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Abstract
Instead of the traditional index guidance, microstructured fibers can guide

light in a core of refractive index lower than that of its cladding using mech-

anisms like photonic band gap guidance, inhibited coupling guidance and

anti-resonant guidance. Their guidance is usually leaky and depends on

the photonic properties of their structured cladding. Specifically, photonic

band gap guidance is possible with photonic crystals, whose photonic band

gaps appear below the refractive index index of the core. Guidance in a

low-index core or hollow core guidance, is of interest for applications in the

fields of bioanalytic, quantum gas, lasers and others that involve interacting

of the light with confined matter of low refractive index. My work is aimed

at investigating the possibility of hollow core guidance with an all-solid mi-

crostructured cladding. Ideally, such a hollow core waveguide is expected

to have obvious guidance advantages over capillaries. Besides, it also sur-

passes the holey hollow core band gap fibers in the optofluidic applications

by avoiding undesired penetration of the liquid into the cladding channels.

To achieve the design of the ideal hollow core waveguide, I developed two

models for all relevant modes in microstructured fibers: an analytical method

with binary functions and a reflection-based planar model.

For analysis of a photonic crystal cladding, which consists of high index

strands arranged in hexagonal arrays embedded in a low index matrix, an

analytical method was developed using binary functions to straightforwardly

identify its band gaps. The analytical method enables analysis of parameter

changes that lead to deeper band gaps. It indicates that the guidance of

light in air is mostly possible with free-standing strands with air background

instead of a solid silica background. This was proven experimentally by

implementing the free-standing strands forming a “light cage” with 3D direct

laser writing. Moreover, the analytical method with binary functions is so

convenient that it is used to analyze the transmission bands of liquid-filled

band gap fibers. The results allow me to directly determine the refractive

index of the liquids filled in fibers through their transmission spectra, offering
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another way to investigate light-matter interaction with band gap fibers.

While the concept of photonic band gap is more about ideal periodic

structures extended into infinite, the reflection and transmission analysis

with a reflection-based planar model is more practical to be used for waveg-

uides with finite periodic structures and deliberately induced disorder. The

reflection-based planar model gives an insight into the scattering of the

structured cladding and offers an analytical approximation for the complex

refractive index of the core modes. Specifically, the reflection-based planar

model was applied to analyze the core modes of a single-ring microstructured

fiber, showing a reduction of loss for the case with deliberately induced mod-

ification of cylinders in the cladding. Further, a design of water-core all-solid

band gap fiber was proven by the mode analysis using the reflection-based

planar model, which was also confirmed with numerical calculation.
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Zusammenfassung

Anstelle der traditionellen Indexführung können mikrostrukturierte Fasern

Licht in einem Kern mit einem niedrigeren Brechungsindex als dem des

Mantels führen, indem sie Mechanismen wie die photonische Bandlück-

enführung, die sogenante Inhibited-Couping und die Antiresonanzführung

nutzen. Ihre Führung ist in der Regel undicht und hängt von den photonis-

chen Eigenschaften des strukturierten Mantels ab. Die Führung der pho-

tonischen Bandlücke ist insbesondere mit photonischen Kristallen möglich,

deren photonische Bandlücken unterhalb des Brechungsindexes des Kerns

auftreten. Die Führung in einem Kern mit niedrigem Brechungsindex oder in

einem Hohlkern ist für Anwendungen in den Bereichen Bioanalytik, Quan-

tengas, Lasers und andere, bei denen das Licht mit eingeschlossener Materie

mit niedrigem Brechungsindex wechselwirkt, interessant. Meine Arbeit zielt

darauf ab, die Möglichkeit der Hohlkernführung mit einem vollständig festen

mikrostrukturierten Mantel zu untersuchen. Im Idealfall sollte ein solcher

Hohlkernwellenleiter deutliche Vorteile gegenüber Kapillaren haben. Außer-

dem übertrifft er die löchrigen Hohlkern-Bandlückenfasern in den optofulidis-

chen Anwendungen, indem er das unerwünschte Eindringen der Flüssigkeit

in die Mantelkanäle verhindert. Um das Design des idealen Hohlleiters zu

erreichen, habe ich zwei Modelle für alle relevanten Moden in mikrostrukturi-

erten Fasern entwickelt: eine analytische Methode mit binären Funktionen

und ein auf Reflexion basierendes planares Modell.

Für die Analyse eines photonischen Kristallmantels, der aus Strängen

mit hohem Brechungsindex besteht, die in hexagonalen Arrays angeordnet

und in eine Matrix mit niedrigem Brechungsindex eingebettet sind, wurde

eine analytische Methode entwickelt, bei der binäre Funktionen verwen-

det werden, um die Bandlücken auf einfache Weise zu ermitteln. Die an-

alytische Methode ermöglicht die Analyse von Parameteränderungen, die

zu tieferen Bandlücken führen. Sie zeigt, dass die Lichtführung in der Luft

vor allem bei freistehenden Strängen mit Lufthintergrund anstelle eines

festen Siliziumdioxid-Hintergrunds möglich ist. Dies wurde experimentell

bewiesen, indem die freistehenden Stränge, die einen “Lichtkäfig” bilden,

mit 3D-Laserdirektschreiben implementiert wurden. Darüber hinaus funk-

tioniert die analytische Methode mit binären Funktionen so gut, dass sie zur

Analyse der Transmissionsbänder von flüssigkeitsgefüllten Bandlückenfasern
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verwendet wird. Die Ergebnisse ermöglichen es mir, den Brechungsindex der

in die Fasern eingefüllten Flüssigkeiten anhand ihrer Transmissionsspektren

direkt zu bestimmen, was eine weitere Möglichkeit zur Untersuchung der

Licht-Materie-Wechselwirkung mit Fasern mit Bandlücken darstellt.

Während sich das Konzept der photonischen Bandlücke eher auf ideale

periodische Strukturen bezieht, die ins Unendliche ausgedehnt sind, ist die

Reflexions- und Transmissionsanalyse mit einem reflexionsbasierten planaren

Modell praktischer für Wellenleiter mit endlichen periodischen Strukturen

und absichtlich herbeigeführter Unordnung. Das reflexionsbasierte planare

Modell gibt einen Einblick in die Streuung des strukturierten Mantels und bi-

etet eine analytische Näherung für den komplexen Brechnungsindex der Kern-

moden. Konkret wurde das reflexionsbasierte planare Modell zur Analyse der

Kernmoden einer mikrostrukturierten Ein-Ring-Faser angewandt und zeigte

eine Verringerung des Verlusts für den Fall einer absichtlich herbeigeführten

Modifikation der Zylinder im Mantel. Weiterhin wurde durch die Modenanal-

yse unter Verwendung des reflexionsbasierten planaren Modells ein Design

für eine Festkörper-Bandlückenfaser mit Wasserkern nachgewiesen, das auch

durch numerische Berechnungen bestätigt wurde.
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Nomenclature

Physics Constants

β Propagation constant

∆ Refractive index profile height

Λ Pitch of photonic crystal

n Refractive index

Abbreviations

AR Anti-Resonant

ARROW Anti-Resonant Reflecting Optical Waveguide

DOS Density of States

FEM Finite Element Method

GVD Group Velocity Dispersion

LFBG Liquid-filled Band Gap

MWEQ Maxwells Equations

PBG Photonic Band Gap

PCF Photonic Crystal Fiber

RI Refractive Index

RMSE Root Mean Square Error

SEM Scanning Electron Microscope

TOC Thermo-optic coefficient
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Other Symbols

C2Cl4 Tetrachloroethylene

CO2 Carbon dioxide

CS2 Carbon disulphie
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1Introduction

1.1 Context
Conventional optical fibers have been popularly used in optical communi-

cation but still possess certain unwanted effects caused by the scattering,

absorption and material dispersion of their solid core. Specifically, the solid

core made of fused silica exhibits scattering from the minute variations in

the density of the glass (Rayleigh scattering) and absorption from vibrational

resonance of silica molecules at mid-infrared wavelengths [1–3]. Further

absorption in the solid core is caused by the presence of impurities, espe-

cially the inevitable -OH group from contamination with water during the

fabrication process [4]. The material dispersion of the solid core dominates

the group velocity dispersion and nonlinear optical effects of conventional

fibers [5]. As a result, the clarity of a conventional optical fiber is limited

and the propagation of pulses in conventional optical fibers faces inevitable

spectral broadening and unexpected nonlinear phenomena. These effects are

obstacles to using optical fibers for numerous real-world applications: for

example, research on the spectral fingerprint of gases requiring guidance in

the mid-infrared region; high energy delivery for ultrashort pulse lasers ex-

pecting maintaining pulse duration, beam quality, and power level. To avoid

the obstacles with conventional fibers, a hollow core optical fiber is attractive

for offering guidance with lower Rayleigh scattering, lower absorption and

lower nonlinearity.

Moreover, hollow core waveguides are expected to benefit future research

into light-matter interaction, i.e. optical sensing, spectroscopy and nonlinear

optical processes in gases. Previous research on light-mater interaction is

based on focused free-space laser beams or light propagating in a large core

capillary, which is of low efficiency and requires rather high power. Other

advanced investigation methods for light-matter interaction are using the

evanescent field of a tapered waveguide [6] or the enhanced field of the

surface plasmonic resonances of metal elements [7]. Both fields are localized,

only offering limited interaction areas. In contrast, with hollow core guid-

ance, light can be directly guided in the targeted matter over a long distance

with a high-quality beam profile, offering much more effective light-matter

interaction .
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Given the above, the development of hollow core fibers offers solutions

for applications of optical fibers requiring low loss in a wide wavelength

region or low nonlinearity for pulse propagation, as well as a novel platform

for light-matter interaction. A promising solution for hollow core guidance

is microstructured fibers using claddings of microstructured materials, like

photonic crystals.

Photonic crystal

A photonic crystal is an optical material composed of periodic arrangement

of material on a scale comparable to optical wavelengths. Photonic crystals in

nature account for structural coloration, for example, the iridescent colors of

precious opals or peacock tail feathers. The physics behind this phenomenon

lies in the interference of the scattered light from the fine structured materials.

The optical properties of photonic crystals highly depend on their structures,

offering a convenient way to manipulate light.

The concept of photonic crystal was first brought up with promising

applications in 1987 in the work by Yablonovitch and John [8, 9]. After

that, these optical materials received significant attention. Photonic crystals

of one, two and three dimensions have been fabricated based on demands

for suppressing spontaneous emission of light in semiconductor lasers [8,

10], improving solar cells efficiency [11, 12], and applications as optical

waveguides [13, 14].

Optical properties of a photonic crystal are normally characterized by

photonic bands and photonic band gaps, as an analog to the bands and band

gaps of an ionic lattice for electrons in solids [15]. While the band in solid

state physics indicates the energy states of an electron allowed in the crystal,

the photonic band shows the spectral range of constructive interference, i.e.

light modes, supported in the photonic crystal. For example, in the direction

that the material is periodic arranged, the light of the wavelengths in the

photonic band can propagate in the photonic crystal, while the light of the

wavelengths in the photonic band gap is forbidden to propagate and reflected

by the photonic crystal. The inhibited propagation in the photonic band

gaps offers a novel possibility to achieve confinement of light with photonic

crystals.

Photonic crystal fibers

One important application of photonic crystals is the photonic crystal fiber

(PCF). A photonic crystal fiber consists of a two dimensional photonic crystal
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in the transverse plane and is invariant along the fiber axis. It has a purposely

induced defect, i.e. any structural feature that breaks the periodicity of the

photonic crystal, as core. Such defect core can be of a refractive index either

higher or lower than that of the cladding using different guiding mechanisms,

while the core of conventional fibers is always of a higher refractive index for

guidance with total internal reflection. In particular, the guiding properties of

a photonic crystal fiber can be manipulated by its cladding structure in ways

not previously attainable, resulting in rapidly growing interest in developing

photonic crystal fibers.

The fabrication of PCFs is, however, highly challenging. The first PCF

was reported to be successfully fabricated in 1996 by the group of Russell

[16], which was followed with an explosion of all kinds of PCFs [17, 18].

To fabricate a PCF of silica, the stack-and-draw technique [18] has been

most widely used. The process of stack-and-draw technique includes: first,

the preform, a scaled-up model of the desired fiber structure, is created by

stacking millimeter-size capillaries together and inserting the stack into a

glass tube; then, the preform is fused during drawing into the cane, which has

a diameter of millimeter; finally, the cane is drawn into the fiber of desired

dimensions. The parameters of the fabrication process such as the tempera-

ture, preform feeding rate, drawing speed and the air-pressure applied inside

the preform must be carefully tuned to have structures of regularity. With the

stack-and-draw technique, hundreds of meters PCFs with structured cladding

can be fabricated from a single preform. Alternatively, extrusion-and-draw

technology has also been reported for the fabrication of soft glass PCFs [19].

In a recent work, polymer PCFs of different microstructures were directly

fabricated with an extrusion-only technology [20]. Meanwhile, a hollow-core

concentric ring structure fiber of two different materials was fabricated by

drawing a layered preform, which in turn was formed by depositing lay-

ers onto a film and subsequent rolling of the coated film into a tube [21].

Considering the drawing process, the combined materials have to be ther-

mally compatible to avoid cracking or delamination in the layered structure.

In addition, hybrid photonic crystal fibers were fabricated by combining

semiconductors, soft glasses or liquids into all-silica PCFs [22–25]. Further

post-processing methods were also developed to modify photonic crystal

fibers for novel applications, like photonic crystal fibers Bragg gratings [26]

or exposed-core fibers [27, 28].
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One kind of PCFs has a core with a refractive index higher than that of its

photonic crystal cladding, i.e. a solid core and a cladding of numerous air

voids. The guidance mechanism in such PCFs is referred to as modified total

internal reflection, for unlike cladding of conventional fibers, the photonic

crystal cladding has dispersion dominated by structural dispersion. Structural

dispersion corresponds to the dispersion of the supported modes and can be

engineered by the structure of the material. Therefore, with proper designs,

such PCFs exhibit unique guiding properties, like single-mode propagation in

a broad wavelength range independent of core size[29, 30] and near-zero

flattened modal dispersion[31]. Moreover, such PCFs allow higher index

contrast of core-cladding and smaller attainable core, leading to high nonlin-

ear response with anomalous group-velocity dispersion (GVD) in the visible

range[32–34]. Such PCFs are used particularly for high-power delivery and

lasers requiring large mode area (LMA) single-mode guidance[30, 35] and

the generation of a single-mode broadband optical supercontinuum [33, 36,

37].

The other kind of PCFs can guide light in a core of refractive index lower

than that of its cladding. Specifically, their cladding consists of a high ratio

of the low-index part with arrays of connected high-index junctions or even

isolated high-index strands in case of hollow-core band gap fibers [38, 39] or

all-solid band gap fibers[40, 41] respectively. In these cases, the dispersion of

modes in the photonic crystal cladding form photonic bands and band gaps

[42]. Such PCFs exhibit radically different guiding properties, i.e. spectral

selective transmission, strong mode dispersion near band gap edges, and

offer guidance in a low-index core. The work in this thesis is focused on this

kind of PCFs.

Development of hollow core fibers

Hollow core fibers appeared last century and are still evolving along

with fabrication techniques and an increased understanding of their working

principle. So far, hollow core guidance has been achieved with Bragg fibers,

band gap hollow core fibers, Kagome fibers and negative curvature fibers.

The first non-capillary hollow core fiber shown to guide light had a cylin-

drical hollow core surrounded by periodic multilayer films of alternating high

and low refractive index, i.e. a Bragg fiber. The possibility of using Bragg

reflection from a multiannulus cladding in a cylindrical fiber to guide light in

a low-index core was first proposed and analyzed by Yeh et al. in 1978, show-
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ing light guidance with mode filtering effect[43]. Later, researchers reported

on the design of multilayer films to have omnidirectional reflectivity[44],

which lead to a hollow-core Bragg fiber confining light by omnidirectional

reflection (figure 1.1(A))[21]. Such omnidirectional Bragg fibers have strati-

fied cladding with adequate index contrast to provide photonic band gaps.

One such fiber design achieves loss of around 1.0 dB m−1 at 10.6 µm wave-

length for the carbon dioxide (CO2) laser light and is applied to deliver

high power CO2 laser for surgery[45]. Further applications of such fibers

working in shorter wavelengths below 2 µm are limited by the challenges in

fabrication and finding new material systems with compatible thermal and

thermo-mechanical properties.

Then, hollow-core PCFs with cladding of two-dimensional periodic struc-

tures were developed based on the stack-and-draw technique. The hollow

core guidance in a silica-air photonic crystal fiber permitted by the full 2D

band gaps was first proposed by Birks et al. in 1995[46] and then experi-

mentally proven by the light guidance in a large air core surrounded with

triangular array of air holes in silica[38]. Better guidance in this kind of

hollow core photonic crystal fibers was later achieved by increasing the air

filling fraction in the holey cladding to a structure as shown in figure 1.1(B).

It has been shown that loss of such hollow-core photonic crystal fiber can

be reduced to 1.2 dB km−1[47], an order higher than the achievable loss of

conventional fibers. The loss is dominated by the scattering due to the surface

roughness from the frozen-in surface capillary waves.

The guidance of light in the above described hollow-core fibers is ensured

by the band gaps of the cladding modes, in which no core modes propagate

into the cladding. However, band gap is not the prerequisite for guidance.

Kagome fibers, with a lattice of thin layers around the hollow core, can

guide light in a wide range of wavelengths where the density of the cladding

modes is relatively low. The guidance mechanism in this case is referred

to as inhibited coupling guidance for the core and cladding modes of same

effective indexes hardly couple with each other [48–50]. Kagome fibers show

relatively high loss, but offer broadband guidance in a hollow-core inspiring

applications in gas-based nonlinear optics [51–53].

Further understanding of the guidance mechanism has shown that for

Kagome fibers, only the first few layers around the hollow-core matters for

the confinement loss (not the case for bend loss), leading to the simplified
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version of such fibers [54–56]. The simplified fibers are usually referred to

as anti-resonant fibers, which have high losses at the wavelengths consistent

with the resonances of the high-index structures in the cladding as indicated

by the anti-resonant reflecting optical waveguide (ARROW) model[57, 58].

Later research indicated that the shape of the layer around the core can

be designed to enhance the coupling inhibition[59–61], which leads to the

so-called negative curvature fibers as depicted in figure 1.1(C-F). Negative

curvature fibers play an important role for hollow core guidance in recent

years for the reduced complexity in fabrication and the promised possibility

of lower loss than conventional fibers [62–67].

Band gap guidance

2002 2005

Inhibited coupling guidance

𝑻

2006

2011 2013 2018

700µm

A

20µm
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50µm

C

120µm

E

30µm
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Loss (dB/m)

1.0dB/m 
@10.6µm
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1

10-1

10-2

10-3
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@1.3µm 

D

100µm

34dB/km
@3.05µm

10-4

50dB/km 
@3.39µm  

2.0dB/km
@1.512µm

Conventional fiber 0.15dB/km@1.55µm 

2012

Fig. 1.1: Key development of hollow core fibers with the representative structures
shown by their SEM picture (A-F). The indicated loss levels at certain
wavelengths correspond to the structures of the labeled core dimensions
[21, 47, 59, 65, 68, 69].

1.2 Objective of the study
Photonic crystals have been developed as a powerful tool to manipulate light

without constraints of ready natural materials. Particularly, for hollow core

guidance, instead of searching for materials with suitable spectral properties

(like metals, working for limited frequencies), we can use a photonic crystal.

The spectral characteristics of the photonic crystal can be designed straight-

forwardly with the refractive index contrast of its component materials and

the dimensions of the structure. Many kinds of hollow core fibers, using

band gaps or inhibited coupling, have been reported as introduced in the last
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section. However, their holey cladding makes them delicate and not suitable

for some applications requiring guidance of light in liquids.

Our key objective is to investigate the possibility to have hollow core

guidance with an all-solid microstructured cladding. Ideally, such a hollow

core waveguide has obvious guidance advantages over capillaries and also

surpasses the holey hollow core band gap fibers in the optofulidic appli-

cations by avoiding undesired penetration of the liquid into the cladding

channels. For the objective, we propose a conceptual hollow core waveguide

(figure 1.2), which has a large hollow core in the center and a cladding of

the all-solid photonic crystal fiber. The all-solid photonic crystal cladding,

which consists of high index strands in periodic arrays embedded in a low

index matrix, guides light in a solid core for all-solid band gap fibers [40, 41]

and no hollow core guidance with it has been reported.

Air core

silica

High index 
strands

Fig. 1.2: Depicture of a hollow core fiber with all-solid photonic crystal cladding.

To achieve guidance in the proposed waveguide, the work is focused on:

• modeling the band gap of all-solid band gap cladding.

• analyzing the key parameters of all-solid band gap cladding leading to

band gaps below the low index material in the core (air/liquids).

• modeling the guided core modes with all-solid photonic crystal cladding.

• investigating loss dependence of the core modes on specified disorder

induced in the cladding structure.

• designing the proposed hollow core fiber with a central hollow core

and an all-solid cladding.

1.2 Objective of the study 7



1.3 Structure of the thesis
In the thesis, two models were developed for all relevant modes in microstruc-

tured fibers: an analytical method with binary functions and a reflection-

based planar model, which were applied for different types of hollow core

waveguides. The contents of the following chapters are briefly introduced

here.

Chapter 2 includes the physical background of light propagation and

modes in fibers based on the electromagnetic wave theory. Specifically, the

basics of analytical methods as well as the numerical simulation methods are

introduced.

In Chapter 3, an analytical method with binary functions is developed

offering a straightforward way to identify the band gaps of an all-solid band

gap cladding. This method is used for analyzing the key parameters affecting

the depth of the band gaps. Another semi-analytical method is developed for

the core modes in a large core microstructured fiber. This method is applied

to a large core anti-resonant fiber to calculate the complex effective index of

the core modes and do massive parameters sweeping for its loss dependence.

It is shown that a reduction of loss is achieved for the case with deliberately

induced disorder in the cladding.

In Chapter 4, a design of water core all-solid band gap cladding fiber is

proven. An intensive study of the guided modes in the designed fiber is done

with the self-developed semi-analytical method, which is also confirmed with

numerical simulations. Besides, a hollow core waveguide, which consists

of suspended polymer strands, is analyzed theoretically with simulations

and experimentally implemented on chip with 3D laser writing. It shows

guidance of light in the visible region in an air core.

In Chapter 5, the analytical method with binary functions for simulat-

ing the band gaps of all-solid band gap cladding is used to analyze the

transmission bands of liquid-filled band gap fibers. The results allow direct

determination of the refractive index of the liquids filled in fibers and show

the thermal effect of the filled liquids in a wide spectral range.

These chapters are followed by a conclusion of the work and an outlook

for further research on this topic in Chapter 6.
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2Theoretical Background

This part of the thesis includes the theory that my work is based on. It

starts with the electromagnetic waves described by Maxwell’s equations and

their interaction with matters. Then, the modes in waveguides, including

conventional step index fibers and photonic crystal fibers, are introduced in

detail. The involved numerical simulation methods are briefly introduced

at the end of this chapter. All discussions here are from the view of classic

physics, quantum optics is beyond the scope of this work.

2.1 Electromagnetic Wave
Light can be described as electromagnetic waves following Maxwell’s equa-

tions. The interaction of light with materials happens through the magnetiza-

tion and polarization of the material as shown by the constitutive relations.

Based on Maxwell’s equations and the constitutive relations, solutions of

electromagnetic waves in dielectric medium of any shape are theoretically

solvable with heavy numerical calculation. A less complex case of circular

symmetry medium with step index profile can be solved analytically us-

ing scalar wave equation and boundary conditions of Maxwell’s equations.

The scaling properties of the electromagnetic wave should be noticed for a

straightforward extension of the solutions from one case to another. Details

about the relevant derivation could be found in any textbooks on photonics

and waveguides, for example [70, 71].

2.1.1 Maxwell’s equations
In electromagnetic theory, the propagation of the electromagnetic wave is

well described by Maxwell’s equations:

∇× E = −∂B
∂t
, (2.1a)

∇×H = j + ∂D
∂t
, (2.1b)

∇ · D = ρ, (2.1c)

∇ · B = 0. (2.1d)

where E(r, t) is electric field, H(r, t) magnetic field, D(r, t) electric flux density,

B(r, t) magnetic flux density, j(r, t) conductive current density and ρ free

9



charge density. The electric and magnetic flux density D(r, t) and B(r, t)
are related to the fields E(r, t) and H(r, t) with the electric and magnetic

properties of the medium.

D = ε0E + P, (2.2a)

B = µ0(H + M). (2.2b)

where µ0 = 4π × 10−7V s/Am is the magnetic constant (permeablility) of

vacuum, ε0 = 8, 854 × 10−12As/V m is the electric constant (permittivity)

of vacuum. This is the so called constitutive relations. For nonmagnetic

dielectric medium, magnetization density M(r, t) = 0. The polarization

density P(r, t) represents the macroscopic sum of the electric dipoles induced

by the electric field in the medium, which can be expressed with the following

equation:

P = ε0χE (2.3)

where χ is the electric susceptibility of materials. Then, the permittivity

of materials is defined as ε = ε0εr = ε0(1 + χ), where εr is the relative

permittivity of materials. Therefore, for a nonmagnetic medium with rela-

tive permittivity εr, the general case throughout our work, the constitutive

relations is reduced to:

D = ε0εrE, (2.4a)

B = µ0H. (2.4b)

Using these constitutive relations (Eqs. 2.4), the wave equation for electric

field in a medium is derived from Maxwell’s equations (Eqs. 2.1). To get rid

of the partial derivatives, the field is decomposed into monochromatic waves

with complex amplitude and harmonic time dependence, E(r, t) = Ē(r)eiwt.

When Fourier transform of the field into frequency domain, we have: ∂/∂t =
−iw. Therefore, for a charge free and non-conductive dielectric medium

(ρ = 0 and j = 0), the frequency-domain wave equation is:

∇× (∇× Ē)− w2

c2 εrĒ = 0, (2.5a)

∇ · (ε0εrĒ) = 0. (2.5b)

10 Chapter 2 Theoretical Background



where c =
√

1/(µ0ε0) is the speed of the electromagnetic wave in vacuum.

An obvious solution of the wave equation is a monochromatic plane wave:

E(r, t) = E0exp[i(k · r − wt)], where k is the wave vector. By substituting

the plane wave solution into equation 2.5, we get the dispersion relation

condition for electromagnetic waves in a free-space medium of relative

permittivity εr:

|k| = w

c

√
εr = w

c
n. (2.6)

where n is the complex refractive index of the medium. It is an important

concept that is adopted to the waveguides’ modes, for which the dispersion

relation shows the propagation constant β, wave vector along the waveguide,

as a function of frequency (more details in section 2.3).

Electric and magnetic power (Pe and Pm) can be calculated with Poynt-

ing’s theorem as:

Pe + Pm = −
∫

V
(E · ∂D

∂t
+ H · ∂B

∂t
) dV =

∫
V

j · E dV +
∮

S
(E×H) · n dS.

(2.7)

where the first term on the right-hand side represents the resistive losses and

the second term represents the radiative losses. The Poynting vector, which is

defined as S(r, t) = E(r, t)×H(r, t), shows the direction of the radiation flow.

2.1.2 Scalar wave equation and the boundary
conditions

The wave equation deduced above (equation 2.5) is true everywhere but

is troublesome to solve if it is not solved with numerical methods using

a computer. In the case of linear, homogeneous and isotropic medium,

the susceptibility and permitivity are complex scalar numbers and each

component of the field E and H just satisfies the simplified wave equation,

i.e. the scalar wave equation shown below:

∇2ψ − w2

c2 ψ = 0, (2.8)

For a dielectric medium with step index profile, for example a step index

fiber with a core of refractive index nco surrounded by a cladding of ncl, the

2.1 Electromagnetic Wave 11



scalar wave equation 2.8 is valid within either the core or cladding but not on

the core-cladding interface. At the interface of two homogeneous mediums,

the fields follow the boundary conditions expressed mathematically as:

n2 × (E1 − E2) = 0 (2.9a)

n2 · (D1 − D2) = ρs (2.9b)

n2 × (H1 −H2) = Js (2.9c)

n2 · (B1 − B2) = 0 (2.9d)

where the subscript 1 and 2 denote the medium, respectively and n2 is the

outward normal from medium 2. ρs and Js are surface charge density and

surface current density, in the absence of which, the tangential component of

the magnetic field H and the normal component of the electric flux densities

D are continuous.

To have solutions everywhere for a dielectric medium with step index

profile, we can impose the boundary conditions on the solutions of the scalar

wave equation derived in each homogeneous region instead of solving the

vector wave equation 2.5 everywhere.

For a simple case of two half-infinite homogeneous mediums in x-y plane,

where the boundary is along y direction, applying boundary conditions to the

plane wave solutions of two mediums shows that the tangential components

of the wave vectors should be continuous: ky
1 = ky

2. Therefore, the normal

components of the wave vector in the second medium can be expressed as:

(kx
2)2 = (k2)2 − (ky

1)2. For example, when light is propagating from a medium

of high refractive index n to air, we have the normal components of the wave

vector in the second medium as:

(kx
2)2 = w2

c2 (1− n2sin θi
2) (2.10)

where θi is the incident angle in medium 1. If n2sin θi
2 > 1, (kx

2)2 will be

negative and the normal components of the wave vector are pure imaginary,

which means the transmitted light decays exponentially from the interface

and the total internal reflection happens.
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2.1.3 Scaling properties of the Maxwell equations
There is no fundamental length scale regarding electromagnetism in dielectric

materials [14]. From the Maxwell wave equations, we see that for a solution,

like a plane wave E = E0e
iwt−kx with a set of parameters: wavelength λ,

refractive index n of the material (real value) and the length scale x, there

can be another solution with a set of parameters λ′, n′ for x′, which are

related to the original set of parameters as:

nx

λ
= n′x′

λ′
(2.11)

The scaling properties work as well for the harmonic modes of a waveg-

uide in the following sections. For example, when the structure supports a

mode with one wavelength, we can scale up the core of the structure with

a factor of two so that it supports a mode for a doubled wavelength, which

alternatively can also be achieved by multiplying the refractive index in the

core of the structure and that of the surroundings by a factor of two. In

practice, this simple fact makes all the designs of waveguides possible to

scale.

2.2 Optical properties of matter
Light propagates in vacuum with a speed of c, while in a medium of index n+
iα with a speed of c/n and a reduction of the intensity I = I0 exp{−αz} (no

nonlinear effect is considered here). The optical properties of the medium can

be physically expressed with its electric susceptibility as defined in equation

2.3, which is frequency dependent. A simple oscillator model is used for

modeling the optical properties of insulators, which results in the dispersion

of the refractive index of materials expressed by the Sellmeier formula[15].

Changing of the status of the medium due to the change of surrounding

temperature leads to modified optical properties.

2.2.1 Sellmeier formula
The reaction of the bound electrons or the phonons of the lattice in a medium

to electromagnetic waves is expressed with the polarization density P , which
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can be modeled as harmonic oscillation driven by the electric field and

described by the following equation:

∂2

∂t2
P(t) + γ

∂

∂t
P(t) + w2

e/lP(t) = Ne2

µ
E(t) (2.12)

where γ is the damping rate, we/l is the resonant frequency of electron-

ic/vibrational dipoles, N is the number of atoms per unit volume, e is the

magnitude of the electric charge of the electron, µ is the effective mass and

E is the electric field of the light wave. The Fourier transform of equation

2.12 gives:

P̄(w) = Ne2

µ

1
w2

e/l − w2 − iwγ
Ē(w) (2.13)

which combined with equation 2.3, suggests that the complex susceptibility

of a medium can be expressed with frequency as:

χe/l(ω) = Ne2

ε0µ

1
w2

e/l − w2 − iwγ
(2.14)

Therefore, the complex permitivity of an insulator can be modeled as

equation 2.15 for certain wavelength range, in which the second term repre-

sents the influence of the electronic resonance in the UV region and the third

term the lattice vibrational resonance in the IR region.

ε(ω) = 1 + χe(ω) + χl(ω) (2.15)

At wavelengths away from the resonances of the medium, the damping

term can be negligible and the refractive index of a medium is expressed as

the Sellmeier formula.

n2(ω) = 1 +
∑

i

fi

w2
i − w2 , fi = Ne2

ε0µi

(2.16)

where i = e, l would be enough for the dispersion of the refractive index of

insulators from UV to IR region.

2.2.2 Thermo-optic coefficient
Optical properties of a medium are influenced by its environmental tempera-

ture. The variation of refractive index of a medium regarding the change of

temperature can be described by the thermo-optic coefficient (TOC: dn/dT ).
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Studies have been done for optical solid materials, such as glasses [72, 73],

which results in a model relating the TOC to the thermal expansion and the

temperature dependence of the optical band gaps of the material.

Refractive index and its dispersion can be modeled with the electronic

resonance in the UV region we and the lattice vibrational resonance in the IR

region wl as shown by equation 2.16 in the last section. The shift of the lattice

vibrational resonance by temperature is considered negligible compared to

the other effects for most of the optical glasses. Therefore, differentiating

equation 2.16 with respect to temperature, T , gives:

2ndn
dT

= ( 1
w2

e − w2 ) d
dT

(fe)−
fe

(w2
e − w2)2

d

dT
(w2

e), fe = Ne2

ε0µe

. (2.17)

For fe is inversely proportional to the volume of a material, d(fe)/dT
is related to the thermal expansion of the material. Since most optical

materials expand with increasing temperature, the first term of equation 2.17

contributes a negative thermo-optic coefficient. The second term depends

on the thermal sensitivity of the band gaps of the materials, in which the

excitonic band gap was claimed to have the dominant contribution to TOC.

The excitonic band gap decreases with temperature, therefore, the second

term contributes a positive thermo-optic coefficient. From equation 2.17, we

can see that the thermo-optic coefficient is again a function of both frequency

and temperature.

2.3 Modes in waveguides
Electromagnetic waves can propagate along waveguides, while they are

confined to one or two dimensions. These particular solutions are the modes

of the waveguides. For example, optical fibers have light confined in the

transverse plane as fiber modes and propagating along the axial direction.

Its working principle can simply be understood as following: waves reflected

by the boundary of the waveguides interfere with the original waves and,

depending on its geometry and index profile, waves of certain wavelengths

have constructive interference resulting in spatially stable patterns in the

waveguide. The modes are referred to as guided modes if the reflection on

the boundary is complete and otherwise are called leaky modes.

In this section, I would first introduce the guided modes of a conventional

step index fiber with basic concepts, for example, the effective RIs of the
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propagating modes and their dispersion. Then, for band gap PCFs, the

extended Bloch modes of the photonic crystal cladding are introduced. An

analytical model, Birks’s model, is introduced to calculate the photonic band

gap (PBG) maps. Finally, the leaky core modes supported in the band gaps

of a PCF are introduced as defect modes. Besides, I will introduce the

reflection-based model developed in our group for analyzing the core modes

of large core antiresonance fibers, which I used later, for the core modes with

modified cladding structure and in a water-core photonic band gap fiber. We

leave the numerical methods for the calculation of core modes to the next

section.

2.3.1 Guided modes in a step index fiber
A step index fiber is characterized by its index profile, which has a core of

the higher index and cladding of the lower index as sketched in the inset of

figure 2.1. Such fiber supports discrete modes confined in its core by total

internal reflection. The propagation of a mode is usually described by the

component of wave vector in the longitudinal direction, i.e. the propagation

constant: β = k0 · neff , where neff is defined as the effective refractive index

of the mode. To analyze the guidance of a fiber, the propagation constants

(or effective index) of different modes are solved.

In practice, the scaling properties of the electromagnetic wave suggest

several normalized parameters to serve the calculation of the fiber modes.

The common ones used in text books are U, V and W defined by the following

equations:

U = 2πR
λ

√
n2

eff − n2
cl (2.18a)

V = 2πR
λ

√
n2

co − n2
cl (2.18b)

W =
√
V 2 − U2 (2.18c)

where nco and ncl are the refractive index of the core and cladding respectively,

R is the radius of the core. We can see that the parameters R and λ can be

scaled up or down together and the solutions, U, V and W , will stay the same

as long as we keep the ratio R/λ constant. Besides, by keeping the contrast

of the refractive index constant, the refractive index of the core and cladding

can also be scaled together without changing those normalized solutions.
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Normally, the contrast of the refractive index for a step index fiber is defined

by the index profile height:

∆ = 1
2

(
1− n2

cl

n2
co

)
. (2.19)

For a specified step index fiber with fixed ∆, the homogeneous scalar

wave equation for the field components within the cladding and core suggests

solutions in the form of Bessel functions. By imposing boundary conditions to

those solutions, we can have a characteristic equation for the fiber as shown

below:

{
J ′n(U)
UJn(U) + K ′n(W )

WKn(W )

}{
J ′n(U)
UJn(U) + n2

cl

n2
co

K ′n(W )
WKn(W )

}
=
(
nβ

knco

)2 (
V

UW

)4
,

(2.20)

where J , K are the Bessel functions and n is an integer showing the order of

the solution.

From the characteristic equation, we can solve the normalized parameters

and therefore the propagation constant of the fiber modes. In figure 2.1, we

plot the solutions, U versus V, for a step index fiber of index profile height

∆ = 0.2. Discrete modes supported by fiber are labeled as TEnm modes

( Ez = 0), TMnm modes ( Hz = 0) and hybrid modes HEnm and EHnm

(Ez 6= 0, Hz 6= 0), where two integers ‘nm’ shows that it’s the m’s solution of

the n’ order. For a particular fiber (nco, ncl and R are fixed), the plot shows

the dependence of the normalized propagation constant on the frequency

(1/λ), the dispersion of the modes. The dispersion of the modes cut off at

U = V , where the effective refractive index equals the refractive index of the

cladding (β = k0 · ncl) and light leaks out to the cladding.

When the index contrast between the core and cladding is considerably

small (nco ≈ ncl and ∆� 1), the weakly guiding approximation is available

for the waveguides and we can apply scalar wave equation everywhere. In

this case, we have neff ≈ nco meaning that the transverse component of

the wave vector of the guided modes is much smaller than its longitudinal

component β and the polarization influence of the index step at the boundary

can be ignored. Applying the condition that the solution of the scalar wave

equation and its first derivative are everywhere continuous at the boundary

leads to the characteristic equation for this scalar case. In figure 2.2, the
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Fig. 2.1: Modes dispersion in a step index fiber (index profile height ∆ = 0.2) with
normalized parameters U regarding V. Dashed line shows the cut off of the
modes. Inset is a sketch of the step index fiber and its index profile.

HE11                    (l=0, m= 1)

TE01, TM01, HE21     (l=1, m= 1)

EH11, HE31          (l=2, m= 1)

HE12             (l=0, m= 2)

∆ = 0.02

V
86420
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∆U
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HE11

∆

Fig. 2.2: Modes dispersion calculated with the weak guiding approximation (red
line) compared with the exact solutions (blue line) for a step index fiber
of index profile height ∆ = 0.02. Inset plots the difference between the
solutions of the approximation method and the exact method for the
fundamental mode HE11 with ∆ of the values 0.02, 0.05, 0.1 and 0.2.

solutions calculated for the scalar case are plotted together with the solutions

for the vector case for a fiber of ∆ = 0.02. We can see that in the case of low

index profile height, higher order modes degenerate and the scalar solutions
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(noted with the order l and the number of solutions m) can represent the

degenerated modes quite well. The guided modes in this case are called linear

polarized modes (LP modes), which have a large β ≈ k0nco and approximated

TEM field: Ez ≈ 0 and Hz ≈ 0.

The plot of the inset in figure 2.2 shows the difference of the approximated

scalar solutions from the exact ones (∆U) for the fundamental mode HE11.

We see that the difference decreases with the reduction of ∆ value. Besides,

for the same ∆, a smaller difference can be expected for a large V, which

indicates that the weakly guiding approximation works better in case of a

large R/λ. Therefore, a large core compared to the working wavelengths is a

condition to use weakly guiding approximation in addition to the condition

of a small index profile height for a fiber.

2.3.2 Bloch modes in photonic crystals
The photonic crystal cladding of a photonic band gap fiber consists of periodic

arrays of high index strands in a low index matrix (figure 2.3(A)). Such

photonic crystal, with index profile of discrete translational symmetry in the

transverse plane, supports Bloch modes, which show continuous photonic

bands and band gaps in spectra. The numerical methods to calculate Bloch

modes and its band gaps will be introduced in the later section. Here, to

have an insight into the formation of band and band gaps of Bloch modes, I

will introduce a simplified model by Birks et. el., referred to as Birks’ model

in the thesis, to solve bands and band gaps of Bloch modes [74].

ʌ 𝒏𝒍𝒐

𝒏𝒉𝒊

A

Unit cell

2a

a rb

Field Intensity 

Most anti-bonded 
mode 

Most bonded 
mode         

Unit cellB

ʌ/2
a

Birks’ Model

r

b

Fig. 2.3: Sketch of a photonic band gap fiber (A) and the basic concept of Birks’
model (B). The plot is calculated based on the parameters in the literature
[74] for two edge modes as an example.

2.3 Modes in waveguides 19



In Birks’ model, the photonic band gap cladding is defined by a hexagonal

unit cell as sketched in figure 2.3(B). The unit cell has one high index strand

in the center and periodic boundaries, including all the key parameters

of the photonic crystal: the radius of the strands a, the distance between

the neighboring strands Λ and the high and low index nhi, nlo. This unit

cell is further approximated by a circular cell, whose radius is defined as

b = (
√

3/2π)1/2Λ to preserve the area ratio of the strand in the unit cell.

Besides, weekly guiding approximation is applied for low index contrast

between nhi and nlo (or more precisely a large β resulting from a large a/λ

and low index contrast as discussed in last section). Therefore, the analysis

is simplified to a scalar problem separable in cylindrical coordinates.

The key idea for find the bands of Bloch modes is, drawn from the

solid-state physics, that the top and bottom of a band are defined by the

Bloch modes with the most bonding and the most anti-bonding character,

respectively. In the case of a square lattice of strands, the top and bottom

modes are those determined by two alternative boundary conditions at the

periodic boundary of the unit cell: Ψ(b) = 0 defining modes with anti-mirror

lines along the cell boundaries as the most anti-bonded modes; ∂Ψ(b)/∂r = 0
defining modes with lines of mirror symmetry along the boundaries as the

most bonded modes, where Ψ is the field and r is normal to the cell boundary.

In the case of a hexagonal lattice, the nature of bonded and anti-bonded

modes is not as clear leading to a more complex problem. Nevertheless,

as shown below in figure 2.4, the application of these boundary conditions

identified for the square lattice to the hexagonal unit cell still gives good

approximation to the band structure[74].

Thus the top and bottom modes of the band are found by solving the scalar

wave equation for the unit cell with two alternative boundary conditions.

First, the general solutions of the fields in different regions of the circular

unit cell corresponding to the LPlm mode of the rod is assumed as

Ψ(r) =



Jl(Ur/a) r ≤ a

AKl(Wr/a) +BIl(Wr/a) r > a, β − knlo > 0

CJl(Qr/a) +DYl(Qr/a) r > a, β − knlo < 0

E(r/a)l + F (r/a)−l r > a, β − knlo = 0, l 6= 0

G+H ln r/a r > a, β − knlo = 0, l = 0

(2.21)
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multiplied by any linear combination of cos(lθ) and sin(lθ). Jl, Yl, Il and Kl

are Bessel functions, A to H are unknown constants and U , W and V are the

waveguide parameters for the strands:

V 2 = k2a2(n2
hi − n2

lo)

W 2 = a2(β2 − k2n2
lo) = −Q2

U2 = a2(k2n2
hi − β2) = V 2 −W 2.

Then, applying the continuity conditions for the fields on the material

boundary r = a (the same as for the weakly guiding step-index fiber) and

the alternative boundary conditions on the periodic boundary r = b gives

characteristic equations for propagation constant β of the edge modes, which

is written as:

g(V,W 2) = 0 (2.22)

with separated cases for the top modes of a band

gtop(V,W 2) =



[AK ′l(αW ) +BI ′l(αW )]W/U l W 2 > 0

[CJ ′l (αQ) +DY ′l (αQ)]Q/U l W 2 < 0

[Eαl − Fα−l]l/αV l W 2 = 0, l 6= 0

H/α W 2 = 0, l = 0

(2.23)

and for the bottom modes of a band

gbottom(V,W 2) =



[AKl(αW ) +BIl(αW )]/U l W 2 > 0

[CJl(αQ) +DYl(αQ)]/U l W 2 < 0

[Eαl + Fα−l]/V l−1 W 2 = 0, l 6= 0

G+H ln /α W 2 = 0, l = 0

(2.24)

where α = b/a, J ′l is the derivative of Jl etc. The coefficients A to H are:

A = WIl+1(W )Jl(U) + UJl+1(U)Il(W ) E = V Jl−1(V )/2l

B = WKl+1(W )Jl(U)− UJl+1(U)Kl(W ) F = V Jl+1(V )/2l

C = [−QYl+1(Q)Jl(U) + UJl+1(U)Yl(Q)]π/2 G = J0(V )

D = [QJl+1(Q)Jl(U)− UJl+1(U)Jl(Q)]π/2 H = −V J1(V ).
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Finally, using the characteristic equation given above, the effective index

of the edge modes are solved by root searching methods with Python or

Matlab. The particular form of equation 2.23 and 2.24 are chosen to give

continuous and finite g(V,W 2) for root searching algorithm. [74].

In figure 2.4 (A), I plot the bands of the Bloch modes from numerical

simulation (green region) and band edge modes calculated from the Birks’

model (blue and dark green squares) using the parameters of the photonic

band gap cladding discussed in literature [74]. According to the scaling law

(see section 2.1.3), the contraction or expansion of Λ, a and λ all together

will not change the solution. Here, for fixed a/Λ and index profile, the band

gap map is plotted for the coordinate axis of the normalized parameters

(neff − nlo)2πΛ/λ and 2πΛ/λ.
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Fig. 2.4: (A) A band gap map with bands of the Bloch modes calculated from
numerical simulation (green region) and band edge modes from the Birks’
model (blue and dark green squares) for fixed a/Λ and index profile.
The calculations were done using parameters of the photonic band gap
structure discussed in the literature [74]. (B-D) Plots of the normalized
radial intensity profiles for the LP04 band corresponding to the labels in
(A): (B) a strands mode, (C) a top edge mode and (D) a bottom edge
mode.

The zero-line in the band gap map indicates the cut-off for highly-confined

modes in the strands (neff = nlo). We can see that much above the zero-line,

light is concentrated in the high index strands, corresponding to discrete

dispersion lines in the map (figure 2.4(B)). They are simply the weakly-

coupled LPlm modes of the strands and have labels l and m defining the
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azimuthal and radial variations respectively from the Birks’ model. Birks’

model allows us to track the dispersion of edge modes as they move below the

zero-line, where they split and extend forming bands. This can be ascribed to

the leak of light into the low index media and coupling between the strands

modes in case of neff < nlo. As we can see in figure 2.4(C-D), in this case

the strands mode is no longer concentrated in the high index strands and

has become hybridized with the modes in the low index regions between

the strands. The hybridized modes of different intensity distributions have

different effective indexes, which causes the splitting of the modes dispersion.

In particular, the most bonded mode has a higher effective index as the top

band edge and the most anti-bonded mode has the lower effective index as

the bottom band edge.

Overall, the band gap map from the solutions of the edge modes based

on Birks’ model is consistent with that from the solutions of the Bloch bands

using numerical methods, which will be introduced in the later section. Such

band gap map shows the band gaps below the zero-line, in which the photonic

band gap fiber offers guidance of the defect core modes.

2.3.3 Defect modes and the reflection model
The core of a photonic band gap fiber is formed by omitting one strand or

several rings of the high index strands of the photonic crystal lattice, which

is also referred to as a defect core. For example, the photonic band gap fiber

shown in figure 2.3(A) has a core of index as the background, formed by

omitting one high index strand. The modes confined in such defect core are

called defect modes.

The confinement of the defect modes is a result of band gap guidance

by the photonic crystal cladding. Band gap guidance is based on the optical

properties of microstructured materials, which is principally different from

the guidance with total internal reflection in a step index fiber or metallic

reflection in a metal tube. Interference is essential for all effects in respect of

band gap guidance. The reflection on the photonic band gap cladding can be

understood as due to the constructive interference of the scattered light for

certain wavelengths. Therefore, unlike guidance with total internal reflection,

which works for particular frequencies depending only on the materials, the

band gap guidance has working frequencies scaled with the geometry and

periodicity of the microstructured materials. In another word, with photonic
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band gap guidance, we can expect to change the guiding properties (shifting

the band gaps) by scaling the geometry of the photonic crystal cladding

instead of changing the composing materials.

The defect modes are characterized by the following facts: first, the

effective refractive indexes of the modes are smaller than the refractive index

of the defect core; second, the dispersion of the modes is limited to the

band gap of the photonic band gap cladding; third, the dispersion of the

modes anti-crosses with the bands of the cladding [71]. For a cladding of

infinite photonic crystal, the loss of the defect modes, especially bend loss, is

ascribed to the coupling of the core modes to the cladding modes, which can

be related to the effective index mismatch between the defect modes and the

nearest cladding modes [75]. In practice, the loss of the defect modes also

subjects to the absorption of the core materials and the tunneling of the light

through the finite extent of the photonic crystal cladding. A reduction of the

loss can be realized by increasing the number of layers in the cladding of a

photonic band gap fiber.

The calculation of the dispersion and loss of the defect modes relies

normally on numerical simulations, like the multipole method or the finite

element method, which we will discuss in the next section. Here, I would like

to introduce a semi-analytical method based on the reflection model, which

was proposed in our group for an antiresonant fiber[76]. This method allows

considering the band gap guidance from the view of reflection of the light

from the photonic crystal cladding offering new insights. Since the method

separates the core modes from the cladding properties, it has the distinct

advantage of avoiding the heavy numerical simulation for the full geometry

and offering analytically calculation of the core modes for different core sizes.

This method was applied in my work for analyzing the guidance properties

of the defect modes in large-core photonic band gap fibers.

The basic idea of the reflection model is that the complex effective index of

the guided modes in a comparably large core (λ/R� 1) can be calculated by

inducing modifications to that of guided modes in a perfectly reflecting core.

The modifications are determined by the phase shift and loss per reflection

on the boundary, which can be approximated by the series expansions on

the angle φ (small for the case of a large-core fiber). Figure 2.5 shows the

parameters considered in the reflection model: the angle φ, the index n and

the radius R of the core.

24 Chapter 2 Theoretical Background



Structured cladding

𝑧

𝑥

𝜙

Core

R

𝑛

Fig. 2.5: Sketch for the reflection model with all the parameters. The orange lines
refer to the waves zigzagging inside the waveguide core.

In the case of a perfectly reflecting cladding, the radial component of the

wave vector for the modes guided in the core can be expressed as:

κ = j

R
, j =


j1,n TE0n, TM0n

jm−1,n HEmn

jm+1,n EHmn

where jmn are Bessel zeros (Jm(jmn) = 0). With wave number k0 = 2π/λ, kco =
k0nco, the propagation constant is found as β2 = k2

co−κ2, β = neffk0. The real

part of the effective index in a perfectly reflecting core can be approximated

for the large core case as:

no
eff = nco[1−

j2

2k2
coR

2 +O( 1
kcoR

)4]

For the case of band gap guidance with a photonic band gap fiber, we need

to modify the solution of perfect reflected case shown above with additional

terms regarding the loss and phase shift per reflection along the propagation.

First, with the assumption of small angle φ, the reflection coefficient at the

interface of the core-cladding can be normally approximated with a quadratic

equation:

r = −1 + q1φ+ q2φ
2 +O(φ3), (2.25)

with complex coefficients q1 = q′1 + iq′′1 and q2 = q′2 + iq′′2 . Then, the loss per

reflection is:

T = 1− |r|2 = C1φ+ C2φ
2 +O(φ3), C1 = 2q′1, C2 = 2q′2 − |q1|2,
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and the phase shift per reflection is:

Φref = arg(r) = D1φ+D2φ
2 +O(φ3), D1 = −q′′1 , D2 = −q′1q′′1 − q′′2 .

By expressing the angle φ and the distance between two reflections L as

the following:

φ = arcsin
κ

kco

= κ

kco

+O( κ
kco

)3 = j

kcoR
+O( 1

kcoR
)3,

L = 2βR
κ

= 2βR2

j
= 2kcoR

2

j
(1 +O( 1

kcoR
)2),

we have the loss coefficient α and the modification of the propagation con-

stant ∆β for the non-perfect reflection case regarding the loss per reflection

T and the phase shift Φref respectively as following:

α = −log10(1− T )
log10(e)L ≈ T

L
= C1j

2

2k2
coR

3 + C2j
3

2k3
coR

4 +O( 1
k4

coR
5 ),

∆β = Φref

L
= D1j

2

2k2
coR

3 + D2j
3

2k3
coR

4 +O( 1
k4

coR
5 ).

In the end, the real part and imaginary part of the effective indexes for

the modes guided in a photonic band gap fiber can be approximated as:

n′eff = no
eff + ∆β

k0
= nco

[
1− j2

2k2
cR

2 + D1j
2

2k3
cR

3 +O

(
1

k4
cR

4

)]
(2.26a)

n′′eff = α

2k0
= nco

[
C1j

2

4k3
cR

3 + C2j
3

4k4
cR

4 +O

(
1

k5
cR

5

)]
(2.26b)

In the results sections, we applied the method to photonic band gap fibers.

We first built an approximated planar model for the cladding in COMSOL,

which includes only a slice of the structured cladding. The planar model was

analyzed numerically to get the reflection coefficients r regarding angles φ for

TE and TM polarized waves. Then, the complex effective index of the modes

guided by this structured cladding can be calculated according to equation

2.26, in which the complex parameters q1 and q2 were got by fitting equation

2.25. For the case of cladding with small index contrast, the difference of

the reflections corresponding to different polarized waves can be ignored. In

general case, we can use qe
1, qe

2 or qm
1 , qm

2 for TE modes or TM modes, and the

average values (qe
1 + qm

1 )/2, (qe
2 + qm

2 )/2 for hybrid modes respectively.
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2.4 Numerical methods
For studying the Bloch states in a photonic crystal cladding as well as the

guided modes in the core, numerical methods, like plain wave methods[77],

multipole methods and finite element methods[71], can be used. Here, I

would like to introduce finite element methods and multipole methods, which

are practically used in my work. More details about simulations with these

two methods are available in the book[71] as well as on the websites of the

software (COMSOL and CUDOS MOF).

2.4.1 Finite element method
A space- and time- dependent physical problems can be modeled approxi-

mately based on discretization and solved numerically using the finite element

method (FEM). It can be implemented conveniently with commercial soft-

ware COMSOL. In our work, we have built two models to calculate the band

gap maps of a photonic crystal cladding and guided modes in the defect core.

Modeling of Bloch modes

Bloch modes in a photonic crystal can be simulated with Bloch finite element

methods[71].
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Fig. 2.6: Sketch for the calculation of discrete vectors kF for a hexagonal unit cell.

First, we build a model of the unit cell of photonic crystal using peri-

odic boundaries and discrete vectors satisfying Floquet periodicity boundary

conditions. The calculation of the discrete vectors for a hexagonal unit cell

is shown in figure 2.6. The unit cell, defined by two vectors a1, a2, is first

transformed to the reciprocal space giving a new pair of vectors v1,v2. In the

reciprocal unit cell, we can then use vectors u1,u2 along the boundary of its
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irreducible cell to define discrete vectors kF. Then, for unit cells defined by

each discrete vector kF, we calculate the Bloch modes at different frequency.

Finally, the mode solutions within a certain interval of the propagation con-

stants are counted with different weighting coefficients corresponding to the

discrete vectors giving the density of state (DOS) of the photonic crystal [78,

79]. The DOS map shows the bands and band gaps of a photonic crystal.

Periodic boundary

𝑛ℎ𝑖

𝑛𝑙𝑜

Fig. 2.7: An example solution (E-field norm) of the Bloch mode in a hexagonal
photonic crystal shown with the unit cell built in COMSOL.

The calculation of DOS map, which is usually time consuming, can be

done using commercial software COMSOL and COMSOL with Matlab. First,

the unit cell model with periodic boundary conditions is built in COMSOL.

Then by exporting the model to script in COMSOL with Matlab, the modal

solutions for each discrete vectors are solved in the interesting frequency

range (An example in figure 2.7). In the end, the post-process is done to

count the modal solutions with a weighting filter for plotting the DOS map.

Modeling of defect modes

The core modes of a photonic crystal fiber are usually simulated by mode

searching based on an initiative effective index. In the case of a photonic

band gap fiber, the core modes exist only in the region of wavelengths in its

band gaps. With a model of the transverse geometry surrounded by a perfect

match layer as shown in figure 2.8(A), we start with one wavelength in a

band gap and search for several modal solutions with a value close to the

index of the core material as the initiative value of the effective index. To

further calculate the dispersion of a mode, like for the fundamental mode,

we can set the modal solution giving the fundamental one as the initiative

value for the calculation at the next nearby wavelength and so on. This can

be done within COMSOL, but to save some work, we can export the model

as a script to COMSOL with Matlab and calculate dispersion of modes with
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changing initiate values.
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𝑛𝑐𝑜
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𝑥
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A B

PML

PMC
/PEC

Fig. 2.8: An example modal of a photonic crystal fiber in COMSOL for the calcula-
tion of defect modes. (A) shows the model with complete geometry and
(B) the quarter-model.

The symmetry properties of geometry and modes can be used to save

computational power. Especially in the case of large geometry dimensions, a

model of only a quarter of the transverse geometry, instead of the complete

geometry, of a photonic band gap fiber can be used for calculation (figure

2.8(B)). Moreover, it is convenient to trace the modal solutions with the

boundary conditions in the quarter-model. In the case of HE modes, the

boundaries along x and y should be set to one perfect magnetic conductor

(PMC) and one perfect electric conductor (PEC), while in the case of TE

modes or TM modes, the boundaries along x and y should be set to both PEC

or both PMC respectively. For the order of modes, we can count the zero

nodes of the fields along the radial direction for determination. All these

were implemented with a model in COMSOL with Matlab.

2.4.2 Multipole method
Based on the multipole formulations for multicore conventional fibers, the

multipole method to treat microstructured fibers was developed by the uni-

versity of Sydney [80, 81]. The method can be used to deal with PCFs, which

have a solid-core/air-core surrounded by solid cylinders or air holes, and

yields the complex propagation constants of the modes in the PCFs. It makes

use of the circularity of the structures and has been adapted to take into

account the symmetry properties of the modes, offering high computational

efficiency for microstructured fibers.

To enable the general implementation of the multipole method for simu-

lating photonic crystal fibers, a software package, CUDOS MOF Utilities, is

designed by the university of Sydney and free for downloading. We have used

it for finding modes of light cage structures and computing their dispersion
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curves.

To find modes of a photonic crystal fiber with CUDOS MOF Utilities, we

start with defining the structure parameters and physical parameters in the

parameter file (labeled in figure 2.9). There are also parameters relating to

the algorithm, most of which are internal parameters with default values,

which will be adjusted automatically during the calculation or can also be

specified to suit special cases. Then, by running the executable file, ’fiber.exe’,

we can solve the modes for the set of parameters. A bunch of new files con-

taining the report on the simulation process and the results will be generated

in the local folder. The .fbb and .bcf files contain the Fourier Bessel coeffi-

cients of the modes, which can be read by the executable file: winfield.exe.

Figure 2.9 shows an example of a fundamental mode with winfield.exe. On

the panel of the winfield.exe, we can read the corresponding input physical

parameter wavelength as well as the output complex effective index. The

window next to the panel shows the structure for the calculation and the

distribution of field profile (the figure shows the z component of the Poynting

vector here).

cylinder radius
=2.5µm

pitch 
= 6.75 µm

matrix index=(1.45,0e0)

cylinder index=(1.e0,0e0)

Nr=1

no cladding
no jacket

MNr=1

Fig. 2.9: An example shows a fundamental mode found by CUDOS MOF Utilities
for a structure with solid core surrounded by a ring of air holes. The key
parameters to be defined are labeled in the modal plot and highlight with
blue square on the panel of Winfield. The green square highlighted the
the effective index of the mode and the field component plotted.
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The dispersion of a mode can be calculated with CUDOS MOF Utilities

conveniently. We can simply set the physical parameter wavelength as a range

with initial wavelength (keyword: start_lambda), final wavelength (keyword:

stop_lambda) and the number of points in between in the parameter file.

Alternatively, it can also be done by loading the known solution (.fbb or .bcf

file) into a new parameter file and setting the initial wavelength as the wave-

length for the known solution, then only define the final wavelength and the

number of points in between. Additionally, by loading the known dispersion

file (.dat) in the parameter file, we can extend the known dispersion to a

further wavelength defined as final wavelength.

The Multipole method works efficiently for standard photonic crystal

structures, like solid core photonic crystal fiber, especially with the knowl-

edge of the range of their band gaps. However, for novel designs, additional

efforts for searching the modes, like increasing the points for scanning, are

unavoidable.
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3Results: Models to

investigate light guidance

with microstructured

cladding

Instead of total internal reflection in conventional fibers, a microstructured

fiber, which has a core of lower index materials, confines light by forbidding

propagation of light in the microstructured cladding with photonic band gap,

inhibited coupling or anti-resonance. Here, we developed models for both

cladding modes and core modes to investigate the guidance with microstruc-

tured cladding.

In this section, we first introduce a completely analytical method based on

Birks’ model[74] to calculate the photonic band gap maps of the cladding. It

enables us to identify the photonic band gaps straightforwardly from analyti-

cal expression and investigate the key parameters affecting the photonic band

gaps. Then, for the core modes, we apply the reflection model that relates

the reflection and transmission properties of a microstructured cladding to

the real and imaginary part of the refractive index of the core modes. It offers

a new insight into the guidance with microstructured claddings and is used

as an efficient way to optimize the structure to achieve lower loss.

3.1 Photonic band gap maps
To analyze the guidance of a photonic band gap cladding, we need to calculate

the band gap map of the cladding modes. A band gap map shows the

parameter combinations, like effective indexes of modes and frequencies,

that correspond to bands of the cladding modes and to band gaps for guidance

by such cladding. Band gap maps are affected by parameters such as the

material index contrasts and geometry parameters of the photonic band gap

cladding.

In this section, I would like to introduce a completely analytical method

using binary functions developed from the Birks’ model [74]. It allows us to

identify band gap regions straightforwardly from simple calculations with key

parameters including effective index (neff), frequency (ω), material indexes
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(nhi, nlo) and geometry parameters (radius of the strands a, distance between

neighboring strands Λ) of the microstructured cladding.

3.1.1 Model for calculating band gap maps with
binary functions

One effective simulation method for the band gap map of a photonic crystal

cladding is Birks’ model [74]. As described in the theory part, Birks’ model has

two characteristic equations from two particular periodic boundary conditions

to calculate the top and bottom band gap edge modes. However, it is only

semi-analytic since solving the characteristic equations for the top and bottom

band gap edge modes still requires numerical root searching methods. To

solve the problem completely analytically, our work [82] proposed a binary

function from the two characteristic functions.

The main idea of the binary function has been illustrated in figure 3.1. As

we can see that the band region (the yellow-green region) is between the

zeros of the top and bottom characteristic functions (solutions for the top

and bottom edge modes), where the two characteristic functions change their

signs. This fact results in that: within the band region, the two characteristic

functions always possess opposite signs, whereas in the band gap region

(white region) both functions exhibit the same sign. Therefore, instead of

searching for zeros of the characteristic functions for the edge modes, we

can define the band regions by the opposite signs of the two characteristic

functions.

Since the actual value of the functions is irrelevant, we constructed a

normalized binary function, which results in 0 or 1 depending on the sign of

the product of the two characteristic functions, as shown in equation (3.1):

fbool = 1
2

(
1− fT · fB

|fT | · |fB|

)
(3.1)

where fT and fB are the characteristic functions for top and bottom edge

modes (the left side of the equation (2.22)). Because only the sign of the

functions matters, we can leave the factors in the equations, which were

just used to have continuous values of the functions when roots searching is

34 Chapter 3 Results: Models to investigate light guidance with microstructured

cladding



effective index

band

top mode

bottom 
mode

Binary function

fu
nc

tio
ns

Fig. 3.1: The example plots of the characteristic functions (the blue and blue-green
lines) based on the Birks’ model and our binary function (black line).
The square dots show the solutions of the corresponding characteristic
equations. The yellow-green region indicates the region of effective index
for a band.

conducted. As an example, for the interesting region below the index of the

cladding (W 2 < 0), we have the two characteristic functions as,

fT = CJ ′l (αQ) +DY ′l (αQ),

fB = CJl(αQ) +DYl(αQ).

with α = b/a (a is the radius of the strands in cladding and b is the radius of

the circular unit cell). The coefficients C to D are defined as:

C = [−QYl+1(Q)Jl(U) + UJl+1(U)Yl(Q)],

D = [QJl+1(Q)Jl(U)− UJl+1(U)Jl(Q)].

With equation (3.1), a band gap map of any Bessel function order can be

straightforwardly calculated by fbool = 0 for the band gaps and fbool = 1 for

the bands. When Bessel function orders from 0 to lmax (the maximum Bessel

function order) are considered, for a full band gap map, we should sum all

the binary functions as shown in equation (3.2). Ultimately, the band gaps

are the region of f full
bool = 0.

f full
bool =


0 if

∑lmax
l=0 fbool = 0

1 if
∑lmax

l=0 fbool 6= 0
(3.2)
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To verify the validity of this method, for a band gap fiber of parameters

identical to those used in the original work of Birks et al.[74], the bands

region identified with our binary function are plotted together with the

dispersion of the edge modes, which are calculated by the root searching

algorithm, in figure 3.2.
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Fig. 3.2: Dispersion of the normalized effective index of the cladding modes for
a band gap fiber are plotted with two methods based on Birks’ model:
the dots show the roots of the top and bottom edge modes characteristic
equations, while the green and white region are given by the value of
the binary function. This calculation was done for the parameters used
in the original work of Birks et al: nlo = 1.458, nhi = 1.48716 and d/Λ =
0.41[74]. (A) Dispersion of the lowest Bessel function order (l = 0).
(B) Full dispersion map by summing the results of the first seven orders
(l = 0...7).

We started by considering the lowest Bessel function order l = 0 (figure

3.2(A)). We can see that two simulations gave the same results: the band

regions indicated by the green regions given by the non-zeros of the ana-

lytical binary functions have edges consistent with the band edge modes

indicated by dots calculated from the numerical root-searching for the two

characteristic equations. The mechanism of our binary function is always

tenable for the fact that the dispersion of the adjacent top and bottom edge

modes of the same Bessel function order never cross. As we observed above

the zero line (neff = nlo), the adjacent top and bottom edge modes of the

same Bessel function order couple and thus anti-cross with each other.

More Bessel function orders need to be considered for a full band gap map.
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The maximum Bessel function order can be estimated with the expression

for the guided modes in a multimode fiber: lmax = ceiling(2V/π), where

the V = 2π ·R
√
n2

co − n2
cl/λ is the waveguide parameter (ceiling(x) gives the

least integer greater than or equal to x) [83]. In figure 3.2(B), the sum of

the first seven orders is presented. We can see that different evolution of the

higher order bands leads to a significant reduction of the band gaps after

overlapping the first seven dispersion maps, particularly at large frequencies.

Moreover, we observed that the broadening of the bands (consequently the

narrowing of the band gaps) just below the zero line is mainly determined

by the maps of the first few Bessel function orders and will not be affected by

the maps of even higher Bessel function orders (l > 7).

Using our binary function without root searching, the calculation process

is completely analytical and straightforward. As the dispersion function fT

and fB constructing the binary function contain all key parameters, we can

use the binary analytical function to play with all these parameters for design.

To demonstrate the design capability of the binary function, the band gap

maps were calculated with binary functions regarding geometry parameters,

pitch Λ and strand diameter d, as shown in figure 3.3. We used the same

refractive indices of the materials as in figure 3.2 and assumed a fixed ef-

fective index (neff = 1.4561) for a wavelength (λ = 1 µm). Considering the

feasibility from the perspective of fabrication, the parameter combinations

not realistic to use are indicated by gray region.

The resulting band gap map has band gaps indicated by zeros (white

regions in figure 3.3) and cladding modes by non-zeros (green regions in

figure 3.3). The results by overlaying the maps of the first two lowest Bessel

function orders show already the likely domains for the band gaps, pure white

areas in figure 3.3(A). Overlaying the first ten maps reveals more features to

the band gaps (figure 3.3(B)). The parameter combinations in the band gaps

indicate the configurations of the photonic crystal cladding, which can offer

the photonic band gap guidance in the defect core. An example of the guided

core mode is plotted in the inset of figure 3.3(B), which was calculated with

Multipole method (CUDOS MOF) for the configuration indicated by the red

dot in the figure.

For applications in certain effective index regime with a predefined wave-

length, it is helpful to have a band gap map regarding geometry parameters

of the cladding for a fixed value of effective index of the guided mode (usually
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Fig. 3.3: Photonic band gap maps calculated with binary functions regarding geom-
etry parameters: pitch Λ and strand diameter d. The calculation was done
for a fixed effective index (neff = 1.4561) and wavelength (λ = 1 µm).
The material parameters used are the same as the example in figure 3.2
(nlo = 1.458, nhi = 1.48716). In both plots, the gray regions correspond
to the ratio of the diameter to pitch, which is unrealistic from the fiber
fabrication perspective. The white domains refer to the band gaps. (A)
Plot of the overlay of the maps of the first two Bessel function orders
(l = 0 and l = 1). (B) Complete map by summation of the first ten orders
(l = 0...10). The inset shows the guided fundamental mode corresponding
to the parameters indicated by the red dot in the band gap (Λ = 7.33 µm,
d = 4.7277 µm).

assumed slightly below the index of the core material for the fundamental

mode). The band gap map versus geometry parameters is also a particular

key to see the susceptibility of the individual guidance to the inevitable ge-

ometry deviations induced from the fabrication process. For instance, the

guided mode shown by the inset in figure 3.3(B), from the location of the

corresponding parameters in the band gap, we see a better tolerance of

the guidance to deviations in pitch than to deviations in strand diameter.

From the shape of the corresponding band gap, we see the corresponding

band gap showing an average tolerable deviation of around 20% in pitch,

whereas around 10% in diameter (assuming the guidance with parameters

in the middle of this band gap). Thus, the band gap map plotted with our

binary function method regarding geometry parameters can be used for the

evaluation of the photonic band gap fiber in terms of robustness against

structural imperfections.
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3.1.2 Parameter effects on band gaps
Here, we studied the affection of key parameters on band gap maps using

binary functions. The binary function introduced above is based on Birks’

model, which relies on assumptions, i.e. a small index contrast (or a large

ratio of strand dimension to wavelength as discussed in section 2.3.1) and a

small ratio of diameter to pitch, d/Λ [74]. To keep these assumptions, we

apply only small variations on the parameters to get a clear picture of their

influence on band gaps.

There are several key parameters for band gap guidance with photonic

crystals: diameter of the strands d, distance between neighboring strands

pitch Λ, frequency w (or wavelength λ) and indices nhi, nlo composing the

cladding. Considering the scaling properties of the electromagnetic waves,

we will plot band gap maps for fixed index contrasts and ratios of strands

diameter to pitch (as shown in figure 3.2(B) and popularly used in other

literatures).

The simulation of the band gap map regarding (β− knlo)Λ and kΛ (figure

3.2(B)) shows that the first band gap along frequency, which is also defined

as fundamental band gap, goes deeper below the zero line (neff = nlo) than

the following band gaps. Moreover, it is observed that the fundamental

band gap is basically formed from the results of the first two Bessel function

orders (l = 0 and l = 1). Therefore, we focused our investigation on the

fundamental band gap from the calculation with the first two Bessel function

orders.

Given the above, we plotted the band gap maps of the first two Bessel

function orders (l = 0 and l = 1) regarding (β− knlo)Λ and kΛ for the region

of the fundamental band gap. We started using the parameters same as those

in the previous example (figure 3.2). Then, further small variations were

made by the ratio of strands diameter to pitch d/Λ and the high index of

photonic cladding nhi (keeping nlo = nsilica) respectively. Each calculation

using the self-written python code of our binary function takes only a few

minutes. The results are shown in figure 3.4 and figure 3.5.

We can see that as we increase d/Λ by 0.01 and 0.04, the bands shift to

smaller frequencies while the band gap extends towards smaller effective

index (figure 3.4). For the same pitch, as we increase the ratio of strand to

pitch, it equals increasing the diameter of strand. For a larger strand diameter,

the same guided mode in the strand works at a longer wavelength (smaller
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Fig. 3.4: Band gap maps with varying d/Λ for the first two Bessel function orders:
l = 0 and l = 1 and the region of the fundamental band gap. The color
regions refer to the bands of the cladding modes, whereas the white
regions refer to the band gaps. The maps of bands in color of wine, red
and orange correspond to the calculation with ratio of strand diameter to
pitch d/Λ as 0.41, 0.42 and 0.45 respectively. The material parameters used
are the same as the example in figure 3.2 (nlo = 1.458, nhi = 1.48716).

frequency). This scaling property of the electromagnetic wave is the reason

for the obvious shift of modes above the zero line, where most of the light is

in the strands. The growth of the band gap ascribes to the different scale of

shift regarding the top and bottom edge modes due to their different relative

concentrations of power in the various materials. The bottom edge modes of

the first order band (l = 0) shift a bit more than the top edge modes of the

second order band (l = 1). Therefore, the band gap extends and goes a bit

deeper to smaller effective index.

As we increase the index of the strands in the photonic crystal cladding

nhi by dn = [0, 0.001, 0.003] (increasing the index contrast), we also observed

a shift of the band to smaller frequencies and a bit growth of the band gap

towards smaller effective index (figure 3.5). The shift of the modes above

the zero line as well as the extended band gaps below the zero line can

be explained again by the scaling properties of the electromagnetic waves:

as we increase the index of the strands, the same mode works at a longer

wavelength (smaller frequency). In this case, the bottom edge modes of the

first order band (l = 0) shift still a bit more than the top edge modes of the
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Fig. 3.5: Band gap maps with varying nhi for the first two Bessel function orders:
l = 0 and l = 1 and for the region of the fundamental band gap. The color
regions correspond to the bands of the cladding modes, whereas the white
regions refer to the band gaps. The maps of bands in color of dark red, red
and orange correspond to the calculation with high index nhi = 1.48716
varied by dn = [0, 0.001, 0.003] respectively. This calculation was done
for a fixed background index (nlo = 1.458) and geometry parameters
(d/Λ = 4.1) the same as the example in figure 3.2.

second order band (l = 1), leading to the growth of the band gap into smaller

effective index.

Despite the different parameters we modified above, both of the cases

show a growth of the fundamental band gap towards smaller effective index

due to a different scale of shift regarding the bottom edge modes of the first

order band (l = 0) and top edge modes of the second order band (l = 1).

To figure out what is the reason for this different scale of shift between the

bottom and top edge modes, we extracted the data from the band gap map

(the one with d/Λ = 0.45 in figure 3.4) to plot the field profile in Birks’ model

using equation (2.21) for a bottom edge mode of the first order (l = 0) and a

top edge modes of the second order (l = 1).

In figure 3.6(B) and (C), we showed two modal profiles based on the Birks’

model, which are approximated in one dimension and in a region consisting

of two neighboring strands. The different scales of shift between the bottom

edge modes of the first order band (l = 0) and top edge modes of the second

order band (l = 1) can be explained by their different field distributions in

the structure. The bottom edge mode of first Bessel order (figure 3.6 (B)) has
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Fig. 3.6: (A) Band gap map for the first two Bessel function orders: l = 0 and
l = 1 with material parameters: nlo = 1.458, nhi = 1.48716 and geometry
parameters d/Λ = 0.45. The color regions correspond to the bands of the
cladding modes, whereas the white regions refer to the band gaps. (B)
and (C) show two modal profiles of intensity (dark red) corresponding to
the parameters labeled by the square dots in (A). Two neighboring strands
(blue region) are shown here with the dash line in the center indicating
the periodic boundary in the Birks’ model.

light concentrated in the high index strands with a minimum at the periodic

boundary (dashed line). Its dispersion follows the dispersion of the strand

modes even below the zero line. The top edge mode of the second Bessel

order (figure 3.6 (C)) has a dominating amount of light located in the low

index region between strands with a maximum at the periodic boundary

(dashed line). Its dispersion below the zero line bends from strand modes

due to the increasing light distribution in the low index region between the

strands. When we increase the ratio of the strand’s diameter to pitch or the

high index, we increase the product of the refractive index and the geometry

length (n · x) in the strands part relative to the unit cell (if we reduce the

nlo, we still have increased n · x relatively for the strands). With this change,

the modes distribution tends to locate more in the strands but with different

degrees for the one of most of the light in strands and the one of most of the

light in between the strands. This explains the different shifting behavior of

the top and bottom edge modes dispersion that we observed above.
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3.2 Reflection from a microstructured
cladding

In principle, regardless of the cladding structures, the guidance of a low-index

core microstructured fiber can be attributed to destructive interference in

the cladding, leading to high reflection. The core modes exist when the

phase change across the core plus the phase change induced by the reflection

from the cladding produces constructive interference as indicated in the

work for 2D planar photonic crystal waveguides [84, 85]. A reflection-based

method was also applied on circular waveguides with an approximated planar

model as shown in the work by Zeisberger on the analytic expression for an

anti-resonant fiber [76]. In the case of a core large enough compared with

wavelength, an approximated planar model consisting of a small part of the

cladding, where the curvature can be neglected and the field can be locally

approximated as a single plane wave, was used to analyze the reflection

from the cladding. These previous works show that the dispersion and loss

of the core modes can be obtained analytically from the complex reflection

coefficient in the planar model (details introduced in theory section 2.3.3).

Analyzing the reflection from the interface between structured cladding

and homogeneous core is much simple than studying the entire fiber cross

section, offering a straightforward way to optimize the cladding structure of

a microstructured fiber for better guidance.

In this section, we explored analyzing the guidance in an all-solid single-

ring microstructured fiber with an reflection-based planar model. We started

with showing the transmission properties of the cladding for the fundamental

modes in the first four transmission windows of the fiber. Then, we calculated

the mode dispersion and loss from the complex reflection coefficient and

compared them with the results from the numerical mode calculation. In

addition, by doing intensive parameters sweep for the geometry of the

cladding, we found interesting features to have extraordinary low loss.

3.2.1 Reflection-based model for calculation of
core modes

The all-solid single-ring microstructured fiber, which has a large core sur-

rounded by circularly arranged strands of a higher reflective index (∆n =
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0.02, for practically doped silica) as shown in figure 3.7(A), was modeled

here. This geometry was deliberately chosen to resemble the commonly

considered situation of a low-index core band gap fiber, which for lower loss

and delivering of higher power has a large core, consisting of GeO2-doped

strands located in a silica background [86]. The particular choice was made

to present the model in an illustrative way.
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Fig. 3.7: (A) Sketch of a single-ring microstructured fiber and the concept of the
reflection model. nc and ns are refractive indexes of core material and
cylinder material respectively. L is the longitudinal distance between two
neighbouring reflections. (B) The corresponding approximated planar
model.

In the case of a cylindrical core surrounded by a perfectly reflecting core-

cladding interface, the constructive interference as guided modes in the core

has Bessel form solutions. The phase of light accumulated from propagating

across the core should be given by the roots of the Bessel function: κ ·R = jlm,

where κ is the transverse component of the wavevector in the core and jlm

represents the m-th root of the Bessel function Jl and R the core radius.

Here, we focus our analysis on the fundamental mode, whose transverse

component of the wave vector can be analytically expressed as:

κ = j01

R
(3.3)

where j01 is the first root of the zero-order Bessel function.

For the sake of simplicity, we consider the guidance of the light in a large

core fiber as light rays getting reflected and transmitted at an approximated

planar boundary of the cladding. The angle θ and the longitudinal length

between two reflection L in Fig.1 can be expressed as:

θ = arcsin κ
k
≈ κ

k
= j01

kR
, L = 2R

tan(θ) ≈
2R
θ
. (3.4)
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with wave vector k = k0nc, nc is core index. The approximation here is valid

for the case of the propagation constant β � κ, a rather small angle θ, which

is true for a large core fiber especially for the low-order modes.

The corresponding approximated planar model, as shown in figure 3.7(B),

comprises the single-ring microstructured cladding to two cylinders using

periodic boundary conditions. Two ports were set to model the reflection

and transmission properties of the cladding. For a single-ring microstruc-

tured fiber with a set of parameters: number of cylinders N = 16, d/Λ =

0.50, wavelength λ = 1 µm, nc = nSiO2 and ns = nc + 0.02 (at λ = 1 µm),

we did parameter sweeping for V parameter (V = πd
√
n2

s − n2
c/λ) of the

cylinders by changing the diameter of the cylinders d. Note that we have

d/Λ fixed, when d increases, Λ and R increase accordingly and the angle θ

also changes according to equation (3.4). To illustrate this effect, the angle θ

corresponding to the fundamental modes is plotted in figure 3.8(A), showing

considerable small values supporting the approximation in equation (3.4)

(here we used sin and tan in the calculation.). The small index contrast

between the cylinders and the matrix, as well as between the cladding and

the core, results in a polarization independent reflection, as it can be shown

for the reflection at a single interface with the Fresnel equation. Therefore,

we can use a single plane wave (transverse-magnetic (TM) polarization is

used here, transverse-electric (TE) will be the same) as the incident field

from port1.

The power transmission coefficient T for various V parameters, calculated

at port2 in the planar model (figure 3.8(B)), exhibits maxima corresponding

to the resonances in the cladding as the case for anti-resonant (AR) fibers.

Figure 3.8(C) shows the related phase difference between the forward scat-

tered and the incident electric field ∆Φ = arg (Es/Ei). We noticed that the

domains of low transmission are associated with phase difference close to

180◦, demonstrating the importance to have a destructive interference in the

microstructured cladding for achieving low loss guidance.

The reflection and transmission behavior at a core-cladding interface of

a fiber with resonant cladding induce an additional phase change and loss

compared to the case of a perfectly guiding core-cladding interface. Here,

we calculate the dispersion (real part of the effective index of core modes

Re(neff)) and loss of the modes Loss in the single-ring microstructured fiber

analytically using the amplitude complex reflection coefficients r from the
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Fig. 3.8: The analysis for a single-ring microstructured fiber with a set of parameters:
number of cylinders N = 16, d/Λ = 0.50, λ = 1 µm, nc = nSiO2 and
ns = nc + 0.02. Regarding the V parameters of the surrounding cylinders
(V = πd

√
n2

s − n2
c/λ, here d is changing), the plots show: (A) Estimated

incident angle θ for the fundamental mode HE11 corresponding to different
core diameter d for specified V parameters; (B) The power transmission
coefficient T corresponding to the angles θ and V parameters; (C) The
phase difference between the forward scattered and the incident electric
field ∆Φ. The gray color bars indicate the resonance positions of the
cylinders.

planar model.

In addition to the case of perfectly reflecting core-cladding interface, the

dispersion of the fundamental mode in such case can be expressed as:

Re(neff) =

√√√√n2
c −

(
j01

k0R

)2
+ ∆Φr

k0L
. (3.5)

where ∆Φr = arg(r) is the phase change by the reflection. This can be

thought of as from an effective penetration of the light into the cladding. Its

analog in the total internal reflection of a linearly polarized beam is known

as the Goos-Hänchen effect. The phase shift of the Goos-Hänchen effect can

be physically understood as an interfering result between the plane waves

of different propagation directions that compose the beam. Here, using

expression (3.5) we show that the dispersion properties of the waveguides

with resonant cladding depend, in addition to that of a perfectly reflection
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guidance (first term in right hand side), on the phase change of the single

reflection event.

Using the power transmission coefficient (T ), the loss of the fundamental

modes can be described as:

Loss[dB/m] = −10log10(1− T )
L

≈ 10 T

log(10)L, for T � 1 (3.6)

showing that, with approximation for low loss (T � 1), the loss is propor-

tional to the power transmission coefficient of the single interface T .

In figure 3.9(A-B), we show the dispersion and loss of the fundamental

mode in a single-ring microstructured fiber using the equation (3.5) and

equation (3.6). The results from the planar model (olive lines) are con-

firmed with the results from the numerical mode calculation with the finite

element method (FEM) for the same structure (red dots). Although the

incident angles used in the reflection-based model were approximated for

the case of perfectly reflecting cladding, we see that the results from the

reflection-based model represent excellently the dispersion and loss of such

large-core anti-resonant fiber. Only slight discrepancies are observed at small

V parameters, which can be attributed to the larger angle θ requiring more

critical assumptions.

The field distribution (E field norm |E|2) in figure 3.9 demonstrates the

correspondence between mode calculation (figure 3.9(C)) and the reflection-

based model (figure 3.9(D)). Despite the simplification of the incident field

being a TM-polarized plane wave, the excited fields in the cylinders, i.e.

resonances, of the reflection-based model is consistent with that of the mode

calculation.

The advantage of the reflection-based method we proposed here lies firstly

in the fact that we reduce the calculation burden for large-core microstruc-

tured fibers. With the complex reflection coefficients from a simple numerical

simulation in the approximated planar model, we can quantitatively analyze

the dispersion and loss of the fundamental mode in the fiber using an an-

alytical equation in a straightforward way regardless of core diameter. In

addition, the method offers a simple model of transmission for qualitatively

understanding the antiresonant behavior of a microstructured cladding. Note

that we exhibited here the calculation for the fundamental core modes, which

also holds for higher-order modes in a similar way.
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Fig. 3.9: The results calculated from the planar model (olive line) and from the
FEM mode calculation (red dots) for a single-ring microstructured fiber
with a set of parameters: number of cylinders N = 16, d/Λ = 0.50, λ
= 1 µm, nc = nSiO2 and ns = nc + 0.02. The plots show (A) the index
dispersion and (B) the loss (dB/m) of the fundamental mode. The gray
bars indicate the resonances of the cladding. The normalized E fields
norms of an example solution corresponding to the arrow label in (B) are
shown for both the quarter model of mode calculation (C) and the planar
reflection model (D).

3.2.2 Parameter sweeping of the structure
Using reflection-based model introduced above, we did different kinds of

parameter sweeping for the single-ring microstructured fiber, reaching un-

expected situations of extremely low loss. The loss map from the parameter

sweeping shows the regions of parameters giving same level of loss and the

combination of the multi-parameters that leads to the lowest loss.

First, we focused the study on the region between the second and third

resonances of the cladding and extended the calculation in figure 3.9 with

another dimension by changing d/Λ of the structure. Figure 3.9(A) shows

the loss map regarding the parameter V and d/Λ.

We confirmed the results from the reflection-based model with those from

the mode calculation for data at d/Λ = 0.3 as plotted in figure 3.10(B). We

see a good consistency between two results with a loss reaching 10−5 dB m−1.

In figure 3.10(C), also for data at d/Λ = 0.3, we show the phase difference

∆Φ between the forward scattered field and the incident field compared with
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Fig. 3.10: (A) A loss map regarding d/Λ and V parameter of the surrounding
cylinders for a single-ring microstructured fiber with the set of parameters:
number of cylinders N = 16, λ = 1 µm, nc = nSiO2 and ns = nc + 0.02.
(B) The loss plot of the cut-line in (A) (d/Λ = 0.3) from the reflection
model (green line) and the mode calculation (red dots). (C) The phase
difference between the forward scattered field by the structure and the
incident field ∆Φ compared with 180◦ for the corresponding data at
cut-line. The gray color regions in (B) and (C) indicate the resonances of
the cladding.

180◦. We can see that ∆Φ shows the same tendency as the loss and is very

close to 180◦ for the parameters giving ultralow loss.

A B

Fig. 3.11: Normalized E field z component plotted for the data labeled with arrows
in figure 3.10: (A) V = 4; (B) V = 4.81.

To demonstrate the relevance of ∆Φ for the waveguide losses, the normal-
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ized z-component of the electric fields for the data labeled with two arrows

in figure 3.10(B) are shown in figure 3.11. It is normalized by the maximum

value to the range of [0,1]. We can see that the data giving phase difference

very close to 180◦ (V = 4.81) has destructive interference after the structure.

This is different for V =4, which shows significant field transmission behind

the structure. The results clearly reveal that the situation of anti-resonance

in the cladding leads to low loss guidance.
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Fig. 3.12: Sketch of the cylinder-modified single-ring microstructured fiber and the
corresponding planar reflection-based model.

Further, we studied a cylinder-modified single-ring microstructured fiber

as shown in figure 3.12, in which the diameter of the cylinders alternates.

The material indexes are the same as the previous case. The corresponding

approximated planar model contents a unit of periodic structure. In addition

to the previous studied single-ring microstructured fiber, with this cylinder-

modified single-ring microstructured fiber, the alternating diameters offer

additional degree of freedom to improve the guidance.

To calculate the loss map, we kept the core radius fixed (fixed pitch con-

dition) for the data giving the lowest loss in the previous studied range

(the R at V = 4.81), while sweeping the diameters of the neighboring

strands (d1, d2). The loss map regarding V1 and V2 (V1 = πd1
√
n2

s − n2
c/λ,

V2 = πd2
√
n2

s − n2
c/λ) are calculated using the planar model and shown in

figure 3.13.

The loss map (figure 3.13(A)) here includes losses for two different cases

regarding V1 and V2. The left part in the loss map has V1 in the region

between the second and third resonances while V2 in the region between the

first and second resonances, while the right part has both in the the region

between the second and third resonances. It is interesting to notice that the

loss properties are different in these two cases. When the neighboring strands

are of V parameters in different band gap (left part), ultralow loss appears
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for certain combination of parameters. The situation is different when the

neighboring strands are of V parameters in the same band gap (right part),

showing rather flat loss dip.

The plot in figure 3.13(B) shows the loss at V1 = 4.81 (cutline in figure

3.13(A)) calculated from the reflection-based model as well as from the

mode calculation. Again they consist quite well with each other. The plot

in figure 3.13(C) shows the phase difference between the forward scattered

field and the incident field ∆Φ compared with 180◦, which highly consists

with the tends of loss. We see in this case of cylinder-modified single-ring

microstructured fiber, the phase difference can be very close to 180◦ giving

ultralow loss.

In figure 3.14, we show the normalized E-field z component for the case

of identical strands and the case with modified strands corresponding to the

data labeled with arrows in figure 3.13(B). It is clearly to see that unlike the

case of identical strands, the excited fields in the modified strands are of dif-

ferent order and the superposition of the fields results in stronger destructive

interference.

The results clearly show that the coupling between the cylinders is essen-

tial for low-loss guidance. Such effect was also explained by the band gap

concept, for example, in the work for pixelated Bragg fibers [87]. While the

concept of band gap effect based on the coupling and forming of super-modes

in the cladding is more about ideal periodic structures, the reflection and

transmission analysis here is more practical to be used in cases with finite

periodic structures and also modified periodic structures. Compared with the

numerical modal calculation, a key advantage of the reflection-based model

is the insight into the underlying physical mechanics of the light reflection

process of the microstructure, allowing investigating sophisticated concepts

from fields such as photonic crystals within the context of low-loss guidance

leaky waveguides.

3.3 Conclusion
To summarize, we have developed efficient methods to investigate guidance

with microstructured cladding, which consist of high index strands arranged

periodically in a low index matrix, by its photonic band gap maps, as well as

its reflection and transmission.

A complete analytical method using a binary function was developed
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Fig. 3.13: (A) Loss map regarding parameters V1 and V2 for a cylinder-modified
single-ring microstructured fiber with the set of parameters: number
of cylinders N = 16, Λ = 1.2669 µm, λ = 1 µm, nc = nSiO2 and ns =
nc + 0.02. (B) Loss corresponding to the cutline in (A), where V1 = 5.81,
from the reflection model (green line) and the mode calculation (red
dots). (C) Phase difference of the scattered field after structure to the
incident field ∆Φ compared with 180◦ for the corresponding data at
cutline. The gray color regions in (B) and (C) indicate the resonances of
the cladding.

from Birks’ model to investigate the band gap map for an all-solid photonic

band gap cladding, which consists of high index strands in hexagonal arrays

embedded in silica. The method combined equations in Birks’ model to a bi-

nary function and was proven very efficient to identify band gaps of photonic

crystal fibers for different parameter combinations. With the binary function,

the calculation using our self-written Python code is straightforward and

takes only a few hours for the entire photonic band gap map, whereas with

numerical simulation using finite element method it would be much more

complex and time consuming.

Although the binary function was based on scalar wave equations with

assumptions of low index contrast of the structure, a parameter analysis with

small variations was done showing how the fundamental band gap deepens
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Fig. 3.14: Normalized E field z component plotted for the data labeled with arrows
in figure 3.13: (A) for V1 = V2 = 4.81; (B) for V1 = 4.81, V2 = 3. The
plots at the bottom show the two field distributions at the cutline of the
corresponding colors.

with the increasing of the geometry parameter d/Λ or the increasing of the

material parameter nhi (kept nlo unchanged). It indicates the ways to achieve

light guidance in a core of lower index materials with all-solid band gap

cladding.

We then introduced a reflection-based simulation method offering the

possibility to qualitatively and quantitatively study the guidance loss of the

core mode in a large core microstructured fiber from the perspective of the

reflection and transmission of its structured cladding. Specifically, we applied

an approximated planar model for analyzing the fundamental core modes of

the all-solid single-ring microstructured fiber, which has high index strands

arranged in a ring form in low index matrix. We modeled the reflection

using an approximated planar model, which consists of only two strands with

periodic boundary condition in COMSOL. We demonstrated that the power

transmission in the planar model can be directly related to the loss of the

guided modes based on the assumption of low loss guidance. Moreover, the

phase difference between the forward scattered field and the incident field

in the planar model reflects the interference of the fields allowing for better

insights into the underlying physics of the guidance.

The exact dispersion and loss of the fundamental fiber modes were cal-

culated from the complex reflection coefficient in the planar model and

confirmed by the results from the corresponding numerical mode calculation.
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Loss maps with massive parameters sweeping using the planar model were

done for the all-solid single-ring microstructured fiber as well as its cylinder-

modified version. We found particular parameter combinations allowing for

ultralow loss. We revealed the destructive interference after the structured

cladding for the case of low loss guidance.

The reflection-based planar model was approved as practical and efficient

for analyzing guidance in a large core microstructured fiber with finite pe-

riodic structures and even modified periodic structures. The model is not

limited to a single ring structure, but can be extended straightforwardly to

more complex cladding geometries. Principally, it is available for all cases

where the core diameter is much larger than the wavelength and the cladding

is sufficiently thin for the approximation of a planar model to be valid. The

model can also be applied to the structure with considerably higher refractive

index contrast with an analysis of reflection from both TE- and TM- polarized

incident wave in the planar model, as we did for the work discussed in the

next chapter.
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4Results: Novel hollow core

waveguides

The guidance of light in air or water is of interest for many research fields

including high power lasers, quantum experiments, nonlinear optics and

ultra-fast spectroscopy. In this part of the work, we will introduce designs of

novel microstructured fibers for light guidance in a water core or an air core.

All-solid photonic band gap (PBG) fibers utilizing the photonic band gap

effect offer guidance of light in low index materials, while so far only in

solid materials like silica. By increasing the index contrast or the ratio of

the strand’s diameter to pitch of an all-solid band gap cladding, we can have

band gaps extended to lower index as discussed in previous section 3.1. Here,

we proposed for the first time an example design of water-core all-solid band

gap fiber, which has a core of index as water and is surrounded by all-solid

band gap cladding. A semi-analytical method based on the reflection-based

planar model, which has been discussed in the previous chapter, was applied

on the investigation of the properties of its guided modes and verified by

FEM simulations.

Due to the low refractive index of air, it is really difficult if not impossible

to have guidance of light in air directly by all-solid band gap cladding,

i.e. band gaps going below the air line. Here, we introduced an air-core

waveguide, which consists of suspended polymer strands in air, implemented

on chip by 3D direct laser-writing. It can be easily integrated on planar

photonic circuitry and are promising for infusion of interesting gases into the

core area of the waveguide for further applications.

4.1 Guidance in a water core
Here, we are proposing a design of the water-core all-solid photonic band

gap fiber, which consists of an all-solid cladding with high index strands in

hexagonal arrays embedded in silica and a central water-core of hexagonal

shape as shown in figure 4.1. The idea is to place a water core in the

defect of an all-solid band gap fiber. The water core has its boundary in the

defect section formed by omitting several rings of the high index strands.

The hexagonal shape of the core boundary fits the cladding structure with

uniform distance from the boundary to the strands in the first ring of the
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Fig. 4.1: Sketch of the water-core all-solid photonic band gap fiber and its cross
section with the key parameters labeled.

The refractive index of the strands, the background and the core have

been chosen to match those of chalcogenide (As2S3), silica (SiO2) and water

(H2O) at 900 nm (nchalcogenide = 2.5, nsilica = 1.47 and nwater = 1.33). The

choice of these materials is from the consideration of the relative high index

contrast of the photonic band gap cladding and also based on the numerous

works [24, 88–91] demonstrating experimentally the implementation of

hybrid chalcogenide/silica fibers with strands of sub-micrometer diameter.

The key structure parameters for the band gap guidance are the diameter

of strands (d), the neighboring distance of strands (pitch Λ) as well as the

number of rings (N) in the cladding. For designing, a normalized parameter

d/Λ based on the scaling law is used and chosen to be 0.44, which is in

accordance with typical capillary dimensions used in the stack-and-draw

method for fiber drawing. The hexagonal core can be characterized by either

the shortest or longest possible radius (Rs and Rl) with Rs =
√

3/2 · Rl.

The inner silica wall facing the water is characterized by the distance of

its boundary to the center of the strands of the first ring in the cladding g,

which is assumed to be half of the pitch (g = Λ/2) considering the stack-and-

draw process. The realization of the large hollow core in hexagonal shape

fabricated using stack-and-drawing is challenging but was experimentally

demonstrated in various publications including HCFs [38] and Kagome-

design [49, 92].

In this section, we verified the possibility to guide light in the water core

of our photonic band gap fiber. First, we calculated the band gap map for the

photonic crystal structure of the cladding. Then, we analyzed the guidance of
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the water-core all-solid band gap fiber by the simulation of a single reflection

on the core boundary based on the reflection-based planar model. The

dispersion and loss of the guided modes were calculated from the reflection

parameters using a semi-analytical method, which were also confirmed by

the calculation with FEM simulation. Moreover, we discussed several guiding

properties of the proposed fiber regarding the geometry parameters (i.e. core

radius, number of rings in the cladding) and the mode orders.

4.1.1 Photonic band gap for light guidance in a
water core

To guide light in the water core of our photonic band gap fiber, the photonic

crystal cladding must offer a band gap below the index of water. Due to the

high index contrast, the analytical method based on scalar wave equation is

invalid to give exact results. We simulated the cladding Bloch modes using

the FEM method and calculated their DOS (density of states, details intro-

duced in section 2.4) for the above proposed photonic crystal structure. To

check the possible deepest band gap, the DOS map as a function of the real

part of the effective index of the Bloch modes and the normalized parameter

Λ/λ in the range of the fundamental band gap is shown in figure 4.2.

Λ/𝜆

PBG for water 
guidance 

𝐧𝐰𝐚𝐭𝐞𝐫

𝐧𝐬𝐢𝐥𝐢𝐜𝐚

higher-order 
PBGs

R
e(
𝑛
𝑒
𝑓
𝑓

) 

Fig. 4.2: DOS map of the photonic crystal cladding for the fundamental band gap
range calculated for parameters: d/Λ = 0.44, nsilica = 1.47, nwater = 1.33
and nchalcogenide = 2.5. The color scale ranges linearly from low (wine)
to high (yellow) values of density of states. The white regions indicate
zero cladding modes (band gaps). The dashed lines indicate the refractive
index of silica (light green) and water (light blue) without considering
dispersion. Band gaps below the water line are labeled with arrows.

We can see that the fundamental band gap of this photonic crystal struc-
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ture goes far below the RI of silica and has a region (0.53 < Λ/λ < 0.59)

below the RI of water, which is labeled as PBG for water guidance in figure

4.2. The possibility of the guidance is associated with high RI contrast be-

tween the strands and matrix (nsilica = 1.47 and nchalcogenide = 2.5), while

the geometry parameters including diameter of strands d, pitch Λ and wave-

length can be scaled based on the normalized values: d/Λ = 0.44 and Λ/λ in

the region of the band gap. Several isolated band gaps, which are labeled

as higher-order PBGs in the map, appear in the lower region below the RI

of water. They are not considered, as they support higher-order modes only,

which are practically difficult to excite. Here we focused on the region of the

fundamental PBG below the RI of water and examined the guided modes for

different parameters in the following section.

4.1.2 Reflection model for the water-core all-solid
photonic band gap fiber

While the possibility of the guidance is promised by the photonic band gap,

the attenuation of the guidance scales directly with inverse cubed of the core

radius as observed for a hollow core PBG fiber [47]. Therefore, for low-loss

guidance in water, it is reasonable to assume a relative large core with the

cladding structure proposed above.

To circumvent heavy simulations of the core modes with the FEM method

for the large-core structure, here, we applied a semi-analytical method based

on the reflection-based planar model for the water-core all-solid photonic

band gap fiber (figure 4.3). Since the proposed fiber has a core of diameter

being much larger than the wavelength (R� λ), it is possible to approximate

the properties of the core modes based on the reflection of light on the core

boundary as we have discussed with the reflection-based planar model in

section 2.3.3 and 3.2. Therefore, a straightforward analytical calculation of

both real and imaginary parts of the effective index (dispersion and loss) of

the core modes can be done with the reflection parameters for the water-core

all-solid photonic band gap fiber.

To apply the reflection-based model, we built up an approximated planar

model of the proposed cladding structure in COMSOL, which is a slice of

width equal to the pitch Λ including the cladding and the core-cladding

interface (figure 4.4). We simulated the reflection regarding the angle ψ of

light ray to the the core-cladding interface as labeled in figure 4.3. For the
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Fig. 4.3: Sketch of the planar model for the water-core all-solid photonic band gap
fiber.

physics, we set the left and right boundaries as periodic boundary and the

top and bottom boundaries as port. Due to the high index contrast of the

structure, both TE and TM polarized incident waves were considered here.

The excitation of the field on port1 was either Ex or Hx respectively for TE

or TM polarized waves with a propagation constant ky1 = |k0nwatersin(ψ)|
at port1 and ky2 = |

√
k0n2

silica − (k0nwatercos(ψ))2| at port2. To obtain the

corresponding reflection coefficients at the core-cladding interface, the addi-

tional phase was added to the S-parameters resulting in a complex reflection

coefficient as r = S11 · exp(2iky1c), where c is the distance from port1 to the

interface.

Plots in figure 4.4 show an example of the dependence of the reflection co-

efficients on the angle ψ, which was calculated for a parameter combination

in the middle of the band gap (Λ/λ = 0.545), for the case of our proposed

structure. The fittings in figure 4.4 confirm that the reflection coefficient

r can be approximated here by a series expansion to the quadratic term

regarding small angle ψ: r = −1 + q1ψ + q2ψ
2 +O(ψ3), where q1 = q′1 + iq′′1

and q2 = q′2 + iq′′2 were used for further calculation of the effective index of

the modes. While (qe
1, qe

2) and (qm
1 , qm

2 ) were used for calculation of TE and

TM modes, in case of hybrid modes (i.e. HE11), we assumed its parameter q1

and q2 as q1 = (qe
1 + qm

1 )/2, q2 = (qe
2 + qm

2 )/2.

By considering the loss per reflection and the phase induced per reflection,

which we have discussed in detail in the theory part for the reflection-based

model (section 2.3.3), we calculated the real and imaginary part of the effec-

tive index of the core modes using the following analytical expression with
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Fig. 4.4: Planar reflection model built in COMSOL and the example plots of the
dependence of the real and imaginary parts of the reflection coefficients
r = S11 · exp(2iky1c) on the angle ψ for TE and TM incident waves. The
calculation was done for the structure as proposed before (d/Λ = 0.44,
nsilica = 1.47, nwater = 1.33 and nchalcogenide = 2.5) in the middle of the
band gap (Λ/λ = 0.545). The dots are the data points and the red line
shows the fitting result.

core radius as a parameter.

n′eff = nwater

[
1− j2

2k2
wR

2 + D1j
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2k3
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3 + C2j
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4 +O

(
1

k5
wR

5

)]
(4.1b)

where kw = k0nwater. Parameters C1, C2 and D1 are based on the reflection

parameters: C1 = 2q′1, C2 = 2q′2 − |q1|2 and D1 = −q′′1 . The j indicates the

root of the Bessel function defined as following (higher order modes were

also discussed for the proposed fiber):

j =


j1,n TE0n, TM0n

jm−1,n HEmn

jm+1,n EHmn

where jmn is the nth zero of the Bessel function Jm (Jm(jmn) = 0).

As we can see from the analytical expression for the effective index

(equation 4.1), the radius of the core is a variable in the analytical expression.

With the reflection-based planar model, it is valid to calculate directly cases
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of different core radius of the water-core all-solid band gap fiber, while

with FEM model, renewed numerical calculation is needed for the cases of

different core radius. Here, we have to note that the core radius, which is

used in the analytical expression of the complex effective index, is to some

extent undefined due to the hexagonal shape of the core. Therefore, we

checked two extreme values of the core radius (Rs and Rl, defined in figure

4.2) for the calculations with the reflection model.

4.1.3 Results and discussion
We first show the complex effective index of the fundamental mode guided

in the water-core all-solid photonic bandgap fiber calculated using FEM in

COMSOL (a quarter-model introduced in section 2.4.1), as well as the reflec-

tion parameters from our reflection model.
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Fig. 4.5: Dispersion of the normalized real part of the effective index of the fun-
damental mode (HE11) for the water-core all-solid photonic band gap
fiber with four different values of core radius: Rs:11.8 µm (green), 17.9 µm
(red), 23.9 µm (blue), 30 µm (purple) and number of rings: N = 6. The
solid and dashed lines refer to the analytical calculation by the reflection
model with core radius defined by Rl and Rs, respectively. The dots refer
to the results of the FEM. The gray region covers the exceedingly high loss
part caused by the resonance of the cladding supermodes.

Figure 4.5 shows the dispersion of the normalized real part of the effective

index of the fundamental mode for different values of the water-core radius.

We can see that the dispersion of Re(neff ) follows the expected behavior

of the phase index with increasing values towards higher frequencies. The

bending of the dispersion close to the frequencies of the resonances, where

coupling to the cladding modes happens, results from the anti-crossing of the
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core modes with the cladding modes. The results from the FEM calculation

(dots) lie in-between the two curves calculated from the reflection parameters

with the radius being the two extreme values, showing the consistence of the

two methods. The results of the approximated analytical calculation with the

reflection model are more close to the results of numerical calculation for the

case of larger core radius as expected.
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Fig. 4.6: (A) Dispersion of the imaginary part of the effective index of the fundamen-
tal modes (HE11) for the water-core all-solid photonic band gap fiber with
four different values of core radius: Rs:11.8 µm (green), 17.9 µm (red),
23.9 µm (blue), 30 µm (purple) and number of rings: N = 6. The solid and
dashed lines refer to the analytical calculation by reflection model with
core radius defined by Rl and Rs, respectively. The dots refer to the results
of the Finite-element simulations. The gray region covers the exceedingly
high loss part caused by the resonance of the cladding supermodes. The
three images above the plot show spatial Poynting vector distributions
(decadic logarithmic color code, white:1, dark: 5 ·10−5) for core radius Rs:
17.9 µm at three selected normalized frequencies Λ/λ: 0.47, 0.54 and 0.59.
(B) Dispersion of the imaginary part of the modes of a silica capillary filled
with water with the core radius as in (A). The green regions highlights the
photonic band gap region of the water-core all-solid fiber.

The dispersion of the imaginary part of the effective index of the funda-

mental modes in the water-core all-solid band gap fiber shows the typical

features observed for band gap guidance (figure 4.6(A)): within the spectral

region of the PBG in figure 4.2 (green region here), the imaginary part of

the refractive index has lower values with an apparent dip in the middle

compared with the values outside. The examples of the modal profile at

three selected normalized frequencies Λ/λ: 0.47, 0.54 and 0.59 show clearly
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more leakage of light into the cladding when it is close to the edge of the

band gap, whereas the mode is well confined in the middle of the band gap.

The consistent tendencies of the results from the two methods reveal that

the loss of light guidance in the water-core all-solid cladding band gap fiber

can be understood through the reflection of the ray at the core-cladding

interface. It is important to notice that close to the resonances (the region we

overlaid with gray bar), where light couples strongly to the cladding modes,

the assumption of a high reflectivity (small incident angle at the boundary)

from the cladding is not fulfilled any more, leading to the invalidity of the

results from the reflection model. However, these regions are associated with

high attenuation and are not interesting for any application.

To see the relevance of the microstructure in the cladding, we compared

the imaginary part of the refractive index of the mode in our structure (fig-

ure 4.6(A)) with the one of the modes in a water-filled silica capillary with

corresponding radius (figure 4.6(B)). It shows that the PBG effect from the

structure reduces losses of the mode by a factor of about 45 at the mid-gap

frequency.

The results presented above have shown an influence of the water-core

radius on the modal attenuation. More data for different values of the core

radius at the mid-gap frequency (Λ/λ = 0.545) were collected in figure

4.7(A) showing the dependency of the imaginary part of the effective index

of the fundamental mode on the value of the core radius (Rs). Due to the

unavoidable consuming of time, we calculated only four data points of the

core radius by the FEM simulation and fitted them by a polynomial function

with the exponent being one fitting parameter. We can see in figure 4.7(A)

that the fitted curve (red line) and the data from analytical expression of

reflection model (purple line) have both shown a scaling of the modal loss

with inverse cubed of the core radius (FEM: Im(neff ) = 0.00178 · R−2.932,

reflection model: Im(neff ) = 0.00243 ·R−2.99), which agrees with the radius

dependency of the loss for the cases of hollow core photonic band gap fibers

or metamaterial fibers[76, 93].

The number of rings in the cladding of the band gap fiber is another key

aspect regarding the modal attenuation. By fitting the data from the FEM

simulation as well as the reflection model, we found that for the case of

water-core all-solid band gap fiber the imaginary part of the effective index

of fundamental mode scales exponentially with the number of rings (FEM:
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Fig. 4.7: Dependency of the imaginary part of effective index Im(neff ) of the fun-
damental mode (HE11) on various structural parameters. (A) Dependency
on the core radius (Rs for the analytical expression) with fixed parameters:
N = 6, Λ/λ = 0.545. The data from FEM simulations are indicated by
squares and fitted by a polynomial functions with the exponent being
a fit parameter. The purple line refers to the data from the analytical
expression of the reflection model. (B) Dependency of the Im(neff ) on
the number of rings with fixed parameters: Rs=17.9 µm, Λ/λ = 0.545.
The circles are data calculated from the FEM simulation and the purple
line refers from the corresponding results from the reflection model. Both
have been fitted by exponential functions. The inset shows the Im(neff )
depending on Λ/g, where g is the thickness of the silica wall around the
core and number of rings is 6. All other parameters used here are the same
as the proposed geometry (d/Λ = 0.44, nsilica = 1.47, nwater = 1.33 and
nchalcogenide = 2.5).

red line Im(neff ) = 1.275 · 10−5 · 10−0.252·N , reflection model: purple line

Im(neff ) = 1.317 · 10−5 · 10−0.245·N , in figure 4.7(B) ). By adding one more

ring of the strands in the cladding, the modal loss can be reduced by about

5 dB. It has to be noticed that so far the calculation was done for a silica wall

around the core of thickness g related to the cladding geometry as Λ/g = 2,

whose change will also influence the modal attenuation. The inset in figure

4.7 (B) deals with the change of the thickness g of the silica wall (defined

in figure 4.3) in a range feasible for fabrication. Since the frequency we

analyzed is in the middle of the band gap Λ/λ = 0.545, we see that for the

case Λ/g = 2 or even larger ratio, the wavelength is way larger than the

dimension of the silica wall and the influence of the silica wall thickness

on modal attenuation is substantially less pronounced. For smaller ratio

Λ/g (i.e. thicker walls with comparable dimension to the wavelength), the

modal attenuation will grow exponentially with the increase of the silica wall
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thickness due to the increased surface modes held by the silica wall.

The validity of the reflection model has been proven with the previous

calculations (figure 4.5 - 4.7) especially for the case of a large core radius,

providing a tool for straightforward parameter sweeping to optimize guid-

ance. The simulation with reflection model, analyzing only the reflection

at the boundary of the water core, minimizes considerably the computing

burden compared with the FEM simulation, especially for an enlarged geom-

etry. Therefore, we were able to plot a loss map for the fundamental mode

by investigating a wide range of the geometry parameters d/Λ together with

the normalized frequencies as shown in figure 4.8.
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Fig. 4.8: (A) The loss plot in frequency domain for the previous used geometry
paramters d/Λ = 0.44 and core radius R=50 µm. (B) Loss map regarding
Λ/λ and d/Λ for the fundamental mode (HE11) of the water-core all-solid
photonic band gap fiber calculated using reflection model (R=50 µm). The
color bar scales from bright yellow (low loss) to dark red (high loss) in
units of dB/m. The dashed cut line corresponds to the data of the loss plot
shown above the map. The material parameters used here are the same as
previous (nsilica = 1.47, nwater = 1.33 and nchalcogenide = 2.5).

In the map in figure 4.8, the combinations of the structure parameters

offering low loss are the region of bright yellow color. We can see that a band

gap in the frequency domain shifted by the change of the structural param-

eters d/Λ. This loss map covers all feasible combinations of the structural

parameters of the band gap cladding exhaustively, meaning that for a given

combination of material parameters this map is enough to identify the loss of
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the fundamental mode for any combination of the structural parameters in

practice.
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Fig. 4.9: Spectral distribution of the real (A) and imaginary (B) part of the effective
index for the three lowest order modes of the water-core all-solid photonic
band gap fiber with parameters: Rs=17.9 µm, d/Λ = 0.44, nsilica = 1.47,
nwater = 1.33 and nchalcogenide = 2.5. The solid and dashed lines refer
to the analytical calculation by reflection model with core radius defined
by Rl and Rs respectively. The dots refer to the results of the Finite-
element simulations (red: HE11, green. TE01, blue: TM01). The gray
region covers the exceedingly high loss part caused by the resonance of
the cladding supermodes.

Besides the fundamental mode (HE11), our water-core all-solid phototnic

band gap fiber can support several higher order modes. Here we show the

real and imaginary part of the effective index for the three lowest order

modes (HE11, TE01 and TM01) calculated with both the FEM simulation

and the reflection parameters (figure 4.9). For the spectral distribution of

Re(neff ), the mode HE11 shows the largest phase index overall as expected

for the fundamental mode. Moreover, the dispersion of the mode TM01 shows
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particular pronounced bending when approaching the resonances, suggesting

a strong interaction with the the cladding modes. The spectral distribution

of Im(neff ) reveals an interesting phenomenon, that the loss of the TE01

mode is below the loss of the HE11 mode in the band gap region, which has

been also observed for hollow core fibers of other types such as Omniguide

design[94]. Since the water-silica interface itself has a close-to-unity reflec-

tion in the case of large core radius, we believe that our water-core all-solid

band gap fiber is distinguished from the typical all-solid band gap fiber and

actually a waveguide combining different guidance principles.

The spectral distributions of the effective index of the HE11 and TM01

modes calculated with reflection parameters agree with those from FEM

simulations, whereas an obvious discrepancy was found for the Im(neff ) of

the TE01 mode. The results from the reflection model for the Im(neff ) of the

TE01 mode disregard the resonance at around Λ/λ = 0.6 and show lower

loss in the band gap region. The reason for this effect can be that the planar

reflection model neglects the actual hexagonal shape of the core. A close look

into the modal field shows that the corners of the hexagonal core support in

no case entirely TE-polarized fields and include always a fraction more like

TM-polarized fields, which was not considered in the analytical calculation

for the TE01 mode by involving only the TE-related reflection parameters.

We believe that we have proved the guidance of light in our proposed

water-core all-solid band gap fiber by the low modal attenuation and the

modal profiles. Besides, it is interesting to notice that the planar reflection

model built for the designed structure gave results matched well with that

from the FEM simulation for the fundamental modes. From the practical per-

spective, the high index inclusions and hexagonal shape core in our proposed

concept may be challenging to be implemented, but it is possible based on the

current technique as we discussed at the beginning. For its unique structure

of all-solid cladding with a single central channel and capacities of guiding

light in liquids of index like water with low attenuation, the proposed fiber

can substantially widen the application range of PBG fibers. This theoretical

work is published with a discussion on the experimental feasibility of the

proposed design and further application from the practical perspective [95].
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4.2 Guidance in an air core
Here, we would like to introduce a hollow core waveguide consisting of 12

suspended polymer strands arranged in a hexagonal ring as shown in the inset

of figure 4.10(A). We estimated the cladding modes of such leaky waveguides

using the analytical binary function based on Birks’s model (introduced in

section 3.1). To explore its guidance properties, its fundamental core modes

were simulated using the multipole method (CUDOS MOF) (introduced in

section 2.4.2) .
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Fig. 4.10: Simulation of the complex effective index of the modes in the hollow core
waveguide consisting of polymer strands arranged in a hexagonal ring
with parameters: refractive index: 1.52, diameter: 3 µm and pitch: 7 µm.
(A) Dispersion of the real part of the effective index Re(neff ) (red line).
The gray region shows the bands of the cladding modes, overlaying of
the first 5 orders, estimated with the Birk’s model. The dashed light-blue
line indicates the index of air. l labels the order of the corresponding
LP modes. The inset shows the structure and the z component of the
Poynting vector of the fundamental mode at wavelength 485 nm. (B)
Imaginary part of the effective index Im(neff ) of the modes. The inset
shows the z component of the Poynting vector of the mode corresponding
to the spike.

In figure 4.10(A), we show the bands of the cladding modes (gray region)

calculated with the binary function based on Birks’ model. It is just a rough

estimation, since instead of 2D photonic crystal lattice, we have only a single
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ring structure. Besides, the approximation for Birks’ model is only suitable

for the low order modes due to the large index contrast here. However,

the real part of the complex effective index (Re(neff )) of the fundamental

modes (red lines) calculated numerically fits well in between the bands of

the cladding modes. The inset shows the Poynting vector z component of an

example mode at wavelength 485 nm, which has an effective mode area of

around 215 µm2 located in the center of the hollow core with a distance to

the surrounding polymer strands.

The corresponding imaginary part of the complex effective index (Im(neff ))
is shown in figure 4.10(B). We can see that Im(neff ) gets larger near bands,

and the minimum of the dips increases for larger wavelengths as in case

of anti-resonant guidance [57]. It is also noticed that the minimum of the

dips above the second order bands (l = 1) show lower value than that of

its neighboring dips above the first order bands (l = 0). It can be explained

by the easier coupling to the first order cladding modes for a smaller index

difference between core modes and the first order bands compared with that

between core modes and the neighboring second order bands [75]. We also

noticed a dip in the last dip, which corresponds to the coupling to a higher

order highly dispersive mode of the cladding as shown by the modal profile

in the inset in figure 4.10(B). Due to the large dimension of the strands,

there are quite a large amount of higher order modes, which aren’t shown

here, but it is already clearly noticed with the calculation for the first 5 order

modes that higher order cladding modes barely affect the loss of the core

modes, especially at small wavelengths. This inhibited coupling between

the core modes and the cladding modes can be explained by the strong

transverse-mismatch between the core and cladding modes [52, 96].

From the simulation, we see that 12 polymer strands arranged in a hexag-

onal ring offer guidance along wavelength range from visible to infra-red

in the central hollow core based on a guidance mechanism in combination

of anti-resonant guidance and inhibited coupling guidance. In the follow-

ing sections, we show that samples of different lengths of such “light cage”

structures were fabricated on silicon chips by the 3D direct-laser-writing and

characterized under the microscope. The guidance of light with these hollow

core waveguides was verified by the transmission spectra and output modal

profiles.

4.2 Guidance in an air core 69



4.2.1 Light-cage written by 3D direct laser writing
Practically, hollow core waveguides “light cage” consisting of 12 polymer

strands and supporting elements were directly written by laser on the silicon

chips as shown in figure 4.11. The details of the fabrication will be described

in this section.

10µm

100µm

BA

Fig. 4.11: Fabrication of the light cage: (A) the microscopy image of a sample with
light cages in different lengths on a silicon substrate. (B) close look of
the structure with a SEM image. The insect shows the cross section of
the light cage.

The light cage structures were fabricated on polished silicon substrates

(done by our collaboration group at Imperial College London) using a com-

mercial femtosecond-laser based lithography system (Photonic Professional

GT, Nanoscribe), which realizes 3D direct laser-writing in a UV sensitive

photoresist (IP-Dip, Nanoscribe) based on two photon polymerization. This

system uses Er-doped fiber laser operating at a wavelength of 780 nm with

pulse duration of 100 fs, peak power of 25 kW and repetition rate of 80 MHz.

The laser-writing works by focusing the laser beam in the photosensitive

material and scanning it laterally by galvanometric mirrors (moving-beam

fixed-sample (MBFS) approach), while the sample can be vertically moved by

the piezo-actuator for 3D structures. The voxel size of the writing process, the

volume in the photoresist that is cured by the focused laser light, is around

hundreds nanometers, which is determined by the factors including the laser

spot size, the power of the laser source and the properties of the photosensi-

tive material itself. The system makes it possible to write structure from the

microscale to mesoscale with high resolution (in the scale of the voxel size).

The mesoscale structures need to be written line-by-line and layer-by-layer.

The distances between adjacent lateral lines and vertical layers are referred to
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as hatching and slicing distance respectively in the Nanoscribe manual. After

the laser-writing, the rest of the photoresist is removed with the following

processes: immersing the sample first in a bath of photo-resist developer

(PGMEA, Sigma-Aldrich) for 20 min, then in 1-methoxyheptafluoropropane

(3M, Novec) for 2 min and at last, drying it under a gentle stream of Nitrogen

gas.

Figure 4.11 shows a sample fabricated by the above described method

and the scanning electron microscope (SEM) image of the final light cage

structures. Due to the limited lateral scanning range based on the movement

of the Galvano-mirror (around 200 µm), the structures in length of 5 mm
to 10 mm were actually written segment by segment. Each segment is in

length of around 180 µm and written consecutively by moving the mechanical

stage in the system. The 12 strands forming the hollow core structure were

arranged in a hexagonal ring with supporting struts. To have the structure

suspended in air with a suitable height for direct coupling with fiber, we

arranged supporting blocks for each segment. In order to minimize self-

shading from the previously written structures, a certain writing order was

followed: the supporting blocks were printed first, then the individual strand

followed by its supporting struts. The supporting blocks and struts were

written with hatching and slicing distance both of 250 nm and a writing

speed of 40 mm s−1, while the strands of the light cage were written with a

hatching distance of 150 nm, a slicing distance of 100 nm and a writing speed

of 25 mm s−1. The “light cage” structures in different lengths are aligned on

one side to the edge of the silicon substrate with a short distance for further

optical characterization.

The direct laser-writing method offers a convenient way to implement the

light cage structures of different designs. However, there are inevitable limi-

tations. First, although laser writing offers writing vessels down to hundred

nano-meters, the size of the strands cannot go down freely as we wish for

that if the polymer strands are not thick enough, the strength of the strands

wouldn’t be enough to form the suspended structure. Second, the core size of

the structure, which is directly related to the pitch between strands, cannot

be scaled up without limitation considering the stability of the structure.

For example, we observed collapsion of the top part of the hexagonal ring

and a deformed core for a structure of a large pitch. More details about
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the fabrication limits and tolerances can be found in this published work [97].

4.2.2 Optical characterization of a Light cage
Light cage guides light with two dimensional confinement like fibers. Here,

we measured transmission spectra and modal profiles of light cages with a

setup as sketched in figure 4.12. The sample, silicon substrate on which light

cage structures of different lengths are written, was mounted on a 3-axis stage

for the selective coupling into individual structure. We collimated a broad

band light source (NKT SuperK COMPACT super-continuum source: spectral

range from 450 nm to 2400 nm with the pump at 1064 nm) and coupled it into

the core of the structure with a 10× objective. For the transmission spectral

measurement, the output light from the structure was collected with 10×
objectives into a large core fiber (FG050LGA, core size 50 µm, NA=0.22) con-

nected to an optical spectral analyzer (AQ-6315A, Ando). We optimized the

coupling of the system at 900 nm before each measurement. The transmission

spectra were recorded with a resolution of 2 nm or 5 nm, which were then

normalized by subtracting the spectrum measured without sample. To image

the output modes, we used narrow band filters to have light source at certain

wavelengths and applied a CCD camera after the output objective.

OSA
Laser

Camera
sample

Large core
fiber

Filter

Fig. 4.12: Sketch of the setup for characterization of the “light cage” sample. The
dashed squares indicate the elements that are removable.

Normalized transmission spectra in wavelength range from 600 nm to

1350 nm for “light cage” structures in different lengths (0.7 mm, 1.4 mm and

6.3 mm) are shown in figure 4.13. We observed dips in the transmission spec-

tra, which correspond to the resonances of the cladding (figure 4.10). We can

see that the transmission window broadens and the loss increases at longer

wavelengths, which is consistent with the simulation results. The contrast

of the dips in the spectra gets more distinct as the length of the structure

increases, which results from a longer interaction distance for coupling from
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Fig. 4.13: Transmission spectra of “light cage” structures in different lengths:
0.7 mm, 1.4 mm and 6.3 mm as labeled with the corresponding color
of the spectrum. The small peak around 1064 nm is from the pump of the
laser source.

the core mode to cladding modes.

The longest structure I measured has a length of 10.5 mm (not the limi-

tation), whose transmission spectrum is shown in figure 4.14. The inset in

figure 4.14(A) shows the SEM image of the end face of the “light cage” struc-

ture. We found that the three strands at the top of the structure collapsed

together with almost no gap at this end face of the structure. Despite the

defect of the structure, the transmission spectra seem not affected. It is for

the reason that the strands are well separated and supported by the struts

along the structure (figure 4.11) except at the end face and the variation of

the pitch in this small range has little influence on the spectra.

From the modal profile images in figure 4.14(B), we see that the output

mode at the end face of the light cage structure is not centrally located in the

structure. We suppose that the deformed structure end face does influence

the output modal profile and similar deformation at the input end face may

affect the coupling of the laser light to the individual structure. It was also

noticed that for all the modal images at different wavelengths from 550 nm to

900 nm, the light mostly distributes in the core of the structure and no light

was observed at the end face of the cladding strands even for the wavelengths

near the resonances of the cladding modes. To explain this, we should con-

sider two facts: first, due to the large core diameter, the core mode overlaps

very little with the cladding and couples to the cladding modes with low

efficiency, which is also the reason for the limited depth of the dips in the
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Fig. 4.14: (A) Transmission spectra of the “light cage” in a length of 10.5 mm. The
inset shows the SEM image of the structure end face. The small peak
around 1064 nm corresponds to the pump of the laser source. (B) The
mode images at the output end face of the “light cage” structure for the
broad band light source and for the filtered narrow band light sources
centered at the wavelengths as labeled.

transmission spectra; second, the part of the light, which was coupled to the

cladding from the core, may be too weak to see at the end of the structure

due to the strong scattering loss of the cladding modes at every connecting

points of the supporting struts as we observed in figure 4.15. Also the strand

modes have high numerical aperture and may not be detect by our objective.

650nm

Fig. 4.15: Top view of a “light cage”, while the light of wavelength 650 nm propa-
gates in it.

In figure 4.15, we showed the top view of the “light cage”. A CCD camera

connected to a 12× zoom lens system (Navitar) was mounted vertically above

the sample. The picture was taken while the light of wavelength around

650 nm propagates in the light cage. We can see the supporting blocks below

the structure. The struts appear as disconnected scattering points, which

correspond to the connecting points of struts to the strands. This result shows
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the scattering loss of the cladding modes at the connecting points in a “light

cage” structure.

4.3 Conclusion
In this chapter, we presented two key results of our work regarding the novel

hollow-core waveguides in this chapter.

In the first part, we proposed the design of a water-core all-solid band gap

fiber claiming the possibility of light guidance in a water core surrounded

by all-solid photonic band gap cladding. The reflection-based planar model

was built for the proposed structure to calculate analytically the complex

effective index of the fundamental mode in the water-core all-solid band

gap fiber with much lower computation burden regarding the change of the

core radius. It was shown that the results analytically calculated with the

reflection parameters matched well with the results from the FEM simulation

in case of the fundamental guided mode, especially for the large core (low

loss) cases. The loss of the fundamental mode of the proposed fiber exhibits

a reduction by a factor of about 45 compared with the loss of the mode in a

water-filled silica capillary in the middle of the band gap region. Regarding

the modal attenuation, we analyzed at the mid-gap frequency those geometry

parameters of the structure, which do not affect the band gap: the core

radius, the number of the rings in the cladding and the thickness of the silica

wall around the core. Further, the analytical calculation based on the reflec-

tion parameters allows us to plot a loss map for the fundamental mode in a

large core (R=50 µm) covering all the feasible combinations of the structural

parameters d/Λ of the band gap cladding and a range of frequencies. The

loss map showed the band gap behavior together with the information of the

modal losses for the fundamental modes, saving any further calculation to

analyze the loss of the fundamental mode for any structures of the design in

practice.

The all-solid band gap fiber with a core of index of water will be an ideal

alternative waveguide compared with the large-core tube-type waveguides

such as capillaries, Teflon based tubes or metal-coated tube waveguides, for

that our design provided low attenuation of the guided light in a core of

relative small diameters (a few tens of micrometers rather than millimeter in

other cases) and proper outer diameter of the final fiber for straightforwardly

integrating of the fiber into microfluidic chip-based devices. Our design of
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key feathers: solid cladding and a single central channel, also surpasses the

holey hollow core band gap fibers in the optofluidic applications to avoid

undesired penetration of the liquid into the cladding channels, which leads

to uncertainties in further optical characterization.

In the second part, hollow core “light cage” structures were constructed

with polymer strands directly written by 3D laser writing on planar silicon

substrates for guidance in an air-core. Analysis with simulations show that

a “light cage” structure consisting of a single hexagonal ring of 12 polymer

strands (refractive index: 1.52, diameter: 3 µm and pitch: 7 µm) offer guid-

ance in the central air-core based on a combined mechanism of anti-resonant

and inhibited coupling in the wavelength range from 450 nm to 1550 nm.

Structures, which consist of 12 polymer strands arranged in a hexagonal

ring shape and connected by struts, were fabricated of different lengths and

suspended on the silicon wafer with supporting blocks. The optical charac-

terization of the resulting “light cage” structures exhibits guidance of light

in the central air core for wavelength range from visible to near infra-red

and transmission spectra with dips corresponding to the resonances of the

low-order cladding modes. It was noticed that the guidance of the light has

tolerance on the deviations of the pitch. Such one ring structure constructed

by polymer strands can be regarded as one ring of an amorphous lattice

operating in large pitch regime as in the cases of tube lattice anti-resonant

fibers [98].

Further research on the applications of the light cage is promising. First,

the light cage structures realized the guidance of the focused light in air

without diffraction up to centimeters[97, 99]. Besides, the large pitch of

the structure up to few micrometers opens a way for gas analytic to diffuse

into the core of the waveguide fast and efficient [100–102]. A hollow core

nearly fully filled with guided light and direct side access to the core via

open spaces in the cladding are extraordinary features that make the light

cage a promising choice for on-chip photonics applications regarding light-

matter interaction, for example, quantum technology, ultra-fast spectroscopy,

bioanalytics and nonlinear optics.
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5Results: Sensing with

band gap effect

Instead of the core, the cladding of a band gap fiber can also work as a

platform for light-matter interaction, eg. refractive index sensing. One way

is to fill the channels in the cladding of a solid-core band gap fiber by liquids

forming liquid-filled band gap (LFBG) fibers [103]. A LFBG fiber has cladding

consisting of liquid strands arranged in hexagonal arrays. Its cladding modes,

i.e. bands and band gaps, are susceptible to the refractive index of the filled

liquids. Here, using the analytical method introduced in chapter 3.1, we

related the variation in the refractive index of liquid filled in the cladding to

the shift of the spectral position of the dips in the transmission spectrum of

the LFBG fiber.

With LFBG fibers, it is possible to analyze the refractive index of the

liquid using rather small volumes of liquids that are encapsulated from the

environment, which avoids the difficulties in measuring the refractive in-

dex of liquids with low vapor pressure, being toxic or expensive. Besides,

whereas the majority of the dielectric-based photonic refractive index sensors

using propagating eigenwave operate only around 1500 nm [104], by using

LFBG fibers that offer bands of cladding modes in a wide wavelength range,

we were able to characterize the refractive index of the filled liquid from

visible to infrared and retrieve its dispersion properties with one transmission

measurement.

In this chapter, I first introduced our methods to fabricate the LFBG fibers

and to determine the refractive index and its dispersion of the liquids from

their transmission spectra. Then, I showed the applications of the method on:

determination of the refractive index dispersion of a liquid mixture system of

carbon disulphide (CS2) solution and tetrachloroethylene (C2Cl4) solution;

investigation of the temperature dependence of the refractive index of CS2

solution, showing its thermo-optic coefficient in a wide wavelength range.

5.1 Method
The sensing with LFBG fibers is based on the fact that the spectral position of

the phase matching between the cladding band and the fundamental core
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mode (ncl
eff = nco

eff) matches that of the transmission dip. Therefore, the key

idea is to obtain the phase matching points from the transmission dips and

compare it with the calculated phase matching bands to determine the refrac-

tive index of the liquids in the cladding of LFBG fibers. The implementation

of the sensing with LFBG fibers requires the fabrication of the LFBG fibers,

optical characterization of their transmission properties and analysis of the

refractive index of the filled liquids, which will be introduced in this section.

5.1.1 Fabrication of LFBG fibers
We fabricated LFBG fibers straightforwardly by filling the holes in commercial

solid-core PCFs (LMA20 and LMA25, from Thorlabs) with the interested

high index liquids: carbon disulphide (CS2) solution (> 99.9%, from Sigma-

Aldrich) and tetrachloroethylene (C2Cl4) solution (> 99%, from Sigma-

Aldrich). The refractive index of CS2 is around 1.6 [25, 105] and C2Cl4 is

around 1.49 [106] at 900 nm .

We used silica based solid-core photonic crystal fibers with air channels

in the cladding (LMA20 and LMA25 from Thorlabs), which are characterized

with large core area and air holes in size of micrometers as shown by the

SEM pictures in figure 5.1(b,c). We chose them to have a reasonable amount

of dips in the transmission spectra with a better-defined spectral position.

First, holes in the size of micrometers result in liquid strands in the size of

micrometers, which support a reasonable amount of cladding modes leading

to dips in the transmission spectra from visible to infrared. Figure 5.1(a)

shows the number of modes for liquid strands of size as holes in LMA20

and LMA25 in silica regarding the refractive index of the liquids. Second, a

large core with large pitches lead to bands of cladding modes with a narrow

spectral widths due to the weak coupling between strands, especially near

the cutoff line (the effective index of the core modes in case of a large core)

[74]. This is visible in the example band map in figure 5.3 and leads to

transmission dips with narrow spectral width. Besides, the uniform diameter

of the holes in commercial PCFs is also relevant for the width of the bands.

The fabrication processes of the LFBG fibers includes two parts: filling

liquids into the PCF and sealing the ends of the PCF.

The filling of the PCFs was done by capillary force. The fiber pieces were

prepared in a length of around 10 cm using a commercial cleaver (ProCleave

LD II, Northlab Photonics AB). The collapsing of the ends of the fiber pieces
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Fig. 5.1: (a) Plot of the number of modes of a liquid strand embedded in silica in
the wavelength range from 500 nm to 2000 nm regarding the refractive
index of the liquids, calculated with the geometry parameters of the
holes in PCFs LMA20 and LMA25 (Thorlabs). (b,c) The SEM images
of the PCFs we used: core dimension as labeled; radius of the strands,
LMA20: 2.85 µm ± 0.03 µm, LMA25: 3.71 µm ± 0.06 µm; pitch, LMA20:
12.4 µm± 0.12 µm, LMA25: 15.8 µm± 0.18 µm.

was done by melting the silica with arc heating using a commercial splicer

(FITEL S184 Fusion Splicer). The processing steps are described in detail

here (figure 5.2):

• First, both ends of a fiber piece are cleaved to a length around 10 cm.

• Then, one end of the cleaved fiber piece is immersed into the liquid

for a while until the sample is fully filled with liquid (for a length of

around 10 cm it demands only a few seconds). Afterwards, the filled

fiber piece is taken out and placed there for a moment for the liquid at

the very end of the sample to evaporate resulting in an empty space of

a length around 5 mm at the ends of the fiber piece.

• Finally, the fiber piece is fixed in the splicer to apply the arc power

at the ends of the fiber piece (one end at a time). The arc power is

adjusted so that by several times arc heating, the end of the fiber piece

collapses to a silica block in a length of under 100 µm.

During the fabrication, it has to be noticed that: first, since the liquids

used here are toxic and of low boiling point, the preparation of the liquids

and filling of the samples need to be operated in the fume cupboard care-

fully; second, enough empty spaces at the ends of the filled fiber pieces are

necessary to avoid the explosion of the liquids caused by the arc heating
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Fig. 5.2: Sketch for the fabrication of a LFBG fiber. The inset image shows the
collapsed end of the fiber piece under a microscope.

during the collapsing; third, the arc power of the splicer should be adjusted

to such amount that the collapsing length at the ends of the samples can be

controlled to less than 100 µm by the number of arcs. Still, due to inevitable

evaporation of the liquids during the collapsing process, the end of the fiber

pieces collapsed later will have a longer empty space.

The resulting filled fiber pieces were directly used in the transmission mea-

surement with several noticeable features. First, the fiber pieces show sunk

end faces due to the collapsing of the holly structured cladding. However, the

end face of the core part will not be influenced by the collapsing since it is all

solid. Second, a small amount of the liquids collect in the tips of the small

empty cones at the end of the filled channels, which are separated to the

liquid strands with a piece of empty space. After the measurements, a further

collection of the liquids in the tips at the end and small nonconsecutive empty

spaces along the filled channels may be found due to the evaporation and

condensation of the liquids after heating.
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5.1.2 Optical characterization and analysis of the
refractive index

To measure the transmission spectra of the filled fiber pieces, a broad band

light source (spectral range from 450 nm to 2400 nm, pump at 1064 nm, NKT

SuperK COMPACT) was collimated, focused into the fiber piece with an

objective (10x), while the output from the fiber piece was collected into an

optical spectral analyzer (AQ-6315A, Ando) with a pair of objectives (10x)

(figure 5.4).

To straightforwardly identify the cladding band phase matched to the

fundamental core modes of a LFBG fiber with respect to different combina-

tions of strands refractive index and wavelength, the phase matching band

maps were calculated analytically using the binary functions, which were

developed based on Birks’ model (chapter 3.1), for the geometry of the LFBG

fiber. They were calculated for a fixed effective index: neff = nest, where nest

is the estimated effective index of the core modes, regarding the refractive

index of the strands in the cladding nhi and wavelength as shown in figure

5.3. The phase matching band maps relate the spectral positions of the

cladding modes, which are phase matched to the fundamental modes, to the

strands refractive index.

Fig. 5.3: Example of the phase matching band map with fixed effective index
(neff = nest) plotted for refractive index of the liquid filled in the strands
(nhi) regarding wavelengths. The plot here was calculated using the binary
functions based on the Birks’ model for the first two orders (l = 0, 1) and
the geometry of the PCF LMA20. The red regions indicate the bands of the
cladding.

The refractive index of the strands (nhi) is determined by the bands in the

phase matching band map that are of the spectral positions consistent with

that of the dips in the transmission spectra of a LFBG fiber.
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In figure 5.4(a), we show an example transmission spectrum of the fiber

LMA20 filled with 100% CS2 solution. We can see that the transmission

spectrum exhibits pronounced transmission dips in the wavelength range

from 450 nm to 1700 nm, whose widths broaden for longer wavelengths. The

blue green drop lines indicate the spectral positions of the transmission dips,

i.e. the phase matching points.

The spectral positions indicated by the transmission dips are used to

determine the refractive index of the filled liquid in the calculated phase

matching band map of the sample as shown in figure 5.4(b). The black line,

indicating the dispersion of refractive index of CS2 from the literature [25],

crosses with the bands that supposed to be the corresponding bands for the

transmission dips. As expected, the spectral positions of the transmission

dips, shown by the blue green drop lines, are consistent with the crossing

points determined by the refractive index from the literature.

A

B

Laser
OSA

LFBG Fiber
Obj. Obj.

Fig. 5.4: Sketch of the setup for the transmission measurement of LFBG fiber. (A) an
example transmission spectrum of the fiber LMA20 filled with 100% CS2
solution; (B) corresponding phase matching bands (red regions) regarding
refractive index of the liquids versus wavelengths and the plot (black line)
of the dispersion of CS2 from the literature[105]. The drop lines (blue
green) correspond to the spectral positions of the dips defined by the local
minimum of the first derivative of the spectrum showing the analyzing
process.

It was tricky to define the spectral positions of the dips here. A close look
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at those dips shows that the dips are not really in a symmetric shape, but a

clean slope at short wavelength side and a gentle slope with sub-dips, which

correspond likely to the higher order cladding modes, at long wavelength

side. Therefore, we chose to locate the steepest slope at short wavelength

side, which is reasonable to be considered as the coupling points of the core

mode with the lower order cladding modes, as the position of the dips. To

define the steepest slope of the down-slope of the dips, first, the baseline

was extracted by applying a local maximum filter on the spectra and then

subtracted from the spectra. In the end, we found the points of the steepest

slope by calculating the first derivative of the spectrum, of which we defined

the minimums as the spectral positions of each dip and showed them with

drop lines in figure 5.4(a).

Another tricky point is to determine the refractive index from the bands

indicated by the spectral position of the transmission dips. First, as we can see

in figure 5.4(b), a spectral position (drop green line) corresponds to several

bands in the phase matching band map. Therefore, an estimated refractive

index range for the liquids is needed. For the mixture system, we found the

corresponding band to be used to determine the refractive index of the liquid

with the theoretical values either from the literature or from the calculation

with a model for mixtures used in literature [107]. For example in figure

5.4(b), for fiber LMA20 filled with 100% CS2 solution, the corresponding

bands for the refractive index can be chosen by the black dispersion line.

Then, we chose the value in the middle of the corresponding band as the

refractive index of the liquid.

The effective index used for the calculation of the band map was the

estimated effective index of the fundamental mode for the perfectly reflect-

ing waveguide with the geometry and index of the liquid strands: nest1 =√
n2

co − (j01/(k0R))2, where R and nco is the radius and index of the core

material, k0 is the wave number and j01 is the first root of Bessel function J0.

We tried also using its simplified expression nest2 = nco − j2
01/(2k2

0R
2nco), as

well as just using the refractive index of the cladding matrix as the estimated

effective index (nest3 = nsilica). Figure 5.5 shows the deviations from the

reference of the resulting refractive index determined by the above described

method with these three differently estimated effective indexes. We see that

the results using full expression (nest1) and the simplified expression (nest2)

as the estimated effective index are hard to distinguish from each other.
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However, using simply the cladding matrix index (nest3) leads to an obvious

bias in the results from that of the other two methods, which increases for

longer wavelengths.

Fig. 5.5: Deviations from the reference of the refractive index of the liquids
(100% CS2 solution) determined from the LFBG fiber (LMA20). The
results of different labels refer to methods with three differently esti-
mated effective index for the calculation of the band map (black square:
nest1 =

√
n2

co − ((j1)/(k0R))2; red dot:nest2 = nco − j2
1/(2k2

0R
2nco); blue

triangle: nest3 = nsilica).

The reference of CS2 and the results from the sample of the 100% CS2

filled fiber LMA20 was used to characterize different analyzing methods.

Considering the least root mean square error (RMSE) of the results from the

reference, in the end, we used the first derivative method for the position of

the dips, the full expression (nest1 =
√
n2

co − (j01/(k0R))2) as the estimated

effective index and the value corresponding to the middle of the crossing

band as the refractive index of the liquid in the PCF cladding.

5.2 Results
5.2.1 Refractive index of a bi-mixture system
The above described method was applied to determine the dispersion of the

refractive index of the bi-mixtures system of carbon disulphide (CS2) and

tetrachloroethylene (C2Cl4) solutions in the wavelength range from 450 nm
to 1700 nm. We prepared a series of liquids of refractive indexes above that

of silica using the mixtures of two high index liquids, CS2 and C2Cl4, with

different weight ratios: 0%, 25%, 50%, 75%, 100% of CS2. The dimensions

of the structure of LMA20 and LMA25 PCFs measured in the SEM pictures
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were corrected by a value in order of 0.1 µm using the samples filled with

100 % CS2 and 100 % C2Cl4 solutions respectively, to have the least root mean

square error between the resulting data and their references [25, 106].

RMSE =4.5-4

RMSE =7.9-4

RMSE =1.3-3

RMSE =1.5-3

RMSE =4.1-4

Fig. 5.6: Refractive index dispersions of liquids mixtures of CS2 and C2Cl4 with
a weight ratio of CS2 around 100 %, 75 %, 49 %, 25 %, 0 % from top to
bottom. The labels show the RMSE of the data from the theory reference.
Dashed lines are the fittings for the experimental data using a single
resonance Sellmeier equation.

The resulting refractive index determined for samples filled with bi-

mixtures of different weight ratios are shown in figure 5.6. The data points

we got from experiments (red dots) were fitted (dashed dark red line) and

compared with the reference (blue green line). We can see that the dispersion

of the refractive index of 100 % CS2 and C2Cl4 solutions in a wide wavelength

range from 450 nm to 1700 nm from the experimental data show a good match

with the theory reference. The consistence of the experimental data with the

theory reference is shown by the root mean square error (RMSE): 4.5× 10−4

for CS2 filled in LMA20 and 4.1 × 10−4 for C2Cl4 filled in LMA25, which

confirms the validity of the method for dispersion determination.

Here, the reference dispersion of mixture was calculated using the esti-

mated method for the refractive index of a bi-mixture without considering the
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internal interaction among molecules in the solutions [107]. They were used

only to narrow the range of the refractive index to the corresponding band

at the wavelength of the transmission dips. The RMSE between the data of

the mixtures and the reference is up to 10−3, which is one order higher than

the assumed error of the method. It shows that the estimated method used

here to calculate the theory reference gives an error in the order of 10−4 to

10−3. The mechanism behind this involving the internal interactions among

the molecules is complex and also depends on the concentration ratios of

two solutions. Since the error from our system is also in order of 10−4, we

would not investigate the deep mechanism of the internal interaction based

on our measurement.

The fitting of the data points from experiments were done with a Sell-

meier formula, which considers only one absorption resonance of the material

for the wavelength range here, as shown in equation (5.1). The fitting pa-

rameters (a and b) and the standard deviation errors of the parameters are

shown in table 5.1. The fittings here offer the continuous dispersion of the

bi-mixture solutions for different concentrations (weight ratios of CS2).

n =
√

1 + aλ2

λ2 − b
, (5.1)

where, b are related to the UV-resonance wavelength of the material as b = λ2
b .

λ is in unit of µm.

Tab. 5.1: Table of the fitting parameters for the Sellmeier equation (equation 5.1).

Concentration(CS2) a aerror b berror

100 % 1.49653 0.00119 0.03216 2.56079E-4

75 % 1.4204 5.57545E-4 0.02791 1.14512E-4

49 % 1.33998 6.22743E-4 0.025 1.49556E-4

25 % 1.26901 0.00138 0.02073 3.7882E-4

0 % 1.20115 4.38268E-4 0.01641 1.51425E-4

In figure 5.6, we see that the refractive index shifts with the concentration

ratio of the bi-mixture system. Therefore, the parameters a and b in the

equation (5.1) can also be expressed as a function of concentration. In figure

5.7, we plot the parameters a and b with respect to the concentration with

linear fittings. It shows that the linear fit can predict the parameters quite
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well with reasonable errors for the bi-mixture system here as proposed in

the literature [107]. As a result, the bi-mixture system can be designed for a

refractive index in a wide wavelength range from visible to infra-red using

different concentration ratios of the liquids. The dependence of the refractive

index on both wavelength and the concentration ratio of the liquid mixtures

is shown with the following equation:

n =

√√√√1 + a(c)λ2

λ2 − b(c) , (5.2)

where a(c) and b(c) are linear functions of concentrations of CS2 with inter-

cepts and slopes as shown in figure 5.7, λ is in unit of µm.

A B

Param. a Value STD Error
Intercept 1.19717 0.00292
Slope 0.29695 0.00478

Param. b Value           STD Error
Intercept 0.01673      3.82895E-4
Slope 0.01546      6.25948E-4

Fig. 5.7: Fitting parameters of the Sellmeier equation (5.1) regarding the concen-
trations (weight ratio of CS2): (A) parameter a, (B) parameter b. The
error bars correspond to the errors in table 5.1. The linear fitting data are
shown in the insets.

In figure 5.8, we plotted the data from experiments (dots) at wavelength

600 nm and 800 nm to show the refractive index variations regarding the con-

centration ratios of the liquid mixture. We found that the refractive indexes

of the liquids at one wavelength change approximately linearly with respect

to the concentration of liquid CS2 in the mixture. It was also noticed that

the slope of the refractive index regarding concentration is different for these

two wavelengths (around 0.12 at 600 nm and 0.11 at 800 nm).

With equation 5.2, we calculated the refractive index of the mixture at

wavelength 600 nm and 800 nm for concentrations from 0 to 100 % (lines in

figure 5.8). We can see that the calculated results are consistent with the
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Fig. 5.8: Refractive index of the bi-mixture liquids at wavelengths 600 nm and
800 nm regarding the concentration (weight ratio of CS2). The dots repre-
sent the experimental results and the lines are calculated with equation
(5.2) for wavelength 600 nm and 800 nm with concentrations from 0 to
100 %.

experimental data and give continuous prediction of the refractive index

regarding concentration changes.

5.2.2 Temperature dependence of refractive index
To demonstrate the capabilities of the method, we further obtained the re-

fractive index dispersion of the liquid CS2 at different temperatures and

determined its thermo-optic coefficient (TOC) (around 30 ◦C) for a large

wavelength range.

We heated the sample of LMA20 PCF filled with 100% CS2 solution us-

ing Peltier effect. The sample was placed in the groove of a metal plate

and covered with a piece of soft thermal conductive material, which was

contacted with a Peltier element. By adjusting the voltage applied on the

Peltier element, we changed the environmental temperature of the sample

from 26 ◦C to 138 ◦C, which was monitored with a thermometer with type

K/J thermocouple (resolution 0.1 ◦C).

The transmission spectra of the sample at different temperatures from

26 ◦C to 138 ◦C are shown in figure 5.9. We observed that the transmission

dips shift to shorter wavelengths regarding the increasing temperature. It

was also noticed that when the temperature is above 53 ◦C, more features as

sub-dips appear in the spectra. For even higher temperatures (above 100 ◦C),

the dips start to disappear and the spectrum is almost flat.

Since many liquids exhibit much higher temperature dependence of refrac-
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Fig. 5.9: Transmission spectra of the LMA20 PCF filled with CS2 solution regarding
different environmental temperatures. The gray bar covers the region of
the laser pump. The y-axis label shows not the absolute values of the
transmission for that the spectra were vertically shifted to be distributed
in the same plane.

tive index ( two orders of magnitude larger thermo-optic coefficient (TOC)

than that of fused silica [108]), the changes in the spectra can be attributed

to the changes of refractive index of the liquid regarding the thermal pro-

cess. It is a rather complex thermal process for the liquid is encapsulated

in a volume-conserved channel. As the temperature increases, the liquid

expands until it fills up the container, during which the increased pressure

inside the sealed channel prevents the boiling of the liquid even above its

boiling temperature (around 46 ◦C for CS2 [109]). For such thermal process,

a previous work about the liquid filled two-core fiber [105] has identified two

operation regimes: in the first regime, the liquid is free to expand and the

refractive index of liquid decreases significantly for increasing temperature

even above the liquid’s boiling point; in the second regime, no more space

for liquid to expand and the refractive index of the liquid changes very little

with increasing temperature. In figure 5.9, we can see that the spectra shift

happened in the whole temperature range in our experiments, suggesting

that in our heating process, we don’t have the liquid fill up the fiber piece

completely. In the process of increasing temperature, the refractive index
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of the filled liquid decreases, leading to shifted transmission dips. When

the refractive index of filled liquid is comparable to the refractive index of

the silica background, the transmission dips from band gap effect disappear

resulting in a flat transmission spectrum.

Fig. 5.10: Dispersion of the refractive index of CS2 regarding different environmen-
tal temperatures. The circles are data calculated from the transmission
dips in figure 5.9. The color lines correspond to the fits of the data with
the Sellmeier equation (5.1). The black line is the reference data from
the literature for the refractive index of CS2 at room temperature (20 ◦C)
[25].

For the environmental temperature of the sample was controlled to be

stable at each point for a while, we can assume that what we measured is

the temperature of the filled liquid. From the transmission spectra at these

temperatures, we obtained the refractive index dispersion of the filled CS2

for these temperatures using the analyzing method introduced in the last

section. We used the transmission spectra at temperatures from 26 ◦C to 53 ◦C
in the wavelength range from 450 nm to 1250 nm, where we see clear narrow

dips, for the determination of the refractive index. To specify the bands for

the case of 26 ◦C, we just shifted the reference dispersion of CS2, which is at

the room temperature (20 ◦C) [25], with small steps (−10−3) to lower values

until the next band appears at the positions of the dips. Again, we defined

the middle values at the crossing region of these bands as the results of the

refractive indexes of CS2 at 26 ◦C. Then we shifted the reference dispersion

further for the bands of the next temperature and so on. The results of the

refractive index at different temperatures are shown in figure 5.10. The

dispersion lines of the refractive index in a broad wavelength range from

450 nm to 1250 nm at different temperatures were fitted from the data using
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the Sellmeier equation (5.1).

Fig. 5.11: Refractive index of CS2 regarding temperature at wavelength 500 nm.
The data is taken from the fittings in figure 5.10.

In figure 5.11, we plot the refractive index regarding temperature ac-

cording to the dispersion lines at wavelength 500 nm. We can see that the

dependence of the refractive index of CS2 on temperature is not linear. This

is reasonable because the dependence of the refractive index on temperature,

the thermo-optic coefficient (TOC), is also a function of temperature (section

2.2.2).

We then analyzed the TOC of CS2 in the case of our experiments by

linear fitting of the data in a small temperature ranges (with data at tempera-

ture 26 ◦C, 30 ◦C, 35 ◦C, measured with an accuracy of about 0.1 ◦C) for all

wavelengths in figure 5.10. The resulting TOC for around 30 ◦C regarding

wavelength are plotted in figure 5.12. We can see that the TOC of CS2

in our experiments at around 30 ◦C is of negative values in the measured

wavelength range. In the wavelength range from 600 nm to 800 nm, the TOC

at around 30 ◦C show a smaller value compared with the known TOC of

CS2 at room temperature (around −8× 10−4 K−1 at 20 ◦C [105, 110–112]).

The dispersion of the TOC along the wavelength with decreasing slope is

similar to the dispersion of the TOC for solid optical materials introduced

in literature [73]. With our data, we have the dispersion of the TOC of CS2

expanded from 800 nm to near infra-red compared with the latest related

work [105].

The errors of the results are from the analyzing method to determine

the refractive index of the liquid filled in the PCF, which is around 10−4, as

well as from the temperature measurement for the heating process with a
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Fig. 5.12: Thermo-optic coefficient of CS2 regarding wavelength at temperature
around 30 ◦C. The squares show the linear fitting coefficient for the data
at temperature 26 ◦C, 30 ◦C, 35 ◦C, while the error bars show the fitting
standard errors.

thermometer in resolution of 0.1 ◦C. Besides, a bias can be induced to the

temperature data due to the direct heating of the sample by the light guided

in the sample, which leads to a higher temperature of the liquid filled in the

sample than the measured surrounding temperature.

5.3 Conclusion
In conclusion, by filling the solid-core PCF with high index liquids, we got a

liquid-filled band gap (LFBG) fiber, whose transmission spectra reflects the

optical properties of the liquid filled in the cladding. By analyzing the spectral

positions of their transmission dips, we were able to determine the refractive

index of the liquids filled in the LFBG fiber in a broad wavelength range

using the analytical method introduced in the previous work (section 3.1).

Specifically, we filled the commercial solid-core PCFs, LMA20 and LMA25

(Thorlab), with bi-mixtures of different weight ratios of CS2 and C2Cl4. We

determined the refractive index of the filled liquids in the wavelength range

from 450 nm to 1700 nm. By fitting the data, we offered an equation for the

refractive index of the bi-mixture system of CS2 and C2Cl4 regarding the

mixture concentration ratios and wavelengths.

Further, with the sample of the LMA20 PCF filled with 100% CS2 solution,

we analyzed its transmission spectra at different environmental temperatures

(from 26 ◦C to 138 ◦C). The dispersion of the refractive index of CS2 at differ-

ent temperatures was determined and fitted with one resonance Sellmeier
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equation for the wavelength range from 450 nm to 1250 nm. As a result, we

achieved data of the refractive index of CS2 for a broad range of wavelengths

at different temperatures. It allows us to study the change of the refractive

index regarding temperature, the thermo-optic coefficient (TOC) and present

the dispersion of the TOCs of CS2 around 30 ◦C from visible to infra-red

wavelength range.

The limitations of the methods lie on the facts: first, the band gap effect

(transmission dips) of the LFBG fiber requires the filled liquid of a refrac-

tive index higher than that of silica; second, to get the absolute value of

the refractive index with a high precision, the calibration of a LFBG fiber

needs ready data from literature as reference. Despite these limitations, our

method offers an easy way to get the refractive index of the liquids in a broad

wavelength range: the data in a wavelength range from visible to infrared

can be achieved with one transmission measurement. The precision of the

results in order of 10−4 is comparable to the other delicate methods[104].

Besides, our method requires only a tiny amount of the liquids in an encapsu-

lated environment and is especially suitable for those liquids with low vapor

pressure or that are toxic or rare.

Our work on refractive index sensing with the LFBG fiber has also promis-

ing applications in the fields of spectral filters and non-linear optics. Based

on the LFBG fiber with the bi-mixture system of liquids CS2 and C2Cl4 of

different concentration ratios, it is possible to adjust the transmission window

of the fiber continuously. Otherwise, it is also possible to shift the transmis-

sion windows by changing the environmental temperature of the LFBG fiber.

Moreover, close to the photonic band edge, the group velocity dispersion

(GVD) of the guided core modes changes from normal to anomalous with a

point of GVD = 0, which is important for nonlinear optics like super contin-

uum generation [113]. By shifting the photonic bands of the LFBG fiber, it

provides a novel way for dispersion engineering for nonlinear optics.

5.3 Conclusion 93





6Conclusion

Microstructured fibers guide light with photonic properties based on their

structured cladding, offering promising solutions for hollow core guidance.

This study is set out to investigate the possibility of hollow core guidance

with all-solid photonic crystal cladding, which consists of high index strands

in periodic arrays embedded in a low index matrix. Two methods were

developed here to study microstructured cladding from the perspective of

their band gap maps, as well as their reflection and transmission.

We developed a complete analytical method using a binary function based

on Birk’s model to investigate the photonic band gap map of all-solid pho-

tonic crystal claddings. The method combined equations in Birks’ model

to a binary function and was proven very efficient to identify band gaps

of photonic crystals for different parameter combinations. With the binary

function, the calculation of photonic band gap map is straightforward and a

parameter analysis with small variations shows that the fundamental band

gap goes deeper to smaller effective index for the increasing of the geometry

parameter d/Λ and the increasing of the material parameter nhi with fixed

nlo. It appears that the guidance in a hollow core with such all-solid photonic

crystal cladding would be difficult if not impossible due to the limited materi-

als of high index that can be fabricated as strands in the cladding.

The guidance in an air core surrounded by suspended polymer strands in

size of around 3 µm in the wavelength range from visible to near infrared was

shown theoretically with simulations and achieved experimentally. Such hol-

low core waveguide consisting of 12 polymer strands arranged in a hexagonal

ring, of length to one centimeter, was implemented using 3D direct laser-

writing on the silicon wafer. The optical characterization of such hollow core

waveguide shows guidance in the central air core and transmission spectra

with dips corresponding to the resonances of the low-order cladding modes.

It appears that this waveguide guides light with a mechanism combining the

band gap guidance with inhabited coupling guidance as the case of revolve

AR fibers.

The analytical method using binary functions is so convenient that we

apply it to determine the refractive index of the filled liquid in a liquid-filled

band gap (LFBG) fiber. Specifically, we filled the commercial solid core PCFs,

LMA20 and LMA25 (Thorlab), with bi-mixtures of different weight ratios of
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CS2 and C2Cl4 solutions. By analyzing the spectral position of the dips in

their transmission spectra, we determined the refractive index of the filled

liquids in the wavelength range from 450 nm to 1700 nm with an error of

around 10−4, leading to an equation for the refractive index of the bi-mixture

system of CS2 and C2Cl4 regarding the mixture concentration ratios and

wavelengths. Besides, with the same method, we achieved data of the refrac-

tive index of CS2 for a broad range of wavelengths at different temperatures.

We studied the change of the refractive index regarding temperature, the

thermo-optic coefficient (TOC), and presented the dispersion of the TOCs of

CS2 at temperature around 30 ◦C for wavelength from 450 nm to 1250 nm.

On the other hand, we introduced a reflection-based simulation method

offering the possibility to qualitatively and quantitatively study the guidance

in a large core microstructured fiber from the perspective of the reflection

and transmission of its structured cladding. Specifically, we analyzed the

fundamental core modes of an all-solid single-ring microstructured fiber,

which has high index strands arranged in a ring form in low index matrix. We

modeled the reflection from the structured cladding using an approximated

planar model, which includes only a small part of the whole structure. We

demonstrated that the power transmission in the planar model can be directly

related to the loss of the guided modes based on the approximation of low

loss. Moreover, the phase difference between the forward scattered field and

the incident field in the planar model reflects the interference of the fields

allowing for better insights into the underlying physics. The exact dispersion

and loss of the fundamental fiber modes were calculated from the complex

reflection coefficient in the planar model and confirmed by the results from

the corresponding numerical mode calculation. Ultimately, we did intensive

parameters sweep for the all-solid single-ring microstructured fiber as well

as its cylinder-modified version with cylinders of alternating diameters. We

found structure arrangements allowing for ultralow loss and revealed the

destructive interference after the structured cladding for the case of low loss.

We proposed the design of a water-core all-solid band gap fiber claim-

ing the possibility of light guidance in a water core surrounded by all-solid

photonic band gap cladding. The modal properties of the proposed fiber

were analyzed using the reflection-based planar model for its complex ef-

fective index. It was shown that the results analytically calculated with the

reflection parameters from the planar model matched well with the results
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from the modal simulation with finite element method (FEM) in case of the

fundamental guided mode, especially for the large core (low loss) cases. For

higher order modes, the hexagonal shape of the core makes the planar model

unrealistic to the TE-polarized mode leading to considerable discrepancy

between the results from the reflection model with TE-polarized incidence

and the results from the FEM simulation for TE01 mode. Regarding the

modal attenuation, we analyzed at the mid-gap frequency those geometry

parameters of the structure, which would not affect the band gap: the core

radius, the number of the rings in the cladding and the thickness of the

silica wall around the core. Further, the analytical calculation based on

the reflection parameters makes it rather easy for us to plot a loss map for

the fundamental mode in a large core (R=50 µm) covering all the feasible

combinations of the structural parameter d/Λ of the band gap cladding and

a range of frequencies. The loss map showed the band gap behavior together

with the information of the modal attenuation for the fundamental mode,

saving any further calculation to analyze the loss of the fundamental mode

for any structures of the design in practice.

The validity of the reflection-based planar model should be noticed: first,

a large core compared to the wavelength and the cladding structure is essen-

tial; second, the core shape is influential depending on the polarization of the

modes. The advantage of the method relies on that it relates the calculation

of the core modes analytically to the simulation results of the cladding part,

which is of a greatly reduced dimension, leading to much lower computation

burden for achieving the complex effective index of the fundamental mode

and a straightforward analytical calculation regarding the change of the core

radius.

The reflection-based planar model was approved as practical and effi-

cient for analyzing guidance in a large core microstructured fiber. While the

concept of photonic band gap effect based on the coupling and forming of

super-modes in the cladding is more about ideal periodic structures extended

into infinite, the reflection and transmission analysis is more practical to be

used in cases with finite periodic structures and modified periodic structures.

Specifically, the reflection-based planar model exhibits properties most suit-

able for the studying of a hollow-core all-solid microstructured fiber, for it is

valid for analyzing the band gap structure with high index contrast, which is

not possible with the analytical methods based on Birks’ model but essential
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for a deep band gap into low index region; it is also validated for the case of

microstructured cladding with modified periodicity rather than hexagonal

periodicity; moreover, it allows the fast calculation of the core modes in a

large core of radius on scale of hundred micrometers, which is the normal

case for the hollow core guidance but will be very time-consuming with the

FEM simulation.

For future work, we would like to continue to pursue hollow core guid-

ance with key feathers: solid structured cladding and a single central channel,

for it has obvious guidance advantages over capillaries and also surpasses

the holey hollow core band gap fibers in the optofluidic applications to avoid

undesired penetration of the liquid into the cladding channels. A further

version of our concept to be investigated using the reflection-based planar

model will be all-solid microstructured cladding with various modifications

in the periodicity offering low loss guidance in a center water/air core. Such

design is of great relevance for the sophisticated research fields studying

light-matter interactions and will find applications in bioanalytic, quantum

gas and lasers.
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