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Abstract
Arguably, the most important open problem in the theory of q-analogs of designs is the
question regarding the existence of a q-analog D of the Fano plane. As of today, it remains
undecided for every single prime power order q of the base field. A point P is called an
α-point of D if the derived design of D in P is a geometric spread. In 1996, Simon Thomas
has shown that there always exists a non-α-point. For the binary case q = 2, Olof Heden
and Papa Sissokho have improved this result in 2016 by showing that the non-α-points must
form a blocking set with respect to the hyperplanes. In this article, we show that a hyperplane
consisting only of α-points implies the existence of a partition of the symplectic generalized
quadrangle W (q) into spreads. As a consequence, the statement of Heden and Sissokho is
generalized to all primes q and all even values of q .
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1 Introduction

Due to the connection to network coding, the theory of subspace designs has gained a lot
of interest recently. Subspace designs are the q-analogs of combinatorial designs and arise
by replacing the subset lattice of the finite ambient set V by the subspace lattice of a finite
ambient vector spaceV . Arguably themost important openproblem in this field is the question
regarding the existence of a q-analog of the Fano plane, which is a subspace design with the
parameters 2-(7, 3, 1)q . This problem has already been stated in 1972 by Ray-Chaudhuri [3,
Problem 28]. Despite considerable investigations, its existence remains undecided for every
single order q of the base field.
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A q-analog of the Fano plane would be a [7, 4; 3]q constant dimension subspace code
of size q8 + q6 + q5 + q4 + q3 + q2 + 1. However, the hitherto best known sizes of such
constant dimension subspace codes still leave considerable gaps, namely 333 vs. 381 in the
binary case [14] and 6978 vs. 7651 in the ternary case [16].1 Furthermore, it has been shown
that the smallest instance q = 2, the binary q-analog of a Fano plane, can have at most a
single nontrivial automorphism [5, 20].

Another approach has been the investigation of the derived designs of a putative q-analog
D of the Fano plane. A derived design exists for each point P ∈ PG(6, q) and is always a
q-design with the parameters 1-(6, 2, 1)q , which is the same as a line spread of PG(5, q).
Following the notation of [13], a point P is called an α-point of D if the derived design in P
is the geometric spread, which is the most symmetric and natural one among the line spreads
of PG(5, q). For highest possible regularity, one would expect all points to be α-points.

However, this has been shown to be impossible, as there must always be at least one non-
α-point of D [28]. For the binary case q = 2, this result has been improved to the statement
that each hyperplane contains at least one non-α-point [13]. In other words, the non-α-points
of a binary q-analog of the Fano plane form a blocking set with respect to the hyperplanes.

In this article, α-points will be investigated for general values of q , which leads to the
following theorem.

Theorem 1 Let D be a q-analog of the Fano plane and assume that there exists a hyperplane
H such that all points of H are α-points of D. Then the following equivalent statements hold:

(a) The line set of the symplectic generalized quadrangle W (q) is partitionable into spreads.
(b) The point set of the parabolic quadric Q(4, q) is partitionable into ovoids.

As a consequence, we get the following generalization of the result of [13].

Theorem 2 Let D be a q-analog of the Fano plane and q be prime or even. Then each
hyperplane contains a non-α-point. In other words, the non-α-points form a blocking set
with respect to the hyperplanes.

2 Preliminaries

Throughout the article, q �= 1 is a prime power and V is a vector space over Fq of finite
dimension v.

2.1 The subspace lattice

For simplicity, a subspace U of V of dimension dimFq (U ) = k will be called a k-subspace.

The set of all k-subspaces of V is called the Graßmannian and will be denoted by
[V

k

]
q .

Picking the “best of two worlds”, we will prefer the algebraic dimension dimFq (U ) over the
geometric dimension dimFq (U ) − 1, but we will otherwise make heavy use of geometric
notions, such as calling the 1-subspaces of V points, the 2-subspaces lines, the 3-subspaces
planes, the 4-subspaces solids and the (v − 1)-subspaces hyperplanes. In fact, the subspace
lattice L(V ) consisting of all subspaces of V ordered by inclusion is nothing else than the

1 As noticed by Daniel Heinlein, the [7, 4; 3]3 code of size 6977 constructed in [16] can be extended trivially
by adding a further codeword.
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On α-points of q-analogs of the Fano plane

finite projective geometry PG(v − 1, q) = PG(V ).2 There are good reasons to consider the
subset lattice as a subspace lattice over the unary “field” F1 [11].

The number of all k-subspaces of V is given by the Gaussian binomial coefficient

#

[
V

k

]

q
=

[
v

k

]

q
=

{
(qv−1)···(qv−k+1−1)

(qk−1)···(q−1)
if k ∈ {0, . . . , v};

0 otherwise.

The Gaussian binomial coefficient
[
v
1

]
q is also known as the q-analog of the number v and

will be abbreviated as [v]q .
For S ⊆ L(V ) and U , W ∈ L(V ), we will use the abbreviations

S|U = {B ∈ S | U ≤ B},
S|W = {B ∈ S | B ≤ W } and

S|WU = {B ∈ S | U ≤ B ≤ W }.
For a point P in a plane E , the set of all lines in E passing through P is known as a line
pencil.

The subspace lattice L(V ) is isomorphic to its dual, which arises from L(V ) by reversing
the order. Fixing a non-degenerate bilinear form β on V , a concrete isomorphism is given by
U �→ U⊥, where U⊥ = {x ∈ V | β(x,u) = 0 for all u ∈ U }. When addressing the dual of
some geometric object in PG(V ), we mean its (element-wise) image under this map. Up to
isomorphism, the image does not depend on the choice of β.

2.2 Subspace designs

Definition 2.1 Let t, v, k be integers with 0 ≤ t ≤ k ≤ v− t and λ another positive integer. A
set D ⊆ [V

k

]
q is called a t-(v, k, λ)q subspace design if each t-subspace of V is contained in

exactly λ elements (called blocks) of D. In the important case λ = 1, D is called a q-Steiner
system.

The earliest reference for subspace designs is [10]. It is stated that “Several people have
observed that the concept of a t-design can be generalised […]”, so the idea might been
around before. Subspace designs have also been mentioned in a more general context in [12].
The first nontrivial subspace designs with t ≥ 2 have been constructed in [27], and the first
nontrivial Steiner system with t ≥ 2 in [4]. An introduction to the theory of subspace designs
can be found at [7], see also [25, Day 4].

Subspace designs are interlinked to the theory of network coding in various ways. To this
effect we mention the recently found q-analog of the theorem of Assmus and Mattson [9],
and that a t-(v, k, 1)q Steiner system provides a (v, 2(k − t + 1); k)q constant dimension
network code of maximum possible size.

Classical combinatorial designs can be seen as the limit case q = 1 of subspace designs.
Indeed, quite a few statements about combinatorial designs have a generalization to subspace
designs, such that the case q = 1 reproduces the original statement [6, 18, 19, 22].

One example of such a statement is the following [26, Lemma 4.1(1)], see also [18,
Lemma 3.6]: If D is a t-(v, k, λ)q subspace design, then D is also an s-(v, k, λs)q subspace

2 In established symbols like PG(v − 1, q), the geometric dimension v − 1 is not altered.
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design for all s ∈ {0, . . . , t}, where

λs := λ

[
v−s
t−s

]
q

[k−s
t−s

]
q

.

In particular, the number of blocks in D equals

#D = λ0 = λ

[
v
t

]
q

[k
t

]
q

.

So, for a design with parameters t-(v, k, λ)q , the numbers λs necessarily are integers for all
s ∈ {0, . . . , t} (integrality conditions). In this case, the parameter set t-(v, k, λ)q is called
admissible. It is further called realizable if a t-(v, k, λ)q design actually exists. The smallest
admissible parameters of a nontrivial q-analog of a Steiner systemwith t ≥ 2 are 2-(7, 3, 1)q ,
which are the parameters of the q-analog of the Fano plane. This explains the significance
of the question of its realizability.

The numbers λi can be refined as follows. Let i, j be non-negative integers with i + j ≤ t
and let I ∈ [V

i

]
q and J ∈ [ V

v− j

]
q
. By [26, Lemma 4.1], see also [7, Lemma 5], the number

λi, j := #D|J
I = λ

[
v−i− j

k−i

]
q[

v−t
k−t

]
q

only depends on i and j , but not on the choice of I and J . Apparently, λi,0 = λi . The numbers
λi, j are important parameters of a subspace design. A further generalization is given by the
intersection numbers in [19].

A nice way to arrange the numbers λi, j is the following triangle form, which may be
called the q-Pascal triangle of the subspace design D.

λ0,0
λ1,0 λ0,1

λ2,0 λ1,1 λ0,2

. .
.

. .
. . . .

. . .

λt,0 λt−1,1 . . . λ1,t−1 λ0,t

For a q-analog of the Fano plane, we get:

λ0,0 = q8 + q6 + q5 + q4 + q3 + q2 + 1
λ1,0 = q4 + q2 + 1 λ0,1 = q5 + q3 + q2 + 1

λ2,0 = 1 λ1,1 = q2 + 1 λ0,2 = q2 + 1

The proof of the result of this article will make use of the equality λ1,1 = λ0,2 in the above
triangle.

As a consequence of the numbers λi, j , the dual design D⊥ = {B⊥ | B ∈ D} is a subspace
design with the parameters

t-

⎛

⎝v, v − k,

[
v−t

k

]
q[

v−t
k−t

]
q

⎞

⎠

q

.

For a point P ≤ V , the derived design of D in P is the set of blocks

DerP (D) = {B/P | B ∈ D|P }
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in the ambient vector spaceV /P .3 By [18],DerP (D) is a subspace designwith the parameters
(t − 1)-(v − 1, k − 1, λ)q . In the case of a q-analog of the Fano plane, DerP (D) has the
parameters 1-(6, 2, 1)q .

2.3 Spreads

A 1-(v, k, 1)q Steiner system S is just a partition of the point set of V into k-subspaces.
These objects are better known under the name (k − 1)-spread and have been investigated
in geometry well before the emergence of subspace designs. A 1-spread is also called a line
spread.

A set S of k-subspaces is called a partial (k − 1)-spread if each point is covered by at
most one element of S. The points not covered by any element are called holes. A recent
survey on partial spreads is found in [17].

The parameters 1-(v, k, 1)q are admissible if and only v is divisible by k. In this case,
spreads do always exist [24, Sect. VI]. An example can be constructed via field reduction:
We consider V as a vector space over Fqk and set S = [V

1

]
qk . Switching back to vector spaces

over Fq , the set S is a (k − 1)-spread of V , known as the Desarguesian spread.
A (k − 1)-spread S is called geometric or normal if for two distinct blocks B, B ′ ∈ S,

the set S|B+B′
is always a (k − 1)-spread of B + B ′. In other words, S is geometric if every

2k-subspace of V contains either 0, 1 or [2k]q/[k]q = qk + 1 blocks of S. It is not hard to
see that the Desarguesian spread is geometric. In fact, it follows from [2, Theorem 2] that a
(k − 1)-spread is geometric if and only if it is isomorphic to a Desarguesian spreads.

The derived designs of a q-analog of the Fano plane D are line spreads in PG(5, q). The
most symmetric one among these spreads is the Desarguesian spread. Following the notation
of [13], a point P is called an α-point of the q-analog of the Fano plane D if the derived
design in P is the geometric spread.4

We remark that in the binary case q = 2, the line spreads of PG(5, q) have been classified
into 131 044 isomorphism types in [21].

2.4 Generalized quadrangles

Definition 2.2 A generalized quadrangle is an incidence structure Q = (P,L, I ) with a
non-empty set of points P , a non-empty set of lines L, and an incidence relation I ⊆ P ×L
such that

(i) Two distinct points are incident with at most a line.
(ii) Two distinct lines are incident with at most one point.
(iii) For each non-incident point-line-pair (P, L) there is a unique incident point-line-pair

(P ′, L ′) with P I L ′ and P ′ I L .

Generalized quadrangles have been introduced in the more general setting of generalized
polygons in [29], as a tool in the theory of finite groups.

A generalized quadrangle Q = (P,L, I ) is called degenerate if there is a point P such
that each point of Q is incident with a line through P . If each line of Q is incident with

3 The expressions V /P and B/P are quotients of Fq -vector spaces. In this way, B/P = {x + P | x ∈ B} is
an Fq -subspace of V /P = {x + P | x ∈ V } for every block B ∈ D|P .
4 The definition of an α-point in [13] does not use the notion of a geometric spread. Instead, the property of a
geometric spread in the factor space V /P has been written down explicitly, so the definitions are equivalent.
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t + 1 points, and each point is incident with s + 1 lines, we say that Q is of order (s, t).
The dual Q⊥ arises from Q by interchanging the role of the points and the lines. It is again
a generalized quadrangle. Clearly, (Q⊥)⊥ = Q, and Q is of order (s, t) if and only if Q⊥ is
of order (t, s).

Furthermore, Q is said to be projective if it is embeddable in someDesarguesian projective
geometry in the following sense: There is a Desarguesian projective geometry (P,L, Ī ) such
that P ⊆ P̄ , L ⊆ L̄, for all (P, L) ∈ P × L we have P I L if and only if P Ī L , and for
each point P ∈ P̄ with P Ī L for some line L ∈ L we have P ∈ P .5 The non-degenerate
finite projective generalized quadrangles have been classified in [8, Theorem 1], see also [23,
4.4.8]. These are exactly the so-called classical generalized quadrangleswhich are associated
to a quadratic form or a symplectic or Hermitian polarity on the ambient geometry, see [23,
3.1.1].

In this article, two of these classical generalized quadrangles will appear.

(i) The symplectic generalized quadrangle W (q) consisting of the set of points of PG(3, q)

together with the totally isotropic lines with respect to a symplectic polarity. Taking
the geometry as PG(F4

q), the symplectic polarity can be represented by the alternating
bilinear form β(x, y) = x1y2 − x2y1 + x3y4 − x4y3. The configuration of the lines L
in PG(3, q) is also known as a (general) linear complex of lines, see [23, 3.1.1 (iii)] or
[15, Theorem 15.2.13]. Under the Klein correspondence, L is a non-tangent hyperplane
section of the Klein quadric.

(ii) The second one is the parabolic quadric Q(4, q), whose points P are the zeros of a
parabolic quadratic form in PG(4, q), and whose lines are all the lines contained in P .
Taking the geometry as PG(F5

q), the parabolic quadratic form can be represented by

q(x) = x1x2 + x3x4 + x25 .

Both W (q) and Q(4, q) are of order (q, q). By [23, 3.2.1] they are duals of each other,
meaning that W (q)⊥ ∼= Q(4, q).

Let Q = (P,L, I ) be a generalized quadrangle. As in projective geometries, a set S ⊆ L
is called a spread of Q if each point of Q is incident with a unique line in S. Dually, a
set O ⊆ P is called an ovoid of Q if each line of Q is incident with a unique point in O.
Clearly, the spreads of Q bijectively correspond to the ovoids of Q⊥. This already shows the
equivalence of parts (a) and (b) in Theorem 1.

3 Proof of the theorems

For the remainder of the article, we fix v = 7 and assume that D ⊆ [V
3

]
q is a q-analog of the

Fano plane. The numbers λi, j are defined as in Sect. 2.2.
By the design property, the intersection dimension of two distinct blocks B, B ′ ∈ D is

either 0 or 1. So by the dimension formula, dim(B + B ′) ∈ {5, 6}. Therefore two distinct
blocks contained in a common 5-space always intersect in a point. Moreover, a solid S of V
contains either a single block or no block at all. We will call S a rich solid in the former case
and a poor solid in the latter.

Remark 3.1 By [19, Remark 4.2], the poor solids form a dual 2-(7, 3, q4)q subspace design.
By the above discussion, the λ0,2 = q2 + 1 blocks in any 5-subspace F form dual partial
spread in F . The poor solids contained in F are exactly the holes of that partial spread.

5 As pointed out by a referee, the latter condition is indeed necessary, as otherwise the generalized quadrangle
T ∗
2 (O) in [23, 3.1.3] would be projective.
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We will call a 5-subspace F a β-flat with focal point P ∈ [F
1

]
q if all the λ0,2 = q2 + 1

blocks contained in F pass through P .

Lemma 3.2 The focal point of a β-flat is uniquely determined.

Proof Assume that P �= Q are focal points of a β-flat F . Then all λ0,2 = q2 + 1 > 1 blocks
in F pass through the line P + Q, contradicting the Steiner system property. �
Lemma 3.3 Let H be a hyperplane and P a point in H. Then P is the focal point of at most
one β-flat in H.

Proof There are λ1,1 = q2 + 1 blocks in H passing through P . For any β-flat F < H with
focal point P , all these blocks are contained in F .

Now assume that there are two such β-flats F �= F ′. Then the q2 + 1 > 1 blocks in
D|H

P are contained in F ∩ F ′. This is a contradiction, since dim(F ∩ F ′) ≤ 4 and any solid
contains at most a single block. �
Lemma 3.4 Let F ∈ [V

5

]
q be a β-flat with focal point P.

(a) Each point in F different from P is covered by a unique block in F.
In other words, D|F/P is a line spread of F/P ∼= PG(3, q).

(b) A solid S of F is poor if and only if it does not contain P.
(c) For all poor solids S of F, the set {B ∩ S | B ∈ D|F } is a line spread of S.

Proof Part (a): As the blocks in D|F intersect each other only in the point P , the number of
points in

[F
1

]
q\{P} covered by these blocks is (q2+1)(

[3
1

]
q−1) = q4+q3+q2+q = [5

1

]
q−1.

Therefore, each point in F that is different from P is covered by a single point in D|F .
Part (b): The number of solids in F containing one of the q2 + 1 blocks in F is (q2 + 1) ·[5−3

4−3

]
q

= (q2+1)(q +1) = q3+q2+q +1.6 These solids are rich.Moreover, the q4 solids in

F not containing P do not contain a block, so they are poor. As q4+(q3+q2+q+1) = [5
4

]
q is

already the total number of solids in F , the poor solids in F are precisely those not containing
P .

Part (c): Let S be a poor solid of F . For every block B in F we have dim(B ∩ S) ≤ 2 as S
is poor, and moreover dim(B ∩ S) ≥ dim(B) + dim(S) − dim(F) = 3 + 4 − 5 = 2 by the
dimension formula. So for all blocks B in F we get that B + S = F and B ∩ S is a line. By
parts (a) and (b) , every point of the poor solid S is contained in a unique block in F . Hence
{B ∩ S | B ∈ D and B + S = F} is a line spread of S. �
Lemma 3.5 Let P be an α-point and B, B ′ ∈ D two blocks with B ∩ B ′ = P. Then B + B ′
is a β-flat with focal point P.

Proof Since P = B ∩ B ′ is a point, F = B + B ′ is a 5-subspace. Since P is an α-point, we
have that {B ′′/P | B ′′ ∈ D|F

P } is a line spread of F/P ∼= F
4
q . Such a line spread contains

[4]q/[2]q = q2 +1 lines, so F contains q2 +1 blocks passing through P . However, the total
number of blocks contained in F is only λ0,2 = q2 + 1, so all the blocks contained in F pass
through P . �
Lemma 3.6 Let F be a 5-subspace such that all points of F are α-points. Then F is a β-flat.

6 Remember that a solid cannot contain 2 blocks.
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Proof The 5-subspace F contains λ0,2 = q2 + 1 > 1 blocks. Let B and B ′ be two distinct
blocks in F . Then P = B ∩ B ′ is a point and F = B + B ′. By assumption, P is an α-point,
so by Lemma 3.5, P is the focal point of the β-flat F . �
Remark 3.7 The statement of Lemma 3.6 is still true if F contains a single non-α-point Q.
Then either all blocks contained in F pass through Q, or there are two distinct blocks B, B ′
in F such that P = B ∩ B ′ �= Q. In the latter case, all blocks pass through the α-point P as
in the proof of Lemma 3.6.

Lemma 3.8 Let H be a hyperplane and P an α-point contained in H. Then H contains a
unique β-flat whose focal point is P.

Proof There are λ1,1 = q2 + 1 > 1 blocks in H containing P . Let B, B ′ ∈ D|H
P . Then

P = B ∩ B ′. By Lemma 3.5, the α-point P is the focal point of the β-flat F = B + B ′. By
Lemma 3.3, the β-flat F is unique. �

Now we fix a hyperplane H of V and assume that all its points are α-points.
By Lemma 3.6, every 5-subspace F of H is a β-flat. We denote its unique focal point by

α(F). Moreover by Lemma 3.8, each point P of H is the focal point of a unique β-flat F in
H . We will denote this β-flat by β(P). Clearly, the mappings

α :
[

H

5

]

q
→

[
H

1

]

q
and β :

[
H

1

]

q
→

[
H

5

]

q

are inverse to each other. So they provide a bijective correspondence between the points and
the 5-subspaces of H .

Lemma 3.9 Let B be a block in H.

(a) For all points P of B, B ≤ β(P).
(b) For all 5-subspaces F in H containing B, α(F) ≤ B.

Proof For part (a), let P be a point on B. There are λ1,1 = q2+1 blocks in H passing through
P , which equals the number λ0,2 of blocks in β(P) (which all pass through P). Therefore,
B ≤ β(P).

For part (b), let F be a 5-subspace containing B. All blocks in F pass through its focal
point α(F). �

For the remainder of this article, we fix a poor solid S of H . Note that by Lemma 3.4(b),
every 5-subspace of H contains a suitable solid S.7 The set of

[6−4
5−4

]
q

= q + 1 intermediate

5-subspaces F with S < F < H will be denoted by F . For each F ∈ F , the set LF :=
{B ∩ S | B ∈ D|F } is a line spread of S by Lemma 3.4(c).

Lemma 3.10 The line spreads LF with F ∈ F are pairwise disjoint.

Proof Let F, F ′ ∈ F and L ∈ LF ∩ LF ′ . Then L = B ∩ S = B ′ ∩ S with B ∈ D|F and
B ′ ∈ D|F ′

. So B and B ′ are two blocks passing through the same line L . The Steiner system
property gives B = B ′. Hence F = B + S = B ′ + S = F ′. �

Now let L = ⋃
F∈F LF .

7 Using the fact that the poor solids form a dual 2-(7, 3, q4)q subspace design in V [19, Remark 4.2], the
total number of poor solids S in H is q4 · λ1,0 = q8 + q6 + q4 = q4(q2 + q + 1)(q2 − q + 1).
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Lemma 3.11 The set L consists of q3 + q2 + q + 1 lines of S and is partitionable into q + 1
line spreads of S.

Proof By Lemma 3.10, the sets LF are pairwise disjoint, so L is a set of #F · #D|F =
(q +1)(q2 +1) = q3 +q2 +q +1 lines in S admitting a partition into the q +1 line spreads
LF with F ∈ F . �
Lemma 3.12 For each point P of S, L|P is a line pencil in the plane EP = β(P) ∩ S.

Proof Let P be a point in S.
By Lemma 3.4(b), the poor solid S is not contained in the 5-subspace β(P). Therefore,

dim(β(P) ∩ S) ≤ 3. On the other hand, as both S and β(P) are contained in H , we have
dim(β(P) + S) ≤ dim(H) = 6 and therefore by the dimension formula dim(β(P) ∩ S) =
dim(β(P)) + dim(S) − dim(β(P) + S) ≥ 3. Hence EP = β(P) ∩ S is a plane.

Let L ∈ L|P . Then there is a block B ∈ D|H with B ∩ S = L . By Lemma 3.9(a),
B ≤ β(P). So L = B ∩ S ≤ β(P) ∩ S = EP . As the disjoint union of q + 1 line spreads of
S, L contains q + 1 lines passing through P . Therefore, these lines form a line pencil in EP

through P . �
Lemma 3.13 The incidence structure (

[S
1

]
q ,L,⊆) is a projective generalized quadrangle of

order (s, t) = (q, q).

Proof Clearly, every line in L contains q + 1 points in S. By Lemma 3.11, through every
point in S there pass q + 1 lines in L. Now let P be a point in S and L ∈ L not containing P .

By Lemma 3.10, there is a unique F ∈ F with L ∈ LF , and there is a line L ′′ ∈ LF

passing through P . By Lemma 3.12, L ′′ < EP , so we get L �< EP as otherwise L and L ′′
would be distinct intersecting lines in the spreadLF . Moreover, L and EP are both contained
in S, so they cannot have trivial intersection. Therefore L ∩ EP is a point.

Now let P ′ ∈ [S
1

]
q and L ′ ∈ L with L ∩ L ′ = P ′ and P + P ′ = L ′. Then L ′ is a line

through P , so L ′ < EP . So necessarily P ′ = EP ∩ L and L ′ = P + P ′, showing that P ′
and L ′ are unique.

By Lemma 3.12 indeed L ′ ∈ L, as P + P ′ is a line in EP containing P . This shows
that P ′ and L ′ do always exist and therefore, the incidence structure (

[S
1

]
,
L) is a generalized

quadrangle of order (q, q). �
Lemma 3.14 (

[S
1

]
q ,L,⊆) is isomorphic to W (q).

Proof By Lemma 3.13 we know that Q = (
[S
1

]
q ,L,⊆) is a finite generalized quadrangle

of order (s, t) = (q, q) embedded in PG(S). By the classification in [8, Theorem 1] (see
also [23, 4.4.8]), we know that Q is a finite classical generalized quadrangle which are listed
in [23, 3.1.2]. Comparing the orders and the dimension of the ambient geometry, the only
possibility for Q is the symplectic generalized quadrangle W (q). �

Now we can prove our main result.

Proof of Theorem 1 Part (a) follows from Lemmas 3.14 and 3.11. The equivalence of parts (a)
and (b) has already been discussed at the end of Sect. 2.4. �

Theorem 2 is now a direct consequence.

Proof of Theorem 2 We show that the statement in Theorem 1(b) is not satisfied.
For q prime, the only ovoids of Q(4, q) are the elliptic quadrics Q−(3, q) [1, Cor. 1].

As any two such quadrics have nontrivial intersection, there is no partition of Q(4, q) into
ovoids.

For q even, Q(4, q) does not admit a partition into ovoids by [23, 3.4.1 (i)]. �
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5. Braun M., Kiermaier M., Nakić A.: On the automorphism group of a binary q-analog of the Fano plane.
Eur. J. Comb. 51, 443–457 (2016).

6. Braun M., Kiermaier M., Kohnert A., Laue R.: Large sets of subspace designs. J. Comb. Theory Ser. A
147, 155–185 (2017).

7. Braun M., Kiermaier M., Wassermann A.: q-analogs of designs: Subspace designs. In: Greferath M.,
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