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Event-based systems operate in an environment that signals events upon which the system 
reacts. Besides the control flow of such systems also their data flow is of major importance. 
We present an event/data-based institution which is generic in the underlying data state 
institution. The logic is based on previous developments [14,8] and is now extended to 
take into account event parameters, quantification over data, and non-deterministic choice 
of arguments in an institution-independent way. We show that the resulting framework 
forms again an institution.
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1. Introduction

Event-based systems are an important kind of modern computing systems. They live typically in an environment which 
signals events upon which the system reacts in certain ways. Such systems are strongly stateful in the sense that not any 
event is meaningful at any time and the same event can cause different reactions depending on the current system state.

There is a considerable amount of approaches in the literature dealing with formal methods for the development of 
event-based systems. Some of them propose constructive formalisms that aim at the description of concrete designs or 
implementations, like e.g., Event-B [1,4], symbolic transition systems [18], and UML behavioural and protocol state ma-
chines [17,10]. On the other hand, there are logical formalisms to express desired properties of event-based systems. Among 
them are temporal logics integrating state- and event-based styles [21], and various kinds of modal logics, like dynamic 
logic [7] or the modal μ-calculus with data and time [6]. The gap between logics and constructive specification is usually 
filled by checking whether the model of a constructive specification satisfies certain logical formulæ.

Instead of analysing a concrete design in a “post mortem” fashion it may, however, be useful to proceed in a series 
of refinement steps, where each step represents gradual design decisions such that errors can be detected earlier in the 
development process. This method has been extensively studied in the area of abstract data types and for developing 
functional programs. It was consolidated in the seminal book of Sannella and Tarlecki [20]. There it is argued that in the 
theory of concurrency a “commonly accepted solution still seems to be outstanding” (p. 157).

1.1. Some bits of history

The last statement was a major motivation to organise in 2015 a meeting in Aveiro where Luis, Alexandre (Madeira), 
Manuel (Martins), and Rolf met to work on an appropriate logic supporting both, abstract specifications of properties of 
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event-based systems, such as safety and liveness, and concrete designs formulated in the same logic. Then refinement may 
be expressed by logical implication (as already suggested in TLA [11] which is, however, not event-based). The fruitful 
discussions in the group led to the idea to use dynamic logic style specifications, with regular expressions of events as 
modalities, for the description of abstract system properties and to complement them by integrating state variables, binders, 
and jumps known from hybrid logics [2]. The latter allow to characterise logically concrete, recursive process structures. 
The outcome of the investigations led to the so-called “dynamic logic with binders” [13] which was formalised in [14]
as an institution in the sense of Goguen and Burstall [5]. It has been shown that this logic is well suited for the rigorous 
development of reactive component systems by applying appropriate implementation constructors (like parallel composition, 
relabelling, etc.) in refinement steps. This is reflected by the semantic models of the logic which are reachable transition 
systems with initial states where the transitions are labelled by (atomic) events. In this formalism states play the role of 
control states which determine the enabledness of events.

Dynamic logic with binders was the basis for several further developments in cooperation with our Portuguese col-
leagues. Most importantly it was extended to take into account data in [9] leading to the event/data-based logic E↓ . The 
states of a transition system are now configurations γ with an associated data state ω(γ ) modelling the data administrated 
by a system. In E↓-logic events e are augmented by state transition predicates ψ leading to (atomic) event expressions 
of the form e � ψ . They can be combined to complex event expressions λ according to the operators of dynamic logic for 
sequential composition λ1; λ2, alternative λ1 +λ2, and iteration λ∗ . Event expressions λ are used as modalities in event/data 
formulæ according to the grammar

� ::= true | ϕ | 〈λ〉� | ¬� | � ∨ � | . . . (hybrid features omitted here)

〈λ〉 is the usual diamond operator expressing possibility and its dual, the box operator [λ] expressing necessity, is defined 
as usual by [λ]� = ¬〈λ〉¬�. In the grammar, ϕ is a data state formula to be evaluated w.r.t. the data state ω(γ ) of a 
configuration γ . Transition predicates ψ occurring in event expressions e � ψ specify the admissible effects of an event on 
data states. They are evaluated w.r.t. two data states, the data state ω(γ ) of the source configuration γ before the event 
occurred and the data state ω(γ ′) of the configuration γ ′ after the event has happened.

Example 1. As a simple example we consider a counter with upper bound. Its data states are determined by the current 
value of the counter, represented by an attribute val : Nat, and the value of the upper bound represented by an attribute 
max : Nat. Both values are natural numbers. There is only one event inc; it is supposed to increment the counter value by 1. 
To express that in a configuration where the counter value is smaller than max an increment is possible, we use the formula

val < max → 〈inc� val′ = val + 1〉true (1)

where val′ denotes the new value of the counter. We can more generally require that “whenever the counter value is smaller 
than the upper bound an increment is possible.” This progress property is specified by formula (2):

[(inc� true)∗](val < max → 〈inc� val′ = val + 1〉true) (2)

Note that the expression [(inc� true)∗] ranges over all reachable states of the counter, since inc is the only event considered 
here. �

E↓-logic did rely on a particular realisation of data states modelled by assignments of values to attributes. In [8] we 
have developed a generic institution for event/data-based logic, denoted by E↓( 	D), which is parametrised by an underlying 
data state institution 	D. Any concrete data institution which satisfies the amalgamation property can be used as a basis to 
instantiate E↓( 	D). It is then even possible to change — during system development — a data state institution, usually from 
a poorer to a more expressive one, by means of an institution co-morphism.

1.2. Parameterising events

The approaches considered so far have a serious limitation: events are just names and do not support parameters. This 
excludes a lot of applications, like withdrawing a certain amount of money from an account or, considering our previous 
example, incrementing a counter by different values. In the latter case, we would like to add a parameter of type Nat to the 
event inc and represent this parameterised event by a term like inc(x).

To specify system properties involving parameterised events the quantification of parameters must be clarified. For in-
stance, for a modal formula like 〈inc(x)� val′ = val + x〉true it should be made clear whether the existence of an increment 
transition is required for all valuations of x or only for some valuation of x. In model-theoretic approaches parameters are 
usually implicitly universally quantified. In the dynamic logic of [6] one can choose universal and existential quantifica-
tion as desired. The recent logic for specifying properties of UML state machines in [19] proposes two kinds of the modal 
diamond operator, one for universal and one for existential interpretation of event parameters. We must, however, also con-
sider cases where quantification is not directly bound to modal operators but can occur at various places in an event/data 
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formula. For instance, for adjusting formula (1) from above to parameterised increments the parameter x must be bound 
early enough as done in formula (1a):

∀x . (val + x ≤ max → 〈inc(x)� val′ = val + x〉true) (1a)

We also want to express the progress property (2) from above in the parameterised case. An attempt would be to use the 
formula

∀x . [(inc(x)� true)∗]∀x . (val + x ≤ max → 〈inc(x)� val′ = val + x〉true) (2a)

Unfortunately this formula does only subsume progress in configurations which are reachable by an arbitrary number of 
increments each one using the same value for x. In the general case we would need, in each step of the iteration, a non-
deterministic choice for the instances of (the “first”) x. Note that this cannot be expressed by the choice operator “+” of 
dynamic logic if the domains of parameter values are infinite. As a solution we propose atomic event/data actions like 
inc(any x) � true where any x ranges over all values of x for which the transition predicate, here true, is satisfied. Then the 
desired progress property is expressed by the formula (2b):

[(inc(any x)� true)∗]∀x . (val + x ≤ max → 〈inc(x)� val′ = val + x〉true) (2b)

where the box together with the iteration refers to all states that are reachable with arbitrary arguments of inc.
In this paper we will omit hybrid operators (like binders and jumps) from E↓( 	D) and consider its dynamic logic version 

denoted by E( 	D). Indeed hybrid features have no impact on parameterised events and our study could be easily enlarged 
to include them. We propose an extension of E( 	D)-logic to Ep( 	D)-logic which allows us to treat parameterised events, 
quantification, and non-deterministic choice of arguments in an institution-independent way. In particular, we will show 
that this extension forms again an institution.

Structure of the paper. After our personal tribute to Luis we start with a summary of basic definitions for institutions in 
Sect. 2. Then we present the ideas and the essential formal ingredients (signatures, structures, sentences and satisfaction 
relations) of our concepts in Sect. 3 to Sect. 5. More technical details, like signature morphisms, sentence translations, reduct 
functors, and proofs, are provided in the appendices. We finish with some concluding remarks in Sect. 6.

1.3. Personal note

Luis and Rolf know each other since 2005 when Luis was the PC chair of the International Workshop on Formal Aspects 
of Component Software (FACS) at the United Nations University in Macao where Rolf gave a talk. Both came into contact 
because of their common interest in the formal specification and development of component systems. In 2010 Luis invited 
Rolf to become an external consultant of the national Portuguese MONDRIAN project coordinated by Luis. This was the 
origin of a closer collaboration between the two underpinned by several scientific meetings in connection with project 
workshops and a further FACS workshop organised by Luis in autumn 2010 in Guimarães. The MONDRIAN project dealt, in 
particular, with dynamically reconfigurable components. This topic was further investigated in the PhD thesis of Alexandre 
Madeira, supervised by Luis and Manuel António Martins, where Rolf acted as an external examiner in 2013. A discussion 
on refinement notions in this context led to a first scientific publication with Luis and Rolf as co-authors [15]. This was 
followed by further fruitful meetings and the common publications [13,14]. In the meanwhile Alexander (Knapp) joined 
the collaboration and as an outcome of reciprocal scientific visits in Aveiro, Braga, and Munich the common work with our 
Portuguese colleagues was successfully continued resulting in currently ten peer-reviewed publications, among them four 
journal papers.

We would like to thank Luis very cordially for his initiatives which brought all these results on the way. He is not only 
an outstanding scientist but also a very friendly and open minded colleague. We are looking forward to further inspiring 
meetings and collaborations with him.

2. Basic notions of institutions

The notion of an institution has been introduced in [5]. It is an abstract concept which formalises requirements for log-
ical systems used in rigorous, formal program development. An institution clearly distinguishes between syntax provided 
in terms of signatures � and associated sets of �-sentences, semantics in terms of �-structures, and satisfaction relations 
M |=� ϕ between �-structures M and �-sentences ϕ .1 Satisfaction is defined for semantic structures without the consid-
eration of further semantic concepts like valuations of variables. Intuitively this means that �-sentences should be closed 
formulæ without free variables. The family of satisfaction relations has to obey the so-called satisfaction condition which 
expresses the idea that truth is invariant under “change of notation”. For the categorical terminology used in the sequel of 
this paper we refer the reader to the book by Mac Lane [12] (where, however, functional order of morphism composition 
g ◦ f is used instead of the diagrammatic order f ; g often employed here).

1 Differently to the original terminology models are called structures here to avoid ambiguity when talking about models of a specification.
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Institution. An institution (S, Str, Sen, |=) consists of

– a category S whose objects are called signatures and arrows signature morphisms;
– a functor Str : Sop → Cat, giving for each signature � a category whose objects are called �-structures, and whose 

arrows are called �-(structure) morphisms; each arrow σ : � → �′ in S (i.e., σ : �′ → � in Sop), is mapped to a functor 
Str(σ ) : Str(�′) → Str(�) called reduct functor, whose effect is to cast a structure of �′ as a structure of �; when 
M = Str(σ )(M ′) we say that M is the σ -reduct of M ′;

– a functor Sen : S → Set, giving for each signature a set whose elements are called sentences over that signature; each 
arrow σ : � → �′ in S is mapped to a sentence translation function Sen(σ ) : Sen(�) → Sen(�′);

– a family |= = (|=� ⊆ |Str(�)| × Sen(�))�∈|S| of satisfaction relations determining, for each signature �, satisfaction of 
�-sentences by �-structures (where |Str(�)| denotes the objects of the category Str(�))

such that for each signature morphism σ : � → �′ in S, the satisfaction condition

Str(σ )(M ′) |=� ϕ ⇐⇒ M ′ |=�′ Sen(σ )(ϕ)

holds for each M ′ ∈ |Str(�′)| and ϕ ∈ Sen(�); graphically,

� Str(�) Sen(�)

�′ Str(�′) Sen(�′)

σ

|=�

Str(σ )

|=�′
Sen(σ )

Amalgamation property. Amalgamation will be used later to construct the union of data states and variable valuations. An 
institution (S, Str,Sen, |=) has the amalgamation property [20, Def. 4.4.12] if all pushouts in S exist and

every pushout diagram admits amalgamation

�1 +σ1,σ2
�0

�2

�1 �2

�0

σ1 σ2

σ2
σ1 σ1

σ2

M1 ×σ1,σ2 M2

M1 M2

M0

Str(σ1) Str(σ2)

Str(σ2
σ1 ) Str(σ1

σ2 )

In more detail, (�1 +σ1,σ2
�0

�2, (σ3−i
σi : �i → �1 +σ1,σ2

�0
�2)1≤i≤2) is a pushout along σ1 : �0 → �1 and σ2 : �0 → �2 in S if 

σ1; σ2
σ1 = σ2; σ1

σ2 and, furthermore, for all �′ ∈ |S| and σ ′
i : �i → �′ , 1 ≤ i ≤ 2 satisfying σ1; σ ′

1 = σ2; σ ′
2, there is a unique 

σ : �1 +σ1,σ2
�0

�2 → �′ with σ ′
i = σ3−i

σi ; σ , 1 ≤ i ≤ 2. Such a pushout admits amalgamation if

– for any two structures Mi ∈ |Str(�i)| such that Str(σ1)(M1) = M0 = Str(σ2)(M2), there exists a unique structure 
M1 ×σ1,σ2 M2 ∈ |Str(�1 +σ1,σ2

�0
�2)| such that Str(σ3−i

σi )(M1 ×σ1,σ2 M2) = Mi for 1 ≤ i ≤ 2; and
– for any two morphisms μi : Mi → Ni in Str(�i) such that Str(σ1)(μ1) = Str(σ2)(μ2), there is a unique morphism 

μ1 ×σ1,σ2 μ2 : M1 ×σ1,σ2 M2 → N1 ×σ1,σ2 N2 such that Str(σ3−i
σi )(μ1 ×σ1,σ2 μ2) = μi for 1 ≤ i ≤ 2.

As shown in [8] reducts preserve amalgamations.

Example 2. The following institution of ground equational logic gEQ = (SgEQ , StrgEQ ,SengEQ , |=gEQ ) will be used in our ex-
amples to model data states: SgEQ consists of the many-sorted signatures � = (S, F ) with S-sorted function symbols F , 
where function symbols without arguments are called constants, and the signature morphisms σ = (σS , σF ) : � → �′
that preserve the sorting of the function symbols. A �-structure in StrgEQ (�) is a �-algebra A = ((sA)s∈S , ( f A) f ∈F )

interpreting the sorts by non-empty sets and the function symbols by (total) functions; a �-structure morphism is a �-
algebra homomorphism h = (hs : sA1 → sA2)s∈S . The reduct of a �′-algebra A′ along σ : � → �′ yields the �-algebra 
A′|σ = ((σS (s)A

′
)s∈S , (σF ( f )A

′
) f ∈F ), and the reduct of a �′-algebra homomorphism h′ : A′

1 → A′
2 the �-algebra homomor-

phism h′|σ = (h′
σS (s))s∈S , such that StrgEQ (σ ) = −|σ : StrgEQ (�′) → StrgEQ (�). A signature � induces a sort-indexed family of 

terms t , defined inductively, and the set of sentences SengEQ (�) given by the grammar

ϕ ::= t1 = t2 | true | ¬ϕ | ϕ1 ∨ ϕ2 .

For a signature morphism σ : � → �′ , the term translation and sentence translation SengEQ (σ ) : SengEQ (�) → SengEQ (�′)
are defined inductively as preserving the term and sentence structure, respectively. The evaluation of a term t of sort s over 
4
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a �-algebra A is written tA and yields an element of sA . The satisfaction relation A |=gEQ
� ϕ for a sentence ϕ ∈ SengEQ (�) is 

inductively given by

– A |=gEQ
� t1 = t2 iff (t1)

A = (t2)
A;

– A |=gEQ
� true;

– A |=gEQ
� ¬ϕ iff not A |=gEQ

� ϕ;

– A |=gEQ
� ϕ1 ∨ ϕ2 iff A |=gEQ

� ϕ1 or A |=gEQ
� ϕ2.

The institution gEQ has the amalgamation property [20]. �
3. Motivating discussions

Our goal is to introduce parameterised events, and consequently quantification of parameters and variables in E( 	D)-logic, 
i.e., to make them available for arbitrary data state institutions satisfying the amalgamation property. The resulting logic is 
called Ep( 	D)-logic. In Sect. 1.2 we have already summarised some issues related to the introduction of parameterised events. 
In this section we will provide some motivations and discussions for designing an appropriate framework to achieve our 
goals.

The first question to be solved is how parameters can be represented in an institution-independent way. This question 
is related to the treatment of open formulæ in an arbitrary institution I. Given a signature �, according to [20, Sect. 4.4.2]
any pair (ϕ, ξ), where ξ : � → �̂ is a signature morphism and ϕ is a �̂-sentence, is an open �-formula. (The underlying 
intuition stems from first-order logic where variables can be considered as constants which are added to a signature � thus 
yielding signature �̂.) For any �-structure M and open �-formula (ϕ, ξ), a valuation is a �̂-expansion M̂ of M , i.e., the 
reduct of M̂ along ξ is M , and (ϕ, ξ) is said to hold in M under valuation M̂ if M̂ |=

�̂
ϕ .

Based on these notions, Sannella and Tarlecki consider universally closed �-formulæ ∀ξ . ϕ where (ϕ, ξ) is an open �-
formula. ∀ξ . ϕ holds in a �-structure M if M̂ |=

�̂
ϕ holds for all �̂-expansions M̂ of M . Then, for a collection X of signature 

morphisms in I, Sannella and Tarlecki define the institution I∀(X ) such that, for any signature �, its set of �-sentences is 
the disjoint union of the �-sentences of I with the collection of all universal closures ∀ξ . ϕ of open �-formulæ (ϕ, ξ) such 
that ξ ∈X .

Unfortunately we cannot simply use this approach in our setting. One reason is that we would like to have nested 
quantifications which are not supported by I∀(X ) . But there is a more demanding problem, since event/data formulæ specify 
dynamic behaviours with changing states. In this context, we have to relate data states of pre- and post-configurations such 
that the values of parameters stay the same while the underlying data states may change.

For our “counter” example consider, e.g., the formula (1a) from Sect. 1.2.

∀x . (val + x ≤ max → 〈inc(x)� val′ = val + x〉true) (1a)

Assume we have an event/data transition system and a configuration γ . Following the lines from above a valuation of x
would be an expansion ω̂ of the data state ω(γ ) where x is a constant interpreted by some natural number. If val + x ≤ max
holds in ω̂ then there must exist an increment transition to a configuration γ ′ such that the transition predicate val′ = val+x
holds. This must be checked on the basis of the two data states ω(γ ) and ω(γ ′). So we would need two expansions, one 
for ω(γ ) and one for ω(γ ′) such that x is interpreted by the same value in both extensions. Another example is the formula

∀x . [(inc(x)� true); (inc(x)� true)]false (3)

which expresses that incrementing the counter twice in a row with the same value is not allowed. Again for evaluation of 
the formula data states would change but the value of the parameter should stay the same.

Though not dealing with parameters of events (modalities resp.) the treatment of quantification in the “hybridisation” 
method in [16,3] could show a workaround since there not only expansions of states but expansions of whole transition 
systems are considered when evaluating quantified formulæ. This approach needs not only extensions on the level of transi-
tion systems but also, additionally to the models of a hybrid signature, subclasses of so-called constrained models to express 
in an institution-independent way that variables cannot change their value after a transition. Moreover, the general hybridi-
sation method does not rely on transition predicates to express desired properties of pre- and post-data states of transitions 
which we believe are a convenient tool for the specification of event-based systems with changing data states. Moreover, 
the treatment of non-deterministic arguments would not be possible since the hybridisation method does not support pa-
rameterised modalities. Related to parameterised events, but not institution-independent, are the typed modalities proposed 
in [22] for dynamic networks of interactions.

In our approach we propose to go a different way, still taking the idea of modelling variables in an institution indepen-
dent way by signature morphisms and we will consider event parameters as (logical) variables a well. We will, however, 
ensure that the interpretation of variables is separated from the data states of configurations as far as possible. This means 
that source and target data states of transitions (in an event/data transition system) as well as variables will only rely on a 
common primitive part representing, e.g., basic data types.
5
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Fig. 1. Open data state formulæ.

4. Data state institutions and open formulæ

We assume given an arbitrary base institution D satisfying the amalgamation property and construct on top of it a 
data state institution 	D such that signatures in 	D are signature morphisms δ : �0 → � in D, δ-structures in 	D are those 
�-structures M in D which are expansions of a common �0-structure Mδ in D, and δ-sentences are just the �-sentences 
in D. The satisfaction relation |= 	D

δ is |=D
� . As detailed in Appendix B, the class of signatures in 	D can be chosen as a 

subcategory of the class of signature morphisms in D. In fact, one could choose a fixed base signature �0 such that all 
signatures in 	D have the same domain �0 and then the reducts of all structures in 	D are a fixed �0-structure in D; see 
the data state institution gEQ�0,A0

in Example 3.

Let δ : �0 → � be a signature in 	D. A collection X of “variables” for δ consists of a countable set |X | of variable 
names together with a signature X (x) : �0 → �x in 	D attached to each x ∈ |X | (note that several x ∈ |X | may be equipped 
with the same signature). For every finite subset X ⊆ |X | we assume a canonically chosen colimit signature �X in D with 
morphism X (X) : �0 → �X constructed by a finite iteration of pushouts over the family (X (x) : �0 → �x)x∈X such that 
�∅ = �0.

An open δ-formula over X is then a pair, written ϕ(X), such that X is a finite subset of |X | and ϕ is a sentence over 
the pushout signature � +δ,X (X)

�0
�X in D shown in Fig. 1a, also abbreviated as � +�0 �X . The set of open δ-formulæ over 

X is denoted by Frm
	D(δ, X ).

Let Mδ be the common �0-structure for which all δ-structures are expansions. A valuation for the variables X is a 
function β which maps any x ∈ |X | to a X (x)-structure of 	D (i.e., a �x-structure β(x) in D whose reduct StrD(X (x))(β(x))
along X (x) is Mδ).

We can now define satisfaction M, β |= 	D
β,X ϕ(X) of an open δ-formula ϕ(X) by a δ-structure M w.r.t. a valuation β . First, 

for a finite subset X ⊆ |X | we consider the limit β(X) of �x-structures β(x) in D with morphism StrD(X (X)) mapping 
β(∅) to Mδ and constructed by a finite iteration of amalgamations over the family (StrD(X (x)) : StrD(�x) → StrD(�0))x∈X . 
The satisfaction M, β |= 	D

β,X ϕ(X) is then defined as the satisfaction of the (� +�0 �X )-sentence ϕ by the amalgamated 
union of M and β(X) in D shown in Fig. 1b, i.e.,

M, β |= 	D
δ,X ϕ(X) if, and only if, M ×δ,X (X) β(X) |=D

�+�0 �X
ϕ (A)

Note that the satisfaction relation of 	D is still |= 	D
δ =|=D

� as explained above. But the treatment of variables and the 
satisfaction definition M, β |= 	D

δ,X ϕ(X) involving valuations and open formulæ will be the basis for the satisfaction relation 
of the event/data logic with parameterised events and variables when sentences of the logic will be closed formulæ.

Our constructions can be lifted to the definition of open transition predicates ψ and for their evaluation w.r.t. two data 
states M and M ′ . The idea is to use an additional component for pushouts and for amalgamations such that target data 
states can be reflected. The important point in our construction is that valuations of variables still remain independent from 
concrete data states.

We formalise transition predicates and their interpretations by using a so-called 2-data state institution 2 	D constructed 
on top of 	D (and hence D). Signatures in 2 	D are the same as in 	D but structures of 2 	D are pairs (M1, M2) intended to 
represent pre- and post-data states of transitions. Thus, for each signature δ : �0 → � in 2 	D (and hence 	D), δ-structures in 
2 	D are pairs (M1, M2) of δ-structures M1, M2 in 	D.

Properties of such data state pairs (without considering variables yet) can be specified by the sentences of 2 	D which are 
built according to a pushout construction in D. For each signature δ : �0 → � in 2 	D (and hence 	D and hence a signature 
morphism in D), we assume given a specifically chosen pushout of δ with itself in D, as illustrated in Fig. 2a.

Then the set of δ-sentences in 2 	D is defined as the set of (� +δ
�0

�)-sentences in D. The intuition behind this con-

struction is that (� +δ
�0

�)-sentences may contain copies of the symbols in “� \ �0” which can be separately evaluated in 
pre- and post-data states. For instance, in Example 1, val′ = val + 1 is a transition predicate containing the symbol val (to be 
evaluated in a pre-data state) and its copy val′ (to be evaluated in a post-data state).

The satisfaction relation in 2 	D for a δ-structure (M1, M2) in 2 	D, such that Mδ is the common reduct of M1 and M2
along δ, relies on the construction of an amalgamation of M1 and M2 in D as shown in Fig. 2b.
6
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Fig. 2. 2-data state signatures and structures.

Fig. 3. Open 2-data state formulæ.

Then, for any δ-sentence ψ in 2 	D, i.e., ψ is a (� +δ
�0

�)-sentence in D, the 2 	D-satisfaction relation is defined by

(M1, M2) |=2 	D
δ ψ if, and only if, M1 ×δ M2 |=D

�+δ
�0

�
ψ

Considering M1 and M2 as pre- and post-data states respectively, we see that the base signature �0 in δ : �0 → �

determines that part of data states whose interpretation, given by Mδ , has to be kept invariant while interpretations of the 
remaining part are flexible.

The treatment of variables for two data state formulæ extends the one for one data state formulæ from above as follows: 
Let δ : �0 → � be a signature in 2 	D (and hence in 	D) and let X be a collection of variables for δ with associated signatures 
X (x) : �0 → �x for each x ∈ |X |. The set of open 2-state formulæ over δ and X , denoted by Frm2 	D(δ, X ), is defined 
as the set of open state formulæ over 2δ and X , i.e. Frm2 	D(δ, X ) = Frm

	D(2δ, X ). This means that an open 2-state δ-
formula is a pair, written ψ(X), such that X is a finite subset of |X | and ψ is a sentence over the pushout signature 
(� +δ

�0
�) +2δ,X (X)

�0
�X in D, shorter written as (� +�0 �) +�0 �X and shown in Fig. 3a.

The satisfaction of an open 2-state δ-formula ψ(X) ∈ Frm2 	D(δ, X ) by a δ-structure (M1, M2) in 2 	D w.r.t. a valuation β
for X is defined by

(M1, M2),β |=2 	D
δ,X ψ(X) if, and only if, M1 ×δ M2, β |= 	D

2δ,X ψ(X)

By (A) the latter is the same as (M1 ×δ M2) ×2δ,X (X) β(X) |=D
�+�0 �+�0 �X

ψ where the amalgamated union is shown in 
Fig. 3b.

Example 3. We want to express val + x ≤ max as a data state formula and val′ = val + x as a 2-data state formula over the 
base institution gEQ of ground equational logic. As the base many-sorted signature �0 we choose a signature which has 
the primitive sorts Nat and Bool and contains function symbols + : Nat Nat → Nat and ≤ : Nat Nat → Bool (both used in 
infix notation) and usual constants like true : Bool. The accompanying base algebra A0 interprets Nat as the natural numbers, 
Bool as the Booleans and the function symbols as expected. We thus obtain a data state institution gEQ�0,A0

. For capturing 
val and max as data state attributes we consider the many-sorted signature � which extends �0 by the two constants 
val : Nat and max : Nat. Hence the structures StrgEQ�0,A0 (δ) for δ : �0 → � are �-algebras containing the fixed interpretation 
A0 together with arbitrary natural numbers for val and max. Moreover, the δ-structures of 2gEQ�0,A0

are pairs of �-
algebras (A1, A2) sharing A0. For finally adding the variable x we consider the variables X with |X | = {x} and the inclusion 
X (x) : �0 → �x where �x shows an additional constant x : Nat. The combined signature (� +δ

�0
�) +�0 �x then contains 

the shared �0 and constants val : Nat, val′ : Nat, max : Nat, max′ : Nat, and x : Nat. Thus, the equation val′ = val + x is an open 
formula in Frm2gEQ�0,A0 (δ, X ). Checking whether it is satisfied involves a δ-structure in 2gEQ�0,A0

which is determined 
by values for val, val′ , max, max′ and a valuation β(x) involving a single natural number for x. Similarly, val + x ≤ max, 
abbreviating the equation (val + x ≤ max) = true, is an open formula in FrmgEQ�0,A0 (δ, X ) and its satisfaction is checked 
w.r.t. a δ-structure in gEQ�0,A0

determined by values for val, max and a valuation β(x). The formula max′ = max contains 
no free variables and therefore its satisfaction in a δ-structure in 2gEQ�0,A0

depends only on the values of max and max′
while the valuation β(x) is irrelevant. In the examples considered here we could have added the equation max′ = max in 
the transition predicates to express that the upper bound of the counter cannot change. �
7
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5. Event/data-based logic with parameterised events

In the sequel we assume given an arbitrary base institution D satisfying the amalgamation property and the data insti-
tution 	D and the 2-data institution 2 	D as defined in Sect. 4 over D. In contrast to the previous sections signatures in D
will be denoted by 
0, 
, . . . instead of �0, �, . . . since notations with � will be reserved for event/data signatures.

A crucial ingredient of any event/data-based system are the events which may occur at a certain instance of time and 
may change the computation state as well as the data state of a system. In E( 	D)-logic, signatures consist of an event part, 
determined by a set of events, and a data part, determined by a signature of 	D. In Ep( 	D)-logic, we extend the event part 
by allowing parametrised events and we adjust the other notions like structures, sentences, and satisfaction accordingly.

In this section we introduce the essential ingredients of Ep( 	D)-logic. Elaborated details and proofs are given in Ap-
pendix C.

Parameterised events. Let δ : 
0 → 
 be a signature in 	D. A parameterised event over δ consists of an event name e and a 
finite sequence of parameter types, each type being represented by a signature in 	D. More formally, an event signature E =
(|E|, ξ) over δ consists of a set of event names |E| and a parameter types map ξ such that for all e ∈ |E|, ξ(e) = ξ(e)1, . . . , ξ(e)n
is a sequence of signatures ξ(e)i : 
0 → 
e,i in 	D.

Event occurrences provide concrete parameter values for events. They are formalised by structures of the signatures of 
the parameter types. Thus, an event occurrence for an e ∈ |E| with parameter types ξ(e)i : 
0 → 
e,i for i = 1, . . . , n is a pair 
e(B) such that B = B1, . . . , Bn is a sequence of ξ(e)i -structures in 	D. The set of event occurrences for an event signature E
is denoted by Ê .

Event/data signature. An event/data signature (ed signature, for short) � = (E, δ : 
0 → 
) consists of a data signature 
δ : 
0 → 
 in 	D and an event signature E over δ.

Structures of Ep( 	D). Any ed signature � determines a class of semantic �-structures, called event/data transition systems, 
which are transition systems with sets of initial states and, differently from E( 	D), event occurrences as labels on transi-
tions. The states of our transition systems are called configurations. There is a data state operator ω which assigns to each 
configuration γ a data state ω(γ ) which is a 	D-structure. It is related to the function M in hybridised logics [16] which 
maps states to structures of an underlying base institution. Different configurations can have the same data states but dif-
ferent enabled event occurrences. Hence configurations may carry control flow information. Since we are interested here in 
describing (properties of) reactive systems which start their executions in some initial configurations, the state space of our 
semantic models is restricted to reachable configurations only.

A �-event/data transition system (�-edts) M = (�, R, �0, ω) over an ed signature � = (E, δ : 
0 → 
) consists of

– a set of configurations �;
– a family of transition relations R = (Rê ⊆ � × �)ê∈Ê ;
– a non-empty set of initial configurations �0 ⊆ � and

– a data state operator ω : � → |Str
	D(δ)|,

such that � is reachable via R , i.e., for all γ ∈ � there are γ0 ∈ �0, n ≥ 0, ê1, . . . , ̂en ∈ Ê , and (γi, γi+1) ∈ Rêi+1
for all 0 ≤ i < n

with γn = γ .

We write �(M) for �, R(M) for R , �0(M) for �0 and ω(M) for ω. The class of all �-edts is denoted by StrEp( 	D)(�).

Example 4. Fig. 4 gives pictorial representations of �-event/data transition systems for the counter signature described in 
Example 3. The configurations γ are shown as rounded rectangles, their data states ω(γ ) as valuations in the lower state 
compartment. The initial configurations are indicated by an arrow pointer. The arguments for the parameterised event inc
which, in fact, are �x-algebras are represented by the chosen value.

In Fig. 4a, only a few sample transitions are shown explicitly. The transition system is not “extensional”: There are several 
configurations, like d1 and d′

1 for the same data state. By contrast, Fig. 4b gives the complete picture for a counter up to 
max = 2, where this upper limit is kept constant. �
Event/data actions. Before defining the formulæ (sentences resp.) of our logic we must first provide an appropriate repre-
sentation of parameterised events. We assume given an ed signature � = (E, δ) and a collection X of variables for δ. As 
usual in programming, we present the parameters of events by variables. Given an event name e ∈ |E| with parameter types 
ξ(e) = ξ(e)1, . . . , ξ(e)n , an event term is an expression e(any X) such that X = x1, . . . , xn is a list of variables in X with types 
X (xi) = ξ(e)i for i = 1, . . . , n. The term any X allows us to express non-deterministic choice of actual event parameters as 
discussed in Sect. 1.2. More examples for the use of any X and convenient abbreviations are given in Example 5.

We denote the set of event terms over � and X by E(�, X ). Then atomic event/data actions over � have the form 
e(any X) � ψ(Y ) with e(any X) ∈ E(�, X ) an event term and ψ(Y ) a data state transition predicate formalised as an open 
formula in 2 	D. Often X and Y coincide. Following the dynamic logic style we also use complex, structured actions formed 
8
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Fig. 4. “Counter” event/data transition systems.

over atomic event/data actions by union “+” (expressing non-deterministic choice), sequential composition “;”, and iteration 
“∗”. The set �(�, X ) of �-event/data actions (�-ed actions) is given by the grammar

λ ::= e(any X)� ψ(Y ) | λ1 + λ2 | λ1;λ2 | λ∗

where e(X) ∈ E(�, X ) and ψ(Y ) ∈ Frm2 	D(δ, X ). The free variables fvar(λ) of an action λ are defined inductively by 
fvar(e(any X) � ψ(Y )) = Y \ X , fvar(λ1 + λ2) = fvar(λ1) ∪ fvar(λ2) = fvar(λ1; λ2), and fvar(λ∗) = fvar(λ).

Event/data formulæ. For an event/data signature � = (E, δ) and data variables X for δ the set FrmEp( 	D)(�, X ) of event/data 
formulæ supporting parameterised events and quantification of data variables is defined by the grammar:

� ::= true | ϕ(X) | 〈λ〉� | ∃x . � | ¬� | � ∨ �

where ϕ(X) ∈ Frm
	D(δ, X ), λ ∈ �(�, X ), and x ∈ |X |. The modal box operator [λ]� stands for ¬[λ]¬�, universal quantifica-

tion ∀x . � for ¬∃x . ¬�, and other boolean connectives like ∧, →, ↔, etc. and the constant false are derived as usual.
The free variables fvar(�) of an ed formula � are defined inductively by fvar(true) = ∅, fvar(ϕ(X)) = X , fvar(〈λ〉�) =

fvar(λ) ∪ fvar(�), fvar(∃x . �) = fvar(�) \{x}, fvar(¬�) = fvar(�), and fvar(�1 ∨�2) = fvar(�1) ∪ fvar(�2). An event/data formula 
ρ is closed, if fvar(ρ) = ∅. For any ed signature �, the set of closed ed formulæ over � forms the event/data sentences (ed 
sentences) of Ep( 	D)-logic, denoted by SenEp( 	D)(�).

Satisfaction relation of Ep( 	D). To define the satisfaction relation of Ep( 	D)-logic we must first, as usual in dynamic logic, 
provide interpretations of the actions �(�, X ) in a �-edts M . Since actions may contain variables, such interpretations 
must be defined relative to a variable valuation β . Moreover, special care has to be taken about event terms. Let e(any X)

be an event term with X = x1, . . . , xn and βX a valuation for the variables in X . We then denote the event occurrence 
e(βX (xi)1≤i≤n) by e(βX ). The set of valuations for X is denoted BX .

For the interpretation of event/data actions in a �-edts M w.r.t. a variable valuation β over X , we define the family of 
relations (R(M, β)λ ⊆ �(M) × �(M))λ∈�(�,X ) by:

– R(M, β)e(any X)�ψ(Y ) = {(γ ,γ ′) ∈ R(M)e(βX ) | βX ∈ BX , (ω(M)(γ ),ω(M)(γ ′)), β{X �→ βX } |=2 	D
δ(�),X ψ},

(β{X �→ βX })(x) = βX (x) for x ∈ X , (β{X �→ βX })(x′) = β(x′) for x′ /∈ X ,
– R(M, β)λ1+λ2 = R(M, β)λ1 ∪ R(M, β)λ2 ,
– R(M, β)λ1;λ2 = R(M, β)λ1 ; R(M, β)λ2 ,
– R(M, β)λ∗ = (R(M, β)λ)

∗ .

For instance, R(M, β)e(any X)�ψ(Y ) relates all configurations for which there is a transition labelled with an event oc-

currence e(βX ) such that the (open) transition predicate ψ(Y ) is satisfied according to 2 	D by the source and target data 
states under valuation β{X �→ βX }. This shows that for the variables occurring in X not the valuation β is relevant but the 
9
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valuation used for the actual parameters in the event occurrence e(βX ). Therefore, any X binds the variables in X for the 
evaluation of ψ(Y ).

Given an ed signature � and a �-edts M , the satisfaction of an event/data formula � ∈ FrmEp( 	D)(�, X ) is inductively 
defined w.r.t. configurations γ ∈ �(M) and data variable valuations β:

– M, γ , β |=Ep( 	D)

�,X true;

– M, γ , β |=Ep( 	D)

�,X ϕ(X) iff ω(M)(γ ), β |= 	D
δ(�),X ϕ(X);

– M, γ , β |=Ep( 	D)

�,X 〈λ〉� iff M, γ ′, β |=Ep( 	D)

�,X �

for some γ ′ ∈ �(M) with (γ , γ ′) ∈ R(M, β)λ;

– M, γ , β |=Ep( 	D)

�,X ∃x . � iff M, β{x �→ Bx}, γ |=Ep( 	D)

�,X �

for some Bx ∈ |Str
	D(X (x))|

where (β{x �→ Bx})(x) = Bx and (β{x �→ Bx})(x′) = β(x′) for x �= x′;
– M, γ , β |=Ep( 	D)

�,X ¬� iff M, γ , β �|=Ep( 	D)

�,X �;

– M, γ , β |=Ep( 	D)

�,X �1 ∨ �2 iff M, γ , β |=Ep( 	D)

�,X �1 or M, γ , β |=Ep( 	D)

�,X �2.

The satisfaction of data state formulæ ϕ(X) relies on the satisfaction of open formulæ in 	D. Similarly, the satisfaction of 
diamond formulæ 〈e(any X) � ψ(Y )〉� relies on the satisfaction of open formulæ in 2 	D. But note that the variables in X are 
bound by any. It expresses that it is possible to execute in the current configuration and current variable valuation all event 
occurrences ê for which ψ(Y ) holds such that � is satisfied in the subsequent configuration under the same data variable 
valuation.

As usual, for closed formulæ �, i.e. for �-sentences of Ep( 	D), variable valuations are irrelevant and M satisfies �, written 

M |=Ep( 	D)

� �, if M, γ , β |=E↓( 	D) � for all initial configurations and arbitrary valuation β . The family of satisfaction relations 

of Ep( 	D) is given by |=Ep( 	D)

� for all ed signatures �.
The proofs to show that Ep( 	D)-logic forms an institution are given in Appendix C.

Specifications of event/data-based systems. For any data state institution D, the sentences of Ep( 	D)-logic can be used to 
specify properties of event/data-based systems and thus to write system specifications.

A specification Sp = (�, Ax) in Ep( 	D) consists of an ed-signature � and a set of axioms Ax ⊆ SenEp( 	D)(�). We write �(Sp)

for � and Ax(Sp) for Ax. The semantics of Sp is given by the pair (�(Sp), ModEp( 	D)(Sp)) where

ModEp( 	D)(Sp) = {M ∈ |StrEp( 	D)(�(Sp))| | ∀� ∈ Ax(Sp) . M |=Ep( 	D)

�(Sp) �} .

The �(Sp)-edts in ModEp( 	D)(Sp) are called models of Sp and ModEp( 	D)(Sp) is the model class of Sp.

Example 5. We complete the counter specification with parameterised events started in Sect. 1.2. The basic data state 
institution is ground equational logic gEQ ; see Example 2. Our first axiom is the sentence

[(inc(any x)� true)∗]∀x . (val + x ≤ max → 〈inc(x)� val′ = val + x〉true) (Ax1)

already shown in Sect. 1.2. Therein the expression inc(x)� val′ = val + x is a shorthand notation for the atomic event/data 
action inc(any x̂)� x̂ = x ∧ val′ = val + x where x̂ is a variable different from x and bound by any (in particular, inc(x) in this 
expression is not meant to be an event term). Note that we cannot move the precondition in the transition predicate and 
use

∀x . 〈inc(any x̂)� x̂ = x ∧ val + x ≤ max ∧ val′ = val + x〉true)

instead of

∀x . (val + x ≤ max → 〈inc(any x̂)� x̂ = x ∧ val′ = val + x〉true)

The former would require that (in the current configuration) for any value of x there must exist a transition such that the 
precondition val + x ≤ max is satisfied, which is certainly not intended.

Next, we specify the safety property “whenever the counter value has reached the upper bound no further increment is 
possible” by our second axiom:

[(inc(any x)� true)∗] (val = max → [inc(any x)� true]false) (Ax2)
10
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The third axiom expresses “whenever the counter value is smaller than the upper bound besides incrementing the counter 
value nothing else can happen.”

[(inc(any x)� true)∗]∀x . (val + x ≤ max → [inc(x)� ¬(val′ = val + x)]false) (Ax3)

Similarly as above, the expression inc(x)�¬(val′ = val+x) is a shorthand notation for the atomic event/data action inc(any x̂)�
x̂ = x ∧ ¬(val′ = val + x).

For these axioms the �-edts of Fig. 4b is a model, but Fig. 4a is not, since, e.g., d′
1 lacks an outgoing inc(1)-transition. �

6. Conclusions

We have extended the dynamic logic variant of the event/data-based institution introduced in [8] to take into account 
parameterised events in the context of an arbitrary underlying data state institution which satisfies the amalgamation prop-
erty. At a first glance such an extension might look like an easy task; it turned out, however, that there are several design 
decisions to be made in order to treat the extension independently of the underlying data state institution and at the same 
time being able to express subtle aspects like non-deterministic choice of arguments. We have not considered here hybrid 
features like in [8], but an extension to include them would indeed be straightforward since the hybrid features are not 
concerned by event parameters. Then the whole machinery developed in [8] for stepwise refinement from abstract property 
specifications to concrete recursive process structures (representable by hybrid features) would be applicable. The crucial 
ideas of the treatment of parameterised events in our logic were illustrated by a small example; a larger case study for vali-
dation should follow next. Moreover, we want to extend the approach by taking into account a differentiation between input 
and output events and thus to be able to model composition of components with synchronous or asynchronous message 
passing.
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Appendix A. Institutions

Institution gEQ of Example 2. A many-sorted signature � = (S, F ) consists of sets of sorts S and function symbols F ; the latter 
have argument sorts and a result sort, a function symbol without arguments is a constant. A many-sorted signature morphism
σ = (σS , σF ) : � → �′ maps the sorts and function symbols of � to those of �′ such that the sorting of function symbols 
is transferred. Many-sorted signatures and signature morphisms form the category of signatures SgEQ .

A �-algebra A for a many-sorted signature � = (S, F ) consists of non-empty carrier sets sA for each sort s and functions
f A : sA1 × . . . × sAn → sA for each f ∈ F with argument sorts s1, . . . , sn and result sort s; a �-algebra homomorphism h :
A1 → A2 is given by a family of functions (hs : sA1 → sA2 )s∈S such that hs( f A1 (a1, . . . , an)) = f A2 (hs1 (a1), . . . , hsn (an))

for all f ∈ F and all ai ∈ sA1
i . �-algebras and �-algebra homomorphisms form the category StrgEQ (�). For a many-sorted 

signature morphism σ = (σS , σF ) : � → �′ the reduct of a �′-algebra A′ is the �-algebra A′|σ with sA
′ |σ = σS(s)A

′
for 

each s ∈ S and f A
′|σ = σF ( f )A

′
for each f ∈ F ; the reduct of a �′-algebra homomorphism h′ : A′

1 → A′
2 is the �-algebra 

homomorphism h′|σ : A′
1|σ → A′

2|σ with (h′|σ)s = h′
σS (s) for each s ∈ S . The structures functor StrgEQ : (SgEQ )op → Cat maps 

� to the category StrgEQ (�) and σ : � → �′ to the functor −|σ .
The S-indexed family of terms T (�) over the many-sorted signature � = (S, F ) is inductively given by f (t1, . . . , tn) ∈

T (�)s for f ∈ F with arguments sorts s1, . . . , sn and result sort s and ti ∈ T (�)si (for constants, the parentheses are 
omitted). The set of sentences SengEQ (�) is given by the grammar

ϕ ::= t1 = t2 | true | ¬ϕ | ϕ1 ∨ ϕ2 ,

where t1, t2 ∈ T (�)s for some s ∈ S . Term translation T (σ ) = (T (σ )s : T (�)s → T (�′)s)s∈S : T (�) → T (�′) and 
sentence translation SengEQ (σ ) : SengEQ (�) → SengEQ (�′) along a signature morphism σ : � → �′ preserve the term 
and sentence structure: T (σ )s( f (t1, . . . , tn)) = σF ( f )(T (σ )s1 (t1), . . . ,T (σ )sn (tn)) and SengEQ (σ )(t1 = t2) = (T (σ )s(t1) =
T (σ )s(t2)), etc. The sentence functor SengEQ : SgEQ → Set maps � to the sentences over � and σ : � → �′ to the sentence 
translation along σ .

For a �-algebra A, the term evaluation (−)A = ((−)As : T (�)s → sA)s∈S(�) is inductively given by ( f (t1, . . . , tn))As =
f A((t1)

A
s1

, . . . , (tn)Asn
). The satisfaction relation A |=gEQ

� ϕ for a sentence ϕ ∈ SengEQ (�) is inductively given by

– A |=gEQ
� t1 = t2 iff (t1)

A = (t2)
A;

– A |=gEQ
� true;

– A |=gEQ
� ¬ϕ iff not A |=gEQ

� ϕ;

– A |=gEQ
ϕ1 ∨ ϕ2 iff A |=gEQ

ϕ1 or A |=gEQ
ϕ2.
� � �
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Appendix B. (2-)data state institutions and open formulæ

Data state institutions. Let D be an institution enjoying the amalgamation property. A data state institution 	D =
(S

	D, Str
	D, Sen

	D, |= 	D) over D consists of

– a signature category S 	D which is a subcategory of the arrow category (SD)→ , where the objects are morphisms 
δ : �0 → � in D, and which is closed under pushouts, i.e., if (�1 +δ1,δ2

�0
�2, (δ3−i

δi : �i → �1 +δ1,δ2
�0

�2)1≤i≤2) is a 

pushout of δ1 : �0 → �1 and δ2 : �0 → �2 in SD and δ1, δ2 ∈ |S 	D|, then δ1; δ2
δ1 = δ2; δ1

δ2 ∈ |S 	D|.
– a structures functor Str

	D : (S 	D)op → Cat which yields

1. for every 	D-signature δ : �0 → � ∈ |S 	D| a non-empty subcategory of StrD(�) such that there is an Mδ ∈ |StrD(�0)|
with StrD(δ)(M) = Mδ for all M ∈ |Str

	D(δ)| and StrD(δ)(μ) = 1Mδ for all μ : M1 → M2 in Str
	D(δ);

2. for every signature morphism (σ0, σ) : (δ : �0 → �) → (δ′ : �′
0 → �′) in S 	D a reduct functor Str

	D(σ0, σ) :
Str

	D(δ′) → Str
	D(δ) such that for every M ′ ∈ |Str

	D(δ′)| ⊆ |StrD(�′)| and every μ′ : M ′
1 → M ′

2 in Str
	D(δ′): 

Str
	D(σ0, σ)(M ′) = StrD(σ )(M ′) and Str

	D(σ0, σ)(μ′) = StrD(σ )(μ′);

– the sentence functor Sen
	D : S 	D → Set with Sen

	D(δ) = SenD(�) for each signature δ : �0 → � ∈ |S 	D| and 
Sen

	D(σ0, σ) = SenD(σ ) for each 	D-signature morphism (σ0, σ) : (δ : �0 → �) → (δ′ : �′
0 → �′);

– the satisfaction relations (|= 	D
δ ⊆ |Str

	D(δ)| × Sen
	D(δ))

δ∈|S 	D | with M |= 	D
δ ϕ if, and only if, M |=D

� ϕ for each δ : �0 → �, 

M ∈ |Str
	D(δ)|, and ϕ ∈ Sen

	D(δ).

2-data state institutions. Let 	D = (S
	D, Str

	D, Sen
	D, |= 	D) be a data state institution over D. The 2-data state institution 2 	D =

(S2 	D, Str2 	D,Sen2 	D, |=2 	D) over 	D consists of

– the signature category S2 	D = S
	D;

– the structures functor Str2 	D : (S2 	D)op → Cat mapping each δ ∈ |S2 	D| = |S 	D| to the cartesian product of categories 
Str

	D(δ) × Str
	D(δ) and each signature morphism (σ0, σ) : δ → δ′ in S2 	D = S

	D to the cartesian product of functors 
Str

	D(σ0, σ) × Str
	D(σ0, σ) : Str

	D(δ′) × Str
	D(δ′) → Str

	D(δ) × Str
	D(δ);

– the sentence functor Sen2 	D : S2 	D → Set defined as follows: For each signature δ : �0 → � ∈ |S2 	D| = |S 	D|, we assume 
given a specifically chosen pushout of δ with itself in SD , denoted by (� +δ

�0
�, (δ̂i : � → � +δ

�0
�)1≤i≤2), as illustrated 

in the diagram below at the left hand side. Then the set Sen2 	D(δ) of 2 	D-sentences is Sen
	D(2δ) = SenD(� +δ

�0
�). 

For each signature morphism (σ0, σ) : (δ : �0 → �) → (δ′ : �′
0 → �′) in S2 	D = S

	D the sentence translation function 
Sen2 	D(σ ) : Sen2 	D(δ) → Sen2 	D(δ′) is Sen

	D(σ0, σ +σ0 σ) = SenD(σ +σ0 σ) where σ +σ0 σ : � +δ
�0

� → �′ +δ′
�′

0
�′ is the 

unique signature morphism in SD such that the following diagram commutes:

� +δ
�0

�

� �

�0

δ δ

δ̂1 δ̂2

2δ

�′ +δ′
�0

�′

�′ �′

�′
0

δ′ δ′

δ̂′
1 δ̂′

2

2δ′

σ0

σ σ

σ +σ0 σ

– the satisfaction relations (|=2 	D
δ ⊆ |Str2 	D(δ)| × Sen2 	D(δ))

δ∈|S 	D | defined by (M1, M2) |=2 	D
δ ψ if, and only if, M1 ×δ

M2 |=D
�+δ

�0
�

ψ for δ : �0 → � ∈ |S2 	D|, (M1, M2) ∈ |Str2 	D(δ)| = |Str
	D(δ)| × |Str

	D(δ)|, and ψ ∈ Sen2 	D(δ) = SenD(� +δ
�0

�).

Variables. Variables X for a δ : �0 → � ∈ |S 	D| consist of a countable set |X | of names with a signature X (x) : �0 →
�x ∈ |S 	D| attached to each x ∈ |X |. For every finite subset X ⊆ |X | we assume a canonically chosen colimit, i.e., iterated 
pushout, signature �X in D with signature X (X) : �0 → �X ∈ |S 	D| such that �∅ = �0 and X (∅) = 1�0 . The variables X
12
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are translated along a signature morphism (σ0, σ) : (δ : �0 → �) → (δ′ : �′
0 → �′) in S 	D to the variables X σ0 for δ′ given 

by |X σ0 | = |X | and X σ0 (x) =X (x)σ0 : �′
0 → �′

0 +σ0,X (x)
�0

�x . By amalgamation in D the following holds:

Lemma 1. Let (σ0, σ) : δ → δ′ in S 	D . Then M ′
x ∈ |Str

	D(X σ0 (x))| if, and only if, there is a Mx ∈ |Str
	D(X (x))| with M ′

x = Mδ′ ×σ0,X (x)
Mx.

A valuation for X over δ is given by a map β from |X | to the structures of 	D such that β(x) ∈ |Str
	D(X (x))|. For every 

finite subset X ⊆ |X |, the structure β(X) is the limit, i.e., iterated amalgamation, of (β(x))x∈X in 	D such that β(∅) = Mδ . 
The reduct of a valuation β ′ for X σ0 over δ′ along (σ0, σ) : δ → δ′ is given by Str

	D(σ0, X )(β ′)(x) = StrD(σ0
X (x))(β ′(x)) for 

x ∈ |X |.

Open formulæ. The open 	D-formulæ Frm
	D(δ, X ) and the open 2 	D-formulæ Frm2 	D(δ, X ) over δ and X are given by

Frm
	D(δ,X ) = {ϕ(X) | X ⊆ |X | finite,ϕ ∈ SenD(� +δ,X (X)

�0
�X )} ,

Frm2 	D(δ,X ) = Frm
	D(2δ,X ) .

The translation of formulæ along (σ0, σ) : (δ : �0 → �) → (δ′ : �′
0 → �′) is given by the functions Frm

	D(σ0, σ , X ) :
Frm

	D(δ, X ) → Frm
	D(δ′, X σ0) and Frm2 	D(σ0, σ , X ) : Frm2 	D(δ, X ) → Frm2 	D(δ′, X σ0) defined by

Frm
	D(σ0,σ ,X )(ϕ(X)) = (SenD(σ +σ0 −σ0)(ϕ))(X)

for the unique σ +σ0 −σ0 : � +δ,X (X)
�0

�X → �′ +δ′,X σ0 (X)

�′
0

�Xσ0 and

Frm2 	D(σ0,σ ,X )(ψ(X)) = Frm
	D(σ0,σ +σ0 σ ,X )(ψ(X)) .

The satisfaction of a 	D-formula ϕ(X) ∈ Frm
	D(δ, X ) over a structure M ∈ |Str

	D(δ)| and a valuation β for X is given by

M, β |= 	D
δ,X ϕ(X) ⇐⇒ M ×δ,X (X) β(X) |=D

�+δ,X (X)
�0

�X
ϕ ;

likewise, the satisfaction of a 2 	D-formula ψ(Y ) ∈ Frm2 	D(δ, X ) over a structure (M1, M2) ∈ |Str2 	D(δ)| and a valuation β for 
X is defined by

(M1, M2),β |=2 	D
δ,X ψ(Y ) ⇐⇒ M1 ×δ M2, β |= 	D

2δ,X ψ(Y ) .

Lemma 2. Let (σ0, σ) : δ → δ′ in S 	D , X variables for δ, and β ′ a valuation for X σ0 over δ′ .

1. For each M ′ ∈ |Str
	D(δ′)| and ϕ(X) ∈ Frm

	D(δ, X ) it holds that

M ′, β ′ |= 	D
δ′,X σ0 Frm

	D(σ0,σ ,X )(ϕ(X)) ⇐⇒
Str

	D(σ0,σ )(M ′), Str
	D(σ0,X )(β ′) |= 	D

δ,X ϕ(X) .

2. For each (M ′
1, M

′
2) ∈ |Str2 	D(δ′)| and ψ(Y ) ∈ Frm2 	D(δ, X ) it holds that

(M ′
1, M ′

2),β
′ |=2 	D

δ′,X σ0 Frm2 	D(σ0,σ ,X )(ψ(Y )) ⇐⇒
Str2 	D(σ0,σ )(M ′

1, M ′
2), Str

	D(σ0,X )(β ′) |=2 	D
δ,X ψ(Y ) .

Appendix C. Event/data institution Ep( �D)

C.1. Event/data signatures

Parameterised events. For a δ : 
0 → 
 ∈ |S 	D|, an event signature E = (|E|, ξ) over δ consists of a set of events names |E|
and a parameter types map ξ : |E| → |S 	D|∗ with ξ(e)i = 
0 → 
e,i for 1 ≤ i ≤ |ξ(e)|; we write ξ(E) for ξ . A parameterised 
event is given by an e ∈ |E| and its parameter types ξ(e). For a (ϑ0, ϑ) : δ → (δ′ : 
′

0 → 
′) in S 	D and event signatures 
E over δ and E ′ over δ′ , an event signature morphism η : E → E ′ for (ϑ0, ϑ) is given by a function η : |E| → |E ′| such that 
ξ(E ′)(η(e))i = (ξ(E)(e)i)

ϑ0 : 
′
0 → 
′

0 +ϑ0,ξ(E)(e)i

0


e,i where ξ(E)(e)i : 
0 → 
e,i . An event occurrence for an e ∈ |E| with 

ξ(E)(e) = ξ1, . . . , ξn is a pair e(B) with B = (Bi ∈ |Str
	D(ξi)|)1≤i≤n . The set of event occurrences for an event signature E is 

denoted by Ê .
13
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Event/data signatures. An event/data signature � = (E, δ : 
0 → 
) consists of a data signature δ : 
0 → 
 in |S 	D| and an 
event signature E over δ. We write E(�) for E and δ(�) for δ. The event occurrences Ê over � are denoted by Ê(�).

An event/data signature morphism σ = (η, ϑ) from � to �′ is given by a data signature morphism ϑ : δ(�) → δ(�′) in 
S

	D and an event signature morphism η : E(�) → E(�′) for ϑ . We write E(σ ) for η and δ(σ ) for ϑ .

Event/data signatures and their morphisms form a category denoted by SEp( 	D) .

C.2. Event/data structures

A �-event/data transition system M = (�, R, �0, ω) over an event/data signature � consists of

– a set of configurations �;
– a family of transition relations R = (Rê ⊆ � × �)ê∈Ê(�)

;
– a non-empty set of initial configurations �0 ⊆ �; and

– a data state labelling ω : � → |Str
	D(δ(�))|,

such that � is reachable via R , i.e., for all γ ∈ � there are γ0 ∈ �0, n ≥ 0, ê1, . . . , ̂en ∈ Ê(�), and (γi, γi+1) ∈ Rêi+1
for all 

0 ≤ i < n with γn = γ . We write �(M) for �, R(M) for R , �0(M) for �0, and ω(M) for ω.
Let σ : � → �′ be an event/data signature morphism and M ′ a �′-event/data structure. The σ -reduct of M ′ is the 

�-event/data structure M ′|σ such that

– �(M ′|σ) and R(M ′|σ) = (R(M ′|σ)ê)ê∈Ê(�)
are defined inductively with base �0(M ′) ⊆ �(M ′|σ) and step cases for 

all γ ′, γ ′′ ∈ �(M ′), e ∈ E(�), if γ ′ ∈ �(M ′|σ) and (γ ′, γ ′′) ∈ R(M ′)E(σ )(e)(B′) , then γ ′′ ∈ �(M ′|σ) and (γ ′, γ ′′) ∈
R(M ′|σ)e(B′|σ) where (B′|σ)i = StrD(δ(σ )0

ξ(e)i )(B′
i) for 1 ≤ i ≤ |ξ(e)|;

– �0(M ′|σ) = �0(M ′); and

– ω(M ′|σ)(γ ′) = Str
	D(δ(σ ))(ω(M ′)(γ ′)) for all γ ′ ∈ �(M ′|σ).

For each � ∈ |SEp( 	D)|, we denote the discrete category (class) of all �-event/data structures by StrEp( 	D)(�); and for each 
σ : � → �′ in SEp( 	D) the reduct functor (function) −|σ : StrEp( 	D)(�′) → StrEp( 	D)(�) by StrEp( 	D)(σ ), such that StrEp( 	D) :
(SEp( 	D))op → Cat forms a functor.

C.3. Event/data formulæ and sentences

Event/data actions. For an event/data signature � and variables X for δ(�), the event/data actions �(�, X ) are given by

λ ::= e(any X)� ψ(Y ) | λ1 + λ2 | λ1;λ2 | λ∗

where e ∈ |E(�)| and X = x1, . . . , xn ⊆ |X | such that X (xi) = ξ(E(�))(e)i for 1 ≤ i ≤ |ξ(E(�))(e)|, and ψ(Y ) ∈ Frm2 	D(δ, X ); 
we call an expression e(any X) an event term. The free variables fvar(λ) of an action λ are defined inductively by 
fvar(e(any X) � ψ(Y )) = Y \ X , fvar(λ1 + λ2) = fvar(λ1) ∪ fvar(λ2) = fvar(λ1; λ2), and fvar(λ∗) = fvar(λ).

The event/data action translation �(σ , X ) : �(�, X ) → �(�′, X δ(σ )0 ) along an event/data signature morphism σ : � → �′
is recursively given by

– �(σ , X )(e(any X) � ψ(Y )) = E(σ )(e)(any X) � Frm2 	D(δ(σ ), X )(ψ(Y )),
– �(σ , X )(λ1 + λ2) = �(σ , X )(λ1) + �(σ , X )(λ2),
– �(σ , X )(λ1; λ2) = �(σ , X )(λ1); �(σ , X )(λ2),
– �(σ , X )(λ∗) = �(σ , X )(λ)∗ .

Event/data formulæ. For an event/data signature � and variables X for δ(�), the event/data formulæ FrmEp( 	D)(�, X ) are 
given by

� ::= true | ϕ(X) | 〈λ〉� | ∃x . � | ¬� | �1 ∨ �2

where ϕ(X) ∈ Frm
	D(δ(�), X ), λ ∈ �(�, X ), and x ∈ |X |. The free variables fvar(�) of a formula � are defined inductively by 

fvar(true) = ∅, fvar(ϕ(X)) = X , fvar(〈λ〉�) = fvar(λ) ∪ fvar(�), fvar(∃x . �) = fvar(�) \ {x}, fvar(¬�) = fvar(�), and fvar(�1 ∨
�2) = fvar(�1) ∪ fvar(�2).

The event/data formulæ translation FrmEp( 	D)(σ , X ) : FrmEp( 	D)(�, X ) → FrmEp( 	D)(�′, X ) along σ : � → �′ is recursively 
given by

– FrmEp( 	D)(σ , X )(ϕ(X)) = Frm
	D(δ(σ ), X )(ϕ(X)),
14
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– FrmEp( 	D)(σ , X )(〈λ〉�) = 〈�(σ)(λ, X )〉FrmEp( 	D)(σ ,X )(�),

– FrmEp( 	D)(σ , X )(∃x . �) = ∃x . FrmEp( 	D)(σ , X )(�),

– FrmEp( 	D)(σ , X )(¬�) = ¬FrmEp( 	D)(σ , X )(�),

– FrmEp( 	D)(σ , X )(�1 ∨ �2) = FrmEp( 	D)(σ )(�1, X ) ∨ FrmEp( 	D)(σ )(�2, X ).

Event/data sentences. The set of �-event/data sentences SenEp( 	D)(�) = {� ∈ FrmEp( 	D)(�, X ) | fvar(�) = ∅} consists of all �-

event/data formulæ without free variables. The event/data sentence translation SenEp( 	D)(σ ) : SenEp( 	D)(�) → SenEp( 	D)(�′)
along an event/data signature morphism σ : � → �′ is defined as SenEp( 	D)(σ ) = FrmEp( 	D)(σ , X ).

C.4. Event/data satisfaction relation

Interpretation. For an event/data signature � and variables X , let e(any X) be an event term with X = x1, . . . , xn ⊆ |X | and 
βX a valuation for X . We then denote the event occurrence e(βX (xi)1≤i≤n) by e(βX ). The set of valuations for X are denoted 
BX .

For a �-event/data structure M and a valuation β of the variables X , the interpretation (R(M, β)λ ⊆ �(M) ×
�(M))λ∈�(�,X ) of event/data actions is given by

– R(M, β)e(any X)�ψ(Y ) = {(γ ,γ ′) ∈ R(M)e(βX ) | βX ∈ BX , (ω(M)(γ ),ω(M)(γ ′)), β{X �→ βX } |=2 	D
δ(�),X ψ},

(β{X �→ βX })(x) = βX (x) for x ∈ X , (β{X �→ βX })(x′) = β(x′) for x /∈ X ,
– R(M, β)λ1+λ2 = R(M, β)λ1 ∪ R(M, β)λ2 ,
– R(M, β)λ1;λ2 = R(M, β)λ1 ; R(M, β)λ2 ,
– R(M, β)λ∗ = (R(M, β)λ)

∗ .

For a σ : � → �′ , we abbreviate Str
	D(δ(σ )0, X )(β ′) by β ′|σ .

Lemma 3. Let σ : � → �′ be an event/data signature morphism, M ′ a �′-event/data structure, β ′ a valuation for X δ(σ )0 , and γ ′
1 ∈

�(M ′|σ) ⊆ �(M ′). Then

1. for all γ ′
2 ∈ �(M ′) and all λ = e(any X) � ψ(Y ) ∈ �(�, X ), it holds that (γ ′

1, γ
′

2) ∈ R(M ′|σ , β ′|σ)λ if, and only if, (γ ′
1, γ

′
2) ∈

R(M ′, β ′)�(σ ,X )(λ);
2. for all λ ∈ �(�, X ), {γ ′

2 ∈ �(M ′|σ) | (γ ′
1, γ

′
2) ∈ R(M ′|σ , β ′|σ)λ} = {γ ′

2 ∈ �(M ′) | (γ ′
1, γ

′
2) ∈ R(M ′, β ′)�(σ ,X )(λ)}.

Satisfaction relation. Given an event/data signature � and a �-event/data structure M , the satisfaction of an event/data 
formula � ∈ FrmEp( 	D)(�, X ) is inductively defined w.r.t. configurations γ ∈ �(M) and valuations β:

– M, γ , β |=Ep( 	D)

�,X true,

– M, γ , β |=Ep( 	D)

�,X ϕ(X) iff ω(M)(γ ), β |= 	D
δ(�),X ϕ(X),

– M, γ , β |=Ep( 	D)

�,X 〈λ〉� iff M, γ ′, β |=Ep( 	D)

�,X �

for some γ ′ ∈ �(M) with (γ , γ ′) ∈ R(M, β)λ ,

– M, γ , β |=Ep( 	D)

�,X ∃x . � iff M, β{x �→ Bx}, γ |=Ep( 	D)

�,X �

for some Bx ∈ |Str
	D(X (x))|

where (β{x �→ Bx})(x) = Bx and (β{x �→ Bx})(x′) = β(x′) for x �= x′ ,
– M, γ , β |=Ep( 	D)

�,X ¬� iff M, γ , β �|=Ep( 	D)

�,X �,

– M, γ , β |=Ep( 	D)

�,X �1 ∨ �2 iff M, γ , β |=Ep( 	D)

�,X �1 or M, γ , β |=Ep( 	D)

�,X �2.

Lemma 4. Let σ : � → �′ be an event/data signature morphism, X variables for δ(�), and M ′ a �′-event/data structure. For all 
γ ′ ∈ �(M ′|σ) ⊆ �(M ′), all valuations β ′ for X δ(σ )0 over δ(�′), and all � ∈ FrmEp( 	D)(�, X ) it holds that

M ′|σ ,γ ′, β ′|σ |=Ep( 	D)

�,X � ⇐⇒ M ′, γ ′, β ′ |=Ep( 	D)

�′,X δ(σ )0
FrmEp( 	D)(σ ,X )(�) .

Proof. We apply induction on the structure of �-event/data formulæ. We only consider the cases ϕ(X), 〈λ〉�, and ∃x . �; 
true, negation, and disjunction are straightforward.
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Case ϕ(X):

M ′|σ ,γ ′, β ′|σ |=Ep( 	D)

�,X ϕ(X)

⇔ { def. |=Ep( 	D) }
ω(M ′|σ)(γ ′),β ′|σ , |= 	D

δ(�),X ϕ(X)

⇔ { def. ω(M ′|σ) }
Str

	D(δ(σ ))(ω(M ′)(γ ′)), Str
	D(δ(σ )0,X )(β ′) |= 	D

δ(�),X ϕ(X)

⇔ { Lemma 2 }
ω(M ′)(γ ′),β ′ |= 	D

δ(�′),X δ(σ )0
Frm

	D(δ(σ ),X )(ϕ(X))

⇔ { def. |=Ep( 	D) }
M ′, γ ′, β ′ |=Ep( 	D)

�′,X δ(σ )0
Frm

	D(δ(σ ),X )(ϕ(X))

⇔ { def. FrmEp( 	D)(σ ) }
M ′, γ ′, β ′ |=Ep( 	D)

�′,X δ(σ )0
FrmEp( 	D)(σ ,X )(ϕ(X))

Case 〈λ〉�:

M ′|σ ,γ ′, β ′|σ |=Ep( 	D)

�,X 〈λ〉�
⇔ { def. |=Ep( 	D) }

M ′|σ ,γ ′′, β ′|σ |=Ep( 	D)

�,X � for some γ ′′ ∈ �(M ′|σ) with
(γ ′, γ ′′) ∈ R(M ′|σ ,β ′|σ)λ

⇔ { Lemma 3(2) }
M ′|σ ,γ ′′, β ′|σ |=Ep( 	D)

�,X � for some γ ′′ ∈ �(M ′|σ) ⊆ �(M ′) with
(γ ′, γ ′′) ∈ R(M ′, β ′)�(σ ,X )(λ)

⇔ { I. H. by Lemma 3(2) for “⇐” }
M ′, γ ′′, β ′ |=Ep( 	D)

�′,X δ(σ )0
FrmEp( 	D)(σ ,X )(�) for some γ ′′ ∈ �(M ′) with

(γ ′, γ ′′) ∈ R(M ′, β ′)�(σ ,X )(λ)

⇔ { def. |=Ep( 	D) }
M ′, γ ′, β ′ |=Ep( 	D)

�′,X δ(σ )0
〈�(σ ,X )(λ)〉FrmEp( 	D)(σ ,X )(�)

⇔ { def. FrmEp( 	D)(σ ) }
M ′, γ ′, β ′ |=Ep( 	D)

�′,X δ(σ )0
FrmEp( 	D)(σ ,X )(〈λ〉�)

Case ∃x . �:

M ′|σ ,γ ′, β ′|σ |=Ep( 	D)

�,X ∃x . �

⇔ { def. |=Ep( 	D) }
M ′|σ ,γ ′, (β ′|σ){x �→ Bx} |=Ep( 	D)

�,X � for some Bx ∈ |Str
	D(X (x))|

⇔ { Lemma 1 }
M ′|σ ,γ ′, (β ′{x �→ B′

x})|σ |=Ep( 	D)

�,X � for some B′
x ∈ |Str

	D(X δ(σ )0(x))|
⇔ { I. H. }

M ′, γ ′, β ′{x �→ B′
x} |=Ep( 	D)

�′,X δ(σ )0
� for some B′

x ∈ |Str
	D(X δ(σ )0(x))|

⇔ { def. |=Ep( 	D) }
M ′, γ ′, β ′ |=Ep( 	D)

′ δ(σ ) ∃x . FrmEp( 	D)(σ ,X )(�)

� ,X 0
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⇔ { def. FrmEp( 	D) }
M ′, γ ′, β ′ |=Ep( 	D)

�′,X δ(σ )0
FrmEp( 	D)(σ ,X )(∃x . �) �

For sentences � ∈ SenEp( 	D)(�), we define M |=Ep( 	D)

� � iff M, γ0, β |=Ep( 	D)

�,X � for all γ0 ∈ �0(M) and all valuations β for 
X .

Corollary 1. For all σ : � → �′ in SEp( 	D) , M ′ ∈ |StrEp( 	D)(�′)|, and � ∈ SenEp( 	D)(�),

StrEp( 	D)(σ )(M ′) |=Ep( 	D)

� � ⇐⇒ M ′ |=Ep( 	D)

�′ SenEp( 	D)(σ )(�) .

Corollary 2. (SEp( 	D), StrEp( 	D), SenEp( 	D), |=Ep( 	D)) forms an institution.
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