be bounded from above by

1/p
2 > (/ P/Q|vuh®nE}E|”ds) (/ hE<
EE&L(Q) E -

1/a
<204 /h P19 [Vup @ ngl gl ds Z/ hi q‘ |7 ds
Ec&n(Q) KeT, VoK =hIoK

1
< 20 /qCT Z / p/Q| [Vup @ nglpl" ds th‘ O (3.20)
Ecé&,(Q)
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Likewise, using additionally the inverse inequality (3.2), for the second term on the right-hand side of (3.19) we
obtain the upper bound

1/

/q
Cl+1/q Z / p(q+1)/q|u uDlpds (Z/ h1+q ’V q’ |qu>
Ker, JOK

Ee&y(T)

1/p

1/q
st 5, forsom o) (2 Lol alr)
Eec&y () KeT

crone £ foremm-wrs) (5 falre)”
KeT;

Ec&n(T)

1/p

1+1/q p(g+1)/q
=G er| Y / lup, — up|P ds th‘ . (3.21)
Ee&, (D)

Using (3.20) and (3.21) in (3.19) gives (3.16a). The assertion (3.16b) can be shown in a similar way

([l
We denote by IIj the orthogonal L? projection of L?(2) onto Vj,, which can be defined elementwise by
/ Iy (v)v, dz = Z / O k()vpde, ve L*(Q),
KeTy,
/ Mgk (v)pr de = / vpg dax, pr € Pr(K),K € Tp. (3.22)
K K

We note that IIj, can be extended to LP(2) for p € [1,2) and p € [2, 0] (cf., e.g., [20])
We further denote by II and IL the L? projections of L?(Q;R?*2) onto V., and of L?(Q;R?) onto
V, which can also be deﬁned elementwise similar to (3.22) involving

EK,k and Iy, K € 75. The
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L? projections of L*(T') onto {v, € L2(T) | wy|lp € Pu(E),E € &,(T)} and of L?(I';R**?) onto

{gh € L*(T;R**?) | q h|E € P.(E)*2F ¢ Sh(F)} will be denoted by Il and IL ,, respectively.
We define the discrete data
foi=k_of, unp:=1Irr_1up, upnN:=Iprun. (3.23)
We consider the discrete minimization problem
Jh,p(uh) inf Jh p(’Uh) (3.24&)
v EVY
where the objective functional Jj p is given by
Jn.p(vp) : Z / |DDG Sup [P dx—/ fhvhda:—/uh]v n. - Vo, ds
KGT)
LN n P/‘I/ [Vor ®nplplPds + 22 3" & M“VQ/ [vn —up)zPds  (3.24b)
p E€&r(Q) Ee&y (D)

and o; > 0,1 < ¢ < 2, are penalization parameters. The existence of a solution of (3.24) follows by standard
arguments from the calculus of variations. The necessary and sufficient optimality condition gives rise to a
discrete variational equation which represents the COIPDG approximation of the nonlinear fourth order elliptic
boundary value problem (2.3a)—(2.3c).

Find uy € V}, such that for all v, € V}, it holds

a S (un,vn) = € (vn), (3.25)

where, observing IL (D3 ;vn) = Dpg 1vn, the semilinear COIPDG form ap®(-,-) : Vi x Vi, — R is given by

alC (up, vp) = Z /|DDG2uh| DDquh I (D}, vn) dz

KeTy,
+ ay Z hr p/q/ [[Vup @ nglg|” 2[Vuh®nE]E ([Vu, @ ng|gds
Ec&n(2)
Z hy pla+1)/ / |up, — up|P~ (uh —up) vpds
EGS)L(I‘)
Z / ‘DDG Quh’ D%G)Quh) : D%G}lvh dx
KeTy,
+ aq Z h p/q/\Vuh@)nE | 2[Vuh®nE]E:[Vvh®nE}Eds
E€&n(Q)
Z h p(q+1)/q/ lup, — up|P~2(up, — up) vy ds, (3.26)
EES;L(F)

and £ (-) : Vi, — R stands for the linear functional

Z / frop dz + Z /uhN ng - Vo, ds. (3.27)

KeT, Ecén(
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Lemma 3.3. The COIPDG approzimation (3.25) is consistent with (2.3a)—(2.3c) in the sense that if f = fi
and uny = up,n and u satisfies (2.3a)—(2.3c) pointwise almost everywhere, then for all v, € {vy, € V3, | vplE =
0, E € &(T)} it holds

a % (u, vn) = € (vn). (3.28)

Proof. Observing [ulg = [uhle = 0, FE € (), and (u —uh)|g = (v —up)|g = 0, E € &,(T"), which implies
Ry, 1 (u) + Ry, o(up) = 0, and observing further that II (D?*vy,) = D?v), and hence

3 /ng(yD%F‘ZD?u) :DPopdr= Y /K|D2u|”‘2D2u;gk(D%h) da

KeTy, KeTy,

— Z /‘D2u|p_2D2u:D2vhdx,
KeTy, K

it follows that

ap®(u,vn) = Y /ng(|D2“’p_2D2u) + (D%o = Ry, (vp)) dar

KeTy,
-y /gk(yl)zu’p%mu) :Dupde— Y /{gk(w%’p%mu)} : Vo, ® ng|, ds
Ker, VK Ecgn()” E F
+ Z /EnE~(V.gk(‘D2u|p72D2u)) vy ds
BEEL(T)
= /\D2u|p*2p2u:D%hdx— 3 /{gk(w?u}”’gmu)} : [Von @ ngl ds
KeT, ' K Beg ()’ E T E
+EEEZ(F)/EHE : (V-gk(’D2u|p72D2u)> vp, ds. (3.29)
h

Applying Green’s formula twice and taking gk((Vvh ®nyk)|r) = (Vun, ® ngx)| g and thus

/ ‘D2u]p72D2u (Vo @ npg)|pds = / ‘D2u]p72D2u (IL ((Vvn ® nok)|p) ds
oK oK
—2
:/ gk(’Dzu‘p D2u) : (Vup @ npg)| g ds
OK
as well as I (vy) = vy, into account gives
/ ’D2u‘p_2D2u : D?up dz = —/ V- <|D2ufp_2D2u) -V, dz —|—/ |D2u’p_2D2u : (Vup, ® ngg ) ds
K K K
- _/ V- (ID%* D) - Vo, dx+/ |D?u|" " D?u: I, (Voy, ® nog) ds
K oK =
- _/ V. (yDQu{”’QD?u) -VHk(Uh)dx—i—/ |D?u|""* D% : I (Voy, ® nog) ds
K oK =

:/V.V. (‘D2u|p*2D2u>Hk(Uh)dx+/ gk<‘D2u|p*2D2u) 1 (Vup, @ npi ) ds
K 0K

_ /{)K norc - (V- (|D?ul" " D) Te(un) ) ds
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= / V-V- <|D2u|p_2D2’u,) Vh, di[,'-f—/ gk<|D2u|p_2D2u) : (V'Uh ®n3K) ds
K oK

- /OK 11, (naK V- (‘D2u|p72D2u>) vp, ds.

Summing over all K € 7, and observing (3.4) as well as [vp]g = 0, E € &E,(Q) (due to the continuity of vy,
across interior edges), and v,|p =0, FE € &,(T), yields

3y /|D2 "D%: D*upde = > / V-V ([D%]" D2 vy d

KeT, KeT,
+ Z / |D2u|p ’D%u )} (Vo @nglgds
EEEh F
- ¥ /Hk ng- V- (|D%]"* D) vy ds
Ee&n(T)

2 2
KGT/V V- (’D u‘ ’D )vhdm

+ Y /7]6 |D2u|"*D?u )}E:[Vvh®nE]Eds. (3.30)

EEE}L (Q)

Using (3.30) in (3.29) and observing (2.3a)—(2.3¢) results in

aEG(u,vh Z / V-V- (‘D2u| ’D2y, )vhdaz—l— Z /|D2u’p ’D2y, ng - Vo, ds

KeTy, Ec&y(

/fhvhdx+ > /uhNnE Vo, ds,

Eec&, (D
which is the assertion. O

Remark 3.4. We note that u, ¢ W2P(Q), but a conforming finite element function u§ € V¢ := V,, N W??(Q)
can be obtained from u; € V}, by postprocessing. In particular, let V;° be the generalized version of the Hsieh-
Clough-Tocher C ! conforming finite element space as constructed in [27] and let u§ = Ej,(up,) be the extension
of uy, to V¢ as constructed in [31]. By a generalization of a result from [31] to the case p # 2 there exists a
constant C. > 0, depending only on the local geometry of the triangulation and on the penalty parameters
a;,1 <1 <2, such that

i =i iy < Co| 30 1 [ [Funomglplas+ 30 WG = ds
Ec&r(Q) Ee&p (D)
(3.31)

Observing (3.14a) and (3.12a), for the first term on the right-hand side of (3.26) we find
—2
S [ 1, (1Dhm " Do) s Dby ds
p—2 9
= Z (’DDG 2uh| DDG 2uh> D%y, dz — Z |DDG QU DDGQuh) : Qm(”h) dz

Ker, /K KeTh
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=y /|DDG sun|" D3 pup, : O, (D) dz — Y / !DDGQuh\” D3 2uh) ‘R, (vp)dz
KeT, KeT, ’
_ -2
= / D3 yun|” D3 yun - D>opde — Y /[Vvh ®nply {ngD%G,QuhrD D%G,QUh)}Eds
KeT, Eeg, () F
—2
+ Z v, ng - V - Ek(’D%quh‘p D%quh) ds
Ecé&y (D)
—2
Z / |DDG Quh’ DDG yup : D?vp, da — Z / Vo, @ ngly : {ngD%G)Quh P D%G,2uh)}Ed5
KeT, Ee&(
+ Z Vp NE - V- gk (’DDG,Quh‘ DDG,Quh) dS,
EESh(F)

and hence, we obtain

ayC (up,vp) = Z /’DDG2uh‘ DDquh D?vy, da

KeT,
—2
_ Z / Vo, @ nglp : {gkODIQDG,zUh‘p D%Qzuh) }Eds
Ece, ()’ F
2
+ Z vpng -V 'gk<|D123G,zuh|p D%G,Quh) ds
Ec&n (D)

Z h p/q/\Vuh@)nE | Q[Vuh®nE]E : [Vvh®nE}Eds
EESh(Q)

. S p(q+1>/q/ lun — up P2 (up — up) vp ds. (3.32)
EEgh(F)

We consider a three-field formulation of the COIPDG approximation (3.25) which will be tantamount for the
construction of an equilibrated flux in Section 5. To this end, we set

-2
b, = 1, <|D]2DG,2uh|p D%G,zuh), (3.33a)
¥, =ViP,, (3.33b)
Vi, = fn: (3.33¢)

We consider (3.33a)—(3.33c) elementwise for each K € Tj, multiply (3.33a) by q, € V., ., equation (3.33b) by

®, € V,,, equation (3.33c) by vj, € V}, integrate and sum over all K € 7, and apply Green s formula in case
of (3.33b) and (3.33c). It follows that

Z / = ghdx: Z/ ‘DDGZuh| D12)G,2Uh)1ghd$

KeTy, KeTy,
= /|DDG2“h| *Ddg pun - gk(g}) dz
KeT, o
/|DDG2Uh| DDGQUh ghdx, (3.34a)
KeT,
> [ #e,de- z/v pogdr==3 [ Vet 3 [ b onoxog s
KeTy, KeT, KeTy, KeT, ="

(3.34D)
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Z /KV.thhdx:— Z /th~Vvhdx+ Z /(9Kn3k~£hvhds: Z /thvhdx. (3.34c¢)

KeT, KeT, KeT, KeT,

We replace Eh|aK in (3.34b) by p, . and ngr -, in (3.34c) by npx é where p, . and éaK are numerical

= aK)
flux functions. We thus obtain the following system of discrete variational equations.

Find (gh,gh,uh> S ¥h x V, x V, such that for all (gh,fh,vh) € xh x V;, x V, it holds

-2
Z /Eh:ghdx: Z /|D%G72uh|p D%Gguh:ghdz, (3.35a)
KeT, VK77 7 KeT, 'K o
) /ﬂh'fhdxz— Z/Ehﬁvfhd%‘ Z/ Py, dss (3.35b)
KeT, VK KeT, VK KeT, V0K
Z/V'thhdi’?:— Z/Qh-Vvhdw-i- Z/ naK-éathds: Z/fhvhdx. (3.35¢)
Ket;, 'K KeT;, 'K KeT;, 79K KeT;, 'K

In particular, for the three-field formulation of the COIPDG approximation (3.25) the numerical flux function
P, and 9, are chosen as follows:

—p/q
P |pi= ({Ek(gh)}E — il {gh}E> np Be&©) (3.36a)
—oK Up,N NE Ee Eh(F)
- o 0 FE e Sh(ﬂ) 3 36h
Yoxle =1 v 1L (z,) + a2 h P g Ee &) (3.36)
where z, := |D%G72uh|p_2D%G72uh,gh = |Vup, @ npl|P~2(Vu, @ ng), and zp, := |up, — up|[P~2(up, — up).

Theorem 3.5. The three-field formulation (3.35) with the numerical fluz functions given by (3.36) is equivalent
with (3.25). In particular, if up, € Vj, is the solution of (3.25), there exists a pair (ph,gh) €V, xV,, such that

P a'l/}hauh) exh th XVh

the triple Eh,gh,uh) €V, xV, xV, satisfies (3.35). Conwversely, if the triple (
satisfies (3.35), then uy € Vj, solves (3.25).

Proof. Let up, € V3, be a solution of (3.25). We then define p, € V, by means of (3.35a) and afterwards
¥, € V,, according to (3.35b). We choose q = D?vy, in (3.35a) and ¢, = Vo, in (3.35b) and insert the
resulting expressions into (3.35¢) observing (3.36). It follows that

_ .2 R .
Z /KV~£hvhdx— Z /th.Dvhdx— Z /8KEBK~Vvhds+ Z /aKnaK-yathds

KeT, KeT, KeT, KeT,
= Z /|D%G72uh|p_2D%G72uh:Dzvhdx
KeT, 'K
-2
S / {1, (1D 2un|"*Dhcoun) b+ [Von @)y ds
Eeg ()Y F
-2
+ Z /nE-V.gk(|D%G72uh’p D%G,Quh) vy, ds
EBegn ()’ B

o Y mgle / [Vun © 1] P2 [Vun © nsls : [Von © npl, ds
E€&n(Q) E
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+ g /|uh—uD\p 2( up, —up) vy ds — Z /uthhds

EEE;,(F) Eeé‘h

In view of (3.25) and (3.32) we deduce that the last equation in (3.35¢c) is satisfied.
Conversely, if the triple ( ,’Q/Jh,uh) €V, xV, xV, satisfies (3.35), we choose a, = D?vy, in (3.35a) and

@, = Vup, in (3.35b) and insert (3.35a) and (3.35b) into (3.35¢c). Taking (3.36) into account this shows that
up, € V3, satisfies (3.25). O

4. AN a posteriori ERROR ESTIMATOR FOR THE GLOBAL DISCRETIZATION ERROR

Given reflexive Banach spaces V,Q with norms || - ||y, - ||g, convex and coercive objective functionals
C:V—=R, D:Q — R, and a bounded linear operator A : V' — @, we consider the minimization problem

uuel‘f/ J(u) (4.1)
for the objective functional
J(u) := C(u) + D(Au). (4.2)

An abstract approach to the a posteriori error control for (4.1) has been provided in [42]. The a posteriori error
control relies on the dual formulation of (4.1)

sup J*(¢") or inf (=J*(q")), (4.3)
q*EQ* q*eQ*

in terms of the Fenchel conjugate J* of J as given by

where C* and D* are the Fenchel conjugates of C' and D and A* stands for the adjoint of A.
Given some approximation up € V of the minimizer u of (4.1), the a posteriori error estimate Theorem 2.2
from [42] (cf., also Sect. 3 in [5] and [43]) states that for any admissible function ¢* € Q* it holds

O5(A(up —u)) < Mo(Aq",upn) + Mp(q*, Aup), (4.5)

where @5 : @ — R, is a continuous functional such that ®5(0) = 0 and for all ¢; € B(0,d) :=
{g€ Q] |lgllo <d}, § >0, 1 <i<2, it holds

D((q1 + q2)/2) + ®5(q2 — q1) < (D(q1) + D(q2))/2

and

1
i(c(uh) + C*(A*q*), < A*q*,uh >V*,V)7

1
Mp(q*, Aup) = i(D(Av) + D*(—¢")— < ¢", Aup, > 0)-

Mc(A* *, uh) =

Referring to D? as the Hessian, we apply the above result for V = W2?(Q),Q := LI(Q; R?*2), A = D? and
: / fuj, do — Z / unng - Vuj, ds, (4.6a)
Eec&n ()

D(D*uf) = / |D2uf |P da + g, (uf), (4.6b)
KETh
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where Ik, is the indicator function of the closed convex set
Ki:={veW*?(Q) |v=up onT'}.
We obtain:
c* (—A*g*) = 1K, (g*), g E(dlv ),

1
DTQ?FZQ/“ﬂ””+ 2 /“D“Eng”bvg € H(div*; ©),
a Lla a'ds, a

where I, is the indicator function of the closed convex set
Ky = {a" € H(dv%0) | V-V g" = 0 9, g n, =w,yn, on T},
Similar to (3.8) in Example 2 (p-Laplace problem) of [42], the estimate (4.5) leads to
lu = unllyy < Cest(Cun) + C*(=A"¢") + D(Aun) + D*(q")),

where Cegt := 2Pp/2.
We call Ezq €V, an equilibrated moment tensor, if

P’ € H(div*; Q)

and Ezq satisfies the equilibrium conditions

V-V-Ezq:fh in Q,

E;Czq nr =upy 0 on I
Moreover, we choose p € {g € qull (div2, Q) | g nr € L1 (F; R2)} such that

V'v.gp:f_fh’ b nr = (uy —up,y) np onI.

It follows that E‘;q +p € Ky, e, Ik, (qu +p ) = 0, and hence, equation (4.8) reads as follows:

lu =g < Jo(uf) + I, (uf) + Jp (R + )

In view (2.6¢) and np - V-p =0 on I" we have

=c

Jp (peq+p Z/ eq4—p’ dx + Z /anp V- pequ

1 ker, Ec&n ()

Using (2.2), we find

o> Je

e g 1 e g
q—!—E‘ dz < -21 p*d
1 ke, - 1 \kem,

K'=¢

(4.6¢)

(4.7a)

(4.7b)

(4.7¢)

(4.8)

(4.9a)

(4.10)

(4.11)

(4.12)

(4.13)
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In order to estimate the second term on the right-hand side of (4.13) we use the Poincaré-Friedrichs

inequalities
v— |K\‘1/ vda < O | Volloir, v e W' (K), K €T, (4.14a)
K L?(K)
v— |E\*1/ vds < O hp|VolLom), veW'P(E), E e &), (4.14b)
E L?(E)

where CF(,lF) depends on p and | K|, whereas CEF) depends on p and |E|. Both constants are uniformly bounded
inp (cf., e.g., [26]).

Lemma 4.1. Suppose that the  following  regularity — assumption is  satisfied:  For T €
{geﬂfﬁ)«(dm Q) | Tnre LP(I‘;Rz)} and the weak solution z € W?2P(Q) of the elliptic boundary value

p;oblem

V:-V:D*,=V-V-r in(, (4.15a)
z=0 on T, (4.15b)
D?znp =1 nr onT (4.15¢)

there exists a constant Ct > 0 such that
D?z|r € LP(T;R¥?), || D%2|| 1o (ppexz) < CLV. (4.16)
Moreover, there exists a constant C§2) > 0 such that
V2] Lo ame) < O (4.17)

Then for p € {g 62&2(0&'1}2,9) | g nr € L9 (F;RQ)} as given by (4.10) there exists a constant Cy > 0,
depending on C’z(i), Cl(f%? 1<i<2, and on p,q such that it holds

I

=c

< Cy(oscp,1 + 0sch 2), (4.18)

La(;R2X2)

where oscy,1 and oscy 2 refer to the data oscillations

hf f—faltdz k=2
s 1= Y osercr, onegy o= {1l 0 , (4190
KeT R [ |f — ful9dz k>3
0SCp 2 1= Z 0SCE 2, OSCR g = Z th/ lun — up |9 ds. (4.19b)
KET, E€£,(0KNT) E

Proof. We have

I

=c

. 2
La(;R2%2) = sup {AP : gd:ﬂ | ; € EEJI,)%D (le ’Q)’ ||£||LP(Q;R2><2) S 1}'

For T € {g € E((Jp% (div’,Q) | gnr € LP(F;RQ)} there exists v € WP(Q) N WP (Q) such that T = D?.In
fact, v can be chosen as the weak solution of the boundary value problem (4.15). Hence, we have

I

—c

sup /p : D*vdz. (4.20)
Q

<
LQ(Q,R2X2) ”D2’U”LP(Q;R2X2)S1 —c
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Applying Green’s formula twice locally on each K € 7, and observing (4.10), we get

/E :D%zdx = Z/V-V-E zdx + Z /E nr-Vzds
Q= ke, VK = Bee )V B¢
= Z /(f—fh)zdx+ Z /(uN—thv) nr - Vzds. (4.21)
KeT, 'K Eeg, ()7 E

In order to estimate the first term on the right-hand side of (4.21) we first consider the case k = 2. In view of
(3.23) we have

> [u-tzw= 3 [(1-) G-

KeTy, KeTy,
where pg := |K|™" [, zda, and hence, an application of (4.14a) and (4.17) yields

> /K(f—fh)zdx <y (/K|f_fh|qd$)l/q</Kz—p0|pdx>1/p

KeT, KeT,

1/q 1/p
< célF)( > i [ 1r- fh|qdm> ( > IVZI’”dx) < R0 osef.
KeT, K KeT, 7 K

(4.22)

In case k > 3 we have

> [ G=pzar= 3 [ (=) G-pde e RAE)

KeT, KeT,

We fix p; € Py(K) by the interpolation conditions [, pidz = |[K|™! [, zdz and [, Vpide = |[K|7! [, Vzda.

An application of (4.14a) gives

1/q 1/p

> [-msaf < 3 ([ir-nian) ([ le-nra)
K rer, VK K

KeT,
1) 1/q 1/p
< Cpp (h?( /K |f - fh|qu> (/K IV(z—p1)P dx) . (4.23)

KeTy,

Setting Vp; = (p11,p12)T, another application of (4.14a) yields

Hence, using (2.2), we obtain

(/K|Vz—|K|1/K|V(z—p1)|pdx>1/p§ 2\/5((/}('88;—p11pdx)1/p+</l<

1/p
gzﬂc{fﬁm(/ |D22|pdx) . (4.24)
K

0z A
81% D1

< W) hy Hv

Lr(K) il LP (K)

0z
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Using (4.24) in (4.23) and observing || D?z|| »(or2x2) < 1 it follows that

/p
(f — fn) zdz i |qd$> ( |D2zpd;v>
K;—h/ h K;T; / " KeT, /
) 1/q
§2\/§(c§g) ( 3 h / = fh|de> . (4.25)

Likewise, observing (3.23), (4.16), and choosing p, := |E|~! [, Vv ds, the Poincaré-Friedrichs inequality (4.14b)
and similar arguments as before imply

< 2v3(cf) (

KeTy,

/(uN —upn) ng-Vods|=| Y /(UN —up,n) ng - (Vo—p,)ds

Ecg, ()’ E Ece, ()’ E
1/q
<2v200CR | > my / luy —upn|%ds | . (4.26)
Ec&,(T)
The assertion now follows from (4.22), (4.25), and (4.26). O

Remark 4.2. For T € {g € ﬂé’}(div,Q) | znr € LP (I‘;]RQ)} we have V-V -1 € L?(Q) and hence, we can

expect (4.16) and (4.17) to hold true for convex domains by regularity results for the biharmonic equation with
Navier boundary conditions.

Moreover, as far as Jp(uf,) is concerned, we have

Jp(uy) = Jp(un) Z/ (ID*uf|P — |D*up|P) da

KETh

+Z/fuh—uh )dz + Z /uNnE (up, — uf) ds. (4.27)

KeT, Ee&p(T)

Lemma 4.3. Let up, € V3, be the solution of (3.25) and let uj € Vi¢ be its postprocessed finite element function.
Then it holds

’Jp uy) — Jp(up ’ K; K (4.28)

where
) 1/q
e c c
8 = = s + [ 10702 00) 4 g0+ X sl = ol (429)
K E€&, (9KNT)
Proof. By Taylor expansion and using (2.2) as well as Holder’s inequality we find

Z / D2u 2uh‘p)

KGT

Z / / | D?up, + AD*( uh)|p_2D2uh + AD?(u§, — up) dX\ : D*(uf, — up,) da
KeTy,
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1
<> / / | D2up, + AD?(uf, — up)[" [ D (uf, — up)| dA dz
KeTy, K Jo

1
<ot S [ Dt % ) D%~ )|
KeTy, K70

1/q 1/p
1
<ot 3 ([iptwpar) ([0t - pas) et S 10 - P s (30)

KeTy, KeTn

Moreover, we have

Z /Kf(uh—UZ)dx+ Z /EuzvnE-V(uh—ug)ds < Z

1/q 1/p
(/K|f|qu> (/K |uh—ui|pdx)

KeTy, Ee&n, () KeT,
1/q 1/p
+ > </ uN|qu) </ IV (up, — u;)v’ds) : (4.31)
Beg, () E E
The assertion now follows from (4.27) and (4.30), (4.31). O

For practical purposes, we further replace I, (uf) by the penalty term
ay Y hgretvl / u§, — up|P ds. (4.32)
Ee&n(T) E

In view of the construction of uf we have uf|g = up,p on E € &,(I") and hence, equation (4.32) gives rise to
the data oscillation

Q208Cp,3 1= Q2 Z OSCK,3, (4.33a)
KeT,
osercsi= 3 RtV / fup — un,p|” ds. (4.33)
E€&,(0KNT) E

Using Lemmas 4.1 and 4.3 in (4.11) yields

lu — uh”%/[/2=P(Q;Th) S 77731 + 772(,12- (4.34a)
Here, n;% and n;% are given by
M= Y m, mh = Y i, (4.34D)
KeTy, KeT,

where 77;?,1" 1 <i <2, read as follows:

p

)
eq ., _ 2 P
Nyeq i = — | D=up,| dx—/ fupdx — /uN ng - Vupds
K.l PJk K Z E
q
dz + Z /uD nE~V~Bqus, (4.34¢)
Ec&,(0Kn) Y E B

Eegh(aliﬁI )
/K
+ -
q
3

Mo = llun — UZH%,VQ,p(m + K3+ ZOSCK7Z‘. (4.34d)
i=1
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The right-hand side in (4.34) is then a computable and localizable quantity for the a posteriori estimation of
the global discretization error. It gives rise to the following equilibrated a posteriori error estimator

M o=y + My My = Z Nt 1<i<2. (4.35)
KeT, ()

The construction of an equilibrated flux will be dealt with in the subsequent section.

5. CONSTRUCTION OF AN EQUILIBRATED FLUX

We construct an equilibrated moment tensor Eehq € X}Lﬂg(div2, Q) by an interpolation on each element. Thus

it is a local procedure. In particular, denoting by BDM,, (K),k € N, the Brezzi-Douglas—Marini finite element of
order k (cf., e.g., [14]), we first construct an auxiliary vector field 47 € H(div, ), 9} x € BDM_1(K), K €
71(82), satisfying

Vi = fi, (5.1)

and then an equilibrated moment tensor E‘Zq €V, satisfying (4.9).

We construct the auxiliary flux function P,? satisfying (4.9) following the procedure suggested in [9] (cf.,
also [8]). B
For a nodal point z; € N3 (Q),1 <14 < ny, we associate a patch w; according to

wi = J{K € T | 2; € To(K)}. (5.2)

We assume that w; consists of N; triangles Ty, 1 < ¢ < N,;. We enumerate the interior edges E,,,1 < m < M;,
counterclockwise (cf., Fig. 1).
We construct qu such that

P = ;%jﬂ (5.3)

For the construction of the auxiliary vector field we recall the following result:

Lemma 5.1. Any vector field q € P,.(K)?,m €N, is uniquely defined by the following degrees of freedom

/ ng - q pmds, pm € Py (E), E € E,(0K), (5.4a)

E

/ q- me_1 dl‘, Pm—1 € Pm_l(K), (54b)
K

/ q-curl(bgpm—2) dr, Pm—2 € Pp_o(K). (5.4c)
K

where by in (5.4¢) is the element bubble function on K given by bx = [[o_; AKX and AX,1 < i < 3, are the

i=1"%
barycentric coordinates of K. Moreover, there exists a positive constant Cg), depending only on k and the local
geometry of the triangulation Ty, such that

/|g|qu§Cg) Z hE/|nE-g|qu+h‘§< / |V -q|?dx
K E€&y(0K) E K

+ hi; max{/K lq - curl(bxpm—2)|?dz | pm—2 € Pn_o(K), max [Pm—2(x)] < 1}) (5.5)
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Es K2

K;

By

Kn;

K: ¢ Ki

K, [ ]

E; K

FIGURE 1. Patch w; associated with nodal point z; € J\fh(Q) featuring N; triangles Ky, 1 </ <
N; (z; € N(OE N Q) (top left), z; € Np(OE NT) (top right), x; € Np(intE N Q) (bottom left),
x; € Np(intE NT) (bottom middle), and x; € Ny (int K N Q) (bottom right)).

Proof. For the uniqueness result we refer to [14]. The estimate (5.5) can be derived by standard scaling arguments
(¢f., Lem. 3.1 and Rem. 3.3 in [10] in case ¢ = 2). |

For a patch w;, we construct g‘;i such that

¥, |k, € BDM(K,), (5.6)

; 4 Wi .
Vet =fiinw, np-¢) =ng-y, |p, E€ E(int w),

where, denoting by <p () ¢ Vh(k_l) the nodal basis function associated with z;, f," and 1,b | g are given by

~Wwq

= Sph fha gaK E ‘= @gxl)iaK|Ea 1< 14 < Nz (57)
Moreover, we define (V . gk (gh>)w, 1 < ¢ < N;, according to
(Vi (z,)) =¢v -Og, (5.8)

Case 1 (z; € E(0ENQ)). For £ =1,2,--- , N; we compute

Kk, € BDM;,_(K}) according to

\ s
, Jg DBk, Y. |EPR—1ds =1

ng,n, - Y. | k,pr—1ds = P —0K, Dr—1 € Pr_1(Ey)

/Ez cor ek ‘ sz NENK, '$ZZ|K271|Eepk—1 ds (= 2,3, 7Ni ’

(5.9a)

) f ng, .nK T,Abuh |E pr—1ds £=1,2,--- N;_
/ ng, 0k, ¥y Kk pe-1ds = Be 7l R 0K, ,Dk—1 € Pu_1(Er),
Eoa ng+1 nE15+lﬁK1/.'£aKe‘El ds ¢ =N,
(5.9b)
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ng g:’ K, = 0, Fe 5h(KIZ N 8%—)7 (5.9(3)
¥y ke Vok—2de = — [ fipp—zdz +/ Nork, - Y; |k, Pe—2ds, pr—2 € Pra(Ke), (5.9d)
K K, 0K,
/ ¥k, - curl(bg,pe—3) do = / (V-1 (2,))" - curl(bx,pr—3) dz, pr—3 € Pr—s(Ky). (5.9¢)
Ky K,

The cases Case 2 up to Case 5 can be dealt with accordingly.
For the construction of the equilibrated moment tensor Ezq we begin with the specification of the degrees of

freedom for tensors p = (pij)f’jzl €V, . We note that
dim Py (K)**? =2(k + 1)(k +2). (5.10)

Lemma 5.2. Any p € Pu(K)?*2 with E(i) = (pi1, piz)T,1 < i < 2, is uniquely determined by the following
degrees of freedom (DOF)

/ p ng - p, ds, p, € b(E)?, E € &(0K), (5.11a)

/ p:Vp,_, dz, P, , € Pi1(K)*\Py(K)?, (5.11b)

/ pD - curl(bpp_o)de,  pr_z € Pea(K), 1<i<2. (5.11c)
K

The numbers of degrees of freedom (DOF) associated with (5.11a)—(5.11c) are as follows

DOF (5.11a) = 6(k + 1),
DOF (5.11b) = k(k +1) — 2,
DOF (5.11¢) = (k — 1)k

and sum up to the right-hand side in (5.10).

Proof. The interpolation conditions for E(l) and 2(2) are separated. The vector field E(i) (for 1 < i < 2)is
determined by the degrees of freedom

/ ng - pWpy ds, pr € Pu(E), E € E,(0K),

E

/ p - Vpy_1 dz, Pr1 € Po1(K)\Py(K),
K

/ E(i) ~curl(bgpi—2) dz, Pr—2 € Pr_o(K) .
K
By applying Lemma 5.1 we conclude that there is a unique solution. (Il

Lemma 5.3. Let q = (g(l),g@)) € Py(K)?>*2. Then there exists a positive constant C’g), depending only on
the polynomial degree k and the local geometry of the triangulation Tp,, such that

q q q
/K‘g‘ deC](;) Z hg /E‘gnE‘ ds + hi, /K‘Vg‘ dz
)

Ec&n (0K

2
. q
+ h, Zmax{/ ‘g(z) . Curl(prk_Q)‘ dx; pr_o € Pk;_g,n’lea],}((‘pk_g(.’li)l < 1}) (5.12)
i=1 K *
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Proof. As in the proof of Lemma 5.1, the estimate (5.12) follows by standard scaling arguments. (]

Now, for the construction of the equilibrated moment tensor we set

2D . <62“h d%up, )T HON ( O*up, 32uh)T.
Z, =

0z3 " 0x1022 Zn 01022 023

2
We construct p‘;q = (pf]eq) , with p{”). = (pfleq, pgeq) ,1 < < 2, patchwise similar to the construction
= ij=1

Fheq
of qu:

p =) p*. (5.13)
For a patch w;, we construct E‘Zi such that

B‘; € BDM,,(Ky), (5.14)
\Y% g}‘: =" inw, g}‘:nE =Pole, B €&p(int wy), 1 <L< N,

where, denoting by <p£f"') S Vh(k) the nodal basis function associated with x;, Q‘;’ and E‘(,‘;K

¥ = e, B enp = o) b, e 1 < i <y (5.15)
Moreover, we define ggf’wi) according to
2190 = "0 1 <<, (5.16)

Case 1 (x; € ER(OENQ)). For £ =1,2,--- , N; we compute EZ Kk, € BDM}(Ky),1 <m <2,

according to

pY
f.®:

) f A w7 |E[+1 p ds ¢ = N; )
P“ |k, NE,, K, - P, ds = E“lwl oK, =k ,P, € Pu(Eeiq)”, (5.17b
/EZJrl =h | (M Ep 1 NKy " Py { ng gaKnE[ Ek ds ! = 1,2,---, Ni’ Y ( + ) ( )

E(;:i ng =0, F € &,(K;Now;), (5.17¢)

Wi . — Wi |
/Kz gh Ke - ka—l dr = /Kz Qh b, dz

+/ P koK, Py, ds, P € Pr_1(Ky)?, (5.17d)
0K, —

/ ;m “|g, - curl(bg,pp_o) do = / zﬁlm i) ~eurl(bg,pr—2)dr, 1 <m < 2, ppo € Py_o(Ky). (5.17e)
K, — Ky

K, with E;mm)

P, € Pu(Ep)®,  (5.17a)

[ |2, (=1
n . dS _ E, 8Kg
 HENK, {fE( ‘KgnEeﬂKz pk; ds t= 273a"' 7Ni

Again, the cases Case 2 up to Case 5 can be treated similarly.
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6. RELATIONSHIP WITH A RESIDUAL TYPE A POSTERIORI ERROR ESTIMATOR

A residual-type a posteriori error estimator for the IPDG approximation of the biharmonic problem with
homogeneous Dirichlet boundary conditions has been derived and analyzed in [31]. Its generalization to arbitrary
1 < p < oo reads as follows:

6 5 5
M= M Y Y (6.1a)
i=1 i=1 i=4
Here, the element residual 7;°] and the edge residuals 7;%,2 < ¢ <6, are given by
res -2 q
e = 30 hig/ £ =V V-1, (|D3c un|" " Dhc pun )| da, (6.1b)
KEeT, K
—92 q
Mha = Z thH/ ’nE’ [V‘gkOD%G,zuth D%G,zuh)]E’ dz, (6.1c)
Ee&n(Q) E
—92 q
nffg = Z hE/ ’ {gk(|D%G,2uh|p D%quh)}EnE ds, (6.1d)
EE€ER(R) E
mE= > h,;P/Q/Hvuh@nE]EPds, (6.1¢)
EE€ER(R) B
M=y gt / lup, — upl? ds, (6.1f)
Ec&,(D) E
res -2 q
Nho = Z hE/'uN nE—gk<|D%G72uh|p D%Gguh) ng| ds. (6.1g)
Ec&,(D) E
The residuals ?ﬁff, 1<i<5, and f]fﬁ?, 4 <14 <5, read as follows:
~res res) 1/4 .
77;51' = (nhe,z‘) ’D%G,2uh‘DG7Q’ I<i<5, (6.1h)
AT res) 1 . .
s = (13%) " ’DQUh’DG,Q’ 4<i<5, (6.1i)
where | D sun| ., , and [D?up |y, o are given by
. 1/p
—2 .
D3 sunlg g = ( 3 / 11, | D3 D o dx) , (6.15)
KeTy, K
1/q
|D%up|pa.o = ( > / D2uh|pdx> . (6.1k)
KeTy, K
We further define data oscillations oscy, ;,1 <14 < 2, according to
— (oscp, 1)1/q [Vuplpga k=2
0SCh,1 = /g 1o ' , (6.2a)
(OSChJ) |D ’U,h|DG7Q k>3

08,2 = (0scn,2) " [D*up|pa,r, (6.2b)
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where |Vup|pa o and |D2uh|DG [ are given by

/p

[Vunlpg,q = ( /|Vuh|pd$> . (6.2c)
KeT,

1/p

|D2uh\mF = / |D?up|Pds | . (6.2d)
EEE}L(F)

The following result establishes the relationship between the equilibrated and the residual a posteriori error
estimator.

Theorem 6.1. Let u;, € V), be the COIPDG approzimation as given by (3.25) and let n), ,77“5b 1 <@ <
6,755, 1 <1 < 55,4 < i <5, and oscyi, 1 < i < 3,08¢h,,1 < i < 2, be the equilibrated and the resid-
ual a postemom error estimators as well as the data oscillations as given by (4.35), (6.1), (4.19), (4.29), and

(6.2). Then there exists a constant Cres > 0, depending on cg, Crec, @4, Cg),Cl(f%? 1 <1i<2, and on p,q such
that

5
’qh 1 < Cles (Z ’I7res + Z 77;5? + 0scp,1 + 0scp,3 + 6§Ch,1 + (SSTC}L72> . (6.3)

Moreover, if we use (3.31) in (4.34b), then 772?2 can be estimated from above in terms of the residuals 1,73, n;°%,
and the data oscillations oscy,;,1 <1 < 3.

The proof of (6.3) is fairly standard and will be omitted

Remark 6.2. Using techniques from [48], the local efficiency of the residual-type estimator can be established
similarly as in case of the p-Laplacian (cf., e.g., [22]).

7. NUMERICAL RESULTS

We have implemented the COIPDG approximation (3.25) with the penalty parameters a;, 1 < ¢ < 2, chosen as
a1 = 12.0 k% and ag = 2.5 k8. Further, we have implemented the adaptive algorithm based on the equilibrated
error estimator n;? by Dorfler marking [25], i.e., given a bulk parameter © € (0,1), we have selected a set
M, C T, according to

O> < >

KeTy, KeMy

and we have refined elements K € M), by newest vertex bisection. In case of the residual-based error estimator
7% we have implemented the adaptive refinement likewise.

As numerical examples, we have chosen 2 as the L-shaped domain Q := (—1,+1)%\ ([0,1) x (—1,0]). We
have considered the cases p = 1.5 and p = 3.0 with the solution given by

2

v = o) - Vo2 B) —4J3, ofp) = 20

6(p—1)

The right-hand side f in (2.3a), the Dirichlet data up in (2.3b), and the Neumann data uy in (2.3c) have
been chosen accordingly. The choice of « is motivated by the singular behavior at the origin for the p-
Laplacian [24]. We note that the solution belongs to W?2T7=¢P(Q) for any € > 0. In case p = 2 this corre-
sponds to Example 2 in [31]. A similar regularity applies to the solution z of the boundary value problem
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FIGURE 2. p = 1.5, © = 0.5: adaptively generated meshes (equilibrated error estimator) for
polynomial degree k = 2 (top left), k = 3 (top right), and k = 4 (bottom).

(4.15). However, we can not expect D?z|r € LP(I';R**?) so that oscgz in (4.19b) has to be replaced by
0SCE2 = D pee, (axnr) VE Ji lun — up n|* ds for some k # ¢ (provided uy € L*(T')). Actually, in the numer-
ical example we have D?z|p € L2~1/P+7(T; R?*2). This yields k = ((2+v)p — 1)/((1 + ()p — 1) which is the
conjugate of 2 — 1/p+ 7.

We have performed computations for p = 1.5 and p = 3.0 and the polynomial degrees k = 2,k = 3, and k = 4.

The numerical solution of the nonlinear COIPDG approximation (3.25) has been done by Newton’s method with
a relative tolerance of tol = 10™2 as termination criterion for the Newton iterates with respect to the Euclidean
norm. The expected convergence rate for the discretization error in the broken W?2P? norm is 0.5.
Figures 2 and 3 show the adaptively generated meshes in case p = 1.5 (Fig. 2) and p = 3.0 (Fig. 3) and bulk
parameter © = 0.5 for polynomial degree k = 2 (top left), k = 3 (top right), and k¥ = 4 (bottom), where the
adaptive mesh refinements were based on the equilibrated error estimator. As expected, we observe a pronounced
refinement around the reentrant corner at the origin and substantially less refinement off the singularity for the
higher polynomial degrees k > 3. The meshes obtained by the residual-based error estimator look similarly and
are therefore omitted.

For p = 1.5 and © = 0.5, Figure 4 displays the discretization error in the broken W2P norm, the equilibrated
error estimator 7%, and the residual-based error estimator 7} as a function of the total number of degrees
of freedom (DOFSs) on a logarithmic scale. The result for the polynomial degree k = 2 is depicted top left,
those for the polynomial degrees £k = 3 and k = 4 top right and bottom. In all cases we observe the optimal
convergence of 0.5. For k = 3 and k = 4 the decay is faster than 0.5 in the pre-asymptotic regime, but
approaches 0.5 asymptotically. The equilibrated error estimator is smaller than the residual-based error estimator
by approximately 3/4 of an order of magnitude.
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FIGURE 3. p = 3.0, © = 0.5: adaptively generated meshes (equilibrated error estimator) for
polynomial degree k = 2 (top left), k = 3 (top right), and k = 4 (bottom).
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FIGURE 4. p = 1.5, © = 0.5: the error in the broken W?2? norm (black), the equilibrated error
estimator 7;? (red), and the residual-based error estimator 7 (blue) for polynomial degree
k =2 (top left), k = 3 (top right), and k = 4 (bottom).
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FIGURE 5. p = 3.0, © = 0.5: the error in the broken W?2? norm (black), the equilibrated error
estimator 7;? (red), and the residual-based error estimator n;°® (blue) for polynomial degree

k =2 (top left), k = 3 (top right), and k = 4 (bottom).

Figure 5 shows the corresponding results for p = 3.0. We see a similar behavior as in case p = 1.5, but the
error is slightly smaller due to the higher regularity of the solution.
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