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Abstract—In socio-technical systems, such as manufacturing
processes, human operators are often entrusted with cognitive
tasks that rely on tacit knowledge. Extracting the operators’
tacit knowledge is beneficial to facilitate knowledge transfer and
enable semantic machine learning. We improve upon an existing
methodology that relies on operators’ insights into influences on
their decision making processes to extract tacit knowledge. By
introducing a data-based weighting of the operators’ information,
we are able to control varying degrees of worker reliability and
other individual biases, increasing the quality of the aggregated
knowledge. We evaluate several methods to weigh and aggregate
knowledge on a real-world dataset collected in the domain of
fused deposition modelling (FDM) showing an improvement of
34% over a previously published baseline applied to our data.
Applicability of the approach in the same domain is demonstrated
by a case study, where the aggregated knowledge is utilised to
shorten the time required for parametrisation.

Index Terms—knowledge extraction, knowledge aggregation,
collaborative knowledge capturing

I. INTRODUCTION

In manufacturing scenarios, machines or production lines

need to be parametrised to produce products of sufficient

quality. To arrive at a parametrisation, operators perform an

iterative cycle which involves quality assurance personnel

inspecting the produced product’s quality. Then, one or more

process parameters which they deem suited to mitigate the

observed quality defects are adjusted. This is a complex task

requiring experienced personnel which highlights the need for

improved knowledge transfer between operators. With regard

to an increasing shortage of skilled operators, it is more and

more important to collect existing knowledge of experienced

operators and to make it available, e. g. by passive assistance

systems.

In contrast to traditional knowledge extraction approaches,

e. g. interviews [1], observations [2] or combinations

thereof [3], data-based knowledge extraction has recently been

proposed for manufacturing scenarios [4]. Here, observed

parametrisation-quality tuples are aggregated in a knowl-

edge graph with additional information regarding the experts’

thought process, i. e. influences on their chosen parametrisa-

tion, which are collected with the human-machine-interface

(HMI) during production. A knowledge graph from which a

succinct rule base can be extracted, i. e. reliable information on

how machine parametrisation influences a product’s quality, is

an important prerequisite for an operators’ passive assistance

system in production.

However, until now the approach did not generalise well to

larger datasets and heterogeneous knowledge sources, i. e. op-

erators with varying level of experience and cooperativeness.

Naively aggregating sample-based data leads to erroneous

relations in the knowledge graph, since the information the

relations are based on could be erroneous or highlights non-

causal influence–parameter change relationships. Reasons for

erroneous information could be non-atomic influences, i. e.

unclear cause-effect relations that can occur because multiple

influences were highlighted for multiple parameters adapted,

inexperienced operators, untrustworthy operators or operators

that tend to have a higher trust in their experience than

warranted [5].

In order to create a robust rule base for an operators’

passive assistance system, there is the need to aggregate the

sample-based data in a reliable and correct way. The main

contribution of this paper is to show how semi-structured

knowledge collected in production can be aggregated and

validated to build such a robust rule base, serving as a

less intrusive, data-based alternative to traditional knowledge

extraction techniques. Based on a formal description of the

domain, we introduce and evaluate several methods to weigh

and filter the provided knowledge. Thereby, we improve the

results obtained in [4] by 34%. Finally, we show how to

automatically extract rules from the aggregated knowledge

graph which are (1) quantified and (2) human-readable in

natural language so that they can be directly used in a passive

assistance system in case of quality defects.

The paper is structured as follows: Our case study on fused

deposition modelling based additive manufacturing is intro-

duced in Section II. In Section III, we present our methodology

including the formalisation of the problem, heuristics to weigh

and filter knowledge, and the extraction of quantified rules. An

evaluation of our approach is given in Section IV and related

work is presented in Section V. Whereas Section VI gives an

outlook, Section VII concludes the paper.

II. CASE STUDY

In this study we extend the preliminary investigations per-

formed by Nordsieck et al. [4] in the context of fused deposi-

tion modelling (FDM) based additive manufacturing [6]. Here,

   

                                                                    

                                      
                                

  
  

   
  

  
  

  
  

  
  

  
  

  
   

  
  

  
  

  
  

  
  

  
   

  
  

  
   

  
   

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
   

  
  

  
  

   
  

  
  

   
  

  
  

  
  

  
  

  
  

                                                                                                                                             



an operator has to satisfy quality or other target criteria by

executing multiple iterations of an iterative parameterisation

process. Over the course of about two years, the operators in

the case study performed a total of about 1200 iterations, of

which 411 provide additional information (cf. Section III-A)

about the operator reasoning on which this work is based. The

iterations containing additional information were performed

by nine operators of differing training and process experience

levels.

The FDM process offers over 600 adjustable software pa-

rameters, although, according to our experience as well as the

data we gathered, operators tend to only variate a small number

of these. In our case study operators adjusted a total of 58

parameters while 34 of these were adjusted in more than 5% of

iterations and 8 were adjusted in more than 25% of instances.

Individual machines, as well as differing materials and, most

importantly, object geometries impact what parameters need

to be set, which leads to frequent reconfiguration for optimal

production.

The 411 examples distribute onto 203 such parameterisation

processes with the longest needing 14 manual readjustments of

parameters, while 144 processes saw no reconfiguration after

the initial parametrisation. When considering the 59 parametri-

sation processes with more than one iteration, the mean length

was 4.5 with a standard deviation of 3.4 iterations. While we

did provide a “best guess” default configuration (individually

set for each printer) operators rarely relied on it for the initial

parametrisation. Only 24 parametrisation processes started

with the default, of which nine were immediately successful,

while the others needed additional operator readjustments.

This illustrates the great need for experienced operators and,

until operators have gained this experience, the need to assist

them in decision making for which we propose the following

extensions on prior work.

III. METHODOLOGY

In this Section, we formalise the problem of extracting rules

and present our approach to ascertaining the reliability of

information provided by the operators and use it to influence

the knowledge graph aggregation. Furthermore, we present

a methodology to extract quantified human-readable rules in

natural language which then form the basis for our real world

evaluation.

A. Problem Formalisation

Based on Definitions 3.1 and 3.2 (previously presented

in [4]), we establish the following preliminaries for this

work. Non-adjustable factors A = O � C � T , i. e. object

characteristics O, target criteria C and environmental factors

T , influence a manufacturing process. Based on these, the

operator chooses a parametrisation p ∈ P which is iteratively

improved for each iteration i ∈ I of the production process

until the target criteria t ∈ C are met:

Definition 3.1 (Parametrisation process): For an iteration

i+ 1, the parametrisation pi+1 ∈ P is determined by

pi+1 = f({o, c, τ}, {p0, . . . , pi}, {q0, . . . , qi},M)

Consequently, it is dependent on previous experience M,

non adjustable factors o ∈ O, c ∈ C, τ ∈ T , process

parameters at previous iterations p0, . . . , pi ∈ P and previ-

ously achieved qualities q0, . . . , qi ∈ Q. The parametrisation

process is concluded by selecting the optimal parametrisation:

p̂∗ = argmaxp{qp}.
Upon choosing pi+1 the operator is given the opportunity

to highlight their influences αi+1 in the machines’ HMI along

with their confidence ζi+1 ∈ [0, 1] in the correctness of αi+1.
Definition 3.2 (Influence): An influence αi+1 for the choice

of a parameterisation pi+1 is given by:

αi+1 = {x |x ∈ A � P � Q and

x influences the choice of values for pi+1)}
For a detailed definition of methods for knowledge graph

aggregation refer to [4]. While we use the resulting knowledge

graph as a data structure, it is not specifically relevant to the

understanding of this work.
To illustrate the problem and its formalisation we consider

the following simplified examples of two parametrisation

processes as described in Section I: operators are tasked to

manufacture two different objects a and b that have not been

produced previously. Therefore, each of the objects constitutes

a separate new task. They start with the first object a and use

the default parametrisation pi ∈ P with pi = (4, 5, 6), for the

first iteration i = 1. Assume, this results in quality qai ∈ Q
with qai = (1, 0, 2). Note, that we measure quality defects in

our case study, so a quality of 0 in each dimension would

be considered optimal. To improve the third quality aspect

qai,3 = 2, which then constitutes an influence αi+1 for the

next iteration i + 1, the operator adjusts the parametrisation

to pai+1 = (10, 5, 5), which results in qai+1 = (1, 0, 0).
This information can then be used to aggregate knowledge

graphs [4] containing relations, which in turn can be used to

extract rules.
Definition 3.3 (Relation): A relation ηx,y is defined as the

tuple (q·,x, p·,y) between a quality q·,x ∈ Q and a parameter

p·,y ∈ P .
Note that q·,x ∈ Q selects the xth element from q· ∈ Q of

an unspecified iteration. This applies analogously to p·,y .
Definition 3.4 (Rule): A rule rx,y is defined as a tuple

rx,y = (ηx,y, ν) = (q·,x, p·,y, ν) with a quality characteristic

that will be improved upon q·,x ∈ Q and a parameter p·,y ∈ P
that should be adjusted for the next iteration by a quantification

ν ∈ R with ν = Δ(pi,y, pi+1,y) → pi+1,y − pi,y describing

the amount by which the parameter should be adjusted.
Based on the sign of the parameter change a conclusion of

the rule can be defined as increasing if the quantification is

positive and decreasing if the quantification is negative.
Revisiting the example, we could conclude a set containing

two rules, Ra = {ra3,1 = (q·,3, p·,1, 6), ra3,3 = (q·,3, p·,3,−1)},
for the first task since it is not clear which specific parameter

change affected the quality characteristic qi+1,3. Note, that the

parameter-quality relations are not atomic since an operator

cannot highlight relationships between parameters and quality

characteristics on an atomic level.

   

                                                                                                                                             



For the second task, i. e. manufacturing object b, the oper-

ators also start with the default parametrisation pi = (4, 5, 6).
However, due to different object characteristics this leads to

quality qbi = (3, 1, 1). Now, they chose pbi+1 = (11, 5, 6),
i. e. increasing pbi+1,1 by 7, which leads to quality qbi+1 =
(0, 0, 0). The resulting set with rules is Rb = {rb1,1 =
(q·,1, p·,1, 7), rb2,1 = (q·,2, p·,1, 7), rb3,1 = (q·,3, p·,1, 7)}.

To be able to compare two rules we define three equality

operators:

Definition 3.5 (High-level equality =h): Influence and pa-

rameter have to concur for both rules:

rx,y =h rm,n ⇐⇒ x = m ∧ y = n

Definition 3.6 (Mid-level equality =m): In addition to ful-

filling =h, both rules need to adjust the parameter in the same

direction:

rx,y =m rm,n ⇐⇒ rx,y =h rm,n

∧ sgn(νrx,y ) = sgn(νrm,n)

Definition 3.7 (Low-level equality =l): Additionally to ful-

filling =m, the suggested parameter change needs to be

similarly quantified, i. e. within 30%, in regards to range (cf.

Section III-C) or absolute value:

rx,y =l rm,n ⇐⇒ rx,y =m rm,n

∧ ( |νrm,n | ∗ |νrx,y | ≤ |0.3 ∗ νrx,y |
∨ |νrm,n | ∗ |νrx,y | ≤ |0.3 ∗ νrm,n |)

Applied to the rules of our examples this leads to ra3,1 =l r
b
3,1.

The main problem this paper addresses is finding an aggre-

gation function that yields a minimal set of correct rules

R= = {r|r ∈ Q× P × R}=
regarding a given level of abstraction =∈ {=h,=m,=l}, of

which parameters to apply to mitigate all quality defects that

can occur in a given (re-)parametrisation process that conforms

to the process described in Section I. In our example, a possi-

ble candidate for one such rule set could be R=l
= Ra ∩Rb,

where ∩ is defined for equality under =l and each ν in R=l

is calculated as the mean of the corresponding quantifications

from Ra and Rb. To arrive at the optimal rule set, in practice,

we utilise a knowledge graph as a data structure which is

aggregated by the methods presented in Section III-B. The

quality of the knowledge graph is measured by comparing

extracted rules to an expert validated ground truth.

B. Ascertaining Reliability of Operator Provided Information

In practice, and illustrated by the example in Section III-A,

operators adjust more than one process parameter at once

leading to non-atomic insights, i. e. multiple influences that

are in relation with multiple process parameters for example if

they want to limit the amount of iterations needed during the

parametrisation process. Also, process parameters and influ-

ences are multi-dimensional with over 600 process parameters

and 14 quality characteristics. This high dimensional space

can be reduced to 58 and 14, respectively by relying only on

data that is present in influences α that highlight the relevant

parameter & quality subset for an iteration. Apart from the

high dimensionality, few examples, the unsupervised nature

of the problem, as well as operator and environmental biases,

illustrate that identifying the process parameter(s) influenced

by a singular influence and vice versa is a non-trivial task

that is best addressed with heuristics. Consequently, we design

methods to ascertain the reliability of information provided

by the operators with the goal of filtering out erroneous

information. The underlying idea is to first weigh the relations

and then filter them with an adaptive threshold.

We investigate methods that are applied on data contained

in insights α before graph aggregation as well as methods that

are applied after graph aggregation. For those that are applied

before graph aggregation, we focus on operator confidence,

frequency of the relation, as well as quality improvements. The

operators’ confidence ζ is directly contained in the insight of

an iteration and does not need computation. Relation frequency
is established by summing the occurrences of a relation over

all iterations and dividing this by the number of unique

relations. This is then assigned to the weight of the respective

relations:

wFx,y =

∑
i∈I(pi,x, qi,y)

|{ηx,y | p·,x ∈ P, qi,y ∈ Q}|
Quality improvement is given by calculating Δ(qi, qi+1) or

short Δq. These three techniques can be combined at will.

Weights for relation frequency and quality improvement are

multiplied if they are combined. Operator confidence, if com-

bined, is factored in by w/2 + wζ , where ζ is the operators’

confidence and w is the weight obtained by relation frequency

F or quality improvement Δq, respectively.

Clustering-based weighting methods, denoted by C, are

utilised to detect outliers and are applied to subsets of the iter-

ations’ attributes. Based on different combinations of subsets

so with o ∈ {p, q, α,Δp,Δq,Δα}, OPTICS [7] is used for

density-based clustering. We utilize the Minkowski distance

and set the minimum amount of neighbours constituting a

cluster to two. The resulting clusters are then used to weigh

the relations of the knowledge graph by counting the number

of iterations contributing to the respective relation that were

successfully assigned to a cluster, thereby discounting the out-

lying iterations that were not successfully assigned a cluster.

This is then normalised by the amount of iterations and used

as the relation weight:

wCs,η =
|{i ∈ I, i ∈ OPTICS(s), η(i)}|

{i ∈ I, η(i)} ,

where OPTICS generates sets of clustered iterations and

unclustered iterations are not included in any sets and η(i)
determines if a specific relation ηx,y can be extracted from

the given iteration i.
Another clustering-based approach, denoted by CC is based

on the assumption that similar parametrisations should lead

to similar qualities. Therefore, iterations that are clustered in

parameter space should also be clustered in quality space. We

   

                                                                                                                                             



prepared subsets so, with o ∈ {p, q,Δp,Δq}. The subsets

are used to calculate weights analogous to the clustering

methodology described above differentiating between relative

and absolute quality and parameters:

wCCs,η
=
|{i ∈ I, i ∈ OPTICS(sp) ∪ OPTICS(sq), η(i)}|

{i ∈ I, η(i)}

In contrast to the previous methods, the influence valid-
ity method, denoted by IV , directly tries to quantify the

correctness of the operator’s assumption that the changed

process parameters are improving the highlighted quality

characteristics. To achieve this, the sum of the highlighted

quality characteristics is divided by the overall quality for each

iteration contributing to the relation. The resulting fractions

are then summed and normed by the amount of iterations that

contributed to this relation and used as its weight:

wIVη
=

∑
{i∈I,η(i)}

∑
y qi,y

∑
y qi+1,y

|{i ∈ I, η(i)}|

The adaptive threshold is computed by taking the mean x̄,

median x̃ or elements smaller than the first quartile Q1 over

all relations. Based on this, relations whose weight is smaller

than the threshold are removed from the knowledge graph.

C. Extraction of Quantified Rules

To extract quantified rules, we rely on the aggregated

knowledge graph to identify high-level relations between

influences (i. e. quality characteristics or environmental) and

adapted parameters. Given the quantified rules rely on the

aggregated knowledge they represent aggregations of iterations

and are therefore independent of decisions at a specific point

in time. In the following we will rely on these aggregated

rules. Quantification of aggregations is non trivial, however,

by analysing p and Δp over all iterations contributing to

the relation that exhibited the respective high-level relation,

we are able to discern both the conclusion (i. e. increase,

decrease, set) as well as the parameter quantification of the

conclusion of the rules. A parameter can be quantified in

three ways: (1) range, (2) step size and (3) concrete values

(usually used for categorical parameters). Range is quantified

by E(p·,x) ± σ(p·,x). Step size is quantified by E(Δp·,x).
Concrete values in the case of categorical parameters are

quantified by the most common value.

IV. EVALUATION

To evaluate our approach, we apply the methods presented

in Section III to data collected in a case study with FDM de-

scribed in Section II. We determine a ground truth, benchmark

different aggregation methods on the ground truth, evaluate

requirements in regards to sample size and analyse the real-

world applicability of utilising the collected and aggregated

knowledge in a proof-of-concept case study.

A. Ground Truth Creation

Well defined ground truths are not available for the FDM do-

main. Also, unstructured knowledge bases e. g. Simplify3D’s

troubleshooting guide, from which they could be created are

unsuited since the methodology underlying their creation is

unknown. Therefore, we describe a methodology to obtain a

ground truth against which the baseline of [4] as well as the

results of our approach can be compared.

Three FDM experts are independently tasked with classify-

ing whether the rules generated by the baseline are correct

on a high level of abstraction, i. e. whether there exists a

relation between parameter and condition. If that is the case

they proceed to evaluate the rule at a medium and, lastly, a

low level. As described in Section III-A, medium equality is

achieved if the rules’ action, e. g. increase or decrease, is suit-

able, whereas low equality is achieved if the quantification—

the amount the parameter should be adjusted—is within 30%

of the experts’ opinion. If a rule is unequal at low or medium

level the experts’ adjust it according to their knowledge.

The resulting individual rule sets are merged by averaging—

mean for numerical, most frequent value for categorical—

quantifications and assigning an action accordingly if at least

two experts validated a rule for a given relation. The now

aggregated rule set is suitable for a use as ground truth

since multiple experts’ evaluated the given rules in a detailed

manner, providing corrections where necessary. Especially,

due to the experts’ corrections the ground truth is not a subset

of the baseline which would aggravate the comparison between

baseline and aggregation method. Still, it is likely to focus on

a certain subset of the experts’ knowledge. However, since

this subset is informed by parameter choices encountered

in practice it could be argued that it focusses on the most

practically relevant area of expertise. The experts provided

a mean of 41 rules each with a standard deviation of 2.16

rules. All experts agreed on 20 rules, 21 different rules were

confirmed by two experts, whereas another 21 rules were only

approved by a single expert. This highlights the individuality

of experts that naturally gained their experience on different

printers, materials and objects and highlights the importance

of our approach to only accept rules that are agreed upon by

at least two experts. As the number of involved experts and

the fractural nature of their knowledge is similar to industrial

settings, we assume that the process of ground truth creation is

applicable to other industrial domains. In practice, the ground

truth creation process could also be used as an editorial step to

increase the quality of knowledge extracted with our approach.

B. Evaluation Against Ground Truth

To benchmark our proposed methodology and weighting

methods, we compare them against the ground truth generated

with the methodology presented in Section IV-A.

To evaluate overlap between rules contained in the aggre-

gated knowledge graph and the ground truth, we utilize the

three equality operators defined in Section III-A, which are

suited to evaluate rules on differing degrees of abstraction.

To be able to evaluate metrics on rule sets, e. g. ground truth

   

                                                                                                                                             



TABLE I
RESULTS FOR SELECTED AGGREGATION METHODS COMPARED TO THE

GROUND TRUTH (SEE SECTION IV-B). BEST PERFORMING METHODS

(ACCORDING TO F1 SCORE) PER LEVEL ARE HIGHLIGHTED IN BOLD. FOR

THE PATTERN UNDERLYING THE COMPOSITE METHOD NAMES REFER TO

SECTION III-B. AS BASELINE WE APPLIED THE METHODOLOGY

PRESENTED BY NORDSIECK ET AL. [4] TO OUR DATA.

Level Method Precision Recall F1 # rules

high baseline 0.34 1.00 0.51 121
ζ F Δq # x̄ 0.74 0.61 0.67 34
C p q # x̄ 0.55 0.83 0.66 62
IV α q # Q1 0.42 0.95 0.59 92
CC p q # Q1 0.40 0.71 0.51 73

mid baseline 0.26 0.76 0.38 121
ζ F Δq # x̄ 0.41 0.34 0.37 34
C p q # x̄ 0.40 0.61 0.49 62
IV α q # Q1 0.32 0.71 0.44 92
CC p q # Q1 0.27 0.49 0.35 73

low baseline 0.17 0.49 0.25 121
ζ F Δq # x̄ 0.06 0.05 0.05 34
C p q # x̄ 0.27 0.41 0.33 62
IV α q # Q1 0.20 0.44 0.27 92
CC p q # Q1 0.16 0.29 0.21 73

and prediction, of differing size and ordering an evaluation

set is needed. An evaluation set of two rule sets is created by

comparing each given rule with the given equality operator.

If the rules are equal according to the equality operator, a

substitution is carried out, if it is unequal it is treated as

a unique rule. Substituted rules, as well as unique rules of

both rule sets are concatenated to form the evaluation set.

Referring back to the example from Section III-A, Ra,b =
{ra,b1,1, r

a
1,3, r

b
2,1, r

b
3,1}=l

would be the evaluation set for Ra and

Rb for =l. Both rule sets are compared against the evaluation

set resulting in binary sets that can be directly compared. We

evaluate the similarity between a prediction and ground truth

with prediction, recall and F1 score (values in [0,1], higher is

better). Also, the number of rules resulting from using a given

aggregation method is reported.

We apply the aggregation methods described in Sec-

tion III-B and evaluate them according to these metrics for

the three levels of abstraction. Note that the low abstraction

level is the one with the greatest relevance for industrial

use cases since it provides data-based quantifications, which

are often not available using traditional knowledge extraction

methods. Table I shows the baseline achieved by applying the

methodology of [4] to our data, the methods that performed

best (in regards to F1 score) on high-, mid- and low-level of

abstraction as well as the best performing representative of

each class of methods.

Firstly, we can observe that precision, recall and F1 increase

for all methods with increasing level of abstraction. This is

intuitively explainable by considering that it is much harder

to forecast the exact parameter quantifications compared to

conclusion or even the pure existence of relations. The number

of rules stays constant since the level of abstraction used

during evaluation is independent of the aggregation method.

Some methods, e. g. ζ F Δq # x̄, seem to be too excessive

Fig. 1. t-SNE visualisation of quality space q. Elements that were assigned
a cluster with OPTICS are highlighted by a black “x” , those that were
unclusterable for OPTICS are represented as grey dots.

in filtering suspected erroneous information. The fact that

there is a comparatively very sharp decrease of precision,

recall and F1 with decreasing level of abstraction can be

an indicator of that. Apparently, even though very good

results are achieved on a high level of abstraction with a

comparatively small number of rules, data points necessary for

correctly calculating the quantifications are discarded. Also,

very low rule counts can be an indicator of too aggressive

filtering. Likewise, methods relying on relative changes in

parametrisation or quality perform worse than those which

rely on absolute values. One possible explanation for this

behaviour is that the corresponding data scarcity limits the

performance of the clustering algorithm. This is bolstered by

the observation that OPTICS detects fewer large clusters on

relative than on absolute data. Compared to clustering based

approaches, IV α q # Q1 retained a relatively large number

of rules and therefore obtains high recall results while also

moderately increasing precision. Therefore it seems like it is

a candidate for further development that could thrive with a

more aggressive filter method. Clustering in both parameter

and quality spaces separately (CC), however, seems to be an

unfeasible approach for outlier detection since relatively many

rules are retained while suffering in recall and precision. A

possible explanation could be that individually clustering the

respective spaces leads to fewer clusters found than clustering

on the combined p-q space as evidenced by the good perfor-

mance of C p q # x̄ which is based on the same underlying

data, albeit in a different format.

To get a qualitative understanding of OPTICS’ clustering

quality, we used t-SNE [8] as a dimensionality reduction

approach to show all available iterations in two dimensions and

highlighted those iterations that were successfully clustered by

OPTICS. Figure 1 visualises the clustering obtained in quality

space q. Here, we can observe that elements within large

neighbourhoods as visualised by t-SNE are also detected as

   

                                                                                                                                             



Fig. 2. F1 score for increasing number of considered samples of the
aggregation method C p q # x̄ and baseline for high, mid and low abstraction
levels.

belonging to clusters by OPTICS. While some iterations that

appear outliers in the t-SNE representation are still clustered

by OPTICS, we conclude that overall it is capable to discern

the respective clusters and function as a suitable outlier detec-

tor.

In general, recall seems to be higher than precision, with

the exception of ζ F Δq # x̄. The baseline outperforms our

methods on recall, however, lacks in precision. Consequently,

it is outperformed by a margin of 0.16, 0.10 and 0.08 on high,

mid and low abstraction levels which translates to 32%, 27%

and 34%, respectively on the F1 score by method ζ F Δq # x̄
for the high abstraction level and C p q # x̄ otherwise. These

results are achieved while reducing the amount of rules by

49%, which in turn facilitates their use in a passive assistance

system since the rule application is, intuitively, easier if there

are fewer rules to choose from.

Overall, we have to conclude that there does not seem

to be a single method that is best suited to all levels of

abstraction. However, since only the lowest abstraction level is

relevant in practice and C p q # x̄ provides consistently good

performance through all abstraction levels which is indicative

of good generalization characteristics, we propose it as the best

method, which will be used in the following experiments.

C. Samplesize Requirements

To ascertain the effect of different amounts of sample data,

i. e. available process iterations, on the aggregated knowledge,

we evaluate the method that performed best in Section IV-B

on the expert validated ground truth as measured by the F1

score. Hence, both baseline and C p q # x̄ are evaluated with

increasing sample sizes, which are included in the order of

their collection, in the range of 50 to 410 in steps of 20.

We assume that, similar to learning systems, the performance

converges to an optimum after a specific amount of time. To

visualise whether convergence is reached, logarithmic curves

are fitted to the predictions. The results are shown in Figure 2.

Fig. 3. Mean quality level (lower is better) per iterations as achieved by
the baseline as well as rule assisted group. For comparability the figure is
truncated at iteration 4.

Generally, increasing amounts of samples positively influ-

ence the predictive performance. However, this effect is not

linear or at least heavily noised as is evidenced by the drop

in performance for 170, 190 and 210 examples, respectively.

Possible causes for the drop could have been an explorative op-

erator behaviour, e. g. of an inexperienced operator or because

of changes in material. The fact that this drop is especially

evident in the higher abstraction levels is probably due to the

insufficient performance on the low abstraction level for low

sample sizes.

While our initial assumption of a convergence seems to be

true for the baseline since there is no notable improvement

for the last 20% of the sample, and even more on the high

abstraction level, the same cannot be said for our aggre-

gation method. C p q # x̄—apart from the aforementioned

drop around 200 samples—is gradually increasing for the

first 300 examples. At the last 100 examples an increase

with a significantly higher gradient is visible. This could

be caused by relations being already present in the baseline

since they were encountered before in iterations classified as

outliers by the aggregation. This explanation could be aided

by the observation that the difference between results of the

baseline for mid and high abstraction levels to low and mid

abstraction levels of the aggregation method is decreasing

with increasing number of examples, almost reaching equality

at 410 examples, hinting at the effect of sufficient data to

calculate meaningful quantifications and conclusions.

Overall, it is evident that a sample of 410 is insufficient

to reach a plateau. Still, this technique can be used to judge

whether data collection should continue or whether a plateau

of the extracted rule set is reached.

D. Applicability in Practice

To study the applicability of the filtered aggregated rule set

in practice, e. g. as a passive assistance system, we utilised the

   

                                                                                                                                             



case study described in Section II. We selected six participants

of varying experience, that did not previously participate in

data collection or ground truth creation. They were presented

with a printing task designed to challenge several quality char-

acteristics. The target criteria was to optimize both quality and

iterations required. To ensure a comparable environment, each

participant utilized the same printer with the same material

and the same initial parametrisation.

The participants were divided in two groups of three. The

baseline was created by the control group that completed the

task solely relying on their previous experience and process

knowledge. The second group was given the rule set aggre-

gated by C p q # x̄ (cf. Rule 4.1 for an example rule).

Rule 4.1: If you encounter warping, try to incrementally

increase the parameter material bed temperature by 5.2.

To conform with the human factor to be expected in produc-

tion scenarios, the operators in the second group could apply

as many rules pertaining to observed quality defects as they

saw fit. However, their degree of FDM relevant expertise was

significantly lower than that of the baseline group. The uneven

split regarding operator experience was chosen to evaluate to

which degree novices (with rules) are able to compete with

experienced operators (without rules). The control group took

a mean of 5.33 iterations with a standard deviation of 0.47,

whereas the rule assisted group took an average of 5.0 iteration

with a standard deviation of 1.4. The high standard deviation

in the rule assisted group is explained by one operator that

required 7 iterations compared to the 4 iterations required by

the other operators.

A comparison of the achieved quality can be seen in

Figure 3, in which the achieved mean quality (consisting of 4

quality characteristics) of both groups is compared. The figure

is truncated at 4 iterations since otherwise the comparability

is not ensured because of the different numbers of iterations

required by the participants. While the environmental temper-

ature was higher for the rule assisted group than the control

group, operators should be able to compensate environmental

temperature based on their experience. Therefore, this does

not explain the general offset in performance. After iteration

4, the achieved quality of the baseline improved while the

one operator of the group utilising rules decreases in achieved

quality until finding a suitable parametrisation at iteration 7.

For eight of the observed 13 occurring quality defects, rules

could be extracted. However, for some quality characteristics

they were erroneous which lead all participants in the rule

assisted group to be unable to significantly improve upon these

quality characteristics. All the more interesting is the fact that

for the first 4 iterations the application of the rules achieves

a better quality faster than the control group, which consisted

of more experienced operators. Apart from the general offset,

this is underpinned by the fact that the difference between

achieved mean quality at iteration 4 is larger than that at

iteration 1. It can be noted that at least some operators had

difficulties in discerning when the optimal attainable quality

was reached, since they continued to explore parametrisations

that did not improve upon the best quality they achieved.

Also, in the rule assisted case different rules were applied.

Due to the inexperienced operators, we assume that this hints

at a high uncertainty while selecting rules. Improving this

could further increase the applicability of the extracted rules

in practice. Overall, the applicability of the extracted rules

in practice can be assessed as positive since they lead to

quicker parametrisations which attain a better quality faster

than the control group. However, because of the small study

size and environmental factors which are hard to control

further investigations should be conducted.

V. RELATED WORK

Our approach is directly related to data-based knowledge

extraction, significantly improving the knowledge aggregation

methodology described by Nordsieck et al. [4].

Also, it relates to the problem of knowledge graph com-

pletion, as candidate triples have to be checked whether to

be included in the knowledge graph or not. Consequently,

work done on filtering candidate triples by Borrego et al. [9]

is conceptually related. However, the main difference is that

in knowledge graph completion candidate triples are usually

generated based on information contained in the knowledge

graph, while in our case they are provided by process data

and operator information gained in a manufacturing process.

Also, in KG completion an existing graph is further refined

whereas in our case the initial graph has to be created, which

leads to inherent differences in filtering methodology.

The field of Organic Computing (OC), dealing with complex

heterogeneous systems similar to our socio-technical system

use case, defines the multifaceted concept of trust [10].

One important aspect of which is credibility, that assesses

good faith participation and competence of partners. While

we currently handle this issue implicitly during aggregation,

dedicated methods to establish trust might improve future

results. Our scenario can be classified as a socio-technical self-

adaptive system, with the operator adapting to observations of

the manufacturing process. According to Ramirez et al. [11]

the most relevant sources of run-time uncertainties are related

to interactions of the system and its context. To address

these, the application of subjective logic to aggregate run-time

observations into actionable knowledge has been proposed

by Petrovska et al. [12]. However, since their methodology

is centred on cyber-physical systems and ours on human

operators it is not directly transferable.

Discovering causal relationships based on observations [13]

is another active research topic that could be utilised to

ascertain reliability of operator given information. Since deep

learning based approaches usually require large datasets, we

assume that the limited and sparse data available in our

scenario would hamper its impact.

Clustering over (explainable) knowledge graph embed-

dings [14], [15] could also serve a similar purpose. However,

the limited sample size available in our scenario probably is

limiting the achievable quality of embeddings. Also, semantic

representation capabilities of embeddings have recently been

questioned [16].

   

                                                                                                                                             



VI. OUTLOOK

Even though the presented methods are an improvement

to the unfiltered baseline, the aggregation mechanism will be

further refined. Classifying whether an operator is building

knowledge through exploring behaviour or exploiting knowl-

edge in a given sample could be addressed by novelty detec-

tion [17], which could then be used to discount information

gathered during explorative behaviour. Alternatively, clustering

of knowledge graph embeddings [15] could be investigated if

a suitable representation for actual parametrisations is found.

To achieve this, however, a different representation of the

knowledge graph is needed.

Furthermore, a detailed evaluation of rules, focussing on

differences between quality characteristics or parameters could

point towards uncertainties of the operators. We plan to

repeat the experiment designed to determine applicability in

practice (cf. Section IV-D) on a larger scale to gain more

dependable results. Since operators exhibited difficulties in

selecting rules to apply we plan to research ways towards a

better operator guidance. One approach would be limiting the

amount of shown rules to those that promise the best results.

Another would be the quantification of the preliminaries of

rules, e. g. quantifying quality, which could lead to rules

with a better defined scope that limits the amount of rules

that could be applied. Also, extending the rule definition

to handle multiple preliminaries would add the ability to

correctly include environmental factors such as temperature

and material as additional preliminaries which would narrow

their applicability.

Another approach towards greater applicability in practice is

an improvement of the aggregation methods. Candidates that

we plan to explore are combinations of aggregation methods

in ensembles and a stronger focus on explicit atomisation of

p-q relations. We will determine whether the ordering of the

input introduces bias and investigate whether shuffling will

mitigate it. Also, different metrics for evaluating the methods’

performance could be improved such as investigating what

amount of the data is covered by which rules.

VII. CONCLUSION

In this paper, we presented the theoretical framework

and an approach to improve the aggregation of data-based

knowledge provided by operators of manufacturing processes

during production by ascertaining its reliability with several

weighing methods and filtering accordingly. In addition, a

methodology to transform the knowledge contained within the

knowledge graph to human readable rules has been proposed.

The methods are evaluated against a ground truth created by

experts, showing a clear best method with an improvement

over the application of a previously published baseline to

our data of 27% and 34% for the two lowest abstraction

levels, which are especially relevant in industrial scenarios.

Furthermore, the effect of sample size on the approach and

thereby data-based knowledge extraction has been investi-

gated. This analysis also provides benefits in practice, where

it can be used as an indicator of rule set completeness, biases

and previously undetected influences. Finally, the applica-

bility of the quantified rules as a passive assistance system

has been evaluated during manufacturing, showing promising

preliminary results (successful parametrisation is found faster

and is better than the one found by the control group at

this iteration). Consequently, expanding and extending our

approach may contribute to mitigate challenges arising from

knowledge loss in manufacturing and support operators in

complex (re-)parametrisations in the future.
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