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Abstract. In this paper we find conditions which guarantee that a given flow� on a compact
metric space X admits a Lyapunov 1-form ω lying in a prescribed Čech cohomology class
ξ ∈ Ȟ 1(X; R). These conditions are formulated in terms of the restriction of ξ to the
chain recurrent set of �. The result of the paper may be viewed as a generalization of a
well-known theorem by Conley about the existence of Lyapunov functions.

1. Introduction
Conley proved in [1, 2] that any flow � : X × R → X on a compact metric space X
decomposes into a chain recurrent flow and a gradient-like flow. More precisely, he proved
the existence of a Lyapunov function for the flow, i.e. a continuous function L : X → R,
which decreases along any orbit of the flow lying in the complement X − R of the chain
recurrent set R ⊂ X of � and is constant on the connected components‖ of R.

THEOREM 1. (Conley [1, 2]) Let � : X × R → X, �(x, t) = x · t , be a continuous flow
on a compact metric space X. Then there exists a continuous function L : X → R, which
is constant on the connected components of the chain recurrent set R = R(�) of the flow
� and satisfies L(x · t) < L(x) for any x ∈ X − R and t > 0.

This important result led Conley to his programme of understanding very general flows as
collections of isolated invariant sets linked by heteroclinic orbits.

‖ Conley (see [2, Theorem 3.6D]) proved that the chain transitive components of R coincide with the connected
components of R.
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Our aim in this paper is to go one step further and to analyze the flow within the chain
recurrent set R, where it is typically complicated. As a new tool, we study the notion of
a Lyapunov 1-form for �, which is a natural generalization of the notion of a Lyapunov
function and has been introduced in a different context in Farber’s papers [5, 6]. We prove
that under some natural assumptions, a given Čech cohomology class ξ ∈ Ȟ 1(X; R) can
be represented by a continuous closed Lyapunov 1-form for the flow �.

The notion of a continuous closed 1-form on a topological space generalizes the notion
of a continuous function. For the convenience of the reader, we recall the relevant
definitions and the main properties of continuous closed 1-forms in §2, referring for more
details to the papers [5, 6], where they were originally introduced. For the purpose of
this introduction, let us say that continuous closed 1-forms are analogues of the familiar
smooth closed 1-forms on differentiable manifolds. Any continuous closed 1-form ω on
a topological space X canonically determines a Čech cohomology class [ω] ∈ Ȟ 1(X; R),
which plays a role analogous to the de Rham cohomology class of a smooth closed 1-form.
For any continuous curve γ : [0, 1] → X, the line integral

∫
γ ω ∈ R is defined and has the

usual properties; in particular, it depends only on the homotopy class of the curve relative
to the endpoints.

Definition 1. Consider a continuous flow � : X × R → X on a topological space X.
Let Y ⊂ X be a closed subset invariant under �. A continuous closed 1-form ω on X is
called a Lyapunov 1-form for the pair (�, Y ) if it has the following two properties:
(L1) for every x ∈ X − Y and every t > 0,∫ x·t

x

ω < 0,

where the integral is calculated along the trajectory of the flow;
(L2) there exists a continuous function f : U → R defined on an open neighbourhoodU

of Y such that ω|U = df and f is constant on any connected component of Y .

Any continuous function L : X → R determines the closed 1-form ω = dL (see §2)
and, in this special case, condition (L1) reduces to the requirementL(x · t) < L(x) for any
t > 0 and x ∈ X − Y , while condition (L2) means that L is constant on any connected
component of Y . Hence, for ω = dL, Definition 1 reduces to the classical notion of a
Lyapunov function, see [13].

The following remark illustrates Definition 1. Given a flow � on X and a Lyapunov
1-formω for (�, Y ) representing a non-zero Čech cohomology class [ω] = ξ ∈ Ȟ 1(X; R),
the homology class z ∈ H1(X; Z) of any periodic orbit of � satisfies

〈ξ, z〉 ≤ 0

with equality if and only if the periodic orbit is contained in Y . Using this fact, one
constructs flows such that no non-zero cohomology class ξ ∈ Ȟ 1(X; R) contains a
Lyapunov 1-form.

In this paper, we will associate with any cohomology class ξ ∈ Ȟ 1(X; R) a subset
Rξ ⊂ R of the chain recurrent set R = R(�) of the flow �, see §3 for details. The set
Rξ is closed and invariant under the flow and can be characterized as the projection of the
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FIGURE 1. (δ, T )-cycle.

chain recurrent set of the natural lift of the flow to the Abelian cover of X associated with
the class ξ .

A (δ, T )-cycle is a pair (x, t) ∈ X × R satisfying t ≥ T and d(x, x · t) < δ. Here d
denotes the distance function on X. See Figure 1. If X is locally path connected, any
(δ, T )-cycle with small enough δ determines a closed loop, which first follows the flow
line from x to x · t and then returns from x · t to x by a path contained in a suitably
small ball. This leads to the notion of a homology class z ∈ H1(X; Z) associated to a
(δ, T )-cycle, see Definition 4. The class z is uniquely defined ifX is homologically locally
1-connected; without this assumption the homology class z associated with a (δ, T )-cycle
might not be unique. The natural bilinear pairing 〈·, ·〉 : Ȟ 1(X; R)×H1(X; Z) → R can be
understood as 〈ξ, z〉 = ∫

γ
ω, where ω is a representative closed 1-form for ξ ∈ Ȟ 1(X; R)

and γ : [0, 1] → X is a loop representing the class z ∈ H1(X; Z). Despite the fact that the
homology class z associated to a (δ, T )-cycle might depend (for wild X) on the choice of
the connecting path between x · t and x, the construction is such that the value 〈ξ, z〉 ∈ R

only depends (for small enough δ > 0) on the (δ, T )-cycle itself; see §3 for details.
The following theorem is our main result.

THEOREM 2. Let � be a continuous flow on a compact, locally path-connected, metric
space X and ξ a cohomology class in Ȟ 1(X; R). Denote by Cξ the subset

Cξ = R − Rξ (1.1)

of the chain recurrent set R of the flow �. Assume that the following two conditions are
satisfied:
(A) ξ |Rξ = 0; and
(B) there exist constants δ > 0, T > 1, such that every homology class z ∈ H1(X; Z)

associated to an arbitrary (δ, T )-cycle (x, t) with x ∈ Cξ satisfies

〈ξ, z〉 ≤ −1.

Then there exists a Lyapunov 1-form ω for (�,Rξ ) representing the cohomology class ξ .
Moreover, the subset Cξ is closed.
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Conversely, if, for the given cohomology class ξ , there exists a Lyapunov 1-form for the
pair (�,Rξ ) in the class ξ and if the set Cξ is closed, then (A) and (B) hold true.

COROLLARY 1. Let � : X × R → X be a continuous flow on a compact, locally path-
connected metric space. Any Čech cohomology class ξ ∈ Ȟ 1(X; R) satisfying ξ |R = 0
(where R = R(�) denotes the chain recurrent set of the flow) contains a Lyapunov 1-form
ω for (�,R).

Corollary 1 follows directly from Theorem 2 since, under the assumption ξ |R = 0, the
set Rξ coincides with R (compare Definition 5) and so the set Cξ is empty. Corollary 1
also admits a simple, independent proof based on Conley’s theorem 1.

COROLLARY 2. Suppose� : X × R → X is a flow on a compact locally path-connected
metric space, whose chain recurrent set consists of finitely many rest points and periodic
orbits. Then a Lyapunov 1-form for (�, Y ), with suitable Y ⊂ X, exists in a non-trivial
cohomology class ξ ∈ Ȟ 1(X; R) if and only if the homology classes of the periodic orbits
are contained in the half-space

Hξ := {z ∈ H1(X; Z) | 〈ξ, z〉 ≤ 0}.
If this condition holds, then the set Y coincides with the union of the rest points and of
those periodic orbits, for which the corresponding homology classes z ∈ H1(X; Z) satisfy
〈ξ, z〉 = 0.

This corollary is a direct consequence of our main Theorem 2. The class of flows
meeting its assumptions includes the Morse–Smale flows on closed manifolds.

Another interesting special case arises when Rξ = ∅. From Theorem 2, we also deduce
the following result.

COROLLARY 3. Let � : X × R → X be a continuous flow on a compact, locally path-
connected, metric space X and let ξ ∈ Ȟ 1(X; R) be a non-zero Čech cohomology class.
The following two conditions are equivalent:
(i) Rξ = ∅ and the flow satisfies condition (B) of Theorem 2;
(ii) there exists a Lyapunov 1-form for (�,∅) representing the class ξ .
If the class ξ is integral, i.e. ξ ∈ Ȟ 1(X; Z), then either of these conditions is equivalent to
the existence of a continuous locally trivial fibration p : X → S1 ⊂ C with the following
properties. The function t �→ arg(p(x · t)) is differentiable, the derivative

d

dt
arg(p(x · t)) < 0

is negative for all x ∈ X, t ∈ R and the cohomology class p∗(µ) ∈ Ȟ 1(X; Z)

coincides with ξ , where µ ∈ Ȟ 1(S1; Z) is the fundamental class of the circle S1 oriented
counterclockwise. In particular, for any angle θ ∈ S1, the set K = p−1(θ) is a cross
section of the flow�.

Recall that a closed subset K ⊂ X is a cross section of the flow � if the flow map
K×R → X is a surjective local homeomorphism (see Schwartzman [11]). A cross section
K is transversal to the flow and the orbit of every point in X intersects K in forward and
backward time.
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We give a proof of Corollary 3 in §5.

Under slightly stronger assumptions, Schwartzman [12] proved, among other results,
the equivalence of the property of having a cross section and the existence of a fibration
p : X → S1 as stated in the second part of Corollary 3. In subsequent work, we will
compare in detail our results with Schwartzman’s beautiful paper [11].

The second part of Corollary 3 may be viewed as a generalization of Fried’s results on
the existence of cross sections to flows on manifolds [9, Theorem D]. The assumption of
Fried to ensure the existence of cross sections is formulated in terms of the notion of the
homological directions of a flow, which we now recall. A sequence (xn, tn) ∈ X × (1,∞)

is a closing sequence based at x ∈ X if the sequences xn and xn · tn tend to x. We will
assume that X is a compact polyhedron. Then, any closing sequence determines uniquely
a sequence of homology classes zn ∈ H1(X; Z). Here zn denotes the homology class of a
loop, which starts at xn, follows the flow until xn · tn and then returns to xn along a ‘short’
path. Let DX be the factor space DX = H1(X; R)/R+, where this space is topologized
as the disjoint union of the unit sphere with the origin. Any closing sequence as described
determines a sequence of ‘homology directions’ z̃n ∈ DX, the equivalence classes of zn in
DX. The set of homology directions D� ⊂ DX of the flow � is defined as the set of all
accumulation points of all sequences z̃n corresponding to closing sequences inX. As noted
by Fried [9], it is enough to consider closing sequences (xn, tn) with tn → ∞.

PROPOSITION 1. Let X be a finite polyhedron and let ξ ∈ H 1(X; Z) be an integral
cohomology class. Let � : X × R → X be a continuous flow such that the chain
recurrent set Rξ is isolated in R. Then condition (B) of Theorem 2 is equivalent to
Fried’s condition that any homology direction z̃ = lim z̃n ∈ DX of any closing sequence
(xn, tn) ∈ X × (1,∞) with xn ∈ Cξ satisfies 〈ξ, z̃〉 < 0.

See §6 for a proof.

A comparison of Fried’s results [9] with the results of this paper shows that our setting
is more general in two respects: we allow spaces X of a more general nature and arbitrary
real Čech cohomology classes ξ . In [9], X is required to be a compact manifold, possibly
with a boundary, and the class ξ has to be integral. The equivalence of our condition (B)
with Fried’s condition [9, Proposition 1] holds only under these additional assumptions.

In [5, 6], two different generalizations, cat(X, ξ) and Cat(X, ξ), of the classical
notion of the Lusternik–Schnirelman category cat(X) were introduced: here X is a finite
polyhedron and ξ ∈ H 1(X; R) a cohomology class. Using these new concepts, an
extension of the Lusternik–Schnirelman theory for flows was constructed, see [5, 6].
The main results of [5, 6] allow us to estimate the number of fixed points of a flow under the
assumption that (1) the fixed points are isolated in the chain recurrent set and (2) the flow
admits a Lyapunov closed 1-form lying in the class ξ . The results of the present paper fit
nicely in this programme and explain the nature of assumption (2). Note that (1) is similar
in spirit (although formally not equivalent) to the property that the set Rξ is isolated in the
chain recurrent set R of the flow.
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2. Closed 1-forms on topological spaces
In this section we recall the notion of a continuous closed 1-form on a topological space,
which has been introduced in [5, 6].

Definition 2. Let X be a topological space. A continuous closed 1-form on X is defined
by an open cover U = {U} of X and by a collection {ϕU }U∈U of continuous functions
ϕU : U → R with the following property: for any two subsets U,V ∈ U , the difference

ϕU |U∩V − ϕV |U∩V : U ∩ V → R (2.1)

is a locally constant function (i.e. constant on each connected component of U ∩ V ).
Two such collections, {ϕU }U∈U and {ψV }V∈V , are called equivalent if their union
{ϕU,ψV }U∈U ,V∈V satisfies condition (2.1). The equivalence classes are called continuous
closed 1-forms on X.

Any continuous function f : X → R (viewed as a family consisting of a single element)
determines a continuous closed 1-form, which we denote by df (the differential of f ).

A continuous closed 1-form ω vanishes, ω = 0, if it is represented by a collection of
locally constant functions.

The sum of two continuous closed 1-forms determined by collections {ϕU }U∈U and
{ψV }V∈V is the continuous closed 1-form corresponding to the collection {ϕU |U∩V +
ψV |U∩V }U∈U ,V∈V . Similarly, one can multiply continuous closed 1-forms by real
numbers λ ∈ R by multiplying the corresponding representatives with λ. With these
operations, the set of continuous closed 1-forms on X is a real vector space.

Continuous closed 1-forms behave naturally with respect to continuous maps: if h :
Y → X is continuous and {ϕU }U∈U determines a continuous closed 1-form ω on X, then
the collection of continuous functions φU ◦ h : h−1(U) → R determines a continuous
closed 1-form on Y which will be denoted by h∗ω. As a special case of this construction,
we will often use the operation of restriction of a closed 1-formω to a given subsetA ⊂ X:
in this case h is the inclusion map A → X and the form h∗ω is simply denoted as ω|A.

A continuous closed 1-form ω on X can be integrated along continuous paths in X.
Namely, let ω be given by a collection {ϕU }U∈U , and γ : [0, 1] → X be a continuous
path. We may find a finite subdivision 0 = t0 < t1 < · · · < tN = 1 of the interval [0, 1]
such that, for each 1 ≤ i ≤ N , the image γ ([ti−1, ti]) is contained in a single open set
Ui ∈ U . Then we define the line integral

∫
γ

ω :=
N∑
i=1

ϕUi (γ (ti))− ϕUi (γ (ti−1)). (2.2)

The standard arguments show that the integral (2.2) is independent of all choices and, in
fact, depends only on the homotopy class of γ relative to its endpoints.

Consider the following exact sequence of sheaves over X,

0 → RX → CX → BX → 0, (2.3)

where RX is the sheaf of locally constant functions, CX is the sheaf of real-valued
continuous functions and BX is the sheaf of germs of continuous functions modulo
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locally constant ones. More precisely, BX is the sheaf corresponding to the presheaf
U �→ CX(U)/RX(U). By the previous definitions, the global sections of the sheaf BX
are in one-to-one correspondence with continuous closed 1-forms on X. Hence, the space
of all closed 1-forms on X is H 0(X;BX).

The exact sequence of sheaves (2.3) generates the cohomological exact sequence

0 → H 0(X; RX) → H 0(X;CX) d→ H 0(X;BX) [·]→ H 1(X; RX) → 0. (2.4)

In this exact sequence, H 0(X;CX) = C(X) is the space of all continuous functions
f : X → R and the map d assigns to any continuous function f its differential df ∈
H 0(X;BX). The group H 1(X; RX) is the Čech cohomology Ȟ 1(X; R) (see [14, ch. 6]);
the map [·] assigns to any closed 1-form ω its Čech cohomology class [ω] ∈ Ȟ 1(X; R).
This proves the following lemma.

LEMMA 1. A continuous closed 1-form ω ∈ H 0(X;BX) equals df for some continuous
function f : X → R if and only if its Čech cohomology class [ω] ∈ Ȟ 1(X; R) vanishes,
[ω] = 0. Any Čech cohomology class ξ ∈ Ȟ 1(X; R) can be realized by a continuous
closed 1-form on X.

Note also that there is a natural homomorphism Ȟ 1(X; R) → H 1(X; R) from Čech
cohomology to singular cohomology. Using Lemma 1 and the well-known identification
H 1(X; R) � Hom(H1(X); R), it can be described as a pairing

〈·, ·〉 : Ȟ 1(X; R)×H1(X; Z) → R where 〈[ω], [γ ]〉 =
∫
γ

ω. (2.5)

In other words, choosing a representative closed 1-form ω for a cohomology class ξ ∈
Ȟ 1(X; R) and a closed loop γ in X representing a homology class z ∈ H1(X; Z), the
number 〈ξ, z〉 ∈ R equals the line integral

∫
γ ω, which is independent of the choices.

Here is a generalization of the well-known Tietze extension theorem.

PROPOSITION 2. Let X be a metric space and A ⊂ X a closed subset. Let ω be a
continuous closed 1-form on A, and let ξ ∈ Ȟ 1(A; R) denote the Čech cohomology
class of ω. Then, for any cohomology class ξ ′ ∈ Ȟ 1(X; R) satisfying ξ ′|A = ξ , there
exists a continuous closed 1-form ω′ on X representing the cohomology class ξ ′, such that
ω′|A = ω.

Proof. Choose an arbitrary continuous closed 1-form �′ representing the class ξ ′.
Then �′|A is cohomologous to ω, i.e. �′|A − ω = df , where f : A → R is a continuous
function. By Tietze’s extension theorem for functions, we find a continuous function
f ′ : X → R extending f . Then ω′ = �′ − df ′ is a closed 1-form in the class ξ ′ satisfying
ω′|A = ω. �

The statement of Proposition 2 can be expressed as follows: a continuous closed 1-form
ω on a closed subset A ⊂ X can be extended to a continuous closed 1-form on X if and
only if the cohomology class [ω] ∈ Ȟ 1(A; R) can be extended to a cohomology class lying
in Ȟ 1(X; R).
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FIGURE 2. (δ, T )-chain.

3. The chain recurrent set Rξ
The goal of this section is to introduce a new chain recurrent set Rξ = Rξ (�) ⊂ X, which
is associated with a flow � on X together with a Čech cohomology class ξ ∈ Ȟ 1(X; R).
The set Rξ appears in the statement of our main Theorem 2.

Throughout this section, we will assume that X is a locally path-connected compact
metric space.

Recall that a space X is locally path connected if, for every open set U ⊂ X and for
every point x ∈ U , there exists an open set V ⊂ U with x ∈ V such that any two points in
V can be connected by a path in U . Equivalently,X is locally path connected if and only if
the path connected components of open subsets are open (see [14, p. 65]).

3.1. Definition of Rξ . Recall the definition of the chain recurrent set R = R(�) of the
flow �. Given any δ > 0, T > 0, a (δ, T )-chain from x ∈ X to y ∈ X is a finite sequence
x0 = x, x1, . . . , xN = y of points in X and numbers t1, . . . , tN ∈ R satisfying ti ≥ T and
d(xi−1 · ti , xi) < δ for all 1 ≤ i ≤ N . (See Figure 2.) Note that a (δ, T )-cycle (see §1) is
a (δ, T )-chain of a special kind.

The chain recurrent set R = R(�) of the flow� is defined as the set of all points x ∈ X
such that, for any δ > 0 and T ≥ 1, there exists a (δ, T )-chain starting and ending at x. It
is immediate from this definition that the chain recurrent set is closed and invariant under
the flow and that R contains all fixed points and periodic orbits. The chain recurrent set
R contains the set of all non-wandering points and, in particular, the positive and negative
limit sets of any orbit [1, §II.6]. The set R = R(�) is a disjoint union of its chain transitive
components†.

LEMMA 2. Given a locally path-connected compact metric space X and a number ε > 0,
there exists δ = δ(ε) > 0 such that any two points x, y ∈ X with d(x, y) < δ can be
connected by a continuous path γ : [0, 1] → X contained in some open ε-ball.

Proof. By the definition of local path connectedness, each point x ∈ X has a
neighbourhood Vx contained in the ε-ball Bx around x such that any two points in Vx
can be connected by a path in Bx . Choose a finite subcover of the covering {Vx}x∈X of X
and choose δ(ε) as the Lebesgue number of this finite cover. �

Definition 3. A pair (ε, δ) of real numbers ε = ε(ξ) > 0 and δ = δ(ξ) > 0 is called a
scale of a non-zero cohomology class ξ ∈ Ȟ 1(X; R) if (1) ξ |B = 0 for any ball B ⊂ X of

† Recall that x, y ∈ R belong to the same chain transitive component if, for any δ > 0 and T > 1, there exist
(δ, T )-chains from x to y and from y to x.
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radius 2ε and (2) any two points x, y ∈ X with d(x, y) < δ can be connected by a path in
X contained in a ball of radius ε.

Such a scale always exists. In fact, we may realize the class ξ by a continuous closed
1-form ω = {φU }U∈U with a finite open cover U and then take for ε half of the Lesbegue
number of U . Using Lemma 2, we may then find δ = δ(ξ) > 0 satisfying condition (2) in
Definition 3.

We want to evaluate Čech cohomology classes on broken chains of trajectories of the
flow which start and end at the same point. This can be done as follows. Let ε = ε(ξ),
δ = δ(ξ) be a scale for ξ ∈ Ȟ 1(X; R) (see Definition 3). Suppose we are given a closed
(δ, T )-chain, i.e. a (δ, T )-chain from a point x to itself. We have a sequence of points
x0 = x, x1, . . . , xN−1, xN = x of X and a sequence of numbers t1, . . . , tN ∈ R with
ti ≥ T , such that d(xi−1 · ti , xi) < δ for any 1 ≤ i ≤ N . We want to associate with such
a chain a homology class z ∈ H1(X; Z). Choose continuous paths σi : [0, 1] → X, where
1 ≤ i ≤ N , connecting xi−1 · ti with xi and lying in a ball Bi of radius ε. We obtain a
singular cycle which is a combination of the parts of the trajectories from xi−1 to xi−1 · ti
and the paths σi .

Definition 4. The homology class z ∈ H1(X; Z) of this singular cycle is said to be
associated with the given closed (δ, T )-chain.

Note that the obtained class z may depend on the choice of paths σi (if the space X is
wild, i.e. not locally contractible). However, the value

〈ξ, z〉 ∈ R, where 〈ξ, z〉 =
N∑
i=1

∫ xi−1·ti

xi−1

ω +
N∑
i=1

∫
σi

ω, (3.1)

is independent of the paths σi . Indeed, if we use two different sets of curves σi and σ ′
i then

the difference of the corresponding expressions in (3.1) will be the integral over the sum of
singular cycles

∑N
i=1(σi − σ ′

i ), each cycle σi − σ ′
i being contained in a ball of radius 2ε.

Since we know that the restriction of the cohomology class ξ on any such ball vanishes, we
see that the right-hand side of (3.1) is independent of the choice of the curves σ1, . . . , σN .

The homology class z ∈ H1(X; Z) associated with a closed (δ, T )-chain is uniquely
defined if X is homologically locally connected in dimension 1 (see [14, ch. 6, p. 340] for
the definition) and δ > 0 is sufficiently small.

Now we are ready to define the subset Rξ of the chain recurrent set R.

Definition 5. Let ε = ε(ξ) and δ = δ(ξ) be a scale of a cohomology class ξ ∈ Ȟ 1(X; R).
Then Rξ = Rξ (�) denotes the set of all points x ∈ X with the following property: for any
0 < δ′ < δ and T > 1, there exists a (δ′, T )-chain from x to x such that 〈ξ, z〉 = 0 for any
homology class z ∈ H1(X; Z) associated with this chain.

Roughly, the set Rξ can be characterized as the part of the chain recurrent set of the
flow in which the cohomology class ξ does not detect the motion.

It is easy to see that Rξ is closed and invariant with respect to the flow.
Note also that Rξ = Rξ ′ whenever ξ ′ = λξ , with λ ∈ R, λ �= 0. Thus, Rξ depends only

on the line through ξ in the real vector space Ȟ 1(X; R).
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FIGURE 3. The flow on the planar ring Y .

Any fixed point of the flow belongs to Rξ . The points of a periodic orbit belong to Rξ
if the homology class z ∈ H1(X; Z) of this orbit satisfies 〈ξ, z〉 = 0.

Example. It may happen that the points of a periodic orbit belong toRξ although 〈ξ, z〉 �= 0
for the homology class z of the orbit. This possibility is illustrated by the following
example.

Consider the flow on the planar ring Y ⊂ C shown on Figure 3. In polar coordinates
(r, φ), the ring Y is given by the inequalities 1 ≤ r ≤ 3 and the flow is given by the
differential equations

ṙ = (r − 1)2(r − 3)2(r − 5)2, φ̇ = sin
(
r · π

2

)
.

LetCk , where k = 1, 2, 3, denote the circle r = 2k−1. The circlesC1, C2, C3 are invariant
under the flow. The motion along the circles C1 and C3 has constant angular velocity 1.
Identifying any point (r, φ) ∈ C1 with (5r, φ) ∈ C3, we obtain a torus X = Y/� and a
flow � : X × R → X. The images of the circles C1, C2, C3 ⊂ Y represent two circles
C′

1 = C′
3 and C′

2 on the torus X.
Let ξ ∈ H 1(X; R) be a non-zero cohomology class which is the pullback of a

cohomology class of Y . One verifies that, in this example, the set Rξ (�) coincides with the
whole torusX. In particular,Rξ (�) contains the periodic orbits C′

1 = C′
3 and C′

2 although
clearly 〈ξ, [C′

k]〉 �= 0.

3.2. Rξ and dynamics in the free Abelian cover. Now we will give a different
characterization ofRξ using the dynamics in the covering space associated with the class ξ .
We will use Chapter 2 in [14] as a reference for notions related to the theory of covering
spaces.

Recall our standing assumption thatX is a locally path-connected compact metric space.
For simplicity of exposition, we will additionally assume that X is connected.

Any Čech cohomology class ξ ∈ Ȟ 1(X; R) determines a homomorphism

hξ : π1(X, x0) → R, hξ ([α]) = 〈ξ, [α]〉 =
∫
α

ω ∈ R, (3.2)
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where α : [0, 1] → X is a continuous loop α(0) = α(1) = x0, [α] ∈ π1(X, x0) denotes its
homotopy class and ω is a continuous closed 1-form in the class ξ . The map hξ is called
homomorphism of periods.

The kernel of hξ is a normal subgroupH = Ker(hξ ) ⊂ π1(X, x0). We want to construct
a covering projection map pξ : X̃ξ → X, corresponding to H , i.e. (pξ )#π1(X̃ξ , x̃0) = H .
The uniqueness of such a covering projection map follows from [14, ch. 2, Corollary 3].
To show the existence, we may use [14, ch. 2, Theorem 13]; according to this theorem
(see also Lemma 11 in [14, ch. 2]) we have to show that, for some open cover U of X, the
subgroup π1(U, x0) ⊂ π1(X, x0) is contained in H . Here π1(U, x0) ⊂ π1(X, x0) denotes
the subgroup generated by homotopy classes of the loops of the form α = (γ ∗ γ ′) ∗ γ−1

where γ ′ is a closed loop lying in some element of U and γ is a path from x0 to γ ′(0).
To show that this condition really holds in our situation, let us realize ξ by a closed 1-form
ω = {fU }U∈U , U being an open cover of X. We claim that π1(U, x0) ⊂ H for this
cover U . Indeed, for any loop of the form α = (γ ∗ γ ′) ∗ γ−1 where γ ′ lies in some
U ∈ U ,

〈ξ, [α]〉 =
∫
α

ω =
∫
γ ′
ω = 0,

since γ ′ lies in U and ξ |U = 0. Thus, any Čech cohomology class ξ ∈ Ȟ 1(X; R) uniquely
determines a covering projection map p : X̃ξ → X with connected total space X̃ξ , such
that (pξ )#π1(X̃ξ , x̃0) = Ker(hξ ).

LEMMA 3. Let X be a connected and locally path-connected compact metric space and
let ξ ∈ Ȟ 1(X; R) be a Čech cohomology class. The group of covering transformations of
the covering map X̃ξ → X is a finitely generated free Abelian group.

Proof. The group of covering transformations of X̃ξ → X can be identified with
π1(X, x0)/H , which is isomorphic to the image of the homomorphism of periods
hξ (π1(X, x0)) ⊂ R. It is a subgroup of R and, hence, Abelian and it has no
torsion. Therefore, it is enough to show that the image of the homomorphism of periods
hξ (π1(X, x0)) ⊂ R is finitely generated.

Let ω = {fU }U∈U be a continuous closed 1-form with respect to an open cover U
representing ξ . Find an open cover V of X and a function κ : V → U such that, for any
V ∈ V , the set U = κ(V ) ∈ U satisfies V̄ ⊂ U . We may realize ω with respect to the
open cover V as ω = {gV }V∈V , where gV = fU |V for U = κ(V ). The path-connected
components of open subsets of X are open (since X is locally path connected) and, hence,
the family of path-connected components of the sets V ∈ V form an open cover of X.
Using compactness, we may pass to a finite subcover; therefore, without loss of generality,
we may assume that V is finite and the sets V ∈ V are path connected.

For any V1, V2 ∈ V , the function gV1 −gV2 : V1∩V2 → R is locally constant. We claim
that the set SV1V2 ⊂ R of real numbers gV1(x) − gV2(x) ∈ R, where x varies in V1 ∩ V2,
is finite. Assume the contrary, i.e. there exists an infinite sequence xn ∈ V1 ∩ V2, where
n = 1, 2, . . . , such that

gV1(xn)− gV2(xn) �= gV1(xm)− gV2(xm) for n �= m. (3.3)
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By compactness we may assume that xn converges to a point x∞ ∈ X. Denote U1 =
κ(V1), U2 = κ(V2), where U1, U2 ∈ U . Then x∞ belongs to U1 ∩ U2 and, thus,
xn ∈ U1 ∩ U2 for all large n. Let W ⊂ U1 ∩ U2 denote the path-connected component
of x∞ in U1 ∩ U2. Since W is open and contains x∞, it follows that xn belongs to W for
all large enough n. The function fU1(x)− fU2(x), where x ∈ U1 ∩ U2, is continuous and
locally constant; hence, it is constant for x ∈ W . We obtain that

fU1(xn)− fU2(xn) = fU1(xm)− fU2(xm)

for all large enough n and m. But this contradicts (3.3) since fUi |Vi = gVi and, therefore,
fUi (xn) = gVi (xn) for i = 1, 2 and all n.

The union
S =

⋃
V1,V2∈V

SV1V2

of all subsets SV1V2 is a finite subset of the real line. We will show now that the subgroup of
R generated by S contains the group of periods hξ (π1(X, x0)). Let γ : [0, 1] → X be an
arbitrary loop, γ (0) = γ (1) = x0. We may find division points t0 = 0 < t1 < t2 < · · · <
tN = 1 and open sets V1, . . . VN ∈ V such that γ ([ti−1, ti ]) ⊂ Vi for i = 1, 2, . . . , N .
Then γ (ti ) ∈ Vi ∩ Vi+1 for i = 1, 2, . . . , N , where we understand that VN+1 = V1.
According to the definition of the line integral (see (2.2)), we have

hξ ([γ ]) = 〈ξ, [γ ]〉 =
∫
γ

ω

=
N∑
i=1

[gVi (γ (ti))− gVi (γ (ti−1))]

=
N∑
i=1

[gVi (γ (ti))− gVi+1(γ (ti))],

which shows that any period hξ ([γ ]) ∈ R lies in the subgroup generated by the finite set
S ⊂ R. This implies that the group of periods is finitely generated and completes the proof
of the lemma. �

LEMMA 4. Assume thatX is connected and locally path connected. Let ω be a continuous
closed 1-form on X. Consider the covering map pξ : X̃ξ → X determined by the Čech
cohomology class ξ = [ω] ∈ Ȟ 1(X; R) of ω. Then p∗

ξ (ω) = dF, where F : X̃ξ → R is a
continuous function.

Proof. Note that the integral
∫
γ
ω̃ = 0 vanishes for any closed loop γ in X̃ξ , where ω̃

denotes p∗
ξ (ω), by the construction of the covering X̃ξ . Define

F(x̃) =
∫ x̃

x̃0

ω̃, x̃ ∈ X̃ξ ,

where x̃0 ∈ X̃ξ is a base point and the integration is taken along an arbitrary path in X̃ξ
connecting x̃0 with x̃. It is easy to see that F(x̃) is independent of the choice of the path,
F is continuous and dF = p∗

ξ (ω). �
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The covering X̃ξ is now used to characterize the chain recurrent set Rξ as follows.

PROPOSITION 3. LetX be a connected and locally path-connected compact metric space.
Given a continuous flow� : X×R → X and a cohomology class ξ ∈ Ȟ 1(X; R), consider
the free Abelian covering pξ : X̃ξ → X associated with ξ (see earlier) and the canonical
lift �̃ : X̃ξ × R → X̃ξ of the flow� to X̃ξ . Fix a metric d̃ on X̃ξ , which is invariant under
the group of covering translations and such that the projection pξ is a local isometry.
Then the chain recurrent set Rξ = Rξ (�) ⊂ X coincides with pξ (R(�̃)), the image of the
chain recurrent set R(�̃) ⊂ X̃ξ of the lifted flow under the projection.

Proof. Let ε0 > 0 be such that, for any ball B̃ ⊂ X̃ξ of radius ε0 (with respect to the metric
d̃), the following holds:
(1) gB̃ ∩ B̃ = ∅ for any element g �= 1 of the group of covering translations of X̃ξ ; and
(2) the projection pξ restricted to B̃ is an isometry.

We may satisfy (1) since the group of covering transformations of the covering X̃ξ acts
properly discontinuously (see [14, p. 87]). Note that ξ |B = 0, where B = pξ (B̃).

Let δ0 = δ(ε0) > 0 be the number given by Lemma 2. Then the pair (ε0, δ0) is a scale
of ξ in the sense of Definition 3.

Suppose that a point x̃ ∈ X̃ξ belongs to the chain recurrent set R(�̃). Then, for any
δ > 0 and T > 0, there exists a (δ, T )-chain of the form x̃0 = x̃, x̃1, . . . , x̃N−1, x̃N = x̃,
t1, . . . , tN ∈ R, such that d̃(x̃i−1 · ti , x̃i) < δ and ti ≥ T for all i = 1, 2, . . . , N . We will
assume here that δ < δ0. Projecting downstairs, we find a sequence

x0 = x = pξ (x̃), x1, . . . , xN = pξ (x̃) = x ∈ X,
with xi = pξ (x̃i) satisfying d(xi−1 · ti , xi) < δ for i = 1, 2, . . . , N . This sequence forms
a (δ, T )-chain in X which starts and ends at x. For any homology class z ∈ H1(X; Z)

associated with this chain, one has 〈ξ, z〉 = 0 since we can find a loop representing this
class admitting a lift to the covering X̃ξ . This shows that pξ (R(�̃)) is contained in Rξ .

To prove the inverse inclusion, assume that x̃ ∈ X̃ is such that the point x = pξ (x̃) ∈ X
belongs to Rξ . Hence, for any δ > 0 and T > 1, we can find a (δ, T )-chain x0 =
x, x1, . . . , xN = x, ti ∈ R, such that d(xi−1 · ti , xi) < δ, ti ≥ T and, for any associated
homology class z ∈ H1(X; Z), one has 〈ξ, z〉 = 0. We will assume that δ < δ0, where δ0 is
given as before. Choose continuous curves σi : [0, 1] → X such that σi(0) = xi−1 · ti and
σi(1) = xi for i = 1, 2, . . . , N and the image σi([0, 1]) is contained in a ball of radius ε0.
The concatenation of the parts of trajectories from xi−1 to xi−1 · ti and the paths σi , where
i = 1, 2, . . . , N , forms a closed loop γ , which starts and ends at x. This loop lifts to a
closed loop in the cover X̃ξ which starts and ends at x̃ since the homology class z = [γ ]
of the loop satisfies 〈ξ, z〉 = 0. The lift γ̃ of γ is a concatenation of parts of trajectories
of the lifted flow �̃ and the lifts σ̃i of the paths σi , where i = 1, . . . , N . We obtain points
x̃i ∈ X̃ξ , where i = 0, 1, . . . , N , such that pξ (x̃i) = xi and x̃0 = x̃ = x̃N . Besides, we
have σ̃i (0) = x̃i−1 · ti , σ̃i (1) = x̃i for i = 1, 2, . . . , N . Since each σi lies in a ball of radius
ε0 in X, it follows from our assumption (1) that each path σ̃i lies in a ball B̃ ⊂ X̃ξ ; from
assumption (2) we find that d̃(x̃i−1 · ti , x̃i) < δ for all i = 1, . . . , N . Thus, we have found
a (δ, T )-chain in X̃ξ starting and ending at x̃. This proves that pξ−1(Rξ ) ⊂ R(�̃), which
is equivalent to Rξ ⊂ pξ (R(�̃)). �
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4. Proof of Theorem 2
In this section we will prove our main Theorem 2. The proof consists of two parts: the
necessary conditions (easy) and the sufficient conditions (more difficult).

4.1. Necessary conditions. If ω is a Lyapunov 1-form for (X,Rξ ), then, by Definition 1,
ω|U = df where f is a continuous function defined on an open neighbourhood U ⊃ Rξ .
Hence, the restriction of ξ on Rξ vanishes, ξ |Rξ = 0, where ξ ∈ Ȟ 1(X; R) denotes the
cohomology class of ω. Thus, condition (A) in Theorem 2 is necessary. The following
proposition implies that condition (B) of Theorem 2 is satisfied for any flow admitting a
Lyapunov 1-form for (�,Rξ ) and having the property that the set Cξ = Cξ (�) is closed.

PROPOSITION 4. Let � : X × R → X be a continuous flow on a compact, locally path-
connected, metric spaceX. Let ω be a Lyapunov 1-form for (�, Y ), see Definition 1, where
Y ⊂ X is a closed flow-invariant subset. Let C ⊂ X be a closed, flow-invariant subset
such that Y ∩ C = ∅. Then there exist numbers δ > 0 and T > 1, such that any homology
class z ∈ H1(X; Z) associated with any (δ, T )-cycle (x, t) with x ∈ C, satisfies

〈ξ, z〉 ≤ −1.

Here ξ = [ω] ∈ Ȟ 1(X; R) denotes the cohomology class of ω.

Proof. As Y ∩C = ∅, it follows that on C the function x �→ ∫ x·1
x ω < 0 is continuous and

negative. Since C is compact, there exists a positive constant c > 0, such that∫ x·1

x

ω < −c for all x ∈ C. (4.1)

Let (ε, δ) be a scale of the cohomology class ξ ∈ Ȟ 1(X; R), see Definition 3. Let η > 0
be such that, for any continuous curve σ : [0, 1] → X lying in a ball B ⊂ X of radius ε,
one has

∣∣∫
σ
ω

∣∣ < η. We define

T = [(1 + η)/c] + 2, (4.2)

where [a] denotes the integer part of a number a. Unlike δ, the number T not only depends
on the class ξ but on the chosen representative ω. We will show that δ > 0 and T > 1
satisfy our requirements. Indeed, let (x, t) be a (δ, T )-cycle with x ∈ C and let γ be a
closed loop in X, obtained by first following the trajectory x · τ , where τ ∈ [0, t], and
then returning from the endpoint x · t to x along a short path σ lying in a ball of radius ε.
Then we have

〈ξ, [γ ]〉 =
∫
γ

ω =
∫ x·t

x

ω +
∫
σ

ω.

For the second integral, we have
∫
σ ω < η by construction. Since t ≥ T and T is an

integer, we can estimate the first integral as∫ x·t

x

ω =
T∑
i=1

∫ x·i

x·(i−1)
ω +

∫ x·t

x·T
ω < −T c,

where we have used T multiplied by the inequality (4.1) and the estimate
∫ x·t
x·T ω < 0.

By our choice of T , we have T c > 1 + η (cf. (4.2)) and so we see that 〈ξ, z〉 < −1 for any
homology class z ∈ H1(X; Z) associated with any (δ, T )-cycle in C. �
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4.2. Constructing a Lyapunov 1-form: the first step. In the remainder of this section,
we prove the existence claim of Theorem 2. The proof is split into several lemmas. In a
first step, we construct a Lyapunov 1-form for the flow restricted to Cξ ; later on, we will
extend the obtained closed 1-form to a Lyapunov 1-form defined on the whole space X.

We start with the following combinatorial lemma.

LEMMA 5. Any non-empty word w of arbitrary (finite) length in an alphabet consisting of
L letters can be written as a product (concatenation)

w = w1w2 · · ·wl
of l ≤ L non-empty words, such that in each word wi , the first and last letters coincide.

Proof. We will use induction on L. For L = 1, our claim is trivial. We are left to prove
the claim of the lemma assuming that it is true for words in any alphabet consisting of less
than L letters. Consider a word w in an alphabet with L letters. Let a be the first letter
of w. Finding the last appearance of a in w, we may write w = w1w

′, wherew1 starts and
ends with a and w′ does not include a. We may now apply the induction hypothesis to w′,
which allows us to write w′ = w2w3 · · ·wl , where l ≤ L and in each wi the first and the
last letters coincide. This clearly implies the lemma. �

Let ω be an arbitrary, continuous closed 1-form on X representing a cohomology class
ξ ∈ Ȟ 1(X; R). Our final goal will be to modify ω so that at the end we obtain a Lyapunov
1-form for (�,Rξ ).

LEMMA 6. Under assumption (B) of Theorem 2, there exist µ > 0 and ν > 0 such that,
for any x ∈ Cξ and t ≥ 0, we have∫ x·t

x

ω ≤ −µt + ν, (4.3)

where the integral is calculated along the trajectory of the flow. In particular,

lim
t→+∞

∫ x·t

x

ω = −∞

and the convergence is uniform with respect to x ∈ Cξ .

Proof. Let ε > 0 be such that, for any ball B ⊂ X of radius ε, one has ξ |B = 0
(see Definition 3) and for any continuous curve σ : [0, 1] → B holds

∣∣∫
σ
ω

∣∣ < 1
2 . Let δ > 0

be such that condition (B) of Theorem 2 holds for some T > 1 and, additionally, for any
points x, y ∈ X with d(x, y) < δ, there is a continuous path σ connecting x and y and
lying in a ball of radius ε. By (B), ∫ x·t

x

ω < −1

2
, (4.4)

whenever x ∈ Cξ , t ≥ T and d(x, x · t) < δ.
Using the compactness of X, we find a constant M > 0 such that, for any point x ∈ X

and any time 0 ≤ t ≤ T , ∣∣∣∣
∫ x·t

x

ω

∣∣∣∣ < M. (4.5)
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Next we choose points y1, y2, . . . , yk in X, such that the open balls of radius δ/2 with
centres at these points coverX. Hence, for any x ∈ X, there exists an index i ∈ {1, . . . , k},
such that d(x, yi) < δ/2.

Given x ∈ Cξ and t ≥ 0, we consider the sequence of points

xj = x · (jT ) ∈ Cξ , j = 0, 1, . . . , N where N =
[
t

T

]
.

As previously explained, for any j = 0, . . . , N , there exists an index 1 ≤ ij ≤ k, such that

d(xj , yij ) <
δ

2
. (4.6)

Thus, any point x ∈ Cξ determines a sequence of indices

i0, i1, . . . , iN ∈ {1, 2, . . . , k}, (4.7)

which, to a certain extent, encode the trajectory starting at x. If it happens that in the
sequence (4.7) one has, for some r < s, ir = is , then the part of the trajectory between
xr = x · (rT ) and xs = x · (sT ) is a (δ, T )-cycle (in view of (4.6)) and by (4.4)∫ xs

xr

ω < −1

2
. (4.8)

Let 1 ≤ m ≤ k be an index which appears in the sequence (4.7) most often. Clearly, it
must appear at least [(N + 1)/k] times. Let α be the smallest number with iα = m and β
the largest number with iβ = m, so that 0 ≤ α < β ≤ N . Then, using (4.8), we have∫ xβ

xα

ω ≤ −N + 1 − k

2k
. (4.9)

To complete the argument, we need to estimate the remaining integrals
∫ xα
x
ω

(corresponding to the beginning of the trajectory) and
∫ x·t
xβ
ω (corresponding to the end

of the trajectory).
View the sequence i0, i1, . . . , iα as a word w in the alphabet {1, 2, . . . , k} and apply

Lemma 5. As a result, we may split the sequence w = i0, i1, . . . , iα into l ≤ k

subsequences w1, w2, . . . , wl , each beginning and ending with the same symbol. If wj =
ir , ir+1, . . . , is is one of the subsequences, where r ≤ s, then ir = is and using (4.8) we
find

∫ xs
xr
ω ≤ 0. In other words, the integral corresponding to each subsequence wj is

non-positive (in fact, it is less than − 1
2 if the subsequencewj has more than one symbol).

Now we want to estimate the contribution of the integrals corresponding to the word
breaks in w = w1w2 · · ·wl . If wj ends with the symbol is and the following subsequence
wl+1 starts with is+1, then we have

∫ xs+1
xs

ω ≤ M (see (4.5)). Thus, any word break
contributes, at most, M to the integral.

The integral
∫ xα
x
ω is the sum of the contributions corresponding to the wordswj (which

are all non-positive) and contributions of the word breaks (each is, at most,M). Since there
are l − 1 ≤ k − 1 word breaks, we obtain∫ xα

x

ω ≤ (l − 1)M ≤ (k − 1)M. (4.10)
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Similarly,
∫ xN
xβ
ω ≤ (k − 1)M. For the remaining integral, we have

∫ x·t
xN
ω < M , which

again follows from (4.5), since t −NT < T .
Summing up, we finally obtain the estimate∫ x·t

x

ω < (k − 1)M − N + 1 − k

2k
+ (k − 1)M +M. (4.11)

Hence, (4.3) holds true with the constants

µ = 1

2kT
and ν = (2k − 1)M + 1

2
. �

LEMMA 7. Conditions (A) and (B) of Theorem 2 imply that the set Cξ = R−Rξ is closed.

Proof. Since ξ |Rξ = 0, we conclude that, for any continuous closed 1-formω in the class ξ ,
the restrictionω|Rξ is the differential of a function and, hence, there exists a constantC > 0
such that, for any x ∈ Rξ and any t > 0,∣∣∣∣

∫ x·t

x

ω

∣∣∣∣ < C. (4.12)

Assume that the set Cξ is not closed, i.e. there exists a sequence of points xn ∈ Cξ

converging to a point x0 ∈ Rξ . By Lemma 6,
∫ xn·t
xn

ω < −µt + ν. Taking t = t0 =
(ν + 2C)/µ, we obtain ∫ xn·t0

xn

ω < −2C (4.13)

for any n = 1, 2, . . . . Passing to the limit with respect to n we find
∫ x0·t0
x0

ω ≤ −2C,
contradicting the estimate (4.12). �

LEMMA 8. Let ω be a continuous closed 1-form on X realizing a class ξ ∈ Ȟ 1(X; R).
Assume that conditions (A) and (B) of Theorem 2 hold. Let f : Cξ → R be the function
defined by

f (x) := sup
t≥0

∫ x·t

x

ω. (4.14)

Then:
(i) f is well defined and continuous;
(ii) ω1 = ω|Cξ + df is a continuous closed 1-form on Cξ representing the cohomology

class ξ |Cξ ;
(iii) for any x ∈ Cξ and for any t > 0, ∫ x·t

x

ω1 ≤ 0, (4.15)

i.e. ω1 is a Lyapunov 1-form for the restricted flow�|Cξ in a weak sense;
(iv) there exists a number T > 1, such that, for any x ∈ Cξ and any t ≥ T ,∫ x·t

x

ω1 ≤ −1. (4.16)
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Proof. Let t0 > 0 be the time such that −µt0 + ν = 0 with µ > 0 and ν > 0 as in
Lemma 6. Then the supremum in (4.14) is achieved for t ∈ [0, t0] and, hence, we may
write

f (x) = max
0≤t≤t0

∫ x·t

x

ω.

The continuity of f now follows from the uniform continuity of the integral with respect
to (x, t) ∈ Cξ × [0, t0].

Claim (ii) follows from (i). To prove (iii), we find that∫ x·t

x

ω1 =
∫ x·t

x

(ω + df ) =
∫ x·t

x

ω + [f (x · t)− f (x)]

=
∫ x·t

x

ω + sup
τ≥0

∫ x·(t+τ )

x·t
ω − sup

τ≥0

∫ x·τ

x

ω

= sup
τ≥t

∫ x·τ

x

ω − sup
τ≥0

∫ x·τ

x

ω ≤ 0.

We next prove (iv). Let M denote the maximal value of the continuous function
f : Cξ → R and m its minimal value. We apply Lemma 6 and obtain∫ x·t

x

ω1 =
∫ x·t

x

ω + [f (x · t)− f (x)] ≤ −µt + ν + (M −m).

Hence, choosing T such that −µT + ν = −2 − (M −m), claim (iv) follows. �

4.3. Second step: smoothing. In this section, we describe a procedure for smoothing a
continuous closed 1-form along the flow, which will be used in the proof of Theorem 2. It is
a modification of a well-known method for continuous functions, see, for example, [11].
We use this construction to smooth the closed 1-form ω1 which is constructed in the proof
of Lemma 8.

A function f : X → R is said to be differentiable along a continuous flow
� : X × R → X if the derivative (d/dt)f (x · t)|t=0 exists for any x ∈ X. More generally,
a continuous closed 1-form ω on X is said to be differentiable with respect to the flow� if
the derivative

ω̇(x) := d

dt

( ∫ x·t

x

ω

)∣∣∣∣
t=0

(4.17)

exists for any x ∈ X. In this case, ω̇ : X → R is a function on X, which we call
the derivative of ω with respect to the flow �. If ω is represented as ω = {ϕU }U∈U
with respect to an open cover U of X, then, for x ∈ U and t sufficiently small, we have∫ x·t
x
ω = ϕU(x · t) − ϕU(x) and we see that a continuous closed 1-form is differentiable

with respect to the flow � if and only if the local defining functions ϕU are.

LEMMA 9. Assume that conditions (A), (B) of Theorem 2 hold. Then, there exists a
continuous closed 1-form ω2 on X in class ξ ∈ Ȟ 1(X; R) with the following properties:
(1) ω2 is differentiable with respect to the flow�;
(2) the derivative ω̇2 : X → R is a continuous function;
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(3) for some σ > 0, one has ω̇2(x) ≤ −σ for all x ∈ Cξ ;
(4) ω2|U = 0 for some open neighbourhoodU ⊂ X of Rξ .
In particular, ω2|Cξ is a Lyapunov 1-form for the flow�|Cξ .
Proof. Using assumptions (A), (B) and Lemma 7, we find a closed neighbourhoodV ⊂ X

of Rξ , such that ξ |V = 0 and V ∩Cξ = ∅. Here we use the continuity property of the Čech
cohomology theory, see [3, ch. 10, Theorem 3.1].

Let ω1 be the closed 1-form on Cξ given by Lemma 8. Using Tietze’s extension
theorem (see Proposition 2), we may find a closed 1-form�1 on X, such that�1|Cξ = ω1,

�1|V = 0, and [�1] = ξ ∈ Ȟ 1(X; R).
Consider the covering map pξ : X̃ξ → X corresponding to the Čech cohomology

class ξ , see §3.2. By Lemma 4, we have p∗
ξ (�1) = dF1, where F1 : X̃ξ → R is a

continuous function. Let C̃ξ denote the preimage p−1
ξ (Cξ ). Then, for any point x ∈ C̃ξ

and t ≥ 0, F1(x · t) ≤ F1(x), by Lemma 8(iii). Moreover, statement (iv) of Lemma 8
implies that there exists T > 0, such that

F1(x · t)− F1(x) ≤ −1, for x ∈ C̃ξ , t ≥ T . (4.18)

Let � : R → [0,∞) be a C∞-smooth function with the following properties:
(a) the support of � is contained in the interval [−T − 1, T + 1];
(b) �|[−T ,T ] = constant = σ > 0;
(c) �(−t) = �(t);
(d) �′(t) ≥ 0 for t ≤ 0;
(e)

∫
R
�(t) dt = 1.

Using �, we define F2 : X̃ξ → R by F2(x) = ∫
R
F1(x · t)�(t) dt . It is clear that F2 is

continuous. Since F2(x · s) = ∫
R
F1(x · t)�(t − s) dt , we see that F2 is differentiable with

respect to the flow on X̃ξ . If x ∈ C̃ξ , we find, using (4.18) and the properties of �, that

dF2(x · s)
ds

∣∣∣∣
s=0

= −
∫ T+1

−T−1
F1(x · t)�′(t) dt

=
∫ −T

−T−1
[F1(x · (−t))− F1(x · t)] · �′(t) dt

≤ −
∫ −T

−T−1
�′(t) dt = −σ. (4.19)

Let G denote the group of covering transformations of the covering X̃ξ . Using the
homomorphism of periods (3.2), one sees that the class ξ determines a monomorphism
α : G → R, such that, for any x ∈ X̃ξ and any g ∈ G, we have

F1(gx)− F1(x) = α(g). (4.20)

Since (gx) · t = g(x · t), we find F1((gx) · t) = F1(g(x · t)) = F1(x · t) + α(g) and
multiplying by �(t) and integrating gives

F2(gx)− F2(x) = α(g) (4.21)

for any x ∈ X̃ξ and g ∈ G. Formula (4.21) states that the action of the covering
translations changes F2 by adding a constant and, therefore, F2 determines a continuous
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closed 1-form on X. More precisely, dF2 = p∗
ξ (ω2) for some continuous closed 1-form

ω2 on X. Since F2 is differentiable with respect to the flow on X̃ξ and the derivative
(d/ds)F2(x · s) is continuous (see (4.19)), the derivative ω̇2 : X → R is a well-defined,
continuous function. Clearly, as �1 vanishes on V , the form ω2 vanishes on the open set
U ⊂ X of points x ∈ X with x · [−T − 1, T + 1] ⊂ intV . Since Rξ ⊂ U , this proves (iv).

Comparing (4.20) and (4.21), we find that the function F1 − F2 : X̃ξ → R is invariant
under the covering translations. Hence, F1 − F2 = f ◦ pξ , where f : X → R is a
continuous function. Therefore, �1 − ω2 = df , i.e. ω2 lies in the cohomology class ξ .
We know that ω2 is differentiable with respect to the flow and ω̇2 ≤ −σ < 0 on Cξ . �

4.4. Third step: extension. Now we complete the proof of the existence claim of
Theorem 2.

Let L : X → R be a Lyapunov function for (�,R). Such a function exists according
to Theorem 1 of Conley [2]. We apply the smoothing procedure from the previous section
to L. Namely, let ρ : R → [0,∞) be a C∞-smooth function such that supp(ρ) = [−1, 1],∫
R
ρ(t) dt = 1, ρ(−t) = ρ(t) and ρ′(t) > 0 for all t ∈ (−1, 0) and set

L1(x) =
∫
R

L(x · t)ρ(t) dt.

We find (precisely as in the previous section) that the derivative

L̇1(x) = d

ds
L1(x · s)|s=0

exists and is given by

L̇1(x) =
∫ 0

−1
[L(x · (−t))− L(x · t)]ρ′(t) dt. (4.22)

This identity implies that L̇1 : X → R is a continuous function and

L̇1(x) < 0 for any x ∈ X − R.

Let ω2 be the closed 1-form on X given by Lemma 9. We will set

ω3 = ω2 + λ(dL1), (4.23)

where λ > 0 and dL1 is the differential of the function L1 (see §2). In view of the
construction of ω2 and L1, for any λ, the form ω3 is a continuous closed 1-form on X
representing the cohomology class ξ and satisfies condition (L2) of Definition 1.

We now show that, for λ large enough, ω3 satisfies condition (L1) and, hence, it is
a Lyapunov 1-form for (�,Rξ ). Indeed, ω3 is differentiable along the flow and has the
derivative ω̇3 = ω̇2 + λL̇1. By Lemma 9, ω̇2 < 0 on Cξ . Hence, we may find an open
neighbourhoodW of Cξ , so that ω̇2 < 0 onW . By claim (iv) of Lemma 9, ω̇2 = 0 vanishes
on some open neighbourhood U of Rξ , whereas L̇1 < 0 on U − Rξ . Hence, we see that,
for any λ > 0, the inequality ω̇3 < 0 holds on W and on U − Rξ . Finally, we shall show
that ω̇3 < 0 on X − Rξ for λ > 0 sufficiently large.
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The function

x �→ − ω̇2(x)

L̇1(x)
, x ∈ X − (U ∪W) (4.24)

is well defined and continuous (recall that L̇1 < 0 on X − R). Since X − (U ∪ W) is
compact, the function (4.24) is bounded. Choose λ > 0 to be larger than the maximum of
(4.24). Then ω̇3(x) < 0 holds for all x ∈ X − Rξ , as desired.

This completes the proof of Theorem 2. �

These arguments prove the following, slightly stronger statement.

COROLLARY 4. Under assumptions (A) and (B) of Theorem 2, there exists a continuous
closed 1-form ω on X lying in the cohomology class [ω] = ξ ∈ Ȟ 1(X; R) which satisfies
condition (L2) and the following stronger version of condition (L1): ω is differentiable
with respect to the flow � (in the sense explained in §4.3), the derivative ω̇ : X → R is
continuous and ω̇ < 0 on X − Rξ .

5. Proof of Corollary 3
By Theorem 2, (i) implies (ii). Conversely, assume that there exists a Lyapunov 1-form ω

for (�,∅) representing the class ξ . Proposition 4 shows that condition (B) of Theorem 2
is satisfied. We are left to prove that Rξ = ∅. Consider the covering pξ : X̃ξ → X

corresponding to the class ξ (see §3.2). It is enough to show that the chain recurrent set
R(�̃) of the lifted flow �̃ in X̃ξ is empty (see Proposition 3). By Lemma 4, p∗

ξ (ω) = dF ,

where F : X̃ξ → R is a continuous function. By assumption (ii), F(x · t) < F(x) for all
x ∈ X̃ξ and t > 0. In particular, the function φ(x) = F(x · 1)− F(x), defined on x ∈ X̃ξ ,
is negative and invariant under the group of covering translations (see (4.20)); hence, it
equals ψ ◦ pξ , where ψ : X → R is a continuous function on X. By the compactness
of X, there exists σ > 0 such that φ(x) < −σ for all x ∈ X̃ξ . Choose a metric d on
X̃ξ , which is invariant under the group of covering translations. There exists δ > 0 such
that, for any x, y ∈ X̃ξ with d(x, y) < δ, one has |F(x) − F(y)| < σ/2. Now, assume
that the points x0 = x, x1, . . . , xN = x ∈ X̃ξ and the numbers t1, . . . , tN ∈ R represent a
(δ, T )-chain with T > 1 of the lifted flow �̃ in X̃ξ , i.e. ti ≥ T and d(xi−1 · ti , xi) < δ for
i = 1, . . . , N . Then, for any i = 1, 2, . . . , N , we have

F(xi−1 · ti)− F(xi−1) < −σ and F(xi)− F(xi−1 · ti) < σ/2,

which imply that F(xi) − F(xi−1) < −σ/2 and, hence, F(xN) − F(x0) < 0. The last
inequality contradicts x0 = x = xN . This proves that there are no closed (δ, T )-chains in
the covering X̃ξ .

Thus we have shown that (i) and (ii) are equivalent.
Now assume that (ii) holds and the class ξ is integral, i.e. ξ ∈ Ȟ 1(X; Z). As X

is locally path connected and compact, it has finitely many path-connected components.
Thus, without loss of generality, we may assume that X is path connected. Let ω be a
Lyapunov 1-form for (�,∅) satisfying the properties (iii) and (iv) of Corollary 4. Define a
map p : X → S1 ⊂ C by choosing a point x0 ∈ X and setting

p(x) = exp

[
2πi

∫ x

x0

ω

]
,
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where the line integral is taken along any path connecting x0 with x. Since ξ is integral,
the value p(x) ∈ S1 does not depend on the choice of the path. The function

t �→ arg(p(x · t)) = 2π
∫ x·t

x0

ω

is differentiable and the derivative
d

dt
arg(p(x · t)) < 0

is negative. The equality ξ = p∗(µ) is immediate from the definition of p.
It remains to prove that p defines a locally trivial fibration. Pick η ∈ R and let

Kη = p−1(exp(2πiη)) ⊂ X. For any x ∈ Kη, let fx : R → R be a continuous function
such that fx(0) = η and p(x ·t) = exp(2πifx(t)) for all t ∈ R. The function fx is uniquely
determined. It is differentiable and there exists ε > 0 such that, for all x ∈ Kη and t ∈ R,

d

dt
fx(t) < −ε.

Let gx = f−1
x be the inverse function. Define G : Kη × R → X by G(x, t) = x · gx(t).

ThenG is continuous and the diagram

Kη × R

e
����

��
��

��
�

G �� X

p
����

��
��

��

S1

(5.1)

commutes, where e(x, t) = exp(2πit). This proves that p is a locally trivial fibration and
that Kη is a cross section of the flow �. �

6. Proof of Proposition 1
Suppose that the set Cξ ⊂ R = R(�) is closed but condition (B) of Theorem 2 is violated.
Then, there exists a sequence of points xn ∈ Cξ and numbers tn > 0 such that the distances
d(xn, xn · tn) tend to 0 as tn → ∞ and

〈ξ, zn〉 > −1, (6.1)

where zn ∈ H1(X; Z) denotes the homology class obtained by ‘closing’ the trajectory
xn · t for t ∈ [0, tn]. Using the compactness of Cξ , we may additionally assume that xn
converges to a point x ∈ Cξ . Since we assume that the class ξ is integral, we may rewrite
(6.1) in the form 〈ξ, zn〉 ≥ 0. Thus, we obtain a closing sequence (xn, tn) such that for any
homology direction z̃ ∈ DX associated with it, 〈ξ, z̃〉 ≥ 0, i.e. the condition in Fried [9]
also fails to hold.

Conversely, we now show that the condition of Fried [9] holds assuming that condition
(B) of Theorem 2 is satisfied. Fix a norm ‖‖ on the vector space H1(X; R). As X is a
polyhedron, there exists δ > 0 so that for any δ/2-ball B in X the inclusion B → X is
null-homotopic. Furthermore, there exists a constant C > 0 such that, for any homology
class z ∈ H1(X; Z) associated with a (δ, T )-cycle (x, t) in X, one has

‖z‖ ≤ Ct. (6.2)
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Let ω be a continuous closed 1-form in the class ξ . By Lemma 6, there exist µ > 0 and
ν > 0 such that ∫ x·t

x

ω ≤ −µt + ν (6.3)

for all x ∈ Cξ and t > 0. Let η > 0 be such that
∣∣∫
γ
ω

∣∣ < η for any curve lying in a ball of
radius δ/2. Estimate (6.3) implies that

〈ξ, z〉 ≤ −µt + ν + η (6.4)

for any (δ, T ) cycle (x, t) with x ∈ Cξ , where z ∈ H1(X; Z) denotes the associated
homology class. Since 〈ξ, z〉 ≥ −c‖z‖, where c > 0, we obtain that the homology class z
of any (δ, T )-cycle (x, t) with x ∈ Cξ satisfies

‖z‖ ≥ µ

c
· t − ν + η

c
. (6.5)

Now, let (xn, tn) be a closing sequence (as defined in §1), where xn ∈ Cξ , such that xn
converges to a point x ∈ Cξ and tn → ∞. Let zn ∈ H1(X; Z) denote the homology
class determined by closing (xn, tn). Then (6.5) implies that ‖zn‖ → ∞. By (6.2),
−t ≤ −‖z‖/C which, when substituted into (6.4), leads to〈

ξ,
zn

‖zn‖
〉

≤ −µ
C

+ ν + η

‖zn‖ .

Therefore, we obtain for the homology direction zn/‖zn‖ ∈ DX of the class zn the estimate〈
ξ,

zn

‖zn‖
〉

≤ − µ

2C
< 0,

if n is large. This shows that Fried’s condition [9] is satisfied. �

7. Examples
Example 1. Here we describe a class of examples of flows � : X × R → X, for which
there exists a cohomology class ξ satisfying the conditions (A) and (B) of Theorem 2.

LetM be a closed smooth manifold with a smooth vector field v. Let� : M ×R → M

be the flow of v. Assume that the chain recurrent set R(�) is a union of two disjoint closed
sets R(�) = R1 ∪ R2, where R1 ∩ R2 = ∅. Out of these data, we will construct a flow �

on
X = M × S1

such that Rξ (�) = R1 × S0, Cξ = R2 × S1. Here ξ ∈ H 1(X; Z) denotes the cohomology
class induced by the projection onto the circle X → S1 and S0 ⊂ S1 is a two-point set.

Let θ ∈ [0, 2π] denote the angle coordinate on the circle S1. We will need two vector
fields w1 and w2 on S1, w1 = cos(θ) · ∂/∂θ and w2 = ∂/∂θ . The field w1 has two zeros
{p1, p2} = S0 ⊂ S1 corresponding to the angles θ = π/2 and θ = 3π/2.

Let fi : M → [0, 1], where i = 1, 2, be two smooth functions having disjoint supports
and satisfying f1|R1 = 1, f2|R2 = 1.

Consider the flow � : X × R → X determined by the vector field

V = v + f1w1 + f2w2.
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Any trajectory of V has the form (γ (t), θ(t)), where γ̇ (t) = v(γ (t)), i.e. γ (t) is a
trajectory of v. It follows that the chain recurrent set of V is contained in R(�) × S1.
OverR1 we have the vertical vector fieldw1 along the circle which has two points S0 ⊂ S1

as its chain recurrent set. Over R2 we have the vertical vector field w2 which has all of S1

as the chain recurrent set. We see that R1 × S0 = Rξ (�), R2 × S1 = Cξ . Hence, ξ |Rξ = 0
(and Cξ is closed). Clearly condition (B) of Theorem 2 is satisfied as well.

Example 2. Let X = T 2, thought of as R2/Z2 with coordinates x and y on R2.
Any cohomology class ξ ∈ H 1(T 2; R) can be written as ξ = µ[dx] + ν[dy], where
dx and dy are the standard coordinate 1-forms. We consider the flow of the following
vector field

V = f (x, y) ·
(
a
∂

∂x
+ b

∂

∂y

)
,

where b �= 0, a/b ∈ Q and f : T 2 → [0, 1] is a smooth function vanishing at a single
point p ∈ T 2. The chain recurrent set R is the whole torus, R = T 2, while

Rξ =
{
T 2 if µa + νb = 0,

f−1(0) = {p} otherwise.

Assuming, in addition, thatµa+νb �= 0, the setCξ = T 2−{p} is not closed. Nevertheless,
a Lyapunov 1-form in the class ξ �= 0 exists if and only if µa + νb < 0. In this case,
ω = µdx + ν dy is such a Lyapunov 1-form. This example shows that the existence of a
Lyapunov 1-form for (�,Rξ ) does not imply Cξ to be closed.

Example 3. Consider the standard irrational flow on the torus X = T 2, i.e. the flow of the
vector field V = a(∂/∂x) + b(∂/∂y), where b �= 0 and a/b /∈ Q. Choose a cohomology
class ξ = µ[dx] + ν[dy] ∈ H 1(X; R) such that µa + νb = 0. Then R = X and Rξ = ∅
but condition (B) of Theorem 2 is not satisfied and so there is no Lyapunov 1-form for
(�,Rξ ) in the class ξ .

This example shows that condition (B) is not a consequence of the fact thatCξ is closed.
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