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Abstract. Recent advances in coherent multidimensional spectroscopy have
boosted interest in exciton coherences in light harvesting complexes. We present
nonperturbative calculations of two-dimensional (2D) electronic spectroscopy
from a fifth-order phase-matching direction. The calculations show clear
patterns that correspond to the electronic structure of one- and two-exciton
manifolds of a Fenna–Matthews–Olsson light harvesting complex. Such signals
can provide new information about the coherent properties of antenna pigment
protein complexes.
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1. Introduction

The primary processes of photosynthesis take place in highly specialized antenna and reaction
center (RC) pigment protein complexes [1]. In antenna complexes, photons are absorbed and
collected via excitation energy transfer to the RCs, where electron transfer takes place along a
chain of donor–acceptor molecules. The energy of separated charges is then used for following
slower reactions. Various antenna complexes are self-organized in such a way that they form
energy funnels directing excitations towards RCs [3]. Despite energetic disorder [2] and other
possible excitation trapping mechanisms in antennas, the quantum yield of the natural light
harvesting from absorption to primary charge separation is close to unity [1]. This is achieved by
allowing parallel pathways of excitation transfer for bypassing traps and finding functional RCs
if the initial attempts lead to closed ones. Such ‘classical’ optimization strategies are thoroughly
studied and well understood [4, 5]. Optical multipulse laser spectroscopy studies have revealed
long-lived electronic coherences in both RCs [6] and antenna complexes [7]. Recently, such
coherences have been observed even at physiological temperatures [8, 9]. Electronic coherence,
if sufficiently long-lived, enables qualitatively new quantum parallelism, which may be an
optimizing factor in natural light harvesting. It is still an open question whether such quantum
optimization truly has significance in photosynthesis. The topic has attracted broad attention
and is actively debated in the current scientific literature [10]–[12].

Excitation transfer in photosynthesis has been traditionally described via Förster-type
incoherent hopping [13]. Advances in structure determination of antennas [14], and in
particular the progress in ultrafast spectroscopy, have enabled experiments that cannot be
accommodated in the framework of standard Förster theory. On the structure side, antenna
complexes are densely packed pigment systems with significant excitonic couplings between
chromophores [15]. On the spectroscopy side, observation of long-lived coherent nuclear
motions [16] implies that excitation dynamics occurs faster than vibrational equilibration—a
regime beyond the applicability of Förster theory. Consequently, an exciton concept with various
flavors of relaxation theory became widely used [17]. Many researcher have applied the exciton
concept [18] to simulate spectra of light harvesting complexes [19], calculate pump-probe
spectra [20], model supperradiance [21] and estimate the exciton delocalization length [22]. To
describe exciton relaxation and polaron formation [23], the mean-field surface-hopping model
was applied in a model aggregate [24]. For dynamics simulations, the Redfield relaxation theory
with secular approximation became popular [25]. The Redfield approach was further adapted
for stronger electron–phonon interaction by the so-called modified Redfield theory, where
the population rates are calculated beyond the second order in system–bath interaction [26].
This theory has been applied to various antenna complexes [27]. To understand the possible
coherence transfer effects, a comparison of the Redfield theory with and without the secular
approximation has been carried out [28]. In recent studies, the adequacy of the Redfield equation
and related approaches for describing coherent dynamics has been thoroughly discussed [29].

Various experimental methods can be used to study coherent phenomena. For example,
oscillatory features in pump-probe spectroscopy have been widely used to study coherent
nuclear motions [30]. In general, coherent photon-echo measurements have turned out to be
the most useful for the investigation of coherent effects. During the last decade, electronic
two-dimensional (2D) spectroscopy [31, 32] has emerged as a particularly suitable method for
studying coherent phenomena in multichromophoric systems [8, 33]. The method has so far
been interpreted mainly in terms of four-wave mixing using third-order response functions [34].
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However, as pointed out by Brüggemann et al [35], in the case of multilevel systems, there
are fifth-order Liouville pathways that give signal in the same phase-matching directions as
the conventional 2D third-order photon-echo. In multichromophoric systems, those pathways
pass double-excited manifold of states and some of the pathways can be related to excitation
annihilation [36]. Of course, the fifth-order signals have their own phase-matching directions
where no third-order signal is present. In this work, we take a closer look at one such fifth-order
signal in the Fenna–Matthews–Olsson (FMO) antenna pigment protein complex. The complex
contains seven bacteriochlorophyll a (BChl) molecules.

2. Model

2.1. Setup and signal directions

We use the method developed by Brüggemann et al [35] where the calculations of the 2D signal
follow the same logic as an experiment. In an experiment, three beams of fs laser pulses in
triangular configuration are focused to the sample plane as shown in figure 1(A). We point out
that in real experiments the angles between the beams are just a few degrees and most of the 2D
experiments use a so-called boxcar geometry where beams form a square. The phase-matched
signal direction −2k1 + 2k2 + k3, investigated in this work, is highlighted in red. The waveforms
of the three pulses that have passed the sample are drawn in green color. The time positions of
the pulse maxima and a certain time point t of the signal are shown by blue triangles. In a real
experiment, a fourth pulse is used as a local oscillator for recovering the phase information of
the field [37]. This pulse propagation coincides with the signal phase-matching direction and
comes usually before the other pulses. The time in the figure runs from right to left. Delay
between pulses 1 and 2 is called coherence time τ . τ > 0 for pulse ordering 1–2 and τ < 0 for
2–1. Time delay T is called population time and is defined as a delay between 2 or 1, whichever
is last of the two, and 3. T > 0 in our calculations, which means that pulse 3 is always last. This,
however, is not a principal restriction.

There are many possible phase-matching k-vector combinations that correspond to
nonlinear signals. The even-numbered combinations usually do not give signal because of
symmetry considerations, and if they do, then the signal is in a very different spectral
range compared to the incoming laser beam. An example of such signal is second harmonic
generation. The odd-numbered combinations, however, lead to photon-echo signals, which
can be fairly strong. Figure 1(B) shows a photograph taken in the laboratory during a four-
wave-mixing experiment on CS2. Three laser spots marked by numbers 1–3 are surrounded
by photon-echo signals. The third-order signals are marked by yellow triangles. The 4

signs correspond to two-pulse echo signals (one pulse interacts twice). 5s mark three-pulse
photon-echo signals. The third-order signals are surrounded by the fifth-order signals. Green
circles mark the fifth-order signals, where one pulse interacts three times. For example,
the three upper right spots from up to down correspond to −2k1 + 3k3, −k1 − k2 + 3k3 and
−2k2 + 3k3, respectively. The signals where two different pulses interact twice are marked
by pentagrams. The dominating red pentagram is the spot −2k1 + 2k2 + k3 that is studied in
this work.

In the calculations, we use a random distribution of FMO complexes in the xy-plane
(figure 1(A)). Generalization to 3D sample volume is possible and would add possible pulse
propagation effects [38, 39]. We assume that all pulses are vertically polarized. The electric
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Figure 1. (A) Scheme of the three incoming laser beams (green) with the
waveforms of the pulses after they have passed the sample in the xy-plane. The
phase matching signal direction is given by the red line showing also the yellow
signal field. The four blue triangles visualize the time instances of the pulses.
The time axis underneath shows the pulse envelopes and the signal amplitude
shows the time delays T , τ and the detection time t . (B) Photograph showing
the signals in the three-pulse photon echo experiments on C2. Three laser spots
are marked by numbers 1–3. Yellow triangles show the third-order signals. The
circles and pentagrams mark the fifth-order signals. The red pentagram is the
spot analyzed in the present work.

field from the laser pulses at a certain FMO with a position xr is given by

Er(t) = A
3∑

p=1

E p(t) cos(ω(t − tp) − kpxr), (1)
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where A is the field amplitude and E p(t) is the normalized Gaussian field envelope function of
the pulse p with the center position at tp and carrier frequency ω. kpxr gives the spatial phase
of the pulse at the position of an FMO complex r .

2.2. Multiexcitonic density matrix

Each BChl is modeled as a three-level system having the ground state S0, the first excited state
S1 and a higher excited state Sn that is responsible for the excited state absorption (ESA) from
the S1 state at the same spectral region as the S1 absorption.

The diagonalization of the excitonic Hamiltonian gives rise to delocalized exciton
states, which can be divided into manifolds according to the number of excitations in the
system. Dipolar transitions are allowed only between the neighboring manifolds. We only
consider one- and two-exciton manifolds here. For the one-exciton manifold, we obtain |α1〉 =∑

m Cα1(m)|m〉, and for the two-exciton manifold, we obtain |α2〉 =
∑

m,n Cα2(m, n)|m, n〉

using the respective exciton expansion coefficients Cα1(m) and Cα2(m, n). It should be noted
that the two-exciton states include the monomeric higher excited state Sn via |m, m〉.

The laser-pulse-induced time evolution of the system is calculated using a multiexciton
density matrix theory. The details of the approach are presented in [40]–[42]. The electric field
of the laser pulse is included explicitly in the time evolution scheme. Relaxation processes
within the manifolds are described using the Redfield relaxation theory highlighted below.

The relaxation rate from the N -exciton state αN to the N -exciton state βN is given by
(N = 1, 2)

kαN →βN = 2π�2(αN , βN )(1 + n(�(αN , βN )))

× (J (αNβN , βNαN ; �(αN , βN )) −J (αNβN , βNαN ; −�(αN , βN ))), (2)

where n(�) denotes the Bose–Einstein distribution, and h̄�(αN , βN ) is the energy difference
between the two states. The excitonic spectral density J (αNβN , βNαN ; �αN ,βN ) describes
how efficiently the energy generated by the interstate relaxation between |αN 〉 and |βN 〉 can
be deposited into vibrational modes of both the chromophore and the protein matrix. It is
given by

J (α1β1, β1α1; ω) =

∑
m

| Cα1(m)Cβ1(m) |
2 j (ω) (3)

for the one-exciton states, and by

J (α2β2, β2α2; ω) =

∑
k 6=m,k 6=n

C∗

α2
(k, m)Cβ2(k, m)C∗

β2
(k, n)Cα2(k, n) j (ω) (4)

for the two-exciton states. We use a local uncorrelated spectral density j (ω), which is obtained
from fluorescence line narrowing spectroscopy [43].

The exciton–exciton annihilation rate kα2→β1 [44], i.e. the rate from the two-exciton state
α2 to the one-exciton state β1, is calculated as

kα2→β1 =

∑
n

|Cα2(n, n)Cβ1(n)|2kIC. (5)

The rate is proportional to the square of the overlap of a one-exciton wavefunction at a
molecule and the doubly excited molecular part Sn of the two-exciton wavefunction at the same
molecule. Contributions from all molecules are added and multiplied by the internal conversion
rate kIC between Sn and S1 of the BChl.
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2.3. Equation of motion and signal

The equation of motion of the multiexciton density matrix ρ̂(r) of the rth complex is [41, 42]

∂

∂t
ρ̂(r)

= −i(L(r)

0 − iD(r) +L(r)

field)ρ̂
(r). (6)

The superoperators for the free time evolution of the excitons and the dissipation are given
by L(r)

0 and D(r). The field part of the propagator is given by the commutator with the field
times the dipole operator: L(r)

fieldρ̂
(r)

= −[Eµ̂(r), ρ̂(r)]− [41, 42]. The polarization of the r th
complex is obtained as a sum over all states of the density matrix 〈αN |ρ̂(r)

|βN±1〉 = ρ
(r)
αN βN±1

times the respective elements of the dipole operator 〈αN |µ̂(r)
|βN±1〉 = µ

(r)
αN βN±1

(N , N ± 1 is 0
for ground state, 1 for one- and 2 for two-exciton states). A discrete Fourier transformation of
the polarizations to the k-space gives the polarization in the kout-direction,

P(kout, τ, T, t) = 2Re
∑

r

eikoutxr
∑

αN ,βN+1

µ
(r)
αN βN+1

ρ
(r)
βN αN+1

(Er ; t). (7)

The polarization depends on the time delays τ and T between the pulses in Er and the signal
time t defined in figure 1(A). Finally, the 2D Fourier transform is calculated to obtain the 2D
spectra in the kout-direction [45],

S2D(kout, ωτ , T, ωt) = i
∫

∞

−∞

dτ e−iωτ τ

∫
∞

−∞

dt eiωt t P(kout, τ, T, t). (8)

In the following, only the real part of the signal is discussed. The signal can be further divided
into rephasing (τ > 0) and nonrephasing (τ < 0) contributions.

3. Results and discussion

We apply the above method to the FMO complex of the green sulfur bacterium Chlorobium
tepidum [46]. The parameters are the same as in [35]. Random orientations of the complexes
are used as well as Gaussian-distributed static site energy disorder of 80 cm−1 (FWHM). A
diagonalization with respect to the dipole–dipole coupling gives rise to delocalized exciton
states.

As in [33, 35], we use a temperature of 77 K and wavelength 805 nm for the three pulses.
To get a broad spectrum, we used a pulse length of 4t = 13 fs, corresponding to a bandwidth of
4ω = 2 ln 2/(πc 4 t) = 1100 cm−1. The bandwidth is somewhat broader than what was used in
2D experiments of FMO [33].

Figures 2–4 show the calculated 2D spectra of FMO in the fifth-order phase-matched
direction −2k1 + 2k2 + k3. In figure 2, the total signal at T = 0.2 ps and T = 1 ps are presented,
whereas in figures 3 and 4, the nonrephasing (τ < 0) and rephasing (τ > 0) signals are shown
separately for the two T points. Vertical and horizontal lines in the plots indicate the energies of
the 28 two-exciton states (vertical) and 7 one-exciton states (horizontal). For nonoverlapping
pulses, during the time τ , all Liouville pathways are in ground-state to two-exciton state
coherence. Therefore the two-exciton states become visible in ωτ . In ωt also the one-exciton
states become clearly visible because of the Liouville pathways, which are in ground-state to
one-exciton coherence during the t evolution. The lowest-energy one-excitons are strongest
in the linear absorption spectrum. The α1 = 1, 2, 3 are also particularly clearly visible in 2D
spectra as the prominent features coinciding with the three lowest frequency horizontal lines.
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T=0.2 ps

ω
τ
 (103cm−1)

ω
t (
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3 cm

−
1 )

24.0 24.4 24.8 25.2

12.0

12.2

12.4

12.6

T=1.0 ps

ω
τ
 (103cm−1)

24.0 24.4 24.8 25.2

Figure 2. Calculated 2D spectra in fifth-order phase-matching direction −2k1 +
2k2 + k3 at T = 0.2 ps and T = 1 ps. The horizontal lines indicate the energies of
the one-exciton states and the vertical lines indicate the energies of the two-
exciton states. The signal is negative and the minimum of the 0.2 ps signal
is normalized to −1. The color coding is linear and the borderlines between
different colors correspond to −0.95, −0.85, −0.75, etc. The 0.2 and 1 ps plots
have the same scaling.

The relaxation from the α1 = 2, 3 to the α1 = 1 level is also obvious on comparing the spectra at
T = 0.2 ps and T = 1 ps—the weight of the α1 = 1 contribution is rising, whereas the upper two
become weaker. Comparing the nonrephasing and rephasing contributions to the total signal,
one can clearly note the usual antidiagonal elongation of the nonrephasing signal, whereas the
rephasing signal shows diagonal elongation. The effect is a direct analogue to a similar behavior
in the third-order 2D spectra of excitonically coupled dimers [47].

We do not use response functions and Feynman diagrams in our calculations. Still, the
diagrams provide a convenient tool for discussing the qualitative features and behavior of the
results. In figure 5, we have presented all Feynman diagrams that contribute to the signal in fifth
order. The corresponding rephasing and nonrephasing diagrams are paired up. All diagrams are
in ‘population’ during the time period T . For diagram 1, this is a ground-state population. For
the other diagrams, this can be a true population ραN αN or coherence between exciton states
of the same manifold ραN βN , each corresponding to separate diagrams. All of these have their
own dynamics during T , which is not explicitly depicted in the diagrams. For example, the
quantum beats observed in the 2D spectra of FMO [7] are due to the evolution of coherences in
one-exciton manifold. Population relaxation during the T leads to still another set of diagrams.
In figure 5, we have included the possibility that diagram 3 can relax from two-exciton to one-
exciton manifold during T , leading to diagrams 5 and 6. We point out that since the number of
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non−reph.
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Figure 3. Nonrephasing and rephasing components of the 0.2 ps 2D spectra from
figure 2. The normalization is as before.
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Figure 4. The same as figure 3 but for the 1 ps spectrum.

different diagrams contributing to the signal is very large, performing calculations by adding
up signals from all different pathways would not be trivial. All of those pathways appear
automatically in our calculations.
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Figure 5. Fifth-order double-sided Feynman diagrams that give signal in the
chosen phase-matching direction. The rephasing and nonrephasing diagrams are
paired together. Diagrams 3 can lead to diagrams 5 and 6 via exciton annihilation
(visualized by a double arrow) during the population time T .

The 2D signals in figures 2–4 are negative over the whole plot. Each additional order
contributes to the response function a multiplier i [48]. This means that the sign rules in fifth
order are opposite to the sign rules in third order. In fifth order, an even number of interactions
from the right lead to the negative sign of the Feynman diagram. The negative diagrams 1 and
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2 are in the one-exciton to ground-state coherence during the last time period t . Contrary to
that, the positive diagrams 3 and 4 are during that time period in the two-exciton to one-exciton
coherence. Obviously, the latter contribution is weaker. In a similar way, the third-order 2D
spectra of the FMO are mostly positive [33, 35]—clearly even there the negative ESA signal,
due to the pathways where the last evolution is in the two-exciton to one-exciton coherence, is
weak compared with the positive bleaching and stimulated emission pathways. Since we use
the three-level system to describe BChls, the total transition dipole moment is not reduced by
having one excitation present in the system. We conclude that the reason for the negative 2D
signal in fifth order is in the specific level structure and transition dipole moments of the FMO.
This explains also the change in the total signal intensity during the T evolution. During that
time, diagram 3 can relax via excitation annihilation to diagrams 5 and 6. Diagram 6 is negative
but gives weak signal because of the two-exciton to one-exciton coherence during the last time
period t (see the above argument). However, the positive diagram 5 gives strong signal—it is in
one-exciton to ground-state coherence. The general features of the 2D signal from diagrams 5,
1 and 2 are the same. Consequently, the growing positive diagram 5 reduces the total negative
signal amplitude during the time evolution T .

The fifth-order 2D spectra in figures 2–4 resemble the expected third-order double quantum
coherence 2D (2Q2D) spectra of such a system [49]. Also, the 2Q2D spectra would probe the
two-exciton manifold structure in one frequency axis and one-exciton transitions in the other
frequency axis. Since the 2Q2D is inherently a nonrephasing technique, we expect that those
spectra would be elongated along the antidiagonal as the nonrephasing signals here. However,
since the 2Q2D is third order, the signal will be positive as the conventional third-order 2D
spectrum of FMO [33].

In our nonperturbative approach, all orders of the signal are inherently present in the same
way as in experiment. This means that the seventh-order signals like −2k1 + 2k2 + 2k3 − k3 will
contribute, if present. Analogously, in [35] it was found that at higher intensities, conventional
2D spectra calculated from the direction −k1 + k2 + k3 can have contributions from the fifth-
order signal. In relative terms, the difference between the seventh- and fifth-order contributions
is smaller than the difference between the fifth- and third-order contributions. To judge the
amount of possible higher order contributions, one should vary the field amplitude A in
equation (1) as it was done in [35]. In fifth-order experiment, one needs also to be aware of the
possible contributions from cascading third-order processes [50], which are not present in our
calculations. The cascading-induced signals can be also included if the calculations are carried
out for the 3D sample and the field generated by the earlier excited complexes is included in the
incoming field equation (1).

We point out that very recently the experimental 3D fifth-order signal of a dye molecule
was measured [51]. The phase-matching schema in that work is the same as that in our
calculations if the pulse number 3 comes first. In this case, both pulse delays correspond to the
evolution of inter-manifold coherences and one can carry out Fourier transformation along both
times leading to 3D representation. To calculate such signals in multichromophoric systems
like here, one should include possible transitions from two-exciton manifold to three-exciton
manifold. In fact, also for the case studied here, there would be a pair of diagrams that involve
three-exciton manifold. If we take diagram 3 (see figure 5) and let the third pulse interact from
the left, we would obtain two diagrams with negative sign that generate signal from three-
exciton to two-exciton coherence. Such calculations are beyond the scope of the present work
and will be a topic of future studies.
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4. Summary

We use nonperturbative computation schema based on numeric integration of the equation of
the motion of multiexciton density matrix of the FMO pigment protein complex. A clear signal
can be extracted in phase-matching directions owing to the interference of the polarizations
generated by a large number of randomly placed unoriented energetically inhomogeneous
complexes that interact with the laser field. In this paper, the signal in a fifth-order phase-
matching direction −2k1 + 2k2 + k3 is analyzed. As in experiment, the signal field is used to
construct electronic 2D spectra showing clear features that correspond to two-exciton and one-
exciton energies. The results are discussed in terms of Feynman diagrams including exciton
annihilation and will be useful in disentangling fifth-order experiments, once they are performed
in such systems.
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