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Abstract
This work presents a meshfree particle scheme designed for arbitrary deformations that possess the accuracy and properties
of the Finite-Element-Method. The accuracy is maintained even with arbitrary particle distributions. Mesh-based methods
mostly fail if requirements on the location of evaluation points are not satisfied. Hence, with this new scheme not only the
range of loadings can be increased but also the pre-processing step can be facilitated compared to the FEM. The key to this
new meshfree method lies in the fulfillment of essential requirements for spatial discretization schemes. The new approach is
based on the correspondence theory of Peridynamics. Somemodifications of this framework allows for a consistent and stable
formulation. By applying the peridynamic differentiation concept, it is also shown that the equations of the correspondence
theory can be derived from the weak form. Likewise, it is demonstrated that special moving least square shape functions
possess the Kronecker-δ property. Thus, Dirichlet boundary conditions can be directly applied. The positive performance of
this new meshfree method, especially in comparison to the Finite-Element-Method, is shown in the calculation of several test
cases. In order to guarantee a fair comparison enhanced finite element formulations are also used. The test cases include the
patch test, an eigenmode analysis as well as the investigation of loadings in the context of large deformations.

Keywords Peridynamics · Correspondence theory · Weak form · Method of least squares · Requirements on spacial
discretization schemes

1 Introduction

Meshfree methods have represented a big promise in compu-
tational mechanics for years. Due to the absence of a sorted
connectivity and requirements for the distribution of points,
even large deformations with free surfaces can be repre-
sented in a Lagrangian description. The simulation of crack
formation or the fusion of materials in Additive Manufac-
turing can be facilitated with these methods. On the other
hand, additional algorithms or stabilization schemes are often
needed to achieve the required accuracy in solving initial
boundary value problems [47]. Also for this reason, mesh-
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based methods, such as the Finite-Element-Method (FEM),
are mainly used in engineering applications until today. The
FEM convinces by an accurate solution as long as the under-
lying elements are not too distorted. This places additional
demands on the algorithms to generate a proper FE-mesh. In
addition, very large deformations cannot be represented in a
Lagrangian description without constant remeshing. There-
fore, the simulation of fluid flows is usually based on an
Euler description of the differential equation. To represent
free surfaces, additional algorithms, such as the volume-of-
fluid method [19] or the level set approach [33] are often
employed in this case.

Peridynamics [38] represents an alternative description of
the balance laws in continuum mechanics motivated from
molecular dynamics. In its discrete form, this concept can be
classified as ameshfree particlemethod. The correspondence
formulation allows the incorporation of continnuummechan-
ical laws into state-based Peridynamics [42]. However, this
approach also has shortcomings. One lies in the observation
of low energy modes. These negative effects occur in the
FEM in the case of under-integration. To remedy this defi-
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ciency, a stabilization term is often added [27], [39]. This
correction is also found in Smoothed Particle Hydrodynam-
ics [15] or in the Optimal Transportation Meshfree (OTM)
method [48]. The disadvantage of this concept is the use of
an additional parameter whose optimal value is not known
before the start of the simulation. Another possibility is to
divide the neighborhood into individual smaller areas where
the equations are evaluated separately [14]. As shown in [17],
this partitioning can lead to incorrect results in some cases.
In addition, other modifications can be found that rely on
a higher order approach in the approximation of the defor-
mation gradient [52] or introduce additional stress points to
increase the number of evaluation points [30].

Another possibility, which does not require numerical
parameters, additional evaluation points, or a higher order
formulation, but still remedies the negative effects from
under-integration, can be found in [6]. In contrast to the
classical correspondence theory, the kinematic and kinetic
quantities in the neighborhood are assumed to be non-
constant and evaluated at every point in the neighborhood.An
extension for weakly compressible or incompressible mate-
rial behavior can be found in [7].

Another negative aspect of the classical correspondence
theory is the failure of the patch test even when the neg-
ative effects from under-integration have been removed. A
suitable approach to overcome this deficiency in the peridy-
namic framework can be found in [8]. This correction also
allows optimal convergence rates to be achieved.

The scheme in [6] and [8] is based on a Petrov Galerkin
formulation. Thus, the resulting stiffness matrix is not sym-
metric even for conservative systems.

This work presents an approach that satisfies essential
requirements for spatial discretization schemes. Moreover,
the stiffness matrix is symmetric for conservative systems.

In addition, there exist approaches in which Peridynamics
is related to FEM in order to exploit the advantages of both
methods, especially in the approximation of fracture forma-
tions. In [31], the bond-based variant is directly integrated
into a FEM software. In addition, algorithms for coupling
both discretization schemes are proposed. In [13] as well as
[36], Peridynamics is expressed in the weak form and clas-
sical FE shape functions are used for the approximation. A
convergence analysis for this approach in the context of an
ordinary state-based formulation can be found in [22].

In contrast, the approach presented here does not use
FE shape functions. Likewise, a unique partitioning of the
domain into elements can be omitted. More specifically, a
guideline is presented on how to rewrite the equations of
classical peridynamic correspondence theory to satisfy the
necessary conditions for spatial discretization schemes. This
allows the direct imposition of boundary conditions despite
the non-local nature of Peridynamics. In contrast to the FEM,

the individual particles can be distributed arbitrarily in the
domain.

To facilitate the readability, the correspondence formula-
tion of state-based Peridynamics is first introduced in Sect.
2. In addition, it is shown that the resulting equations can be
derived directly from the weak form. The theoretical foun-
dations for the development of an alternative formulation in
the framework of Peridynamics are shown in Sect. 3. After
listing the conditions on spatial discretization schemes in
Sect. 5, the following section is devoted to the introduction of
the Peridynamic-Galerkin-Method. Finally, the performance
of the new meshfree scheme in comparison to the FEM is
demonstrated by means of several demonstrative examples
including an eigenmode analysis, the patch test, and cases
with loadings leading to very large deformations.

2 State based peridynamic theory

To distinguish the presented alternative formulation from the
standard approaches, the main equations in the framework of
state-based Peridynamics are introduced first. Further infor-
mation on the classical theory can be found, for example, in
[42] or [41].

The differential equation for calculating the response of
structures under mechanical loading is based on the bal-
ance of linear momentum. In Peridynamics, the equations
are presented in the Lagrangian description with respect to
the initial configuration. In the local form, the divergence of
stress together with the density of volume forces leads to an
acceleration ü of the considered mass point

ρ0ü(X, t) = DivP(X) + ρ0b̄. (1)

Themass point is identified by its position vector in the initial
configurationX. In the balance ofmomentum, ρ0 denotes the
initial density, P the 1st Piola Kirchhoff stress tensor, and b̄
contains the gravitational acceleration. The initial boundary
value problem requires the specification of the displacement
vector ū on theDirichlet boundary ∂BD as well as the deriva-
tive of u on the Neumann boundary ∂BN . For the latter, the
stress vector T̄ is normally chosen

u = ū on ∂BD, PN = T̄ on ∂BN . (2)

In addition, the initial values for the displacement vector
u(X, t = t0) = u0 and for the velocity vector v(X, t = t0) =
v0 must be present for each mass point. The state based Peri-
dynamics [42] replaces the divergence of the stress by the
difference of force vector state fields

ρ0ü(X, t) =
∫
HX

[
TX〈X′ − X〉 − TX′ 〈X − X′〉

]
dVX′

+ρ0b̄. (3)
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All mass points within the spherical environment of a mass
point X defines its neighborhood HX. The subscript vector
in the volume differential indicates the coordinate to be inte-
grated. The radius of the spherical neighborhood is called
the horizon δ. A bond corresponds to the difference X′ − X
between the position vector of themass point in the neighbor-
hoodX′ andX. The sumof all bondswithin the neighborhood
denotes its family. The term state describes the mapping of
bonds within the neighborhood and is denoted by an under-
score. Different kinds of brackets are used, each type having
a special meaning. In Peridynamics, angle brackets are usu-
ally employed to indicate a vector on which a state operates
[42]. Square brackets contain differences of vectors. Argu-
ments of functions are given in round brackets. The bond
to be mapped is written inside an angle bracket. The force
vector state field TX corresponds to the mapping that assigns
a bond in the family of the mass point X a vector with unit
[N/m6]. The superscript vector indicates the family in which
a quantity is evaluated. The second force vector state field
TX′

, on the other hand, maps the same bond from the family
of the mass point X′.

2.1 Correspondence formulation

In [42] a description is presented which allows an application
of thematerialmodels of the continuum theory in Peridynam-
ics and is called correspondence formulation. This relation
is based on the deformation vector state field Y, which maps
a bond into the corresponding position vectors of the current
configuration x

Y〈X′ − X〉 = x′ − x. (4)

Equivalence with the deformation gradient is given if both
mappings lead to the same result

Y〈X′ − X〉 = F(X′ − X) → V (Y) = W (F). (5)

In this case, the strain energy density of the peridynamic
formulation V corresponds to the continuum mechanical
equivalenceW . A reduction operatorR can be definedwhich
approximates the deformation gradient F from the deforma-
tion vector state field [42]

F(Y) = R{Y} = (
Y ∗ X

)
K−1

=
∫
HX

ω
(
X′ − X

) [
x′ − X

]

⊗ [
X′ − X

]
dVX′K−1 (X) . (6)

The operator ∗ indicates the tensor product of two states and
ω corresponds to the influence function. A precise definition
and a list of the most important mathematical calculation

rules for states can be found, for example, in [41]. To facilitate
a distinction with the arguments of a function, differences
are formulated in square brackets. The shape tensor K is
determined from the tensor product of two reference position
vector states X

K (X) = X ∗ X =
∫
HX

ω
(
X′ − X

) [
X′ − X

]

⊗ [
X′ − X

]
dVX′ . (7)

This product is complete and the inverse exists. The 1st Piola
Kirchhoff stress tensor is calculated for hyperelastic material
behavior from the derivative of the strain energy density W
with respect to the deformation gradient

Ẇ = ∂W

∂F
· Ḟ(Y)

= P (X) · Ḟ(Y). (8)

The equivalence (5) also holds for the time derivative. With
the definition of Y from (4), a connection can be established
between the force vector state field and the 1st Piola-
Kirchhoff stress tensor

V̇ = ∂V

∂Y
• Ẏ = TX〈X′ − X〉 • Ẏ

=
∫
HX

TX〈X′ − X〉 · [
ẋ′ − ẋ

]
dVX′ = Ẇ

= P (X) · Ḟ(Y). (9)

The operator • denotes the scalar product of two states. Con-
sidering (6) and the symmetry of the shape tensor K, this
relation can be represented in an alternative form

P (X) · Ḟ(Y) =
∫
HX

ω
(
X′ − X

)
P (X) · [

ẋ′ − x
]

⊗ [
X′ − X

]
dVX′K−1 (X)

=
∫
HX

ω
(
X′ − X

)
P (X)K−1 (X)

[
X′ − X

]

· [ẋ′ − ẋ
]
dVX′ . (10)

The comparison between (9) and (10) provides the relation
between the 1st Piola Krichhoff stress tensor and the force
vector state field

TX〈X′ − X〉 = ω
(
X′ − X

)
P (X)K−1 (X)

[
X′ − X

]
. (11)

Remark To show the analogy and the differences between the
continuummechanical and the peridynamic formulation, the
usual abbreviations of continuum mechanics are preferred.
In [42] the peridynamic strain energy density is abbreviated
by the letter W and the position vectors of the initial config-
uration by x and of the current configuration by y.
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2.2 Equivalence with weak form

The peridynamic balance of linear momentum (3) can also
be derived from the weak form of (1). This gives also some
information about the imposition of Neumann boundary con-
ditions. The weak form of the balance of linear momentum
results from multiplying (1) by a test function η together
with an integration over the volume of the body B ⊂ R

d

with dimension d. By applying the Gauss integral theorem,
the order of the differential equation is reduced by one

∫
B

ρ0η (X) · ü(X, t) dVX +
∫
B
Grad η (X) · P (X) dVX

=
∫
B

ρ0η (X) · b̄ dVX +
∫

∂B
η (X) · T̄ (X) dAX. (12)

The Neumann boundary condition T̄ is part of the balance
equation. The test function must be zero at the Dirichlet
boundary, i.e. η = 0 on ∂Bu, since T̄ is not known at these
mass points. The second term on the left-hand side corre-
sponds to the virtual internal work

Gint =
∫
B
Grad η (X) · P (X) dVX. (13)

The transition to the peridynamic formulation results from
the Taylor series expansion of the test function around the
mass point X

η
(
X′) = η (X) + ∂η (X)

∂X

[
X′ − X

] + O
([
X′ − X

]2)
,

Grad η (X) = ∂η

∂X
. (14)

The gradient can nowbedetermined using themethodof least
squares. Only the linear part in the Taylor series expansion
is considered and the error in the integral over the whole
neighborhood is minimized

J :=
∫
HX

ω
(
X′ − X

) ‖η (
X′) − η (X)

−Grad η (X)
[
X′ − X

] ‖2 dVX′ → min. (15)

Therein, the residual in the integral is additionally weighted
by the influence function ω. The operator we are looking
for is determined by the derivative of the functional J with
respect to the gradient of the test function

∂ J

∂ Grad η

!= 0,

Grad η (X) =
∫
HX

ω
(
X′ − X

) [
η

(
X′) − η (X)

]

⊗ [
X′ − X

]
dVX′K−1 (X) . (16)

The tensor K corresponds exactly to the shape tensor (7).
Inserting (16) into the weak form and taking advantage of
the symmetry ofK results in an alternative representation of
the virtual internal work

Gint =
∫
B

∫
HX

ω
(
X′ − X

) [
η

(
X′) − η (X)

]

·P(X)K−1 (X)
[
X′ − X

]
dVX′ dVX. (17)

The second factor in the integral corresponds to the mapping
by the force vector state field (11), and the virtual internal
work can also be formulated in terms of T

Gint =
∫
B

∫
HX

[
η

(
X′) − η (X)

] · TX〈X′ − X〉 dVX′ dVX.(18)

SinceTX〈X′−X〉=0 ifX′ /∈ HX, the integral can be extended
over the whole domain. The indices can then be interchanged
and the right-hand side can be reformulated

Gint =
∫
B

∫
B

[
η

(
X′) − η (X)

] · TX〈X′ − X〉 dVX′ dVX

=
∫
B

∫
B

η (X) · TX′ 〈X − X′〉 dVX′ dVX

−
∫
B

∫
B

η (X) · TX〈X′ − X〉 dVX′ dVX

= −
∫
B

∫
B

η (X) ·
[
TX〈X′ − X〉 − TX′ 〈X − X′〉

]

dVX′ dVX. (19)

Thus, the weak form of the balance of momentum (12) can
also be approximated as the difference of force vector state
fields

∫
B

ρ0η (X) · ü (X, t) dVX

=
∫
B

∫
HX

η (X) ·
[
TX〈X′ − X〉 − TX′ 〈X − X′〉

]
dVX′ dVX

+
∫
B

ρ0η (X) · b̄ dVX +
∫
∂B

η (X) · T̄ (X) dAX. (20)

Since the test function can be arbitrary and thus non-zero,
the usual equation of Peridynamics (3) is obtained for inner
mass points

ρ0ü(X, t) =
∫
HX

[
TX〈X′ − X〉 − TX′ 〈X − X′〉

]
dVX′ + ρ0b̄.

For mass points at the loaded Neumann boundary (T̄ �= 0)
this relation does not hold. In this case, the last term on the
right-hand side in (20) must be included.
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Remark The representation in (15) corresponds to the ini-
tial form for deriving peridynamic derivatives, as given, for
example, in [32].

2.3 Relation to weighting functions

Smoothed ParticleHydrodynamics is based on the discretiza-
tion by radial weighting functions W , see e.g. [47]. Also the
equations within Peridynamics can be formulated by means
of W using the definition

∂WX
(
X′ − X

)
∂X′ = ω

(
X′ − X

) [
X′ − X

]
,

ω
(
X′ − X

) = ∂WX
(
X′ − X

)
∂‖X′ − X‖

1

‖X′ − X‖ . (21)

This representation is also drawn in [16]. The superscript
indicates the neighborhood in which the function is evalu-
ated. This label is equivalent to the indication of the element
in the FEM. From (21) a useful property of radial weighting
functions follows

∂WX
(
X′ − X

)
∂X′ = ∂WX

(
X − X′)

∂X′ = −∂WX
(
X − X′)
∂X

= −∂WX
(
X′ − X

)
∂X

. (22)

Also the shape tensor (7) can be formulated in terms of W

K (X) =
∫
HX

[
X′ − X

] ⊗ ∂WX
(
X′ − X

)
∂X′ dVX′ . (23)

Taking advantage of (22), the shape tensor corresponds
exactly to the negative value of the correction tensor L from
[35], which ensures the 1st order reproducing condition in
the derivatives

K (X) = −
∫
HX

[
X′ − X

] ⊗ ∂WX
(
X − X′)
∂X

dVX′ = −L (X) .(24)

Thus, a corrected weighting function W̃ can be defined

∂WX
(
X′ − X

)
∂X′ K−1 (X) = ∂WX

(
X − X′)
∂X

L−1 (X)

= ∂W̃X
(
X − X′)
∂X

. (25)

The peridynamic derivative of the test function (16) can thus
be specified in an alternative form

Grad Xη (X) =
∫
HX

[
η

(
X′) − η (X)

] ⊗ ∂W̃X
(
X − X′)
∂X

dVX′ .

(26)

With this interpretation, the virtual internal work from (17)
can be reformulated accordingly

Gint =
∫
B
Grad Xη (X) · P (X) dVX

=
∫
B

∫
HX

[
η

(
X′) − η (X)

]
P (X)

∂W̃X
(
X − X′)
∂X

× dVX′ dVX. (27)

Thus, an alternative form for the relation between the force
vector state field and stress tensor can be drawn

TX〈X′ − X〉 = P (X)
∂W̃X

(
X − X′)
∂X

. (28)

Using (21) and applying the concept of averaged gradients
(26) the calculation of the deformation gradient can also be
transformed

F (X) = Grad Xx (X) =
∫
HX

[
x

(
X′) − x (X)

]

⊗∂W̃X
(
X − X′)
∂X

dVX′ . (29)

3 Averaged correspondence theory

In satisfying the essential conditions on spatial discretization
schemes, care must also be taken to ensure that the stiffness
matrix is always symmetric in a conservative system. This
can be achieved in the framework of Peridynamics if the
equations are formulated on the basis of an averaging. For
this, the product of the gradient of the test function and the
stress tensor is integrated over the neighborhood and then
divided by the corresponding volume VHX [5]

Gint =
∫
B

1

VHX

∫
HX

Grad Xη
(
Y′) · PX (

Y′) dVY′ dVX,

VHX =
∫
HX

dVY′ . (30)

Compared to the classical correspondence formulation, the
stress within the integral can now take different values. For a
better identification, the neighborhood in which the stress is
calculated is indicated by a superscript vector. Considering
the derivative rule (26), the gradient can be formulated as a
function of a difference. It should be noted that the gradient
is determined with respect to the neighborhood of X. Thus,
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compared to (26), the first factor in the integral does not
change

GradXη
(
Y′) =

∫
HX

[
η

(
X′) − η (X)

] ⊗ ∂W̃X (
Y′ − X′)
∂Y′ dVX′ .

(31)

Substituting (31) into (30) leads to a formulation of the virtual
internal work Gint as a function of differences

Gint =
∫
B

∫
HX

[
η

(
X′) − η (X)

]

· 1

VHX

∫
HX

PX (
Y′) ∂W̃X

(
Y′ − X′)
∂Y′ dVY′ dVX′ dVX.

(32)

From the comparison with (18), a new relation between the
stress tensor and the force vector state field can be obtained,
which now results from averaging

TX〈X′ − X〉 = 1

VHX

∫
HX

PX (
Y′) ∂W̃X

(
Y′ − X′)
∂Y′ dVY′ .

(33)

The corresponding quantity from (19) with respect to the
neighborhood of X′ is calculated in an analogous way

TX′ 〈X − X′〉 = 1

VHX′

∫
HX′

PX′ (
Y′) ∂W̃X′ (

Y′ − X
)

∂Y′ dVY′ .

(34)

For hyperelasticmaterial behavior, the stress at the pointY′ is
determined from the deformation gradient at the correspond-
ing point . For its calculation the derivative rule (31) is used
again

FX (
Y′) = Grad Xx

(
Y′) =

∫
HX

[
x

(
X′) − x (X)

]

⊗∂W̃X
(
Y′ − X′)
∂Y′ dVX′ . (35)

4 Discretized averaged Peridynamics

In the FEM, the body B ⊂ R
d is divided into individual

elements. The discretization concept of Peridynamics can be
assigned to the one-point methods [47]. In this case the body
is represented by a finite number of particles which can be
identified by their respective position vector. The evaluation
of all quantities is limited solely to these points. In the dis-
crete form the integral is replaced by a sum. The balance of
linear momentum in the state-based peridynamic framework

derived from the weak form (20) is thereby evaluated at all
particles n in the domain

n∑
K=1

ηK ·
{ NK∑

I=1

[
TK 〈XI − XK 〉 − TI 〈XK − XI 〉

]

VI + ρ0
[
b̄ − ü (XK )

]}
VK =

ns∑
K=1

ηK · T̄K AK .

(36)

The right-hand side is only taken into account for particles at
the loaded Neumann boundary. The abbreviation ns denotes
the total number of boundary particles, NK the number of
neighboring points of the particle XK ∈ R

d , and VK ∈ R

its corresponding volume. The number of particles in the
corresponding neighborhood is usually obtained by a search
algorithm, where the horizon δ defines the radius of a sphere
around the corresponding point. More details can be found
in Sect. 5.6. In a pure non-local formulation, the horizon is
assumed to be constant, which offers advantages especially
for the computation of cracks [36]. Alternatively, the radius
can be defined as a function of the distance between individ-
ual particles or, if a subdivision of the domain into individual
elements is present, the neighborhood can also be determined
from the given connectivity. In the context of this work, only
the second variant is considered in order to allow a compar-
ison with the FEM. Nevertheless, with this formulation the
radius can also be assumed to be constant.

The discrete force vector state field is determined from
(33). The weighting function W̃ multiplied by the volume
can also be interpreted as a shape function. Thus, for the
discrete derivative of (25) it follows

∂W̃ K (XK − XI )

∂XK
VI = ∂NK

I (XK )

∂XK
. (37)

To simplify the representation, the explicit specification of
the coordinate is omitted except for the shape function, i.e.,
e.g., V (XK ) = VK . The superscript indicates the neigh-
borhood of the corresponding particle. The formulation by
means of shape functions allows a generalization, since the
functions used need no longer be radial [5]. The discretemap-
ping of the force vector state field from (33) multiplied by
the volume can hence be expressed alternatively

TK 〈XI − XK 〉VI = 1

VHK

NK∑
J=1

PK
J

∂NK
I (XJ )

∂XJ
VJ , VHK

=
NK∑
J=1

VJ . (38)
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Similarly, the mapping of the force vector state field at parti-
cle I is calculated using the information of its neighborhood

TI 〈XK − XI 〉VK = 1

VHI

NI∑
J=1

PI
J
∂N I

K (XJ )

∂XJ
VJ , VHI =

NI∑
J=1

VJ .

(39)

The discrete form (36) can also be interpreted as a balance
of forces that must be satisfied at each particle. The internal
force due to the state of stress inside the material fs , the
fraction from self-weight fg , and the inertia term f t must be
equal to the force fn for particles at the loaded Neumann
boundary and zero at all other particles

fsK + fgK + f tK =
{
fnK boundary particle
0 inner particle

. (40)

The first term on the left-hand side corresponds to the
difference of T from (38) and (39) integrated over the neigh-
borhood of XK

fsK =
NK∑
I=1

[
1

VHK

NK∑
J=1

PK
J

∂NK
I (XJ )

∂XJ
VJ VK

− 1

VHI

NI∑
J=1

PI
J
∂N I

K (XJ )

∂XJ
VJ VI

]
(41)

where NK
I and N I

K correspond to the test shape functions.
The proportions of the self-weight and the inertia term are
determined only fromquantities at the corresponding particle

fgK = ρ0b̄VK , f tK = −ρ0üK VK . (42)

Assuminghyperelasticmaterial behavior, the 1st PiolaKirch-
hoff stress tensor is calculated from the derivative of the strain
energy density W with respect to the deformation gradient

PK
J = ∂W (FK

J )

∂FK
J

. (43)

The discrete deformation gradient follows from (35) where
NK
I now correspond to the approximate or trial shape func-

tion

FK
J =

NK∑
I=1

(xI − xK ) ⊗ ∂NK
I (XJ )

∂XJ
. (44)

5 Requirements on spatial discretization
schemes

A prerequisite for an accurate solution of initial boundary
value problems is the fulfillment of essential criteria. The
solution of the differential equationmust exist and be unique.
In addition, the available approximates must contain the true
solution. The verification of these requirements belongs to
the field of functional analysis. These conditions are assumed
to be satisfied. Furthermore, the discrete equationmust fulfill
several criteria, so that the true solution can be approximated
as accurately as possible. Since only quasi-static cases are
investigated, the requirements on the temporal integration
procedure are neglected. In the following section, criteria on
spatial discretization schemes are presented. A detailed treat-
ment and comparison between different spatial discretization
concepts can be found in [47]. The finite element method
(FEM) fulfills all conditions, although many of the criteria
presented here are not explicitly mentioned in the textbooks
on the FEM.

5.1 Reproducing conditions

A central requirement on numerical solution schemes is to
ensure convergence. The approximation must tend to the
true solution at a finer resolution. For this, the method must
be consistent and stable. Since consistency is difficult to
prove formost numerical solution schemes, polynomial com-
pleteness or reproducibility of the shape function is one
requirement formulated for the FEM. This condition must
solely be met by the trial shape functions used to calculate
the deformation gradient in (44). The derivation can be based
on either the Weierstrass theorem or the Taylor series, as
described in detail in [47]. An illustrative explanation of the
meaning of this criterion can be found in the context of FEM
in [21]. The degree of reproducibility which has to be met
corresponds to the highest occurring derivative. As can be
seen from (30) and (35), at most the first derivative occurs in
the peridynamic formulation.

The0th order reproducing condition corresponds to the so-
called partition of unity. This criterion can also be represented
in the form of the derivative. For the shape functions, which
are used in the neighborhood of XK , the following must be
true

NK∑
I=1

NK
I (XJ ) = 1,

NK∑
I=1

∂NK
I (XJ )

∂XJ
= 0. (45)

Compliance with this condition ensures that a constant quan-
tity is properly approximated and its derivative is zero. Due
to the difference-based formulation, the second requirement
is always satisfied, see (44). The 1st order reproducing con-
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dition is ensured if the approximation of the position vector
corresponds exactly to its value. The condition on the deriva-
tive results in the requirement that the sum corresponds to the
unit tensor

NK∑
I=1

NK
I (XJ )XI = XJ ,

NK∑
I=1

XI ⊗ ∂NK
I (XJ )

∂XJ
= 1. (46)

For differences, the equivalent form reads

NK∑
I=1

NK
I (XJ ) [XI − XK ] = XJ − XK ,

NK∑
I=1

[XI − XK ] ⊗ ∂NK
I (XJ )

∂XJ
= 1. (47)

If the equations in (45) are satisfied, then (47) equals (46).

5.2 Integration constraint

In [25] a condition on the test shape function is formulated.
In [11] this criterion was further specified in the context of
meshfree Galerkin methods and called the integration con-
straint. A generalization can be found in [12].

This condition addresses the Gaussian integral theorem,
which must also be satisfied in the discrete case. Since the
equations are derived from the weak form, Peridynamics
must also fulfill this requirement. This theorem reads

∫
B

η (X) · DivP (X) dVX =
∫

∂B
η (X) · P (X)N (X) dAX

−
∫
B
Grad η (X) · P (X) dVX.

(48)

In the Peridynamics framework, the second term on the right-
hand side is formulated in terms of a difference, see (20)

∫
B

η (X) · DivP (X) dVX =
∫

∂B
η (X) · P (X)N (X) dAX

+
∫
B

∫
HX

η (X) ·
[
TX〈X′ − X〉 − TX′ 〈X − X′〉

]
dVX′ dVX.

(49)

For the classical peridynamic formulation, the relation
between force vector state fields and stress tensor is given in
(11). When using the averaged approach, the individual con-
tributions from (33) and (34) must be used. Different orders
also exist for the integration constraint. If only linear shape
functions are used, it is sufficient if the integration constraint
is satisfied for a constant stress in the considered area. For
the averaged correspondence formulation the requirement in

(49) reduces to

int∂BN (X) dAX =

−
∫
B

∫
HX

[
1

VHX

∫
HX

∂W̃X
(
Y′ − X′)
∂Y′ dVY′

− 1

VHX′

∫
H ′
X

∂W̃X′ (
Y′ − X

)
∂Y′ dVY′

]
dVX′ dVX. (50)

The discrete form of this condition results in a criterion that
must be satisfied at each particle. The left-hand side must
vanish for particles in the interior and be equal to a resulting
normal vector N̄ at the boundary. This quantity is calculated
from the normal vector N multiplied by the area fraction of
the particle, i.e. N̄K = NK AK or ‖N̄K ‖ = AK .

−
NK∑
I=1

[
1

VHK

NK∑
J=1

∂NK
I (XJ )

∂XJ
VJ VK

− 1

VHI

NI∑
J=1

∂N I
K (XJ )

∂XJ
VJ VI

]
=

{
N̄K boundary particle
0 inner particle

.

(51)

5.3 Discrete conservation properties

Balance equations must also be valid in the discrete case.
Only external forces lead to a change of momentum. If these
are not present, the total part from f t in the bodymust be zero
[3]. Since there is no loading from self-weight and Neumann
boundary conditions, it follows from (40) that the internal
forces from the state of stressmust vanish in sum. Similarly, it
follows from the discrete conservation of angularmomentum
that the cross product of internal force and position vector
must be zero

n∑
K=1

fsK = 0,
n∑

K=1

xK × fsK = 0. (52)

Due to the peridynamic formulation based on differences, the
conservation of linear momentum is always satisfied. Since
the force vector state fields outside the neighborhood are zero,
the sum can be extended over the whole domain. Thus, the
indices can be interchanged

n∑
K=1

fsK =
n∑

K=1

NK∑
I=1

(
TK 〈XI − XK 〉 − TI 〈XK − XI 〉

)
VI VK

=
n∑

K=1

n∑
I=1

(
TK 〈XI − XK 〉 − TK 〈XI − XK 〉

)

VI VK ≡ 0. (53)
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As pointed out in [42], the requirement for conservation of
angular momentum from (52) can also be represented in
terms of a difference of position vectors

n∑
K=1

NK∑
I=1

[
(xI − xK ) × TK 〈XI − XK 〉

]
VI VK = 0. (54)

In the averaged approach, substituting (38) into (54) and tak-
ing advantage of the 3rd order permutation tensor E , the
condition can be further transformed by considering (44)

n∑
K=1

NK∑
I=1

E : 1

VHK

NK∑
J=1

PK
J

∂NK
I (XJ )

∂XJ
VJ ⊗ [(xI − xK )] VK

=
n∑

K=1

1

VHK

NK∑
J=1

E : PK
J

NK∑
I=1

∂NK
I (XJ )

∂XJ

⊗ [(xI − xK )] VJ VK =
n∑

K=1

1

VHK

NK∑
J=1

E : PK
J

(
FK
J

)T

×VJ VK ≡ 0. (55)

Due to the symmetry of PFT, the proposed new peridynamic
formulation per se satisfies the angular momentum conser-
vation requirement [5]. An exact specification for the tensor
E can be found, e.g., in [20].

5.4 Configurational consistency

Another important property that must be satisfied during the
simulation is the preservation of pull-back or push-forward
operations [47]. For instance the current coordinates obtained
from the solution of the initial boundary value problem must
also be determined from the update using the deformation
gradient. Thus, for each bond in the corresponding neigh-
borhood of the particle XK it must hold

xJ − xK = FK
J [XJ − XK ] . (56)

The left-hand side corresponds to the calculated coordinates
from the solution of (36). This condition often serves as a
starting point for the development of stabilizations aimed at
correcting the negative effects due to under-integration, see
e.g. [27], [39], or [10]. However, the above criterion must be
satisfied separately, as shown, for example, by simple studies
using the Optimal Transportation Meshfree method [47].

5.5 Stability

In spatial discretization schemes, either a tensile or a rank
instability can occur. The first case can be circumvented if
the equations are formulated with respect to the coordinates
of the initial configuration [4]. This is given in the approach
presented here. Thus, no tensile instability occurs.

In one-point methods, like Peridynamics, the evalua-
tion takes place only at the particles. Thus, the number of
evaluation points is fixed. In the classical correspondence for-
mulation of Peridynamics, effects occur that can be observed
in the case of under-integration within the FEM [45], [6]. For
a detailed investigation of this unphysical behavior spectral
analysis is well suited. From the condition

KN = λN, or det (K − λ1) = 0 (57)

the eigenvalues λ and the eigenmodes N of the stiffness
matrix K can be determined. The eigenvalues belonging to
the rigid bodymodes are identically zero. An inaccurate eval-
uation or under-integration is present if further eigenvalues
are zero or very small. The eigenvectors indicate the defor-
mation mode of the associated eigenvalue.

5.6 Search algorithm

In meshfree methods, a search algorithm determines the
neighborhood of each point. In Peridynamics, the search
region is usually spherical and the radius is called the horizon
δ. If the distance between the particlesXJ andXK is smaller
than the horizon, then XJ is a part of the neighborhood HK

of the point XK

HK =
{
XJ ∈ B

∣∣∣‖XJ − XK ‖ ≤ δ
}

. (58)

The search algorithm must also meet certain requirements.
For example, it must be possible to calculate the inverse of
the shape tensor. For this, the point distribution in the neigh-
borhood should be homogeneous and isotropic on statistical
average [29]. In addition, there must be no pathological dis-
tributions, i.e., in the 3-dimensional continuum there must be
4 points in the neighborhood spanning a tetrahedron.

Furthermore, the search algorithm must ensure that the
requirements of Sect. 5.3 are not violated. Equations (53) and
(55) are automatically satisfied if pairs of forces are possible.
If the particle J is part of the neighborhood of the particle K ,
then K should also be part of the neighborhood of J . If this
is not given, unphysical forces can occur, which are called
ghost forces in [37]. If the horizons in all neighborhoods are
equal, this requirement is always satisfied.

If a subdivision of the domain into individual finite ele-
ments is available, the connectivity can also be used to define
the neighborhood of a particle. This automatically results in
the required pairs of forces.

For the description of solid deformations due to external
loadings, the equations are usually expressed in the form of a
total Lagrangian description. In this case, the computational
effort is limited to the determination of the neighborhoods
before the simulation. The connectivity is assumed to be con-
stant later on.
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5.7 Kronecker-ı property

In standard discretization approaches, such as in the FEM,
the solution is approximated by the product of base or shape
functions and unknown coefficients a

uK (X) =
NK∑
I=1

NK
I (X) aI . (59)

If the shape functions possess the Kronecker-δ property, the
coefficients correspond to the values of the approximate solu-
tion at the corresponding particle

NI (XJ ) = δI J , → uK (XJ ) =
NK∑
I=1

NK
I (XJ ) aI = aJ .

(60)

This property allows the direct imposition ofDirichlet bound-
ary conditions in computational solution schemes.

6 The Peridynamic-Galerkin-Method

Starting from the averaged correspondence formulation from
Sect. 3, a meshfree formulation is presented that satisfies
all the requirements for a spatial discretization scheme.
Therefore, the right choice of shape functions is of cen-
tral importance. Due to the different requirements on test
and trial functions a Petrov-Galerkin approach seems to be
preferable. An application of this concept can be found in
the Peridynamics framework in [6], [7] and [8]. On the other
hand, a conservative system must lead to a symmetric stiff-
ness matrix, see e.g. [49]. This can be given if the test and
the trial shape functions are identical. In order to fulfill the
requirement for conservative systems, the same shape func-
tions are used for η and u in this approach.

The presented averaged correspondence formulation sat-
isfies per se the requirements for the discrete conservation
equations. In the examples, the particle distribution can
be considered statistically homogeneous and the conditions
from the search algorithm are satisfied. Hence, no ghost
forces occur. Since the formulation is based on a total
Lagrangian description, no tensile instability emerges. As
shown in Sect. 7, no negative effects due to under-integration
can be detected due to the formulation within the framework
of the averaged correspondence theory. An evaluation of the
quantities at the individual bonds, as described in this formu-
lation, counteracts these effects, see also [6].

Thus, the requirements that remain to be satisfied are the
reproducing conditions, the integration constraint, and the
configurational consistency. In addition, due to a modifica-
tion, the shape functions possess the Kronecker-δ property.

6.1 Reproducing conditions and shape functions

The fulfillment of the reproducing conditions up to the high-
est occurring derivative represents an advantageous criterion
to enable a convergent behavior of the computational solu-
tion scheme.Weighted ormoving least square functions have
the big advantage that the reproducing conditions up to the
desired order can be guaranteed even for an arbitrary num-
ber of particles and distribution in the neighborhood. In [29]
an approach can be found which is also suitable for Peri-
dynamics, since it is based on differences and an integral
formulation.According to theWeierstrass theorem, any func-
tion in a closed domain can be approximated with sufficient
accuracy by a polynomial

uX
(
X′) = p

(
X′ − X

)
d (X) . (61)

The argument of the base function vector p contains the vari-
ables of the polynomial. In this case, the argument is based on
the difference betweenX′ andX. In the approach of [29], the
unknown coefficients d are calculated from theminimization
of a functional J . The connection of d to the coefficients a
from (59) follows from the Kronecker-δ property. The error
in (60) should be as small as possible in the weighted average
over the integral of the neighborhood

J (d (X)) =
∫
HX

ω
(
Y′ − X

) ‖a (
Y′) − p

(
Y′ − X

)
d (X) ‖ dVY′ → m

The unknown coefficients d are calculated from the require-
ment that the derivative of the functional must be equal to
zero

d (X) = MX (X)−1
∫
HX

ω
(
Y′ − X

)
p

(
Y′ − X

) ⊗ a
(
Y′) dVY′ .

(63)

The moment tensor M corresponds to a complete dyadic
product. Thus, the inverse exists provided the particle dis-
tribution is not pathological

MX (X) =
∫
HX

ω
(
Y′ − X

)
p

(
Y′ − X

) ⊗ p
(
Y′ − X

)
dVY′ .(64)

Substituting (63) into (61) the displacement vector can be
represented as a function of the coefficients a

uX
(
X′) = p

(
X′ − X

) · MX (X)−1

∫
HX

ω
(
Y′ − X

)
p

(
Y′ − X

)
a

(
Y′) dVY′ . (65)
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In the discrete approach, weighted least-square shape func-
tions can be defined

uK (XJ ) =
NK∑
I=1

NK
I (XJ ) aI ,

NK
I (XJ ) = ω (XI − XK ) p (XJ − XK )

·MK (XK )−1 p (XI − XK ) VI . (66)

Moving least-square shape functions result from the transi-
tion XK → XJ

N K
I (XJ ) = ω (XI − XJ ) p (0)

·MK (XJ )
−1 p (XI − XJ ) VI . (67)

This transition must also be considered in the moment tensor

MK (XJ ) =
NK∑
I=1

ω (XI − XJ )p (XI − XJ )

⊗p (XI − XJ ) VI . (68)

In order to satisfy the 1st order reproducing conditions, a
linear approach is sufficient in the weighted or moving least
square shape functions, i.e. for the 3-dimensional case the
base function vector reads

p
(
X′ − X

) = (
1, X ′

1 − X1, X
′
2 − X2, X

′
3 − X3

)
. (69)

6.2 Kronecker-ı property

The discrete moving least square shape functions generally
do not satisfy the Kronecker-δ property. To ensure interpo-
lation [26], an influence function can be chosen as

ω (XI − XJ ) = 1

‖XI − XJ‖ . (70)

Since the influence function in a one-point method must also
be evaluated at the central particle, the denominator can be
zero. To avoid infinity, an augmentation can be used. A dis-
advantage of this approach is a poor condition of the mass
matrix. An alternative can be found in [8] or [5]. In the
base function vector, the constant fraction is neglected, i.e.,
p� (XI − XJ ) = XI −XJ . To compute the derivative of the
shape function, first the weighted least-square formulation
in (65) is differentiated with resect to X′. Afterwards, the
transition X → X′ is made leading in the discrete case to

∂NK
I (XJ )

∂XJ
=

{
ω(XI − XJ )

∂p�(0)
∂XJ

· MK
� (XJ )

−1 p� (XI − XJ ) VI ∀ I �= J

− ∑NK

L=0,L �=I
∂NK

I (XL )

∂XL
∀ I = J

(71)

The influence function corresponds to Eq. (70) and also in
the moment tensor the reduced base function vector is used

MK
� (XJ ) =

NK∑
I=1

ω(XI − XJ )p� (XI − XJ )

⊗p� (XI − XJ ) VI . (72)

The shape function derivative associated with the particle
XJ is computed so that the 0th order reproducing condition
(45) is fulfilled. Using this modification the singularity can
be bypassed and the requirements from Sect. 5.1 remain sat-
isfied.

6.3 Configurational consistency

The correspondence formulation of Peridynamics does not
guarantee the configurational consistency. In [10], a scheme
is presented that can be used to satisfy the condition from
(56). This approach can also be interpreted as a correction
of the shape function derivative to compute the deformation
gradient in (44)

FK
J =

NK∑
I=1

(xI − xK ) ⊗ ∂ N̂ K
I (XJ )

∂XJ
. (73)

The modification is solely based on bonds

∂ N̂ K
I (XJ )

∂XJ
=

(
1 − XJ − XK

‖XJ − XK ‖ ⊗ XJ − XK

‖XJ − XK ‖
)

∂NK
I (XJ )

∂XJ
+ δI J

XJ − XK

‖XJ − XK ‖2 . (74)

On the right-hand side, the derivative of the shape function
from (71) is employed.

6.4 Integration constraint

The fulfillment of the condition from Sect. 5.2 is not auto-
matically met when using weighted or moving least-square
shape functions. Therefore, a suitable correction scheme is
needed. An approach in the framework of Peridynamics can
be found in [8]. The idea of this correction goes back to [9],
which is developed for Smoothed Particle Hydrodynamics.
In this case, an additional term is added to the derivative of
the shape function given in (74)

∂ Ñ K
I (XJ )

∂XJ
= ∂ N̂ K

I (XJ )

∂XJ
+

nd im∑
d=1

αd	
K ,d
I (XJ ) ed . (75)

The correction functions	
K ,d
I are predefined. The number of

unknown coefficients αd per node corresponds to the dimen-
sion ndim of the problem under consideration. The direction
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is defined by the Cartesian basis vectors ed . The individual
values for αd are calculated from the satisfaction of the inte-
gration constraint from (51). The individual contributions of
each particle can also be summarized in the form of a vector

R =
n

A
K=1

NK∑
I=1

[
1

VHK

NK∑
J=1

∂ Ñ K
I (XJ )

∂XJ
− 1

VHI

NI∑
J=1

∂ Ñ I
K (XJ )

∂XJ

]

VI VK −
{
N̄K boundary particle
0 inner particle

. (76)

The symbol A corresponds to the assembly operator and
assigns the correct location in the vector to each contribu-
tion. Furthermore, it must be ensured that the corrected shape
functions do not violate the reproducing conditions and con-
figurational consistency. For this, the additional part must
satisfy (45) and (46) in the derivatives

NK∑
I=1

�K
I (XJ ) = 0,

NK∑
I=1

(XI − XK ) ⊗ �K
I (XJ ) = 0.(77)

For a better representation, the individual contributions	
K ,d
I

are combined into a vector�K
I . This correction must not vio-

late the configurational consistency. Thus, from (56) together
with the definition of the discrete deformation gradient (73),
the following must hold additionally

( NK∑
I=1

(xI − xK ) ⊗ �K
I (XJ )

)
[XJ − XK ] = 0. (78)

A modification of the approach given in [34] allows all three
requirements to be satisfied

�K
I (XJ ) =

(
1 − XJ − XK

‖XJ − XK ‖ ⊗ XJ − XK

‖XJ − XK ‖
)

[
NK
I (XJ ) − δK I

] ndim∑
d=1

ed . (79)

The shape function in (79) corresponds to the formulation
given in (66). Equation (76) can also be represented as a linear
system of equations with the unknown vector α. The solution
requires proper boundary conditions. For this purpose, the
part of α perpendicular to the boundary is set to zero [8].
These modifications yield a shape function Ñ that satisfies
all the conditions ondiscretization schemes presented inSect.
4.

6.5 Imposition of boundary conditions

Due to the Kronecker-δ property and the fulfillment of the
reproducing conditions of the shape functions, Dirichlet

boundary conditions can be imposed directly analogous to
the FEM. Neumann boundary conditions require an integral
over the surface, see (20). The surface is normally not known
in meshfree methods. As shown in [46] for the FEM, stresses
at the boundary canbe directly transformed into volume loads
using the integration constraint, provided that the condition
(51) is satisfied. Therefore, no knowledge of the surface is
required. Themagnitude of the resulting normal vector corre-
sponds exactly to the area fraction of the particle. For instance
a pressure boundary condition can be imposed using (51)

T̄K AK = pK N̄K = pK

NK∑
I=1

[
1

VHK

NK∑
J=1

∂ Ñ K
I (XJ )

∂XJ

− 1

VHI

NI∑
J=1

∂ Ñ I
K (XJ )

∂XJ

]
VI VK (80)

with the property

AK = ‖N̄K ‖. (81)

This kind of application differs from the classical treatment
in the framework of Peridynamics. These approaches mostly
use ghost particles to impose Dirichlet boundary conditions.
The number and the position of these particles are chosen
such that the outer particles have a complete neighborhood
[31], [28]. The Dirichlet boundary conditions are defined
at the ghost particles. In [40] a linear distribution of these
values over the position of the ghost particles is proposed.
An alternative approach uses a correction of the shape func-
tion at the outer layer to apply the displacements directly at
the boundaries [50]. So-called general meshfree approxima-
tion functions [51] are introduced, which possess a weak
Kronecker-δ property. Neumann boundary conditions are
converted into corresponding volume forces [32].

The major advantage, of the new peridynamic formula-
tion presented here, is the application of boundary conditions
analogous to the FEM, without the need for additional ghost
particles and the imposition over a certain layer.

Using the modifications given in this section a meshfree
method results that satisfies the essential conditions on spa-
tial discretization schemes and simplifies the imposition of
boundary conditions.

7 Examples

The Finite-Element-Method provides a good approxima-
tion in many cases. When solving the differential equation
in a Lagrangian description, strong deformation limits the
use of this spatial discretization scheme. The investigations
presented in this section aims to show that the Peridynamic-
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Fig. 1 Graphical representation of the eigenvalues of the global tangent
stiffness matrix of a free moving bloc for the PDC, PGM, and the FEM
formulation. Sorting of the eigenvalues, starting with the smallest value

Galerkin-Method (PGM) results in a very similar approx-
imation as the FEM, but also allows for much stronger
deformations. In addition, the regularity on particle distri-
butions is drastically reduced. The selection of examples
addresses different characteristics in the framework of spatial
discretization schemes. First, the rank instability is investi-
gated using an eigenmode analysis. Subsequently, the patch
test is conducted, which gives an indication of the consis-
tency of the method. A convergence study is presented in the
context of a demanding test. Very large deformations usually
lead to major challenges in mesh-based methods. Especially
a poor initial mesh can lead to erroneous solutions or to the
termination of the simulation. For this reason, three different
applications are investigated in the context of finite deforma-
tions. The specimens are subjected to large pressures, a large
torsional as well as large shear and bending loads. Especially,
the case of poor initial mesh is evaluated.

In all examples, linear elements are used in the FEM anal-
ysis and linear base functions vectors in the PGM. To allow
comparability, the nodes correspond to the particles in the
peridynamic analysis. In the FEM, resulting normal vectors
can be easily assigned to each node at the boundary, see [46].

Peridynamics is based on a non-local formulation where
the horizon δ is usually assumed to be constant [31]. This
enables convergent behavior to be obtained even in the cal-
culations of fracture [36]. To allow comparability between
the new peridynamic formulation and the FEMwithin a con-
vergence analysis, in this section the horizon is adjusted upon
refinement so that the number of particles in the neighbor-
hood remains constant. Sometimes, the connectivity from
the FEM is used to derive the neighborhood. However, to
achieve convergent behavior in crack calculations, the hori-
zon can also be assumed to be a material parameter having a
constant value.

7.1 Eigen-mode analysis

As stated in Sect. 5.5, rank instability must be avoided in
order to obtain physically meaningful results. Spectral anal-
ysis provides a suitable approach to determine if such a case
exists. In the Finite-Element-Method, the stiffness matrix of
an element is decomposed into eigenvalues and eigenvectors,
see e.g. [49]. Due to the overlap of the individual neigh-
borhoods, an investigation on the local level has only little
significance formeshfreemethods.Thus, negative effects due
to under-integration may occur locally, but disappear due to
the overlap at the global level. For this reason, the eigenvalues
and eigenvectors of the entire system are considered.

For a better illustration, a 2-dimensional block with a
length of 20 mm and a height of 10 mm is studied. The
material behavior is assumed to behave linear elastic with a
Young’s modulus of 100 N/mm2 and a Poisson’s ratio of ν =
0.4

PK
J = λ tr (ε)F + 2με, ε = 1

2

(
Grad u + Grad Tu

)
.

(82)

In the linear case, P corresponds to the Cauchy stress tensor.
To keep the representation consistent, the 1st Piola-Kirchhoff
stress tensor is always used in this work. The formulas for
converting E and ν to the Lame parameters λ and μ in the
case of plane strain can be found, for example, in [49].

For the FEM analysis, the block is divided into 20 ×
10 linear quadrilateral elements (Q1). The neighborhood is
determined by the FE connectivity or is spherically spanned
by a radius of δ = 3.01�, where � corresponds to the parti-
cle spacing in each spatial direction.

Next to three rigid body modes, which are present to all
formulations, the smallest 200 eigenvalues of the global tan-
gent stiffness matrices are depicted in Fig. 1. The individual
values of the Peridynamic-Galerkin-Method (PGM) agree
well with the FEM Q1 eigenvalues in the range of low stiff-
ness. Note that the enlargement of the family size to 3.01
times the nodal spacing in the PGM only shows a very small
effect on its eigenvalues. The classical peridynamical formu-
lation (PDC) is known to suffer from spurious oscillations.
This is reflected in a large number of eigenmodes with low
associated energy. In Table 1, the number of the lowest 11
eigenvalues which not belong to the rigid body modes are
presented. The last two lines in Fig. 2 show the first three
eigenmodes for the case of the PGM and the FEM, which
are assigned to the corresponding eigenvalues from Table 1.
Here a good agreement can be found. The first row contains
the modes of the PDC, which belong to the first two, as well
as to the eleventh eigenvalue from Table 1. It is remarkable
that the 11th eigenvalue of the PDC with the corresponding
mode agrees with the 3rd eigenvalue and mode of the FEM
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Table 1 First 10 non-zero
eigenvalues of the
2-dimensional block using the
classical peridynamic
correspondence formulation
(PDC), the
Peridynamic-Galerkin-Method,
and the Finite-Element-Method
using linear quadrilateral
elements (FEM Q1)

PDC PGM FEM Q1

0.23682170004911376 0.8369763872245309 0.8847792246124383

0.28884910033074 2.1983497321413943 2.1907158017383337

0.3392560177723449 2.2561792668569387 2.3414565538196377

0.5143214151790636 4.476948975015391 4.80714133198664

0.5345370015188999 4.5285770761519215 4.987857418616576

0.5703166361181341 4.593032112209565 5.11165437573685

0.7519366670698632 4.7843232595800185 5.191467277052113

0.7760065129353704 5.919080469545088 6.08921036444145

0.8034404224436078 7.7249329399069095 8.555409502176447

0.8225423531522853 8.04100514007736 8.797959773335593

0.8496526583286905 9.120985625864364 9.96545665970472

(a)

(b)

(c)

Fig. 2 Selected eigenmodes for the classical peridynamic correspondence formulation (PDC), the Peridynamic Galerkin Method (PGM), and the
Finite-Element-Method using linear quadrilateral shape functions (FEM Q1)

or the PGM, respectively. The shape of the modes of the first
10 eigenvalues of the PDC show a typical behavior which
can be observed especially in the case of under-integration
[6] or [49].

7.2 Patch test

To avoid a direct mathematical verification of consistency in
the FEM the patch test introduced by [2] can be used instead.

A confirmation of equivalence to consistency is given in [43].
An extension to also study the stability of a formulation can
be found in [44]. In addition, different versions exist. In this
study the test given in [12] is used. The material behavior is
assumed to be linear elastic. The true solution of the differ-
ential equation is given at the boundary. The results at the
interior nodes or particles from the simulation must match
the true solution in order to pass the patch test. For the linear
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(a) (b) (c) (d)

Fig. 3 a Deformed configuration of the bloc and boundary conditions. b Shear stress distribution σxy at the particles using PDC. c Shear stress
distribution σxy at the particles using PGM. d Legend of σxy

case, the following solution is considered

u =
(
0.1X + 0.3Y
0.2X + 0.4Y

)
with

∂u
∂X

=
(
0.1 0.3
0.2 0.4

)
(83)

The stress is calculated according to Eq. (82) with a Young’s
modulus and a Poison’s ratio of E = 100 kN/m2 and ν = 0.3.
The stress in case of plane strain is given by

P =
(
0.2μ + 0.5λ 0.5μ

0.5μ 0.8μ + 0.5λ

)
. (84)

At the upper side of the square
({X × Y } ∈ {[−1m, 1m] × [−1m, 1m]}), the Neumann
boundary condition is applied (Fig. 3), which is derived from
the stress tensor (84). At the other sides, Dirichlet boundary
conditions are imposed according to the values from (83).

Fig. 3 depicts the resulting shear stress field, which should
be constant. 1345 irregularly distributed particles are used in
this test. In order to be able to achieve a comparison, the
neighborhood of the PGM corresponds to the connectivity
of the FEM. The distance between the particles and hence
also the radius is approx. 0.03 m in this case. In contrast to
the classical peridynamic formulation PGMshows a constant
stress field. The error of the approximate is evaluated using
the Lebesque quadratic (L2) norm. For the derivative the first
Hilbert H1 -seminorm is employed

εL2 =
√∫


0

∣∣∣∣u − uh
∣∣∣∣2 d
0, and

εH1 =

√√√√√
∫


0

∑
i, j

∣∣∣∣∣
∣∣∣∣∣
∂

(
ui − uhi

)
∂X j

∣∣∣∣∣
∣∣∣∣∣
2

d
0 (85)

The first value in the difference corresponds to the true solu-
tion and the second term uh denotes the approximate. For
more information on norms in the context of numerical solu-
tion procedures, see, for example, [1].

As can be observed in Table 2, the PGM satisfies the patch
test compared to the classical peridynamic correspondence
formulation. The PDC only fulfills this test, if the parti-
cles are regularly arranged and ghost particles are used to
impose Dirichlet boundary conditions. Only in this case, the
PDC satisfies the integration constraint. Effects due to under-
integration are not so dominant in the patch test.

7.3 Convergence in amanufactured 2-D problem

To check the convergence behavior, the test from [18] is con-
sidered. The true solution in this case has a sinusoidal shape

u =
(
sin π

2 X cos π
2 Y

cos π
2 X sin π

2 Y

)
. (86)

On all sides of a parallelepiped
({X × Y } ∈ {[−1m, 1m] × [−1m, 1m]}), the values from
(86) are given as Dirichlet boundary conditions.

The material behavior is assumed to be elastic according
to (82) with the parameters E = 100 kN/m2 and ν = 0.3. The
body is additionally loaded by volume forces

ρ0b = − E (1 − ν) π2

2
(
2ν2 + ν − 1

)
(
sin π

2 X cos π
2 Y

cos π
2 X sin π

2 Y

)
. (87)

For a set of refinements with N + 1 particles per meter in
each dimension, the norms from (85) are evaluated.

Fig. 4 depicts the undeformed configuration for N = 4,
N = 16 and N = 64. The neighborhood is determined by the
FEM connectivity. For this purpose, quadratic quadrilateral
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Table 2 Error norms in L2 and
H1 for the linear patch test

Method εL2 εH1

Classical peridynamic correspondance formulation 0, 234908 0, 858557

Peridynamic Galerkin Method 2, 518 ∗ 10−14 1, 154 ∗ 10−12

Fig. 4 Refining discretizations
for the manufactured 2-D test
case in the initial configuration

(a) (b) (c)

Fig. 5 Manufactured 2-D test case: Distribution of the normal stress in
x-direction σxx at the particles with respect the deformed configuration
using the PGM with N = 64

elementswere chosen. The abbreviation N corresponds to the
number of elements per direction. As can be seen in Fig. 5,
the stress obtained using the Peridynamic-Galerkin-Method
corresponds to the true solution.

In Fig. 6, the error norms with the averaged convergence
rate are plotted. The PGM shows a convergence behavior
with rate 2 in the L2 norm. In the case of the H1 semi-norm,
a better rate can be obtained compared to the FEM using
linear polynomial shape functions. Using the classical peri-
dynamic correspondence formulation, on the other hand, no
convergent behavior exist. During loading, the boundary gets
curved which makes this test more challenging for imposing
Dirichlet conditions.

7.4 Punch test

If the elements distort toomuch,mesh-basedmethods require
remeshing, otherwise usually no or only a poor approxima-
tion can be achieved. Meshfree methods on the other hand
offer a larger flexibility because the connectivity does not
have to be sorted and the point distribution canbe arbitrary. To
test the new peridynamicmethod, a 2-dimensional punch test

is conducted.As shown inFig. 7, a block is compressed on the
left side of the top surface by a displacement of ū = −1mm.

The PGM results are compared with three different FEM
formulations. In addition to linear quadrilaterals (Q1), two
enhanced assumed strain elements based on a Taylor expan-
sion of the shape function derivatives are also used which
provide good results for more extreme loading cases. More
information regarding the corresponding H1TS and the
TSCG12 formulation can be found in [23] and [24], respec-
tively. For the study with these approaches, the domain is
divided into 3-dimensional elements. In order to represent
the plane strain state, the displacements in the third direc-
tion are fixed. The domain is divided into 64 × 32 elements
in x- and y-direction. In the 3-dimensional case, only one
element is used in the z-direction. The depth is adjusted so
that a cube-shaped geometry can be obtained. The material
behavior is now non-linear elastic. The stress is calculated
from a neo-Hookian approach. The strain energy density W
is thereby decomposed into an isochoric and volumetric part

W = μ

2
(tr [Ciso] − 3) + K

4

(
J 2 − 1 − 2 ln [J ]

)
. (88)

The 1st Piola-Kirchhoff stress tensor is determined from the
derivative with respect to the deformation gradient

PK
J = ∂W

∂F
= μF · P [1] + K

2

(
J 2 − 1

)
F−T ,

P = J− 2
3

(
I − 1

3
C−1 ⊗ C

)
. (89)

The Lame parameters are calculated from the Young’s mod-
ulus E = 333 MPa and the Poisson’s ratio ν = 0.2. The
maximum displacement in the x-direction is plotted against
the minimum displacement in the y-direction for different
FEM formulations and the Peridynamic-Galerkin-Method
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Fig. 6 Manufactured 2-D test case: Convergence rates in the L2 norm (left) and H1 semi-norm (right)

Fig. 7 (Left) Geometry, material data and boundary conditions of the
punch test. (Right) Maximal displacement in x-direction is plotted over
the maximal negative displacement in y-direction for different FE for-

mulations and the PGM using linear basis functions. Vertical lines
indicate the maximum vertical displacements for each formulation

Table 3 Maximum displacements shown in Fig. 7 for different formu-
lations

Type |uy | [mm] ux [mm]

Q1 0, 61 0, 255

TSCG12 0, 47 0, 19

H1TS 0, 738 0, 334

PGM 0, 987 0, 473

(Fig. 7). Both the Q1 and the TSCG12 element cannot rep-
resent very large deformations. Only the H1TS formulation
allows for a stronger squeeze. The PGM, on the other hand,
outperforms all threemesh-based approaches. The individual
values in Fig. 7 can be found in Table 3.

The final deformed configurations of the PGM simulation
is shown in Fig. 8.

Fig. 8 Maximal compressed configurations of the 2-D punch test using
the PGM

The colors indicate the magnitude of the vertical displace-
ments. Neglecting the horizontal restraint at the upper edge
results in strong lateral movement of the body. Very large
deformations are then no longer possible. However, using
the PGM, a much larger vertical deformation can again be
calculated compared to the other formulations.
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Fig. 9 (Left) Deformed configuration at the critical rotation angle using
the PGM and von Mises stress distribution. (Right) Experimental setup
showing the twisted prism at the critical rotation angle

7.5 Torsion of a square hyperelastic prism

Robustness to highly irregular discretizations is a major
advantage ofmeshfreemethods. To demonstrate the indepen-
dence of the particle distribution, the torsion test according
to Fig. 9 is examined. A squared prism of dimensions (length
×width× height) 5mm×5m×125m is clamped at the top
as well as the bottom and rotated at the top end. The material
behaves non-linearly elastic according to (89) with aYoung’s
modulus of E = 12MPa and a Poison’s ratio of ν = 0.48.

The block (length × width × height) is divided into
10 × 10 × 125 cubes. The inner nodal coordinates are ran-
domly perturbated in each spatial direction in an interval of
(−d, d) times the initial nodal spacing, where d represents a
dimensionless quantity whosemagnitude can be at most 1. In
total, 20 different discretizations are created using randomly
distributed values for d.. In the case of the PGM, the nodes
correspond to particles. All nodes of the adjacent elements
define the neighborhood of the corresponding particle.

The rotation of the top end causes the prism to get twisted.
At a critical rotation, an additional bending occurs as can be
observed at rubber bands. All calculations are conducted up
to this critical rotation angle. The calculation using the PGM
shows a good agreement with experimental results (Fig. 9).
In Fig. 10, the maximum possible angle of rotation is shown
for different perturbations. For the calculation by FEM, the
enhanced assumed strain formulation (TSCG12) from [24]
leads tominimally improved results compared to the standard
trilinear brick element (H1). However, the PGM again out-
performs these formulations. As can be seen fromFig. 10, the
failure angle of the Perdynamic Galerkin method is indepen-
dent of the degree of perturbation. The H1TS element which

Fig. 10 Torsion test. Maximum rotation angle in dependence of the
degree of distortion. Comparison between PGM and three FEM formu-
lations

shows improved results in the punch test allows only a much
smaller angle of rotation. For all FEM formulations, at a cer-
tain perturbation a calculation beyond a small rotation angle
is no longer possible if d exceeds a certain value. The out-
comes also show good qualitative agreement with measured
results. In the experiment, the critical torsion angle was about
2340 degrees (Fig. 9). TheYoung’smodulus in the simulation
were taken from the data sheet of the printed material. The
Poison’s ratio was estimated. However, the material can be
characterized as weakly compressible. It was also assumed
that the stress-strain behavior can be represented by a neo-
Hooke’s model.

7.6 Cantilever test

In the last test, the computational effort between the FEM
and the PGM is compared. For this purpose, at the free end
of a cantilever a surface load is applied. The dimensions,
boundary conditions and material parameters can be found
in Fig. 11.

The material behavior is assumed to be non-linear elas-
tic. The stress is calculated according to (89). Due to the
geometry, a bending and shear stress dominates in the body.
For the FEM calculation, the cantilever is divided into lin-
ear tetrahedra (FEM O1) and as an additional variant again
into the enhanced assumed strain elements from [24] (FEM
TSCG12). The nodes of the adjacent tetrahedral elements
define the neighborhood of the corresponding particle. The
black horizontal line in Fig. 12 denote the overkill FE result in
the convergence analysis. As expected, the solution based on
theFEMwith linear tetrahedral elements behaves excessively
stiff whereas the TSCG12 formulation shows an improved
behavior. After a fluctuation at a coarse resolution, the PGM
reaches the asymptotic value even before.

This figure also shows the computational effort between
the FEM and the PGM. Both algorithms are incorporated
into the same program structure which allows a fair com-
parison. While in the range of a few degrees of freedom the
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Fig. 11 (Left) Geometry, material data and boundary conditions of the cantilever test. (Right) Von-Mises stress distribution at the particles in case
of the PGM

(a) (b)

Fig. 12 Cantilever test: (Left) Convergence study of the displacement in z-direction of the upper right front corner of the cantilever. (Right)
Comparison of computation time between the PGM and the FEM

assembly of the system plays the main role, for larger num-
bers of particles the solution of the system of linear equations
dominates. Thus, the increase in the computational effort for
smaller systems is caused by an increased number of eval-
uations of the constitutive equations and for larger systems
by the less sparse tangent matrix resulting from overlapping
families. For the finest resolution with 1.2 million degrees of
freedom, the total computational cost of the PGM simulation
is about 56% larger than for the corresponding FEMO1 sim-
ulation. The computational effort of the enhanced assumed
strain element formulation is in the range of the PGM.

On the other hand, the accurate solution can be obtained
already at a coarser resolution of the domain by the PGM
in comparison to FEM O1. Using linear tetrahedra a finer
subdivision is required (Fig. 13).

Fig. 13 Cantilever test: Computation time at different resolutions com-
pared to the vertical displacement of the evaluation point. Comparison
between PGM and FEM formulations
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8 Summary

The Finite-Element-Method offers a good approximation of
the true solution for many engineering applications. In the
field of solid mechanics, the differential equation is usually
solved on the basis of a Lagrangian description.An important
prerequisite is the subdivision of the domain into elements
that are as regular as possible. However, complex struc-
tures often needs time-consuming manual post-processing
to generate an acceptable regularity of the mesh. Very large
deformations can also lead to strong distortions of the ele-
ments. In this case, remeshing of the domain is needed.

Meshfree methods promise the possibility of a good
approximation of the solution with an almost arbitrary dis-
tribution of points in the domain. In this case, meshing is not
necessary and even for very large deformations the mechan-
ical differential equation can be solved in a Lagrangian
description. On the other hand, often a good approximation
of the true solution cannot be obtained. The reasons for this
lie in the violation of important conditions on spatial dis-
cretization schemes.

The presented Peridynamic-Galerkin-Method (PGM) ful-
fills all these conditions. Moreover, the negative side effects
due to a rank deficiency, which is usually a critical point
in meshfree methods, are avoided. The results of the patch
test as well as the manufactured test show that this method
can approximate the true solution of the differential equation
very well. Due to the meshfree character, loadings can be
calculated that lead to very large deformations compared to
the FEM. In addition, the requirements for the distribution
of points in the domain are significantly reduced using the
PGM.

In the context of this work, cases with additional con-
straints, such as incompressibility, were not investigated. In
addition, the application is limited to linear basis functions.
To ensure comparison with the FEM, the horizon was not
identified as a material parameter, but was considered to
depend on the particle spacing. Nevertheless, the equations
can also be applied to the case of a constant horizon.
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