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Abstract. Single photons are fundamental elements for quantum information
technologies such as quantum cryptography, quantum information storage and
optical quantum computing. Colour centres in diamond have proven to be stable
single-photon sources and thus essential components for reliable and integrated
quantum information technology. A key requirement for such applications is a
large photon flux and a high efficiency. Paying tribute to various attempts to
maximize the single-photon flux, we show that collection efficiencies of photons
from colour centres can be increased with a rather simple experimental setup. To
do so, we spin-coated nanodiamonds containing single nitrogen-vacancy (N-V)
colour centres on the flat surface of a ZrO2 solid immersion lens. We found stable
single-photon count rates of up to 853 kcts s−1 at saturation under continuous
wave excitation while having access to more than 100 defect centres with count
rates from 400 to 500 kcts s−1. For a blinking defect centre, we found count rates
up to 2.4 Mcts s−1 for time intervals of several tens of seconds. It seems to be a
general feature that very high rates are accompanied by blinking behaviour. The
overall collection efficiency of our setup of up to 4.2% is the highest yet reported
for N-V defect centres in diamond. Under pulsed excitation of a stable emitter of
10 MHz, 2.2% of all pulses caused a click on the detector adding to 221 kcts s−1

thus, opening the way towards diamond-based on-demand single-photon sources
for quantum applications.
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Increased single-photon collection with high on-demand efficiency allows higher communica-
tion bit rates in quantum cryptography [1] and faster readout of stationary qubits [2, 3]. Also, a
key operation in quantum information processing (QIP), i.e. two-photon interference, requires a
large photon flux. Advanced protocols, such as entanglement swapping or entanglement trans-
fer [4, 5], are also not possible if photons as flying qubits cannot be generated or collected
efficiently. A first crucial step concerns reliable single-photon generators. Such systems have
been realized based on atoms [6, 7], ions [8], molecules [9] and solid-state-based emitters such
as quantum dots [10] or defect centres in diamond [11]. There were also successful attempts at
integrating solid-state emitters in photonic nanostructures to increase the photon flux [12–14].
In particular, defect centres in diamond have drawn much attention lately as they are photo-
stable even at room temperature. Since the first demonstration that single photons can be col-
lected from nitrogen-vacancy (N-V) defect centres in diamond more than 10 years ago [11],
a steady improvement of collection rates has been achieved. Furthermore, other defect centres
with different optical behaviour have been found and fabricated [15–17] in bulk as well as
diamond nanocrystals. Nanodiamonds have several advantages compared with bulk diamond as
they can be easily deposited on various substrates with e.g. spin-coating techniques or nanoma-
nipulation. Atomic force microscope (AFM) manipulation has been used to integrate them on
photonic crystal resonators [18] or on optical fibres [19]. Moreover, photon collection efficiency
of nanodiamonds is generally higher [20]. Yet, it was shown just recently that a reduction of ex-
citation intensity and an improvement of emission collection of N-V centres in bulk diamond
can be achieved via etching adequate structures into chemical vapour deposition (CVD) grown
bulk diamond [21–23]. Nanorods [21] or solid immersion lenses (SILs) [22, 23] facilitate the
collection of single photons of up to 500 kcts s−1. Unfortunately, fabrication of these structures
demands rather sophisticated processes.

SILs, on the other hand, have been integrated into optical microscopes since 1990 [24]
and are commercially available in various designs. A solid immersion lens can be formed as a
simple half-sphere or in a so-called Weierstrass design [25] and is typically made of high-index
material, e.g. ZrO2 with n = 2.17. The operation principle of a SIL is very similar to that of an
oil-immersion microscope. Samples are deposited either on or close to the flat side of the SIL,
while the optical access lies on the curved side of the SIL. In this way, the wave front of a focused
light beam passes the surface parallel and neither refraction nor aberration takes place. Due to
the high index of refraction the numerical aperture (NA) is enhanced, providing larger collection
angles and thus improved collection efficiency. Also the resolution is increased similarly to oil-
immersion microscopes, and much higher energy densities in the focus are obtained [24]. With
respect to the implementation of SILs with a single photon emitter, there is another important
feature. Due to the strong step in the index of refraction at the SIL–air interface, the dipole
emission is not symmetrically distributed into SIL and air, respectively [26]. We performed
finite-difference time domain (FDTD) calculations for our specific system and found that a
simple dipole emitter in air, 10 nm away from a flat material surface with n = 2.17, emits more
than 86 % of its emission into the direction of the SIL if oriented parallel to the surface and
more than 75 % if oriented perpendicular to the surface. These results are in agreement with an
analytical analysis of a dipole emitter in front of a flat dielectric interface [27]. The combination
of commercial availability, easy experimental integration, well increased NA, smaller focus and
strongly enhanced emission into the direction of collection make a solid immersion lens a very
potent tool to increase single photon emitter collection efficiencies.

Here, we present the experimental implementation of an SIL microscope combined with
the advantages of nanodiamonds which outperform the so far reported single photon count
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Figure 1. Experimental setup and spectroscopic properties of the solid
immersion lens. (a) Sketch of a home-built confocal microscope. BC, BS, F, PH,
HBT and APD stand for beam control, beam splitter, filter, pinhole, Hanbury-
Brown and Twiss setup and avalanche photo diode, respectively. (b) Spectrum
of the fluorescence from a solid immersion lens (black curve) at an excitation
power of 933 µW and spectrum of an N-V centre on a SIL after filtering with a
590 nm long-pass and a 795 nm short-pass filter (red curve).

rates from N-V centres in diamond. By spin-coating nanodiamonds on the flat surface of
commercially available ZrO2 half-spheres (MIKROP, Switzerland) with a radius of 1 mm, we
prepared a SIL suitable for efficiently exciting colour centres inside the nanodiamonds. The SIL
was implemented into a home-built confocal microscope featuring an air objective with a NA of
0.9 (Mitutoyo, Japan) and a pinhole of 100 µm as depicted in figure 1(a). To reduce stray light
from laser excitation and SIL fluorescence, 540 and 590 nm long-pass filters as well as a 795 nm
short-pass filter were used. Via the spin-coating technique there is a wide flexibility to integrate
nanodiamonds with arbitrary colour centres into any kind of SIL. The latter can be half-sphere
SILs or Weierstrass SILs made of various materials transparent at excitation and colour centre
emission wavelengths. The chosen material ZrO2 has a high index of refraction n of 2.17 at
600 nm and can be processed to half-spheres within required tolerances [28]. At an excitation
wavelength of 532 nm and a typical excitation power of less than 1 mW which is appropriate for
defect centres in diamond, the intrinsic fluorescence of the SIL due to impurities is negligible
between wavelengths of 615 and 785 nm (see the spectrum in figure 1(b)). It is thus well suited
for the collection of photons from e.g. N-V centres [11], Ni/Si-related centres [29, 30] and Si-V
centres [16, 31] emitting from 600 to 800 nm (see the spectrum of an N-V centre in figure 1(b)),
around 770 nm and around 740 nm, respectively.

For spin-coating, we used an aqueous solution with 0.01% polyvinyl alcohol and
nanodiamonds (Microdiamant, Switzerland, HPHT synthesis) with a mean size of 25 nm. Spin-
coating of a solution with suitable diamond density was performed with 2000 rpm to ensure
a dense distribution of the diamonds with distances smaller than 1 µm. Figure 2(a) shows
an x–y-intensity scan of the confocal microscope of a 10 µm × 10 µm region with typical
diamond distribution and fluorescence intensity. In a rectangular array of about 10 µm by
100 µm around the centre of the SIL at least ten diamonds showed count rates of more than
250 kcts s−1 when excited with 148 µW of a pulsed laser (Picoquant, Germany, 532 nm, pulse
width about 110 ps) with a repetition rate of 80 MHz, whereas many more diamonds showed
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Figure 2. x–y-confocal fluorescence scan of nanodiamonds on an SIL and
emission intensity of several N-V centres close to the SIL centre. (a) 10 µm ×

10 µm fluorescence intensity scan of an area close to the centre of the SIL. Such
scans typically feature a few bright (RInf = 400–700 kcts s−1) and many darker
(RInf < 400 kcts s−1) N-V centres. (b) Photon count rates of different N-V centres
under pulsed excitation of 80 MHz and excitation intensities of 148 µW in the
focus. The count rates of 12 N-V centres along one scan direction (x-axis) across
the centre of the flat SIL surface were investigated. All emitters provide single
emitter characteristics proven by a measured value of the normalized second-
order correlation function g(2)(0) < 0.5.

count rates around 200 kcts s−1 (see figure 2(b)). An excitation of 80 MHz represents quasi-
CW excitation for N-V centres with a typical lifetime of 18 ns. It should be mentioned that
many of the diamonds investigated showed blinking behaviour [32]. We extrapolated the count
rates of the ten measured defect centres (see e.g. figure 3(a)) and derived saturation count rates
under CW excitation between 400 and 500 kcts s−1. For an area of 100 µm × 100 µm, we expect
more than 100 colour centres with similar emission rates. This offers the opportunity to select
suitable diamonds out of a large ensemble for special applications, e.g. a specific ultrabright
diamond or two diamonds with matching zero phonon line emission for two-photon interference
experiments.

To prove the single photon character of the light emitted from a specific colour centre under
study, we carried out autocorrelation measurements in a Hanbury Brown and Twiss (HBT) setup
(see figure 1(a)). If the normalized intensity autocorrelation function

g(2)(τ ) =
〈I (t) I (t + τ)〉

〈I (t)〉2

has values at zero time delay τ = 0 of g(2)(0) < 0.5, emission should occur basically from a
single N-V centre. Typical g(2)(τ ) functions of the measured N-V centres have a g(2)(0) between
0.1 and 0.3, depending on excitation intensities. In order to determine the maximum accessible
photon flux, we carried out saturation measurements (displayed in figures 3(a) and (b)). Fits to
the experimental curves were done according to

R(I ) =
RInf I

ISat + I
+ (A + α)I + β,
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Figure 3. Autocorrelation and saturation measurements of different N-V centres.
(a) Saturation measurement of the brightest stable emitter found. RInf is
853 kcts s−1, while the saturation excitation intensity is 88 µW. The inset
shows the normalized autocorrelation function g(2)(τ ) of the same emitter
with g(2)(0) < 0.3. (b) Saturation measurement of the brightest blinking emitter
found. RInf is 2.4 Mcts s−1 on a time basis of several tens of seconds,
while the saturation excitation intensity is 464 µW. The averaged count rate
is 477 kcts s−1 for an excitation intensity of 2.6 mW. The inset shows the
normalized autocorrelation function g(2)(τ ) of the same emitter with g(2)(0) <

0.16 at an excitation of 1 mW. The red curves in (a) and (b) are theoretical fits to
the data (see text). (c) Saturation count rates of different N-V centres plotted
against the saturation excitation intensities. Black symbols represent stable
emitters, open red circles represent blinking ones and the blue dot represents
an N-V centre probed from the flat side of the SIL (the right side of the SIL
in figure 1(a)). Square symbols denote quasi-CW excitation with 80 MHz laser
repetition rate, while circles denote CW excitation.

where R is the single-photon count rate, RInf the count rate at infinite excitation intensities, I
the excitation intensity, ISat the saturation excitation intensity and A represents the measured
background fluorescence 1 µm away from the N-V centre, while α and β are fit parameters for
linear background stemming from the diamond and additional background such as dark count
from the avalanche photo diode (APD) and residual stray light, respectively. Most saturation
excitation intensities were about 80 µW in the focus, while the typical single photon count
rate R was 500 kcts s−1 without background substraction as can be seen in figure 3(c). Twelve
single N-V centres of similar brightness were analysed. It should be pointed out, however, that
these N-V centres have quite different saturation intensities as can be derived from figure 3(c).
This is to some degree due to their randomly distributed dipole orientations. Furthermore, the
nanodiamonds have mismatched physical and optical contact with the SIL surface, resulting
in diverse optical coupling of the nanodiamonds to the SIL. In figure 3(c), also the count rate
at saturation for an N-V centre that was probed from the air side of the SIL is depicted. This
N-V centre, the brightest we found from the flat side, shows count rates at saturation of only
50 kcts s−1, which is about ten times lower than typical count rates from centres excited through
the SIL. Furthermore, its saturation intensity of 440 µW is also about five times higher.

We found one outstanding N-V centre with a stable single photon count rate at saturation
of 853 kcts s−1. Even at excitation intensities of 213 µW and count rates of 736 kcts s−1, its
g(2)(0) value was smaller than 0.3. In principle it could have been further reduced by adequate
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filtering (see figure 1(b)). Furthermore, we observed another remarkable single defect centre.
This defect centre was ultrabright, i.e. we found single photon count rates of up to 2.4 Mcts s−1

at saturation on a time base up to several tens of seconds alternating with darker periods. There
was no pronounced on–off behaviour, but rather jumps between a very bright state and several
states with far less intensity. On average, the single photon emission rate was 400 kcts s−1 at an
excitation power of 2.6 mW. We also measured its autocorrelation function at count rates of up to
1.1 Mcts s−1 to be smaller than g(2)(0) < 0.16. In our experiments, we found that in an ensemble
of nanodiamonds there exist a few ultrabright defect centres with rates > 1 Mcts s−1. However,
this large rate seems to be accompanied by pronounced blinking behaviour. The reason for this
is not yet understood. Photochromic behaviour may play a role. Compared with recent studies
of blinking in very small (5 nm) nanodiamonds [32], the size of nanodiamonds we used is much
larger. Yet, with defect centres located close to the surface the situation may be similar. As
mentioned, there is first evidence that more than just two on- and off-states occur. Since there
are typically only a few ultrabright blinking N-V defect centres, a solid statement concerning the
reason for the blinking is not possible yet. However, the correlation of brightness and blinking
warrants further studies.

For most applications of single photons in QIP, on-demand generation is required [33].
One possibility is to use pulsed excitation. A crucial parameter of such a source is the collection
efficiency per excitation pulse. A perfect single photon on-demand device would deliver exactly
one detected single photon per pulse in a well-defined optical mode. Such performance is limited
in real devices mainly by the efficiency in collecting single photon emission with the first lens,
losses in the optical path towards the detector as well as by detector efficiencies.

To determine the collection efficiency of our setup we measured the collection efficiency
per excitation pulse. The repetition rate of the pulsed excitation laser was limited to about
10 MHz, such that the time interval between pulses was 100 ns, i.e. much larger than the lifetime
of 18 ns of the N-V centre in figure 4(b). With these numbers the probability for excited N-V
centres to decay before the arrival of the next exciting pulse was 0.97. If we further assume
that the excitation probability is one, which is justifiable because we performed the experiments
at saturation, we can directly deduce the collection efficiency of the setup from the measured
count rate. We reached a stable collection efficiency of η = 2.7 % in saturation, estimated from
experimental collection efficiency at 10 MHz laser rate, while having a total single photon count
rate of 267 kcts s−1 in saturation (see figures 4(b) and (c)).

A more detailed analysis can be based on a simple two-level model. Such a model neglects
the metastable singlet (shelving) state of the N-V centre. However, good agreement with respect
to the saturation behaviour is obtained. This simple model describes the measured count rate
r(0) as a function of the laser repetition rate 0. Assuming an excitation probability of one,
which is justifiable as explained above, only the collection efficiency η, the lifetime of the
emitter γ −1 and the laser repetition rate 0 influence the single photon count rate

r(0) = η · 0 · γ ·

∫ 1/0

0
e−γ t dt = η · 0 · (1 − e−γ /0).

We used this model for the fit in figure 4(c) where the count rate in saturation is displayed as
a function of the laser repetition rate. From the fit the photon collection efficiency η can be
derived. A value of η = 2.6 % for the total collection efficiency is found in agreement with the
estimated η of 2.7 %. This is the highest yet reported collection efficiency for a stable N-V defect
centre in diamond. Furthermore, the collection efficiency for the blinking defect centre with
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Figure 4. Pulsed autocorrelation function, saturation measurement at pulsed
excitation and emission in saturation as a function of laser rate. (a) Pulsed
autocorrelation measurement with g(2)(0) = 0.16 of the stable, bright emitter
depicted in figure 3(a) excited at an excitation intensity of 77 µW with 10 MHz
laser rate and count rates of 221 kcts s−1. (b) Saturation curve of the same
emitter as in (a) under pulsed excitation of 10 MHz with RInf = 267 kcts s−1 and
ISat = 60 µW. The red curve is a theoretical fit to the data (see text). (c) RInf as
a function of laser repetition rate. The theoretical fit to the data (red curve) is
further explained in the text.

count rates up to 2.4 Mcts s−1 at CW excitation (see figure 3(b)) was even higher. With a lifetime
of 17.6 ns it also emits ultrahigh single photon flux when excited with pulsed laser light. At
laser repetition rates of 10 MHz and 385 µW, up to 420 kcts s−1 were detected. This determines
a collection efficiency of 4.2 % on a timescale of several tens of seconds. The determined setup
efficiency ηSetup after the flat surface of the SIL of ηSetup < 0.23 gives a source efficiency ε,
i.e. the fraction of light collected by the first objective, of ε > 11.7 % and ε > 18.3% for the
stable and the blinking defect centre, respectively. ηSetup was calculated from reflection and
transmission parameters of all optical elements according to their datasheet values and presents
the optimistic upper boundary, thus, the source efficiency ε is more likely to be higher than
estimated here.

The single photon character of the emitters excited with pulsed laser light was
also demonstrated by measuring the normalized intensity autocorrelation function g(2)(τ ).
Figure 4(a) depicts the pulsed autocorrelation function of the N-V centre with g(2)(0) = 0.16
at an excitation intensity of 77 µW and a count rate of 221 kcts s−1. Emission under pulsed
excitation generally provides better suppression of background photons compared to CW
excitation as excitation radiation is limited to periods when the electron is in the ground state, i.e.
can be excited and emits a single photon. The bright blinking defect centre had g(2)(0) = 0.11
while excited with laser rates of 10 MHz and 385 µW excitation power.

In conclusion, we report on an experimentally simple but efficient way to strongly enhance
the collection of single photons emitted by N-V centres in diamond at room temperature. We
integrated a ZrO2 solid immersion lens with spin-coated nanodiamonds on its flat surface into
our confocal microscope. We measured count rates in saturation of up to 853 kcts s−1 for a
stable N-V centre and up to 2.4 Mcts s−1 for a blinking defect centre. Furthermore, our compact
SIL design provides access to about 100 N-V centres that emit more than 400 kcts s−1. The
overall collection efficiency of our setup is up to 4.2 % while having a source efficiency ε of
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up to ε > 18.3 %, opening the way towards much more efficient diamond-based on-demand
single photon sources. Furthermore, the setup is versatile and allows the implementation of
any kind of defect centre located in a nanodiamond. This is thus very attractive for integration
of even brighter emitters with smaller bandwidth. For a single Si-V centre with a lifetime of
1.2 ns as was just very recently presented in [31], we estimate count rates of up to 10 Mcts s−1.
As the immersion microscope works oil-free, measurements at cryogenic temperatures will be
possible which is mandatory for more complex quantum optical experiments such as two-photon
interference.
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