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Abstract
We study possibilities of creation and detection of oscillating gravitational fields from lab-scale
high energy, relativistic sources. The sources considered are high energy laser beams in an optical
cavity and the ultra-relativistic proton bunches circulating in the beam of the large hadron collider
(LHC) at CERN. These sources allow for signal frequencies much higher and far narrower in
bandwidth than what most celestial sources produce. In addition, by modulating the beams, one
can adjust the source frequency over a very broad range, from Hz to GHz. The gravitational field
of these sources and responses of a variety of detectors are analyzed. We optimize a mechanical
oscillator such as a pendulum or torsion balance as detector and find parameter regimes such
that—combined with the planned high-luminosity upgrade of the LHC as a source—a
signal-to-noise ratio substantially larger than 1 should be achievable at least in principle,
neglecting all sources of technical noise. This opens new perspectives of studying general
relativistic effects and possibly quantum-gravitational effects with ultra-relativistic, well-controlled
terrestrial sources.

1. Introduction

With the successful measurement of gravitational waves through LIGO, the measurement of gravitational
signals from relativistic sources has gained a lot of interest as it is believed to lead to new insights about
gravity, in particular, constraints on modifications of general relativity (GR) and potential effects of
quantum gravity [1–5]. However, such experiments are limited to detection since the experimenter has no
access to the cosmic sources of the signal.

Starting already in the 1970s, proposals were formulated for constructing terrestrial relativistic sources
and detectors of their gravitational signals. E.g. in [6–8] a cylindrical microwave resonator was proposed as
source of a standing gravitational wave and a second concentric cylinder as detector based on photon
creation in one of its modes. But it was clear that with the existing technology at the time it was not realistic
to create a sufficiently strong source whose radiation could be detected. In recent years there has been
renewed interest in the creation and detection of gravitational waves in the lab [9–17].

The gravitational field of electromagnetic radiation has been studied early on [18–20]. It gives rise to a
range of interesting effects, from an attraction that decays with the inverse of the distance instead of the
inverse square [18–21] to frame dragging [22, 23] and other gravitomagnetic effects [24–30]. Their
detection has been found to be extremely challenging, see e.g. [21, 23, 25–31]. The phenomenology of the
gravitational field of relativistically moving matter is similar to that of light. It can be calculated by Lorentz
boosting spacetimes of sources at rest. The result approaches the gravitational field of massless particles in
the ultra-relativistic limit [20, 28, 29, 32–34].
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Figure 1. (a) Laser pulse oscillating to and fro in a cavity. (b) cw laser focused to a narrow waist inside a cavity. Its intensity is
modulated to create a gravitational field oscillating at kHz frequency. (c) Ultrarelativistic particle bunches in an accelerator ring
such as the LHC create a very similar gravitational field. In the vicinity of the waist of the laser beam or close to the beamline, a
detector picks up resonant mechanical deformations due to the oscillating gravitational forces.

As technology has substantially progressed since some of the cited works have been published, both on
the side of sources in the form of high-power lasers [35–37] and particle accelerators [38, 39], and in the
metrology of extremely weak forces [40–45], it is worthwhile to reassess the possibility to detect the
gravitational effects of light and of ultra-relativistic particle beams. Indeed, progress in this direction would
enable the test of GR in a new, ultra-relativistic regime (in the sense of special relativity), with an
energy–momentum tensor as the source term in Einstein’s equations very different from the one that can
be achieved with non-relativistic masses and purely Newtonian gravity, namely with a large off-diagonal
component in Cartesian coordinates.

In this article we focus on the acceleration of non-relativistic sensor systems due to the gravitational
field of light beams and ultra-relativistic particle beams such as the ones produced at the large hadron
collider (LHC). We add several new aspects that improve the outlook for experimental observation. Most
importantly, we consider trapping of laser light in a cavity, through which the circulating power can be
drastically enhanced. Secondly, we consider modulation of the gravitational sources with an adjustable
frequency in order to match them to the optimal sensitivity of existing detectors. Several approaches are
investigated to that end. The simplest one consists in having laser pulses oscillate to and fro in a cavity, such
that the length of the cavity determines the oscillation frequency of the gravitational signal. We also
examine the possibility of slowly (kHz frequency) modulating the power with which the cavity is pumped
using a continuous wave (cw) or pulsed laser. With the pump power, the power circulating in the cavity is
modulated, and thus, also the strength of the gravitational field. Thirdly, we extend the analysis to
ultra-relativistic particle beams such as available at the LHC. And finally, we examine several possible
sensors for their suitability for measuring the created gravitational fields.

Our work is also motivated by current developments toward measuring gravitational effects of sources
in a quantum mechanical superposition as a possible experimental road to understanding quantum
gravitational effects [40, 42, 46, 47]. Creating quantum superpositions of sufficiently large masses is
challenging, and it is therefore worthwhile to think about other sources that can be superposed quantum
mechanically. We discuss perspectives in this direction for the gravitational sources studied in this paper in
section 4.

2. Potential sources and their gravitational field

2.1. Laser pulses oscillating in a cavity
To create a strong, high frequency gravitational field, a source of high power and intensity is required.
Modern femtosecond laser pulses can reach up to a Petawatt in pulse power. One such laser pulse oscillating
in a cavity, as illustrated in figure 1, is a source of short bursts of high energy oscillating to and fro at high
frequency. The perturbation to the metric and the resulting Riemann curvature tensor can be calculated
within the theory of linearized gravity, as is done in appendix A and [28, 29].

For a continuous-wave (cw)-laser with power P and circular polarization, the curvature component
relevant to a non-relativistic sensor based on a mechanical resonator with axis perpendicular to the beam
line of the laser is, for an observer in the x–z-plane (i.e. y = 0) and in the approximation of a vanishing
opening angle, given by

R0x0x � −4GP/(c5ρ2) (1)

with G the gravitational constant, c the speed of light in vacuum, ρ2 = x2 + y2 = x2, and x0 = ct.
Laser pulses were considered earlier in [18, 21] in the approximation of an infinitely thin light pencil of

length L. A further exploration in appendix A for the simplified case of box shaped pulses oscillating to and
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fro corroborates the result that close to the beam (ρ � |z|, |z − D|, where z = 0 and z = D are the positions
of the two mirrors) equation (1) gives the correct result, limited, however, to a finite duration of the order
of the length of the pulse (see figure 8 in [21]) but on the other hand with the cw-power P replaced by the
power of the effective pulse in the cavity Pcav

p (see equation (A23)). The curvature results in a tidal force
between two infinitesimally separated points next to the beamline. However, there is no gravitational wave
generated as this type of source is not quadrupolar in nature. Rather one can detect the gravitational
near-field. In leading order, the gravitational near field acting on non-relativistic test matter can be
described by a Newtonian gravitational potential Φ = 4GP

c3 ln ρ.

The average power at a given cross-section of the beam inside the cavity is Pavg
cav =

2τp

τrt
Pcav

p , where τ p is

the length of the effective pulse in the cavity, and τrt =
2Lcav

c is the round trip time in the cavity. As the
power enters linearly into the gravitational potential, acceleration, and curvature, the considered
gravitational effects will be proportional to the average power in the cavity.

Short pulses a pump laser emitting very short pulses has a broad spectrum in the frequency domain.

Coupling these pulses into a cavity of high finesse F ≈ π(R1R2)
1
4

1−
√

R1R2
[48] leads to an electric field strength inside

the cavity

Ẽcav(ω) = G̃cav(ω)Ẽp(ω), where G̃cav(ω) =

√
T1

1 −
√

R1R2 exp(−iωτrt)
(2)

is the field transfer function, with the intensity transmissivity T1 of the mirror struck by the pump beam,
and the intensity reflectivities of the two mirrors R1/2, where T1 = 1 − R1. An explicit calculation for the
case of rectangular pulses can be found in appendix B, which is based on [49]. If the pulses are very short
τ p � τ rt and far apart 1/frep � τ L, where τL ≈ 2F

π τrt is the 1/e energy decay time and frep is the repetition
rate of the pump laser, the pulse enters the cavity at an intensity T1Ip, where the circulating power is
enhanced by a factor 2F

π
, independent of the cavity length. Without any further modification the factors T1

and 2F
π at best cancel up to a factor of 4 (assuming R1, R2 � 1), leaving little to be gained (see appendix B,

equation (B8)). The ways one could imagine improving upon this all involve changes to the mirror that
couples the pump laser pulses to the cavity:

• An input coupler is a mirror which is significantly less reflective than what could be achieved with the
best available mirrors. It increases the power deposited into the cavity when combined with
impedance- and phase-matching techniques, yet also reduces the cavity finesse [50]. For example, in
[51] input couplers are employed to realize enhancement cavities with kilowatt-average-power
femtosecond pulses, increasing the average power circulating in the cavity to 670 kW, 103 times the
420 W average power of the pump laser. Using larger laser spots on the mirrors of the cavity should
allow for even stronger pump lasers to be used. With stronger pump lasers, such as the BAT laser in
[52] with an average pump power of Ppump = 300 kW, an average power within the cavity in the
100 MW range seems plausible.

• A switchable mirror would allow for the full pump beam power to enter the cavity, which means the
average cavity power is expected to be the pump laser power enhanced by a factor 2F

π . Depending on
the cavity’s length and the pump laser’s repetition rate, the mirror has to be moved on a timescale of
10−9 to 10−3 s, the slower end of which seems realistic. A mirror mounted on some mechanics might
reduce the precision of its positioning and hence the cavity’s finesse. Nonetheless, with a high finesse
cavity ( 2F

π
∼ 105) and high-average-power pump lasers (Ppump ≈ 300 kW [52]) an average power

>20 GW in the cavity would be achievable.

One limitation when scaling to higher powers is damage to the mirrors. In [53] the cw intensity
threshold was determined to be at around 100 MW cm−2 before thermal damage sets in. For
sub-picosecond pulses the intensity threshold can be exceeded by at least an order of magnitude, as it is
done in [51], as long as the average intensity on the mirrors does not exceed the thermal threshold. For
20 GW (100 MW) cavity power this needs a spot diameter on the mirrors of at least 16 cm (1.1 cm). For the
input coupler the limitations are even stricter than for the end mirror as the power passes through the input
coupler and creates more heating than when reflected at the surface of the reflecting mirror [51]. Large spot
sizes require long cavities, as otherwise the mode in the cavity has a large opening angle and prevents
positioning the sensor very close to the beam. For the cited spot-sizes of order 1–10 cm, a cavity length
Lcav � 1 m suffices. In this work, the increase in power is accounted for by increasing the pulse duration by
defining an effective pulse length

Tcav
p = Tpump

p frepτrt
2F

π
= Tpump

p frepτL. (3)

For the BAT laser from [52], the repetition rate is frep = 10 kHz and the pulse duration of the pump laser is
Tpump

p = 100 fs. We further assume F = 105 and the signal to be at resonance with the sensor frequency
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Table 1. Comparison of relevant numbers of the LHC beam and the laser-based
sources from sections and 2.2: Pcav

p pulse power, Pavg
cav power averaged over time,

wB waist of beam. ω0 is the desired signal frequency, assumed in section 3 to be
one of the resonance frequencies of the detector.

Pcav
p (W) Tcav

p Pavg
cav (W) wB

Pulses in cavity 3 × 1014 100 fs ·10 kHz 8×105

ω0

a 2 × 1010 <100μm

cw laser+cavity 2 × 1011 π
ω0

1 × 1011 <100μm

LHC 1014 10−9 sb 3.8 × 1012 16 μm

aA switchable mirror is assumed for the pulses in the cavity. The pulses are
assumed to be effectively stacked together to a larger circulating effective pulse, see
equation (3).
bThe effective pulse length Tcav

p for the LHC corresponds to a single proton
bunch, but a much slower modulation of the beam on resonance with ω0 can be
envisaged.

τrt = 2 2π
ω0

, see e.g. table 1. This is consistent with the image of creating a ‘train’ of pulses (one could also
imagine pulse stacking, i.e. increasing the pulse power instead). Laser pulses with far higher pulse powers
exist. The National Ignition Facility achieves 5 × 1012 W peak power [36] but is not as suitable for our
purposes due to its low repetition rates. Peak powers of up to 10 × 1015 W at repetition rates of up to 10 Hz
exist [37] and others with peak powers on the order of 100 × 1015 W are planned [54], but will need to
achieve higher average intensities and repetition rates in order to lead to measurable gravitational effects.

2.2. Modulated cw-pumping
Instead of creating a periodic signal by having laser pulses oscillate in a cavity, one could also consider using
a cw laser. To create a periodic signal, one can pump the cavity for part of the period and allow for the
intensity inside the cavity to decay before switching the pump beam back on for the next period, thus
creating a modulated signal with modulation period τmod. Depending on τ L, the energy within the cavity as
a function of time looks more like a periodic sequence of effective pulses that have the form of
rectangles—in the case of τL � τmod—or like a series of shark fins for τ L ∼ τmod (see appendix B). We call
Pcav

p the maximum power of the effective pulse in the cavity.
Using a cw pump laser, the coupling to the cavity is no longer detrimental as for

ΔωFWHM ∼ 1/τL > Δωpump, where Δωpump is the line width of the pump beam, the pump beam couples
almost fully to the cavity. The Newtonian gravitational potential for a thin light pencil in the form of a
standing wave in the cavity is (see [18] and appendix A) Φ = 4GP(t)

c3 ln ρ, where ρ is the distance from the
beam line and P(t) is the power passing through the cross section with the detector, i.e. P(t) = Pcav(t) in
this case. For the slowly moving detectors envisaged here (speeds v � c), all equations of motion are the
same for the source consisting of the standing light wave or the propagating one.

For long modulation periods τmod � τ L, the maximum power of the effective pulse in the cavity is
Pcav

p = 2F
π

Ppump, for approximately half the modulation period. Commercially available cw laser systems
reach continuous powers of 500 kW in multi-mode operation and up to 100 kW in single-mode operation
(see1 and e.g. [55]). Combining this with a high finesse cavity F ∼ 106 leads to an average circulating power
in the cavity of

Pavg
cav =

1

2

2F

π
Ppump ∼ 100 GW. (4)

The average power in the cavity can at most be a fraction <
(
1 − e−τmod/(2τL)

)
of the maximum power

2F
π

Ppump. For slowly decaying cavities, where τmod � τL, techniques such as Q-switching or switchable
mirrors are necessary to adequately modulate the amplitude2.

1 A single-mode has the advantage that one can focus it down to a spot size comparable to the wave length, i.e. one could get, at least in
principle, much closer to the beam (oder 1 μm instead of ca 100 μm. Thus, while loosing a factor 25 in power one gains a factor 100 in
distance, i.e. there is an overall improvement by a factor 4 over the multi-mode case, if such small distances from the beam can indeed
be realized.

2 Shorter cavities lead to lower τL at the same finesse and without decreasing the average power. The same considerations for the spot
size and length of cavity as mentioned for the laser pulses apply also in the cw case for positioning the detector sufficiently close to
the beam waist and neglecting higher order effects in the opening angle [28]. For a 1 m-long high-finesse cavity (F ∼ 106) the decay
time τL is in the low millisecond range, which is too slow for some of the proposed detector setups. This could be circumvented by
implementing techniques such as Q-switching, with which the decay of energy within the cavity can be accelerated, and the aforemen-
tioned switchable mirrors. Also, the energy buildup can be modulated to a certain degree by pumping. For short modulation periods,
τmod ≈ τL, the cavity is never fully pumped.
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2.3. The LHC
Instead of laser light, one can also investigate ultra relativistic particle beams consisting of high-energy
bunches, such as the one at LHC, as gravitational sources. A particle beam in the relativistic limit is, from a
gravitational perspective, the same as a laser beam: for example, the rest mass of the protons
m � 938 MeV/c2 makes a negligible contribution to their energy for achievable particle energies of about
6.5 TeV and both charge and spin are irrelevant [32–34]. To very good approximation, the
energy-momentum relationship is then E = cp where p is the momentum of the protons, just as for
photons. In the ring of the LHC there are 2808 bunches of protons at maximum capacity, each bunch with
a total energy of ∼105 J. One bunch is approximately 30 cm long, contains 1.15 × 1011 protons, and can be
squeezed down to a transverse diameter of ∼16μm (see [38]). To excite a resonator at its eigenfrequency
ν0 = ω0/(2π), the bunches have to pass by the detector with rate ν0, or the beam must be modulated with
frequency ν0. The 2808 bunches spread over a ring of 26 659 m length moving at speed close to c entail a
rate of 31.2 MHz. A single bunch going around the ring passes with a frequency of 11 kHz. To achieve lower
frequencies one could, for example, periodically modulate the beam position. This would result in a scheme
similar to that of the cw laser cavity, where the LHC beam is active for half the sensor’s oscillation period
τp = 1

2
2π
ω0

with an effective pulse power Pcav
p = PLHC = 2Pavg

cav , where PLHC is the nominal average power of
the LHC. The pulse power of the LHC beam is orders of magnitude smaller than that of extreme-power
laser pulses, but the proton bunches are much longer (∼1 ns) than the laser pulses. This results in a higher
average power of Pavg

cav ≈ 3.8 × 1012 W, which is orders of magnitude larger than the average power of laser
pulses oscillating in a cavity and about 40 times the average power that can be contained in a cavity pumped
by the cw laser considered above (see table 1). Therefore, from the perspective of the strength of the
gravitational source, the LHC beam might be preferable. A potential drawback compared to the laser-based
sources is the lack of flexibility in frequency. This can be compensated, however, by considering detectors
with tunable resonance frequency. Besides protons, it is also possible to use heavy nuclei, or partially ionized
heavy atoms. The latter have the advantage that the corresponding beams can be laser-cooled (see the
discussion in section 4.2). Upgrades of the LHC to use heavy ions are currently considered [56], and also
under development at Brookhaven National Lab [57].

3. Detectors

We consider three types of detectors, a mechanical rod, a detector based on superfluid helium-4 coupled
parametrically to a superconducting microwave cavity, and a mechanical harmonic oscillator, motivated by
the monolithic pendulum from [58, 59] and the torsion balance from [40], with which recently very high
levels of sensitivity for gravitational fields have been reached. The superfluid helium detector and the
monolithic pendulum are optomechanical detectors close to the quantum limit. Quantum optomechanical
detectors and different configurations have been studied in great detail over recent years, both theoretically
and experimentally [60–62]. They have been considered for high precision sensing [63] in particular, force
sensing [64] and theoretical work has been performed to derive general limits for sensing of oscillating
gravitational fields with such systems [65, 66]. We take the mentioned types of detectors as starting points
for examining the question what parameter values would need to be achieved such that they become
suitable for measuring the gravitational forces considered in this paper.

3.1. Mechanical response of a rod
A spatially dependent gravitational acceleration compresses a 1D deformable resonator according to its
Young modulus Y. The wave equation for the displacement field u(x, t), describing the relative position of
an element of the rod from its equilibrium location x, is given in [67, p. 416] as

�m∂
2
t u(x, t) − Y∂2

x u(x, t) = −�m∂xΦ(x, t), (5)

where the resonator is extended in the x direction, orthogonal to the beam, and �m is its mass density. The
length contraction due to modification of space-time is negligible in comparison to the elastic effect
considered here, as it comes with an additional factor c2

s /c2 [68], where cs =
√

Y/�m is the speed of sound
in the rod’s material.

The displacement field can be expanded into the spatial eigenmodes

wn(x) = cos

((
n +

1

2

)
π

L
(x −Δ)

)

of the free equation of motion complying with the boundary conditions, i.e. the tip of the resonator distant
from the source was chosen to be fixed in place by the support (hence wn(L +Δ) has to vanish and
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∂xwn|x=Δ has to vanish at the other tip), where n ∈ N0, Δ is the distance of the tip of the rod from the
source, and L is the length of the resonator (see figure 1). The spatial eigenmodes are orthonormal with

respect to the inner product 〈a|b〉 = (2/L)
∫Δ+L
Δ a(x)b(x) dx. The total displacement field is then given by

u(x, t) =
∑∞

n=0ξn(t)wn(x). The differential equation for the temporal amplitude ξn(t) resulting from the
projection of (5) onto the nth spatial eigenmode is then given by

ξ̈n(t) +
ωn

Q
ξ̇n(t) + ω2

nξn(t) = − 2

L

∫ L+Δ

Δ

dx wn(x)∂xΦ(x, t), (6)

where ωn = cs

(
n + 1

2

)
π
L is the frequency of the mode and a linear dissipation term γn∂tu(x, t) with rate

γn = �m
ωn
Q was added to equation (5) in order to include dissipation from the elastic modes of the

resonator.
In the case of resonant excitation, the amplitude of the steady state solution in the lowest eigenmode

ξ0(t) = A(ω0)sin(ω0t), reached after a transient time Q
ω0

is then given by

A(ω0) =
Q

ω2
0

∫ 2π/ω0

0
dt

ω0

π
cos(ω0t)

∫ L+Δ

Δ

dx
2

L
cos

( π

2L
(x −Δ)

)
(−∂xΦ(x, t)), (7)

where the integration of t over one mechanical period gives the Fourier component of the driving force
corresponding to this mechanical mode. At this point we assumed the pulse to be centered around t = 0
and to be repeating at intervals of 2π

ω0
.

With the periodic Newtonian potential from appendix A

Φ(x, t) =
4GPcav

p

c3
ln(x)ΠΣ(t) (8)

⇒ −∂xΦ(x, t) = −
4GPcav

p

c3

1

x
ΠΣ(t), (9)

where Pcav
p is the pulse power in the cavity and ΠΣ(t) =

∑
n

[
Θ
(

t − n2π
ω0

− τp

2

)
−Θ

(
t − n2π

ω0
+

τp

2

)]
is a

sum of rectangular pulses of duration τ p. The integral over the oscillation period in equation (7) returns

(10)

With this, a resonant maximum amplitude of

A(ω0) =
4GPcav

p Q

ω2
0c3

2

π
sin

(ω0τp

2

) ∫ L+Δ

Δ

dx
2

L
cos

( π

2L
(x −Δ)

) 1

x
(11)

≈ 32GPavg
cavQ

πω0c3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎨
⎪⎩

1

ω0Δ
for τpω0 � 2

2

πω0Δ
for τp =

π

ω0

and L � Δ

⎧⎪⎨
⎪⎩

1

cs
ln

L

Δ
for τpω0 � 2

2

πcs
ln

L

Δ
for τp =

π

ω0

and L � Δ

, (12)

where Pavg
cav ≡ energy in the cavity

oscillation period =
Pcav

p τp
2π
ω0

is the power in the cavity averaged over one mechanical period, is

reached in the steady state of prolonged driving. The logarithmic divergence of equation (9) for L � Δ is
an artifact of idealizations of our model and will not be relevant in practice3.

3 Even though it might seem favorable to increase L because of the logarithmic scaling in equation (11), the inhomogeneous driving
force leads to excitations of multiple mechanical modes which, for a non perfectly rigid support, can couple. Also, the distance between
the detector and the beam has to be much smaller than the length of the source cavity (or radius of the ringresonator) for the contribu-
tions of the recoil of the mirrors (or deflecting magnetic fields) to be negligible. These two effects might lead to the break-down of the
logarithmic scaling before it makes a difference.
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Assuming for orientation numerical values of aluminum, cs = cAl
s = 6420 m s−1, ω0 = 2π × 109 Hz,

Δ = wB
4, and Q = 106 for the rod, the laser cavity introduced in section 2.1 (Pavg

cav= 20 GW, wB ≈ 100 μm)
would result in an amplitude of A ≈ 10−34 m at the freely oscillating tip.

At resonance, the noise spectral density for a resonant-bar type detector is given by

Sth
A =

4kBTQ

ω3
0Meff

⇒ Ath =

√
Sth

A

τint
(13)

according to [67, p. 440], where Meff =
∫
�mAR(w0(x))2dx is the effective mass of the mode with the rod

cross-section AR, and Ath is the amplitude resulting from the thermal noise after integration time τ int. At
ω0 = 2π · 1 GHz the thermal sensitivity limit for temperatures below T = 48 mK is already below the
standard quantum limit (SQL) on noise spectral density for a resonant mass detector [69],

SSQL
A =

4�Q

Meffω2
0

. (14)

At frequencies below the megahertz range, the thermal noise is the limiting factor. For Q = 106,
Meff =

π
8 �AlL3 (assuming a constant aspect ratio) with the mass density of aluminum �Al = 2.7 g cm−3 and

a frequency of ω0 = 2π · 1 GHz the sensitivity is
√

SSQL
A ≈ 4 × 10−17 m /

√
Hz meaning that for 1 year of

integration time at best an amplitude of 10−20 m can be detected.
For the LHC, where the rate of bunches passing by is ν = 31.2 MHz, for the purposes of this estimation,

we assume that the same amount of protons is split into 88 925 bunches instead of 2808 such that we reach
the frequency ω0 = 2π · 1 GHz while keeping the same average power. With pulses filling half a period, the
peak power is Pcav

p = 2Pavg
cav . Using the same cs = 6420 m s−1 and Q = 106 and the values of the LHC

(Pavg
cav= 3.8 × 1012 W, wB = 16 μm) one would expect the resonant amplitude to be A ≈ 9 × 10−32 m,

which is at least two orders of magnitude larger than that caused by the oscillating laser pulse from section.
For higher quality factors Q = 108 amplitudes of A ≈ 9 × 10−30 m might be possible. At far lower
frequencies, where the limit L � Δ becomes relevant in equation (9), a lower speed of sound, for example
cs = 100 m s−1, is also beneficial. However, one quickly ends up with a meter long rod, outside the ‘close to
the beam’ limit, whilst still not within range of detection.

To probe the limit L � Δ, we assume ω0 = 2π · 1 kHz, Q = 106, cs = 6420 m s−1 implying an extreme
L ≈ 4 km. Then, the expected amplitude from the laser pulses in section is A ≈ 2 × 10−25 m, for the cavity
pumped with a modulated cw laser A ≈ 4 × 10−25 m, while we expect an amplitude of A ≈ 8 × 10−24 m for
the LHC beam (which would have to be modulated to reach such low frequencies). Assuming a temperature

of T = 5 mK the sensitivity is
√

Sth
A ≈ 10−17 m /

√
Hz, leaving the amplitudes still unmeasurable even for

unreasonably long integration and rise times and an unreasonable rod length.

3.2. Superfluid helium detector
In [70] Singh et al study the acoustic motion of superfluid helium-4 coupled parametrically to a
superconducting microwave cavity as a detection scheme for continuous-wave gravitational signals. With
few theoretical adaptations the system can be adapted to the near-field case considered here. The very high
Q-factors and sensitive microwave transducer means this is essentially a better version of the deformable
rod considered in section 3.1. For the ground mode, the system’s description can be reduced to a one
dimensional problem and treated as in section 3.1, but with two fixed ends instead of one. The spatial
displacement amplitude is then given by w0 = sin

(
π
L (x −Δ)

)
.

The position noise spectral density of the temporal displacement field ξ is given by equation (11), when
comparing to the result of Singh et al [70] a factor of 2 has to be added to obtain the single sided density
(ω0 > 0). With the susceptibility on resonance χ = QHe

iMeffω
2
0

, this results in a thermal force noise spectral

density (on resonance) of

Sth
FF = |χ|−2Sth

ξξ = 4kBTMeff
ω0

QHe
. (15)

Which implies a lower bound to the detectable force over an integration time τ int, with 2σ uncertainty, of

F̄min ≈ 2

√
Sth

FF

τint
=

√
16kBTMeffω0

τintQHe
. (16)

4 As the rod was chosen to be fixed by the support at its tip at the far side of the beam, the lowest eigenmode has wavelength
λ = 2πcSω0 = 4L. The minimum distance from the beam is Δ ≈ wB, where for the purposes of this estimation, we saturate this lower
bound on Δ.
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The Fourier component of the force corresponding to the considered lowest-frequency mode is given by

F̄eff = |χ|−1A(ω0) =
16GMeffPcav

p

πLc3
sin

(ω0τp

2

)∫ Δ+L

Δ

sin
(
π(x−Δ)

L

)
x

dx. (17)

Note the similarity of the amplitude A(ω0) to the case of the mechanical rod detector in equation (9)5.
Here, both signal and noise are given as a force, for better comparability to [70].

To get a feeling for the orders of magnitude, we start off with the numbers from the actual experimental
setup from Singh et al [70]. We set τ int = 250 d, QHe = 6 × 1010, L = 4 cm, r = 1.8 cm(radius),
cs = 220 m s−1, and �He = 145 kg m−3. This implies ω0 = 2π · 2.8 kHz, Meff = 3 g, T = 5 mK. This results
in a minimum detectable force F̄min ≈ 4 × 10−21 N. Choosing the LHC as a source, we assume Δ = wB

and set the average power to Pcav
p = PLHC = 3.8 × 1012 W, τp = 1

2
2π
ω0

, resulting in F̄eff ≈ 6.6 × 10−24 N.
Going further from the beamline (by less than L) to account for shielding and the Helium container only
decreases the effective force slightly (for Δ = 16 μm →Δ = 3 cm, Feff decreases by a factor of 4) as there is
limited contribution from the liquid Helium at the ends of the container to the ground mode.

Hence, at full amplitude and one week of integration time, the 4 cm prototype detector is lacking about
3.5 of magnitude in sensitivity. Under otherwise identical assumptions, the proposed first generation
(0.5 m) detector will be about 2.5 orders of magnitude from being sensitive enough to detect the
gravitational signal from the LHC.

3.3. High-Q milligram-scale monolithic pendulum
In a recent publication, Matsumoto et al [58] described the manufacturing of a pendulum and presented its
properties. They found it to have a very high quality factor for a small scale system and even higher when
combined with an optical spring. Different from the extended oscillators considered in the earlier
subsections, the pendulum does not rely on the projection of the gravitational acceleration on an elastic
mode but rather on the gravitational force on the pendulum mass relative to the support. A mechanical
oscillator has to be of small scale to be close enough to the source for the gravitational acceleration to be
significant, while the gravitational effects on the pivot point need to remain negligible.

For the l = 1 cm, m = 7 mg pendulum a mechanical Q-factor of Qm = 105 was measured in [58] at
ωm = 2π × 4.4 Hz. Introducing an optical spring to shift the frequency, the effective Q-factor is expected to
scale as

Qeff ≈ Qm

(
ω0

ωm

)2

(18)

for the damping model considered relevant for the pendulum (the effective frequency of the coupled system
was renamed from ω0 (Q0) in the original work [58] to ωm (Qm) for consistency). An additional feedback
cooling is necessary to stabilize and cool the system to a temperature Tfb, compensating the effect of heating
through the optical spring. This reduces the Q-factor to Qfb, which has the benefit of allowing shorter
driving times. At ω0 = 2π × 280 Hz the authors of [58] demonstrated a sensitivity of 3 × 10−14 m /

√
Hz

with a Q-factor of Qfb = 250, with thermal motion the main source of noise. According to equation (11)
this corresponds to a temperature of a few Millikelvin.

In an update to this Cataño-Lopez et al [59] described an improved version of this pendulum, with a
measured mechanical Q-factor of Qm = 2 × 106 at a frequency of ωm = 2π × 2.2 Hz, which with the
optical spring is tunable in the frequency range of 400 Hz < ω0

2π < 1800 Hz.
For a pulsed-beam source, the gravitational acceleration in radial direction for the duration of a pulse is

given by

ap
grav = −

4GPcav
p

c3

1

ρ
, (19)

where G is the Newton gravitational constant, Pcav
p is the pulse power, and ρ is the distance from the beam.

For this setup ρ is limited by the radius of the pendulum mass (1.5 mm) and the beam width (� .5 mm),
so ρ = 2 mm is a reasonable estimate which might be substantially increased, however, if a cryostat is
needed.

5 In contrast to the spatial integral in equation (11), the one in (17) converges to ≈ 1.85 for L � Δ. This is because of the different
in boundary conditions, in particular, the logarithmic dependence stems from the overlap of the modefunction with the steep end of
the 1/x driving force, whereas the modes of the helium have to vanish at the end of the container. However, the missing logarithmic
dependence is basically irrelevant on realistic length scales. Assuming once again a constant aspect ratio, i.e., Meff ∼ L3, we find a scaling
of F̄min ∼ L and F̄eff ∼ L2, implying that the force should be detectable if L is large enough. However, limitations apply as is discussed in
section 3.1.
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The displacement resulting from prolonged (τ ∼ 2πQ fb
ω0

) driving on resonance is given by

xgrav =
āgrav

ω2
0

Qfb =
8GPcav

p sin
(ω0τp

2

)
Qfb

πc3ω2
0

1

ρ
, (20)

where āgrav is the Fourier component of agrav(t) on resonance, and sin
(ω0τp

2

)
results from the overlap of the

rectangular pulses with the sinusoidal oscillation calculated in equation (8). We now consider how the
pendulum would react to the different gravitational sources discussed above.

3.3.1. Cavity pumped with cw laser
For the pendulum from [58] at ω0 = 2π × 280 Hz and the cw laser cavity from section 2.2 with a power in
the cavity of Pcav

p = 200 GW for half the oscillation period the expected amplitude resulting from the
gravitational signal is xgrav ≈ 3.1 × 10−26 m. With the on-resonance SQL and thermal sensitivities [69]√

SSQL = 2xzpf

√
Q fb
ω0

=
√

4�Q fb
mω2

0
≈ 7 × 10−17 m /

√
Hz and

√
Sth = 2 × 10−14 m /

√
Hz (starting from room

temperature, with only feedback cooling) this signal amplitude is not measurable.
The SQL refers to amplitude-and-phase measurements of that position. In principle, due to the precisely

known frequency, quantum non-demolition measurements allow continuous monitoring of the oscillation
[71]. With a ‘single-transducer, back-action evading measurement’, one can estimate a quadrature of the
oscillator with an uncertainty that scales ∝ (βω0τm)−1/2, where τm is the relevant measurement time or
inverse filter width, and β a numerical factor that can reach a value of order one (see equations (3.21a) and
(3.21b) in [71] and equations (32) and (33) in [72]). After upconverting the kHz signal to the GHz regime
one can use modern microwave amplifiers with essentially no added noise [73–76]. Upconversion to the
microwave frequency range was already discussed in the 1980s [72] and can be achieved by having the
sensor modulate the resonance frequency of a microwave cavity. Additional sensitivity can be gained with a
large number N of sensors arranged along the laser beam or particle beam. Classical averaging their signal
leads to a noise reduction of 1/

√
N in the standard deviation. When several sensors all couple to the same

microwave cavity, one might even hope to achieve ‘coherent averaging’, in which case the noise reduction
scales as 1/N [77, 78].

With N = 1 and a signal of 280 Hz, the sensitivity of the pendulum resulting from the standard
quantum noise limit

√
SSQL ≈ 7 × 10−17 m /

√
Hz is 3 orders of magnitude lower than that given by the

thermal noise. For 1 week of measurement, the thermal noise still exceeds the signal generated by the
modulated cw laser (respectively train of laser pulses) by 8 (almost 9) orders of magnitude.

3.3.2. LHC beam
The minimum frequency of one bunch of ultra-relativistic protons going around the ring of the LHC is in
the kHz range (see section 2 2). Lower frequencies could be achieved by modulating the beam position with
low frequency. The LHC as a source is expected to create almost 20 times larger amplitude than the
considered cw-pumped cavity, due to the higher pulse power Pcav

p = PLHC where an ‘on-off’ modulation of
the LHC beam, similar to the cw cavity pumping scheme was assumed. After one week of measurement
time one would be about 7 orders of magnitude off from measuring the signal with a single detector, 5
orders of magnitude starting at a temperature of T = 5 mK. Substantially more development will be needed
to bridge this gap. Ideas in this direction are developed in the next section.

3.4. Optimizing the S/N
In this section we ask, what parameter values would be needed to achieve a signal-to-noise ratio comparable
to 1 for a torsion balance or pendulum. We model both simply as damped harmonic oscillators, but keep in
mind that their mechanial parameters and temperature can be substantially modified by using an optical
spring and/or feedback cooling, and then compare to the existing setups described in [40, 58, 59]. We
therefore continue to use Tfb for the final temperature, Qfb for the final quality factor, and ω0 as final
resonance frequency ×2π, regardless of how they might be achieved.

3.4.1. Optimization of a mechanical oscillator as detector and comparison to [40]
According to equation (5.60) in [69] the total position-noise power at frequency ω of a harmonic oscillator
with (undamped) resonance frequency Ω measured with a transducer and amplifier that add back-action
noise (referred back to the input) can be written as

S̄xx,tot(T,ω,Ω, Q, m) =
γ0

γ0 + γ
S̄xx,eq(T,ω,Ω, Q, m) + S̄xx,add(T,ω,Ω, Q, m), (21)

where γ0 is the intrinsic oscillator damping without coupling to the transducer and γ ≡ γ(ω) the damping
with the coupling. The equilibrium noise (comprising both quantum noise and thermal noise at
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temperature T) reads

S̄xx,eq(T,ω,Ω, Q, m) = � coth

(
�ω

2kBT

)
Imχxx(ω,Ω, Q, m) (22)

Imχxx(ω,Ω, Q, m) =
QωΩ

m(ω2Ω2 + Q2(ω2 − Ω2)2)
, (23)

with the quality factor Q ≡ Ω/(γ0 + γ). To calculate S̄xx,add, one needs to know the force noise power of the
detector and amplifier, but S̄xx,add is lower bounded by S̄xx,addMin = �|Imχxx|. With this lowest possible value
and the replacements Ω→ ω0, Q → Qfb, T → Tfb, one obtains for the total noise power to lowest order in
γ/γ0 (which slightly overestimates the contribution from S̄xx,eq(T,ω,ω0, Q, m))

S̄xx,tot = �

(
1 + coth

(
�ω

2kBTfb

))
Imχxx(ω,ω0, Qfb, m). (24)

The maximum amplitude xgrav of the harmonic oscillator is given by equation (18) with sin(τ pω0/2) = 1,
but is reached only asymptotically as function of time, namely as xgrav(t) = xgrav(1 − exp(−ω0t/(2Qfb))).
We assume that the total time τ tot = 1 week for the experiment is split as τ tot = τ r + τm into a time τ r

needed for the amplitude of the harmonic oscillator to rise to a certain level, and a measurement time τm

used for reducing the noise. The total signal-to-noise ratio on resonance is then given by

S/N = xgrav

(
1 − exp(−ω0(τtot − τm)/(2Qfb))

) √
τm√

S̄xx,tot

� 0.01
(1 − e

((τm−τtot)
ω0

2Q fb )
√

Qfbm τm

ω0

√
1 + coth 4·10−12ω0

T fb

, (25)

where a distance ρ = 200 μm of the center of the detector mass from the beam axis was assumed. All
quantities are in SI units. From this equation it is evident that the mass m should be as large as possible. At
the same time, m cannot be made arbitrarily large, as otherwise the distance from the beam axis would have
to be increased as well, which would lead to a decay of the signal ∝1/ρ for ρ � ρmin, where ρmin is the
minimum distance from the beam axis (which might contain a shielding of the particle beam in the case of
the LHC, and which we assume to be ρmin = 100 μm for the LHC but might have to be substantially
increased when using a cryostat). In principle, for a spherical detector mass, a scaling ∝m1/6 would still
result, but it turns out that unrealistically large masses (larger than 1 kg) would be needed before this
scaling gives an advantage over an alternative design with a cylindrical detector mass that allows to maintain
ρ = 200 μm. If we allow that cylinder to become as long as Lcyl = 0.5 m and determine the maximum mass
as m = 0.9π�Si(ρ− ρmin)2 Lcyl (where 0.9 is a ‘fudge factor’ that avoids that the detector mass touches the
shielding), we find m = 33 mg.

With that value inserted in equation (23), one can optimize S/N with respect to the parameters
τm,ω0, Qfb and Tfb. With τ tot kept equal to 1 week, in the range 1 rad/s � ω0 � 104 rad/s, 1 � Qfb � 108,
1 nK � Tfb a maximum value S/N � 0.6 is found for τm = 3 × 105 s, ω0 = 2π × 0.16 Hz, Qfb = 1.2 × 105,
and minimal Tfb. The optimal value for ω0 is at the lower end of the parameter range, but reasonably close
to the one for the existing torsion balance in [40] (ω0 = 2π × 3.59 mHz), where, however, the mechanical
quality factor was Q = 4.9 and a mass of 92.1 mg was used. It remains to be seen if the parameters that
result from the optimization can be reached. Problematic appears mostly, whether the temperature of the
cooled mode of about 1 nK can be reached, especially at low frequencies.

3.4.2. Assumption of Q-scaling and comparison to [58]
The structural damping model used in [58] implies a quadratic scaling of the Q-factor with the resonance
frequency (see equation (16)). Including this scaling behavior and allowing the modification of the
resonance frequency by means of an optical spring, leads to frequencies in the 100 Hz to 1 kHz range being
preferred by the optimization. This ultra-high Q-factor is, however, not reachable in practice as the optical
spring introduces heating, and so the mechanical oscillator has to be cooled to stabilize the system. In
existing systems, feedback cooling [58, 79], or a second optical spring tuned to the infrared [80] have been
employed as cooling mechanisms. We assume an effective final temperature reached by feedback cooling of

Tfb = 4Tbath
Qfb

Qeff
= 4Tbath

Qfb

Qm
ω2

0
ω2

m

, (26)

10



New J. Phys. 24 (2022) 053021 F Spengler et al

Table 2. Comparison of the estimated sensitivity of the listed detectors with the expected amplitude of the sources considered
on resonance and after the full build-up-time of the detector’s oscillation. For the cases in which the main limiting factor is
thermal noise, a temperature of 5 mK was assumed. Other parameters see text

Rod Liquid helium Pendulum

ω0 2π × 103 Hz 2π × 109 Hz 2π × 2.8 × 103 Hz 2π × 280 Hz
Sensitivity 1 × 10−17m/

√
Hz 4 × 10−17m/

√
Hz 2 × 10−17N/

√
Hz 1 × 10−12m/

√
Hz 3 × 10−14m/

√
Hz

Limiting factor Thermal noise SQL Thermal noise Thermal noise
Expected amplitude
Laser pulses 2 × 10−25 m 2 × 10−34 m 2 × 10−25 N 1 × 10−20 m 3 × 10−26 m
cw cavity 4 × 10−25 m 4 × 10−34 m 3 × 10−25 N 2 × 10−20 m 5 × 10−26 m
LHC beama 8 × 10−24 m 9 × 10−32 m 7 × 10−24 N 4 × 10−19 m 1 × 10−24 m

aAssuming the LHC beam can be modulated to produce a signal with appropriate frequency while maintaining the same average
power.

as is expected in [58]. An initial temperature, before feedback cooling, of Tbath = 5 mK is assumed and the
parameter ranges are limited to 1 rad/s <ωm < 10 000 rad/s, 1 rad/s <ω0 < 10 000 rad/s, 1 < Qm < 107,
and 1 < Qfb < 1010. We find S/N ≈ 0.077 for the optimal parameters of ωm = 2π × 0.16 Hz, ω0 =

2π × 600 Hz, Qm = 107, and Qfb = 1.6 × 108. Compared to the generic optimization as seen above this
seems underwhelming but if the scaling of Q and temperature can be attained, the final temperature of
Tfb ≈ 23 nK would be more feasible than before.

3.4.3. Further possible improvements
A signal-to-noise ratio of 0.6 is still not good enough, but the planned upgrade of the LHC to the
high-luminosity LHC [56] should increase S/N by a factor 10. Another factor 2.9 is expected to be gained
by switching to tungsten (with mass density �W = 19, 250 kg m−3) as detector-mass material, all other
optimized parameters remaining equal. Both factors combined lead to an S/N � 16.

The maximum of S/N found in the optimization is rather flat, especially with respect to the feedback
cooling quality factor, such that there is a wide range of values with similar signal-to-noise ratios that allow
one to take into account other engineering constraints not considered here and without such extreme
effective temperatures. Hence, with the high-luminosity LHC and an optimized detector there is realistic
hope that GR could be tested for the first time in this ultra-relativistic regime with a controlled terrestrial
source and adapted optimized detector. Also without the upgrade of the LHC, further improvements from
using a multitude of detectors (and possibly coherent averaging by coupling them all to the same read-out
cavity [77, 78]) or longer integration times can be envisaged that would bring S/N to order one.

4. Discussion

4.1. Perspectives for measuring the gravitation of light or particle beams
We have theoretically investigated the fundamental limitations to measure the oscillating gravitational fields
of lab-scale ultrarelativistic sources for three concrete examples: for laser beams, we have considered
femtosecond-pulse lasers fed into a high finesse cavity, where they oscillate to and fro, and similarly, cw
lasers used to pump a cavity periodically. For particle beams, we considered the LHC with its beam of
proton bunches flying along the accelerator ring. All sources considered lead to oscillating curvature of
space-time and acceleration of test particles with precisely controlled frequency up to the GHz range. In
addition, we have given details on how modulations of these signals with much lower frequency, down to
the kHz regime, can be achieved for all three example sources. In the latter regime, the LHC is the most
promising ultrarelativistic source of gravity with a gravitational field strength 20 times stronger than the
laser sources considered here.

We investigated three near-field detectors: a deformable rod offers force accumulation along its length
thanks to its Young modulus. However, the spatial decrease of the studied gravitational effects limits the
effects of force accumulation, resulting in immeasurably small amplitudes of the order of 8 × 10−24 m even
in the case of the LHC as a source. In the liquid helium chamber from Singh et al [70], very high quality
factors and low noise allow for sound wave buildup within the chamber. With the present experimental
parameters [70], the gravitational force for the LHC is 3.5 orders of magnitude below the detectability limit
of this detector with an averaging time of one week.

A pendulum from [58, 59] or a recently demonstrated torsion balance [40] turned out to be the most
promising detectors. In the present form of the monolithic pendulum [58], the fully built-up signal from
the LHC is 5 orders of magnitude away from the sensitivity achievable within 1 week of averaging time
(assuming a starting temperature of T = 5 mK and a final temperature of Tfb = 12 nK after a shift of the
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resonance frequency via an optical spring and feedback cooling) with the benefit of a relatively small signal
rise time.

Optimization of the signal-to-noise ratio of a mechanical oscillator as detector over its frequency,
measurement time, quality factor and temperature in the parameter range provided in section 3.4.1, leads to
an expectation of an S/N of about 0.6 with the LHC as source within one week of signal rise time and
averaging. By using a denser material such as tungsten for the detector mass and profiting from the planned
high-luminosity upgrade of the LHC an S/N ratio � 16 appears possible with one week of measurement
time for a single detector.

Our considerations concerned fundamental limitations so far, so that an S/N ratio larger than 1 should
be considered a necessary condition, but would still make for a very difficult experiment with additional
noise and engineering issues to be overcome (see e.g. [42]).

Important additional noise sources that have not been considered in our work include, for example,
seismic and thermal noise that may be reduced by moving to a higher frequency regime. Therefore, while
very high source frequencies (GHz) turned out to be detrimental for the considered detectors, it may still be
interesting to investigate an intermediate frequency range above the kHz regime. In their current design, the
superfluid helium detector [70] and the pendulum detector [59] need a source oscillating with a frequency
of the order of kHz and 400 Hz to kHz, respectively. The pendulum’s operation at higher frequencies might
be possible and relatively easy to achieve, given that the relevant noise terms in the kHz range stem from
suspension eigenmodes, which are changeable by design. Also in [81] parametric cooling into the ground
state for pendulum-style gravitational sensors was demonstrated, reducing problems from thermal noise
and seismic noise in an even larger frequency range. However, reaching the required low-temperatures in
the nK regime in combination with the high quality factors will remain a huge challenge, even if the
Q-scaling (16) and feedback cooling assumed in [58] is achieved.

4.2. Perspectives for quantum gravity experiments
The realization that the gravitational effect of light or high-energy particle beams might become measurable
in the near future opens new experimental routes to quantum gravity, in the sense that it might become
possible to study gravity of light or matter in a non-trivial quantum superposition. Concerning light,
non-classical states of light, in particular in the form of squeezed light, have been studied and
experimentally realized for a long time, and are now used for enhanced gravitational-wave-sensing in LIGO
[82]. While the current records of squeezing were obtained for smaller intensities than relevant for the
gravitational sources we consider here [83], squeezing and entanglement shared by many modes was already
achieved for photon numbers on the order 1016 by using a coherent state in one of the modes [84]. This is
substantially smaller than the ∼1021 photons estimated in the cavity in the example of the cw laser leading
to 100 GW circulating power considered above, but one might hope that technology progresses to achieve at
least a small amount of squeezing also for the high-power sources relevant here.

As for the high-energy particle beams, transverse ‘coherent oscillations’ of two colliding accelerator
beams (including the ones at LHC) have already been studied [85–89] but these are of classical nature.
Non-trivial quantum states of the beam are those that cannot be described by a positive semidefinite
Glauber-Sudarshan P-function, a concept from quantum optics that is well established for harmonic
oscillators and is hence applicable to small-amplitude transverse motion of the particle beam in the
focusing regions where there is a linear restoring force. A stronger requirement would be a
non-positive-semidefinite Wigner function, which can be applied to any system with a phase space. In order
to reach such quantum states, it will be necessary to cool the particle beams. Efforts to do so are on the way
or proposed for other motivations: cooling enhances the phase space density and hence the intensity of the
beam in its center. In addition, new phases of matter in the form of classical crystalline beams attracted
both theoretical and experimental interest at least since the 1980s [90–95]. Recently it was proposed to
extend this work to create an ‘ultracold crystalline beam’ and turning an ion beam into a quantum
computer. For this, the beam should become an ion Coulomb crystal cooled to such low temperatures that
the de Broglie wavelength becomes larger than the particles’ thermal oscillation amplitudes [96]. Ideally, for
our purposes, the center-of-mass motion of the beam should be cooled to the ground state of the
(approximate) harmonic oscillator that restrains locally, at the detector position, the transverse motion,
before interesting quantum superpositions can be achieved.

However, even superpositions in longitudinal direction would create an interesting experimental
situation for which there is currently no theoretical prediction. Experimental progress in this direction
would allow a different kind of search for quantum gravity effects compared to popular current attempts to
detect deviations from canonical commutation relations between conjugate observables as predicted by
various quantum-gravity candidates (see e.g. [97]). Different techniques for cooling particle beams are
available (see e.g. [98, 99] for overviews): Stochastic cooling (measurement of deviation from the ideal
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beam-line and fast electronic counter-measures further down the beamline) was used at CERN for
producing high-intensity anti-proton beams from 1972 till 2017 and is still used there for anti-proton
deceleration, as well as at Forschungszentrum Jülich (COSY experiment) and GSI Helmholtzzentrum für
Schwerionenforschung GmbH (Heavy Ion storage ring ESR); electron cooling (absorption of entropy by a
co-propagating electron beam of much lower energy and entropy), and a modern cousin of it, ‘coherent
electron cooling’ [100], under development at Brookhaven National Lab for ion energies up to 40 GeV/u for
Au+79 ions [57, 101]; and laser cooling, with which longitudinal temperatures on the order of mK have
been reached for moderately relativistic ion beams [102, 103]. Laser cooling is most efficient for
longitudinal cooling, but transverse cooling can be achieved to some extent through sympathetic cooling
[104]. Laser cooling is now proposed for an ultrarelativistic heavy-ion upgrade of the LHC [56]. Despite all
these techniques, ground states of the transverse center-of-mass motion have never been reached in any
ultra-relativistic particle beam as far as we know, nor was it perceived as an important goal. We hope that
the perspective of winning the race to the first quantum gravity experiment will change this. As Grishchuk
put it [11]. ‘The laboratory experiment is bound to be expensive, but one should remember that a part of
the cost is likely to be reimbursed from the Nobel prize money!’ The successful development of ion-trap
quantum computers, where ground-state cooling of collective modes of ion crystals has become standard,
might lend credibility to the feasibility of the endeavor.
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Appendix A. Gravitational field of a laser-pulse in a cavity

Following the calculation of the gravitational field of a box shaped laser pulse of length L emitted at z = 0
and absorbed at z = D from [18, 21], we extend the calculation to an oscillation of a short pulse (L < D)
between 0 and D. For a pulse propagating along the ±z-direction the energy momentum tensor is given by
T00 = Tzz = ∓T0z = ∓Tz0 = u(z, t)δ(x)δ(y)A, where u(z, t) is the energy density of the electromagnetic field
in 3D and A is the effective transverse area. This energy momentum tensor violates the continuity equation
as the recoil of the mirrors is neglected. However, ultimately only positions very close to the beam will be
considered where these contributions vanish [18]. The energy density is given by

u(z, t) = upΘ(z)Θ(D − z)
∞∑

n=0

(
χn
+(z, t) + χn

−(z, t)
)

, (A1)

where

χn
+(z, t) = (Θ (ct − 2nD − z) −Θ (ct − 2nD − z − L)) (A2)

χn
−(z, t) = (Θ (ct − (2n + 1)D + (z − D)) −Θ (ct − (2n + 1)D + (z − D) − L)) (A3)

delimit the profile of the pulse injected at t = 0 and reflected 2n times (2n + 1 times) traveling in positive
(negative) z-direction, and up =

Ep

LA is the pulse energy density.
From the wave equation in the Lorenz gauge

�hμν = −16πG

c4
Tμν (A4)

the metric perturbation can be calculated using the Green’s function

hμν(�r, t) =
4G

c4

∫
d3r′

Tμν(�r ′, t − |�r −�r ′|/c)

|�r −�r ′| . (A5)

Given the energy–momentum tensor, the metric perturbation can be decomposed into hμν = h+
μν + h−

μν

and the only non-zero elements of h±
μν are h±

00 = h±
zz = ∓h±

z0 = ∓h±
0z ≡ h±, with

h±(x, y, z, t) =
4GupA

c4

∫ D

0
dz′

∑
nχ

n
±

(
z′, t −

√
ρ2 + (z − z′)2/c

)
√
ρ2 + (z − z′)2

, (A6)
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Figure 2. Spacetime is split into zones by the light cones of the reflection events of a pulse oscillating between two mirrors.

ρ =
√

x2 + y2, and upA = P
c .

The box function χn
+ imposes the additional boundaries of an

+ < z′ < bn
+, with

an
+ = z +

(ct − 2nD − L − z)2 − ρ2

2(ct − 2nD − L − z)
(A7)

bn
+ = z +

(ct − 2nD − z)2 − ρ2

2(ct − 2nD − z)
. (A8)

Similarly, the box function χn
− adds the constraints of an

− < z′ < bn
−, with

bn
− = z − (ct − (2n + 1)D − L + (z − D))2 − ρ2

2 (ct − (2n + 1)D − L + (z − D))
(A9)

an
− = z − (ct − (2n + 1)D + (z − D))2 − ρ2

2 (ct − (2n + 1)D + (z − D))
. (A10)

Following [21] the substitution ζ(z′) = z′ − z +
√
ρ2 + (z′ − z)2 is used to further simplify the

integration. The constraints turn into

ζ(0) = r − z (A11)

ζ(D) = rD − (z − D) (A12)

ζ(an
+) = ct − 2nD − L − z (A13)

ζ(bn
+) = ct − 2nD − z (A14)

ζ(bn
−) =

ρ2

ct − (2n + 1)D − L + (z − D)
(A15)

ζ(an
−) =

ρ2

ct − (2n + 1)D + (z − D)
, (A16)

where r =
√
ρ2 + z2, and rD =

√
ρ2 + (z − D)2.

For an observer positioned at z ∈ (L, D − L) there are 4 different space-time zones (see figure 2)
Pn

0 : 2nD < ct − r < 2nD + L causally connected to the reflection at z = 0, ct = 2nD.

14
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�n: 2nD + r + L < ct < (2n + 1)D + rD not causally connected to any reflection events, but causally
connected to the pulse traveling from z = 0, ct = 2nD to z = D, ct = (2n + 1)D.

Pn
D: (2n + 1)D < ct − rD < (2n + 1)D + L causally connected to the reflection at z = D, ct = (2n + 1)D.

�n: (2n + 1)D + rD + L < ct < (2n + 2)D + r not causally connected to any reflection events, but
causally connected to the pulse traveling from z = D, ct = (2n + 1)D to z = 0, ct = (2n + 2)D.

The metric perturbation is then given by

h+ =
4GP

c5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
ζ(bn

+)

ζ(0)
= ln

ct2n − z

r − z
for (z, t) ∈ Pn

0 ,

ln
ζ(bn

+)

ζ(an
+)

= ln
ct2n − z

ct2n − L − z
for (z, t) ∈ �n,

ln
ζ(D)

ζ(an
+)

= ln
rD − (z − D)

ct2n+1 − L − (z − D)
for (z, t) ∈ Pn

D,

0 for (z, t) ∈ �n,

(A17)

caused by the pulses starting from z = 0 and

h− =
4GP

c5

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ln
ζ(bn−1

− )

ζ(0)
= ln

ρ2

(ct2n − L + z)(r − z)
for (z, t) ∈ Pn

0 ,

0 for (z, t) ∈ �n,

ln
ζ(D)

ζ(an
−)

= ln
(rD − (z − D))(ct2n+1 + (z − D))

ρ2
for (z, t) ∈ Pn

D,

ln
ζ(bn

−)

ζ(an
−)

= ln
ct2n+1 + (z − D)

ct2n+1 − L + (z − D)
for (z, t) ∈ �n,

(A18)

caused by the pulses returning from z = D, where tj := t − jD/c.
Following [21], the only independent non-vanishing elements of the Riemann curvature tensor are

given by

R0z0z = −1

2

(
1

c
∂t + ∂z

)2

h+ − 1

2

(
1

c
∂t − ∂z

)2

h− (A19)

R0z0i = −R0zzi = −1

2
∂i

(
1

c
∂t + ∂z

)
h+ − 1

2
∂i

(
1

c
∂t − ∂z

)
h− (A20)

R0i0j = Rzizj = −1

2
∂i∂j(h+ + h−) (A21)

R0izj =
1

2
∂i∂j(h+ − h−), (A22)

where i, j ∈ {x, y}.
Given the explicit form of h+ and h− from equations (A17) and (A18), the curvature is.

Pn
0 : R0z0z =

4GP
c5

z
r3 , R0z0i = 0, R0i0j =

4GP
c5

z
ρ2r

(
δij −

rirj

ρ2r2 (2r2 + ρ2)
)

, R0izj = − 4GP
c5

1
ρ2

(
δij −

2rirj

ρ2

)
�n: Rμνρσ = 0∀μ, ν, ρ,σ

Pn
D: R0z0z =

4GP
c5

D−z
r3
D

, R0z0i = 0, R0i0j =
4GP
c5

(D−z)
rDρ2

(
δij −

rirj

r2
Dρ2 (2r2

D + ρ2)
)

, R0izj =
4GP
c5

1
ρ2

(
δij −

2rirj

ρ2

)
�n: Rμνρσ = 0∀μ, ν, ρ,σ.
In the limit ρ � r, rD, the only independent components of the curvature in leading order are

R0i0j = −R0izj =
4GP

c5

1

ρ2

(
δij − 2

rirj

ρ2

)
≡ R ∀(z, t) ∈ Pn

0 (A23)

R0i0j = R = R0izj ∀(z, t) ∈ Pn
D, (A24)

with ρ � z, (z − D). A simplified metric perturbation resulting in the same curvature tensor as
equation (A23) is given by

h̃+ =

⎧⎨
⎩−8GP

c5
ln ρ for (z, t) ∈ Pn

0

0 else
, h̃− =

⎧⎨
⎩−8GP

c5
ln ρ for (z, t) ∈ Pn

D

0 else
. (A25)
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The geodesic equation for a test particle at position xμ is given in coordinate time t = 1
c x0 by

d2xμ

dt2
= −Γμ

αβ

dxα

dt

dxβ

dt
+ Γ0

αβ

dxα

dt

dxβ

dt

dxμ

dt
. (A26)

For a non-relativistic test particle this reduces to

ẍa = −c2Γa
00 +O

(
v2

c2

)
, (A27)

with the linearized Christoffel symbol

Γρ
μν =

1

2
ηλρ(∂μhνλ + ∂νhλμ − ∂λhμν) =⇒ Γa

00 = −1

2
∂ah̃00. (A28)

The acceleration a non-relativistic sensor experiences is therefore equivalent to that from a Newtonian
potential

Φ =
4GP

c3
ln ρ (A29)

for the duration of the pulse passing by (P0, PD) with the potential vanishing at all other times.

Appendix B. Intensity in a Fabry–Pérot resonator

The considerations here follow those from [49] closely but are modified to reflect the setups used in this
work.

For a Fabry–Pérot resonator consisting of two mirrors with field reflection coefficients
√

R1,
√

R2 and
field transmission coefficients

√
T1,

√
T2, the field in cavity (at the face of mirror 1) resulting from a pump

beam striking mirror 1 can be written as

Ecav(t) =
√

R1R2Ecav(t − τrt) +
√

T1Epump(t) (B1)

in the time domain, where τ rt is the time for one round trip in the cavity. In the frequency domain this can
be written as

Ẽcav(ω) = G̃(ω)Ẽpump(ω), with G̃(ω) =

√
T1

1 −
√

R1R2e−iωτrt
. (B2)

B.1. Single monochromatic rectangular pulse
For a monochromatic pump field of frequency ωE and length τp entering the cavity at t = 0 the pump field
is given by

Ep
pump(t) = E0eiωEtΠτp (t), with Πτp (t) = Θ (t) −Θ

(
t − τp

)
(B3)

=⇒ Ẽp
pump(ω) = E0τpe−iωτp/2 sinc((ω − ωE)τp). (B4)

The corresponding Fourier transformed field amplitude in the cavity is then given through equation (B2)
by

Ẽp
cav(ω) = E0

√
T1e−iωτp/2

1 −
√

R1R2e−iωτrt
τp sinc((ω − ωE)τp) (B5)

=⇒ Ep
cav(t) = E0

√
T1

∞∑
n=0

(R1R2)n/2eiωE(t−nτrt)Πτp (t − nτrt). (B6)

For a very short pulse τ p � τ rt, none of the addends will overlap and the intensity in the cavity is

Ip
cav(t) = |Ep

cav(t)|2 = E2
0T1

∞∑
n=0

(R1R2)nΠτp (t − nτrt). (B7)

The pulse enters the cavity with an intensity reduced by T1 and is reduced by a further factor R1R2 for each
subsequent round trip. The average power in the cavity relative to that of the pump laser is then given by

Pcav

P0
= T1

∞∑
n=0

(R1R2)n =
T1

1 − R1R2
=

1 − R1

1 − R1R2
� 1. (B8)
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Figure 3. Intensity inside the cavity resulting from a long (τp � τ rt) rectangular pulse of monochromatic or spectrally narrow
light. The time is given in units of τrt.

For long pulses (τp � τ rt) and a resonant cavity (ωEτ rt = 2πm) only addends from

nmin = max
(

0,
⌈

t−τp

τrt

⌉)
to nmax = max

(
0,
⌊

t
τrt

⌋)
contribute for any given time, returning

Ep
cav(t) = E0

√
T1

[
1 − (R1R2)

nmax+1
2

1 +
√

R1R2
− 1 − (R1R2)

nmin+1
2

1 +
√

R1R2

]
(B9)

= E0

√
T1

√
R1R2

(R1R2)nmin/2 − (R1R2)nmax/2

1 +
√

R1R2
. (B10)

The intensity for this long-pulse resonant cavity case can be described as a ‘jagged shark fin’ and is plotted
in figure 3.

B.2. Series of monochromatic rectangular pulses
A series of periodic pulses separated by time τ rt can be written as a sum of pulses EΣ

pump(t) =
∑

kEp
pump

(t − kτrep). As all of the operations on the field are linear the pump field equation (B5) can be used to find

EΣ
cav(t) =

∑
k

Ep
cav(t − kτrep). (B11)

For repetition times much longer than the lifetime of a pulse in the cavity τrep � τL ∼ τrt(R1R2)1/4

1−
√

R1R2
, and the

pulse length τ rep � τp, the addends barely overlap such that there is no interference between consecutive
pulses. In this case the intensity in the cavity is just that of the singular pulse repeating periodically.
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