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Abstract
We study coherent wave scattering through waveguides with a step-like surface
disorder and find distinct enhancements in the reflection coefficients at well-
defined resonance values. Based on detailed numerical and analytical calcula-
tions, we can unambiguously identify the origin of these reflection resonances to
be higher-order correlations in the surface disorder profile which are typically
neglected in similar studies of the same system. A remarkable feature of this new
effect is that it relies on the longitudinal correlations in the step profile, although
individual step heights are random and thus completely uncorrelated. The cor-
responding resonances are very pronounced and robust with respect to ensemble
averaging, and lead to an enhancement of wave reflection by more than one
order of magnitude.
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1. Introduction

The problem of scattering off a rough surface is a central topic in physics which occurs for
many different types of waves and on considerably different length scales [1–4]. Phenomena
induced by surface corrugations play a major role in the study of acoustic, electromagnetic, and
matter waves alike and appear in macroscopic domains such as acoustic oceanography and
atmospheric sciences [5, 6], but also emerge on much smaller length scales, e.g., for photonic
crystals [7], optical fibers and waveguides [8, 9], surface plasmon polaritons [10], metamaterials
[11], thin metallic films [12–14], layered structures [15], graphene nanoribbons [16, 17],
nanowires [18–20], and confined quantum systems [21, 22]. While having a detrimental effect
on the performance of many of the above systems, surface roughness can also be put to use,
e.g., for the fabrication of high-performance thermoelectric devices [23, 24] and for light
trapping in silicon solar cells [25]; rough surfaces cause anomalously large persistent currents in
metallic rings [26] and provide the necessary scattering potential to manipulate ultra-cold
neutrons which are bound by the earthʼs gravity potential [27].

In view of this sizeable research effort, it might come as a surprise that even quite
fundamental effects emerging in surface-disordered systems are still not fully understood.
Consider here, in particular, the problem of wave transmission through a surface-corrugated
guiding system which we will study in the following. As demonstrated in detail below, even a
very elementary and well-studied model system, consisting of a two-dimensional (2D)
waveguide with a step-like surface disorder on either boundary (see figure 1), can only be
inadequately described with conventional techniques. The reason why the knowledge on
surface-disordered waveguides is still far behind the state of the art for bulk-disordered
systems is mainly because of the difficulties arising from the non-homogeneous character of
transport via different propagating modes (channels). As was numerically shown in [28], the
transmission through multi-mode waveguides depends on many characteristic length scales
which are specific for each mode. As a result, one can observe a coexistence of ballistic,
diffusive, and localized regimes in the same waveguide when exploring mode-dependent
transport coefficients (see, also, [29] where similar behaviour has been observed in three-
dimensional structures). Such effects lead to non-homogeneous scattering matrices which
prevent the application of well-developed analytical tools such as Random Matrix Theory
[30, 31] or the Ballistic Sigma Model [32]. Additionally, the prospect of engineering the
transmission through a waveguide by imprinting a specific surface profile [33] requires a
theory which is not based on some general assumptions on randomness in the surface
disorder, but one which relates an arbitrary but given surface profile to the transmission of
each transporting channel.

An analytical surface scattering theory developed in [34, 35] is a promising candidate to
fulfil this task. According to this theory, the transmission through waveguides with a weak
surface corrugation is determined by two principally different correlators embedded in the
surface profile, where the -correlator typically gives the main contribution to scattering
which also appears in conventional approaches. This standard binary correlator measures the
correlations between the profile amplitudes at the points x and x′. The -correlator, on the other
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hand, is due to the correlations between the squares of the slopes (squares of the derivatives) of
the profiles at the points x and x′. In most theoretical studies, this -correlator is, however,
neglected since it constitutes a higher-order term in the weak disorder expansion where the
disorder amplitude is the relevant expansion parameter. In our article we will provide
conclusive evidence that this term, although being of higher order, can dominate the
transmission through a surface-disordered waveguide and that it needs to be taken into account
in a comprehensive description.

The first numerical and experimental indications that the -correlator plays, indeed, an
important role have been put forward in a recent study on a specific waveguide geometry which
was designed to highlight the presence of this new term [33]. Here we go an important step
further by demonstrating that the influence of this correlator shows up not just for carefully
chosen waveguide geometries, but in a quite general class of waveguides. In particular, we will
show that waveguides with a step-like surface disorder which have been well studied by the
community yield unambiguous and very pronounced signatures for the influence of the
-correlator which, to the best of our knowledge, have so far been overlooked. In these
waveguides (see figure 1), the surface disorder features steps of random height (in the direction
transverse to propagation) and of constant width (in longitudinal direction). Such waveguides
have been considered in quite a few recent studies [20, 26, 36–39], as they are attractive model
systems both for an experimental implementation as well as for a numerical computation. This
is because waveguides with the above specifics can be easily built up by combining a series of
rectangular waveguide stubs, each of which has no surface disorder but a randomly chosen
height. Our analysis will show that in these concatenated systems the -correlator gives rise to
well-defined resonances in the reflection coefficients, which are perfectly reproduced in a
corresponding numerical study. At these resonant values the -correlator may strongly
dominate over the lower-order -correlator such that a conventional description breaks down
here. To show this not only by numerical evidence, but also by the corresponding analytical
expressions, we significantly expand the existing theoretical framework presented in [34, 35].
This is mainly because the surface derivatives which enter the -correlator diverge at the steps
in the surface profile and thus require a special treatment. Another important extension of the
theory which we take into account is due to multiple scattering events between the propagating
modes in the waveguide which yield a significant contribution beyond the single-scattering
terms that have been considered so far. In this sense, our combined analytical-numerical study
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Figure 1. Illustration of the considered surface-disordered waveguide of length L
attached to semi-infinite collinear leads of width d. The step-like surface disorder is
characterized by a constant step width Δ and a maximum disorder-strength δ, respectively
(see text for details). Flux is injected from the left. An example of an antisymmetric
geometry is shown in which the upper and the lower surface disorder are identical.



not only reveals a new effect, but also contributes to an extension of the underlying theory to the
point where the analytical formulas that we derive provide predictions which quantitatively
match with the numerical calculations that we perform independently.

2. Model

We consider a simple, non-trivial model consisting of a quasi-1D corrugated waveguide (or
conducting wire) with discrete steps in the surface profile. This rough waveguide of length L
and average width d L≪ is attached to infinite leads of width d on the left and right (see
figure 1). Flux is injected from the left and propagates through Nd open channels. The upper and
lower surfaces of the rough waveguide are given by the functions y d x2 ( )σξ= +↑ ↑ and

y d x2 ( )σξ= − +↓ ↓ , respectively. The random functions x( )iξ (i ,= ↑ ↓) describe the roughness
of the surfaces and are assumed to be statistically homogeneous and isotropic, featuring zero

mean, x( ) 0iξ = , and equal variances, x( ) 1i
2ξ = . Altogether three different cases will be

considered in terms of the symmetries of the boundary profiles with respect to the horizontal
center axis at y = 0:

i. symmetric boundaries,

x x( ) ( ), (1)ξ ξ= −↑ ↓

ii. antisymmetric boundaries,

x x( ) ( ), (2)ξ ξ=↑ ↓

iii. nonsymmetric boundaries,

x x( ) ( ). (3)ξ ξ≠↑ ↓

Following the assumptions adopted in a few recent papers [20, 26, 36–39], the functions
x( )iσξ are chosen as sequences of horizontal steps of constant width Δ and random heights,

uniformly distributed in an interval [ ]2, 2δ δ− around the upper (lower) boundary of the
attached leads. In our numerical analysis we set d = 1 and 0.04δ = , resulting in a variance of
the disorder, 122 2σ δ= , which is small compared to the width of the waveguide, dσ ≪ .

Note that we have realized, in the above way, a scattering system which is truly random
yet features very strong spatial correlations in its surface disorder since the waveguide exhibits a
potential step at each integer multiple of the step-width Δ.

3. Analytical method

According to the theory developed in [34, 35], the correlations in the surface disorder enter the
scattering properties of the system through two independent correlators. The first one is the
binary correlator of the surface profile,

( ) ( )x x x x( ) , (4)ξ ξ− =′ ′
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which contains contributions only from the amplitude x( )ξ and the derivative of the surface
profile x( )ξ′ . Correspondingly, the scattering mechanism that this correlator gives rise to is
referred to as the amplitude-gradient-scattering (AGS) mechanism.

The other correlator contains scattering contributions which are independent of those in
equation (4) and which are related to the square of the profileʼs derivative, x( )2ξ′ , in an effective
potential description (see details in [34, 35]),

( ) ( )

( )

x x x x

x x x

2 ( )

( ) ( ) , (5)2 2 2 2
ξ ξ ξ

− =

= −

′ ′

′ ′ ′ ′

  

with x x x( ) ( ) ( )2 2ξ ξ= −′ ′ . The corresponding scattering process is thus referred to as the

square-gradient-scattering (SGS) mechanism. We emphasize here that the validity of the
identity ( ) ( )x x x x( ) 2 2= −′ ″ ′   used in different contexts (see, e.g., [33–35]) is
restricted to Gaussian random processes and cannot be applied for the present step-like surface
profiles. Indeed, as we will see below, this simplification would lead to a severe underestimation
of the SGS mechanism in the present context.

In our further analysis it will not be binary correlators themselves which will be the key
quantities, but rather their Fourier transforms ( )W kx and ( )S kx ,

( )W k x e dx( ) , (6)x
ik xx∫=

−∞

∞
−

( )S k x e dx( ) , (7)x
ik xx∫=

−∞

∞
−

which denote the roughness-height power spectrum and the roughness-square-gradient power
spectrum, respectively. Here kx is the longitudinal wavenumber which is determined by the

transverse quantization condition ( )k k n dn
2 2π= − . The index n stands for a specific open

propagation channel with n N1, 2, ..., d= , where the total number of open modes is given by

N kdd π= ⎢⎣ ⎥⎦ and k denotes the scattering wavenumber.

For the scattering system in figure 1 the -correlator can be obtained analytically,

( )( )x x
x x

x x1 , (8)
Δ

Θ Δ− = − − − −′ ′ ′⎜ ⎟⎛
⎝

⎞
⎠

which is strongly peaked for surface points x and x′ which are closer to each other than the step
width in the disorder, x x Δ− <′ , but zero for all larger distances, x x Δ− >′ .

For completeness and since it is a key parameter in [34, 35], we want to stress the fact that,
if defining the correlation length R as the variance of the binary correlator ( )x x− ′ , the step

width Δ and correlation length R are directly linked with each other, R 6Δ= . For the sake of
simplicity we will use the step width Δ in all expressions in the following since it represents the
quantity which we tune in our simulations and which is therefore the more natural parameter in
our system.

The Fourier transform of ( )x x− ′ then yields the analytical expression for the

roughness-height power spectrum ( )W kx ,
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( ) ( )
( )

W k
k

k

sin 2

2
. (9)x

x

x

2

2Δ
Δ

Δ
=

An important point to mention here is the following: equations (8) and (9) implicitly assume
that the rectangular steps in the profile boundary can be perfectly resolved by the scattering
wave. However, due to the finite wavelength at which the scattering process takes place, the
resolution of the surface profile also will always be finite. To accommodate this limited
resolution, we introduce an effective smearing of the step profiles based on a Fermi-function

( )x1 1 exp ρ+⎡⎣ ⎤⎦ (see the appendix for more details). The smoothness of this function is

governed by the parameter ρ which leads to a smearing of a step profile over a region x 12Δ ρ≈
(see figure A1 in the appendix for a corresponding illustration). If we now estimate that a
scattering wave with a wavelength λ is associated with a resolution of x 2Δ λ≈ , we obtain for
the smearing parameter 0.03

24
ρ ≈ ≈λ . Employing this value for all further calculations, a

comparison with the numerical data suggests that this simple estimate already captures our
simulations remarkably well. An exception is that in symmetric waveguides a reduced value of

0.01ρ = yields better agreement. Based on these observations, we expect our theoretical
framework to be applicable also to waveguides with a smoothened step boundary (provided that
the smoothing is on or below the same scale as the wavelength).

When incorporating the smoothness of the steps into the roughness-height power spectrum
given by equation (9), we can again obtain a simple analytical expression, which takes the
following form (see the appendix for details),

( )
( )

( )W k
k

k
1 4

sinh
sin 2 . (10)x

x
x

2 2

2
2

Δ
π ρ

π ρ
Δ=

For small values of ρ a Taylor series expansion is justified, ( )( )k k1 sinh 1x x
2 2 2 2π ρ π ρ≈ ,

yielding the result already obtained for infinitely sharp steps, equation (9).
The above approach involving a smearing of the step disorder turns out to be essential

when considering the roughness-square-gradient power spectrum ( )S kx . This is because,
without the smearing, the corresponding expressions would diverge, as can easily be understood
from the fact that the gradient turns into a delta function at the position of a step when an
infinite resolution is assumed. This divergence is, however, conveniently tamed through the
above procedure involving the Fermi-function, yielding the following analytical expression for

( )S kx (see appendix),

( ) ( )

( )

( )
( )

( )

( ) ( )
( )

( )

S k
k k

k
k

k
N

N k

k

1
72

1

sinh

4
5

7 2 cos

2 1 cos
1

2 1

sin 1 2

sin 2
. (11)

x
x x

x
x

x

x

x

2 2 2 2 2

2

eff

2
eff

2

Δ
π ρ

π ρ
Δ

Δ
Δ

Δ

=
+

+

+ +
+

+

⎡
⎣⎢

⎡⎣ ⎤⎦ ⎤
⎦
⎥
⎥

In addition to the smearing parameter ρ, the above expression also contains the integer number
Neff , which determines the number of steps N2 1eff + that are effectively involved in the scattering
process. The notion of an effective number has been introduced here to take into account that
the total number of steps in the waveguide, N L2 1 Δ+ = , is typically significantly larger than
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the value N2 1eff + which we find to reproduce our data. This difference, N Neff ≪ , can be
attributed to the finite penetration depth of the propagating wave as a result of which the
effective longitudinal dimension of the waveguide is greatly reduced. We shall thus determine
the quantity Neff through a direct comparison with the numerical data to be presented below.
Also note that we have used ensemble averaging for the derivation of the above equations (10)
and (11) (to ensure convergence of equation (A.3) in the appendix) [40]. Recent work
demonstrates, however, that an application of the predictions following from the two different
correlators above also yields good quantitative agreement for individual disorder realizations as
in single disordered waveguides [33].

A direct comparison of the expressions for the two correlators in equations (10) and (11)
provides the insight that the SGS term ( )S kx becomes large at exactly the same points at which

the AGS term ( )W kx vanishes. At these points, where k M2xΔ π= withM integer, the SGS term
will thus dominate over the AGS term. As we will demonstrate below, this fact provides the key
element for the occurrence of the pronounced resonances in reflection that we observe, and we
will discuss how this resonance condition is realized for different symmetry classes. Note that

these dominant SGS contributions in ( ) ( )N k ksin 1 2 sin 2x xeff Δ Δ+⎡⎣ ⎤⎦ would be suppressed if

we applied the customary approximation (used, e.g., in [33–35]) that the defining expression for

the SGS term, ( )x x( ) ′  , can be replaced by the simplified term ( )x x2 2 −″ ′ .

With the above expressions equations (10) and (11) we now have the relevant quantities at
hand for setting up the perturbation theory analysis of scattering in surface-disordered
waveguides. For this analysis to be applicable, the perturbation induced by the surface disorder
has to be weak, resulting in the following independent requirements,

( )d R L k d n d L, 2 , 2 . (12)n n n nσ Λ π≪ ≪ = ≪

Here, Ln is the partial attenuation length of the nth incoming mode (from the left) which takes
into account both the scattering in forward direction (to the right) and in backward direction (to
the left). The cycle length nΛ is the distance between two successive reflections of the nth mode
from the unperturbed surfaces. Under the conditions in equation (12) the waves are weakly
attenuated over the correlation length R, the step width Δ, and over the cycle length nΛ . Clearly,
the correlation length must be smaller than the waveguide length, R L≪ . When applying, in
the above limit of weak disorder, the perturbative treatment following [34, 35], we obtain the
mode-specific inverse attenuation lengths for scattering from any incoming mode n into any
mode n′ [35],

L L L L L

1 1 1 1 1
. (13)

( ) ( ) ( ) ( )
nn nn

b AGS
nn

f AGS
nn

b SGS
nn

f SGS, , , ,
= + + +

′ ′ ′ ′ ′

All Lnn′ can be decomposed into backward (b) and forward (f) scattering contributions as well as
into terms which are associated with the AGS and SGS mechanism of surface scattering. In
their full, detailed form we thus obtain for the terms in equation (13),

( ) ( )
L L d

A

k k
W k k W k k

1 1
, (14)

( ) ( )
nn

b AGS
nn

f AGS

nn

n n
n n n n, ,

2

6

σ+ = + + −
′ ′

′

′
′ ′

⎡⎣ ⎤⎦
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( ) ( )
L L d

B

k k
S k k S k k

1 1
. (15)

( ) ( )
nn

b SGS
nn

f SGS

nn

n n
n n n n, ,

4

4

σ+ = + + −
′ ′

′

′
′ ′

⎡⎣ ⎤⎦

Here the factors Ann′ and Bnn′ depend on the symmetry between the two profiles x( )ξ↑ and x( )ξ↓

(see table 1), and the terms depending on k kn n+ ′ contribute to backward scattering whereas
those depending on k kn n− ′ result in forward scattering. The overall attenuation length of mode
n can be obtained by means of the sum over all corresponding partial inverse mode-specific

lengths L1 nn′, L L1 1n n

N
nn1

d= ∑ =′ ′.
As one can see from equations (14) and (15) the mode attenuation lengths Ln essentially

depend on the distinct correlators x( ) and x( ) through their Fourier transforms ( )W kx and

( )S kx derived above. The important point in this context is that ( )W kx and ( )S kx depend

differently on the external parameters, in particular, on the wavenumber kx and on the module
width Δ. We thus may arrive at the situation in which at specific values of the wavenumber the
SGS-term in equation (15) ( 4σ∝ ) can be comparable to (or even larger than) the AGS-term in
equation (14) ( 2σ∝ ). In particular, the points discussed above, where a peak value in ( )S kx

coincides with a zero of ( )W kx , can be expected to lead to interesting transmission
characteristics.

To test this scenario explicitly, we performed extensive numerical simulations on transport
through surface-disordered waveguides of all three symmetry classes.

4. Numerical method

For these numerical simulations we employ the efficient ‘modular recursive Greenʼs function
method’ (MRGM) [17, 41] to solve the Schrödinger equation for the Hamiltonian (in atomic
units),

( )H
x y

V x y
1
2

, , (16)
2

2

2

2
ˆ = − ∂

∂
+ ∂

∂
+

⎛
⎝⎜

⎞
⎠⎟

on a discretized grid. The potential term V defines the surface potential, which is infinite outside
the waveguide and flat (V = 0) inside, corresponding to hard-wall boundary conditions. Since
the scattering problem in equation (16) is equivalent to the Helmholtz equation, our approach is
not only suitable for electronic systems but can, e.g., also be applied to microwave systems as in
[33, 42], or quite generally to systems which satisfy a Helmholtz-like equation.

The MRGM is particularly advantageous for the present setup since the vertical steps in
the disorder profile allow us to assemble the waveguide by connecting a large number of
rectangular elements, which will be referred to as ‘modules’. These modules are chosen to have
equal width Δ, but different heights. The computation is based on a finite-difference
approximation of the Laplacian and proceeds such that we first calculate the Greenʼs functions
for a number of modules with different heights. These Greenʼs functions are then connected to
each other by way of a matrix Dyson equation [41]. It is the different heights of the modules and
additionally introduced random vertical shifts between them that give rise to the desired random
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sequence of vertical steps in the surface profile. To satisfy the additional symmetry imposed on
the waveguide, we arrange the modules in order to respect this specific symmetry.

The key element of our numerical approach is an ‘exponentiation’ algorithm [20] which
allows us to simulate transport through extremely long waveguides at moderate numerical costs.
Rather than connecting individual modules with each other until the length of the waveguide is
reached, we first connect several sequences of randomly assembled modules. In a subsequent
step these ‘supermodules’ are then randomly permuted and connected to each other to form a
next generation of supermodules. Continuing this iterative procedure allows us to obtain the
Greenʼs functions of waveguides with a length that increases exponentially with the number of
generations. For waveguides of moderate lengths, we tested this supermodule technique against
the conventional approach where the modules are assembled one after the other. We found that
the disorder-averaged Greenʼs functions obtained in these two ways do not show any noticeable
difference from each other [20].

To calculate the desired transmission ( )tnn′ and reflection amplitudes ( )rnn′ for incoming flux
from the left lead, we project the Greenʼs function at the scattering wavenumber k onto the flux-
carrying lead modes { }n n N, 1, , d∈ …′ in the left and right lead, respectively. From these

amplitudes we obtain the transmission from one mode to the other, T tnn nn
2=′ ′ , as well as the

total transmission through one mode, T tn n

N
nn

2d= ∑ ′ ′ , and the total transmission of the whole

system, T t
nn

N
nn

2d= ∑ ′ ′ .

5. Comparison between analytical and numerical results

In order to compare the analytical predictions of equations (14) and (15) for the attenuation
lengths with our numerical results for the waveguide transmission, we extract the values of the
mode attenuation lengths from the numerical data through an automatized fitting procedure. To
obtain accurate fits of the length dependence of the transmission, we evaluate the transmission
at up to 250 (symmetric waveguide), 200 (antisymmetric waveguide), and 80 (nonsymmetric
waveguide) different length values in waveguides which reach a maximal length

( )L N2 1max Δ= + , with N 1010= (symmetric waveguide), N 108= (antisymmetric waveguide)

and N 106= (nonsymmetric waveguide), respectively. To suppress effects which are due to
individual disorder realizations, we also average the transmission over 100 (symmetric and
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Table 1. Matrices of constants Ann′ and Bnn′ for the symmetric, antisymmetric, and
nonsymmetric waveguides considered in the text.

symmetric antisymmetric nonsymmetric

A A

A A
11 12

21 22

⎛
⎝⎜

⎞
⎠⎟ =

4 0
0 64

4

4

π
π

⎛
⎝⎜

⎞
⎠⎟

0 16
16 0

4

4

π
π

⎛
⎝⎜

⎞
⎠⎟

2 8
8 32

4 4

4 4

π π
π π

⎛
⎝⎜

⎞
⎠⎟

B B
B B

11 12

21 22

⎛
⎝⎜

⎞
⎠⎟ =

( )

( )

0

0

3

18

3 4

18

2 2

2 2

π

π

+

+

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
2 0

0 8

4

4

π
π

⎛
⎝⎜

⎞
⎠⎟

( )

( )

20

20

9 6 10

72

9 24 160

72

2 4

4

2 4

4

π π

π

π π

π

+ +

+ +

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟



antisymmetric waveguide), and 50 (nonsymmetric waveguide) different disorder realizations.
Our fits are then performed with the disorder-averaged transmission curves (details are provided
below). To keep the system at a manageable degree of complexity and to perform a direct
comparison with equations (14) and (15) we restrict ourselves to the regime of two open
waveguide modes, N 2d = , by choosing the wavenumber k to be fixed at the value
k d2.55 π= . By varying the step width Δ in the surface disorder incrementally, we
numerically scan through the module width dependence of the transmission (at each value of Δ
an ensemble average over 50–100 waveguide realizations is performed).

We will now discuss the disordered waveguides with different symmetry separately, as
both the predictions from equations (14) and (15) as well as the procedure to extract the
attenuation lengths are specific for each symmetry.

5.1. Symmetric profiles

In symmetric waveguides the up-down symmetry of the entire scattering structure,
x x( ) ( )ξ ξ= −↑ ↓ , results in the fact that modes of different symmetry cannot scatter into each

other. For the two-mode waveguide considered here, this means that the two modes n 1, 2=
scatter fully independently of each other with only intra-mode scattering (with n n= ′) being
relevant and inter-mode scattering (with n n≠ ′) being entirely absent. Correspondingly, the
only scattering mechanism that attenuates an incoming wave in mode n is back-scattering into
the same mode (forward-scattering in the same mode does not attenuate the mode and inter-
mode scattering is forbidden). For our analysis we therefore need to consider only the intra-

mode back-scattering (b) length L ( )
nn

b which follows from equations (14) and (15) [35],
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( )b
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4
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2

2
2π σ π σ= +

+

where W ( )· and S ( )· are defined by equations (10) and (11), respectively. Due to the
decoupling of the two modes, we are here in the 1D limit of single-channel scattering where all
modes are localized and diffusion is absent (as in 1D bulk scattering systems [30]), resulting in
an exponential decrease of the transmission T(L) with waveguide length L,

( ) ( )T L Lexp ln exp 2 ξ= −⎡⎣ ⎤⎦ . For 1D scattering the localization length ξ is related to

the mean free path as follows l2ξ = [30]. Identifying the mean free path for each mode with

the specific backward scattering length L ( )
nn

b , we obtain the desired relation

( )( )T L L Lexp ln exp ( )
nn nn

b= −⎡⎣ ⎤⎦ which we use to extract the backward-scattering length

L ( )
nn

b from the numerical data. The validity of this procedure is independently confirmed by the
numerically determined length dependence of the transmission which follows the expected
exponential decay very accurately (see figure 2(a)).

Following this analysis we extract from the disorder-averaged transmission the numerical

values for L ( )
nn

b through the identity T L Lln ( )
nn nn

b= − and compare it to the corresponding
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analytical predictions in equations (17) and (18). The corresponding results for L1 ( )
nn

b as a
function of Δ are shown in figure 3(a). We also plot the theoretical predictions given by

equations (17) and (18), respectively, as well as the AGS terms L1 ( )b AGS
11

, and L1 ( )b AGS
22

, alone.
The agreement we find between the AGS terms and the numerical calculations is already
remarkably good for most of the chosen parameters, such that the SGS contributions can be
easily identified to be dominant at those specific parameter values where deviations from the
AGS predictions occur (see vertical arrows in figure 3(a)). In full agreement with our theoretical
analysis, we find that the values of the step width Δ where this happens are determined by the
resonance condition k M2 2nΔ π= (with M an integer), which we already identified earlier as
those points where the contribution of the AGS terms vanishes while the SGS terms are
maximal. Note that this condition leads to different resonance values for each of the two modes
with n = 1, 2,

{
( )k

M
k n d

M
M n
M n

0.426 1,
0.632 2.

(19)
n 2 2

Δ π π

π
= =

−
≈ =

=

At these well-defined values we not only find that the theory solely based on the AGS terms
deviates from the numerics (see figure 3(b)), but that the additional SGS terms fill the missing
gaps in the theory very well in terms of resonant contributions to the inverse attenuation lengths

L1 nn (see figure 3(a)). Since maxima in the inverse attenuation length correspond to maxima in
the reflection (i.e., minima in the transmission) we may thus conclude that the SGS mechanism
leads to reflection resonances in the systems under study. While these resonances are already
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Figure 2. Illustration for how we extract the mode-specific attenuation lengths Ln from
the numerical data in the case of (a) symmetric and (b) antisymmetric waveguides (for
nonsymmetric waveguides the same procedure as in (b) is used and therefore not
described separately): (a) In the symmetric case where all modes localize with their own
specific localization length, we fit the expression T L Lln n n= − (see black lines) to

the mean logarithm of the numerically obtained transmission Tln 1 (yellow ) and

Tln 2 (blue ), shown here versus the reduced length L Δ (for 0.64Δ = ). (b) In the
antisymmetric case we restrict ourselves to the ballistic regime, where the transmission
of each mode decays along the following expression T L L1n n= − (see black lines),

which we use as a fitting curve for the mean numerically obtained transmission T1

(yellow ) and T2 (blue ), shown here versus the reduced length L Δ (for 1.53Δ = ).
An automated fitting procedure yields mode-specific attenuation lengths Ln which show
excellent agreement with our analytical estimates (see below). In the above figures,

0.01σ ≈ and k 2.55 π= have been employed, respectively.



clearly discernible in the symmetric waveguides, we will find that they are even more
pronounced in the antisymmetric waveguides that we investigate in the next section.

5.2. Antisymmetric profiles

In the case of antisymmetric waveguide profiles, we have x x( ) ( )ξ ξ=↓ ↑ , i.e., the waveguide
width is constant throughout the waveguide (see figure 1). The situation is more complicated
than in symmetric waveguides as inter-mode scattering is allowed here. A proper description of
transmission thus has to incorporate both the intra- and the inter-mode scattering contributions.
For mode-specific values of the transmission, we again have to ask which scattering events
contribute: consider, e.g., the transmission of a mode into itself, Tnn. In a perturbative treatment
this quantity is determined by all scattering mechanisms that scatter the incoming mode n into
the other mode or reverse its direction of propagation. This happens both through forward-
scattering from mode n into the second available mode n n≠′ as well as through backward-
scattering into any of the two modes n 1, 2=′ . The attenuation length extracted from the
transmission Tnn thus has to be compared to the predictions for the attenuation length Lnn, which

is given as L L L L1 1 1 1( ) ( ) ( )
nn n n

f
nn

b
n n

b= + +≠ ≠′ ′. To be specific, we find

( ) ( ) ( )
L d k k

W k k W k k
d k

S k
1

16
1

2
1

2 , (20)
11

4
2

6
1 2

1 2 1 2

4 4

4
1
2 1π σ π σ= + + − +⎡⎣ ⎤⎦

( ) ( ) ( )
L d k k

W k k W k k
d k

S k
1

16
1

8
1

2 . (21)
22

4
2

6
1 2

1 2 1 2
4

4

4
2
2 2π σ π σ= + + − +⎡⎣ ⎤⎦

The remaining question at this point is how to extract the attenuation lengths Lnn from the
numerical data for Tnn when modes do not just localize as in the symmetric case. In the presence
of inter-mode scattering, the wave injected into a disordered waveguide first propagates
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Figure 3. Inverse partial attenuation length L1 nn versus step width Δ, as obtained
numerically for two-mode symmetric waveguides. L1 11 (yellow ) and L1 22 (blue )
are shown. (a) Comparison with the analytical expressions in equations (17) and (18)
(both ) including both the AGS and the SGS terms. Note the very good
agreement which we find between the numerical data and the analytical theory, in
particular also for those resonant values k M2 2nΔ π= where the SGS contributions
dominate (marked by arrows). Panel (b) shows the AGS predictions alone, i.e., when
the SGS mechanism is omitted (both ). For all data shown the following parameter
values were used: 0.01ρ = , N 25eff = , 0.01σ ≈ and k 2.55 π= .



ballistically, then scatters diffusively, and eventually localizes at very long waveguide lengths.
For the two-mode waveguide considered here, the diffusive regime is, however, not well
pronounced such that the crossover region between ballistic scattering and localization is
comparatively narrow. Since, additionally, in the localized regime the mode with the higher
localization length ξ always dominates [20], extracting mode-specific attenuation lengths is best
achieved in the ballistic regime where the transmission decreases linearly with the system
length L, T L L1nn nn≈ − . We will use this relation to extract the attenuation lengths Lnn

from the disorder-averaged numerical transmission values Tnn in the ballistic regime. In

practice, we use the criterion [ ]T 0.9, 1nn ∈ to ensure that the requirement of ballistic
transport is satisfied (see figure 2(b)).

Figure 4 shows the numerically obtained results for L1 nn, including a comparison with the
predictions from equations (20) and (21). In panel (a), both modes are displayed, with yellow
full circles corresponding to n = 1 and blue diamonds to n = 2, respectively. In the case of
antisymmetric waveguides, a direct comparison of the numerical results for the two different
modes reveals immediately where the SGS mechanism is at work (see figure 4(a)): since the
terms in equations (20) and (21) associated with the AGS mechanism are identical for L1 11 and

L1 22, any difference between the two attenuation lengths can be expected to be due to the SGS
mechanism. The numerical results reveal that around 2.5Δ ≈ an extended region opens up in
which the two modes decouple and their attenuation lengths are significantly different. To
clarify whether this decoupling is, indeed, due to the SGS mechanism, we compare the
numerical results with the corresponding analytical predictions in figures 4(b), (c). The
agreement we obtain is, again, excellent, allowing us to identify the contributions of the SGS
mechanism in detail. First of all, we find that the decoupling of modes is, indeed, due to the
SGS mechanism as it is accurately reproduced when the SGS terms are included. Second, the
theoretical analysis also predicts that the SGS terms should give rise to small resonant
enhancements of the inverse attentuation length at the resonant values k M2 2nΔ π= (see arrows
in figures 4(b), (c)). Also, these predictions are very well reproduced by the numerical data.

To corroborate the consistency of our above arguments on forward- and backward-

scattering contributions, we also investigated the total mode transmissions T tn n

N
nn

2d= ∑ ′ ′ , which
are now different from the mode-to-mode transmissions Tnm due to inter-mode scattering. In the
ballistic regime the Tn should be determined by backward-scattering alone, since forward-
scattering just redistributes the flux which is incoming in one mode over all available right-
moving modes. Since, however, the right-moving modes are summed over in the expression for
Tn, any influence of forward-scattering drops out in our perturbative treatment. Only when
taking into account higher-order forward/backward-scattering events (as in the diffusive or
localized regime), the influence of forward-scattering should also be noticeable on the Tn. In the

ballistic regime, however, we should have T L L1n n≈ − , with L L L1 1 1( ) ( )
n nn

b
n n

b= + ≠ ′

such that the mode-specific attentuation lengths read as follows,

( ) ( )
L d

W k k

k k d

S k

k
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2
, (22)
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To extract the corresponding attenuation lengths Ln from our numerics, we use

T L L1n n≈ − as a prescription to obtain Ln in the ballistic regime, characterized by

[ ]T 0.9, 1n ∈ . The agreement which we find between the predictions for L1 n and our
numerical results is, in part, remarkably good (see figure 5). A comparison with the expression

for L L L1 1 1( ) ( )b AGS b SGS
2 2

,
2

,= + in figure 5(d) reveals an excellent agreement between theory
and simulation. With the help of figure 5(c), it can be understood that the SGS mechanism
contributes by way of two distinct effects: most obviously, we obtain peaks indicating enhanced
resonant back-scattering in our system for k M2 22Δ π= , with M integer. Note that these peaks
in L1 2 lead to back-scattering lengths which are about one order of magnitude larger than the
(conventional) AGS background. The SGS mechanism can, however, also be identified as a
finite contribution to the inverse scattering length at values ( )k k M21 2 Δ π+ = ′, exactly where
the AGS term in equation (23) vanishes. It is therefore the SGS mechanism which prevents a
perfect transparency of the waveguide.

When comparing the first mode data to equation (22), we find that the numerical curve
cannot be fully reproduced by the corresponding analytical expression for L1 1 (see figure 5(b)).

While the AGS contribution L1 ( )b AGS
1

, is identical to L1 ( )b AGS
2

, in antisymmetric waveguides,
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Figure 4. (a) Inverse partial attenuation length L1 nn versus the step width Δ, as obtained
numerically for two-mode antisymmetric waveguides, with L1 11 (yellow ) and L1 22

(blue ). We find very good agreement with the analytical expressions in equations (20)
and (21) that are included as dotdashed lines ( ) in panel (b) and (c), respectively
(with 0.03ρ = , N 25eff = , 0.01σ ≈ , and k 2.55 π= ). Arrows mark resonant values
k M2 2nΔ π= , which indicate locally dominating SGS contributions.



the SGS contribution L1 ( )b SGS
1

, is a factor 16 smaller (see figure 5(a)). How can this be
reconciled with the numerical finding that L1 1 and L1 2 are mostly equal?

We suspect higher-order terms in scattering to be responsible for these deviations which go
beyond the first-order nature of the underlying theory, where the incident wave is assumed to
scatter only once before leaving the scattering region. Our aim in the following will be to
include such higher-order contributions based on the knowledge of the first-order scattering
lengths. Consider here, e.g., the scattering length of the first mode, L1, which, as we have

assumed so far, is attenuated by back-scattering from the first mode into the first (L ( )b
11 ) and into

the second mode (L ( )b
12 ), respectively. The next higher-order contribution would be given by

forward-scattering into the second mode (governed by L ( )f
12 ), followed by back-scattering from

the second mode into the first (L ( )b
21 ) or into the second mode (L ( )b

22 ). Based on the magnitude of
the involved scattering lengths, the forward-scattering 1 2↔ occurs much more frequently than
a back-scattering event, i.e., the propagating wave undergoes forward-scattering multiple times
before it is back-scattered (see figure 6). Consequently, the modes can be assumed to be almost
equally distributed between mode 1 or 2 before back-scattering occurs. As a result, the back-
scattering contribution should also be composed of both modes in equal shares. Since the
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Figure 5. Inverse partial attenuation length L1 n versus step width Δ, as obtained
numerically for two-mode antisymmetric waveguides ( 0.03ρ = , N 25eff = , 0.01σ ≈ ,
and k 2.55 )π= . Top row: The numerical results for L1 1 (yellow ) are compared in
(a) with the AGS ( ) and SGS ( ) terms of equation (22) plotted separately. In
(b) both scattering mechanisms are combined ( ). Bottom row: Numerical values
for L1 2 (blue ) are compared in (c) with the AGS ( ) and SGS ( ) terms of
equation (23) plotted separately. In (d) both scattering mechanisms are combined
( ). We find a quantitative agreement with the predictions for L1 2 (panel (d)),
while a sizeable discrepancy is observed between numerics and analytical curves for the
first mode in (b).



forward-scattering occurs in series and the back-scattering in parallel, this translates into an
additional effective second-order term for the inverse scattering length,

L L

1 1
, (24)

( ) ( )

( ) ( ) ( ) ( )
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L
b
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b
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b

L
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with L L L( ) ( ) ( )f f f
12 21≡ = . Equation (24) represents a simple qualitative estimate of second-order

contributions to the inverse scattering lengths, and we expect that this expression can be made
more quantitative by employing a full-fledged diagrammatic theory. Note that this correction
term does not feature an explicit mode dependence since the redistribution of the flux is the
same for both propagating modes.

Based on the above, the total inverse scattering lengths can be written as the sum of the
following contributions,

L L L L

L L

1 1 1 1
,

1 1
, (25)

( ) ( ) ( )

( ) ( )

n nn
b

nn n
b

n

2,eff

1 2,eff

= + +

= +

′≠

where the superscripts i( ) denote the order of the contribution. A comparison of this result with
the numerical data is shown in figure 7, yielding much better agreement than without the
second-order contributions. In particular, we find (see figure 7(a)) that incorporating the new

effective scattering length L1 ( )2,eff resolves the discrepancy we found earlier for the inverse
attenuation length of the first mode, L1 1. This result also allows us to understand the similarity
between the numerical data for L1 1 and L1 2 while the first-order SGS contributions are very
different for these two modes: the reason is apparently the strong intermode coupling induced

by efficient forward-scattering L( )f which lets the inverse attenuation length of the first mode
L1 1 inherit the behaviour of the second mode L1 2. Correspondingly, the reason for the

decoupling between the modes in figure 7 at around 2.5Δ ≈ can also now be identified: in this
parameter window the intermode scattering strength is strongly reduced, allowing the different
attenuation lengths to maintain their mode-specific values. Everywhere else (outside this
parameter window) the behaviour of L1 1 is governed by L1 2.
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Figure 6. Illustration of scattering processes of different order. Two processes are
shown that attenuate the forward-moving first mode, n = 1. One process is of first order
and just consists of a single back-scattering event from the first mode into any of the two
backward-moving modes. However, since in the case we consider, forward-scattering
1 2↔ is dominant as compared to back-scattering, it is much more likely that the first
mode undergoes multiple scattering events in a forward direction before back-scattering
occurs. Such terms can thus yield a sizeable contribution, although they formally are of
higher order in the number of scattering events which they undergo.



5.3. Nonsymmetric profiles

Nonsymmetric waveguides represent the most general case for waveguide symmetries since, in
contrast to the previous sections, both boundaries are not restricted by any symmetry
requirement, i.e., we have x x( ) ( )ξ ξ≠↑ ↓ . Turning at first to the partial attenuation lengths,
table 1 and equations (14) and (15) allow us to put forward the corresponding expressions for

L L L L1 1 1 1( ) ( ) ( )
nn n n

f
nn

b
n n

b= + +≠ ≠′ ′, which are given by
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We can also immediately write down the corresponding total scattering lengths

L L L1 1 1( ) ( )
n nn

b
n n

b= + ≠ ′, where forward-scattering, i.e., ( )W k k1 2− and ( )S k k1 2− , is not
considered since it does not attenuate the total transmission Tn of the corresponding mode,
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Figure 7. Inverse partial attenuation length L1 n versus step width Δ, as obtained
numerically for two-mode antisymmetric waveguides ( 0.03ρ = , N 25eff = , 0.01σ ≈ ,
and k 2.55 π= ). The inverse attenuation lengths are shown in (a) for the first mode,

L1 1 (yellow ) and in (b) for the second mode L1 2 (blue ). The analytical curves are
displayed without ( ) and including ( ) second-order corrections of equation
(24). Note the quantitative agreement that is achieved through the inclusion of higher-
order scattering terms.
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As can be seen from these equations for L1 n and L1 nn, intra- and inter-mode as well as the
AGS and the SGS scattering lengths now all contribute to the scattering process, in contrast to
symmetric or antisymmetric waveguides where the coefficient matrices Ann′ and Bnn′ from
table 1 feature zeros at symmetry-specific entries. This fact underlines the role of nonsymmetric
waveguides as the most general case to study in surface-corrugated systems.

For comparison with the numerical data, we determine the quantities L1 nn and L1 n by

means of a fit to the transmission in the ballistic regime, T L L1nn nn≈ − and

T L L1n n≈ − , in complete analogy to antisymmetric waveguides in the preceding section.
Figure 8 shows a comparison between numerics and theory for nonsymmetric two-mode
waveguides. Concentrating at first on L1 nn (first row in figure 8), we note that we find very
good agreement between the theoretical and the numerical curves for both the first and the
second mode. Similar to the corresponding results in antisymmetric waveguides, a peak at

2.5Δ ≈ is clearly visible for L1 22 and, more hidden, also in L1 11. The other peaks emerging in
the analytical expression for L1 22 can also be found in our numerical data (figure 8(b)), albeit
slightly more concealed than in the previous section. The positions of these resonances can
again be determined from the resonance condition in equation (19).

Turning to the assessment of our results for L1 n, we can now, with the knowledge from
the last section, also take into account the higher-order scattering contributions given by
equation (24). Figures 8(c), (d) shows a comparison of the analytical expressions for the
attenuation lengths L1 n with the numerical data. Note that here we also include the first-order
predictions as dot-dashed lines. As found before in antisymmetric two-mode waveguides, L1 2

is already captured very well by equation (29). The arc-structure driven by the AG scattering
mechanism again shows a remarkable agreement with the numerical curve; the same is true at
resonant points where we find dominating contributions of the SGS mechanism. As before, a
more elaborate argument incorporating second-order terms in the scattering is needed for
explaining the behaviour of L1 1 (figure 8(c)). Taking only first-order expressions from equation
(28) into account results in theoretical predictions which deviate from our numerical data by
about one order of magnitude. Moreover, the period of the oscillations in L1 1 does not seem to
coincide with the analytical predictions. Only after allowing for higher-order terms in L1 n, i.e.,
where forward-scattering followed by back-scattering is taken into account by employing
equation (24), agreement can be reestablished (figure 8(c) solid line).

Note that the reflection resonances which we observe for nonsymmetric and symmetric
waveguides are not as pronounced as in the case of antisymmetric waveguides. This can be
understood by the fact that the cross-section of an antisymmetric waveguide remains constant
throughout the entire waveguide length such that the wavenumber kx also does not change in the
course of propagation. As a consequence, the resonance condition k M2x Δ π= , with M integer,
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can be fulfilled very accurately in antisymmetric waveguides, while for waveguides with
different symmetries the resonance condition is fulfilled only on average.

6. Summary

In summary, we have investigated waveguides with a step-like surface disorder supporting two
propagating modes. Our study reveals a resonant enhancement of wave reflection in these
systems, an effect which has, to the best of our knowledge, not yet been observed earlier,
despite the popularity of the employed waveguide model. To manifest this effect, we performed
extensive numerical calculations using a waveguide model with symmetric, antisymmetric, and
nonsymmetric random profiles, respectively. We compare our numerical findings to a recently
proposed surface scattering theory [34, 35], which we extend to include higher-order scattering
processes as well as to account for the limited resolution with which a scattering wave is
sensitive to the surface disorder. We find very good agreement with this new theoretical
framework and can thereby associate the origin of the reflection resonances with a higher-order
term in the weak disorder expansion of the attenuation lengths. A detailed derivation of this so-
called ‘square gradient scattering’ term is put forward, which, for the systems we consider,
results in a fully analytical expression. We show that this previously neglected contribution is
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Figure 8. Inverse partial attenuation length L1 nn versus step width Δ, as obtained
numerically for two-mode nonsymmetric waveguides ( 0.03ρ = , N 25eff = , 0.01σ ≈ ,
and k 2.55 π= ). Top row: The numerical results for (a) L1 11 (yellow ) and (b) L1 22

(blue ) are shown. The corresponding analytical expressions in equations (26) and (27)
are shown in black ( ), indicating very good agreement with the numerical data.
Bottom row: Here the numerical data for (c) L1 1 (yellow ) and (d) L1 2 (blue ) are
compared with the corresponding analytical terms without ( ) and including
( ) second-order corrections. Even though nonsymmetric waveguides represent the
most general of waveguide symmetries, we find a remarkably good agreement with our
numerics.



very robust and survives ensemble-averaging of the surface roughness. At the resonance
conditions, k M2xΔ π= , with M integer, we find up to an order-of-magnitude enhancements of
the reflection. Not only do our results constitute the first evidence of these resonances in
waveguides, but they also provide the first unambiguous signatures of the square-gradient
scattering mechanism in waveguides with arbitrary symmetries. The very good agreement
which we find between numerical and analytical results provides a solid basis for a general
understanding of wave transmission through waveguides with surface roughness. This
knowledge may be particularly important in view of experimental possibilities to engineer
the transmission characteristics of waveguides through their surface profiles [43, 44].
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Appendix

A.1. Step-profile ξ(x)

In order to describe an effective smoothing of a step-like waveguide boundary due to a finite
resolution capacity of the propagating wave, we consider a profile x( )ξ which consists of
N2 1+ steps of width Δ and random heights nα that feature zero mean and unit variance,

( )x x n( ) . (A.1)
n N

N

n∑ξ α Π Δ= −ρ
=−

The smoothing of the steps is modelled by assuming x( )Πρ to be the sum of two Fermi-

functions F x( )ρ ,

( )x F x F x
e e

( ) ( )
1

1

1

1
, (A.2)

( )x x
Π Δ= − − =

+
−

+ρ ρ ρ Δ ρ ρ−

with the parameter ρ controlling the smearing of the steps, corresponding to the finite resolution
of the propagating wave. In the limit of 0ρ → , i.e., if we assume perfect resolution, the unit

box function ( )x x( )Θ Θ Δ− − is obtained (see figure A1).
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A.2. Roughness-height power spectrum W(k)

To calculate ( ) ( )W k ikx x x x dx( ) exp ( )∫ ξ ξ= − +′ ′ ′
−∞

∞
, we employ the Wiener-Khinchin

theorem [40],

( )e f x f x x dx
L

f k( ) lim
1

( ) , (A.3)ikx

L L 2

2∫ + = ˜′ ′
−∞

∞
− ′

→∞

where f k( )
L 2
˜ denotes the truncated Fourier transform,

f k e f x dx( ) ( ) , (A.4)
L

L

L
ikx

2
2

2

∫˜ ≡
−

−

which in the limit of L → ∞ becomes the Fourier transform ( )f k ikx f x dx( ) exp ( )∫˜ ≡ −
−∞

∞
.

The angular brackets ⋯ denote ensemble averaging. For our step-profile x( )ξ we obtain the
following expressions,

( )k x n e dx

e x e dx

( )

( ) . (A.5)

L
n N

N

n
L

L
ikx

n N

N

n
ikn

L n

L n
ikx

2
2

2

2

2

∫

∫

∑

∑

ξ α Π Δ

α Π

˜ = −

=

ρ

Δ

Δ

Δ

ρ

=− −

−

=−

−

− −

−
−

In our numerics we employ a constant number of modules but allow for a varying module width
Δ; the waveguide length L is thus given by ( )L N2 1 Δ= + . Equation (A.5) therefore reads

k e x e dx( ) ( ) (A.6)
( )

( )
L

n N

N

n
ikn

N n

N n
ikx

2 ∫∑ξ α Π˜ = Δ

Δ

Δ

ρ
=−

−

− +

−
−
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Figure A1. Plot of the smoothed step-function x( )Πρ , which represents the building block
for the waveguide boundaries employed in the present paper. A comparison of x( )0.05Πρ=

(yellow ) and x( )0Πρ= (blue ) is shown, with step-width 1Δ = . The smeared-out
region x 12Δ ρ∼ used in the estimate in section 3 is indicated by grey vertical lines, as

determined by the condition ( ) ( )6 6 2.5 100
3Π Δ ρ Π Δ ρ± − ± ∼ ×ρ

− .



e x e dx k e( ) ( ) . (A.7)
n N

N

n
ikn ikx

k

n N

N

n
ikn

( )

∫∑ ∑α Π Π α≈ = ˜Δ
ρ

Π

ρ
Δ

=−

−

−∞

∞
−

˜
=−

−

ρ

  

Here, we approximate the truncated Fourier transform in equation (A.7) with k( )Π̃ρ , such that it

is independent of the summation index n and thus can be pulled in front of the summation. For
the parameters employed in the present paper, this step is very well justified and only leads to a
vanishingly small error.

The roughness-height power spectrum W k k( ) lim ( )L L L
1

2
2ξ= ˜

→∞ consequently

becomes

( )

( )

( )

W k
N

k e

k

N
e

k

N
k

( ) lim
1

2 1
( )

( )
lim

1
2 1

( )
lim

1
2 1

1
( ) . (A.8)
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˜
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+
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ρ

α δ

Δ

ρ
ρ
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−
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− −
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Note that we assume here that the random heights are uncorrelated, i.e., the products n mα α
vanish for n m≠ . The expression k( )Π̃ρ can be calculated analytically,

( )
( )

( )

( )

k e F x F x dx

F k e

( ) ( )

( ) 1 . (A.9)

( )
( )

ikx

i
k

k

ik

ie k

sinh
( )

2 sin 2ik 2⏟

∫Π Δ˜ = − −

= ˜ · −

ρ ρ ρ

ρ

πρ
π ρ

πδ

Δ

Δ

−∞

∞
−

+

−

− Δ−⎛
⎝⎜

⎞
⎠⎟

  

Since we evaluate W(k) at finite k values, we omit the delta function k( )δ in the following,
yielding finally

( )
( )W k

k
k( )

1 4

sinh
sin 2 . (A.10)

2 2

2
2

Δ
π ρ

π ρ
Δ=

A.3. Square-gradient power spectrum S(k)

For the squared gradient of x( )ξ we have

( ) ( )x x n x m( ) . (A.11)
n N

N

m N

N

n m
2 ∑ ∑ξ α α Π Δ Π Δ= − −′ ′ ′ρ ρ

=− =−

Under the assumption that the smearing parameter ρ fulfils the relation 12ρ Δ≲ , the product

( ) ( )x n x mΠ Δ Π Δ− −′ ′ρ ρ is only finite if n = m, n m 1= + , and n m 1= − , respectively, i.e.,
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resulting in
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To calculate the square-gradient power spectrum S(k), we have, with

V x x x( ) ( ) ( )2 2ξ ξ= −′ ′ ,

( )

( )

S k e V x V x x dx

e x x x dx x k
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1
2

( )

1
2

( ) ( ) ( ), (A.14)
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where we again employ the Wiener-Khinchin theorem in equation (A.3). Identifying x( )2ξ′ with
f(x), we have

( )
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f k e x dx

e F x dx e e e
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In analogy to the reasoning for equation (A.10), we neglect the additional contribution at k = 0.

The square-gradient roughness spectrum S k f k( ) lim ( )L L L

1

2
2= ˜

→∞ thus becomes

( )
( )

( )S k
k k

k
k( )

1
72

1

sinh
, (A.16)
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with the auxiliary function x( )Ω ,
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