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The Rényi (Shannon) entropy, i.e., Reα (Sh), of the ground state of quantum systems in local bases normally
show a volume-law behavior. For a subsystem of quantum chains at a critical point there is an extra logarithmic
subleading term with a coefficient which is universal. In this paper we study this coefficient for generic
time-reversal translational invariant quadratic critical free fermions. These models can be parametrized by a
complex function which has zeros on the unit circle. When the zeros on the unit circle do not have degeneracy
and there is no zero outside of the unit circle we are able to classify the coefficient of the logarithm. In
particular, we numerically calculate the Rényi (Shannon) entropy in a configuration basis for a wide variety
of these models and show that there are two distinct classes. For systems with U (1) symmetry the coefficient
is proportional to the central charge, i.e., one half of the number of points that one can linearize the disper-
sion relation of the system; for all the values of α with transition point at α = 4. For systems without this
symmetry, when α > 1, this coefficient is again proportional to the central charge. However, the coefficient
for α � 1 is a new universal number. Finally, by using the discrete version of the Bisognano-Wichmann
modular Hamiltonian of the Ising chain we show that these coefficients are universal and dependent on the
underlying CFT.

DOI: 10.1103/PhysRevB.105.245109

I. INTRODUCTION

In quantum mechanics the outcome of a measurement of an
observable is one of the eigenvalues of the observable. Each
outcome happens with a particular probability. These prob-
abilities can be used to calculate Rényi (Shannon) entropy
which is a representative number for the probability distribu-
tion. The number depends on the chosen observable and gives
an idea about the distribution of probabilities. For many-body
systems there are many possibilities to choose the observable
and study its distribution and extract interesting information.
In quantum chains one can look to a local observable defined
on each site and find the probability of having a particular
configuration for the full system in, for example, the ground
state. This will lead to a set of probabilities where its size
grows linearly with the size of the Hilbert space. In quan-
tum spin chains, when one takes the ground state, the Rényi
(Shannon) entropy in σ x,y,z basis present some information
about the phase transition and the universality class [1–6].
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Instead of calculating the Rényi (Shannon) entropy of the full
system one can use marginal probabilities and calculate the
same quantities for the subsystem. These quantities as their
full system counterparts also show a volume-law behavior,
however, at the phase transition point there is a logarithmic
subleading term the coefficient of which shows interesting
universal behavior [7–15]. Studies on many different quantum
critical spin chains reveal that the coefficient of the loga-
rithm depends on the chosen basis but shows some level of
universality in some particular bases dubbed as conformal
basis [11]. In these models there are infinite possibilities to
choose the local observable and it seems any kind of classifi-
cation is hopeless. In fermionic systems the situation seems
more tractable. The most obvious local observable to take
is the number operator. One can write the ground state in a
configuration basis and look to the probabilities of different
configurations. These probabilities are dubbed as formation
probabilities and have been studied for subsystems of certain
free fermions in depth [13,16–19]. For results on the full sys-
tem see [3,20]. These probabilities have been also investigated
in experiments [21].

Time-reversal translational invariant quadratic critical free
fermions show interesting phase transitions. Depending on
the couplings one can produce critical systems with integer
and half-integer central charges [22,23]. They also show in-
teresting topologically protected phases [23,24]. In addition,
there are many efficient methods to calculate the formation
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probabilities for extremely large systems [13,17]. These
methods are also useful to work directly with subsystems
embedded in the systems with infinite size. This is very use-
ful to avoid the problem of finite size effect regarding the
full system. We notice that since the number of probabilities
grows exponentially with the size of the subsystem, there is an
unavoidable limitation on the size of the subsystem that one
can take in numerical calculations. In this paper we make a
step in full classification of the coefficient of the logarithmic
term in the Rényi (Shannon) entropy of generic time-reversal
translational invariant quadratic critical free fermions. We cal-
culate this quantity for various critical models and show that
the coefficient is proportional to the number of points that one
can linearlize the dispersion relation but the proportionality
constant is very much dependent on the presence (absence)
of the U (1) symmetry. In systems with U (1) symmetry a
clear picture emerges for the coefficient of the logarithm with
respect to α. However, for systems without this symmetry the
picture is clear just for α > 1.

The paper is organized as follows: In Sec. II we first define
the Rényi (Shannon) entropy for the subsystem. To extract the
coefficient of the logarithm we define the quantity Iα for two
subsystems of our original subsystem which was embedded in
an infinite system. The setup used in this paper has not been
considered previously. Most of the previous studies worked
with a system which was a periodic finite system and parti-
tioned the system into two parts [7,10,11]. In our setup we
have a tripartite situation.

In Sec. III we introduce the kind of models that we con-
sidered in this study, i.e., time-reversal translational invariant
quadratic critical free fermions. Apart from their physical
appeal these models provide a series of different universal-
ity classes. They can be solved exactly and one can find
the desired formation probabilities exactly and efficiently in
the thermodynamic limit. We categorize these models to two
types, those with and without U (1) symmetry. We also show
how one can find the formation probabilities out of the cor-
relation matrices for these models. A couple of interesting
dualities regarding the correlation matrices of different mod-
els will also be presented in this section.

In Sec. IV we summarize our main results. We make a few
conjectures regarding the coefficient of the logarithm in the
models that we considered. It seems there are two classes.
Those that have U (1) symmetry and models without manifest
U (1) symmetry. In the latter models we just consider models
where the corresponding f (z) function does not have zero
outside of the unit circle.

In Sec. V we briefly describe our numerical and fitting
procedure. Then in Sec. VI we present the details of the
models that we considered and provide support for the results
presented in Sec. IV. In Sec. VII we use the discrete version of
the Bisognano-Wichmann modular Hamiltonian for the Ising
chain and show that the results converge rapidly to the exact
results. Finally, in Sec. VIII we discuss the results further and
then conclude the paper in Sec. IX.

The paper is accompanied by two Appendixes. In Ap-
pendix A we provide the details of the fitting methods that
we have used to extract the coefficient of the logarithm. In
Appendix B we provided the exact Shannon entropy of the
models that we considered for different sizes.

FIG. 1. The setup used to calculate Iα (�). Here B and B̄ have sizes
� and L − �, respectively.

II. SETUP AND DEFINITIONS

In this section we present the basic definitions and the
setup of the problem. The quantities of interest, Rényi and
Shannon entropies, are defined as follows: Consider the nor-
malized ground state of a quantum chain Hamiltonian, i.e.,
|g〉 = ∑

I aI |I〉, expressed in a particular local bases |I〉 =
|i1, i2, . . . , iN 〉, where N is the system size and i1, i2, . . . , iN
are the eigenvalues of some local operators defined on the
lattice sites. The Rényi and Shannon entropies of the total
system with size N are defined as

Reα (N ) = 1

1 − α
ln

∑
I

Pα
I , (1)

Sh(N ) = −
∑

I

PI ln PI , (2)

where PI = |aI |2 is the probability of finding the system in
the particular configuration given by |I〉. These probabilities
are dubbed as formation probabilities in [13]. In the above
definition α can be any positive real number. Note that α → 1
gives us just the Shannon entropy.

By considering local bases it is always possible to decom-
pose the configurations as a combination of the configurations
inside and outside of a subregion A as |I〉 = |IAIĀ〉, where
IA and IĀ are the subconfigurations corresponding to A and
Ā. Then, one can define the marginal probabilities as pIA =∑

IĀ
PIAIĀ

. Using these probabilities one can now define the
Rényi and Shannon entropies of the subsystem with size L as
follows:

Reα (L) = 1

1 − α
ln

∑
IA

pα
IA
, (3)

Sh(L) = −
∑

IA

pIA ln pIA . (4)

The above two quantities at the critical point normally behave
as

Reα (L) = aαL + xα ln L + O(1), (5)

Sh(L) = a1L + x1 ln L + O(1). (6)

The quantities of interest in this paper are xα and x1. To isolate
these quantities one can divide region A into two subsystems
B and B̄ with sizes � and L − �, respectively, see Fig. 1. Then
one can define

Iα (�) = Reα (�) + Reα (L − �) − Reα (L), (7)

I1(�) = Sh(�) + Sh(L − �) − Sh(L). (8)
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In the rest of paper we consider the case � = L
2 . Then we

expect

Iα
(L

2

)
= xα ln L + O(1), (9)

I1

(L

2

)
= x1 ln L + O(1). (10)

We calculate the above two quantities for different infinite
size, i.e., N → ∞, critical systems. The advantage of this
setup is that we are free from the finite size effects of the total
system and just bounded with the limitations coming from the
subsystem size itself.

III. MODELS AND METHODS OF CALCULATION

In this section we first define our Hamiltonian of interest
and then present the formulas that one can use to calculate the
formation probabilities and ultimately the Iα . Here we follow
the notation in [23].

The Hamiltonian of the most general translational invariant
(periodic) quadratic fermionic chain with time-reversal sym-
metry takes the form

H =
R∑

r=−R

N∑
j∈�

[
Arc†

j c j+r + Br

2
(c†

j c
†
j+r − c jc j+r )

]
+ const.,

(11)
with the local fermionic modes c j , c†

j and the parameters
Ar = AN−r , Br = −BN−r , and � represent the sites of the lat-
tice. The above Hamiltonian can be exactly diagonalized after
going to the Fourier space and Bogoliubov transformation as
follows:

H =
∑

k

| f (eik )|η†
kηk + const., (12)

where we have defined

ηk = 1

2

(
1 + f (eik )

| f (eik )|
)

c†
k + 1

2

(
1 − f (eik )

| f (eik )|
)

c−k, (13)

and the sum over k goes over momenta kn = 2πn/N . All the
information about the couplings are in the complex function
f (z) which we defined as

f (z) :=
∑

m

tmzm, (14)

where we have

Ar = − tr + t−r

2
, (15)

Br = − tr − t−r

2
. (16)

In this system the vacuum is defined as ηk|0〉 = 0 for ∀k.
When Br �= 0 the vacuum state is the ground state, while when
Br = 0 the Hamiltonian has U (1) symmetry which means the
particle number is conserved. In this case one needs to fill
the negative modes depending on the number of particles in
the system to reach the ground state.

A. Formation probabilities

Before concentrating on critical models explicitly, since
all the forthcoming calculations are based on the correlation

matrix, we briefly define it here. The correlation matrix G
for the eigenstates is defined using two Majorana fermionic
operators γ j ≡ c†

j + c j and γ̄ j ≡ i(c†
j − c j ) as follows:

iG jk = 〈g|γ̄ jγk|g〉. (17)

One can use the above matrix to calculate all the observables
in this system. For example, in this system the formation
probabilities are defined as follows: consider the ground state
of the system written in configuration basis. That means each
configuration of fermions can appear with a particular proba-
bility in the ground state. These probabilities can be calculated
using the following formula [13,17]:

p(C) = det

(
I − Ic.G

2

)
, (18)

where I is an identity matrix and Ic is a diagonal matrix made
out of ±1. We set its diagonal element to −1 when we have a
fermion and +1 when there is no fermion at the correspond-
ing site. When Ic = I the corresponding probability is called
emptiness formation probability. The above formula works for
the full(sub) system if one takes the G matrix of the full(sub)
system. It also works for disjoint intervals as far as one takes
the G matrix of the subsystem. Using the determinant prop-
erties it is easy to show that the set of formation probabilities
is the same for the matrices G, −G, GT , and −GT . In other
words, although the associated probabilities for different con-
figurations might change, the whole set is the same. Even
more generally the matrices Ic.G, G.Ic, and Ic.G.Ic have the
same set of formation probabilities and consequently the same
Shannon and Rényi entropies. To summarize, different models
with different correlation matrices might have the same Rényi
entropies.

B. Critical systems

It is known that when the complex function f (z) has zeros
on the unit circle the ground state is critical and depending on
the number of zeros one can have different universality classes
with different central charges, for a review see [25]. The
reason behind this fact is that when f (z) has zeros on the unit
circle one can linearize the dispersion relation | f (eik )| around
that momentum and get one gapless Majorana fermion. This
Majorana fermion contributes c = 1

2 to the central charge of
the system so that we finally have c = Nl

2 , where Nl is the
number of zeros on the unit circle.

In general, one can think about two types of critical
systems, those with U (1) symmetry and those without this
symmetry. In this work we show that the behavior of the xα

is very much dependent on the presence or absence of U (1)
symmetry. Because of that we will study these two cases
separately.

1. Models with U(1) symmetry

In these Hamiltonians we have Br = 0. Good examples of
these types of Hamiltonians are the ones with the following
f (z) function:

fz(n) = −(zn + z−n), (19)

which corresponds to U (1)-symmetric n-step hopping
fermions. It has the central charge c = n. The n = 1 is the
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celebrated simple hopping chain. For the half-filling case the
correlation matrix of the ground state is

G = 2C − I, (20)

Cjk = 1

π ( j − k)

n∑
m=1

(−1)m+n sin

[
π (2m − 1)( j − k)

2n

]
.

(21)

The diagonal elements can be found by taking the limit. In
principle, it is possible to consider more complicated models
such as fz({an}) = ∑

n an fz(n). The central charge is depen-
dent again on the number of points where one can linearize
the dispersion relation and very much depend on the constants
an. For example, consider the case fz({a1, a2}) = a1 fz(1) +
a2 fz(2). For |a1| � |a2| we have just two points to linearize
the dispersion relation and we expect c = 1, however, for
|a2| > |a1| we have four points to linearize so we expect
c = 2. The C matrix in this case can be written as

Cjk (a1, a2)

= 1

π ( j − k)
{sin[k∗

1 ( j − k)] − sin[k∗
2 ( j − k)]}; (22)

where k∗
1 � k∗

2 are the solutions of the equation a1 cos[k] +
a2 cos[2k] = 0 in the range (0, π ). The diagonal elements can
again be found by taking the limit.

In this work we will study fz(1), fz(2), and fz({a1, a2})
with (a1, a2) = {(1, 1), (1, 2)}, and make a general statement
about the behavior of xα .

2. Models without U(1) symmetry

A fairly general form of f (z) with zeros on the unit circle
can be written as

fz(N0, m+, m−, {mj}; {k j})

= zN0 g(z)(z − 1)m+ (z + 1)m−
Nc∏
j=1

(z − eik j )mj (z − e−ik j )mj ,

(23)

where g(z) is a polynomial without any zeros on the unit
circle or origin and k1 < k2 < · · · < kNc . Note that since we
have Hamiltonians with real couplings, all zeros are either
real or come in complex conjugate pairs and all the powers
are integers. For simplicity we just consider g(z) = 1. At this
moment we assume that N0 can be a positive or negative inte-
ger number. In addition, m+, m−, mj are non-negative integer
numbers. The correlation matrix of the ground state for this
model is shown to be [23]

Gnm = 1

2π

∫ 2π

0

f (eik )

| f (eik )|e−i(m−n)kdk. (24)

Remarkably, the above integral can be calculated explicitly.
The result for g(z) = 1 can be written with respect to elemen-
tary functions as follows:

Gnm =
⎧⎨
⎩

4
π

1
2 GRe

nm+GIm
nm

N0+M+Q+n−m , N0 + M + Q �= m − n,(
2
{m++1

2

}
(−1)[ m+

2 ]
)(

(−1)M + 4
π

∑Nc
j=1(−1) j−1

{mj

2

}
k j

)
, N0 + M + Q = m − n,

(25)

where we have

GRe
nm = (−1)[ m+

2 ]+1

({
m+
2

}
−

{
m−
2

}
(−1)[Q]+N0 (−1)n+m

)
,

GIm
nm =

Nc∑
j=1

(−1) j−1

{
mj

2

}
sin

(
πm+

2
+ (N0 + M + Q + n − m)k j

)
,

(26)

and M = ∑Nc
j=1 mj , Q = m++m−

2 , and {X } is defined as follows:

{X } :=| X | −[| X |]. (27)

Using the above equation we find the following duality:

G[ fz(N0, m+, m−, {mj}; {k j})] = (−1)[ m+
2 ]G[ fz(N0 + M[m+, m−, {mj}], h[m+], h[m−], {h[mj]}; {k j})], (28)

where

M[m+, m−, {mj}] =
[

m+
2

]
+

[
m−
2

]
+ 2

Nc∑
j=1

[
mj

2

]
(29)

and h[x] = x − 2[ x
2 ]. For later use it is also useful to define

H[m+, m−, {mj}] = h[m+] + h[m−] + 2
Nc∑
j=1

h[mj]. (30)
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TABLE I. Coefficient of the logarithm in the Shannon entropy for different models with U (1) symmetry.

Models with U (1) symmetry
f (z) fz(1) fz(2) fz({1, 1}) fz({1, 2})

8x1 0.9968 ± 0.0001 2.00 ± 0.01 1.003 ± 0.003 1.84 ± 0.30

To the best of our knowledge, the above duality has not
been discussed before in the literature. It means that when
m+, m−, {mj} are bigger than one it is possible to absorb
them to N0 and remain with just one or zero powers for
m+, m−, {mj}. The immediate consequence of the above ar-
gument is that the even powers are noncritical and do not
contribute to the central charge and the contribution of odd
numbers is all the same. In other words, we have the following
theorem for the central charge:

c[N0, m+, m−, {mj}; {k j}] = 1
2 H[m+, m−, {mj}]. (31)

Note that we assume that the models with c = 0 are noncrit-
ical. In other words, all the models with m+, m−, {mj} even
integer numbers are noncritical. From now on without losing
any generality we consider that m+, m−, {mj} are either zero
or one and not all of them are zero. One can also prove another
useful duality:

G[ fz(N0, m+, m−, {mj}; {k j})]

= −GT [ fz(−N0 − m+ − m−

−2
Nc∑
j=1

mj, m+, m−, {mj}; {k j})]. (32)

Combining Eqs. (28) and (32) one can conclude that without
losing generality it is possible to assume that m+, m−, {mj}
are either zero or one and N0 is an integer number. To make
the classification manageable and under control we will just
consider the case N0 = 0.

IV. SUMMARY OF RESULTS

In this section we will summarize our main results. We first
discuss the case of the systems with U (1) symmetry and then
discuss the models without this symmetry.

A. Models with U (1) symmetry

Our extensive numerical results support the following be-
havior for the coefficient of the logarithm:

xα =
{ c

8 , α � 4,
α

α−1
c
8 , α > 4.

(33)

The case of c = 1 in a different geometry has been already
discussed in [10]. The presence of the discontinuity at α = 4
is attributed to the least irrelevant operator in the Luttinger
liquid description of the model. As far as α < 4 it was argued
in [10] that this operator is irrelevant and one can get xα = 1

8
by Luttinger model arguments. However, when α > 4 this
operator is relevant and consequently the field gets locked
into one of the minima of the potential and just one of
the configurations end up to have the largest contribution.
Consequently, we have xα = α

α−1
c
8 . It seems this picture is

more general and valid for generic fz(n) models. For n = 1
a simple numerical investigation shows that the dominant
configurations at α → ∞ are |0, 1, 0, 1, . . . , 0, 1〉 and
|1, 0, 1, 0, . . . , 1, 0〉 consistent with the half-filling ground
state. It is possible to calculate the logarithm of the probability
of this configuration exactly and one finds [19] a linear term
plus a logarithmic subleading term with coefficient − 1

8 .
This result proves Eq. (33) at α → ∞ for n = 1. A simple
numerical investigation shows that the largest probability for
fz(n) models is attributed to the 2n configurations |An〉 =

|
n−r︷ ︸︸ ︷

0, 0, . . . , 0

n︷ ︸︸ ︷
1, 1, . . . , 1, . . . ,

n︷ ︸︸ ︷
0, 0, . . . , 0

r︷ ︸︸ ︷
1, 1, . . . , 1〉 and

|An〉 = |
n−r︷ ︸︸ ︷

1, 1, . . . , 1

n︷ ︸︸ ︷
0, 0, . . . , 0, . . . ,

n︷ ︸︸ ︷
1, 1, . . . , 1

r︷ ︸︸ ︷
0, 0, . . . , 0〉,

where r = 0, 1, . . . , n − 1. We conjecture that

− ln p(An) = a(n)L + n

8
ln L + O(1). (34)

It should be possible to prove the above conjecture using
the methods developed in [19], however, we do not attempt
to do that in this paper. We note that when the system is
not half-filling a similar picture is still valid but the most
relevant configuration can change. For example, for r

s filling
in n = 1 case the most important configuration is |A1( r

s )〉 =

|
s−r︷ ︸︸ ︷

0, 0, . . . , 0

r︷ ︸︸ ︷
1, 1, . . . , 1, . . . ,

s−r︷ ︸︸ ︷
0, 0, . . . , 0〉 in which the numer-

ical results show that the logarithm of the probability of this
configuration has also a linear term plus logarithmic correc-
tion with coefficient − 1

8 , see [13].
Finally, we also found that Eq. (33) is most probably also

valid for the models fz({an}) = ∑
an fz(n). The numerical re-

sults in these cases have strong oscillations and consequently
the estimation for xα is poor. However, the overall behavior of
the numerical results is consistent with Eq. (33).

The coefficient of the logarithm for all the considered mod-
els is summarized in Table I.

B. Models without U (1) symmetry

For models with N0 = 0 our numerical results done on
many examples reveal the following behavior:

xα =
{ b(α)

8 , α � 1,
α

α−1
c
8 , α > 1,

(35)

where b(α) = b(α)H[m+, m−, {mj}] and c =
1
2 H[m+, m−, {mj}]. The coefficient of the logarithm seems
to be again increasing based on the number of gapless
Majorana fermions that one can define for the model. This
is reminiscent of the behavior of entanglement entropy in
these systems [22]. However, for α � 1 the coefficient is
not exactly proportional to the central charge. For α = 1
we have b(1) = 0.480016 ± 0.00005 and for 0 < α < 1
the numerical results indicate a complicated but universal
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TABLE II. Coefficient of the logarithm in the Shannon entropy for different models without U (1) symmetry.

Models without U (1) symmetry
f (z) z − 1 (z − 1)BW z2 − 1 z3 − 1

8x1 0.48008 ± 0.00002 0.48009 ± 0.00003 0.9616 ± 0.0001 1.4465 ± 0.0008

behavior, see [10] for the Ising chain. There are also regions
where this coefficient is negative. For all these models the
most relevant configuration is the configuration without any
fermion, i.e., |E〉 = |0, 0, . . . , 0〉 or the one full of fermions
|E〉 = |1, 1, . . . , 1〉. One can understand this by calculating
〈I|H |I〉 for different configurations I . An easy calculation
shows that 〈I|H |I〉 = nA0, where n is the number of fermions
in the configuration. It is now easy to see that depending
on the sign of the A0 just the configuration without any
fermion or the one full of fermions have the lowest energies.
For the subsystem configurations numerical calculations
support the above argument. Note that just changing the
sign of the G matrix interchanges the probability of the two
configurations, however the set of the configurations is intact.
We will be rarely concerned with this sign. The corresponding
probability is called emptiness formation probability and one
can calculate it explicitly using the Fisher-Hartwig formula,
see [16] for the c = 1

2 case. In the most general case we find

− ln p(E ) = a(m+, m−, {mj}; {k j})L + c

8
ln L + O(1), (36)

where a(m+, m−, {mj}; {k j}) = 1
2π

∫ π

−π
ln 1

2 (1 ∓ f (eik )
| f (eik )| ) and

again we have c = 1
2 H[m+, m−, {mj}]. This proves Eq. (35)

for α → ∞. However, as it is argued already for the Ising
chain in [10] it is not clear why the discontinuity in xα should
start exactly at α = 1 in all of these models.

In Table II we summarize the coefficient of the logarithm
for all the models where we did comprehensive numerical
checks.

V. NUMERICAL AND FITTING PROCEDURE

In this section we briefly discuss our numerical and fitting
procedures. The more comprehensive details are relegated to
Appendix A.

In all of the considered models we first find the 2L number
of probabilities using Eq. (18). The largest size that we consid-
ered was Lmax = 42. After collecting all the probabilities we
calculate the Iα and find the best estimate of xα using different
fitting procedures. Most importantly our fitting function is

I = A0 + A1 log L + A2L−1 log L +
m∑

i=3

Ai/Li−2. (37)

However, there are at least two important challenges to over-
come. First of all, due to the limitation in the maximum size
of L we need to use some extrapolation methods to get a good
estimate of xα . The second important hurdle is that Iα for
some of the models show strong oscillations. In these cases
either one needs to stick to a particular branch or average the
estimated xα over all the branches. The more sophisticated
approach is to use the regularization method. We have tried
all of these possibilities and in each case we report the one

with the best fit possible. In Appendix A we also explain in
detail our methods to estimate the error bars in each case.

Because of the exponential nature of the calculations and
the number of considered models computing all the probabil-
ities required a quite long time, which is particularly notable
for larger system sizes. As an example in the case of L = 42,
it took about 3 days to generate 242 formation probabilities
using a cluster with 356 computing nodes, where each node
had 16 cores. To prevent further damage to the environment in
Appendix B we collected the Shannon entropy for the models
that we considered so that the motivated reader can reproduce
the coefficient of the logarithm by her(him)self.

VI. DETAILS OF THE ANALYSIS

In this section we will provide the details of the models that
we considered. We first discuss systems with U (1) symmetry
and later we discuss the ones without this symmetry.

A. Models with U (1) symmetry

We first considered the model fz(1) which is the simple
hopping model with half-filling. The results for Iα with α =
1, 6 are shown in Fig. 2. The results for α > 1 have oscil-
lations which get stronger by increasing α. To calculate the
coefficient of the logarithm in these cases we first calculated
the coefficient for each branch using an extrapolation method
and later we averaged over the two results. The results are
shown in Fig. 3 which is compatible with Eq. (33). We then
considered the model fz(2). The results for Iα with α = 1, 6
are shown in Fig. 4. There are stronger oscillations in this case.
There are four visible branches for α > 1. In these cases again
we calculated the coefficient for each branch and if needed

FIG. 2. Iα with respect to ln L for fz(1) for two indices α = 1 and
α = 6.
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FIG. 3. The coefficient of the logarithm with respect to α for the
two models fz(1) and fz(2). In all the calculations Lmax = 42.

we also used the regularization method as it is explained in
Appendix A. Finally, we averaged over all the branches. The
coefficient xα with respect to α is shown again in Fig. 3.

We also considered the models fz({a1, a2}) with (a1, a2) ∈
{(1, 1), (1, 2)}. The numerical results have strong oscillations
especially for the case (a1, a2) = {(1, 2)}. In this case for large
α’s it seems impossible to get a good estimate for the xα with
sizes up to L = 42. However, the general picture is consistent
with Eq. (33). In Appendix B we just report the results for
the Shannon entropy and do not show the details for the other
α’s.

B. Models without U (1) symmetry

In this section we will provide some details regarding the
models without U (1) symmetry.

The first example is the famous Ising chain with f (z) =
z − 1. The results for Iα with α = 1, 2 are shown in Fig. 5.
We do not see any oscillations for any α. To calculate the
coefficient of the logarithm we used the extrapolation method
explained in Appendix A. The maximum size of the subsys-

FIG. 4. Iα with respect to ln L for fz(2) for two indices α = 1 and
α = 6.

FIG. 5. Iα with respect to ln L for f (z) = z − 1 for two indices
α = 1 and α = 2.

tem that we considered was Lmax = 42. The results for α � 1
are shown in Fig. 6 which is consistent with Eq. (35). It
is worth mentioning that we also analyzed the f (z) = z + 1
which although has a different G matrix the set of formation
probabilities are exactly the same as the Ising chain.

The second example is f (z) = z2 − 1 which is a model
with central charge c = 1. The results for Iα with α = 1, 2 are
shown in Fig. 7. There are small oscillations for α > 1 which
are just detectable after careful numerical manipulations, see
Fig. 7 inset. To calculate the coefficient of the logarithm we
again separated different branches and used the extrapolation
method for each branch and then finally averaged over the two
branches. The results for α � 1 are shown in Fig. 6 which is
consistent with Eq. (35). Note that although the central charge
here is an integer number because of lack of U (1) symmetry
we end up with a result which resembles the one we obtained
for the Ising chain.

We also analyzed other models such as f (z) = (z −
eiθ )(z − e−iθ ) with different θ ’s. They all have c = 1 and
show similar structure. We realized that when θ is small or

FIG. 6. The coefficient of the logarithm with respect to α for the
three models f (z) = z − 1, f (z) = z2 − 1, and f (z) = z3 − 1. In all
the calculations Lmax = 42.
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FIG. 7. Iα with respect to ln L for f (z) = z2 − 1 for two indices
α = 1 and α = 2. The inset shows there are oscillations with period
two.

close to π the oscillations for α > 1 are stronger. The fewest
oscillations appear for θ = π

2 which have the same set of
probabilities as f (z) = z2 − 1.

The third example is f (z) = z3 − 1 which is a model with
central charge c = 3

2 . The results for Iα with α = 1, 2 are
shown in Fig. 8. Similar to the previous case we have small
oscillations. There are three branches and we followed the
same procedure as before to estimate the coefficient of the
logarithm. The results for α � 1 are shown in Fig. 6 which is
again consistent with Eq. (35).

We also considered other models with a similar central
charge such as f (z) = (z − 1)(z − eiθ )(z − e−iθ ) with dif-
ferent θ ’s. The result are the same as before. However,
we realized that the case θ = 2π

3 i has the fewest oscilla-
tions. When we decrease or increase θ the oscillations get
stronger. Similar phenomena happens also for f (z) = (z +
1)(z − eiθ )(z − e−iθ ). When the zeros have the largest dis-
tance from each other the oscillations are smallest and when

FIG. 8. Iα with respect to ln L for f (z) = z3 − 1 for two indices
α = 1 and α = 2. The inset shows there are oscillations with period
three.

FIG. 9. The coefficient of the logarithm with respect to α for the
three models f (z) = z − 1, f (z) = z2 − 1, and f (z) = z3 − 1. In all
the calculations Lmax = 36.

two or three of them get closer to each other we have stronger
oscillations. This is a numerical observation for which we do
not have a good explanation.

Apart from the above case we also considered f (z) =
(z − 1)(z + 1)(z − eiθ )(z − e−iθ ) with central charge c = 2
with again similar conclusions. f (z) = z4 − 1 has the least
oscillations. The last model we considered was f (z) = z5 − 1
with the central charge c = 5

2 . The results are consistent with
Eq. (35). In most of the cases where we do not report the
results here we considered Lmax = 36. In some cases such as
f (z) = z5 − 1 we pushed the results up to Lmax = 42.

In all of the above cases we also studied with the same
procedure Iα with α < 1. For some α’s the coefficient of the
logarithm is negative but the numerical results confirm that
the behavior of the coefficient is universal and proportional
to the number of points where one can linearize the disper-
sion relation. The results were depicted in Fig. 9. Here we
considered Lmax = 36. We think the visible discrepancy in the
region α ∈ (0.6, 1) is due to the finite size effect which for an
unknown reason to us is stronger in this interval.

VII. ANALYSIS BASED ON BISOGNANO-WICHMANN
REDUCED DENSITY MATRIX

The reduced density matrix (RDM) of a quantum system
ρA is fully encoded in the modular (or entanglement) Hamil-
tonian HA defined as

ρA = e−HA

ZA
, ZA = trAe−HA . (38)

By construction, the RDM and the modular Hamiltonian have
the same eigenvectors, and their eigenvalues are simply re-
lated. The modular Hamiltonian plays a key role in quantum
field theory [26]. In this context, the modular Hamiltonian
of half-space partition is known to be related to the boost
operator [27,28]. Its form in conformal field theory (CFT) is
also known explicitly [29,30]. However, its explicit functional
form in lattice models is known only in a few simple cases,
see for example [31–36]. It was proposed in Refs. [37,38] to
use the Bisognano-Wichmann (BW) theorem in quantum field
theory and its extension in conformal field theory (CFT) to
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write approximate modular Hamiltonians for lattice models.
From the BW modular Hamiltonian one can construct a RDM,
which has been dubbed BW RDM. The proposal has been
checked extensively [36–41], showing that in many cases the
BW modular Hamiltonian can reproduce to a good precision
the entanglement spectrum, correlation functions and entan-
glement entropy. In [41] it was shown that this approximation
also produces very good approximations of the formation
probabilities. For a recent comprehensive review see [42]

Since the BW modular Hamiltonian is a discretization of
the quantum field theory itself one might hope that the con-
vergence of many quantities to the actual field theory result
might be faster and better. Having this in mind we used the
BW of the Ising model [36] to find first the GBW matrix as
follows: we first make the following T matrix:

e

(
M N
−N −M

)
=

(
T11 T12

T21 T22

)
, (39)

where the M and N are L × L matrices (L is the size of
subsystem) with the following elements:

1

π
Nlm = λ(l )δl+1,m − λ(m)δl,m+1, (40)

1

π
Ml,m = λ(l )δl+1,m + λ(m)δl,m+1 + 2λ

(
l − 1

2

)
δl,m, (41)

where λ(n) = n(L−n)
L and L is the size of the subsystem, i.e.,

L = 1, 2, 3, . . . . Then for G matrix we have

GBW = F − I

F + I
, (42)

where F = T−1
22 + T12.T−1

22 . One can use the above correlation
matrix to produce formation probabilities and consequently
the Rényi (Shannon) entropy. To calculate Iα (l ) one needs to
take care of a subtlety. The BW reduced density matrix is not
an exact reduced density matrix. That means trB̄ρBW

A �= ρBW
B .

In other words, probabilities coming from trB̄ρBW
A and ρBW

B
are different. We realized that the best results for Iα (l ) can be
derived by using marginal probabilities of ρBW

L . The results for
the Rényi entropy is indistinguishable from the exact results
when depicted in the figure so we just report the Shannon
entropy in this case in Appendix B. This is an interesting
demonstration of the universality of the coefficient of the
logarithm and also the power of the approximate BW modular
Hamiltonian.

VIII. DISCUSSION

In this paper we considered an infinite system and calcu-
lated the coefficient of the logarithm appearing in the scaling
of Rényi (Shannon) entropy of the ground state of critical
chains. Instead of working directly in the thermodynamic limit
one could take a finite periodic system with size N and cal-
culate Iα = Reα (�) + Reα (N − �) − Reα (N ) which ends up to
be proportional to x′

α ln N
π

sin π�
N , see [7,10,11]. We expect that

in all of our models x′
α = xα . The same is not true if one

takes an open boundary condition as it was already noticed in
[10]. This is because the boundary conditions can change the
logarithmic subleading term drastically. Clear understanding
of the coefficient in open quantum spin chains is still lacking.

All of the models that we considered in this paper can be
mapped to quantum spin chains using Jordan-Wigner transfor-
mation. Based on the previous numerical calculations [7,11]
it seems plausible to assume that if one calculates the Rényi
(Shannon) entropy in σ x basis the result for the coefficient
of the logarithm be the same as what we found in this paper.
However, as it was already noticed in [11] this might not be
correct for other bases. Finally, we should mention that under-
standing the coefficient of the logarithm for α � 1 in critical
systems without U (1) symmetry appears to be a challenge.
For α = 1 this coefficient seems almost [7] but not exactly
[10] proportional to the central charge. It is an open problem
to understand why this is the case.

IX. CONCLUSIONS

Rényi (Shannon) entropy of the ground state of quantum
chains shows a volume-law behavior. When the system is
critical these quantities for the subsystem show a subleading
logarithmic term with a coefficient which is universal up to
some extent. In this paper we studied these quantities at the
critical point of generic time-reversal translational invariant
quadratic critical free fermions. We found that there are two
different classes of models. Models with U (1) symmetry
show a unified behavior. The coefficient is dependent on the
number of points one can linearize the dispersion relation.
The coefficient is constant up to α = 4 and then there is a
discontinuity and a nice decay in the form α

α−1 . In the case
of systems without U (1) symmetry we have studied models
where the corresponding f (z) function has no zero outside of
the unit circle. In these models the coefficient of the logarithm
is always proportional to the number of points where one can
linearize the dispersion relation. There is a discontinuity at
α = 1 and for α > 1 we again have the α

α−1 kind of decay.
For α � 1 although the coefficient is still universal the exact
α functionality is not known. There are also regions where
this coefficient is negative. It would be interesting to gener-
alize the above analysis to models in which g(z) �= 1 and/or
N0 �= 0. Due to numerous possibilities and the existence of
strong oscillations in the calculation of the Rényi entropy the
complete classification in these cases might not be straight-
forward. Finally, we also studied the same quantities using
the approximate BW modular Hamiltonian and confirmed
that the produced set of formation probabilities are very close
to the exact ones. The derived coefficient of the logarithm was
almost indistinguishable from the exact results. The biggest
challenge for the future is probably to calculate analytically
the b(α) for the second class of models to understand the
nature of these numbers.

ACKNOWLEDGMENTS

We thank K. Najafi for early collaboration on the subject.
M.A.R. thanks CNPq and FAPERJ (Grant No. 210.354/2018)
for partial support.

APPENDIX A: DETAILS OF THE FITTING PROCEDURE

In this Appendix we provide more details regarding fitting
procedures that we followed in the main text. Let {(Lj, I j )}n

j=1
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FIG. 10. Blue points are xα estimations for each size derived
using Eq. (A1). Green/red points are xα plus/minus the error bar
of the blue points. To estimate the error bar for xα , the difference
between x∞

α associated with the blue, red, and green points are used.

be the set of data points, in which we intend to extract the
relevant physical quantities, such as the coefficient of the

logarithm, as the fitting parameters. The fitting functions of
interest in this paper are of a factorized form meaning that it
is a direct sum of some fitting (known) functions where the
fitting parameters are the corresponding prefactors. In other
words, we have

h(L, {θ}) =
m∑

i=0

θi fi(L), (A1)

where m is the number of the fitting terms. In the above fi(L),
i = 0, . . . , m are the fitting functions assumed to be a priori
known [ f0(L) ≡ 1] and {θ} shows the set of the fitting param-
eters, i.e., {θ0, θ1, . . . , θm}. In particular, θ0 is called the bias.
To make a connection with the paper, where the fitting for-
mula is I = A0 + A1 log L + A2L−1 log L + ∑m

i=3 Ai/Li−2, we
have θ0 ≡ A0, [θ1, f1(L)] = (A1 ≡ xα, log L), [θ2, f2(L)] =
(A2, L−1 log L), and [θi, fi(L)] = (Ai, L−(i−2)), i = 3, . . . , m.
The χ2 method is an efficient approach for estimating the best
fitting for a given data set, see for example [43]. One defines
the χ2 as follows:

χ2({θ}) = 1

n

n∑
j=1

[I j − h(Lj, {θ})]2, (A2)

TABLE III. Shannon entropy for different sizes for various models with U (1) symmetry.

Models with U (1) symmetry
L fz(1) fz(2) fz(1, 1) fz(1, 2)

1 0.69314718055994 0.69314718055994 0.63651416829481 0.69221884672917
2 1.30175595835581 1.38629436111989 1.20713991833245 1.38401888518543
3 1.88952473643207 1.99490313891575 1.75382909171979 2.01139838075075
4 2.46572926830832 2.60351191671162 2.29024160464855 2.63699346158892
5 3.03554130502831 3.19128069478788 2.82016064054523 3.25084607202052
6 3.60094114646480 3.77904947286415 3.34574544378459 3.86112826700399
7 4.16329822887889 4.35525400474039 3.86834033023438 4.46758265294401
8 4.72333514587764 4.93145853661664 4.38865348976192 5.07065792051820
9 5.28160174014818 5.50127057333664 4.90719393994777 5.67191793745351
10 5.83843850171108 6.07108261005664 5.42433643749537 6.27020185844070
11 6.39411934070096 6.63648245149308 5.94032544493927 6.86734966048696
12 6.94883095743287 7.20188229292957 6.45535416818048 7.46264647774241
13 7.50272914860883 7.76423937534372 6.96957656772588 8.05706979765335
14 8.05592711783444 8.32659645775783 7.48310440162153 8.65038954334950
15 8.60852182009970 8.88663337475661 7.99603073579124 9.24285216104092
16 9.16058699436123 9.44667029175474 8.50843325729873 9.83467192662273
17 9.71218703560899 10.0049368860264 9.02037209149640 10.4256806854124
18 10.2633726246811 10.5632034802959 9.53189899717722 11.0162682615565
19 10.8141886934818 11.1200402418602 10.0430585231179 11.6061362664382
20 11.3646715586883 11.6768770034228 10.5538866526276 12.1956618677633
21 11.9148538081393 12.2325578424122 11.0644150816116 12.7846447900688
22 12.4647623481134 12.7882386814019 11.5746716896468 13.3732928226244
24 13.5638519339168 13.8976619148654 12.5944598914257 14.5494962592860
26 14.6620982637734 15.0054582972159 13.6134084894882 15.7244854175891
28 15.7596246309596 16.1118542356559 14.6316397420975 16.8984152066857
30 16.8565291237941 17.2170436401148 15.6492512752802 18.0714355315951
32 17.9528910588046 18.3211739881711 16.6663221275571 19.2436688684954
34 19.0487754831082 19.4243740680976 17.6829169075352 20.4152009971075
36 20.1442363964986 20.5267452314426 18.6990893971895 21.5861034172132
38 21.2393191176783 21.6283773787716 19.7148848398415 22.7564395029841
40 22.3340608777584 22.7293430908899 20.7303414022332 23.9262777420356
42 23.4284982110165 23.8297075943315 21.7454918339490 25.0956690768337
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which should be minimized with respect to all the fitting
parameters {θ} in order to get the best fitting. In our work
we mostly worked with another quantity called R value. It
is defined as R2 ≡ 1 − χ2

σ 2 , where σ 2 ≡ 1
n

∑n
j=1(I j − Ī )2 and

Ī ≡ 1
n

∑
j I j . The closer this quantity is to one the better the

fit is. When the number of fitting parameters are high, one
can use the gradient descent method in which one updates the
parameters using the equation


θnew
i = 
θold

i − η
∇θχ (Lj, {θ})

|∇θχ (Lj, {θ})|δθ. (A3)

where δθ is a discretization parameter, η is the step size,
and 
θ ≡ (θ0, θ1, . . . , θm), and ∇θ ≡ ( ∂

∂θ0
, ∂

∂θ1
, . . . , ∂

∂θm
) to get

the best fit after reaching the fixed point of the parameter. It
is worth mentioning that one should be careful in taking an
appropriate number of fitting parameters to avoid the problem
of overfitting. Normally the sign of overfitting in numerical
calculations is the huge and strongly fluctuating numbers
for the fitting parameters. To avoid this problem, one adds
λ

∑m
i=2 θ2

i to the χ2, where λ is a very small coefficient which
prevents the coefficients to take extremely large values. This
method is called the regularization method and was used in

this paper when necessary. Note that in this work we did not
regularize the θ0 and θ1.

A more compact representation of Eq. (A2) can be obtained
by casting the equation in a matrix form. Let X ji ≡ fi(Lj )
be a (n) × (m + 1) matrix, and � ≡ (θ0, θ1, . . . , θm)T be a
vector with length m + 1, and Y ≡ (I1, I2, . . . , In)T where i =
0, 1, . . . , m enumerates the fitting terms, and j = 1, 2, . . . , n
enumerates the data points. Then the regularized χ2 reads

χ2({θ}) = 1

n
(X� − Y )T (X� − Y ) + λ�T I′�, (A4)

where I′ is a diagonal matrix with zero or one as its diagonal
elements. For a fitting parameter that is not going to be reg-
ularized, the corresponding diagonal element is zero, and for
the other elements, it is one. By minimizing χ2 with respect
to all θ parameters, we obtain

� = (XT X + λI′)−1XT Y. (A5)

In some cases the matrix XT X has small eigenvalues which
leads to very large θ values when λ is zero. This is the reason
for introducing the regularization parameter λ.

In our analyses in this paper, we set the diagonal elements
of I′ corresponding to the bias and the xα to zero. In addition,
when overfit takes place, we consider a minimal λ value that

TABLE IV. Shannon entropy for different sizes for various models without U (1) symmetry.

L z − 1 z2 − 1 z3 − 1 z5 − 1

1 0.47394663373377 0.47394663373377 0.47394663373377 0.47394663373377
2 0.92544105529219 0.94789326746755 0.94789326746755 0.94789326746755
3 1.36797061201631 1.39938768902597 1.42183990120133 1.42183990120133
4 1.80585459307135 1.85088211058439 1.87333432275975 1.89578653493511
5 2.24088987072848 2.29341166730851 2.32482874431817 2.36973316866888
6 2.67400379724519 2.73594122403263 2.77632316587659 2.82122759022730
7 3.10573474075415 3.17382520508767 3.21885272260071 3.27272201178572
8 3.53642296390859 3.61170918614271 3.66138227932483 3.72421643334414
9 3.96629704662543 4.04674446379984 4.10391183604894 4.17571085490256
10 4.39551790695338 4.48177974145697 4.54179581710399 4.62720527646098
11 4.82420308419465 4.91489366797366 4.97967979815903 5.06973483318511
12 5.25244103454533 5.34800759449037 5.41756377921407 5.51226438990921
13 5.68029998893319 5.77973853799942 5.85259905687121 5.95479394663334
14 6.10783367902435 6.21146948150821 6.28763433452831 6.39732350335750
15 6.53508517170340 6.64215770466274 6.72266961218539 6.83985306008173
16 6.96208951510668 7.07284592781729 7.15578353870211 7.27773704113673
17 7.38887561225378 7.50272001053396 7.58889746521889 7.71562102219158
18 7.81546757783182 7.93259409325053 8.02201139173568 8.15350500324665
19 8.24188574022752 8.36181495357858 8.45374233524467 8.59138898430154
20 8.66814739454094 8.79103581390823 8.88547327875337 9.02927296535642
21 9.09426737732450 9.21972099114686 9.31720422226235 9.46430824301328
22 9.52025851138501 9.64840616838662 9.74789244541657 9.89934352067105
24 10.3718974749895 10.5048820690910 10.6092688917255 10.7694140759866
26 11.2231381653332 11.3605999778672 11.4690170571602 11.6375632801578
28 12.0740383772891 12.2156673580469 12.3281120002033 12.5037911331902
30 12.9246441747402 13.0701703434076 13.1865537208623 13.3700189862121
32 13.7749928645435 13.9241790301996 14.0439240753413 14.2334808732707
34 14.6251150843050 14.7777512244745 14.9008472029367 15.0969427602233
36 15.4750363025723 15.6309351556417 15.7573231036387 15.9593619268318
38 16.3247779202053 16.4786149708125 16.6130410124114 15.8455641809791
40 17.1743580924403 17.3362947859834 17.4684336568878 16.6467809808711
42 18.0237923539904 18.1885347499710 18.3235010370748 18.5387292548529
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removes the overfit. To obtain an optimal values for m, we first
start with m = 1, and find the fittings. Then we increase m by
one and repeat the fittings, and check the convergence of the
fitting parameters. We continue this procedure, comparing the
quality of the fittings with the previous stage, up to a stage
where the fittings are optimal.

To calculate the fitting parameters in the scaling limit
we used two kinds of extrapolation: the uppermost and the
lowermost fixed extrapolation (UFE and LFE, respectively).
Suppose that the range of fitting is [Lmin, Lmax]. Then in the
UFE (LFE) method we fix Lmax (Lmin) to its maximum (min-
imum) value and calculate the fitting parameters (especially
xα) in terms of Lmin (Lmax) using the R2 method. Our observa-
tions show that for all cases the resulting xα (L) follow

xα (L) = x∞
α + a

Lb
, (A6)

where x∞
α , a, and b are some constants obtained by fitting. and

x∞
α is the extrapolated parameter that we report in this paper.

We note that the UFE is not really the usual extrapolation
method because the largest size is actually fixed. However,
in most of the cases, since the values for the Rényi entropy
for small sizes are not very useful, we found that the UFE
normally gives more stable results than the LFE.

Throughout the paper we face models where the Rényi
entropy shows some oscillations. In this case we subdivide
the data points to k classes where in each class the points are
in the same phase of oscillations: {{(L(q)

i , I (q)
i )}n

i=1}k
q=1. Then,

using the procedure explained above we find the best fits for
each class, with the resulting fitting parameters {{θ (q)

p }m
p=0}k

q=1,
where q numerates the classes (totally k classes). Then, the
average parameters are simply defined as

θ̄p ≡ 1

k

k∑
q=1

θ (q)
p , (A7)

for which the corresponding fitting functions are free of os-
cillations. The mentioned oscillations are stronger in U (1)
symmetric models.

Furthermore, one can define an error of estimating coeffi-
cients of fitting, using a standard deviation method (SD) [44].
We know that for any set of data with linear behavior we
have finite deviations (errors) from Eq. (A1). For n data pairs
{(Li, Ii ), i = 1, . . . , n}, the underlying relationship between Ii

and Li including this error term εi can be described as

I (Lj ) = A−1 + xα ln Lj + · · · + ε j . (A8)

After applying a proper fitting method and extracting fitting
coefficients we can replace them in Eq. (A8) and estimate
error ε j = Ii − A−1 − xα ln Lj − · · · . Consequently, the error
of estimating coefficient xα can be written as

ε(xα ) =
√ ∑

j ε
2
j

(n − 2)(〈z2〉 − 〈z〉2)
, (A9)

where z = ln L and 〈a〉 = 1
n

∑
j a j .

There are two sources of error in estimating the thermody-
namic limit of fitting parameters, like xα . The first one is the
systematic error corresponding to Eq. (A6). The second one

is the error arising from the numerical errors in estimating
the function for each system size. See for example Fig. 10,
where apart from the systematic error in estimating the final
value of I for large Lmax values, there is an additional error due
to the errors for each Lmax. In other words, we use Eq. (A6)
for three sets of points, the fitting values of xα coming from
Eq. (A1) for different sizes and the same numbers plus/minus
their error bars for each size. More precisely, in Fig. 10,
although the blue bold circles converge to 0.06001052 with er-
ror 1.2 × 10−6, the upward (downward) triangles converge to
0.06001193 (0.06000933) as a limit of maximum (minimum)
estimations. The total error is then the summation of these
two error bars. In the example of Fig. 10, the total error is
±[0.06001193 − 0.06001052 + 1.2 × 10−6]. To summarize
here we first calculate the extrapolation value of the green,
blue, and red points. Then we calculate the difference between
the values associated with red and green points with the blue
one. Then we pick the maximum value and add it to the error
bar of the fitting of the blue points.

TABLE V. Shannon entropy for different sizes for an Ising chain
derived using a BW reduced density matrix. The third column is the
marginal probabilities for half of the subsystem.

BW
L Total system Subsystem

1 0.45920500717509 –
2 0.92205905719825 0.47270562810661
3 1.36645271889283 –
4 1.80496685397933 0.92510102900855
5 2.24030399857181 –
6 2.67358767640636 1.36780423258969
7 3.10542377417024 –
8 3.53618169812639 1.80575515259345
9 3.96610437840695 –
10 4.39536048183681 2.24082354163218
11 4.82407203544144 –
12 5.25233024242084 2.67395633633817
13 5.68020509249127 –
14 6.10775148615426 3.10569907398650
15 6.53501329186441 –
16 6.96202612243598 3.53639516977199
17 7.38881928804390 –
18 7.81541720297786 3.96627477249654
19 8.24184042007064 –
20 8.66810640526907 4.39549965444791
21 9.09423012703542 –
22 9.52022451133198 4.82418785310530
24 10.3718688193031 5.25242813140267
26 11.2231136875357 5.68028891764912
28 12.0740172271869 6.10782407525548
30 12.9246257180375 6.53507676179803
32 13.7749766184651 6.96208208951522
34 14.6251006747952 7.38886900778397
36 15.4750234355686 7.81546166549282
38 16.3247663610014 8.24188041670934
40 17.1743476517357 8.66814257612601
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APPENDIX B: LIST OF SHANNON ENTROPIES

In this Appendix we summarize the Shannon entropy for
different sizes of all the models that we considered in this
paper.

1. Shannon entropy of models with U (1) symmetry

In this section we provide the exact values of Shan-
non entropy in the models with U (1) symmetry. In
Table III we provided the Shannon entropy for different sizes
for the models we considered in the main part of the paper.

2. Shannon entropy of models without U (1) symmetry

In this section we provide the exact values of Shannon
entropy in the models without U (1) symmetry. In Table IV
we provided the Shannon entropy for different sizes for
the models with f (z) = {z − 1, z2 − 1, z3 − 1, z5 − 1, z(z −
1)}. Then in the Table V first column we provided the
Shannon entropy coming from the BW reduced density
matrix. In the second column we explicitly write the Shan-
non entropy for the subsystem derived using the marginal
probabilities.
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