

FE-Modalanalyse auf Basis von Z88 Eigenschwingungen in der Antriebstechnik

Johannes Wittmann, Florian Hüter

23. Bayreuther 3D-Konstrukteurstag Bayreuth, 14.09.2022

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Stephan Tremmel

Gliederung

- Motivation
- Eigenschwingungsanalyse auf Basis von Z88
- Zwangsbedingungen bei Eigenschwingungen
- Modalanalyse mit Betriebspunkt-Tangentensteifigkeit
- Zusammenfassung, Fazit & Ausblick

Motivation

- Anwendungsgebiete: Zahnradgetriebe und Getriebegehäuse mechanischer Antriebsstränge
- Lösung der Eigenschwingungen im relevanten
 Frequenzbereich wünschenswert

Betriebspunkt-Modalanalyse

- Resonanzfrequenzen bei zugrunde liegendem nichtlinearem Strukturverhalten
- Lösung der Eigenschwingungen unter Berücksichtigung der Tangentensteifigkeit

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Stephan Tremmel

Motivation - Möglichkeiten zur Messung von Schwingungen

Experimentelle Modalanalyse allgemein

- Vibrationsmessungen über montierte Beschleunigungs- und Drehzahlreferenzaufnehmer
- Berührungsfreie Messung über Laser-Doppler-Vibrometrie (optische Interferenz & DOPPLER-Effekt)

[BRENDEL, Doppelkolbenmotor nach RIEG]

[POLYTEC, Hydraulischer Verspannungsprüfstand MORITZ]

→ Messtechnische Validierung der FE-Modalanalyse

Überblick der Lösungsansätze in der Strukturdynamik

Grundlagen Massenmatrix und Bewegungsgleichung

Trägheitsabbildung

Elementweise Erzeugung der Massenmatrix

Konsistente Form

$$\boldsymbol{M}_{e} = \rho_{e} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} N^{T} \boldsymbol{N} \left| \frac{\partial(x, y, z)}{\partial(r, s, t)} \right| dr ds dt$$

Diagonalform nach HINTON

$$\boldsymbol{M}_{ii}^{diag} = \vartheta_e M_{ii} \boldsymbol{I}$$

mit
$$M_{ii} = \int_{V_e} \rho_e N_i^2 dV$$
, $\vartheta_e = \frac{m_e}{\sum_{i=1}^{dof} M_{ii}}$

Compilation zuGesamtmassenmatrix

Schwingungsgleichung aus der FE-Strukturdynamik

$$\boldsymbol{M}\ddot{\boldsymbol{u}}(t) + \boldsymbol{D}\dot{\boldsymbol{u}}(t) + \boldsymbol{K}\boldsymbol{u}(t) = \boldsymbol{F}(t)$$

[HINTON, BATHE, RIEG]

Grundlagen Eigenwertproblem

Ungedämpftes Eigenwertproblem

- Ausgangsgleichung des Schwingungssystems $M\ddot{u}(t) + D\dot{u}(t) + Ku(t) = F(t)$
- Vernachlässigung der Dämpfung in Bewegungsgleichung
 → reelle Eigenwerte und Eigenvektoren als Ergebnis
- Freie Schwingungen
 - \rightarrow keine Berücksichtigung äußerer Kräfte

 $M\ddot{\boldsymbol{u}}(t) + \boldsymbol{K}\boldsymbol{u}(t) = \boldsymbol{0}$

• Lösungsansatz $u = \phi e^{i\omega t}$ ergibt allgemeines Eigenwertproblem (EWP)

 $(\mathbf{K} - \mathbf{\Lambda}\mathbf{M})\boldsymbol{\phi} = 0$

mit Eigenwerten arLambda und Modalmatrix $oldsymbol{\phi}$

Transformation

- Standard-Eigenwertproblem über Cholesky-Zerlegung: $\Lambda \phi = A \phi$ mit $M = LL^{T}$ und $A = L^{-1}KL^{-T}$
- Shift & invert spectral transformation: $(\mathbf{K} - \sigma \mathbf{M})^{-1}\mathbf{M}\mathbf{\phi} = \nu \mathbf{\phi}$ mit $\lambda = \sigma + \frac{1}{\nu}$
- Rücktransformation größter Eigenwerte ν führt zu kleinsten Eigenwerten λ des Originalsystems (allgemeines EWP)

→ Sehr effektiv, um Eigenwerte nahe σ und im **relevanten Frequenzbereich** zu berechnen

Lösung des Eigenwertproblems

Lösungsmethoden

- LANCZOS-Algorithmus (z. B. in Z88Aurora®)
- Implicitly Restarted ARNOLDI Method (IRAM)
 - → Geschwindigkeitsvorteil für große & dicht besetzte Strukturen
 - \rightarrow Verbesserte Konvergenz bei Singularitäten

Ergebnisse

- Eigenfrequenzen $f = \frac{\omega}{2\pi}$ mit $\omega = \sqrt{\lambda}$
- Eigenformvektoren
 - Massennormiert: $\boldsymbol{\varphi}_i^T \boldsymbol{M} \boldsymbol{\varphi}_i = \boldsymbol{I}$
 - Verschiebungsnormiert: $max(|\boldsymbol{\varphi}_i(k)|) = 1$
- Beispiel: Stahlscheibe aus Hexaederelementen (quadr. Ansatz)

Einfluss der Massenmatrixform: Beispielmodell

Konsistent vs. Diagonal

 Gute Übereinstimmung der Eigenfrequenzen aus konsistent & diagonal besetzter Massenmatrix

→ Deutliche **Zeitersparnis** bei ähnlicher Ergebnisgüte

Ergebnisse

- Eigenfrequenzen $f = \frac{\omega}{2\pi}$ mit $\omega = \sqrt{\lambda}$
- Eigenformvektoren
 - Massennormiert: $\boldsymbol{\varphi}_i^T \boldsymbol{M} \boldsymbol{\varphi}_i = \boldsymbol{I}$
 - Verschiebungsnormiert: $max(|\boldsymbol{\varphi}_i(k)|) = 1$
- Beispiel: Stahlscheibe aus Hexaederelementen (quadr. Ansatz)

Einfluss der Massenmatrixform: Beispielmodell

Konsistent vs. Diagonal

- Vergleichsmethode: *Modal Assurance Criterion*
- Prüft Orthogonalität des Eigenvektorpaares über das normierte Skalarprodukt

Ergebnisse

- Eigenfrequenzen $f = \frac{\omega}{2\pi}$ mit $\omega = \sqrt{\lambda}$
- Eigenformvektoren
 - Massennormiert: $\boldsymbol{\varphi}_i^T \boldsymbol{M} \boldsymbol{\varphi}_i = \boldsymbol{I}$
 - Verschiebungsnormiert: $max(|\boldsymbol{\varphi}_i(k)|) = 1$
- Beispiel: Stahlscheibe aus Hexaederelementen (quadr. Ansatz)

[Dresig]

Zwangsbedingungen in der Dynamik

Zwangsbedingungen bei ungedämpften Eigenschwingungen

Berücksichtigung von Kontakt- oder Koppelbedingungen

- Zwangsbedingungen in Ausgangs-Bewegungsgleichung $GU - V = 0 \rightarrow M\ddot{u}(t) + D\dot{u}(t) + Ku(t) = F(t)$
- Einbau in das allgemeine Eigenwertproblem
 - LAGRANGE-Ansatz mit Störparameter

$$\left(\begin{bmatrix}\boldsymbol{K} & \boldsymbol{G}^{T}\\ \boldsymbol{G} & {}^{-1}\!/_{\beta}\boldsymbol{I}\end{bmatrix} - \boldsymbol{\Lambda} \begin{bmatrix}\boldsymbol{M} & \boldsymbol{0}\\ \boldsymbol{0} & \boldsymbol{0}\end{bmatrix}\right)\boldsymbol{\Phi} = \boldsymbol{0}$$

- Penalty-Methode
- $((\boldsymbol{K} + \beta \boldsymbol{G}^{T} \boldsymbol{G}) \boldsymbol{\Lambda} \boldsymbol{M}) \boldsymbol{\Phi} = 0$

• Nichtlineare Kontaktzustandsänderung nur in vorgeschalteter quasi-statischer bzw. transienter Simulation

→ **Betriebspunktlinearisierung**: Kontaktzustand ändert sich in der Eigenschwingungsanalyse nicht

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Stephan Tremmel [ABAQUS, BILLENSTEIN, WISSMANN, WRIGGERS]

Einordnung Betriebspunkt-Modalanalyse

Tangentensteifigkeit in Verbindung mit Shift-Invert-Ansatz

Bedeutung des Shift-Invert-Ansatzes

- Berücksichtigung der Tangentensteifigkeit K_T aus vorgeschalteter nichtlinearer FE-Simulation
- Falls K_T schlecht konditioniert oder singulär und Mschlecht konditioniert ist, existiert ein Shift-Parameter σ , sodass $A = (K_T - \sigma M)$ positiv definit und besser konditioniert ist

Berücksichtigung des Shift-Parameters in der Modalanalyse am Beispiel Getriebestufe

- Frequenzbereich ab f_{σ} = 600 Hz ist von Bedeutung
- Wahl des Shift-Parameters $\sigma = (2\pi f_{\sigma})^2$
- Lösung der Modalanalyse liefert interessiertes Frequenzband

Betriebspunkt-Tangentensteifigkeit

Beispiel: Stahlseil unter Zugbelastung

- Modellinformationen
 - Schub-elastische lineare 2D-Balkenelemente
 - Material: Stahl
 - Querschnitt: 1,979 mm², Länge: 2,54 m
- Berücksichtigung der Tangentensteifigkeit $K_{\rm T}$ unterschiedlicher Lastschritte im allgemeinen EWP $(K_{\rm T} - \Lambda M)\phi = 0$

Loslager

Lehrstuhl für Konstruktionslehre und CAD Prof. Dr.-Ing. Stephan Tremmel

Festlager

[Abaqus2]

Zusammenfassung & Fazit

Zusammenfassung

- Transformation über Shift-Invert-Ansatz
- Massen- oder Verschiebungsnormierung von Eigenformvektoren
- Zwangsbedingungen bei Eigenschwingungen
- Berücksichtigung der Betriebspunkt-Tangentensteifigkeit aus vorliegendem Kontaktzustand bzw. aus geometrisch großer Verformung (Versteifung infolge Belastung)

Fazit & Ausblick

- Hohe Übereinstimmung zwischen Eigenfrequenzen & -vektoren aus diagonal und konsistent besetzter Massenmatrix
- Betriebspunktmodalanalyse als Grundlage f
 ür dynamische Reduktionsmethoden
- Integration in die Bedienoberfläche Z88Aurora®

Literatur

FVA Workbench	FVA GmbH; https://www.fva-service.de/en/software/ aufgerufen am 14.08.2022
BRENDEL	Brendel, Joachim: Berechnung, Konstruktion und Prüfstandsverifikation des Massenausgleichs am Doppelkolben-Zweitaktmotor. Masterarbeit, Uni Bayreuth, 2016
POLYTEC	Polytec GmbH: PSV-Auswertungssoftware, Version 10. www.polytec.com, aufgerufen am 15.06.2022
GROTH	Groth, Clemens; Müller, Günter; Stelzmann, Ulrich: Strukturdynamik: Basiswissen und Arbeitsbeispiele zu FEM-Anwendungen der Strukturdynamik. expert Verlag, 2000
BATHE	Bathe, K. J.: Finite Element Procedures. 2nd edition, Prentice Hall, Pearson Education Inc, Watertown, MA, 2014
HINTON	Hinton, E.; Rock, T.; Zienkiewicz, O. C.: A Note on Mass Lumping and Related Processes in the Finite Element Method. Earthquake Engineering and Structural Dynamics, Vol. 4, 1976
GASCH	Gasch, Robert; Knothe, Klaus; Liebich, Robert: Strukturdynamik – Diskrete Systeme und Kontinua. 3. Auflage, Berlin, Heidelberg: Springer-Verlag, 2021
NASDALA	Nasdala, Lutz: FEM-Formelsammlung Statik und Dynamik. München, 3. Auflage, Springer Vieweg, 2015
KÖCKLER	Köckler, Norbert: Numerical Methods and Scientific Computing. Clarendon Press, Oxford, 1994
LEHOUCQ	Lehoucq, Richard B.; Sorensen D. C.; Yang C.: ARPACK Users' Guide. Society for Industrial and Applied Mathematics, 1998
HETMANIUK	Hetmaniuk, Ulrich; Lehoucq, Richard B.: Uniform Accuracy of Eigenpairs from a Shift-Invert Lanczos Method. SIAM Journal on Matrix Analysis and Applications, 2006
RIEG	Rieg, Frank; Hackenschmidt, Reinhard; Alber-Laukant, Bettina: Finite Elemente Analyse für Ingenieure. 6. Auflage, Carl Hanser Verlag, München, 2019
DRESIG	Dresig, Hans; Fidlin, Alexander: Schwingungen mechanischer Antriebssysteme. 4. Auflage, Berlin, Heidelberg: Springer Vieweg, 2020
ABAQUS	Dassault Systemes: Linear perturbation analysis https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt03ch06s01aus36.html#usb-anl-alinearnonlinear, aufgerufen am 24.08.2022
BILLENSTEIN	Billenstein, Daniel; Glenk, Christian; Diwisch, Pascal; Rieg, Frank: Investigation of contact settings on the result of topology optimization to avoid contact stiffness supports, Schumacher, A.; Vietor, T.; Fiebig, S.; Bletzinger, K. U.; Maute, K., Advances in Structural and Multidisciplinary Optimization, WCSMO 2017, Springer, Cham, 1455-1467, 2018. doi:10.1007/978-3-319-67988-4_110, 2017
WISSMANN	Wissmann, Johannes; Sarnes, Klaus-Dieter: Finite Elemente in der Strukturmechanik, 1. Auflage, Springer, Berlin Heidelberg, 2006
WRIGGERS	Wriggers, Peter: Computational Contact Mechanics, 2nd edition, Springer, Berlin Heidelberg, 2006
FVA 892 I	Namhoff, Christian; Stephan, Rainer; Hammerl, Georg; Brimmers, Jens; Brecher, Christian; Haefke, Norbert: FE-Berechnung Kunststoffzahnräder in der FVA-Workbench. Abschlussbericht FVA 892 I, Heft 1493, 2022
ABAQUS2	Dassault Systemes: Vibration of a cable under tension, https://abaqus-docs.mit.edu/2017/English/SIMACAEBMKRefMap/simabmk-c-vibrationcable.htm, aufgerufen am 24.08.2022

