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Abstract
Self-heating normal domains in thin superconducting NbTiN nanostrips with the granular
structure were characterized via steady-state hysteretic current–voltage characteristics measured
at different substrate temperatures. The temperature dependence and the magnitude of the
current, which sustains a domain in equilibrium at different voltages, can only be explained with
a phonon heat capacity noticeably less than expected for 3D Debye phonons. This reduced heat
capacity coincides with the value obtained earlier from magnetoconductance and photoresponse
studies of the same films. The rate of heat flow from electrons at a temperature Te to phonons in
the substrate at a temperature TB is proportional to (Tpe −TpB) with the exponent p≈ 3, which
differs from the exponents for heat flows mediated by the electron–phonon interaction or by
escaping of 3D Debye phonons via the film/substrate interface. We attribute both findings to the
effect of grains on the phonon spectrum of thin NbTiN films. Our findings are significant for
understanding the thermal transport in superconducting devices exploiting thin granular films.

Keywords: superconducting nanostrips, granular films, phonon heat capacity,
self-heating process

(Some figures may appear in colour only in the online journal)

1. Introduction

Low-dimensional superconducting structures (e.g. thin films,
nanowires, nanotubes, nanoparticles, and superlattices) have
become building blocks for various fascinating applications,
such as single-photon detectors, hot-electron bolometers,
kinetic inductance detectors, quantum interference devices,
quantum bits (qubits), and other circuit elements [1–6]. For
the design and optimization of these elements, the knowledge
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of transport and thermodynamic properties is crucial while
qualitative understanding of the impact of reduced dimension-
ality on these properties is of fundamental interest. Since, at
sufficiently low temperatures, the phononwavevectors perpen-
dicular to the film plane become restricted by the reciprocal
film thickness, the phonon spectrum undergoes strong modi-
fications that manifest in a considerable change of the thermal
conductivity [7] and heat capacity [8] of phonons. Although
the size effect in the phonon heat capacity has been stud-
ied theoretically (for films [8], nanowires [9], and spherical
grains [10, 11]), the available models are limited to crystal-
line specimens. Most superconducting devices, however, util-
ize amorphous and polycrystalline, granular materials.

We have recently reported [12, 13] a reduction of phonon
heat capacities (figure 8 in [13]) in thin polycrystalline granu-
lar films at low temperatures that was attributed to the effect of
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the mean grain size on the phonon spectrum, namely, isotropic
depletion of long-wavelength phonon states. This result was
derived from extensive studies of themagnetoconductance and
photoresponse of thin NbTiN, NbN, and WSi films. To sup-
port these findings and to verify the consistency of techniques
in the steady state and in the time domain, here we analyze
hysteretic current–voltage characteristics (CVCs) of supercon-
ducting NbTiN strips. Hysteresis appears in the regime of cur-
rent bias as the difference between the experimental critical
(switching) current IC and the return current Ir, at which the
strip returns to the superconducting state when the bias cur-
rent in the normal state is gradually decreased. In the voltage-
bias regime, Ir defines the current plateau, which is commonly
affiliated to a self-heating normal domain with the length con-
trolled by the applied voltage. The domain remains in equi-
librium, which is set by the balance between Joule heating of
electrons by Ir and their cooling via heat diffusion along the
strip and heat flow in the substrate.

The model of the self-heating normal domain describ-
ing hysteresis was first proposed in [14]. For small differ-
ences between the superconducting transition temperature, TC,
and the bath (substrate) temperature, TB, the authors found
that the heat flow from the strip to the underlying substrate
is Q∝ (T−TB) where T is the strip temperature. In order
to cover larger differences between TC and TB, this model
was further modified by an introduction of the heat flow
Q= K(Tp−TpB), where K is the effective thermal conduct-
ance. The approach with p= 4 was implemented in [15]. This
value of the exponent p is provided by a microscopic model
[16] for the heat flow between two solids across their inter-
face via 3D Debye phonons. Further modifications of the self-
heating normal domain model were made by incorporating the
state (normal/superconducting) and temperature dependence
of the electron thermal conductivity [17–20] or by varying the
exponent p [21, 22]. Microscopic models [16, 23, 24] describ-
ing the heat flow from electrons to phonons in the film and
further to phonons in the substrate show that the exponent p is
not necessary an integer and may have any value from 4 to 6.
The value of p in a particular film is controlled by the dimen-
sionality of phonons and by the degree of disorder.

In this study, we analyze hysteretic CVCs of granular dis-
ordered NbTiN strips with different thicknesses. We apply a
modified model of the self-heating normal domain with an
arbitrary exponent p in order to account for the effect of dis-
order and the effect of the mean grain size on the heat flow.
Furthermore, we considered the heat transfer between three
different systems (electrons and phonons in the film and phon-
ons in the substrate) and address the microscopic meaning of
the exponent p and the effective thermal conductance.

2. Experiment and results

The strips were fabricated from two NbTiN films with thick-
nesses, d, of 6 and 9 nm, which were studied earlier in [13].
The films were deposited on Si substrates on top of a 270 nm-
thick thermally-grown SiO2 layer. They were shaped into
straight strips with a length, L, of 150µm and a width, w, of
200 nm. In order to reduce current crowding, the strips were

Figure 1. (a) Sketch of the studied specimens (not in scale).
(b) Curves (solid and dashed) represent CVCs of the NbTiN strip
with d= 6 nm measured at the bath temperature 2.9K. The legend
indicates the sweep directions and the corresponding bias regimes.
Symbols represent discrete CVC points numerically computed
(equation (1), boundary conditions (i–iii)) with actual strip
parameters, λS = λN(TC) and the best-fit value p= 3.2. The dotted
curve is to guide the eyes. (c) Profiles of the electron temperature
along the strip numerically computed for the discrete CVC points
shown in panel (b); x= 0 corresponds to the center of the strip and
of the the normal domain. Curve colors in panel (c) correspond to
the symbol colors in panel (b).

terminated by tapered contacts. The shape of our specimens is
shown in figure 1(a). Details of the fabrication procedure have
been reported elsewhere [25]. The specimens were mounted in
a closed compartment inside a continuous-flow cryostat. The
steady-state CVCs were measured at a set of fixed bath tem-
peratures, TB, between 2.5 and 8K.

Figure 1(b) shows typical CVCs for our strips measured
in two regimes: sweeping current from zero value upwards
(current-bias) and sweeping voltage from a value in the res-
istive state downwards (voltage-bias). The former regime
reduces the impact of bias electronics on the switching current
IC while the latter reveals the current plateau at the return cur-
rent Ir caused by the presence of an equilibrium normal domain
in the strip. Adopting the heat flow from electrons to the sub-
strate in the form Qϵ = K(Tpe −TpB) (Te is the electron tem-
perature, K is the effective thermal conductance, see the next
section) and assigning a constant electron thermal conductiv-
ity λ= Dce(TC) (D is the electron diffusivity, ce is the electron
heat capacity, table 1) to the normal and superconducting parts
of the strip, we solved numerically the system of steady-state
heat balance equations (equation (1)). The obtained Te(x)

2



Supercond. Sci. Technol. 35 (2022) 105005 M Sidorova et al

Figure 2. Critical (a) and return (b) currents vs. fixed bath temperatures for two NbTiN strips. Symbols: experimental data; solid curves: the
best-fit theoretical depairing currents and return currents computed with equation (A.1) and equation (4), respectively.

Table 1. Parameters of the NbTiN strips studied here. Electron and phonon heat capacities and the electron–phonon energy relaxation times
at the transition temperatures (TC) of the strips were obtained via extrapolation of corresponding values of non-structured films [13]
according to ce ∝ T (Drude model), cph ∝ T3 (Debye model) and τEP ∝ T−n, respectively. The values of the exponent n were reported in
[13]. R□ is the normal-state sheet resistance, D is the electron diffusivity, τesc is the phonon escape time, and τ ϵ is the relaxation time of the
electron energy (see appendix B).

Strip
d

(nm)
w

(nm)
TC
(K)

R□
(Ω sq−1)

D
(cm2 s−1)

τesc
(ps)

τEP(TC)
(ps) n

ce(TC)
(J K-1 m−3)

cph(TC)
(J K-1 m−3)

τϵ(TC)
(ps)

NbTiN 6 200 7.75 710.6 0.458 53 6.5 3.5 970 2115 78
NbTiN 9 200 8.60 381.4 0.472 80 4.0 3.4 1303 8173 90

profiles along the strip (figure 1(c)) were computed with the
best-fit value p= 3.2 (see below) for a set of lengths of the
normal domain with the edges at Te = TC. Knowing the length
and, hence the resistance of the domain, we further obtained
the voltage along the strip. Corresponding discrete CVC points
are shown with symbols in figure 1(b).

From experimental CVCs, we extracted IC(TB) and Ir(TB)
dependences, which are plotted in figures 2(a) and (b), respect-
ively. For each strip, we computed the theoretical depairing
current, Idep, with equation (A.1) using the material paramet-
ers from table 1. We fitted the Idep(T) dependences to the
experimental IC(TB) data in the vicinity of the superconduct-
ing transition (figure 2(a)) where both currents are expected
to be equal. The value of TC was used as a fitting parameter
in order to account for an expected reduction of the transition
temperature in strips due to nanofabrication as compared to
non-structured films [26]. The best-fit values of TC listed in
table 1 are indeed slightly smaller than those of non-structured
films (8.41 and 9.51K for films with thicknesses 6 and 9 nm,
respectively [13]). At the bath temperature of 3K, the ratios
IC/Idep for our strips are 0.56 (d= 6 nm) and 0.63 (d= 9 nm).

These values are comparable to those for other disordered thin
films [27]. From the combined analytical and numerical solu-
tion of the heat balance equations for the electron temperat-
ure, we computed Ir(TB) dependences (equation (4)) using the
best-fit values of TC and the parameters from table 1. The expo-
nent p and the scaling factor A in equation (4) were used as the
only fitting parameters. The results shown in figure 2(b) with
solid lines were obtained with p= 3.2 and 2.9 for strip thick-
nesses 6 and 9 nm, respectively, and with A≈ 1 for both strips.

3. Discussion

The steady-state heat flow from a system at a temperature T
to a thermal bath with a temperature TB via a thermal link is
often described as Q= K(Tp−TpB) where K is an effective
thermal conductance [14–24, 28, 29]. For a small change in
the system temperature∆T≪ T, the rate of change in the heat
flow is dQ/dt≈ KpTp−1dT/dt. On the other hand, for a small
deviation from the equilibrium, the relaxation is exponential,
i.e. dQ/dt= c dT/dt= c∆T/τ where τ is the relaxation time
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Figure 3. Steady-state heat-flow diagram. I2R□/(w
2d) is the Joule

power dissipated by the bias current I per unit volume of the
electron system; Qϵ, QEP, and Qesc denote the net heat fluxes
between different subsystems.

and c is the heat capacitance of the system. Hence, the effect-
ive thermal conductance is K= c(T)/(p Tp−1τ(T)). It may
depend on the system temperature by virtue of arbitrary tem-
perature dependences c(T) and τ(T). When applying this
approach to a thin metal film on a dielectric substrate, one
has to consider two subsystems, i.e. electrons and phonons
in the film. Electrons are heated by the current with the rate
I2R□/(w2d) per unit volume. They further transfer the energy
to phonons, which in turn release it to the substrate as it is
schematically depicted in figure 3. There are two limiting
cases [24] separated by the value of the ratio between the
phonon–electron energy relaxation time τPE = τEPcph/ce and
the phonon escape time τesc = 4d/(usᾱ), where ᾱ is the angle-
averaged transmission of the film/substrate interface given by
the acoustic mismatch model [30], us is the sound velocity, τEP
is the electron–phonon energy relaxation time, and cph and ce
are the phonon and electron heat capacities, respectively.

(a) In the limiting case of a thick film, τesc ≫ τPE, reabsorp-
tion by electrons thermalizes nonequilibrium phonons at
a temperature Tph which is slightly larger but close to the
electron temperature Te. In the steady state regime, the net
heat flows from electrons to phonons,QEP, and from phon-
ons to the substrate, Qecs, are equal. Therefore the rate of
heat removal from electrons per unit volume of the film
can be represented as either of these two fluxes. For crys-
talline metallic films, the net heat flux per unit volume
from electrons to phonons in the film was described in
[23] as QEP = ce/(5T4

e τEP)(T
5
e −T5

ph). The net heat flux
from the film to the substrate via 3D Debye phonons was
described in [16] asQesc = cph(Tph)/(4T3

phτesc)(T
4
ph −T4

B).
Alternatively, for Te ≈ Tph, the rate of the energy removal
from electrons can be described as a one-stage process
(figure 3) asQϵ ≈ cph(Te)/(p T

p−1
e τesc) (T

p
e −TpB). For 3D

Debye phonons in the film and in the substrate p= 4 [16].
This approach has been implemented in [15].

(b) In the opposite limiting case of a thin film, τesc ≪ τPE,
nonequilibrium phonons escape to the substrate without
being thermalized that leads to overheating of electrons
with respect to equilibrium phonons. Microscopic ana-
lysis of this essentially two-stage process has shown [24],
that even in this case the heat flow from electrons to
the substrate can be phenomenologically described as a
one-stage process in the general form Qϵ = K(Tpe −TpB)
with K= ce(Te)/(pT

p−1
e τϵ(Te)). Here, τ ϵ is the electron

energy relaxation time, which appears as the response time
in photoresponse measurements, and p= 5+ γ where γ

varies depending on the phonon dimensionality and the
degree of disorder of the strip material. For 3D Debye
phonons and strongly disordered films, γ = 1. We shall
note here that the microscopic expression suggested in
[24] for the effective thermal conductance K is tem-
perature independent. This fact imposes a constraint on
the temperature-dependent quantities entering K: ce(Te),
τϵ(Te), and T

p−1
e .

Although our NbTiN films with τesc/τPE ≈ 3.5 fall into
the intermediate regime between two limiting cases discussed
above, we assume that even in this regime the heat flow from
electrons to phonons in the substrate can be described as a one-
stage process. Successful description of our experimental res-
ults validates the correctness of this assumption. We apply the
modified heat balance model to describe self-heating normal
domain in a superconducting strip sustained in equilibrium due
to the balance between Joule heating via the current Ir and the
cooling via thermal diffusion and heat flow through the film-
substrate interface. The distribution of electron temperature
Te(x) along the strip is given by the solution of two steady-state
heat-balance equations written for unit volumes of the normal
(subscript N) and superconducting (subscript S) parts of the
strip

− ∂

∂x

(
λN

∂Te
∂x

)
+KN (T

p
e −TpB) =

I2r R□
w2d

, |x|< xND

− ∂

∂x

(
λS

∂Te
∂x

)
+KS (T

p
e −TpB) = 0, |x|> xND. (1)

The strip itself and its normal part (normal domain) are sym-
metrically centered at x= 0. The coordinates of the edges
of the normal domain ±xND are defined from the condi-
tion Te(xND) = TC. Both the electron thermal conductivit-
ies λN and λS as well as the effective thermal conduct-
ances KN and KS may be different in the normal and in the
superconducting parts of the strip. Additionally, λ’s gener-
ally depend on temperature. The boundary conditions (BCs)
for equation (1) are: (a) (∂Te/∂x)N = 0 at the center of the
strip x= 0; (b) the temperature and the heat flux are continu-
ous at the N/S interfaces where additionally the temperature
equals the transition temperature, i.e. (Te)N = (Te)S = TC and
λN(∂Te/∂x)N = λS(∂Te/∂x)S at x=±xND; (c) Te = TB at the
ends of the strip x=±L/2. With these three BCs and p ̸= 1,
the equation system (1) has no analytical solution.

In order to proceed analytically, we first assume that λ’s
are temperature independent but different while the effective
thermal conductances are the same in both parts of the strip
KN = KS = K and equal the value suggested in [24] for normal
films. This simplifying assumption allows for a very accurate
semi-analytical description of the experimental data. We dis-
cuss the impact of temperature dependent heat conductivity
below. With the simplifying assumptions, analytical solution
for p= 1 [14] and numerical for p= 4 [15] showed that for
xND ≫ LT and (L/2− xND)≫ LT, where LT is the effective
thermal length defining the width of the domain edge, one can
introduce two additional approximate BCs: (d) ∂Te/∂x= 0 at
the ends of the strip x=±L/2; and (e) ∂2Te/∂x2 = 0 at the
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strip center x= 0. These additional BC’s are easy to recognize
in numerically computed and plotted in figure 1(c) Te(x) pro-
files for a set of different values of xND. They were obtained
for p= 3.2 under the assumption λS = λN = Dce(TC). In this

case LT =
√
Dce(TC)/KT

p−1
C . We also confirmed the valid-

ity of these additional BC’s for temperature dependent λ’s
(see the discussion below) and p= 1 by solving numerically
equation (1).

For temperature independent but different λ’s, the first
terms in equation (1) reduce to λN,S ∂

2Te/∂x2. Defining the
Joule temperature as TpJ = I2r R□/(Kw2d) and applying BC (e)
to the first equation in equation (1), one gets

Tpe0 = TpB +TpJ , (2)

where Te0 = Te(x= 0).
One can further reduce equation (1) to two

first-order differential equations via the substitution
(∂T/∂x)2 = 2

´
dT(∂2 T/∂x2). Further applying remain-

ing BC’s (a)–(d) to these first order equations and using
equation (2) one can analytically relate TJ with TB as follows

λS

λN
Tp+1
B +

p+ 1
p

TpJ TC − (TpB +TpJ )
(p+1)/p

=

(
1− λS

λN

)(
1
p
Tp+1
C − p+ 1

p
TpBTC

)
. (3)

Solving equation (3) numerically and substituting
K= ce(Te0)/(pT

p−1
e0 τϵ(Te0)) in the definition of the Joule

temperature one obtains TJ(TB) and the return current as

Ir = A

√
ce(Te0)w2d

p τϵ(Te0)R□T
p−1
e0

TpJ (TB). (4)

This final expression contains an additional scaling factor A
which was used as one of the fitting parameters. We found
(see the discussion below) that the maximum envisaged dif-
ference in λ’s relevant to the N/S interface does not notice-
ably affect the best fit value of the exponent p. We therefore
used λN = λS = λN(TC) in equations (1) and (3) to compute
model Ir(TB) curves (figure 2(b)) and the profiles of the elec-
tron temperature (figure 1(c)). Other parameters were taken
from table 1. The τ ϵ was computed (appendix B) as a func-
tion of the electron-phonon energy relaxation time τEP, the
phonon escape time τesc, and the ratio between electron and
phonon heat capacities ce/cph, which were taken from table 1.
For strips with thicknesses 6 and 9 nm, we obtained the best-
fit values p= 3.2 and 2.9 and A= 0.91 and 0.94, respectively.
With these values of p andwith the Drude temperature depend-
ence ce ∝ Te, the constraint imposed by the temperature-
independent effective thermal conductanceK [24] implies that
τϵ ∝ T−1

e . Such temperature dependence was indeed found at
temperatures around TC for the τ ϵ computed in the frame-
work of the two-temperature (2-T) model (appendix B). It is
important to stress here that both the magnitude and the tem-
perature dependence of τ ϵ around TC are noticeably affected
by the magnitude of cph. We could satisfy the constraint on
K only by using cph value found in [13], which is noticeably

Figure 4. Dimensionless electron and phonon temperatures in the
center of the normal domain vs. dimensioneless bath temperature
computed for the 6 nm-thick NbTiN strip

less than the Debye heat capacity expected for a given sound
velocity. Our best fit values of the exponent p require γ ≈−2
in the microscopic theory [24]. Recalling that for 3D Debye
phonons γ= 1, we attribute the change in γ and the reduced
phonon heat capacity to the size effect imposed by grains on
the phonon spectrum in our thin granular NbTiN films.

It’s worth to emphasize here that for computing the return
current with equation (4), the heat capacities ce and cph should
be taken at the electron and phonon temperatures at x= 0, Te0
and Tph0, and the energy relaxation time τϵ at Te0. The phonon
heat capacity, cph, enters equation (4) through τϵ, which is a
function of τEP(Te0), τesc, and ce(Te0)/cph(Tph0). In our com-
putation procedure, Tph0 was found from equation (B.1) in the
steady-state conditions with eqponens q= n+ 2 (n was taken
from table 1) for the heat flux from electrons to phonons in the
film and s= 4 for the heat flux from the film to the substrate via
phonons. The former equality satisfies the constraint imposed
by temperature independent thermal conductance [24]. While
the latter corresponds to the heat flux supported by Debye
phonons. Figure 4 shows how the computed temperatures Te0
and Tph0 vary with the bath temperature.

We discuss now how temperature dependent λN(T) and
λS(T) may affect the best fit value of the exponent p.
In the normal state, λN(T) = Dce(T)∝ T by virtue of the
ce(T)∝ T dependence. In the superconducting state, λS(T)
decreases much quicker. Down to the relative temperature
0.3TC, with a good accuracy, it can be approximated as
λS ≈ λN 4/3(T/TC − 0.3) [31]. Solving equation (1) numer-
ically for p= 1 with temperature dependent λ’s and with
λN = λS = λN(TC), we found that introduction of the temper-
ature dependent conductivities cause a change of the temper-
ature in the center of the normal domain Te0 but do not affect
additional BCs (d) and (e). We therefore used equation (3) to
evaluate the effect of different but temperature independent λN

and λS for p> 0. Setting the ratio λS/λN = 0.5, we found a
15% decrease in the best-fit value of the exponent p. Note that
λN and λS enter equation (3) via the boundary condition at x=
xND where they are equal. Physically, the heat flow through
this N/S interface can be affected by the temperature distribu-
tion in the layer with a thickness of the order of the electron–
phonon thermal length lEP =

√
DτEP which is about an order

of magnitude less than the effective thermal length LT. Since
the temperature change around the domain edge is Te0 −TB,
the temperature difference in the layer with the thickness lEP
is ∆T= lEP/LT(Te0 −TB)≈ 1K. The corresponding change
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in λS is less than 20% which would cause a correction to the
best-fit value of the exponent p remaining beyond our exper-
imental accuracy. We, therefore, neglected the temperature
variations in the electron thermal conductivity and used λS =
λN = λN(TC) for the description of our experimental data.

In our analysis, we neglected the effect of the transport cur-
rent on the critical temperature of the strip that can be obtained
from equation (A.1). Accounting for this effect results in
slightly different best-fit values of the parametersA= 1.26, 1.1
and n= 3.3, 3.0 for the 6 and 9 nm-thick strips, respectively.
We note that such small uncertainties in A and n are beyond the
accuracy imposed by the difference between the actual width
of a superconducting core and the nominal width of the strip.

In the interpretation of photoresponse data with the 2-T
model in [13], a possible contribution of diffusion cooling
was neglected by the authors and τ ϵ was associated with the
measured response time. In order to check the validity of
this approximation, we numerically solved the time-dependent
heat balance equation including diffusion for small temper-
ature deviations and computed the response time as a func-
tion of the strip length. The dependence shown in figure B1(b)
(appendix B) supports the assumption that the diffusion cool-
ing was negligible for strip lengths used in [13].

4. Conclusion

We have analyzed the hysteretic current–voltage characterist-
ics of straight nanostrips fabricated from thin granular NbTiN
films. We have shown that the results can be quantitatively
explained only with the phonon heat capacity cph, which is
drastically reduced compared to the value expected for 3D
Debye phonons. The same reduced cph was obtained earlier
from photoresponse studies. This shows the compatibility of
steady-state and time-resolving experimental approaches for
the evaluation of heat capacities and spectra of phonons in
nanostructured superconducting thin films.

Furthermore, we have shown that the steady-state exper-
imental approach is self-consistent since it yields the same
temperature dependence for the relaxation time of the electron
energy as the two-temperature model predicts.

We have also observed that the heat flow from electrons
to the substrate is proportional to (Tpe −TpB) with the expo-
nent p≈ 3which differs from values mediated by the electron–
phonon interaction and by the escaping of 3D Debye phonons
via the film/substrate interface.

This finding, along with the reduced cph, is attributed to
the effect of the mean grain size on the phonon spectrum
of thin granular films. Our results provide important insights
into thermal transport in thin nanostrips exploited in super-
conducting devices and thus pave the way for improving their
performance.
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Appendix A. Depairing current

The Ginzburg–Landau depairing current with the dirty-limit
correction of Kupryanov and Lukichev [32] C(T) is given by
[33]

Idep = C(T)
4w

√
π exp(2γ)

21ζ(3)
√
3

β2
0(kBTC)

3
2

eR□
√
Dℏ

·

·

[
1−

(
T
TC

)2
] 3

2

C(T) = 0.65

[
3−

(
T
TC

)5
] 1

2

, (A.1)

where γ = 0.577, ζ(3) = 1.202, e is the electron charge,
kB is the Boltzmann constant and β0 is the ratio between the
energy gap and kBTC. Since this parameter for NbTiN is not
known, we used the standard BCS value β0 = 1.76.

Appendix B. Electron energy relaxation time

B.1. Generalized two-temperature model

Wefind the relaxation time of the electron energy via electron–
phonon interaction and phonon escaping to the substrate, τ ϵ,
using two-temperature (2-T) model generalized for arbitray
exponents q and s and for large differences between Te, Tph
and TB. Generalized time-dependent heat balance equations
take the form

ce(Te)
dTe
dt

=− ce(Te)

qTq−1
e τEP

(Tqe −Tqph)+P

cph(Tph)
dTph
dt

=
ce(Te)

qTq−1
e τEP

(Tqe −Tqph)

−
cph(Tph)

sT s−1
ph τesc

(T sph −T sB), (B.1)

where P is the power dissipated per unit volume in the elec-
tron subsystem. Small periodic variations in the dissipated
power ∆Pe−jωt (∆P≪ P and ω is the circular frequency)
cause small periodic oscillations of Te and Tph, i.e. ∆Tee−jωt

and ∆Tphe−jωt. Substituting them in equation (B.1) and can-
celling steady-state parts, one gets the linearized equations for
∆Te and∆Tph identical to those suggested in [34]. The known
solution of linearized equations for ∆Te is given by [12, 34],

∆Te(ω) = Re

(
∆P
ce

τ2 τ3
τ1

(1+ jωτ1)
(1+ jωτ2)(1+ jωτ3)

)
. (B.2)

The characteristic times are τ1 = (Γ2 +Γ3)
−1 and τ2,3 =[

1
2

∑
iΓi

(
1 ∓

√
1− 4 Γ1 Γ3/(

∑
iΓi)

2
)]−1

. Here, Γ1 = τ−1
EP ,

6
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Figure B1. Electron energy relaxation time for 6 nm-thick NbTiN
strip in the double-logarithmic scale. (a) τ ϵ vs. temperature
computed with the uniform 2-T model without diffusion cooling. At
low (Te ≪ TC) and high (Te ≫ TC) temperatures, τ ϵ asymptotically
approaches τEP and τesc, respectively. (b) τ∗

ϵ vs. reduced strip length
at Te = TC computed with the heat balance equation including
diffusion. For L≫ LT, when diffusion cooling can be neglected,
both models give the same relaxation time τϵ = τ∗

ϵ .

Γ2 = Γ1 ce/cph, and Γ3 = τ−1
esc . For an electron subsystem

obeying only one relaxation time τ , the solution would
have the form |∆Te(ω)|= 1/

√
1+(ωτ)2. In this case,

|∆Te(1/τ)|= |∆Te(0)/
√
2|. We use the very same criterion

to define τ ϵ for ∆Te(ω) given by equation (B.2).
In figure B1(a), we plot the temperature dependence

of τ ϵ computed for the 6 nm-thick NbTiN film with
ce(T) = ce(TC)(TC/T) (Drude model), and cph(T) = cph(TC)
(TC/T)3 (Debye model), where ce(TC) and cph(TC) as well
as τesc and τEP ∝ T−n with n = 3.5 are from table 1. At small
temperatures the electron energy relaxation time asymptotic-
ally approaches τEP ∝ T−3.5 while at T≫ TC it saturates at the
temperature independent value τesc. Another important obser-
vation is that around TC we find τϵ ∝ T−1. This temperature
dependence meets the constraint imposed by temperature-
independent microscopic expression for the effective thermal
conductance K.

B.2. Impact of diffusion

The 2-T model in the form of equation (B.1) does not account
for the heat removal from electrons via electron diffusion,
e.g. to the contacts. In order to check when the diffusion
becomes important, we find the relaxation time of the total
electron energy in the strip τ∗ϵ as a function of the strip
length by numerically solving the linearized one-dimensional
time-dependent heat balance equation with diffusion cool-
ing τϵ∂Te/∂t= L2T ∂2 Te/∂x2 − (Te −TB), and applying a
δ-like uniform heat source and Dirichlet boundary conditions
(Te = TB) at the strip ends. Here LT =

√
Dτϵ is the appropri-

ate (p= 1) thermal length. We further compute the weighted

energy E(t) = ce
´ L/2
0 δTe(t,x)dx, where δTe(t,x) is the solu-

tion of the differential equation, and define τ∗ϵ from the con-
dition δE(τ∗ϵ ) = δE(0)/exp(1). As seen in figure B1(b), diffu-
sion affects τ∗ϵ when L⩽ 10LT. For the 6 nm and 9 nm-thick
NbTiN films, LT ≈ 60 nm. The τ ϵ was obtained in [13] for

1µm-long NbTiN bridges, for which L> 10LT. Therefore,
diffusive cooling had no impact on the energy relaxation time
and, hence, on the phonon heat capacity evaluated in [13].
We note that in these simulations we neglected contact effects
(contact resistance and Andreev reflection).
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