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Abstract: Breast cancer is the most common cancer in women, responsible for over half a million
deaths in 2020. Almost 75% of FDA-approved drugs are mainly nitrogen- and sulfur-containing
heterocyclic compounds, implying the importance of such compounds in drug discovery. Among
heterocycles, thiazole-based heterocyclic compounds have demonstrated a broad range of phar-
macological activities. In the present study, a novel set of 1,3-thiazole derivatives was designed
and synthesized based on the coupling of acetophenone derivatives, and phenacyl bromide was
substituted as a key reaction step. The activity of synthesized compounds was screened against
the proliferation of two breast cancer cell lines (MCF-7 and MDA-MB-231). Almost all compounds
exhibited a considerable antiproliferative activity toward the breast cancer cells as compared to
staurosporine, with no significant cytotoxicity toward the epithelial cells. Among the synthesized
compounds, compound 4 exhibited the most potent antiproliferative activity, with an IC50 of 5.73 and
12.15 µM toward MCF-7 and MDA-MB-231 cells, respectively, compared to staurosporine (IC50 = 6.77
and 7.03 µM, respectively). Exploring the mechanistic insights responsible for the antiproliferative
activity of compound 4 revealed that compound 4 possesses a significant inhibitory activity toward
the vascular endothelial growth factor receptor-2 (VEGFR-2) with (IC50 = 0.093 µM) compared to
Sorafenib (IC50 = 0.059 µM). Further, compound 4 showed the ability to induce programmed cell
death by triggering apoptosis and necrosis in MCF-7 cells and to induce cell cycle arrest on MCF-7
cells at the G1 stage while decreasing the cellular population in the G2/M phase. Finally, detailed
in silico molecular docking studies affirmed that this class of compounds possesses a considerable
binding affinity toward VEGFR2 proteins. Overall, these results indicate that compound 4 could be a
promising lead compound for developing potent anti-breast cancer compounds.

Keywords: 1,3-thiazole; 2-hydrazinyl-1,3-thiazole; breast cancer; anticancer activity; antiproliferation;
VEGFR-2 kinase activity; apoptosis; cell cycle arrest; molecular docking
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1. Introduction

With more than 2.3 M diagnosed cases and 685 K deaths in 2020, breast cancer is
considered the most globally prevalent cancer (World Health Organization, WHO 2021).
Breast cancer treatment is mainly based on surgery followed by radiation therapy to the
lymph nodes and breast to reduce the probability of recurrence [1–5]. Additionally, several
conservative systematic therapies are based on anticancer drugs, including chemotherapy,
antibody (targeted biology) therapy, and hormone (endocrine) therapy. These drugs are
mainly used to minimize the possibility of metastasis. Nevertheless, most of the developed
alternative systematic therapies are not fully efficient against breast cancer. Further, side
effects might include osteoporosis, cardiovascular problems, and induced drug resistance.
Accordingly, there is an urgent demand for continuous progress in the discovery and
development of novel, safe, and effective lead compounds for long-term cancer therapy
with less side effects [6–9].

Heterocyclic compounds have been widely explored in natural products and medicinal
chemistry as biologically active scaffolds with significant pharmacological impacts [10–14].
Among heterocyclic compounds, thiazole-based heterocycles have demonstrated a wide
range of biological activities and are considered the most common class of heterocycles
frequently utilized in drug design and synthetic chemistry. 1,3-Thiazoles are a class of
five-membered aromatic heterocyclic rings that contain sulfur and nitrogen as heteroatoms.
They are found as constituents of animal cells and in the main scaffold of several natural
products including vitamins, alkaloids, and pigments [15]. They are also found as a part
of 18 clinically approved drugs (FDA-approved) including antitumor drugs (epothilone,
tiazofurin), anti-inflammatory drugs (meloxicam), antifungal drugs (isavuconazole), an-
tiparasitic drugs (thiabendazole, nitazoxanide), antigout drugs (febuxostat), antithrombotic
drugs (edoxaban), antiulcer drugs (nizatidine, famotidine), and antibacterial drugs (aztre-
onam, sulfathiazole, cefepime, and ceftriaxone) (Figure 1) [16–18]. The pharmacological
significance of the 1,3-thiazole-based compounds has attracted great attention to the design
and synthesis of several 1,3-thiazole derivatives with promising pharmacological potential
including antiviral, antibacterial, antidiabetic, antioxidant, anti-inflammatory, anticancer,
analgesic, antiprotozoal, and antifungal activities [15]. The facile chemical attainability and
the possibility of structural optimization make thiazole-based scaffolds the most interesting
heterocycles in synthetic medicinal chemistry [19].
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Among 1,3-thiazole analogues, 2-(2-hydrazinyl)-1,3-thiazoles demonstrated a broad
range of therapeutic applications, including antitumor, antiplasmodial, antiviral, and
antimicrobial activities (Figure 2) [20–23]. Accordingly, 2-(2-hydrazinyl)-1,3-thiazoles chem-
istry has attracted considerable attention from several researchers. Santana et al. reported
the antitumor activity of novel 2-(2-hydrazinyl)-1,3-thiazole derivatives and showed that
this class of compounds induces the cell cycle arrest at the G1 stage but also induces mito-
chondrial depolarization (Figure 2, 1d) [24]. The continuous efforts by the Lavrik group led
to the discovery of hydrazinothiazole derivatives of usnic acid with a nanomolar activity
range toward the tyrosyl-DNA phosphodiesterase 1 activity (Figure 2, 20d, 17b) [25,26].
Further, Chimenti et al. showed that the anticancer activity of a set of 2-(2-hydrazinyl)-1,3-
thiazole analogues attributed to their potent inhibitory activity toward histone acetylase
activity (Figure 2, CPTH2) [27]. In further studies by the same group, it was demonstrated
that this class of compounds exhibits antiproliferative activity in glioblastoma and neurob-
lastoma cells and inhibits p300 and GCN5p members of histone acetylase protein (Figure 2,
BF1) [28].
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The upregulation of several protein receptors has been reported in breast cancer, includ-
ing vesicular endothelial growth factor receptor-2 (VEGFR-2), progesterone, and estrogen
receptors. Therefore, targeting these receptors has been considered as a potential therapeutic
strategy for the development of anti-breast cancer agents [29–32]. The pharmacological inhi-
bition of VEGFR-2 significantly enhanced apoptosis in breast cancer cells and reduced their
proliferation [33,34]. Based on the above-mentioned facts and in continuation of our efforts in
synthesizing bioactive molecules [35–42], the presented study aims to design, synthesize, and
characterize a novel set of 1,3-thiazole analogues. The design of compounds was envisioned
to explore some novel structural features in the 2-hydrazinyl-1,3-thiazole scaffold that could
be beneficial for the anti-inflammatory activity of this class of compounds (Figure 3). We
screened the anti-proliferative activity of the synthesized compounds to different breast cancer
cell lines (MCF-7 and MDA-MB-231), and explored the mechanistic insights responsible for
the cytotoxic activity by assessing the cell cycle arrest, programmed cell death, and inhibitory
activity toward VEGFR-2 activity. Finally, we performed a detailed in silico molecular mod-
eling study to examine the binding affinity of this class of compounds toward the binding
cavity of the VEGFR-2 (PDB code: 2oh4).
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2. Results and Discussion
2.1. Chemistry

In the present study, a set of 4-substituted-2-hydrazineylthiazole derivatives was syn-
thesized following the synthetic approach outlined in Schemes 1 and 2. The key step of the
2-hydrazineylthiazole-ring construction relies on the reaction of the thiosemicarbazone to
the phenacyl bromide. As illustrated in Scheme 1, the synthesis starts with the condensation
of commercially available 4-hydroxybenzaldehyde, 4-bromo-acetophenone, and 2-hydroxy-
acetophenone (1a–c) with thiosemicarbazide in the presence of an acid catalyst under stan-
dard conditions to provide the corresponding thiosemicarbazone derivatives (2a–c) in good
yields [40,43–46]. The obtained thiosemicarbazone derivatives (2a–c) were subsequently cy-
clized with 4-substituted phenacyl bromide in the presence of fused sodium acetate under
reflux to successfully afford 4-substituted-2-hydrazineyl-1,3-thiazoles (3a–c) [23,47,48].
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To further investigate the structural features of the 2-hydrazineyl-1,3-thiazole scaf-
fold, compound 3b was selected and further derivatives were designed and synthe-
sized. As shown in Scheme 1, acetylation of compound 3b with acetic anhydride led
to the 1-(4-bromophenyl)-ethyl-amine group leaving to afford 2-[5-(4-chlorophenyl)-1,3-
thiazole-2-yl]-1-acetyl hydrazine (4). Further, the reaction of compound 3b with commer-
cially available aromatic aldehydes (namely 4-hydroxybenzaldehyde and 3-methoxy-4-
hydroxybenzaldehyde) in the presence of catalytic piperidine under reflux yielded the cor-
responding (E)-2-substituted-4-[(2-(1-(4-bromophenyl)-ethylidene]-1-[4-(4-chlorophenyl)-
thiazole-2-yl-hydrazinyl](hydroxymethy]-phenols (5a,b). In order to explore the role of the
2nd hydroxyl group and/or the phenolic group, compounds 5a,b were further acetylated
with acetic anhydride to afford the corresponding di-acetoxy derivatives (6a,b) (Scheme 2).
The structure of all synthesized compounds was characterized by different analytical tech-
niques, including melting point, IR, mass spectroscopy, 1H-NMR, and 13C-NMR analysis.

2.1.1. Investigation of the NMR Spectra of Synthesized 1,3-Thiazole Derivatives
4-[(2-(4-(4-Chlorophenyl) thiazol-4-yl) hydrazineylidene) methyl]phenol (3a)

The 1H-NMR spectrum of compound 3a exhibited douplet signals at δ 6.83–6.85,
7.46–7.48, 7.50–7.52, and 7.86–7.88 ppm due to the eight 8H of the aromatic ring. In
addition, the 1H-NMR spectrum displayed two singlet signals at δ 7.53 and 7.96, referring
to the H-4 of thiazole ring and azo methine (CHN) (Supplementary Figure S1a). The
13C-NMR spectrum showed three carbon signals at δ 169.01, 142.64, and 104.50, referring
to the C-2, C-4, and C-5 of thiazole ring; respectively. The carbon signals of C-O, C=N,
and C-CL were observed in the 13C NMR spectrum at δ 159.29, 149.64, and 134.06 ppm.
The 13C-NMR spectrum showed the carbon signals of the aromatic ring in the region at δ
132.34–116.21 ppm (Supplementary Figure S1b).
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2-(2-(1-(4-Bromophenyl)ethylidene)hydrazineyl)-4-(4-chlorophenyl)thiazole (3b)

From the current study, the 1H-, 13C-NMR spectra of compound 3b showed the
structure of this compound in thiazole–thiazolidine tautomers (Supplementary Figure S2d).
The 1H-NMR spectrum of compound 3b showed that the presented two characteristic
singlet signals at δ 7.42 and 11.38 ppm refer to the H-4 of the thiazole ring and NH-
group of compound 3b for the thiazole form. In addition, the 1H-NMR spectrum of
compound 3b exhibited two signals at δ 7.56–7.58 ppm as a douplet signal due to the H-4
of thiazole and singlet signal at δ 10.30 ppm assigned to the proton of the NH-group of
the thiazolidine form. Additionally, the 1H-NMR spectrum of compound 3b exhibited
four douplet signals at δ 7.47–7.49, 7.62–7.64, 7.72–7.74, and 7.89–7.91 ppm due to the
eight protons of two aromatic rings of the two isomers. Methyl protons were observed in
the 1H-NMR spectrum of compound 3b at δ 2.29 and 2.32 ppm to support the presence
of two isomers (Supplementary Figure S2a). The 13C-NMR spectrum of compound 3b
(Supplementary Figure S2b) supported the formation of two isomers of this compound, as
it showed the presence of six carbon signals at δ 179. 43, 170.25, 149.93, 147.07, and 14.34,
14.27 ppm due to the C-2 of thiazole, C=N, and CH3 groups of two isomers.

2-[1-(2-(4-(4-Bromophenyl)thiazol-2-yl)hydrazineylidene)ethyl]-phenol (3c)

The study of the 1H-NMR spectrum of compound 3c showed the presence of two E
and Z stereoisomers of the compound (Supplementary Figure S3d). The 1H-NMR spectrum
of compound 3c revealed the presence of two signals at δ 2.43 and 2.49 of the methyl
group of two isomers and the hydroxyl (OH), and amion (NH) groups were observed at δ
4.24–4.27 as broad singlet signals, as it formed the hydrogen bond. The aromatic protons of
compound 3c were observed at δ 6.90–6.95 (m.), 7.26–7.30 (t), 7.56–7.59 (d), 7.62–7.64 (d),
and 7.83–7.85 (d) due to the eight protons of the aromatic ring. The H-4 of the thiazole
ring appeared as a singlet signal at δ 7.43 ppm of two isomers, which was confirmed
from the calculation of the integration of hydrogen protons equal to 0.25–0.27 of each
proton (Supplementary Figure S3a). Additionally, the 13C-NMR spectrum of compound 3c
confirmed the presence of two stereoisomers (E and Z). The 13C-NMR spectrum showed
the carbon signals at δ 170.58, 170.24, 166.67, 162.80, 162.50, 159.06, 158.88, 149.27, 148.72,
and 147.94, referring to the carbons of thiazole, C-O, and C=N groups. In addition, the
13C-NMR spectrum of compound 3c (Supplementary Figure S3b) exhibited two carbon
signals at δ 14.63 and 14.50 ppm, referring to the methyl group of two isomers.

2-[5-(4-Chlorophenyl)-1,3-thiazol-2-yl]-1-acetylhydrazine (4)

The 1H-NMR spectrum of compound 4 (Supplementary Figure S4a) confirmed the
presence of the structure of compound 4 in E and Z isomers as shown in Supplementary
Figure S4d. The 1H-NMR spectrum of compound 4 showed two singlet signals at δ 11.14
and 2.16 ppm due to the protons of methyl (CH3) and NH groups. In addition, the aromatic
protons appeared at δ 7.49–7.51 and 7.92–7.94 ppm as douplet signals, while the H-4 of
the thiazole ring was observed at δ 7.83 ppm. From the calculation of integration, the
proton integral was found to be equal to 0.49–0.50. The 13C-NMR spectrum of compound
4 supported the presence of the E and Z isomers. The 13C-NMR spectrum showed two
carbon signals at δ 21.4 and 21.03 ppm, referring to the methyl (CH3) group in the two
isomers (E and Z isomers).

N-Substituted-1,3-thiazole Derivatives (6a and 6b)

The compounds 6a and 6b were obtained from compounds 5a and 5b via boiling with
acetic anhydride to confirm the structure of compounds 5a and 5b (Supplementary Figure S7a).
The 1H-NMR spectra of compounds 6a and 6b showed the structure of these compounds
in two stereoisomers (E and Z isomers) (Supplementary Figure S7d). The 1H-NMR spectra
of Compounds 6a and 6b revealed the presence of two methyl groups in three differ-
ent isomers, because it gave three singlet signals of each methyl group at δ 2.08–2.22,
δ 2.27–2.30, and δ 2.54–2.60 ppm. In the case of compound 6b, the protons of the methoxy
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group (OCH3) appeared at δ 3.74 and 3.82 of two isomers. In addition, the 1H-NMR spectra
of compounds 6a and 6b showed the different singlet doublet and multiplet signals in the
region at δ 6.91–7.95 ppm due to the protons of aromatic rings and H-4 of thiazole. The
integral calculation of the number of protons of aromatic and H-4 of thiazole confirmed the
structures in E and Z isomers. In addition, the 1H NMR spectra of compounds 6a and 6b
showed the absence of OH signals of a secondary alcohol, which appeared at δ5.71 in the
1H-NMR spectra of compounds 5a and 5b. Further, the 1H-NMR spectra of compounds
6a and 6b exhibited singlet signals at δ 11.07 and 11.05 ppm due to the proton of benzal
(Ar-CH(N)OCOH3), which could be attributed to the deshielding of the benzal proton in
compounds 6a and 6b more than the proton of benzal in compounds 5a and 5b.

2.1.2. Mass Spectrometry Studies

The mass spectral decomposition modes of the synthesized heterocyclic compounds
containing the 1,3-thiazole ring were investigated. The mass spectrum of thiazole deriva-
tives (3a, 3b and 3c) showed intense molecular ion peaks at m/z 329 (unstable), 405,
and 387, corresponding to the molecular formulas C16H12N3ClOS, C17H13BrN3ClS, and
C17H14BrN3ClS, respectively. The molecular ion peak of compound 3a at m/z 329
(Supplementary Figure S1c) underwent fragmentation to produce a peak at m/z 210
by losing 4-cyanophenol molecules. The loss of (S=C=N) and cyanoamine (NH2-CN) from
the ion m/z 210 resulted in the ions at m/z 152 and 168, respectively. The stable ion peak
at m/z 139 was observed by the loss of nitrogen atom from the ion at m/z 152. The stable
fragment ion was cleaved to give fragmentation at m/z 111 (Scheme 3).
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The molecular ion peak of compounds 3b, c (Scheme 4) underwent fragmentations to
produce a peak ion at m/z 210 for compound 3b and a stable ion peak at m/z 198 for the com-
pound 3c by losing (4-bromophenylethylidene)amino and (2-hydroxyphenylethylidene)
amino fragments, respectively. It further underwent the loss of NH2CN and sulfur atoms
to give peaks at m/z 168, 212, and 134, 182, respectively. The molecular ion of compounds
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3b and 4b (Supplementary Figures S2c and S3c) was also found to undergo fragmentation
to produce a stable peak at m/z 198 for compound 3b and m/z 134 for compound 3c. The
loss of methyl groups (CH3) from the ion peaks m/z 198 and m/z 134 afforded peaks at
m/z 181 and m/z 119, respectively (Supplementary Figure S7c).
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The molecular ion peak of compound 6a (unstable), underwent fragmentation to
produce a peak at m/z 407/405, corresponding to the molecular ion peak of compound 3b
by losing two molecules of ketene (2CH2=C=O) and 4-hydroxybenzaldehyde, respectively.
Meanwhile, in the case of compound 5a, the mass spectrum showed the molecular ion peak
of this compound was unstable. The loss of 4-hydroxybenzaldehyde from the molecular ion
peak of compound 5a (Supplementary Figure S5c) gave a peak at m/z 405, corresponding
to the molecular ion peak for the compound 3b. The fragmentation of m/z 407/405 was
further fragmented via a pathway similar to compound 3b (Scheme 5).
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The molecular ion peak at m/z 267 of 2-[5-(4-chlorophenyl)-1,3-thiazol-2-yl)-1-acetyl hy-
drazine (4) was broken to produce the stable ion peak at m/z 225 (Supplementary Figure S4c)
by the loss of the ketene molecule (CH2C=O). The loss of the ammonia molecule (NH3)
from the stable fragment ion m/z 225 gave the ion peak at m/z 208. The main fragmentation
of compound 4 is illustrated in Scheme 6.
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2.2. Assessment of Anti-Proliferative Activity against Breast Cancer

First, we screened the inhibitory activity of all synthesized compounds (3a–c, 4,
5a–b, and 6a–b) against the proliferation of the breast cancer cell lines MCF-7 and MDA-
MB-231. Toward this aim, the cells were treated with the synthesized compounds at
different concentrations and were incubated for 48 h. In our evaluations, staurosporine
(STU) was used as a reference drug. After the cells were washed, they were treated
with MTT solution, and an ELISA reader assessed the absorption of the solution at a
wavelength of 570 nm. As shown in Table 1, except for compound 6a, all compounds
demonstrated a considerable inhibitory activity toward the proliferation of MCF-7 and/or
MDA-MB-231 cells. The 2-benzylidenehydrazineyl)-1,3-thiazole 3a exhibited a moderate
cytotoxic activity (IC50 = 24.9 µM and 18.65 µM toward MCF-7 and MDA-MB-231, respec-
tively). The substitution of p-phenolic OH with bromide and the introduction of the methyl
branch to the 2-benzylidenehydrazineyl significantly reduced the cytotoxic activity (3b,
IC50 = 31.22 µM and 36.84 µM toward MCF-7 and MDA-MB-231, respectively). Interest-
ingly, substituting the chloro- on the p-phenyl-thiazole moiety with a bromo- (compound
3c) and shifting the OH group from the para-position to the ortho-position significantly im-
proved the cytotoxic activity of the compound (IC50 = 13.66 µM and 17.1 µM toward MCF-7
and MDA-MB-231, respectively). Further, the replacement of the 2-benzylidenehydrazineyl
moiety with the acetyl group (compound 4) resulted in a significant enhancement in the
antiproliferative activity of the compound (IC50 = 5.73 µM and 12.15 µM toward MCF-7 and
MDA-MB-231, respectively). On the other hand, the condensation of aromatic aldehyde to
the 2-(hydrazinyl)-1,3-thiazole moiety resulted in a considerable decrease in the cytotoxicity
of the compounds (compounds 5a, 5b). Further, acylation of compounds 5a significantly
diminished the activity of the compound as indicated for the cytotoxicity of compounds 6a,
suggesting the role of the second hydroxyl group and/or phenolic group in the cytotoxic
activity of compound 5a. On the other hand, the acylation of compound 5b has no consid-
erable effect on the cytotoxic activity of the compound (6b). We further investigated the
cytotoxicity of the compounds toward the epithelial breast cell line MCF-10A. The results
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revealed that almost all the compounds exhibit no cytotoxic effect, except for compound
4, which showed a low cytotoxic effect with IC50 of 36.83 µM, compared to STU (IC50 of
26.72 µM). These results indicate that these compounds possess a considerable and selective
cytotoxic activity toward breast cancer cell lines, with a low cytotoxic effect on the epithelial
breast cells. Our results are in accordance with previously reported studies, which showed
that 1,3-thiazole compounds are potent antiproliferative agents [48–53]. Among different
investigated compounds, compounds 3c and 4 demonstrated the most potent anticancer
activity toward the examined MCF-7 breast cancer cell line, with an IC50 = 13.66 µM and
5.73 µM, respectively, compared to STU, with anIC50 of 6.77 µM (Figure 4). Taken together,
these findings indicate that the 2-(hydrazinyl)-1,3-thiazole scaffold could be considered for
the development of potent anti-breast cancer compounds.

Table 1. Inhibitory activity of compounds (3a–c, 4, 5a–b, and 6a–b) toward the proliferation of various
breast cancer cell lines and the epithelial breast cell line.

Compound
IC50 (µM)

MCF-7 MDA-MB-231 MCF-10A

3a 24.9 ± 1.9 18.65 ± 1.42 NT

3b 31.22 ± 2.38 36.84 ± 2.81 NT

3c 13.66 ± 1.04 17.08 ± 0.13 NT

4 5.73 ± 0.44 12.15 ± 0.93 36.83 ± 05

5a 18.64 ± 1.42 20.72 ± 1.58 NT

5b 32.48 ± 2.47 62.12 ± 0.47 NT

6a >100 >100 NT

6b 43.81 ± 2.04 77.04 ± 1.95 NT

STU 6.77 ± 0.08 7.03 ± 0.19 26.72 ± 1.26
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2.3. Assessment of VEGFR-2 Kinase Activity

Based on the cytotoxicity results, compounds 3c and 4 were selected for further
investigations. To further explore the mode of action of these compounds, we evaluated
the inhibitory activity of compounds 3c and 4 against VEGFR-2 activity. The vascular
endothelial growth factor receptor-2 (VEGFR-2) is a transmembrane tyrosine kinase receptor
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in mammals that belongs to the family of growth factor receptors and modulates the
development of endothelial cells and lymphatic and blood vessels [54–57]. Several studies
have demonstrated the role of the VEGFR-2 receptor in modulating tumor angiogenesis and
cancer proliferation. Accordingly, VEGFR-2 has been considered as a potential therapeutic
drug target for discovering potent anti-breast cancer agents [56,58–62]. In our study, we
were interested in investigating whether the cytotoxic activity of compounds 3c and 4 is
associated with their inhibitory activity toward the VEGFR-2 receptor. To do so, we assessed
the inhibitory activity of compounds 3c and 4, utilizing sorafenib as a reference drug. As
indicated in Table 2, compounds 3c and 4 showed considerable activity against VEGFR-2
activity. Interestingly, compound 4 (IC50 = 0.093 µM) exhibited a significant inhibitory
activity toward VEGFR-2 activity compared to sorafenib (IC50 = 0.059 µM). These results
reveal that the antiproliferative activity of compounds 3c and 4 could be correlated to their
inhibitory activity toward VEGFR-2 activity (Supplementary Figure S15).

Table 2. Assessment of VEGFR-2 inhibitory activity of 1,3-thiazole derivatives 3c and 4 compared
with sorafenib.

Comp No. IC50 Values (µM)

3c 0.253 ± 0.54
4 0.093 ± 0.22

Sorafenib 0.059 ± 0.35

2.4. Cell Cycle Analysis

Based on the anti-proliferative activity results, we selected compound 4 to further
explore and achieve insights into the mechanism responsible for the cytotoxicity of this
class of compounds. Toward this aim, we assessed the effect of compound 4 on the
cell cycle distribution of MCF-7 cells utilizing flow cytometry analysis. The cell cycle
distribution analysis was evaluated after incubation of MCF-7 cells with compound 4
at 5.73 µM. As shown in Figure 5, treatment with compound 4 significantly altered the
cell cycle distribution of MCF-7 cells. While compound 4 did not significantly affect the
cellular population in the S phase, it caused a significant increase in the populations in
the pre-G1 phase. Further, compound 4 induced a substantial diminution in the cellular
population at the G2/M stage. As indicated in Figure 5a–c, the cellular populations of the
G2/M and pre-G1 phases in the control cells were 16.99% and 2.12%, respectively, while the
populations were altered to 6.81% and 31.66%, respectively, in the presence of compound 4
at 5.73 µM. These results indicate that the anti-proliferative activity of compound 4 could
be attributed to its ability to induce programmed cell death by effectively arresting MCF-7
cells at the pre-G1 phase of the cell cycle while decreasing the cellular population in the
G2/M phase. These results are in agreement with previous studies, which showed that
1,3-thiazoles cause cell cycle arrest in HepG2 cells at the S and pre-G1 phases [17,63–65].
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analysis of the different cell cycle phases of treated and untreated MCF-7 cells. (c) Effect of compound
4 on the cellular population in the pre-G1 phase. (d) Histogram data of the cell cycle distribution of
treated and untreated MCF-7 cells.

2.5. Apoptosis and Necrosis Analysis

Our findings encouraged us to further explore the mechanistic insights accounting for
the potent cytotoxicity and cell cycle arrest. To investigate whether the mode of action for
the antiproliferative activity of compound 4 toward MCF-7 cells involves apoptosis and/or
necrosis, we performed Annexin V- FITC/PI dual staining assay. To this end, we treated
MCF-7 cells with compound 4 (5.73 µM) for 24h and assessed the programmed cell death at
different stages utilizing the cytofluorometry analysis. The results revealed that compound
4 induced programmed cell death in MCF-7 cells by 32.66% compared to the control cells
(2.21%). As demonstrated in Figure 6, compound 4 exhibited a tremendous effect on
apoptosis percentage at the early and late stages. Indeed, treatment with compound 4
increased apoptosis by 9 and 89 times at the early and late stages, respectively, compared to
control cells. Our findings are in agreement with previous studies, which also reported the
potency of 1,3-thiazole analogues to induce the apoptotic pathway in various cancer cell
lines [15,17,64]. Interestingly, treatment with compound 4 led to a significant increase in
the necrosis percentage (11.77%) by 9 times compared to the control cells (1.26%) (Figure 6).
Together, these results indicate that the antiproliferative activity of compound 4 toward
MCF-7 cells could be attributed to its ability to induce programmed cell death by triggering
both apoptosis and necrosis cell death.
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analysis of MCF-7 cells treated with compound 4 at 5.73 µM using Annexin V FITC double labeling
assay. (c) Graphical representative analysis of the programmed cell death stages on the treated and
untreated MCF-7 cells.

2.6. In Silico Molecular Docking Study

To further explore the mechanistic insights into the inhibitory activity of this class of
compounds toward VEGFR2 activity, we performed a detailed in silico molecular modeling
study aiming at investigating the binding affinity of compounds 3c and 4 into the binding
cavity of the VEGFR2 protein. In the protein database, there are accessible 3D structures of
VEGFR2 co-crystallized with different antagonists [66–78]. The 3D structure (PDB code)
was selected based on the ability of the examined compounds to bind to the binding
pocket of VEGFR2 in a similar binding pose as the original ligand with a low RMSD value
and the resolution of X-ray crystallization. In our investigations, we utilized the X-ray
crystal structure of VEGFR2 protein, which has been reported for the design of novel
benzimidazole-ureas inhibitors (PDB code: 2oh4) [71]. The molecular modeling protocol
was initially validated by redocking the original benzimidazole-ureas inhibitor before
it was utilized to explore the binding affinity of compounds 3c and 4. As indicated in
Table 3, compounds 3c and 4 exhibited considerable binding affinity toward the binding
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pocket of the VEGFR2 receptor (−8.21 and −10.16 kcal/mol, respectively) through a set
of interactions. The interactions of compounds 3c and 4 to the VEGFR2 binding site were
thermodynamically favorable as suggested by the docking score values. As shown in
Figure 7, this class of compounds binds to the active pocket of the VEGFR2 by forming a set
of hydrophilic and hydrophobic interactions with the active amino acid residues together
with other amino acid residues in the binding pocket. The original benzimidazole-ureas co-
crystallized inhibitor demonstrated a set of hydrophilic interactions with Glu883, Cys917,
and Asp104 amino acid residues, together with a set of hydrophobic interactions with
greasy amino acid residues in the binding pocket (Figure 7). Compound 3c exhibited the
ability through the hydrazineyl moiety to bind to two of the essential amino acid residues
(Asp1044 and Glu883) and additional hydrophilic interaction with the Cys1043 amino acid
residues. Further, the binding of compound 3 was further stabilized by the formation of
a set of hydrophobic interactions with several greasy amino acid residues. On the other
hand, compound 4 revealed the capability to bind to all the essential amino acid residues in
the binding site of the VEGFR2 pocket (Glu883, Cys917, and Asp104 residues) through the
2-amino-thiazole moiety and the acetyl group, respectively. The 3D structure of compound
4 displays the ability to bind to Ile1023 residue through the p-chloro-substituent. Similarly
to compound 3c, compound 4 could bind to additional amino acid residue (Cys1043)
through the acetyl moiety. The binding of compound 4 was also supported by interacting
with several greasy amino acid residues (Figure 7). Together, these results reveal that the
inhibitory activity of this class of compound toward VEGFR2 activity is associated with
their ability to potentially bind to the active pocket of VEGFR2 protein.

Table 3. Docking scores and interactions of compounds 3c and 4 with VEGFR2 (PDB: 2oh4) protein.

Protein
(PDB Code) Compound Hydrophilic

Interactions Distance (A) Hydrophobic
Interactions S (kcal/mol)

VEGFR2 (2oh4)

benzimidazole-
urea

ligand

Glu883
Glu883
Cys917
Cys917

Asp1044

2.82
2.81
2.6
2.96
2.89

Ala864, Ile886,
Leu887, Ile890,

Leu1017, Phe919,
Phe916, Val914,

Leu1033, Ile1042

−11.47

3c
Glu883

Cys1043
Asp1044

2.99
3.58
3.44

Val846, Ile886,
Leu887, Val897,
Val912, Val914,

Leu1033, Phe1045

−8.21

4

Glu883
Glu883
Ile1023

Cys1043
Asp1044

1.82
3.32
3.42
3.22
2.97

Val897, Leu887,
Ile886, Ile1045 −10.16
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3. Materials and Methods
3.1. General Description of Materials and Instrumentation

All commercially available chemicals were of analytical grade and were acquired from
TCI, Alfa Aesar, and Sigma Aldrich unless otherwise specified. The chemical structure
of all synthesized compounds was characterized by elemental analysis, melting point, IR,
mass spectroscopy, and 1H- and 13C-NMR analysis. The melting point of synthesized
thiazole derivatives was measured on an electrothermal 200 digital melting point device.
The elemental analysis was recorded on a perkin-Elmer 2400 series (Haan, Germany). The
IR spectra were recorded as KBr discs utilizing Shimadzu 470 spectrophotometer (Kyoto,
Japan). The NMR analysis was performed for a solution in deuterated solvents (DMSO-d6)
utilizing a Bruker 400 DRX-Avance spectrometer at 400 MHz and 100 MHz for 1H-NMR
and 13C-NMR, respectively. The chemical shifts are recorded in ppm utilizing tetramethyl
silane (TMS) as the internal standard. The mass spectroscopic analysis was performed
utilizing Finnigan MATSSQ-7000 mass spectrometer operating at 70 eV.

3.2. Synthetic Procedures and Analytic Data of Compounds
3.2.1. General Procedure for the Synthesis of 4-substituted-2-Hydrazinyl-1,3-Thiazole
Derivatives (3a–c)

A solution of thiosemicarbazone derivatives (2, 0.01 mol) in 50 mL ethanol was treated
with appropriate phenacyl bromide (0.01 mol), followed by fused sodium acetate (0.03 mol).
After the resulting reaction mixture was refluxed for 12 h, the mixture was poured into
cold water. The precipitate formed was filtered, washed with water, and dried. The crude
product was finally recrystallized from an appropriate solvent to afford compound 3.

(E)-4-((2-(4-(4-Chlorophenyl)thiazol-2-yl)hydrazineylidene)methyl)-phenol (3a)

The entitled compound was obtained as a pale-yellow solid, yield 63%, m.p. 205 ◦C.
FT-IR (KBr)max: 3451 (br. OH), 3221 (NH), 1635 (C=N), 1067 (C-O) cm−1. 1H-NMR (DMSO-
d6, 400 MHz, ppm): δ 6.84 (d, 2H, J = 8.1 Hz, Ar-H), 7.35 (s, 1H, H-4 thiazole), 7.47 (d,
2H, J = 8.0 Hz, Ar-H), 7.51 (d, 2H, J = 8.1 Hz, Ar-H), 7.87 (d, 2H, J = 8.2 Hz, Ar-H), 7.96
(s, 1H, CH=N). 13C-NMR (DMSO-d6, 100 MHz, ppm): δ 169.00 (C-2 of thiazole), 159.29
(C-O), 149.64 (C=N), 142.46, 134.06, 132,43, 130.56, 129.26, 129.08, 128.47, 127.69, 125.85,
116.21, 104.50 (C-aromatic and thiazole ring). Ms: m/z (%): 331 (M++2, unstable), 329 (M+,
unstable), 252 (0.39), 251 (0.81), 250 (4.66), 249 (0.39), 212 (18.89), 211 (11.55), 210 (59.47),
209 (8.40), 170 (13.34), 169 (5.31), 168 (39.92), 167 (6.12), 155 (3.97), 154 (2.71), 142 (1.14), 141
(26.94), 140 (12.00), 139 (100), 138 (16.21), 137 (9.49), 136 (5.17), 134 (2.80), 133 (18.13), 132
(4.83), 125 (5.58), 123 (2.79), 122 (1.76), 121 (3.82), 120 (1.56), 119 (14.19), 113 (11.12), 112
(2.59), 111 (36.52), 102 (5.00), 101 (1.88), 89 (14.82), 87 (2.14), 76 (6.18), 75 (11.61), 74 (3.93), 63
(1.82). Anal. Calcd. for C16H12N3ClOS: C, 58.36; H, 3.65; N, 12.76. Found; C, 58.11; H, 3.33;
N, 12.48.

(E)-2-(2-(1-(4-bromophenyl)ethylidene)hydrazineyl)-4-(4-chlorophenyl)thiazole (3b)

The entitled compound was afforded as a yellow solid, yield 67%, m.p. 185 ◦C. FT-IR
(KBr)max: 3229 (NH), 1638 (C=N), 1588 (C=C) cm−1. 1H-NMR (DMSO-d6, 400 MHz, ppm):
δ 2.29 (s, 3H, CH3), 2.32 (s, 3H, CH3), 7.41 (s, 1H, H-4 of thiazole), 7.48 (d, 2H, J = 8.0 Hz,
Ar-H), 7.57 (d, 1H, J = 8.0 Hz, H-4 of thiazole), 7.63 (d, 2H, J= 8.3 Hz, Ar-H), 7.73 (d, 2H,
J = 8.1 Hz, Ar-H), 7.91 (d, 2H, J = 8.2 Hz, Ar-H) of two isomers, 10.30, 11.38 (br. s, 1H, NH
of E/Z isomers). 13C-NMR (DMSO-d6, 100 MHz, ppm): δ 179.93, 170.25 (C-2 of thiazole),
149.93, 147.07 (C=N), 145.85, 137.52, 137.34*, 134.11, 132.38, 131.84, 131.57, 129.16, 129.12,
128.12, 127.70, 123.18, 122.58, 105.52 (C-aromatic and thiazole of two isomer), 14.34, 14.27*
(CH3 of two isomers) (* refers to the two isomers). MS m/z (%): 409 (M++4, 8.99), 408
(M++3, 24.16), 407 (M++2, 52.30), 407 (M++1, 25.66), 405 (M+, 32.92), 404 (M+-1, 3.70), 274
(2.02), 273 (11.85), 272 (1.50), 271 (6.11), 258 (15.57), 256 (30.96), 254 (2.16), 226 (1.19), 225
(24.25), 224 (9.18), 223 (58.86), 222 (2.68), 214 (2.40), 212 (6.94), 211 (20.00), 210 (4.42), 209
(25.03), 199 (13.28), 198 (100), 197 (25.30), 196 (91.92), 195 (32.35), 184 (18.84), 183 (9.19), 182
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(29.96), 181 (10.68), 175 (10.52), 174 (99.54), 173 (9.33), 170 (26.22), 169 (6.23), 168 (86.66), 158
(2.18), 157 (87.71), 156 (9.56), 155 (97.80), 133 (4.15), 132 (15.13), 131 (9.14), 117 (2.50), 116
(5.83), 111 (2.34), 103 (23.05), 102 (44.89), 77 (10.00), 76 (23.41), 75 (16.45), 74 (6.61). Anal.
Calcd. for C17H13N3ClBrS: C, 50.31; H, 3.21; N, 10.36. Found: C, 50.18; H, 3.03; N, 10.11.

(E)-2-(1-(2-(4-(4-Bromophenyl)thiazol-2-yl)hydrazineylidene)ethyl)-phenol (3c)

This compound was obtained as an orange solid, yield 71%, m.p. 198 ◦C. FT-IR
(KBr)max: 3405 (br. OH), 3221 (NH), 1638 (C=N), 1604, 1582 (C=C), 1121, 1063 (C-O) cm−1.
1H-NMR (DMSO-d6, 400 MHz, ppm): δ 2.43 (s, 3H, CH3), 2.49 (s, 3H, CH3), 4.24–4.27
(br.s, 1H, OH bonded), 6.90–6.95 (m, 2H, Ar-H), 7.28 (t, 1H, J = 7.3 Hz, Ar-H), 7.43 (s, 1H,
H-4 of thiazole), 7.57 (d, 1H, J = 8.2 Hz, Ar-H), 7.63 (d, 2H, J = 8.1 Hz, Ar-H), 7.84 (d, 2H,
J = 8.2 Hz, Ar-H) of two isomers. 13C-NMR (DMSO-d6, 100MHz, ppm): δ 170.58, 170.24*,
166.67, 162.80, 162.50*, 159.06, 158.88*, 149.27, 148.72*, 147.94 (C-2 of thiazole, C-O and
C=N), 134.24, 132.01, 131.91*, 131.51, 131.17*, 130.04, 129.84, 129.30*, 129.00, 128.02, 127.84,
127.74*, 120.94, 115.71, 115.64*, 105.16 (C-aromatic and Thiazole ring), 14.63, 14.50* (CH3 of
two isomers) (* refers to the two isomers). Ms: m/z (%): 389 (M++2, 0.38), 388 (M++1, 0.10),
387 (M+, 0.44), 317 (2.02), 316 (2.13), 271 (4.02), 269 (4.44), 258 (5.64), 257 (12.02), 256 (76.27),
255 (58.62), 254 (100), 253 (24.29), 241 (3.07), 239 (3.82), 214 (28.98), 212 (28.29), 211 (3.93),
199 (2.97), 198 (5.07), 197 (2.52), 196 (3.79), 185 (7.05), 184 (11.27), 183 (10.95), 182 (12.03), 175
(5.11), 174 (13.52), 173 (4.23), 157 (5.49), 148 (3.66), 147 (2.03), 146 (2.34), 141 (3.27), 139 (8.56),
138 (6.16), 136 (9.92), 135 (18.14), 134 (14.09), 133 (24.91), 132 (6.30), 121 (15.93), 120 (11.67),
119 (12.32), 106 (1.64), 105 (16.46), 104 (2.98), 103 (4.01), 102 (7.50), 101 (3.40), 92 (7.89), 89
(11.01), 88 (18.43), 82 (14.08), 81 (14.81), 77 (7.13), 76 (6.65), 75 (7.95), 74 (3.72), 65 (2.93), 63
(2.94), 50 (1.89). Anal. Calcd for C17H14N3BrOS: C, 52.71; H, 3.62; N, 10.85. Found; 52.52; H,
3.43; N, 10.61.

3.2.2. Synthesis of N-(4-(4-Chlorophenyl)-Thiazol-2-yl)Acetamide (4)

A solution of 3b (0.01 mol) in acetic anhydride (25 mL) was refluxed for 3h. After
the reaction was completed, the mixture was poured into water and kept for 16 h. The
obtained solid product was separated by filtration, washed with water, and dried. The
crude product was subsequently recrystallized from benzene to provide compound 4.

As a pale-yellow solid, yield 61%, m.p. 142–144 ◦C. FT-IR (KBr)max: 3227 (NH), 1695
(C=O), 1631 (C=N), 1605, 1586 (C=C) cm−1. 1H-NMR (DMSO-d6, 400 MHz, ppm): δ 2.16
(s, 3H, CH3), 7.50 (d, 2H, J = 8.2 Hz, Ar-H), 7.83 (s, 1H, H-4 of thiazole), 7.93 (d, 2H, J= 8.0
Hz, Ar-H), 11.14 (s, 1H, NH-CO). 13C-NMR (DMSO-d6, 100 MHz, ppm): δ 172.21, 170.16,
(C=O), 157.90, 147.35, 133.30, 132.89, 129.85, 111.66, 21.03 (C-aromatic and thiazole ring).
Ms: m/z (%): 267 (M+, 26.40), 226 (22.66), 225 (100), 224 (23.59), 210 (6.25), 209 (4.17), 208
(17.62), 185 (1.23), 183 (2.03), 174 (3.51), 173 (4.95), 172 (2.58), 168 (2.59), 167 (1.68), 136 (2.87),
134 (4.41), 133 (3.17). Anal. Calcd for C11H9N2ClOS: C, 52.38; H, 3.57; N, 11.11. Found; C,
52.08; H, 3.33; N, 11.06.

3.2.3. General Procedure for the Preparation of 4-[(2-(1-(4- Bromophenyl)-Ethylidene]-1-[4-
(4-Chlorophenyl)Thiazole-2-yl)Hydrazinyl](Hydroxy)Methyl]-Phenols (5a,b)

A solution of compound 3b (0.01 mol) in dimethyl formamide (30 mL) was treated
with aromatic aldehydes (namely; 4-hydroxy benzaldehyde and 3-methoxy-4-hydroxy
benzaldehyde, 0.01 mol), followed by a catalytic amount of piperidine (1 mL). The resultant
reaction mixture was refluxed for 10 h and subsequently poured into water. The resulting
mixture was neutralized with diluted hydrochloric acid (2%) to pH 7 and filtered. The ob-
tained solid was washed with water, dried, and finally re-crystallized with the appropriate
solvent to afford compounds 5a and 5b.
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(E)-4-((2-(1-(4-Bromophenyl)ethylidene)-1-(4-(4-chlorophenyl)thiazol-2-
yl)hydrazineyl)(hydroxy)methyl)phenol (5a)

The entitled compound was obtained as an orange solid, yield 71%, m.p. 155–157 ◦C.
FT-IR (KBr)max: 3410–3360 (br. OH), 1635 (C=N), 1605, 1591 (C=C), 1121, 1063 (C-O) cm−1.
1H-NMR (DMSO-d6, 400 MHz, ppm): δ 2.29, 2.58 (s, 3H, 2xCH3 of two isomers), 5.71
(br. s, 1H, OH of sec. alcohol), 6.79–7.86 (m, 14H, Ar-H, CHO and phenolic OH). 13C-NMR
(DMSO-d6, 100 MHz, ppm): δ 167.93, 157.00, 146.57, 137.43, 136.98, 133.89, 133.38, 132.22,
132.08*, 131.99, 131.86*, 131.65, 130.67, 130.02*, 129.44, 129.21*, 128.73, 128.13, 125.94, 122.61,
116.85, 116.10*, 15.62, 14.43* (CH3 of two isomer) (* refers to the two isomers). Ms m/z
(%): 527 (M+, unstable), 405 (91.02), 404 (16.30), 393 (2.32), 392 (7.62), 391 (4.20), 390 (6.15),
379 (5.42), 378 (1.19), 377 (2.23), 316 (5.69), 315 (3.01), 314 (1.63), 301 (6.56), 300 (3.08), 258
(2.52), 256 (2.22), 250 (3.75), 225 (17.36), 224 (11.58), 223 (28.71), 222 (24.55) 212 (36.18), 196
(55.93), 195 (15.24), 185 (10.57), 184 (15.94), 183 (19.92), 182 (20.46), 181 (6.90), 175 (5.63), 174
(35.59), 173 (19.89), 170 (26.43), 169 (11.09), 168 (73.01), 167 (8.59), 158 (2.70), 157 (35.21), 155
(39.33), 138 (9.50), 137 (5.30), 133 (13.77), 103 (8.73), 102 (14.16), 89 (7.87), 77 (3.68), 76 (7.34),
75 (9.35). Anal. Calcd for C24H19N3BrClO2S: C, 54.65; H, 3.61; N, 7.97. Found; C, 54.45; H,
3.37; N, 7.77.

(E)-4-((2-(1-(4-Bromophenyl)ethylidene)-1-(4-(4-chlorophenyl)thiazol-2-
yl)hydrazineyl)(hydroxy)methyl)-2-methoxyphenol (5b)

The entitled compound was afforded as an orange solid, yield 73%, m.p. 158–160 ◦C.
FT-IR (KBr)max: 3420–3380 (br. OH), 1638 (C=N), 1605, 1583 (C=C), 1205, 1093 (C-O) cm−1.
1H-NMR (DMSO-d6, 400MHz, ppm): δ 2.29 (s, 3H, CH3), 2.59 (s, 3H, CH3), 3.71 (s, 3H,
OCH3), 3.88 (s, 3H, OCH3), 5.71 (br. s, 1H, OH of sec.alcohol), 6.81–7.95 (m, 13H, Ar-H,
CHO and phenolic OH), 10.11, 11.36 (s, 1H, OH). 13C-NMR (DMSO-d6, 100 MHz, ppm): δ
178.81, 174.98, 167.82, 167.73*, 150.29, 148.40, 148.29*, 146.40, 137.46, 136.98*, 136.26, 134.66,
133.91, 132.83, 132.69*, 132.22, 132.07, 131.99, 131.86, 130.67, 130.03, 129.72, 129.45, 129.39*,
128.72, 128.12, 126.52, 124.76, 122.59, 120.43, 116.70, 116.10, 115.81, 112.57, 56.26, 56.16*
(2xOCH3), 15.54, 14.45* (2 × CH3 of two isomers) (* refers to the two isomers). Ms: m/z
(%): 557 (M+, unstable), 288 (1.17), 287 (1.96), 200 (21.89), 199 (4.03), 198 (23.72), 185 (72.47),
184 (34.93), 183 (100), 182 (22.89), 158 (3.45), 157 (65.24), 156 (22.21), 155 (80.49), 154 (10.61),
140 (1.75), 13 (34.00), 138 (7.36), 137 (26.53), 112 (3.12), 111 (11.34), 104 (41.18), 102 (2.34), 101
(5.66), 87 (3.47), 86 (41.45), 85 (3.62), 77 (3.47), 76 ((25.30), 75 (39.06), 74 (25.66), 73 (7.83), 64
(7.57), 63 (6.43), 51 (12.98), 50 (25.91). Anal. Calcd for C25H21N3BrClO3S: C, 53.86; H, 3.77;
N, 7.54. Found; C, 53.53; H, 3.48; N, 7.34.

3.2.4. Synthesis of Compounds 6a,b

Compound 5a or 5b (0.01 mol) was treated with acetic anhydride 25 mL, and the
resulting reaction mixture was refluxed for 6 h. After the reaction was completed, the
mixture was poured into ice water and kept for 24 h, during which a solid product started to
form. The resultant solid product was separated by filtration, washed with water, and dried.
The crude product was finally recrystallized from ethanol to provide compounds 6a and 6b.

(E)-4-(Acetoxy(2-(1-(4-bromophenyl)ethylidene)-1-(4-(4-chlorophenyl)thiazol-2-
yl)hydrazineyl)methyl)phenyl acetate (6a)

The entitled compound was obtained as a pale orange solid, yield 63%, m.p. 126–128 ◦C.
FT-IR (KBr)max: 1752 (C=O), 1631 (C=N), 1605, 1589 (C=C), 1125, 1089, 1063 (C-O) cm−1.
1H-NMR (DMSO-d6, 400 MHz, ppm): δ 2.08 (s, 3H, CH3), 2.22 (br-s, 3H, CH3), 2.31 (s,
3H, CH3), 2.34 (s, 3H, CH3), 2.58 (s, 3H, CH3), 7.21–7.34 (m, 3H, Ar-H), 7.42 (s, 1H, H-4 of
Thiazole), 7.69–7.76 (m, 3H, Ar-H), 7.80 (d, 2H, J= 8.1 Hz, Ar-H), 7.89 (d, 2H, J = 8.3 Hz,
Ar-H), 7.94 (d, 2H, J = 8.2 Hz, Ar-H), 11.07 (s, 1H, N-CH(Ar)OCO). 13C-NMR (DMSO-
d6, 100 MHz, ppm): δ 179.01, 174.06, 170.04, 169.43*, 164.76 (C=O and C-2 of thiazole),
152.19 (C-O), 136.91, 136.79*, 136.27, 135.59*, 133.36, 133.27, 133.04, 132.91, 132.66, 132.22,
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132.10, 132.05*, 131.36, 130.68, 130.02, 129.53, 129.50, 129.26, 128.96, 124.97, 123.21, 122.90
(C-aromatic and thiazole ring), 21.38, 20.96 (2xOCOCH3), 15.72 (CH3) (* refers to the two
isomers). Ms m/z (%): 611 (M+, unstable), 408 (4.27), 407 (11.87), 406 (8.27), 405 (13.79),
404 (3.51), 360 (1.80), 358 (1.29), 316 (1.34), 315 (2.58), 302 (4.05), 301 (2.57), 300 (3.04), 269
(13.44), 268 (6.60), 267 (42.27), 266 (14.55), 256 (19.99), 255 (4.54), 254 (20.25), 252 (10.23), 242
(2.98), 241 (12.94) 240 (5.03), 239 (20.21), 238 (6.51), 237 (8.41), 227 (26.85), 226 (24.61), 225
(94.00), 224 (40.89), 223 (45.74), 214 (23.83), 213 (17.71), 212 (47.14), 211 (33.14), 210 (54.44),
209 (32.67), 208 (21.13), 199 (49.21), 198 (67.92), 197 (61.77), 196 (75.07), 195 (16.87), 185
(12.08), 184 (55.42), 183 (68.15), 182 (100), 181 (54.33), 180 (31.92), 175 (11.92), 174 (42.70), 173
(22.02), 170 (19.19), 169 (13.88), 168 (43.82), 165 (10.92), 164 (4.88), 163 (13.11), 157 (50.71),
156 (8.95), 155 (51.04), 154 (7.85), 139 (38.71), 138 (28.10), 137 (29.12), 136 (17.94), 134 (19.71),
133 (23.20), 132 (12.75), 131 (9.86), 121 (16.41), 120 (10.06), 119 (12.03), 118 (7.51), 117 (10.97),
116 (18.68), 113 (6.29), 112 (8.06), 111 (15.84), 103 (22.69), 102 (63.39), 101 (20.96), 90 (5.73), 89
(12.48), 77 (10.17), 76 (23.16), 75 (27.83), 74 (8.39). Anal. Calcd. for C28H23N3BrClO4S: C,
54.99; H, 3.76; N, 6.87. Found; C, 54.66; H, 3.49; N, 6.66.

(E)-4-(Acetoxy(2-(1-(4-bromophenyl)ethylidene)-1-(4-(4-chlorophenyl)thiazol-2-
yl)hydrazineyl)methyl)-2-methoxyphenyl acetate (6b)

The entitled compound was afforded as a pale orange solid, yield 63%, m.p. 126–128 ◦C.
FT-IR (KBr)max: 1752 (C=O), 1633 (C=N), 1610, 1591 (C=C), 1130, 1086, 1056 (C-O) cm−1.
1H-NMR (DMSO-d6, 400 MHz, ppm): δ 2.08 (s, 3H, CH3), 2.11 (s, 3H, CH3), 2.27 (s, 3H,
CH3), 2.30 (s, 3H, CH3), 2.54 (s, 3H, CH3), 2.60 (s, 3H, CH3), 3.74 (s, 3H, OCH3), 3.82 (s, 3H,
OCH3), 6.92 (d, 1H, J = 8.1 Hz, Ar-H), 7.16 (d, 2H, J= 8.3 Hz, Ar-H), 7.30–7.49 (m, 3H, Ar-H
and H-4 of Thiazole), 7.73 (d, 2H, J = 8.2 Hz, Ar-H), 7.89 (d, 2H, J = 8.1 Hz, Ar-H), 7.95 (d, 2H,
J = 8.0 Hz, Ar-H), 11.05 (s, 1H, N-CH(Ar)OCO). 13C-NMR (DMSO-d6, 100 MHz, ppm): δ
179.04, 174.06, 168.84, 164.56 (C=O and C-2 of thiazole), 151.61 (C-O), 139.17, 136.84, 134.11,
133.29, 132.23, 132.11, 131.43, 130.86, 130.01, 129.53, 128.93, 124.99, 124.17, 123.79, 122.13,
116.66 (C-aromatic and thiazole ring), 56.47 (OCH3), 27.11 (CH3), 21.29, 20.96 (OCOCH3),
15.68 (CH3). Ms m/z (%): 641 (M+, unstable), 96 (10.12), 95 (1.94), 91 (1.48), 82 (1.46), 81
(100), 80 (3.74), 71 (1.07), 53 (10.44), 51 (10.44). Anal. Calcd for C29H25N3BrClO4S: C, 54.29;
H, 3.90; N, 6.55. Found; C, 54.03; H, 3.63; N, 6.22.

3.3. Assessment of Anti-Proliferative Activity against Breast Cancer

To assess the anti-proliferative activity of the synthesized compounds toward the
different cancer cell lines (MCF-7 and MDA-MB-231) and the epithelial breast cell line
MCF-10A, the MTT assay was employed following the previously reported protocol [79,80].
Briefly, cells (105 cells/well) were treated in triplicate at 37 ◦C with compounds 3a-c, 4,
5a-b, and 6a-b at different concentrations (DMSO stock solutions) for 48h and in a 5% CO2
atmosphere. In our screening, Staurosporin (STU) has been utilized as a reference positive
anticancer drug. After the cells were washed, they were subsequently treated with MTT
solution (40 µL, MTT 5 mg/mL in 0.9% NaCl) and incubated at 37 ◦C for 4 h. Finally, the
resulting MTT crystals were dissolved at ambient temperature in acidified isopropanol (180
µL/well) with shaking, and the absorption was assessed at 570 nm utilizing ELISA. The
obtained data were analyzed, and the inhibitory activity of compounds (IC50) toward cell
viability of different cell lines was determined and expressed as means ± S.E.M.

3.4. Assessment of VEGFR-2 Enzyme Activity

The inhibitory activity of compounds 3c, and 4 was assessed toward VEGFR-2 activity
as previously reported utilizing the human VEGFR-2/KDR ELISA kit (RBMS#2019R)
following the manufacturer’s instructions [81]. In our experiments, we used Sorafenib as
a positive control drug reference. The activity of compounds was assessed at different
concentrations, and the IC50 values were determined.
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3.5. Cell Cycle Analysis

To assess the effect of compound 4 on the cell cycle of MCF-7 cells, we treated the
MCF-7 cells with compound 4 and analyzed the cell cycle arrest at different stages as
previously reported [82]. Briefly, after MCF-7 cells (3 × 105 cells/well) were incubated for
12 h at 37 ◦C, the cells were treated with compound 4 (5.73 µM) and incubated for another
24 h at the same temperature. Subsequently, the cells were fixed overnight at 20 ◦C with
75% ethanol, followed by washing with PBS buffer and centrifugation. After the cells were
incubated with propidium iodide (5 mg/mL, Sigma, Ronkonkoma, NY, USA) and Rnase
(10 mg/mL, Sigma, Ronkonkoma, NY, USA), cytofluorometry analysis was performed
using FACS Calibur cytometer, and the results were analyzed utilizing Cell quest software
(BD Bioscience, San Jose, CA, USA).

3.6. Annexin V-FITC/PI Dual Staining Analysis

To explore the effect of compound 4 on the programmed cell death mechanisms of
MCF-7 cells, fluorescent Annexin V-FITC/ PI assay was performed using flow cytometry
following a previously reported procedure [83]. Briefly, MCF-7 cells (2 × 105) were treated
with compound 4 at 5.73 µM concentration. After incubation for 24 h, the harvested cells
were stained in the dark at 37 ◦C with Annexin V-FITC/ PI dye for 15 min. Cytofluorometry
analysis was assessed by BD FACS Calibur (Becton and Dickinson, Heidelberg, Germany),
and the BD cell Quest pro software was utilized to analyze the results.

3.7. In Silico Molecular Modeling Study

Molecular modeling studies provide a valuable view of ligand–receptor binding
and propose the mode of action of bioactive compounds. The biological activities of
chemical compounds are attributed to the binding with key amino acids of the active site
of cellular target proteins [35,84–90]. To elucidate the mechanism by which the synthesized
compounds conjugate with VEGFR2 activity, a molecular docking tool was used to examine
the interactions of the compounds 3c and 4 toward VEGFR2. The 3D structure of VEGFR2
was obtained from the RCSB Protein Data Bank (http://www.rcsb.org/, accessed on 1 May
2022, VEGFR2 PDB: 2oh4) [71]. The Chem. Draw tool was used to construct the structure of
the target compounds 3c and 4. Then, the protonated 3D structure of target ligands 3c and 4,
the preparation of VEGFR2, and the docking studies were performed using MOE software
as previously reported [35,84–91]. The validity of the applied protocol was evaluated by
performing a molecular docking of the original inhibitor to affirm the main interactions
that exist in the reported crystal structure.

4. Conclusions

We have designed, synthesized, and characterized a set of novel 1,3-thiazole analogues
based on the condensation of thiosemicarbazone to substitute phenacyl bromide as a
key reaction step. The cytotoxic activity of the synthesized compound was screened for
two different cancer cell lines (MCF-7 and MDA-MB.231). Our findings revealed that
the synthesized compounds exhibit a considerable antiproliferative activity toward the
investigated cancer cell lines without a substantial effect on the proliferation of epithelial
cells. Among the investigated compounds, compounds 3c and 4 demonstrated a significant
antiproliferative activity compared to the reference drug. These compounds also showed
a substantial inhibitory activity toward VEGFR-2 activity. Our findings revealed that
compound 4 exhibits the most potent cytotoxicity and inhibitory activity toward VEGFR-2
activity. Further investigations on compound 4 revealed that compound 4 causes a cell
cycle arrest on MCF-7 cells at the G1 stage while decreasing the cellular population in the
G2/M phase. Further, compound 4 displayed a tremendous effect on apoptosis percentage
at the early and late stages and significantly increased the necrosis percentage, indicating
that the antiproliferative activity of compound 4 could be correlated to its ability to induce
programmed cell death by triggering both apoptosis and necrosis cell death. Finally, an in
silico molecular modeling study affirmed that this class of compounds has a considerable

http://www.rcsb.org/
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binding affinity toward VEGFR2 protein. Taken together, our study reveals that compound
4 could be a suitable lead compound for the development of potent anti-breast cancer
compounds. Further studies should be performed to deeply investigate the mode of action
of compound 4 and its applicability in an animal model.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27154898/s1, Figure S1: 1H-NMR spectrum of compound
3a; Figure S2: Mass spectrum of compound 3a; Figure S3: NMR spectrum of compound 3b; Figure
S4: Mass spectrum of compound 3b; Figure S5: NMR spectrum of compound 3c; Figure S6: Mass
spectrum of compound 3c; Figure S7: NMR spectrum of compound 4; Figure S8: Mass spectrum of
compound 4; Figure S9: NMR spectrum of compound 5a; Figure S10: Mass spectrum of compound 5a;
Figure S11: NMR spectrum of compound 5b; Figure S12: NMR spectrum of compound 6a; Figure S13:
Mass spectrum of compound 6a; Figure S14: NMR spectrum of compound 6b; Figure S15: Inhibitory
activity of compounds 3c, 4 and Sorafenib toward the VEGFR-2 kinase activity.
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