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Zusammenfassung

In dieser Arbeit betrachten wir die Lösungen von stochastischen partiellen Dif-

ferentialgleichungen (SPDE), deren Rauschen von einem Lévy-Prozess stammt.

Dabei verstehen wir diese Lösungen im Kontext von Marcus-Integralen.

Das kanonische Marcus-Integral ist im Rahmen des Studiums gewöhnlicher sto-

chastischer Differentialgleichungen (SDE) definiert. Wir wiederholen einige fun-

damentale Resultate zur Existenz von Flüssen von Lösungen der Marcus SDE

and der Konvergenz von Wong-Zakai-Approximationen. Des Weiteren beweisen

wir eine generalisierte Itô-Formel für die Lösungen der Marcus SDE und nutzen

diese, um Formeln für den inversen Fluss herzuleiten.

Unser weiteres Ziel ist es, die Definition des Marcus-Integrals auf den Fall par-

tieller stochastischer Differentialgleichungen auszuweiten und Lösungen für die

enstprechenden Gleichungen zu finden. Unser Hauptfokus liegt dabei auf mehrdi-

mensionalen Transportgleichungen erster Ordnung, die durch einen Lévy-Prozess

gestört werden. Mit Hilfe der Methode der Charakteristiken weisen wir die Exis-

tenz und Eindeutigkeit von Lösungen dieser Gleichungen nach.

Für Transportgleichungen zweiter Ordnung beweisen wir die Existenz und Ein-

deutigkeit milder Lösungen für den Fall, dass das Rauschen durch einen reinen

Sprungprozess gegeben ist. Dabei definieren wir Lösungen ebenfalls im Sinne des

Marcus-Integrals.

Zuletzt untersuchen wir eine eindimensionale Gleichung zweiter Ordnung auf der

Halbachse, deren Lévy-Rauschen auf dem Rand liegt. Wir betrachten sowohl

Dirichlet als auch Neumann Randbedingungen and bestimmen die geschlossene

Formel für eine milde Lösung. Des Weiteren definieren wir für die Gleichung

Wong-Zakai-Approximationen, welche in der M1-Topologie des Skorokhod-Raums

gegen die stochastische Lösung konvergieren.
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Abstract

In this work we look at solutions to stochastic partial differential equations

(SPDEs) with noise induced by a Lévy process in the context of Marcus inte-

grals.

The canonical Marcus integral is known from the study of SDEs with Lévy noise.

We recapture the fundamental results on the existence of solution flows to the

Marcus SDE and the convergence of Wong–Zakai approximations. We also prove

a generalized Itô formula for said solutions and use this result to establish equa-

tions for the inverse flow.

We are then looking at extensions of Marcus integrals to the case of SPDEs and

find solutions for these equations. Our focus mainly lies on multi-dimensional

first-order transport equations driven by Lévy noise. Existence and uniqueness

results for the Marcus SPDE are established using a method of characteristics.

For second-order equations we prove the existence and uniqueness of mild solu-

tions for equations driven by pure jump Lévy processes, also in terms of Marcus

SPDEs.

Finally, we study a one-dimensional second-order advection-diffusion equation on

the half-line, with Lévy noise at the boundary. Both Dirichlet and Neumann

boundary conditions are considered, and the closed form formulae for mild so-

lutions are determined. We also define Wong–Zakai type approximations of the

solution by classical solutions and show convergence in the setting of the M1-

topology in the Skorokhod space.
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Chapter 1

Introduction

Differential equations have been used for a long time to model various effects that

occur in nature. In this work we are particularly interested in the first and second

order partial differential equations. In the deterministic setting, one example is

the first order PDE given by∂tu(t, x) = ∇Tu(t, x)f(t, x), (t, x) ∈ (0,∞)× Rd,

u(0, x) = u0(x),
(1.1)

which can be used to describe the transport of a contaminant in an incompressible

fluid, see e.g. [VdP07]. Here, u(t, x) is the concentration of the contaminant at

time instant t at the position x ∈ Rd, and −f(t, x) is the flow instant velocity at

the position x at time t.

If, in addition, the contaminant transport is influenced by diffusion this yields

the second order equation∂tu(t, x) = ∆u(t, x) +∇Tu(t, x)f(t, x), (t, x) ∈ (0,∞)× Rd

u(0, x) = u0(x).

There are several reasons to consider transport equations perturbed by ran-

dom noise. From a purely mathematical viewpoint the noise can have a regular-

izing effect; e.g. [Fla11, Chapter 4] details the effect of stochastic noise on the

existence and regularity of the transport equation driven by Brownian motion.

In certain scientific applications on the other hand, it is reasonable to consider

natural phenomena which are influenced by random occurences. For example, in

[WZ05] contaminant transport with random timing and magnitude of the source

of contamination is considered and modeled using deterministic PDE with noise

on the boundary.

3
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Looking specifically at contaminant transport in fluids, the stochastic noise can

also be used to model the turbulence of particles in a flow, see [FL20] and [MT07],

this way simplifying physical models that are difficult to analyze in the deter-

ministic setting. This naturally leads us to consider transport equations with

multiplicative noise, an obvious example being the first order equation driven by

Brownian motion, namely

∂tu(t, x) = ∇Tu(t, x)f(t, x) +∇Tu(t, x)F (t, x) ◦ Ẇ (t),

u(0, x) = u0(x).
(1.2)

Here W is the Brownian motion, and ◦ Ẇ denotes the noise term in the Stratono-

vich sense.

There is a great variety of works dedicated to studying the existence and

properties of solutions to (1.2) and similar equations. We want to highlight two

approaches here: In [Kun84] and [Kun97, Chapter 6], solutions to (1.2) are found

using a method of stochastic characteristics, where the characteristic SDE is also

given in the Stratonovich sense. This approach works analogously to the method

of characteristics in the deterministic setting, see e.g. [Per07, Chapter 6], and

makes use of a generalized Itô formula.

The second approach to mention here is the interpretation of (1.2) as the limit

of a sequence of random PDEs. Approximations of irregular trajectories of ran-

dom processes by smooth paths are well known in the literature under the name

of Wong–Zakai approximations [WZ65a, WZ65b]. In particular for dynamical

systems driven by Brownian motion there is a number of results in both finite

and infinite dimensional settings which state that the approximations converge

in the uniform topology to the solution of the Stratonovich equation, see, e.g.

[BF95, TZ06, Twa91].

Up to this point we have only mentioned results regarding Brownian motion,

some of which can be extended more generally to continuous semimartingales.

However, in some applications it is useful to allow the stochastic noise to have

jumps. Coming back to the example of contaminant transport in fluids we find

that in addition to the influence of Brownian motion it is sometimes desirable

to model extreme flow events that cause instantaneous changes in contaminant

concentrations. In [OT10] and [TH19] for example, Poisson processes are used to

describe these changes. Generalizing this idea, Lévy processes provide an attain-

able class of stochastic processes covering both jumps and continuous noise in a

unifying approach.

In this thesis in particular we look at transport equations driven by Lévy pro-
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cesses. The literature already provides some results on solutions to Lévy-driven

partial differential equations. A good introduction to the general theory can be

found in [PZ07], and further results on solutions to the transport equation within

the frame of white noise theory are given in [Pro04a].

However, looking at Lévy-driven SPDE in this thesis, the goal is to transfer the

aforementioned approaches of stochastic characteristics and Wong–Zakai approxi-

mations. For this purpose it is necessary to find a framework of stochastic calculus

that works for Lévy processes equivalently to how the Stratonovich integral works

for continuous semimartingales. This leads us to study Lévy-driven differential

equations in the Marcus sense which can be written as

∂tu(t, x) = ∇Tu(t, x)f(t, x) +∇Tu(t, x)F (t, x) ◦ Ẇ (t) +∇Tu(t, x)ϕ(t, x) � Ż(t),

u(0, x) = u0(x),

(1.3)

where W is the Brownian motion part of the Lévy process and Z is the purely

discontinuous part. The noise term in the Marcus sense is denoted by �Ż(t). The

precise meaning of this expression will be given in Chapter 4.

The canonical (Marcus) SDE was introduced in [Mar78] and several results on

the properties of Marcus integrals were obtained in the last decades. Existence

and uniqueness of solutions to the Marcus SDE are proven in [KPP95] in the

classical setting, along with an Itô formula for Marcus integrals. In [FK99a] and

[FK99b] the Marcus SDE as well as its derivatives and the inverse flow are studied

in a more general setting. Results on the convergence of approximations can be

found in [Mar81] as well as [Kun95] and [KKP19].

In this thesis we extend these results by a generalized Itô formula for Marcus SDEs

and some results on the inverse flow. Furthermore, we define Marcus integrals

for Lévy-driven transport equations and show that in the Marcus framework the

method of stochastic characteristics can in fact be used to obtain solutions to

these equations.

The plan of this thesis is as follows: In Chapter 2 we establish the necessary

notation and give a quick overview on stochastic integration w.r.t. Lévy processes.

Chapter 3 gives the reader an understanding of the Marcus SDE. We recall results

on the existence and properties of solutions and study the weak convergence of

Wong–Zakai approximations. In this chapter, a new generalized Itô formula for

solutions to Marcus SDE is proven. This result is then used to show how the

inverse flow of solutions to the Marcus SDE solves a specific Marcus equation

and to get an Itô formula specifically for the inverse flow.
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This representation of the inverse will be needed in Chapter 4, where a first-

order Marcus SPDE is studied. Namely, we prove the existence and uniqueness

of solutions to the Marcus transport equation driven by Lévy noise with bounded

jumps.

Chapter 5 deals with Marcus SPDE with purely discontinuous noise and the

existence of mild solutions to the transport equation with a second-order diffusion

term which generates a C0-semigroup is shown.

In the last chapter we consider a slightly different problem. Looking at a second-

order advection-diffusion equation, we change the way the noise is introduced.

Instead of looking at a multiplicative noise, the Lévy noise is inserted through

a boundary condition. We then prove the existence of mild solutions and show

convergence of Wong–Zakai approximations for this equation.



Chapter 2

Preliminaries

2.1 Semimartingales and Stochastic Integration

In this chapter we give a brief summary of stochastic integration and the proper-

ties of stochastic integrals. We will not dwell much on the intricacies of stochastic

integration, since most of the properties we are using in this work are results that

can be found in the literature. For proofs and further reading we refer the reader

for example to [App04] and [Pro04b].

We start by introducing some basic notations used throughout this thesis. In

the following let (Ω,F ,F,P) be a filtered probability space, where the filtration

F = (Fs)s≥0 satisfies the usual conditions, i.e. it is right continuous and complete

(see [Pro04b, Chapter I.5] for more details).

An adapted stochastic process M = (Mt)t≥0 is called a martingale, if E|Mt| <∞
and E[Mt|Fs] = Ms a.s. for all 0 ≤ s ≤ t. It is called square integrable if

E|Mt|2 <∞, t ≥ 0.

By Doob-Meyer’s decomposition theorem, for every square integrable martingale

M there is a unique integrable predictable increasing process A = (At)t≥0, A0 = 0,

such that M2 − A is again a martingale. We denote 〈M〉 := A. This definition

can be extended to locally square integrable martingales with the help of the

localization technique.

For two square integrable martingales M and N we define the angle bracket

〈M,N〉 as

〈M,N〉t =
1

4
(〈M +N〉t − 〈M −N〉t), t ≥ 0,

which obviously implies 〈M,M〉t = 〈M〉t. This allows us to define the Hilbert

space of predictable, integrable processes f : R→ Rd w.r.t. the square integrable

7
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martingale M = (Mt)t∈[0,T ] by

L2(〈M〉) =

{
f : f is predictable and E

[ ∫ T

0

|f(s)|2 d〈M〉s
]
<∞

}
with the norm

‖f‖L2(〈M〉) = E
[ ∫ T

0

|f(s)|2 d〈M〉s
] 1

2
.

For f ∈ L2(〈M〉), we denote by
∫ t

0
f(s) dMs the Itô integral w.r.t. M .

In the multidimensional case, i.e. f : R+×Ω→ Rd×m and M takes values in Rm,

∫ t

0

f(s) dMs =
d∑
i=1

∫ t

0

fi(s) dM i
s,

where fi is the i-th column vector of the (d×m)-matrix f .

These integrals are known to always have a càdlàg modification, that means a

modification that is right continuous and has left limits. In the following we will

always mean this modification when writing the integral. Note also that if f is

not predictable but is adapted and càdlàg, then we can still consider the integral

of f(s−) = limr→s,r<s f(r), since this process is then predictable.

The well-known Itô isometry gives us the following properties of the stochastic

integral for f ∈ L2(〈M〉):〈∫ ·
0

f(s) dMs

〉
t

=

∫ t

0

|f(s)|2 d〈M〉s,

and

E|
∫ t

0

f(s) dMs|2 = E
∫ t

0

|f(s)|2 d〈M〉s.

For example, for integrals w.r.t. a standard Wiener process W this gives us〈∫ ·
0

f(s) dWs

〉
t

=

∫ t

0

|f(s)|2 ds.

We now turn our attention to semimartingales:

Definition 2.1. Let X = (Xt)t≥0 be an adapted stochastic process with càdlàg

paths. We call X a semimartingale if there is a decomposition

Xt = X0 +Mt + At,

into F-adapted processes M and A, such that M is a local martingale and A has
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locally finite variation, with A0 = 0 and M0 = 0.

We write Xt− for the left hand side limit of X and ∆Xt = Xt − Xt− for

the jump at time t. To define integration w.r.t. semimartingales, first note that

since A has locally finite variation we can define the integral w.r.t. A as the usual

Stieltjes integral. For a predictable process f , which is integrable w.r.t. M and

A, we define the Itô integral as∫ t

0

f(s) dXs :=

∫ t

0

f(s) dMs +

∫ t

0

f(s)dAs.

Before we state some important results on the integration for semimartingales

we first take a look at the quadratic variation. For more details we refer the reader

to [JS03].

Let X and Y be two semimartingales. Then their quadratic co-variation [X, Y ]t

can be defined as

[X, Y ]t = XtYt −X0Y0 −
∫ t

0

Xs− dYs −
∫ t

0

Ys− dXs. (2.1)

The quadratic variation of X is defined as [X]t = [X,X]t. Note that for a

continuous martingale M we have [M ]t = 〈M〉t.

Lemma 2.2 ([JS03], Theorem 1.4.52). Let X and Y be semimartingales. We

denote the continuous martingale part of X and Y by M c and N c respectively.

Then

[X, Y ]t = [X, Y ]ct +
∑

0≤s≤t

∆Xs∆Ys = 〈M c, N c〉t +
∑

0≤s≤t

∆Xs∆Ys.

We use the quadratic variation to define the Stratonovich integral. For the

purposes of this thesis it is enough to restrict the definition to the case where the

integrator is a continuous semimartingale, e.g. Brownian motion. Specifically, let

Y be a semimartingale and X be a continuous semimartingale. We define the

Stratonovich integral of Y w.r.t. X as∫ t

0

Ys ◦ dXs =

∫ t

0

Ys− dXs +
1

2
[Y,X]s =

∫ t

0

Ys− dXs +
1

2
〈Y c, X〉s.

For a semimartingale X we now get Itô’s formula (cf. [Pro04b, Chapter II.7]):

Theorem 2.3 (Itô formula). Let F : Rd → R be twice continuously differentiable.
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Then F(X) is again a semimartingale and

F (Xt) = F (X0) +
∑
i

∫ t

0

∂F

∂xi
(Xs−) dX i

s +
1

2

∑
i,j

∫ t

0

∂2F

∂xi∂xj
(Xs−) d[X i, Xj]cs

+
∑

0<s≤t

(
F (Xs)− F (Xs−)−

∑
i

∂F

∂xi
(Xs−)∆X i

s

)
.

The last result we mention here is the Stochastic Fubini Theorem. For our

purposes it suffices to use a version of this theorem for bounded functions. For

the proof and more details see [Pro04b, Chapter IV.6].

Theorem 2.4. Let X be a semimartingale, f(s, x, ω) a measurable bounded func-

tion and µ a finite measure on Rd. Then for every Borel set B,∫ t

0

∫
B

f(s, x, ω)µ(dx) dXs =

∫
B

∫ t

0

f(s, x, ω) dXsµ(dx) a.s.

2.2 Lévy Processes

The focus of this work is to study solutions to differential equations w.r.t. stochas-

tic processes with jumps, instead of assuming the driving semimartingale to be

continuous. The reason to study Lévy processes in particular comes from the fact

that this is a very broad class of possibly discontinuous semimartingales. In this

section we take a brief look at the useful properties of Lévy processes. We start

with the general definition of an Rd-valued Lévy process:

Definition 2.5. We call an Rd-valued stochastic process L = (Lt)t≥0 a Lévy

process if L0 = 0 a.s., L has independent and stationary increments, and L is

stochastically continuous, that means for every t ≥ 0, L is continuous in t with

probability 1.

The Poisson random measure

The most famous examples of Lévy processes are the Brownian motion and com-

pound Poisson processes. We will see later that if we decompose a Lévy process

into the continuous and purely discontinuous part L = Lc + Ld, the continu-

ous part is given by the sum of a drift µ and a Brownian motion W . For the

discontinuous part we give a few more details now.

First note that the sum of the jumps of a Lévy process is not necessarily
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absolutely convergent, meaning that there are Lévy processes L, s.t.∑
0≤s≤t

|∆Ls| =∞.

This is due to the fact that the Lévy process can have an infinite number of small

jumps. To deal with this difficulty, we split the jumps into ”large” and ”small”

jumps. We start with the large jumps:

For A ∈ B(Rd − {0}) and A bounded away from 0, we define

N(A, t) = ]{0 ≤ s ≤ t : ∆Ls ∈ A} =
∑

0≤s≤t

1A(∆L(s)).

First note that N(t, ·) is a counting measure on B(Rd−{0}) (cf. [App04, p. 100]).

A needs to be bounded away from zero because of the reasons mentioned above.

For A ∈ B(Rd) with 0 ∈ A, we could get N(A, t) =∞.

N is called the Poisson random measure (PRM) of L. For more on random

measures see [App04, Section 2.3.1].

For A ∈ B(Rd − {0}) we define the Lévy measure ν(dz) of L, where

ν(A) = E(N(A, 1)) =

∫
N(A, 1) dP,

and the compensated Poisson random measure as

Ñ(A, t) = N(A, t)− tν(A), t ≥ 0.

Now, for a Borel function f : Rd → Rd and A ∈ B(Rd−{0}) the integral w.r.t.

the PRM is defined as∫
A

f(z)N(dz, t) =
∑
z∈A

f(z)N({z}, t) =
∑

0≤s≤t

f(∆Ls)1A(∆Ls),

see [App04, p. 106]. With this definition it is possible to write the large jumps

of the Lévy process as an integral:∫
|z|>1

z N(dz, t) =
∑

0≤s≤t

∆Ls 1{|∆Ls| > 1}.

Due to the accumulation of infinite numbers of small jumps, this definition cannot
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simply be extended to |z| < 1. Instead we subtract the mean value and thus define∫
|z|≤1

f(z) Ñ(dz, t) = lim
ε→0,ε>0

[∫
ε<|z|≤1

f(z)N(dz, t)− t
∫
ε<|z|≤1

f(z)ν(dz)

]
,

where the limit is taken in probability. To see that the limit exists one can show

that the sequence on the right hand side is a Cauchy sequence in L2.

We now have the necessary notation to state the result of the Lévy-Itô-

decomposition. For proof of the theorem and more details we refer the reader to

[App04, Theorem 2.4.16].

Theorem 2.6. For every Rd-valued Lévy process L there exists a drift µ ∈ Rd,

an Rd-valued Brownian motion W with covariance matrix Σ and an independent

Poisson random measure N on R+ × (Rd − {0}) with Lévy measure ν, s.t.∫
Rd

(|z|2 ∧ 1) ν(dz) <∞,

and for each t ≥ 0

Lt = µt+Wt +

∫
|z|≤1

z Ñ(dz, t) +

∫
|z|>1

z N(dz, t).

This decomposition is unique up to the setting of the threshold of large jumps.

For the sake of completeness we also give the Lévy-Khintchin formula for the

characteristic function of Φt(α) = E[ei(α,Lt)], with α ∈ Rd and t ≥ 0:

Φt(α) = exp

[
t

(
i(µ, α)− 1

2
(α,Σα) +

∫
Rd−{0}

(ei(α,z) − 1− i(α, z)1|z|≤1 ν(dz)

)]
,

where Σ is the covariance matrix of the Brownian motion W .

We see from this formula that the Lévy process can be determined by the so-called

generating triplet (Σ, ν, µ) – which is the covariance matrix Σ of the Brownian

motion part, the Lévy measure ν and the drift term µ. Depending on the jumps,

there are two noteworthy special cases of Lévy processes:

First, consider the case where L has only bounded jumps, i.e. there is some A > 1

s.t. for any t > 0, |∆Lt| < A a.s.. The Poisson process is an obvious example for

this case. Then the integral above can be reduced to

Lt =µ̃t+Wt +

∫
|z|≤A

z Ñ(dz, ds),

by defining µ̃ = µ+
∫

1<|z|≤A z ν(dz).
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On the other hand, if the sum of the jumps of L is absolutely convergent, i.e.∫
|z|≤1
|z| ν(dz) <∞, then the compensated Poisson random measure is not needed

and the Lévy process is given by

Lt =µ̄t+Wt +

∫
|z|>0

z N(dz, ds),

with µ̄ = µ−
∫
|z|≤1

z ν(dz).

Quadratic variation and Itô’s formula for Lévy-type integrals

Using the Lévy-Itô decomposition we now turn to integration w.r.t. Lévy pro-

cesses. It will be convenient to work in the framework of the following Lévy-type

stochastic integral (cf. [App04, p. 251]).

Xt = X0 +

∫ t

0

g(s) ds+

∫ t

0

G(s) dWs

+

∫ t

0

∫
|z|≤1

ϕ(s, z) Ñ(dz, ds) +

∫ t

0

∫
|z|>1

ψ(s, z)N(dz, ds),

(2.2)

with g : R+ → Rd, G : R+ → Rd×m and ϕ, ψ : R+×Rm → Rd×m being predictable

processes, such that

E
∫ t

0

|g(s)| ds <∞, E
∫ t

0

|G(s)|2 ds <∞ and E
∫ t

0

∫
|z|≤1

|ϕ(s)|2ν(dz) ds <∞.

The integral w.r.t. the compensated Poisson random measure is a discontinu-

ous martingale. We further see (cf. [Kun04, Lemma 2.4]) that〈∫ ·
0

∫
|z|≤1

ϕ(s, z) Ñ(dz, ds)

〉
t

=

∫ t

0

∫
|z|≤1

|ϕ(s, z)|2 ν(dz) ds,

and

E
∣∣∣∣∫ t

0

∫
|z|≤1

ϕ(s, z) Ñ(dz, ds)

∣∣∣∣2 = E
[∫ t

0

∫
|z|≤1

|ϕ(s, z)|2 ν(dz) ds

]
.

The process X given in equation (2.2) is a semimartingale, which means that

Itô’s formula can be applied to X. Note for this that we can neatly distinguish

the parts of X: The integrals w.r.t. the Lebesgue measure and the PRM N are

processes of finite variation. On the other hand, the integral w.r.t. the Brownian

motion is a continuous martingale and the integral w.r.t. Ñ a purely discontinu-
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ous martingale. This means, applying Itô’s formula to X gives us the following

theorem.

Theorem 2.7. Let F : Rd → R be twice continuously differentiable. Then

F (Xt)−F (X0)

=
d∑
i=1

∫ t

0

∂F

∂xi
(Xs−)gi(s) ds+

d∑
i=1

∫ t

0

∂F

∂xi
(Xs−)Gi(s) dWs

+
d∑

i,j=1

1

2

∫ t

0

∂2F

∂xi∂xj
(Ys−)Gi(s)Gj(s) d〈W,W 〉s

+

∫ t

0

∫
|z|≤1

[F (Xs− + ϕ(s, z))− F (Xs−)] Ñ(dz, ds)

+

∫ t

0

∫
|z|>1

[F (Xs− + ψ(s, z))− F (Xs−)] N(dz, ds)

+

∫ t

0

∫
|z|≤1

F (Xs− + ϕ(s, z))− F (Xs−)−
d∑
i=1

ϕi(s, z)
∂F

∂xi
(Xs−) ν(dz) ds.

2.3 Integration w.r.t. the Compensated Poisson

Random Measure in a Banach Space

In Chapters 5 and 6 the integrands of the stochastic integrals take values in

a Hilbert space. The construction of stochastic integrals in Hilbert spaces w.r.t.

martingales is standard, see for example [PZ07, Chapter 8.2]. However, for Chap-

ter 5 a particular version of the stochastic integral w.r.t. a compensated Poisson

random measure Ñ is used, that works for integrands which are not necessarily

predictable. In this section, we present a definition for integration which was in-

troduced in [BH09] and works for progressively measurable integrands in spaces

of martingale type p for p ∈ (1, 2]. We start with some basic definitions.

Definition 2.8. A stochastic process (Xt)t≥0 on (Ω,F ,P) with values in a Banach

space E is called progressively measurable w.r.t. F, if the map X : [0, t]× Ω→ E

is B([0, t])⊗Ft-measurable.

Definition 2.9. Let p ∈ [1, 2] be fixed and E be a Banach space. We say that

E is of martingale type p, if there exists a constant Lp(E) > 0, s.t. for every

E-valued finite martingale {Mn}Nn=0 the following inequality holds:

sup
n

E|Mn|p ≤ Lp(E)
N∑
n=0

E|Mn −Mn−1|p,
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where we set M−1 = 0.

Let now N be a PRM on a measurable space (S,S), with Ñ being the compen-

sated PRM and ν the (non-negative) intensity measure. Furthermore, we denote

by Mp
step(0,∞;Lp(S, ν;E)) the space of progressively measurable step processes

ξ : R+ → Lp(S, ν;E) with

E
∫ ∞

0

|ξ(t)|p dt <∞.

Definition 2.10. Let E be a real separable Banach space of martingale type p,

with p ∈ (1, 2]. Let ξ be in Mp
step(0,∞;Lp(S, ν;E)) and have the representation

ξ(t, x) =
n∑
j=1

ξ(tj, x)I(tj−1,tj ](t)

for some 0 = t0 < t1 < · · · < tn < ∞. We define the integral of ξ w.r.t. the

compensated Poisson random measure Ñ as

Ĩ(ξ) =
n∑
j=1

∫
S

ξ(tj, x) Ñ(dx, (tj−1, tj]).

It is shown in [BH09, Appendix C] that there is a unique bounded linear

operator

I :Mp(0,∞;Lp(S, ν;E))→ Lp(Ω,F , E),

that extends the operator Ĩ from the dense set of step functions to all functions in

the space Mp(0,∞;Lp(S, ν;E)), which is the space of progressively measurable

processes ξ with

E
∫ ∞

0

‖ξ(t)‖pLp(S,ν;E) dt <∞.

Furthermore the following important inequality is proven, see [BH09, Theorem

C.1]:

Lemma 2.11. For every ξ ∈Mp(0,∞;Lp(S, ν;E))

E
∣∣∣∣∫ t

0

∫
S

ξ(r, z) Ñ(dz, dr)

∣∣∣∣p
E

≤ CpE
∫ t

0

∫
S

|ξ(r, z)|pE ν(dz) dr, t ≥ 0,

where Cp is independent of ξ.

The Banach space E will mostly be a fractional Sobolev space Hθ in the

following, and S will be Rd. When we write the integrals w.r.t. to the compensated

PRM in these spaces, we will always mean the definition above.
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2.4 Analytical Preliminaries

Function spaces and basic notation

We first give some basic notations regarding function spaces and differentiability:

Let d,m, n ≥ 1. By Cn we denote n times continuously differentiable functions.

For a mapping F : Rd 7→ Rm, DF is the Jacobian (gradient) matrix, namely,

DF =


∂F1

∂x1
· · · ∂F1

∂xd

· · · · · · · · ·
∂Fm
∂x1

· · · ∂Fm
∂xd

 , (2.3)

and in particular, for F : Rd 7→ R, DF = ( ∂F
∂x1
, · · · , ∂F

∂xd
) = ∇TF .

We write ∂α for the partial derivative with multiindex α and ∂x for the partial

derivative w.r.t. the coordinate x.

We denote by Cn
b the space of n times continuously differentiable bounded func-

tions with bounded derivatives and write ‖f‖ for the supremum norm of f ∈ Cn
b .

Cn
c denotes the space of continuously differentiable functions with compact sup-

port.

In Chapters 5 and 6 we will be mostly working in fractional Sobolev spaces.

We give some definitions, results and remarks on notation here. For further

information we refer the reader to [HT08] and also the appendix of this work.

Let S(Rd) be the Schwartz space of rapidly decreasing functions and let S ′(Rd) be

its dual space, also known as the space of tempered distributions. Let L2(Rd) be

the Hilbert space of equivalence classes of square-integrable functions f : Rd → C
with scalar product 〈f, g〉2 =

∫
Rd f(x)g(x) dx and the associated norm ‖f‖2

2 :=∫
Rd |f(x)|2 dx. On S(Rd) or S ′(Rd) respectively we define the Fourier transform

F such that for ϕ ∈ S(Rd)

(Fϕ)(ξ) := (2π)−d/2
∫
Rd

e−ixξϕ(x) dx,

and for T ∈ S ′(Rd), FT is the functional on S ′(Rd), such that FT (ϕ) = T (Fϕ)

for every ϕ ∈ S(Rd).

For θ ∈ R, Hθ(Rd) denotes the fractional Sobolev space, namely a separable

Hilbert space

Hθ(Rd) := {f ∈ S ′(Rd) : (1 + ξ2)θ/2(Ff)(ξ) ∈ L2(Rd)}
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with the norm

‖f‖θ,2 :=
∥∥∥(1 + ξ2)θ/2(Ff)(ξ)

∥∥∥
2
,

see e.g. [HT08]. In Chapter 6 we consider the one-dimensional case and work in

the restriction of Hθ(R) to R+, denoted by Hθ(R+). We equip this space with

the norm
‖g‖Hθ(R+) := inf

g̃|R+=g
‖g̃‖θ,2.

To define the associated scalar product in Hθ(R+), note that for every f ∈
Hθ(R+) there is a unique extension ext f to R, such that ‖f‖Hθ(R+) = ‖ ext f‖θ,2
and such that the relation

〈f, g〉Hθ(R+) := 〈ext f, ext g〉θ,2

defines a scalar product on Hθ(R+), see Lemma A.1. Completeness and separa-

bility of Hθ(R+) then follow from the completeness and separability of Hθ(R).

At some points we will assume for Hθ
2 (Rd) that θ > d

2
. This is due to the

Sobolev embedding Theorem (see for example [HT08, Theorem 3.32]), which

states that for θ > d
2

+ n, the space Hθ
2 (Rd) can be embedded into Cn(Rd). This

specifically means, that for θ > d
2

we find a continuous function in every equiva-

lence class in Hθ
2 (R). Thus, for f ∈ Hθ

2 (Rd) and fixed x ∈ Rd, we can evaluate f

in the point x, defining f(x) as the value of the continuous representative from

the equivalence class at the point x.

C0-semigroups of contractions

We give a very short introduction to the theory of C0-semigroups. It is based

on [Paz83]. Throughout this section let E and F be Banach spaces. We say an

operator A : E → F is bounded, if there is c ∈ R, such that

‖Ax‖F ≤ c‖x‖E for all x ∈ X.

The space L(E,F ) of all bounded, linear operators A : E −→ F becomes a Banach

space, when equipped with the norm

‖A‖L(E,F ) = sup{‖Ax‖F : x ∈ E with ‖x‖E ≤ 1}.

We write Id for the identity operator on E and L(E) := L(E,E).

Definition 2.12. Let (S(t))t≥0, S(t) : E → E, be a family of bounded linear
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operators. We call S(t) a strongly continuous semigroup or C0-semigroup, if the

following conditions are satisfied:

(i) S(0) = Id,

(ii) S(t+ s) = S(t)S(s) for all t, s ≥ 0,

(iii) limt↘0 S(t)x = x for all x ∈ E.

If in addition ‖S(t)‖L(E) ≤ 1 for all t, s ≥ 0, we call S(t) contractive or C0-

semigroup of contractions.

Definition 2.13. Let S(t) be a C0-semigroup and

D(A) := {x ∈ E : lim
t↘0

S(t)x− x
t

exists}.

We call the linear operator A defined on D(A) by

Ax = lim
t↘0

S(t)x− x
t

infinitesimal generator of the semigroup S(t), and D(A) the domain of A.

In the following we state some properties of C0-semigroups which will be

needed later. For proofs and further reading we refer the reader to [Paz83].

Lemma 2.14. Let S(t), t ≥ 0, be a C0-semigroup and A its infinitesimal gener-

ator. Then

(i) for all x ∈ D(A) we have S(t)x ∈ D(A) and

d

dt
S(t)x = AS(t)x = S(t)Ax,

(ii) and for all x ∈ E we have
∫ t

0
S(s)xds ∈ D(A) and

A

(∫ t

0

S(s)xds

)
= S(t)x− x.

Definition 2.15. An operator A ∈ L(E) is called closed, if for every sequence

(xn) in D(A) with Axn −−−→
X

y ∈ X there is x ∈ D(A) with xn −−−→
E

x and

Ax = y.

Definition 2.16. Let A be a linear operator in E. Then the resolvent set ρ(A)

of A is the set of all λ ∈ C for which (λ Id−A)−1 is a bounded linear operator in

E.



2.5. DETERMINISTIC DIFFERENTIAL EQUATIONS 19

The resolvent set is needed for the well-known Hille-Yosida Theorem for C0-

semigroups. The following version of the theorem is taken from [Paz83, Theorem

3.1], and gives sufficient conditions for A to be the generator of a semigroup,

which is not only strongly continuous but also contractive.

Theorem 2.17. A linear (possibly unbounded) operator A is the infinitesimal

generator of a C0-semigroup of contractions in E if and only if

(i) A is closed and D(A) is dense in E,

(ii) (0,∞) ⊂ ρ(A) and for all λ > 0

∥∥(λ Id−A)−1
∥∥
L(E,D(A))

≤ 1

λ
.

2.5 Deterministic Differential Equations

Looking at some simple examples of deterministic differential equations, namely

non-autonomous ODEs and simple transport equations, is a crucial step to solv-

ing stochastic differential equations with Lévy noise in the sense of the Marcus

integration. On the one hand, solving deterministic differential equations is an

essential part of the construction of the Marcus integral. On the other hand

the proofs in this section also exemplify the use of characteristics to solve the

transport equation, which works similarly in the deterministic setting as for the

stochastic PDE in Chapter 4.

Ordinary differential equations

We start by reiterating some very basic results about existence and uniqueness of

ODEs and continue with some important qualitative results about the solutions.

The results given in this section are based on the first part of [Tes12] and [Kön04,

Section 4.6].

For our purposes it is enough to look at global solutions in Rd. For some T > 0,

let f : [0, T ] × Rd → Rd be a continuous function. We consider solutions to the

equation

v̇(t) = f(t, v(t)), v(0) = x, (2.4)

where x ∈ Rd and v̇ denotes the derivative of v w.r.t. t.

It is well-known that there is a unique global solution for (2.4) if we assume a
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global Lipschitz condition for f , namely

sup
x6=y∈Rd

|f(t, x)− f(t, y)|
|x− y|

<∞, t ∈ [0, T ],

see for example [Tes12, Corollary 2.6].

Looking at the dependence of the solution on the initial condition we see that

if f is in C1, the solution defines a flow of diffeomorphisms x 7→ v(t;x), and the

gradient matrix Dv(u, x) w.r.t. x solves the equation

w(t, x) = Id +

∫ t

0

Df(u, v(u, x))w(u, x) du, (2.5)

where Id is the identity matrix of size d× d.

When used for the construction of Marcus integrals, the deterministic differ-

ential equations get a parameter z ∈ Rm from the jumps of the Lévy process.

Specifically, in Chapter 3 we consider the solution to

v̇(s, x, z) = f(s, v, z), v(0, x, z) = x.

Assume for s ≥ 0, z ∈ Rm and k ≥ 2, that f(s, ·, z) ∈ Ck(Rd,Rd). Then the

derivatives of v w.r.t. z exist up to order k.

One special case is when f(s, x, z) = ϕ(x)z, where ϕ ∈ C2(Rd,Rd×m). From

[Tes12, Theorem 2.12.] we can gather that in this case the derivatives up to order

2 solve the following differential equations for 1 ≤ j ≤ m:

d

dt

(
∂zjv(t, z)

)
= ϕj(v) +D(ϕ(x)z)|x=v(t,z)∂zjv(t, z)

∂zjv(0, z) = 0,

and

d

dt

(
∂zjziv(t, z)

)
=
(
D(ϕ(x)z)∂zjziv(t, z) +D(D(ϕ(x)z)∂ziv(t, z))∂zjv(t, z)

+D(ϕj(x))∂ziv(t, z) +D(ϕi(x))∂zjv(t, z)
)∣∣∣

x=v(t,z)

∂zjziv(0, z) = 0,

where ϕj is the j-th column vector of ϕ.
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The transport equation

The first-order transport equation is given by

ġ(t, x) = ∇T g(t, x)α(x),

g(0, x) = g0(x),
(2.6)

where α : Rd → Rd is a C1 function of linear growth and g0 : Rd → R is some

smooth initial condition.

Let v(t, x) be the solution flow generated by equation (2.4) with f(x) = −α(x).

The solution to the transport equation can be constructed using the inverse flow

of v(t, x). Consider the non-autonomous ODE

y(t, x) = x+

∫ t

0

(Dv(u, y(u, x))−1α(v(u, y(u))) du.

We easily see that the solution y(t, x) to this equation gives us the inverse flow

of v(t, x): Obviously, v(0, y(0, x)) ≡ x. For t > 0 we get

d

dt
v(t, y(t, x)) = v̇(t, y(t, x)) +Dv(t, y(t, x))ẏ(t, x)

= −α(v(t, y(t, x))) +Dv(t, y(t, x))(Dv(t, y(t, x)))−1α(v(t, y(t, x)))

= 0.

We can now prove the existence of a solution to (2.6).

Lemma 2.18. We define

g(t, x) = g0(y(t, x)). (2.7)

Then g solves the equation (2.6).

Proof. For the initial condition we immediately see that g0(v(0, x)) = g0(x). The

chain rule then implies

d

dt
g0(y(t, x)) =∇T g0(y(t, x)) · ẏ(u, x)

=∇T g0(y(t, x)) · (Dv(u, y(u, x))−1α(v(u, y(u))).

Since y is the inverse flow of v we also have

α(v(u, y(u))) = α(x),

(Dv(u, y(u, x))−1 = Dy(u, x),
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and therefore

∇T
(
g0(y(t, x))

)
α(x) = ∇T g0(y(t, x))Dy(t, x)α(x)

= ∇T g0(y(t, x))
(
Dv(t, y(t, x))

)−1

α(x).

Eventually, we consider the slightly more complex first order equation of the

following form:

ġ(t, x) = ∇T g(t, x)α(x) + g(t, x)β(x) + σ(x), t ∈ [0, T ]

g(0, x) = g0(x),

where α, β and σ are again C1 functions of linear growth. This is the deterministic

analogon of the stochastic equation we study in Chapter 4. To solve it we use

the method of characteristics which gives us the following result:

Lemma 2.19. Let v be the solution to (2.4) with f(t, x) = −α(x), and y the

inverse flow of v. Then the solution g satisfies

g(t, x) = e
∫ t
0 β(y(s,x)) ds

[
g0(y(t, x)) +

∫ t

0

e
∫ s
0 β(y(r,x)) drσ(y(s, x)) ds

]
.

Proof. We look at the enlarged (d+2)-dimensional system of differential equations

Ẋt =

v̇(t, x)

Ẋd+1
t

Ẋd+1
t

 =

 −α(v(t))

−Xd+1
t β(v(t))

−Xd+1
t σ(v(t))


The inverse flow is X−t. Consider the functions

Ψ(x, xd+1, xd+2) := xd+1g0(x) + xd+2

and

g(t, x, xd+1, xd+2) := Ψ(X−t(x, xd+1, xd+2)) = Xd+1
−t g0(v(−t, x)) +Xd+2

−t
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We write x̄ for the vector (x, xd+1, xd+2)T . Then

g(t, x, xd+1, xd+2)

= Ψ(x, xd+1, xd+2) +

∫ t

0

∇T
x̄Ψ(X−s(x̄))Ẋ−s(x̄) ds

= Ψ(x, xd+1, xd+2) +

∫ t

0

∇T
x̄Ψ(X−s(x̄))

(
DXs(X−s(x̄))

)−1

 α(x)

xd+1β(x)

xd+1σ(x)

 ds

= Ψ(x, xd+1, xd+2) +

∫ t

0

∇T
x̄Ψ(X−s(x̄))DX−s(x̄)

 α(x)

xd+1β(x)

xd+1σ(x)

 ds

= Ψ(x, xd+1, xd+2) +

∫ t

0

∇T
x̄

(
Ψ(X−s(x̄))

) α(x)

xd+1β(x)

xd+1σ(x)

 ds

Thus setting xd+1 = 1, xd+2 = 0 we get

ġ(t, x) = ġ(t, x, 1, 0) = ∇T
x̄

(
Ψ(X−s(x, 1, 0))

)α(x)

β(x)

σ(x)


= ∇T

x g(t, x)α(x)
∣∣∣
xd+1=1,xd+2=0

+ ∂xd+1
g(t, x, xd+1, xd+1)β(x)

∣∣∣
xd+1=1,xd+2=0

+∂xd+2
g(t, x, xd+1, xd+1)σ(x)

∣∣∣
xd+1=1,xd+2=0

Here

Xd+1
t (x, xd+1) = xd+1e−

∫ t
0 β(v(s,x)) ds,

Xd+2
t (x, xd+1, xd+2) = xd+2 − xd+1

∫ t

0

e−
∫ s
0 β(v(r,x)) drσ(v(s, x)) ds,

∂xd+1
Xd+1
t (x, xd+1) = e−

∫ t
0 β(v(s,x)) ds = Xd+1

t (x, 1),

∂xd+1
Xd+2
t (x, xd+1, xd+2) = −

∫ t

0

e−
∫ s
0 β(v(r,x)) drσ(v(s, x)) ds = Xd+1

t (x, 1),

∂xd+2
Xd+1
t (x, xd+1, xd+2) = 0, and

∂xd+2
Xd+2
t (x, xd+1, xd+2) = 1.

Hence

ġ(t, x) = ∇T
x g(t, x)α(x) + g(t, x)β(x) + σ(x).





Chapter 3

The Marcus SDE

Looking at stochastic differential equations, there are different ways to inter-

pret an equation. The difference between the Itô and the Stratonovich SDE is

well-known and there are famous results on the convergence of Wong–Zakai ap-

proximations to the solution of a Stratonovich type equation in the case of the

Brownian motion. In the context of SDEs driven by Lévy processes similar results

for the convergence of Wong–Zakai approximations as for the Brownian motion

can be obtained using the canonical (Marcus) integral.

After an introduction to the Marcus SDE in the first section, this chapter is fo-

cused on Itô-type formulae for solutions of Marcus SDE, the inverse flows and

Wong–Zakai approximations. The results of Sections 3.2 and 3.3 were accepted

to be published in [HPar].

3.1 Existence and Properties of the Solution to

the Marcus SDE

Let W be an Rm-valued Brownian motion and Z an m-dimensional pure jump

Lévy process given by

Zt =

∫ t

0

∫
|z|≤1

z Ñ(dz, dt) +

∫ t

0

∫
|z|>1

z N(dz, dt),

25
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where N is the Poisson random measure with intensity measure ν(dz) and Ñ is

the compensated PRM. For d ≥ 1, let

f(x, r, ω) : Rd × R+ × Ω→ Rd,

F (x, r, ω) : Rd × R+ × Ω→ Rd×m,

ϕ(x, r, z, ω) : Rd × R+ × Rm × Ω→ Rd

be predictable processes with parameters x and (x, z) respectively. In what fol-

lows, we will often omit the dependence on ω ∈ Ω.

Consider a semimartingale Φ with parameter x given by

Φ(x, t) =

∫ t

0

f(x, r) dr +

∫ t

0

F (x, r) dWr

+

∫ t

0

∫
|z|≤1

ϕ(x, r, z) Ñ(dz, dr) +

∫ t

0

∫
|z|>1

ϕ(x, r, z)N(dz, dr).

(3.1)

We define the canonical Marcus SDE with the generator Φ, which we formally

write as

Xt(x) = x+

∫ t

0

Φ(Xr(x), � dr). (3.2)

Before giving a detailed formula for what this equation means, it is important to

understand how to treat the jumps of the Lévy process in this equation. Whenever

the driving Lévy process Z makes a jump, the solution flow should make a jump at

the same time but not simply with the same height as the Lévy process. Instead,

the solution of the Marcus SDE shall fly with infinite speed along the integral

curve of the vector field ϕ(·, t,∆Zt).
To this end, for each r ≥ 0, x ∈ Rd, z ∈ Rm and ω ∈ Ω, consider an ODE (the

Marcus ODE) for the function v = v(u) = v(u; x, r, z):
d

du
v(u) = ϕ(v(u), r, z), u ∈ [0, 1],

v(0) = x.
(3.3)

Assuming for now that ϕ is regular enough, there is a global solution v for u ∈ R
which we denote by

euϕ(·;r,z)(x) := v(u; x, r, z), u ∈ R. (3.4)

In particular we define the exponential mapping

eϕ(·;r,z)(x) := v(1; x, r, z). (3.5)
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The Marcus SDE (3.2) is then defined as the Itô SDE

Xt(x) = x+

∫ t

0

f(Xr−(x), r) dr +

∫ t

0

F (Xr−(x), r) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(x))−Xr−(x)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(x))−Xr−(x)− ϕ(Xr−(x), r, z)

)
ν(dz) dr

+

∫ t

0

∫
|z|>1

(
eϕ(·,r,z)(Xr−)−Xr−

)
N(dz, dr).

The existence and uniqueness of solutions to these equations have been stud-

ied for example by [KPP95] and [FK99a]. From the general theory of SDEs we

naturally expect the coefficients to be Lipschitz continuous. Due to the nature of

the Stratonovich integral, which includes terms of the kind DF ·F , it is necessary

to impose slightly more regularity than in the case of Itô SDEs. The following

Theorem 3.2 uses slightly stricter assumptions on the regularity of the coeffi-

cients than would be needed for just the existence of solutions, giving us in turn

more regularity for the solution. Namely, we derive the following conditions from

Condition A∗ and Condition B∗ of [FK99a]:

Assumption 3.1. There is δ ∈ (0, 1), s.t.

Hf :

f(·, r) ∈ C2+δ(Rd,Rd),

sup
x

|f(x, r)|
1 + |x|

≤ K,

‖∂αf i(·, r)‖ ≤ K, 1 ≤ i ≤ d, |α| = 1, 2,

‖∂αf i(x, r)− ∂αf i(y, r)‖ ≤ L‖x− y‖δ, 1 ≤ i ≤ d, |α| = 2.

HF :

F (·, r) ∈ C3+δ(Rd,Rd×m),

sup
x

|F i
j (x, r)|

1 + |x|
≤ K, 1 ≤ i ≤ d, 1 ≤ j ≤ m,

‖∂αF i
j (·, r)‖ ≤ K, 1 ≤ i ≤ d, 1 ≤ j ≤ m, |α| = 1, 2,

‖∂αF i
j (·, r)F k

l (·, r)‖ ≤ K, 1 ≤ i, k ≤ d, 1 ≤ j, l ≤ m, |α| = 2, 3,

‖∂αF i
j (x, r)− ∂αF i

j (y, r)‖ ≤ L‖x− y‖δ, 1 ≤ i ≤ d, 1 ≤ j ≤ m, |α| = 3.

Hϕ:

ϕ(·, r, z) ∈ C2+δ(Rd,Rd×m),
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and there are non-negative functions K0(z), K1(z) and L1(z) and L2(z), such

that ∫
|z|≤1

(
K0(z)2 +K1(z)2 + L0(z) + L1(z)2

)
ν(dz) <∞

and

sup
x

|ϕij(·, r, z)|
1 + |x|

≤ K0(z), 1 ≤ i ≤ d, 1 ≤ j ≤ m,

‖∂αϕij(·, r, z)‖ ≤ K1(z), 1 ≤ i, j ≤ d, 1 ≤ |α| ≤ 2,

‖∂αϕij(x, r, z)ϕkl (x, r, z)− ∂αϕij(y, r, z)ϕkl (y, r, z)‖ ≤ L0(z)‖x− y‖,

1 ≤ i, k ≤ d, 1 ≤ j, l ≤ m, |α| = 1,

‖∂αϕij(x, r, z)− ∂αϕij(y, r, z)‖ ≤ L1(z)‖x− y‖δ,

1 ≤ i ≤ d, 1 ≤ j ≤ m, |α| = 2.

We then get the following theorem from Corollaries 3.2 and 4.2 of [FK99a].

Theorem 3.2. Under the Assumption 3.1, the Marcus SDE (3.2) has a unique

solution. The solution has a càdlàg modification (Xt)t≥0, such that the map Xt :

Rd → Rd is an onto C2-diffeomorphism for any t ≥ 0 almost surely.

Idea of the proof. The idea of the proof is to show that equation (3.2) can be

written as an Itô SDE, which satisfies the conditions of [CN90, Theorem IV.I].

Marcus SDE of separating type

In Section 3.4, convergence of Wong–Zakai approximations will be studied for

solutions to the classical Marcus SDE, i.e. the case where the coefficients f , F

and ϕ only depend on x. This is also called Marcus SDE of separating type.

Formally, we use the following definition:

Let f : Rd → Rd, F, ϕ : Rd → Rd×m be deterministic functions. We call the

equation

Xt(x) = x+

∫ t

0

f(Xr−(x)) dr +

∫ t

0

F (Xr−(x)) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
eϕ(·)z(Xr−(x))−Xr−(x)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eϕ(·)z(Xr−(x))−Xr−(x)− ϕ(Xr−(x), z)

)
ν(dz) dr

+

∫ t

0

∫
|z|>1

(
eϕ(·)z(Xr−)−Xr−

)
N(dz, dr).

(3.6)
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Marcus SDE of separating type.

In this case equation (3.6) can be rewritten as

Xt(x) = x+

∫ t

0

f(Xr) dr +

∫ t

0

F (Xr) ◦ dWr +

∫ t

0

ϕ(Xr−) dZr

+
∑

0≤r≤t

(
eϕ(·)∆Zr(Xr−)−Xr− − ϕ(Xr−)∆Zr

)
,

which coincides with the notation used in [KPP95].

The proof of convergence of approximations in Section 3.4 uses slightly more

information on the derivatives of the solution. The following Lemma is based on

[KKP19, Theorem 2.2].

Lemma 3.3. Under Assumption 3.1, let X be the solution to (3.6). Then for any

g in C2
b there is C > 0, s.t. for every x ∈ Rd, every t in [0, T ] and any multiindex

α with 1 ≤ |α| ≤ 2

|∂αExg(Xt)| ≤ C.

Proof. The proof is given in [KKP19, Section 7]. The only difference here are the

weaker assumptions on the coefficients, which only give us the result for |α| ≤ 2,

instead of |α| ≤ 4 in [KKP19].

3.2 Generalized Itô Formula for Marcus SDEs

Let Xt(x) be a semimartingale with spatial parameter and Y another semimartin-

gale. In this section, the aim is to give a formula for the expression Xt(Yt).

In the case of continuous semimartingales, a generalized Itô formula, also called

the Itô–Wentzell formula, can be found for example in [Kun97, Section 3.3] and

[CN90, Section III.3], but these results do not work in the case where both X

and Y have jumps.

The main result of this section is the generalized Itô formula for the case where

X and Y are solutions to Marcus SDEs driven by the same Poisson random mea-

sure. We start by recalling the conventional Itô formula for the Marcus SDE,

which works similar to [KPP95, Proposition 4.2].

Theorem 3.4 (Itô’s formula for solutions of canonical SDEs). Let X be the

solution of the SDE (3.2) and let Θ ∈ C2(Rd,R). Then

Θ(Xt) = Θ(x) +

∫ t

0

DΘΦ(Xr, � dr), (3.7)
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where the canonical integral in the r.h.s. of (3.7) is equal to∫ t

0

DΘ(Xr−)f(Xr−, r) dr +

∫ t

0

DΘ(Xr−)F (Xr−, r) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
Θ(eϕ(·,r,z)(Xr−))−Θ(Xr−)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
Θ(eϕ(·,r,z)(Xr−))−Θ(Xr−)− ϕ(Xr−, r, z)

)
ν(dz) dr

+

∫ t

0

∫
|z|>1

(
Θ(eϕ(·,r,z)(Xr−))−Θ(Xr−)

)
N(dz, dr).

Remark 3.5. Note that the process Θ(X) has the jumps

Θ(Xr)−Θ(Xr−) = Θ(eϕ(·,r,z)(Xr−))−Θ(Xr−)

=

∫ 1

0

DΘ(euϕ(·,r,z)(Xr−))ϕ(euϕ(·,r,z)(Xr−), r, z) du,

which justifies the formal writing (3.7).

We now consider a second semimartingale Y which solves the SDE with gen-

erator Ψ given by

Ψ(x, t) =

∫ t

0

g(x, r) dr +

∫ t

0

G(x, r) dWr

+

∫ t

0

∫
|z|≤1

ψ(x, r, z) Ñ(dz, dr) +

∫ t

0

∫
|z|>1

ψ(x, r, z)N(dz, dr).

The generalized Itô formula for Xt(Yt) is given in following Theorem:

Theorem 3.6 (generalized Itô formula for canonical SDEs). Consider solutions

of canonical SDEs with generators Φ and Ψ such that the functions f, F, ϕ and

g,G, ψ satisfy Assumptions 3.1 respectively,

Xt(x) = x+

∫ t

0

Φ(Xr(x), � dr), (3.8)

Yt = y +

∫ t

0

Ψ(Yr, � dr). (3.9)

Then Xt(Yt) satisfies the following formula

Xt(Yt) = y +

∫ t

0

Φ(Xr(Yr), � dr) +

∫ t

0

DXΨ(Yr, � dr), (3.10)
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where the latter integrals are understood as∫ t

0

Φ(Xr(Yr), � dr)

=

∫ t

0

f(Xr−(Yr−), r) dr +

∫ t

0

F (Xr−(Yr−), r) dWr

+
1

2

m∑
j=1

∫ t

0

DFj(Xr−(Yr−), r)Fj(Xr−(Yr−), r) dr

+

∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(Yr−))−Xr−(Yr−)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(Yr−))−Xr−(Yr−)− ϕ(Xr−(Yr−), r, z)

)
ν(dz) dr

+

∫ t

0

∫
|z|>1

(
eϕ(·,r,z)(Xr−(Yr−))−Xr−(Yr−)

)
N(dz, dr)

(3.11)

and∫ t

0

DXΨ(Yr, � dr)

=

∫ t

0

DXr−(Yr−)g(Yr−, r) dr +
m∑
j=1

1

2

∫ t

0

DXr−(Yr−)DGj(Yr−, r)Gj(Yr−, r) dr

+
1

2

m∑
j,k=1

∫ t

0

(D(DXr−)j)k(Yr−)Gj(Yr−, r)Gk(Yr−, r) dr

+
1

2

m∑
j=1

∫ t

0

DXr−(Yr−)DFj(Xr−(Yr−), r)Gj(Yr−, r) dr

+

∫ t

0

DXr−(Yr−)G(Yr−, r) dWr

+

∫ t

0

∫
|z|≤1

[
eϕ(·,r,z)

(
Xr−

(
eψ(·,r,z)(Yr−)

)
− eϕ(·,r,z)(Xr−(Yr−))

]
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

[
eϕ(·,r,z)

(
Xr−

(
eψ(·,r,z)(Yr−)

))
− eϕ(·,r,z)(Xr−(Yr−))

−DXr−(Yr−)ψ(Yr−, r, z)
]
ν(dz) dr

+

∫ t

0

∫
|z|>1

[
eϕ(·,r,z)

(
Xr−

(
eψ(·,r,z)(Yr−)

)
− eϕ(·,r,z)(Xr−(Yr−))

]
N(dz, dr).

(3.12)

Before moving on to the proof of Theorem 3.6, we give some basic estimates

for the exponential map eϕ(·,r,z).
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Lemma 3.7. Assume that ϕ(·, r, z) ∈ C2+δ(Rd,Rd) satisfies Hϕ in Assumption

3.1. Then eϕ(·,r,z) is twice differentiable w.r.t. x and we get the following esti-

mates:

(1) |eϕ(·,r,z)(x)− x| ≤ (1 + |x|)K0(z)eK0(z),

(2) |∇eϕ(·,r,z)(x)− Id | ≤ K1(z)eK1(z),

(3) |∇2eϕ(·,r,z)(x)| ≤ (K1(z))3e3K1(z),

(4) |eϕ(·,r,z)(x)− x− ϕ(x, r, z)| ≤ K0(z)K1(z)eK0(z)(1 + |x|).

Proof. For the first equation we see that

|eϕ(·,r,z)(x)− x| ≤
∫ 1

0

d

du
euϕ(·,r,z)(x) du ≤

∫ 1

0

|ϕ(euϕ(·,r,z)(x), r, z)| du

≤ K0(z) +K0(z)

∫ 1

0

|x| du+K0(z)

∫ 1

0

|euϕ(·,r,z)(x)− x| du.

Then it follows from Gronwall’s inequality that

|eϕ(·,r,z)(x)− x| ≤ (1 + |x|)K0(z)eK0(z).

The derivatives can also be written as solutions to the following differential equa-

tions, see for example [Tes12, Theorem 2.10.]:

w(t) = Id +

∫ t

0

∇ϕ(euϕ(·,r,z), r, z)w(u) du,

y(t) =

∫ t

0

∇2ϕ(euϕ(·,r,z), r, z)(w(u))2 +∇ϕ(euϕ(·,r,z), r, z)y(u) du,

where ∇euϕ(·,r,z) = w(u) and ∇2euϕ(·,r,z) = y(u). Using Gronwall’s inequality

again gives us the estimates.

To get the last estimate we omit the dependence on r and z for a moment

and write in one dimension in favour of better readability. We then define

k(x, u) = eϕ(·)u(x)− x− ϕ(x)u,

and see that for some ξ ∈ (0, 1)

d

du
(k(x, u) + ϕ(x)u) =

d

du
eϕ(·)u(x) = ϕ(eϕ(·)u(x))

= ϕ(k(x, u) + x+ ϕ(x)u)

= ϕ(x) + ϕ′(ξ)(k(x, u) + ϕ(x)u).



3.2. GENERALIZED ITÔ FORMULA FOR MARCUS SDES 33

We further see that

d

du
k(x, u) = ϕ′(ξ)(k(x, u) + ϕ(x)u),

and thus

|k(x, u)| ≤ |ϕ′(ξ)|
∫ u

0

|k(x, s) + ϕ(x)s| ds

≤ K1(z)

∫ u

0

|eϕ(·)s(x)− x| ds

≤ K1(z)(1 + |x|)K0(z)eK0(z).

Proof of Theorem 3.6. For the proof of the generalized Itô formula we apply the

method of [CN90, Theorem III.3.3]. To simplify the notation, we assume that X

and Y , as well as W and Z are one-dimensional processes, i.e. d = m = 1. We

also assume that ν([−1, 1]c) = 0. Adding large jumps is straightforward.

We write the SDEs for X and Y in the Itô form:

Xt(x) = x+

∫ t

0

f(Xr−(x), r) dr +

∫ t

0

F (Xr−(x), r) dWr

+
1

2

∫ t

0

F ′(Xr−(x), r)F (Xr−(x), r) dr

+

∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(x))−Xr−(x)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(x))−Xr−(x)− ϕ(Xr−(x), r, z)

)
ν(dz) dr

Yt = y +

∫ t

0

g(Yr−, r) dr +

∫ t

0

G(Yr−, r) dWr +
1

2

∫ t

0

G′(Yr−, r)G(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

(
eψ(·,r,z)(Yr−)− Yr−

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eψ(·,r,z)(Yr−)− Yr− − ψ(Yr−, r, z)

)
ν(dz) dr.

(3.13)

We first perform localizations of the semimartingales X(x) and Y , so that we can

assume them to be bounded for the rest of the proof.

We start with Y : Lemma 3.7 implies that

|eψ(·,r,z)(y)− y| ≤ Kψ
0 (z)eK

ψ
0 (z)(1 + |y|) ≤ Kψ(1 + |y|), |z| ≤ 1, y ∈ R.

Let the initial value y ∈ R be fixed. For each n ≥ 1, let τn = inf{t ≥ 0: |Yt| > n}.
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Then the stopped process is bounded by construction and (3.2) since

|Y τn
t | ≤ n+ |∆Yτn | ≤ n+Kψ(1 + n) =: C(n).

In particular,

|eϕ(·,r,z)(x)− x| ≤ Kϕ(1 + |x|), |z| ≤ 1, x ∈ R. (3.14)

For X we denote

Akt = sup
|y|≤k+1

(
|Xt(y)|+

∣∣∣∇Xt(y)
∣∣∣+
∣∣∣∇2Xt(y)

∣∣∣)
and let σm,k = inf{t ≥ 0: Akt > m}. By Lemma 3.7 the jumps of X(x) and its

derivatives can be estimated by

|Xt(x)−Xσm,k
t− (x)| = |eϕ(·,t,z)(Xt−(x))−Xt−(x)| ≤ (1 + |Xt−(x)|)Kϕ

0 (z)eK
ϕ
0 (z),

|∇Xt(x)−∇Xt−(x)| =
∣∣∣∇eϕ(·,t,z)(Xt−(x))− 1

∣∣∣ · |∇Xt−(x)|

≤ Kϕ
1 (z)eK

ϕ
1 (z)|∇Xt−(x)|,

|∇2Xt(x)−∇2Xt−(x)| =
∣∣∇2eϕ(·,t,z)(Xt−(x))

(
∇Xt−(x)

)2∣∣
+
∣∣∣∇eϕ(·,t,z)(Xt−(x))− 1

∣∣∣|∇2Xt−(x)|

≤ (Kϕ
1 (z))3e3Kϕ

1 (z)|∇Xt−(x)|2 +Kϕ
1 (z)eK

ϕ
1 (z)|∇2Xt−(x)|.

For the stopped process this means

sup
|x|≤k+1

|Xσm,k
t (x)| ≤ m+ sup

|x|≤k+1

|∆Xσm,k−(x))| ≤ m+Kϕ
0 (z)eK

ϕ
0 (z)(1 +m)

≤ C0(m),

and analogously

sup
|x|≤k
|∇Xσm,k

t (x)| ≤ C1(m),

sup
|x|≤k
|∇2X

σm,k
t (x)| ≤ C2(m).

Clearly, for each k ≥ 1, limm σm,k = +∞ and limn τn = +∞. Hence we can

choose subsequences nl,ml, kl, and define

Tl := τnl ∧ σml,kl → +∞
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such that the stopped processes Y Tl and XTl satisfy for t ∈ [0, T ]:

|Y Tl
t | ≤ l,

sup
|x|≤l+1

(
|XTl

t (x)|+
∣∣∣∇XTl

t (x)
∣∣∣+
∣∣∣∇2XTl

t (x)
∣∣∣) ≤ C(l),

|∆Y Tl
t |+ sup

|x|≤l+1

(
|∆XTl

t (x)|+ |∆(∇XTl
t (x))|+ |∆(∇2XTl

t (x))|
)
≤ D(l)

for some sequences C(l) ↑ +∞ and D(l) ↑ +∞.

From now on we will work with the stopped semimartingales and can therefore

assume the coefficients g, G, ψ to be uniformly bounded and f , F , ϕ to be

bounded and thus uniformly continuous in the ball of the radius l + 1.

Consider a sequence of mollifiers hn ∈ C∞K (R,R) given by

hn(x) := nh(nx),

where h ∈ C∞K (Rd,R) is supported on a unit ball |x| ≤ 1, h(x) ≥ 0, and such

that
∫
R h(x) dx = 1. Then for each x ∈ R, the classical Itô formula applied to

the semimartingale Y yields

hn(Yt − x) = hn(y − x) +

∫ t

0

h′n(Yr− − x)g(Yr−, r) dr

+

∫ t

0

h′n(Yr− − x)G(Yr−, r) dWr

+
1

2

∫ t

0

h′n(Yr− − x)G′(Yr−, r)G(Yr−, r) dr

+
1

2

∫ t

0

h′′n(Yr− − x)G2(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

h′n(Yr− − x)
(
eψ(·,r,z)(Yr−)− Yr− − ψ(Yr−, r, z)

)
ν(dz) dr

+

∫ t

0

∫
|z|≤1

[
hn

(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

]
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

[
hn

(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

−h′n(Yr− − x)
(
eψ(·,r,z)(Yr−)− Yr−

)]
ν(dz) dr.

(3.15)

Next we apply the Itô product formula (see equation (2.1)) to X(x)h(Y − x) to
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get

Xt(x)hn(Yt − x) = xhn(y − x)

I1 =

I2 =

I3 =

I4 =



+

∫ t

0

hn(Yr− − x)f(Xr−(x), r) dr

+
1

2

∫ t

0

hn(Yr− − x)F ′(Xr−(x), r)F (Xr−(x), r) dr

+

∫ t

0

∫
|z|≤1

hn(Yr− − x)×

×
(
eϕ(·,r,z)(Xr−(x))−Xr−(x)− ϕ(Xr−(x), r, z)

)
ν(dz) dr

+

∫ t

0

hn(Yr− − x)F (Xr−(x), r) dWr

J1 =

J2 =

J3 =

J4 =

J5 =

J6 =

J7 =

J8 =



+

∫ t

0

Xr−(x)h′n(Yr − x)g(Yr−, r) dr

+
1

2

∫ t

0

Xr−(x)h′n(Yr − x)G′(Yr−, r)G(Yr−, r) dr

+
1

2

∫ t

0

Xr−(x)h′′n(Yr − x)G2(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

Xr−(x)
[
hn

(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

−h′n(Yr− − x)
(
eψ(·,r,z)(Yr−)− Yr−

)]
ν(dz) dr

+

∫ t

0

∫
|z|≤1

Xr−(x)h′n(Yr− − x)×

×
(
eψ(·,r,z)(Yr−)− Yr− − ψ(Yr−, r, z)

)
ν(dz) dr

+

∫ t

0

Xr−(x)h′n(Yr − x)G(Yr−, r) dWr

+

∫ t

0

F (Xr−(x), r)h′n(Yr − x)G(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

[
eϕ(·,r,z)(Xr−(x))−Xr−(x)

]
×

×
[
hn
(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

]
ν(dz) dr

K1 =


+

∫ t

0

∫
|z|≤1

[
eϕ(·,r,z)(Xr−(x))hn

(
eψ(·,r,z)(Yr−)− x

)
−Xr−(x)hn(Yr− − x)

]
Ñ(dz, dr).

(3.16)
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We decompose the term K1 further into the sum

I5 =

J9 =



∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(x))−Xr−(x)

)
hn(Yr− − x) Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

eϕ(·,r,z)(Xr−(x))×

×
[
hn

(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

]
Ñ(dz, dr).

All the (stochastic) integrals in (3.16) exist due to the integrability assumptions

on the functions ϕ and ψ and the estimates for the exponential mappings from

Lemma 3.7.

In the next part of the proof we go through all the terms from above one by

one. The plan is to integrate w.r.t. x and pass to the limit. For all terms the

strategy will be roughly the same: We first use the (stochastic) Fubini Theorem

to change the order of integration. Then, using the properties of the mollifiers

(see for example [Eva02, Appendix C.4, Theorem 6]) and Lebesgue’s theorem

on dominated convergence, we get the limit for n → ∞. We note here that all

integrals contain the term hn(Yr−−x) or one of its derivatives. Since Y is bounded

by some constant l, these terms disappear for |x| ≥ l. This means that in the

following we can assume f , F and ϕ to be also uniformly bounded to simplify

the notation.

We distinguish between the Lebesgue integrals w.r.t. dr, the Itô integrals w.r.t.

dW and the compensated Poisson random measure Ñ , and the terms containing

the derivatives h′n and h′′n. We start with the terms coming from the integral∫ t
0
hn(Yr− − x) dXr which will converge to the first integral in (3.10).

Initial and end points. It follows directly from the properties of the mollifiers

and the continuity of x 7→ Xt(x) that

lim
n→∞

∫
R
Xt(x)hn(Yt − x) dx = Xt(Yt)

and

lim
n→∞

∫
R
xhn(y − x) dx = y.

Terms I1 and I2. We start with the Lebesgue integrals coming from the drift

part and the noise-induced drift appearing in the Stratonovich integrals w.r.t. W .
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For each ω ∈ Ω,∫ t

0

∫
R
|hn(Yr− − x)f(Xr−(x), r)| dx dr ≤ ‖f‖

∫ t

0

∫
R
hn(Yr− − x) dx dr

= t · ‖f‖ <∞

and the Fubini theorem yields∫
R

∫ t

0

hn(Yr− − x)f(Xr−(x), r) dr dx =

∫ t

0

∫
Rd
hn(Yr− − x)f(Xr−(x), r) dx dr

=

∫ t

0

∫
‖x‖≤1/n

hn(x)f(Xr−(Yr− − x), r) dx dr.

For each r ∈ [0, T ], the function y 7→ f(Xr−(y), r) is continuous and by [Eva02,

Appendix C.4, Theorem 6(iii)]

lim
n→∞

∣∣∣ ∫
|x|≤1/n

hn(x)f(Xr−(y − x), r) dx− f(Xr−(y), r)
∣∣∣ = 0.

Since for r ∈ [0, T ]∣∣∣ ∫
|x|≤1/n

hn(x)f(Xr−(Yr− − x), r) dx
∣∣∣ ≤ ‖f‖

the Lebesgue’s dominated convergence theorem implies that∫ t

0

∫
R
hn(Yr− − x)f(Xr−(x), r) dx dr →

∫ t

0

f(Xr−(Yr−), r) dr.

Analogously we get the convergence of the term I2.

Term I3. Consider the function

HI3(x, r) =

∫
|z|≤1

(
eϕ(·,r,z)(x)− x− ϕ(x, r, z)

)
ν(dz).

It follows from Lemma 3.7 that

|eϕ(·,r,z)(x)− x− ϕ(x, r, z)| ≤ Kϕ
0 (z)Kϕ

1 (z)eK
ϕ
0 (z)(1 + |x|),

so x 7→ HI3(x, r) is well-defined and continuous.

Recalling that X and Y are assumed to be bounded, the argument of the previous
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step applies and∫ t

0

hn(Yr− − x)

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(x))−Xr−(x)− ϕ(Xr−(x), r, z)

)
ν(dz) dr

→
∫ t

0

∫
|z|≤1

(
eϕ(·,r,z)(Xr−(Yr−))−Xr−(Yr−)− ϕ(Xr−(Yr−), r, z)

)
ν(dz) dr.

Term I4. By Fubini’s theorem for stochastic integrals (see Theorem 2.4), for

each |y| ≤ l∫
R

∫ t

0

hn(y − x)F (Xr−(x), r) dWr dx =

∫ t

0

∫
R
hn(y − x)F (Xr−(x), r) dx dWr.

By the properties of mollifiers for each r ∈ [0, T ] and |y| ≤ l∣∣∣ ∫
R
hn(y − x)F (Xr−(x), r) dx− F (Xr−(y), r)

∣∣∣ ≤ 2CF

and by the Itô isometry and again Lebesgue’s dominated convergence

E
∣∣∣ ∫ t

0

∫
R
hn(Yr− − x)F (Xr−(x), r) dx dWr −

∫ t

0

F (Xr−(Yr−), r) dWr

∣∣∣2
=

∫ t

0

E
∣∣∣ ∫

R
hn(Yr− − x)F (Xr−(x), r) dx− F (Xr−(Yr−), r)

∣∣∣2 dr

→ 0.

Term I5. The jump term I5 is estimated analogously with the help of the Itô

isometry for stochastic integrals w.r.t. a compensated PRM.

Terms J1, J2 and J7. Consider the Lebesgue integrals and again apply Fubini’s

theorem for each ω. To deal with h′n, we integrate by parts, using that X is

a C1-diffeomorphism. Convergence follows from applying Lebesgue’s dominated

convergence:∫
R

∫ t

0

Xr(x)h′n(Yr − x)g(Yr, r) dr dx =

∫ t

0

[ ∫
R
Xr(x)h′n(Yr − x) dx

]
g(Yr, r) dr

=

∫ t

0

[ ∫
R
X ′r(x)hn(Yr − x) dx

]
g(Yr, r) dr

→
∫ t

0

X ′r(Yr)g(Yr, r) dr.

The terms J2 and J7 are treated analogously.

Term J3. This step works similarly as for the term J1. Using that X is a
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C2-diffeomorphism to integrate by parts twice we get∫
R

∫ t

0

Xr−(x)h′′n(Yr− − x)G2(Yr−, r) dr dx

=

∫ t

0

[ ∫
R
Xr−(x)h′′n(Yr− − x) dx

]
G2(Yr−, r) dr

=

∫ t

0

[ ∫
R
X ′′r−(x)hn(Yr− − x) dx

]
G2(Yr−, r) dr

→
∫ t

0

X ′′r−(Yr−)G2(Yr−, r) dr.

Terms J4, J5, J8. First note that the sum of the terms J4+J5+J8 is well defined:

For each n ≥ 1, the function hn is Lipschitz continuous, and so the integrability

of the term from J8 follows from Lemma 3.7 and the integrability assumptions

on Kϕ
0 and Kψ

0 .

For J5 integrability follows from the same arguments as for the term in I3.

To show the integrability for J4 we use Taylor’s theorem to estimate∣∣∣hn(eψ(·,r,z)(y)− x
)
− hn(y − x)− h′n(y − x)

(
eψ(·,r,z)(y)− y

)∣∣∣
≤
∫ 1

0

∣∣∣h′′n(y − x+ θ(eψ(·,r,z)(y)− y)
)∣∣∣(1− θ) dθ ·

(
eψ(·,r,z)(y)− y

)2

≤
∫ 1

0

∣∣∣h′′n(y − x+ θ(eψ(·,r,z)(y)− y)
)∣∣∣(1− θ) dθ · (Kψ

0 (z))2e2Kψ
0 (z)(1 + |y|)2.

Since h′′n and Yr− are bounded for every n ≥ 1, the integrability assumption on

Kψ
0 (z))2 suffices to get integrability of the whole term. Hence the sum J4 +J5 +J8

is simplified to

J4 + J5 + J8 =

∫ t

0

∫
|z|≤1

[
eϕ(·,r,z)(Xr−(x))

(
hn
(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

)
−Xr−(x)ψ(Yr−, r, z)h′n(Yr− − x)

]
ν(dz) dr

and by Fubini’s theorem, the integration by parts and the dominated convergence

theorem we get

lim
n→∞

∫
R
(J4 + J5 + J8) dx

=

∫ t

0

∫
|z|≤1

[
eϕ(·,r,z)(Xr−(

(
eψ(·,r,z)(Yr−)

)
)− eϕ(·,r,z)(Xr−(Yr−))

−X ′r−(Yr−)ψ(Yr−, r, z)
]
ν(dz) dr.
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Term J6. The term J6 is treated with the help of integration by parts analogously

to the term I4.

Term J9. The term J9 is treated analogously to the term I5.

The formula from Theorem 3.6 is interesting in and of itself, but it will also

be an important tool in the next section, which is dealing with the inverse flow

of solutions to the Marcus SDE. In this context, another result will be needed,

which is a slightly different take on the generalized Itô formula for Marcus SDEs.

Here, we consider a semimartingale Φ instead of the solution X. We get the

following result:

Theorem 3.8. Let Φ be a one-dimensional semimartingale given by (3.1) with a

d-dimensional parameter x and let Y be a solution of the d-dimensional canonical

SDE (3.9). Then

Φ(Yt, t) =

∫ t

0

Φ(Yr−, dr) +

∫ t

0

∇TΦ(Yr, � dr), (3.17)

where∫ t

0

Φ(Yr−,dr) =

∫ t

0

f(Yr−, r) dr +

∫ t

0

F (Yr−, r) dWr

+

∫ t

0

∫
|z|≤1

ϕ(Yr−, r, z) Ñ(dz, dr) +

∫ t

0

∫
|z|>1

ϕ(Yr−, r, z)N(dz, dr)

(3.18)

and∫ t

0

∇TΦ(Yr, � dr)

=

∫ t

0

∇TΦ(Yr−, r)g(Yr−, r) dr +

∫ t

0

∇TΦ(Yr−, r)G(Yr−, r) ◦ dWr

+

∫ t

0

∫
|z|≤1

∫ 1

0

(
∇TΦ(eψ(·,r,z)(Yr−), r−) +∇Tϕ(eψ(·,r,z)(Yr−), r, z))

)
×

×ψ(eψ(·,r,z)(Yr−), r, z) du Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

∫ 1

0

[(
∇TΦ(eψ(·,r,z)(Yr−), r−) +∇Tϕ(eψ(·,r,z)(Yr−), r, z))

)
×

×ψ(eψ(·,r,z)(Yr−), r, z)
]

du−∇TΦ(Yr−, r−)ψ(Yr−, r, z) ν(dz) dr

+

∫ t

0

∫
|z|>1

∫ 1

0

(
∇TΦ(eψ(·,r,z)(Yr−), r−) +∇Tϕ(eψ(·,r,z)(Yr−), r, z))

)
×

×ψ(eψ(·,r,z)(Yr−), r, z) duN(dz, dr).

(3.19)
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Proof. The proof of this theorem is analogous to the proof of Theorem 3.6. After

localization, and application of a mollifier hn to Y we obtain again the formula

(3.15). The product formula for Φ(x, t)hn(Yt − x) takes a slightly different form,

namely

Φ(x, t)hn(Yt − x) = Φ(x, 0)hn(y − x)

+

∫ t

0

hn(Yr− − x)f(Xr−(x), r) dr

+

∫ t

0

hn(Yr− − x)F (Xr−(x), r) dWr

+

∫ t

0

Φ(x, r−)h′n(Yr− − x)g(Yr−, r) dr

+
1

2

∫ t

0

Φ(x, r−)h′n(Yr− − x)G′(Yr−, r)G(Yr−, r) dr

+
1

2

∫ t

0

Φ(x, r−)h′′n(Yr− − x)G2(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

Φ(x, r−)
[
hn

(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

−h′n(Yr− − x)
(
eψ(·,r,z)(Yr−)− Yr−

)]
ν(dz) dr

+

∫ t

0

∫
|z|≤1

Φ(x, r−)h′n(Yr− − x)×

×
(
eψ(·,r,z)(Yr−)− Yr− − ψ(Yr−, r, z)

)
ν(dz) dr

+

∫ t

0

Φ(x, r−)h′n(Yr − x)G(Yr−, r) dWr

+
1

2

∫ t

0

F (Xr−(x), r)h′n(Yr − x)G(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

ϕ(x, r, z)
(
hn
(
eψ(·,r,z)(Yr−)− x

)
− hn(Yr− − x)

)
ν(dz) dr

+

∫ t

0

∫
|z|≤1

[(
Φ(x, r−) + ϕ(x, r, z)

)
hn

(
eψ(·,r,z)(Yr−)− x

)
−Φ(x, r−)hn(Yr− − x)

]
Ñ(dz, dr).

(3.20)

Note that the initial condition disappears since Φ(x, 0) = 0. Integrating w.r.t. x

and passing to the limit with n→∞ as in the proof of Theorem 3.6 we then get
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the formula

Φ(Yt, t) =

∫ t

0

f(Yr−, r) dr +

∫ t

0

F (Yr−, r) dWr

+

∫ t

0

∇TΦ(Yr−, r−)g(Yr−, r) dr +
1

2

∫ t

0

∇TΦ(Yr−, r−)G2(Yr−, r) dr

+
1

2

∫ t

0

∇T∇Φ(Yr−, r−)G′(Yr−, r)G(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

(
Φ(eψ(·,r,z)(Yr−), r−))− Φ(Yr−, r−)

−∇TΦ(Yr−, r−)ψ(Yr−, r, z)
)
ν(dz) dr

+

∫ t

0

∇TΦ(Yr−, r−)G(Yr−, r) dWr +
1

2

∫ t

0

∇TF (Yr−, r)G(Yr−, r) dr

+

∫ t

0

∫
|z|≤1

(
ϕ(eψ(·,r,z)(Yr−), r, z)− ϕ(Yr−, r, z)

)
ν(dz) dr

+

∫ t

0

∫
|z|≤1

[
Φ(eψ(·,r,z)(Yr−), r−) + ϕ(eψ(·,r,z)(Yr−), r, z)

−Φ(Yr−, r−)
]
Ñ(dz, dr).

which can be transformed to (3.17), (3.18), (3.19).

3.3 Equations for the Inverse Flows

By Theorem 3.2, the solution x 7→ Xt(x), t ≥ 0, maps Rd onto itself diffeomor-

phically, and there exists a modification such that Xs,t := Xt ◦ X−1
s defines the

stochastic flow of diffeomorphisms. Denote by DXt(x) its Jacobian matrix and

let (DXt(x))−1 be its matrix inverse.

Consider the inverse flow Xt,0 := X−1
0,t , t ≥ 0. We show that the inverse flow

satisfies the following formula.

Theorem 3.9. The inverse flow t 7→ Xt,0, t ≥ 0 satisfies the canonical SDE

Xt,0(x) = x−
∫ t

0

(
DX0,r(Xr,0(x))

)−1

Φ(x, � dr) (3.21)



44 CHAPTER 3. THE MARCUS SDE

which is understood in the following sense:

Xt,0(x) = x−
∫ t

0

(
DX0,r−(Xr−,0(x))

)−1

f(x, r) dr

−
∫ t

0

(
DX0,r−(Xr−,0(x))

)−1

F (x, r) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
eψ(·,r,z)(Xr−,0(x))−Xr−,0(x)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eψ(·,r,z)(Xr−,0(x))−Xr−,0(x)

−(DX0,r−(Xr−,0(x)))−1ϕ(x, r, z)
)
ν(dz) dr

+

∫ t

0

∫
|z|>1

(
eψ(·,r,z)(Xr−,0(x))−Xr−,0(x)

)
N(dz, dr).

(3.22)

where eψ(·,r,z) is the exponential mapping defined with the help of the solution

w = w(u; x) = w(u; x, r, z) of the ODE
d

du
w(u; y) = −

(
Deuϕ(·,r,z)(Xr−(·))

)−1

ϕ(euϕ(·,r,z)(Xr−(·)), r, z) ◦ w(u; y),

u ∈ [0, 1],

w(0; y) = y,

(3.23)

i.e. eψ(·,r,z)(y) := eψ(r,z)(y) := w(1; y).

Proof. For brevity we assume that ν(|z| > 1) = 0 and denote X0,t = Xt, and

DX0,t = DXt. DXt(x) is a right stochastic exponent, see [Pro04b, Section V.9]

and [FK99a, Section 4] for more detail. It is well defined and is invertible.

Define the following drift, diffusion and jump coefficients:

g(y, r) = −
(
DXr−(y)

)−1

f(Xr−(y), r),

G(y, r) = −
(
DXr−(y)

)−1

F (Xr−(y), r),

ψ(y, r, z, u) = −
(
Deuϕ(·,r,z)(Xr−(y))

)−1

ϕ(euϕ(·,r,z)(Xr−(y)), r, z).

In particular,

ψ(y, r, z, 0) = −
(
DXr−(y)

)−1

ϕ(Xr−(y), r, z).

The functions g, G and ψ are predictable and with the help of localization we can

assume that they satisfy Assumptions 3.1. Then equation (3.23) has a unique
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global solution.

Consider the supplementary SDE

Yt = x+

∫ t

0

g(Yr−, r) dr +

∫ t

0

G(Yr−, r) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
eψ(r,z)(Yr−)− Yr−

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eψ(r,z)(Yr−)− Yr− −

(
DXr−(Yr−)

)−1

ϕ(Xr−(Yr−), r, z)
)
ν(dz) dr

where eψ(r,z) is defined in (3.23).

We show that for each T > 0 and for any localized solution we have Xt(Yt) ≡ x

on [0, T ]. Let us again consider the one-dimensional case. We apply the general-

ized Itô formula and show that all the integral terms vanish. Indeed, for the drift

term we get

f(Xr−(Yr−), r, z) +DXr−Yr−g(Yr−, r, z)

= f(Xr−(Yr−), r, z)−DXr−Yr−

(
DXr−(Yr−)

)−1

f(Xr−(Yr−), r) ≡ 0.

The other Lebesgue and Itô stochastic integrals w.r.t. W vanish analogously.

To treat the jump terms we consider the function h(u; x) := euϕ(·,r,z)(Xr−(x))

where the mapping (u, x) 7→ euϕ(x) has been defined in (3.3), (3.4), (3.5), so

that h(0; x) := Xr−(x) and h(1; x) := Xr(x). Then taking into account (3.23) we

obtain that

d

du
h(u;w(u; y)) =

∂

∂u
h(u;w(u; y)) +

∂

∂x
h(u;w(u; y))

d

du
w(u; y)

= ϕ(h(u;w(u; y)); r, z)

− ∂

∂x
h(u;w(u; y))

( ∂
∂x
h(u;w(u; y))

)−1

· ϕ(h(u;w(u; y)); r, z)

≡ 0.

(3.24)

In other words, we have

eϕ(r,z)(Xr−(eψ(r,z)(Yr−))−Xr−(Yr−) =
(
h(1;w(1; y))− h(0;w(0, y))

)∣∣∣
y=Yr−

=

∫ 1

0

d

du
h(u;w(u; y)) du

∣∣∣
y=Yr−

≡ 0.

Furthermore, putting together the compensated terms in the generalized Itô for-
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mula we get(
eϕ(·,r,z)(Xr−(Yr−))−Xr−(Yr−)− ϕ(Xr−(Yr−), r, z)

)
+
(
eϕ(·,r,z)(Xr−

(
eψ(·,r,z)(Yr−)

))
− eϕ(·,r,z)(Xr−(Yr−))−DXr−(Yr−)ψ(Yr−, r, z)

)
≡ 0.

Hence Yt(y) = X−1
t (y) for each localized solution Y . Since X exists on [0, T ],

passing to the limit in the localization sequence we get that the Y is the inverse

flow and satisfies the SDE (3.22).

Theorem 3.10 (Itô’s formula for the inverse flow w.r.t. the first variable). Let

Θ ∈ C2(Rd,R). Then the inverse flow t 7→ Xt,0 satisfies the canonical SDE

Θ(Xt,0(x)) = Θ(x)−
∫ t

0

DΘ(Xr,0(x))DXr,0(x)Φ(x, � dr)

= Θ(x)−
∫ t

0

D
(

Θ ◦Xr,0(x)
)

Φ(x, � dr).

(3.25)

which is understood as follows:

Θ(Xt,0(x)) = Θ(x)−
∫ t

0

DΘ(Xr−,0(x))DXr−,0(x)f(x, r) dr

−
∫ t

0

DΘ(Xr−,0(x))DXr−,0(x)F (x, r) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
Θ(e−ϕ(·,r,z)(Xr−,0(x)))−Θ(Xr−,s(x))

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
Θ(e−ϕ(·,r,z)(Xr−,0(x)))−Θ(Xr−,0(x))

+DΘ(Xr−,0(x))DXr−,0(x)ϕ(x, r, z)
)
ν(dz) dr

+

∫ t

0

∫
|z|>1

(
Θ(e−ϕ(·,r,z)(Xr−,0(x)))−Θ(Xr−,0(x))

)
N(dz, dr).

(3.26)

Proof. The proof goes along the lines of the proof of [Kun97, Theorem 4.4.5].

For brevity we denote the forward flow by Xt := X0,t and the inverse flow by

Yt := Xt,0, t ∈ [0, T ]. We have shown that the inverse flow Y satisfies the SDE

(3.21).

First note that since Xt(Yt(x)) ≡ x, the gradient matrices DXt(x) and DYt(x)

satisfy the relation

DXt(Yt(x)) ·DYt(x) = Id
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or equivalently, (
DXt(Yt(x))

)−1

= DYt(x).

Second, taking into account (3.24) we get that

h(u;w(u; x)) ≡ x, u ∈ [0, 1],

and hence

Dh(u;w(u; x))Dw(u; x) = Id (3.27)

or equivalently, (
Dh(u;w(u; x))

)−1

= Dw(u; x), u ∈ [0, 1].

Thus the equation (3.23) for w takes the form
d

du
w(u; x) = −Dw(u; x)ϕ(x, r, z), u ∈ [0, 1],

w(0; x) = x.

This is the first order transport equation, its solution is given by e−uϕ(·,r,z)(x) and

hence

eψ(·,r,z)(·) = e−ϕ(·,r,z)(·). (3.28)

Applying the Itô formula to the equation (3.22) and taking into account (3.27)

and (3.28) yields

Θ(Yt(x)) = x−
∫ t

0

∇TΘ(Yr−(x))DYr−(x)f(x, r) dr

−
∫ t

0

∇TΘ(Yr−(x))DYr−(x)F (x, r) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
Θ(e−ϕ(·,r,z)(Yr−))−Θ(Yr−)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
Θ(e−ϕ(·,r,z)(Yr−))−Θ(Yr−)

+∇TΘ(Yr−(x))DYr−(x)ϕ(x, r, z)
)
ν(dz) dr,
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or equivalently

Θ(Yt(x)) = x−
∫ t

0

∇T
(

Θ ◦ Yr−(x)
)
f(x, r) dr

−
∫ t

0

∇T
(

Θ ◦ Yr−(x)
)
F (x, r) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
Θ(e−ϕ(·,r,z)(Yr−))−Θ(Yr−)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
Θ(e−ϕ(·,r,z)(Yr−))−Θ(Yr−) +∇T

(
Θ ◦ Yr−(x)

)
ϕ(x, r, z)

)
ν(dz) dr,

The latter formula can be formally written in the canonical form (3.25).

3.4 Wong–Zakai Approximations

One way to motivate the analysis of the Marcus SDE can be found looking at

Wong–Zakai approximations. These approximations are mostly known from the

results on stochastic (partial) differential equations w.r.t. the Brownian motion,

see for example the original paper by Wong and Zakai [WZ65a] for SDEs and

[BF95] for SPDEs.

In the case of Lévy processes however, the jump part needs to be considered

differently, leading to the Marcus SDE. Results on the convergence of Wong–Zakai

approximations to the solution of the Marcus SDE can for example be found in

[KPP95] and [Kun95].

Before we get into the specific results let us specify the kind of Wong–Zakai

approximations we consider: Let W be again an Rm-valued Brownian motion

and Z an m-dimensional pure jump Lévy process with N , Ñ and ν being the

PRM, compensated PRM and the Lévy measure, respectively. Denote by X the

solution to the the Marcus SDE of separating type

Xt(x) = x+

∫ t

0

f(Xr−(x)) dr +

∫ t

0

F (Xr−(x)) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
eϕ(·)z(Xr−(x))−Xr−(x)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eϕ(·)z(Xr−(x))−Xr−(x)− ϕ(Xr−(x), z)

)
ν(dz) dr

+

∫ t

0

∫
|z|>1

(
eϕ(·)z(Xr−)−Xr−

)
N(dz, dr),

(3.29)

which exists under the conditions of Theorem 3.2.
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For h > 0 we define the following piecewise linear approximations of the Brownian

motion W and the jump part Z:

W h
t = Wkh +

t− kh
h

(
W(k+1)h −Wkh

)
, t ∈ [kh, (k + 1)h],

Zh
t = Zkh +

t− kh
h

(
Z(k+1)h − Zkh

)
, t ∈ [kh, (k + 1)h], k ≥ 0.

The Wong–Zakai approximations Xh are now defined piecewise as solution to the

random ODEs with initial value

Xh
0 = x,

and for t ∈ [kh, (k + 1)h]

Xh
t = Xkh +

∫ t

kh

f(Xh
s ) ds+

∫ t

kh

F (Xh
s )

∆khW

h
ds+

∫ t

kh

ϕ(Xh
s )

∆khZ

h
ds,

where ∆khW := W(k+1)h −Wkh and ∆khZ := Z(k+1)h − Zkh.

Weak convergence

Weak convergence for this kind of equations has already been studied in the

literature. In [Kun95, Theorem 3 and Theorem 4] and [Mar78] weak convergence

is shown and [KKP19] gives results on the rate of convergence.

The following Theorem 3.11 follows from [Kun95, Theorem 4]. But since in this

paper the author looks at a more general case of equations on Lie manifolds

and here we are only interested in weak convergence for the specific case of the

classical Marcus SDE, we will prove the theorem directly.

We will restrict ourselves to the case where f , F and ϕ are bounded. This is

not strictly necessary, as shown for example in [KKP19]. However, it is not

implausible to assume boundedness, since this renders any further assumptions

on the regularity of the derivatives of f , F and ϕ unnecessary, apart from those

needed to ensure existence of solutions. In a broader context, it is often useful to

assume boundedness to guarantee the solution to be a Feller process, see [Kol11,

Theorem 4.6.1].

Theorem 3.11. Let f = f(x), F = F (x) and ϕ · z = ϕ(x)z satisfy assumption

3.1 and furthermore be bounded. Then for fixed x, any t ∈ [0, T ] and any function
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g ∈ C2
b (Rd,R),

lim
h→0, h>0

Eg(Xh
t ) = Eg(Xt).

Proof. We will prove the Theorem for the one-dimensional case only. This is

solely done in the interest of readability; the arguments remain the same in the

multi-dimensional case.

We first show that we can assume the jumps of the Lévy process Z to be bounded:

Fix the function g ∈ C2
b and assume it is bounded by K > 0. The probability

that |∆Zt| > A for a constant A > 0 is given by exp(−T
∫
|z|>A ν(dz)). For any

ε > 0, we can choose A large enough, s.t.

exp
(
− T

∫
|z|>A

ν(dz)
)
≤ ε

2K
.

Define the bounded Lévy process

ZA
t :=

∫
|z|≤1

z Ñ(dz, t) +

∫
1<|z|≤A

z N(dz, t),

and see that

P(Zt = ZA
t , t ∈ [0, t]) = 1− exp(−T

∫
|z|>A

ν(dz)) ≥ 1− ε

2K
.

Now, write X̃ for the solution to (3.29) w.r.t. the Lévy process with bounded

jumps and X̃h for the approximation of X̃. We see that∣∣E [g(Xh
nh)− g(Xnh)

]∣∣ ≤ ∣∣E [g(Xh
nh)− g(Xnh)

∣∣Zt = ZA
t , t ∈ [0, T ]

]∣∣
+
∣∣E [g(Xh

nh)− g(Xnh)
∣∣|∆Zt| > A for some t ∈ [0, T ]

]∣∣
≤
∣∣∣E [g(X̃h

nh)− g(X̃nh)
]∣∣∣+ ε.

From now on we write Xh and X again but assume the jumps to be bounded.

Under this assumption the jump part can be written as

Zt = tµA +

∫
|z|≤A

z Ñ(dz, t), (3.30)
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and the solution Xt(x) as

Xt(x) = x+

∫ t

0

f(Xs) ds+
1

2

∫ t

0

FF ′(Xs) ds+ µA

∫ t

0

ϕ(Xs−) ds

+

∫ t

0

F (Xs) dWs +

∫ t

0

∫
|z|≤A

(
eϕ(·)z(Xs−)−Xs−

)
Ñ(ds, dz)

+

∫ t

0

∫
|z|≤A

(
eϕ(·)z(Xs−)−Xs− − ϕ(Xs−)z

)
ν(dz) ds,

where

µA =

∫
1≤|z|≤A

z ν(dz).

Now assume that h is fixed and n ≥ 1. We will first give an estimate for the node

point hn. For 0 ≤ k ≤ n, consider the processes

Y k,h
t (x) :=

Xh
t (x), t ∈ [0, kh],

Xt−kh(X
h
kh(x)), t ∈ [kh, nh],

which implies

Y 0,h
t ≡ Xt,

Y n,h
t ≡ Xh

t , t ∈ [0, nh].

Heuristically, the process Y k,h can be described as following the approximation

for k steps and from then on we solve the SDE for another n−k steps. Comparing

the approximations ”next to each other” we get the following:

|Exg(Xh
nh)− g(Xnh)| =

∣∣∣ n−1∑
k=0

Ex(g(Y k,h
nh )− g(Y k+1,h

nh ))
∣∣∣

=
∣∣∣ n−1∑
k=0

ExE
[
g(Y k,h

nh )− g(Y k+1,h
nh )

∣∣∣Fkh

]∣∣∣
=
∣∣∣ n−1∑
k=0

ExEXh
(k−1)h

[
EXh

h
g(X(n−k)h)− EXhg(X(n−k)h)

]∣∣∣.
(3.31)

Note that we have used the Markov property for (Xh
kh)k≥0 here and that because

of this,

EXh
kh
g(X(n−k)h) = EXh

(k−1)h
EXh

h
g(X(n−k)h).

We define the functions

gk(x) = Exg(X(n−k)h), 1 ≤ k ≤ n− 1.
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Note that for k ≥ 1, gk is in C2
b : The boundedness easily follows from the fact

that g is bounded as well. The existence and boundedness of the derivatives

follows from Lemma 3.3.

We write the last expression in the sum as

ExEXh
(k−1)h

EXh
h
g(X(n−k)h)− EXhg(X(n−k)h) = ExEXh

(k−1)h
(gk(X

h
h )− gk(Xh)).

This means that it is enough to show that we can give the one-step estimate for

|Exg(Xh
h (x))− Exg(Xh(x))|. For this, we show in the next step that∣∣∣Exgk(Xh

h (x))− Exgk(Xh(x))
∣∣∣ ≤ Cn−

3
2 ,

where C does not depend on k. The representation in (3.31) then gives us

|Exg(Xnh)− Exg(Xh
nh)| ≤

n−1∑
k=0

Cn−
3
2 ≤ Cn−

1
2 , (3.32)

which tends to zero for n→∞.

We estimate the expected value of gk(Xnh) using the generator of the Markov

process. By [Kol11, Theorem 4.6.1] we get that Xt(x) is a Markov process with

the generator A given by

Agk(x) =g′k(x)(f(x) + µAϕ(x)) +
1

2
(g′k(x)F (x)F ′(x) + g′′k(x)F 2(x))

+

∫
|z|≤A

[
gk(e

ϕ(·)z(x))− gk(x)− zg′k(x)ϕ(x)
]
ν(dz).

By Lemma 3.3 we have ‖g′k‖ < C and ‖g′′k‖ < C, where C is some constant

independent of k. Using the Lipschitz continuity of f , F , F ′F , ϕ and eϕ(·)z for

|z| < A, we see that

|Agk(x)− Agk(y)| ≤ C|x− y|,

where again, C does not depend on k.

Furthermore, for any g ∈ C2
b (Rd),

Exg(Xh(x)) = g(x) + Ex
∫ h

0

Ag(Xs(x)) ds.
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We then get

∣∣∣Exgk(Xh)− gk(x)−
∫ h

0

Agk(x) ds
∣∣∣ =

∣∣∣ ∫ h

0

ExAgk(Xs)− Agk(x) ds
∣∣∣

≤ C

∫ h

0

(
Ex|Xs(x)− x|2

) 1
2 ds

(3.33)

Furthermore, for some constant C > 0 we get

sup
x

E|Xt(x)− x|2 ≤ Ct, t ∈ [0, T ]. (3.34)

To show this, we write

Xt(x)− x = I1 + I2 + I3 + I4,

where

I1 =

∫ t

0

f(Xs) +
1

2
FF ′(Xs) + µA ϕ(Xs−) ds,

I2 =

∫ t

0

F (Xs) dWs,

I3 =

∫ t

0

∫
|z|≤A

(
eϕ(·)z(Xs−)−Xs−

)
Ñ(ds, dz),

I4 =

∫ t

0

∫
|z|≤A

(
eϕ(·)z(Xs−)−Xs− − ϕ(Xs−)z

)
ν(dz) ds.

First note that

E|I1|2 ≤ (‖f‖+ ‖FF ′‖+ µA ‖ϕ‖)2
t2

≤ (‖f‖+ ‖FF ′‖+ µA ‖ϕ‖)2
T · t ≤ Ct,

and

E|I2|2 ≤
(
E
∣∣∣ ∫ t

0

F (Xs) dWs

∣∣∣2) ≤ (E ∫ t

0

|F (Xs)|2 ds
)
≤ ‖F‖t.

For the jump part we note that like in the proof of Lemma 3.7 we can show that

sup
x
|eϕ(·)z(x)− x| ≤ sup

x

∫ 1

0

|ϕ(euϕ(·)z(x))z| du

≤ ‖ϕ‖ · z,

and

sup
x
|eϕ(·)z(x)− x− ϕ(x)z| ≤ K1(z) sup

x

∫ 1

0

|euϕ(·)z(x)− x| du

≤ K1(z)z‖ϕ‖,
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whereK1(z) is the constant from Hϕ in Assumption 3.1. We then get the following

estimates:

E|I3|2 ≤
(∫
|z|≤A

|ϕz(x)− x|2ν(dz)
)
t ≤ Ct,

and

E|I4| ≤ ‖ϕ‖
∫ t

0

∫
|z|≤A

|K1(z)z| ν(dz) ds ≤ Ct.

And so for all x ∈ R,

E|Xt(x)− x|2 ≤ Ct.

Combining this with (3.33) we get

∣∣∣Exgk(Xh)− gk(x)−
∫ h

0

Agk(x) ds
∣∣∣ ≤ C

∫ h

0

√
s ds

≤ Ch
3
2 ,

which finishes this step of the proof.

In the next step, we do the same for the approximations. To estimate the term

Exg(Xh
h (x)) slightly more work is needed than in the case of the real solution.

Consider the ODE

ψ̇(t) = f(ψ(t))h+ F (ψ(t))w + ϕ(ψ(t))z,

ψ(0) = x, t ∈ [0, 1]

and denote

Ψ(h,w, z;x) = ψ(1; x;h,w, z).

Consider the Itô process

Yt(x) = Ψ(t,Wt, Zt;x), t ≥ 0.

Then

Xh
h (x) = Yh(x).

Applying the Itô formula to the function g(Ψ) and the three-dimensional Lévy
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process (t,Wt, Zt), we get

g(Yh) = g(Ψ(0, 0, 0)) +

∫ t

0

g′(Ψ(s,Ws, Zs))Ψh(s,Ws, Zs) ds

+µA

∫ h

0

g′(Ψ(s,Ws, Zs))Ψz(s,Ws, Zs) ds

+

∫ h

0

g′(Ψ(s,Ws, Zs))Ψw(s,Ws, Zs) dWs

+
1

2

∫ h

0

g′(Ψ(s,Ws, Zs))Ψww(s,Ws, Zs) + g′′(Ψ(s,Ws, Zs))Ψ
2
w(s,Ws, Zs) ds

+

∫ h

0

∫
|z|≤A

(
g(Ψ(s,Ws, Zs− + z))− g(Ψ(s,Ws, Zs−)) Ñ(ds, dz)

+

∫ h

0

∫
|z|≤A

(
g(Ψ(s,Ws, Zs− + z))− g(Ψ(s,Ws, Zs−))

− zg′(Ψ(s,Ws, Zs))Ψz(s−,Ws−, Zs−)
)
ν(dz) ds,

where the term with µA comes from the shape of the Lévy process Z, see (3.30).

Taking the expected value of g(Yh), we can eliminate the martingale parts, i.e.

the integrals w.r.t. Ws and Ñ .

The derivatives of Ψ satisfy certain differential equations, see Section 2.5, which

allows us to give explicit formulae for them. We only give the formula for Ψw

here, the rest follows from the symmetry of the ODE.

Ψw(h,w, z;x) =

∫ 1

0

F (ψ(s; x))e
∫ 1
s f
′(ψ(r))h+F ′(ψ(r))w+ϕ′(ψ(r))z dr ds.

We see from this that
Ψ(0, 0, 0; x) = x,

Ψh(0, 0, 0; x) = f(x),

Ψw(0, 0, 0; x) = F (x),

Ψz(0, 0, 0; x) = ϕ(x),

Ψ(0, 0, z;x) = eϕ(·)z(x).

Furthermore, dealing with the second derivative analogously, we also get

Ψww(0, 0, 0; x) = F (x)F ′(x).
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In other words, writing Ag(x) in terms of Ψ, we get:∫ h

0

Ag(x) ds =

∫ h

0

g′(Ψ(0, 0, 0))Ψh(0, 0, 0) ds

+µA

∫ h

0

g′(Ψ(0, 0, 0)))Ψz(0, 0, 0) ds

+
1

2

∫ h

0

g′(Ψ(0, 0, 0))Ψww(0, 0, 0) + g′′(Ψ(0, 0, 0))Ψ2
w(0, 0, 0)) ds

+

∫ h

0

∫
|z|≤A

(
g(Ψ(0, 0, z))− g(Ψ(0, 0, 0))

−zg′(Ψ(0, 0, 0))Ψz(0, 0, 0)
)
ν(dz) ds.

Keeping in mind that g′ and g are bounded and checking that Ψ, as well as the

derivatives w.r.t. h, w and z are Lipschitz continuous, we now see that

|Exg(Xh
h )− g(x)−

∫ h

0

Ag(x) ds| ≤ |ExC
∫ h

0

(s+Ws + Zs) ds|

≤ C

∫ h

0

s+
√

Ex(W 2
s ) +

√
Ex(Z2

s ) ds

≤ C

∫ h

0

s
1
2 ds

≤ Ch
3
2 .

Combined with (3.33) this gives us

|Exg(Xh
h )− Exg(Xh)|

≤
∣∣∣Exg(Xh

h )− f(x)−
∫ h

0

Ag(x) ds
∣∣∣+
∣∣∣Exg(Xh)− f(x)−

∫ h

0

Ag(x) ds
∣∣∣

≤ Ch
3
2 .

Now, for the last step let t ∈ [0, T ] be fixed. Assume we have h > 0 and k ≥ 1,

s.t. t ∈ [kh, (k + 1)h]. We can write

|Exg(Xh
t )− Exg(Xt)|

≤ |Exg(Xh
t )− Exg(Xh

kh)|+ |Exg(Xh
kh)− Exg(Xkh)|+ |Exg(Xkh)− Exg(Xt)|.
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Since g is Lipschitz continuous, we can estimate the first term with

|Exg(Xh
t )− Exg(Xh

kh)| ≤ CEx|Xh
t −Xh

kh|

≤ CEx
∣∣∣ ∫ t

kh

f(Xh
s ) + F (Xh

s )
∆khW

h
+ ϕ(Xh

s )
∆khZ

h
ds
∣∣∣

≤ C sup{‖f‖, ‖F‖, ‖ϕ‖}
∫ t

kh

1 +
Ex|Wh|
h

+
Ex|Zh|
h

ds

≤ C

∫ t

kh

1√
h

ds

≤ C
√
h.

The estimates for the second and third term follow from (3.32) and (3.34), using

the Markov property of X. The final result then gives us that for any ε > 0 we

can find h0 > 0, such that for every h < h0 there is k ≥ 1, so that

|Exg(Xh
t )− Exg(Xt)|

≤ |Exg(Xh
t )− Exg(Xh

kh)|+ |Exg(Xh
kh)− Exg(Xkh)|+ |Exg(Xkh)− Exg(Xt)|

≤ 3 · C ·
√
h

< ε.





Chapter 4

First Order Linear Marcus

SPDEs

Setting and main result

We consider an m-dimensional Brownian motion W and an m-dimensional pure

jump Lévy process Z,

Zt =

∫ t

0

∫
|z|≤1

zÑ(dz, ds) +

∫ t

0

∫
|z|>1

zN(dz, ds).

Let
a : Rd → Rd, b, c : Rd → R,

A, α : Rd → Rd×m, B, C, β, σ : Rd → Rm,

be measurable functions.

For u ∈ C1(Rd,R), consider first order operators

Pu(x) = ∇Tu(x)a(x) + u(x)b(x) + c(x),

Ru(x) = ∇Tu(x)A(x) + u(x)B(x) + C(x),

Qu(x) = ∇Tu(x)α(x) + u(x)β(x) + σ(x),

and the first order linear equation written in the compact differential form as

du(t, x) = Pu(t, x) dt+Ru(t, x) ◦ dWt +Qu(t, x) � dZt,

u(0, x) = u0(x), x ∈ Rd, t ∈ [0, T ],
(4.1)

with some initial condition u0 : Rd → R.
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More precisely, this equation is understood as the integral equation as follows:

u(t, x) = u0(x) +

∫ t

0

[
∇Tu(s, x)a(x) + u(s, x)b(x) + c(x)

]
ds

+

∫ t

0

[
∇Tux(s, x)A(x) + u(s, x)B(x) + C(x)

]
◦ dWs

+

∫ t

0

∫
|z|≤1

(
eQzu(s−, x)− u(s−, x)

)
Ñ(dz, ds)

+

∫ t

0

∫
|z|≤1

(
eQzu(s−, x)− u(s−, x)−Qu(s−, x)z

)
ν(dz) ds

+

∫ t

0

∫
|z|>1

(
eQzu(s−, x)− u(s−, x)

)
N(dz, ds),

(4.2)

where for each z ∈ Rm the mapping

u(·) 7→ eQzu(·)

is defined with the help of the solution of the first order, linear, time autonomous

partial differential equation

∂rg(r, x) = ∇T g(r, x)α(x)z + g(r, x)β(x)z + σ(x)z, r ∈ [0, 1],

g(0, x) = u(x),
(4.3)

and

eQzu(x) := g(1; x, z).

Definition 4.1. We say that u is a solution of the equation (4.1) if t 7→ u(t, ·, ·)
is a càdlàg adapted process, x 7→ u(·, x, ·) is a C1-function, and the equation (4.1)

is satisfied almost surely.

The goal is to solve (4.1) with the help of the method of stochastic characteristics.

The results of this chapter have been accepted to be published in [HPar].

The main result is as follows. Assume that the functions satisfy the following

conditions.

Assumption 4.2.

a ∈ C3
b (Rd,Rd) and b, c ∈ C3

b (Rd,R)

A,α ∈ C4
b (Rd,Rd×m) and B, c, β, σ ∈ C4

b (Rd,Rm).
(4.4)

Consider a (d+ 2)-dimensional system of Marcus SDEs (characteristics equa-
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tions)

ϕ0,t(x) = x−
∫ t

0

a(ϕ0,r(x)) dr −
∫ t

0

A(ϕ0,r(x)) ◦ dWr −
∫ t

0

α(ϕ0,r(x)) � dZr,

(4.5)

ξ0,t(x, ξ0) = ξ0 −
∫ t

0

ξ0,r(x, ξ0)b(ϕ0,r(x)) dr −
∫ t

0

ξ0,r(x, ξ0)Bj(ϕ0,r(x)) ◦ dWr

−
∫ t

0

ξ0,r(x, ξ0)βj(ϕ0,r(x)) � dZr,

(4.6)

ζ0,t(x, ξ0, ζ0) = ζ0 −
∫ t

0

ξ0,r(x, ξ0)c(ϕ0,r(x)) dr −
∫ t

0

ξ0,r(x, ξ0)Cj(ϕ0,r(x)) ◦ dWr

−
∫ t

0

ξ0,r(x, ξ0)σ(ϕ0,r(x)) � dZr.

(4.7)

We will see that under Assumptions 4.2, there exists a unique strong solution to

the SDEs (4.5), (4.6) and (4.7). Furthermore the associated solution flow is a

C2-flow of diffeomorphisms of Rd+2.

Let (ϕt,0, ξt,0, ζt,0) be the inverse flow of (ϕ0,t, ξ0,t, ζ0,t).

Theorem 4.3. Let Assumptions 4.2 be true and let u0 ∈ C2(Rd,R). Then the

function

u(t, x) := ξt,0(x, 1)u0(ϕt,0(x)) + ζt,0(x, 1, 0) (4.8)

is the unique solution of (4.1).

The intuition behind the formula (4.8) is described in the sequel: In the

deterministic case, A = α = 0, B = C = β = σ = 0, formula (4.8) is reduced

to the formula from Lemma 2.19. In the continuous case, α = 0, B = β = 0,

the formula (4.8) was derived by Kunita, see [Kun97]. The important feature

of the equation (4.1) in the continuous case is that the stochastic integrals have

to be considered in the Stratonovich sense. Informally this can be justified by

the following consideration. It is well-known that the Stratonovich stochastic

integral can be approximated pathwise by Wong–Zakai approximations. Each of

these approximations can be treated pathwise as a deterministic first order PDE

that has a solution (4.8), and hence the limit should have the same form. In the

case of jump noise, the role of the Stratonovich stochastic differential equations

is played by the Marcus (canonical) stochastic differential equations. As we have

seen in Chapter 3, these equations can also be seen as a limit of continuous Wong–
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Zakai approximations and enjoy the Newton–Leibniz change of variables formula

of conventional calculus. Hence it is intuitively clear that the equation (4.1) has

to be considered as a Marcus equation.

Example 4.4 (transport equation). Consider the transport equation

u(t, x) = u0(x) +

∫ t

0

∇Tu(r, x)a(x) dr

+

∫ t

0

∇Tu(r, x)A(x) ◦ dWr +

∫ t

0

∇Tu(r, x)α(x) � dZr.

(4.9)

In this case, the characteristics equation is a d-dimensional Marcus SDE

ϕ0,t(x) = x−
∫ t

0

a(ϕ0,r(x)) dr −
∫ t

0

A(ϕ0,r(x)) ◦ dWr −
∫ t

0

α(ϕ0,r(x)) � dZr.

Then the solution has the form

u(t, x) = u0(ϕt,0(x)).

Example 4.5 (explicit one-dimensional solution). In dimension m = d = 1 if

a(x) = A(x) = α(x), the equation (4.9) can be solved explicitly with the help of

the Itô formula for Marcus SDEs. Indeed, let Z be a general (not necessarily pure

jump) one-dimensional Lévy process, and consider the equation

u(t, x) = u0(x) +

∫ t

0

∂xu(r, x)α(x) � dZr. (4.10)

Assume that α(x) > 0 and denote

H(x) =

∫ x

0

dy

α(y)
, x ∈ R.

Then the characteristics equation

ϕ0,t(x) = x−
∫ t

0

α(ϕ0,r(x)) � dZr

has the solution

ϕ0,t(x) = H−1(H(x)− Zt)

and the inverse flow ϕt,0 can be found by a straightforward calculation as

ϕt,0(x) = H−1(H(x) + Zt).
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Figure 4.1: A sample path of a symmetric α-stable Lévy process Z with EeiλZ1 =
e−0.1|λ|α for α = 1.75 (left); the solution u(t, x) with the initial condition u0(x) =
1/(1 + x2) sampled at t = 0, 10, 20, . . . , 100 (right).

Let us show that

u(t, x) := u0(H−1(H(x) + Zt)) (4.11)

satisfies (4.10). Indeed, u(0, x) = u0(x), and

∂xu(t, x) = ∂xu0(ϕt,0(x))∂xϕt,0(x) = ∂xu0(ϕt,0(x))
α(H(x) + Zt)

α(x)
.

On the other hand, the Itô formula for Marcus SDEs (see Theorem 3.4) yields

u(t, x) = u0(H−1(H(x) + Zt)) = u0(x) +

∫ t

0

∂

∂Z
u0(H−1(H(x) + Zr)) � dZr

= u0(x) +

∫ t

0

∂xu0(ϕ0,r(x))α(H(x) + Zr) � dZr

= u0(x) +

∫ t

0

∂xu(r, x)α(x) � dZr.

Example 4.6. In this example we apply formula (4.11) to the first order equation

∂tu(t, x) = ∂xu(t, x)
√
x2 + 1 � dZt, u(0, x) = u0(x). (4.12)

In this case, for x ∈ R

H(x) = arcsinh(x) = ln(x+
√
x2 + 1)

and

H−1(x) = sinh(x) =
ex − e−x

2
.
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Hence, (4.12) has the explicit solution

u(t, x) = u0

(
sinh(arcsinh(x) + Zt)

)
, t ≥ 0, x ∈ R.

Sample paths of solutions u driven by a symmetric α-stable Lévy process are

presented in Fig. 4.1.

Proof of Theorem 4.3

Existence

For simplicity assume that ν(|z| > 0) = 0. Consider the linear equation (4.1).

To solve it, we consider the (d+ 2)-dimensional system of characteristics Marcus

SDEs (4.5), (4.6), (4.7). Note that ϕ is a d-dimensional process whereas ξ and ζ

are one-dimensional.

Denote X = (ϕ1, . . . , ϕd, ξ, ζ) = (X1, . . . , Xd, Xd+1, Xd+2) ∈ Rd+2, and

f(X) =



a1(X1, . . . , Xd)
...

ad(X1, . . . , Xd)

Xd+1b(X1, . . . , Xd)

Xd+1c(X1, . . . , Xd)


,

F (X) =



A1
1(X1, . . . , Xd) · · · Am1 (X1, . . . , Xd)

...

A1
d(X

1, . . . , Xd) · · · Amd (X1, . . . , Xd)

Xd+1B1(X1, . . . , Xd) · · · Xd+1Bm(X1, . . . , Xd)

Xd+1C1(X1, . . . , Xd) · · · Xd+1Cm(X1, . . . , Xd)


,

Σ(X) =



α1
1(X1, . . . , Xd) · · · αm1 (X1, . . . , Xd)

...

α1
d(X

1, . . . , Xd) · · · αmd (X1, . . . , Xd)

Xd+1β1(X1, . . . , Xd) · · · Xd+1βm(X1, . . . , Xd)

Xd+1σ1(X1, . . . , Xd) · · · Xd+1σm(X1, . . . , Xd)


. (4.13)

In the matrix form, the system (4.5), (4.6) and (4.7) reads as a canonical equation

of the type (3.2)

X0,t = X0 −
∫ t

0

Φ(X0,r, � dr),

with ϕ(X, r, z) = Σ(X)z (here we allow an abuse of notation). There is a unique

solution which is a C2-flow. To see this, first note that a, A and α satisfy As-
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sumptions 3.1 and thus ϕ0,t is a C2-flow according to Theorem 3.2. On the other

hand, the other two equations can be solved explicitly, ζ0,t being linear and ξ0,t

given by the exponential

ξ0,t(x, ξ0)

=ξ0 exp
(
−
∫ t

0

b(ϕ0,r(x)) dr −
∫ t

0

B(ϕ0,r(x)) ◦ dWr −
∫ t

0

β(ϕ0,r(x)) � dZr

)
.

(4.14)

Denote Yt = Xt,0 = X−1
0,t = (ϕ1

t,0, . . . , ϕ
d
t,0, ξt,0, ζt,0) the inverse flow.

Consider a function

Θ(x, ξ0, ζ0) = ξ0u0(x) + ζ0

and for x ∈ Rd, ξ0, ζ0 ∈ R define a process

u(t;x, ξ0, ζ0) = Θ(Yt(x, ξ0, ζ0)) = ξt,0(x, ξ0)u0(ϕt,0(x)) + ζt,0(x, ξ0, ζ0).

Then by Theorem 3.10 we get that

u(t, x,ξ0, ζ0) = Θ(Yt) = Θ(x, ξ0, ζ0)−
∫ t

0

∇T
(

Θ ◦ Yr(x, ξ0, ζ0)
)

Φ(x, ξ0, ζ0, � dr)

= u0(0, x, ξ0, ζ0) +

∫ t

0

∇T
xu(r−, x, ξ0, ζ0)a(x) dr

+ ξ0

∫ t

0

∂ξ0u(r−, x, ξ0, ζ0)b(x) dr + ξ0

∫ t

0

∂ζ0u(r−, x, ξ0, ζ0)c(x) dr

+

∫ t

0

∇T
xu(r−, x, ξ0, ζ0)A(x) ◦ dWr + ξ0

∫ t

0

∂ξ0u(r−, x, ξ0, ζ0)B(x) ◦ dWr

+ ξ0

∫ t

0

∂ζ0u(r−, x, ξ0, ζ0)C(x) ◦ dWr

+

∫ t

0

∫
|z|≤1

[
Θ(e−Σ(·)z(Yr−(x, ξ0, ζ0)))− u(r−, x, ξ0, ζ0)

]
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

[
Θ(e−Σ(·)z(Yr−(x, ξ0, ζ0)))− u(r−, x, ξ0, ζ0)

+∇T
xu(r−, x, ξ0, ζ0)α(x)z + ξ0∂ξ0u(r−, x, ξ0, ζ0)β(x)z

+ξ0∂ζ0u(r−, x, ξ0, ζ0)σ(x)z
]
ν(dz) dr.

Let us study the derivatives ∂ξ0u and ∂ζ0u. We already know that the process ξ

is found explicitly as the exponential (4.14). We then see that the derivative is
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equal to

∂ξ0ξ0,t(x, ξ0)

= exp
(
−
∫ t

0

b(ϕ0,r(x)) dr −
∫ t

0

B(ϕ0,r(x)) ◦ dWr −
∫ t

0

β(ϕ0,r(x)) � dZr

)
and it satisfies (4.6) with the initial values (x, ξ0) = (x, 1). By the formula of the

derivative of the inverse function we get

∂ξ0ξt,0(x, ξ0) =
(
∂ξ0ξ0,t(ϕt,0(x), ξt,0(x, ξ0))

)−1

=
(
ξ0,t(ϕt,0(x), 1)

)−1

.
(4.15)

On the other hand, we see that

ξ0,t

(
ϕt,0(x),

(
ξ0,t(ϕt,0(x), 1)

)−1
)
≡ 1,

which means that (
ξ0,t(ϕt,0(x), 1)

)−1

= ξt,0(x, 1).

Analogously,

∂ξ0ζt,0(x, ξ0, ζ0) = ζt,0(x, 1, 0),

∂ζ0ζt,0(x, ξ0, ζ0) = 1.
(4.16)

Thus taking into account (4.15) and (4.16) we can write

∂ξ0u(r, x, ξ0, ζ0) = ∂ξ0

(
Θ(ϕt,0(x), ξt,0(x, ξ0), ζt,0(x, ξ0, ζ0))

)
= u0(ϕt,0(x))∂ξ0ξt,0(x, ξ0) + ∂ξ0ζt,0(x, ξ0, ζ0)

= u0(ϕt,0(x))ξt,0(x, 1) + ζt,0(x, 1, 0)

= u(r, x, 1, 0)

and
∂ζ0u(r, x, ξ0, ζ0) = ∂ζ0

(
Θ(ϕt,0(x), ξt,0(x, ξ0), ζt,0(x, ξ0, ζ0))

)
= ∂ζ0ζt,0(x, ξ0, ζ0)

= 1.

Inspecting the structure of the matrix function Σ in (4.13) we get that the
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mapping eΣ(·)z : Rd → Rd+2 has the following form:

eΣ(·)z

x

ξ0

ζ0

 =


e−α(·)z(x)

ξ0 exp
(
−
∫ 1

0

β(e−rα(·)z(x))z dr
)

ζ0 − ξ0

∫ 1

0

exp
(
−
∫ s

0

β(e−rα(·)z(x))z dr
)
σ(e−rα(·)z(x)) ds

 .

Recalling from Lemma 2.19 that

eQz(Θ(·)) = Θ(e−Σ(·)z(·)),

we get the equality

u(t, x, 1, 0)

= u0(x) +

∫ t

0

∇Tu(r−, x, 1, 0)a(x) dr +

∫ t

0

u(r−, x, 1, 0)b(x) dr + c(x)t

+

∫ t

0

∇Tu(r−, x, 1, 0)A(x) ◦ dWr +

∫ t

0

u(r−, x, 1, 0)B(x) ◦ dWr + C(x)Wt

+

∫ t

0

∫
|z|≤1

(
eQz(u(r−, x, 1, 0))− u(r−, x, 1, 0)

)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
eQz(u(r−, x, 1, 0))− u(r−, x, 1, 0)−Qu(r−, x, 1, 0)z

)
ν(dz) dr.

This means that u(t, x) = u(t, x, 1, 0) is the solution of (4.2).

Uniqueness

To show uniqueness, we use the same approach as in [Kun97, Theorem 6.1.2.].

Let us first assume that b(x) = 0, B(x) = 0, β(x) = 0, and c(x) = 0, C(x) = 0,

σ(x) = 0. In this case, the solution defined by the characteristics has the form

u(t, x) = u0(ϕt,0(x)). (4.17)

Let v be another semimartingale solution of the form

v(t, x) = u0(x) +

∫ t

0

f(x, r) dr +

∫ t

0

F (x, r) dWr

+

∫ t

0

∫
|z|≤1

ϕ(x, r, z) Ñ(dz, dr)

with some f, F and ϕ.
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Then Theorem 3.8 yields that

v(t, ϕ0,t(x))

= u0(x) +

∫ t

0

f(ϕ0,r−(x), r) dr +

∫ t

0

F (ϕ0,r−(x), r) dWr

+

∫ t

0

∫
|z|≤1

ϕ(ϕ0,r−(x), r, z) Ñ(dz, dr)−
∫ t

0

∂xv(r−, ϕ0,r−(x))a(ϕ0,r−(x)) dr

−
∫ t

0

∂xv(r−, ϕ0,r−(x))A(ϕ0,r−(x)) ◦ dWr

+

∫ t

0

∫
|z|≤1

(
v(r−, e−α(ϕ0,r−)) + ϕ(e−α(ϕ0,r−)), r, z)− v(r−, ϕ0,r−)

−ϕ(r−, ϕ0,r−, r, z)
)
Ñ(dz, dr)

+

∫ t

0

∫
|z|≤1

(
v(r−, e−α(ϕ0,r−)) + ϕ(e−α(ϕ0,r−)), r, z)− v(r−, ϕ0,r−)

+∂xv(r−, ϕ0,r−)α(ϕ0,r−)− ϕ(r−, ϕ0,r−, r, z)
)
ν(dz) dr,

where we know that ϕ is given by

ϕ(x, r, z) = eQz(v(r−, x))− v(r−, x).

Let us take a closer look at the jump terms. On the one hand we know that

v(r, eα(·)z(ϕ0,r−(x))) = eQzv(r, ϕ0,r−(x)).

On the other hand, inverting the sign of the jump size z is equivalent to the

reversion of the fictitious time in the Marcus ODE for eα(·)z. Hence we obtain

that

eQz(v(r, e−α(·)z(ϕ0,r−(x)))) = v(r, ϕ0,r−(x)).

We also see that

∂xv(r−, ϕ0,r−(x))α(ϕ0,r−(x)) = Qv(r−, ϕ0,r−(x)),
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and thus we get

v(t, ϕ0,t(x))

= u0(x) +

∫ t

0

∂tv(r−, ϕ0,r−(x)) � dϕ0,r(x)

−
∫ t

0

∂xv(r−, ϕ0,r−(x))a(ϕ0,r−(x)) dr

−
∫ t

0

∂xv(r−, ϕ0,r−(x))A(ϕ0,r−(x)) ◦ dWr

−
∫ t

0

∫
|z|≤1

(
eQz(v(r−, ϕ0,r−(x))− v(r−, ϕ0,r−(x))

)
Ñ(dz, dr)

−
∫ t

0

∫
|z|≤1

(
eQz(v(r−, ϕ0,r−(x)))− v(r−, ϕ0,r−(x))

−Qv(r−, ϕ0,r−(x))z
)
ν(dz) dr

= u0(x).

Hence, v(t, x) coincides with the solution u given by (4.17).

In the presence of linear terms b, B and β, the process u(t, ϕt,0(x)) given by

the characteristics solution has the form

u(t, ϕt,0(x)) = u0(ϕt,0(x))×

× exp
(∫ t

0

b(ϕ0,r(x)) dr +

∫ t

0

B(ϕ0,r(x)) ◦ dWr +

∫ t

0

β(ϕ0,r(x)) � dZr

)
and the difference d(t, x) := v(t, ϕ0,t(x))−u(t, ϕt,0(x)) satisfies the linear equation

d(t, x) =

∫ t

0

d(r−, x)b(ϕr−(x)) dr +

∫ t

0

d(r−, x)B(ϕr−(x)) ◦ dWr

+

∫ t

0

d(r−, x)β(ϕr−(x)) � dZr

and thus d ≡ 0. The same relation holds for the difference of the non-homoge-

neous equations, which proves the uniqueness of the solution.





Chapter 5

Mild Solutions to Second Order

Equations

Setting and definitions

A common technique to solve stochastic differential equations is to consider mild

solutions. We now turn our attention to second order equations with Lévy noise

and see how mild solutions work in this framework.

The second order equation is given bydu(t, x) = Au(t, x) + Bu(t, x) � dZt, (t, x) ∈ R+ × Rd,

u(0, x) = u0(x),
(5.1)

with A being a second order differential operator, e.g. the Laplacian, and B

characterizing a first order differential operator.

We will restrict ourselves to the case where the Lévy process is a pure jump

process with bounded jumps, given by

Zt =

∫
|z|≤α

z Ñ(ds, dx),

for some α > 0.

At the end of the chapter some comments on the incorporation of the Brownian

motion and the drift will be made.

In this chapter we will be working in the framework of Sobolev spaces. For

the reasons explained in Section 2.4, we are looking for Hθ
2 (Rd)-valued solutions

with θ > d
2
. For convenience we just write Hθ = Hθ

2 (Rd).

Again, because the Marcus integral is not defined in a general sense, it is necessary

to specify what equation (5.1) means.
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Assumption 5.1. Let B : Rm → L(Hθ, Hθ−1) be a bounded linear operator of

the following form: For z ∈ Rm and u ∈ Hθ, (Bz)u is defined as

(Bzu)(x) = 〈b(x)z,∇u(x)〉,

where b is in Ck
c (Rd,Rd×m), with k := min{l ∈ N : θ < l}.

Under Assumption 5.1, Bz generates a group (erBz)r∈R, s.t. erBzv0(·) = v(r, ·),
where v solves v̇(r, x) = Bzv(r, x), (r, x) ∈ R+ × Rd,

v(0, x) = v0(x).
(5.2)

Under the above restrictions on Z, we understand the solution to (5.1) as solution

to the equation

du(t, x) =Au(t, x) +

∫
|z|≤α

(eBz − Id)u(t, x)Ñ(dt, dz)

+

∫
|z|≤α

(eBz − Id−Bz)u(t, x)ν(dz) dt.

Note here that the integral w.r.t. the compensated PRM is understood in the

sense of Section 2.3. This means that the integral is well defined if the solution

process u is progressively measurable.

Assumption 5.2. Let A : Hθ → Hθ−2 be a linear operator that generates an

analytic semigroup (S(t))t≥0 of contractions with 0 ∈ ρ(A), where ρ(A) is the

resolvent set of A.

Note that Assumption 5.2 especially implies that (S(t))t≥0 is a strongly continuous

semigroup, see [Paz83, Chapter 2.5].

Definition 5.3. We define a mild solution to (5.1) as a progressively measurable

process u : [0, T ]× Rd × Ω→ C, which is càdlàg in time and satisfies

u(t, x) = S(t)u(0) +

∫ t

0

∫
|z|≤α

S(t− s)(eBz − Id)u(s, x)Ñ(ds, dz)

+

∫ t

0

∫
|z|≤α

S(t− s)(eBz − Id−Bz)u(s, x)ν(dz) ds.
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Existence of the mild solution

To prove the existence of solutions to (5.1) one more technical assumption on the

Lévy process is needed. It is known that while
∫
|z|≤α |z| ν(dz) may diverge, for

the square of the jumps
∫
|z|≤α |z|

2 ν(dz) < ∞ holds true. The next assumption

slightly strengthens this statement:

Assumption 5.4. Let the Lévy measure ν of Z satisfy∫
|z|≤α
|z|p ν(dz) <∞

for some 1 < p < 2.

The main result of this chapter is the following existence theorem:

Theorem 5.5. Let u0 be in Hθ with θ > d
2

+ 2. Under the Assumptions 5.1, 5.2

and 5.4 there is a unique mild solution u : [0, T ]→ Hθ to (5.1).

Proof. Consider the Banach space M2 = M2(0, T ;Hθ) of progressively mea-

surable, integrable, Hθ-valued processes with the family of equivalent norms

{‖ · ‖λ}λ>0,

‖u‖λ =

(
E
∫ T

0

e−λs‖u(s)‖2
Hθ ds

) 1
2

.

We take the operator

I(u)(x) =S(t)u0(x) +

∫ t

0

∫
|z|≤α

S(t− s)(eBz − Id)u(s, x) Ñ(ds, dz)

+

∫ t

0

∫
|z|≤α

S(t− s)(eBz − Id−Bz)u(s, x) ν(dz) ds,

and show that I(u) ∈ M2 for u ∈ M2. It is then enough to show that I is a

contraction on M2, to see that there is a unique fixed point which solves the

SPDE in the mild sense.

One benefit of mild solutions is the smoothing property of the analytic semigroup,

which follows from using [Paz83, Theorem 2.6.13] on A
r
2 for 0 < r ≤ 2. Namely,

we get

‖S(t)‖L(Hθ−r,Hθ) ≤ Ct−
r
2 , (5.3)

which will be used for both integral terms.

We start with the integral regarding the compensated Poisson random mea-

sure. Let us first take a look at the expression (eBz − Id). Since eBz solves the
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transport equation, for v in the domain of Bz we have

(eBz − Id)v =

∫ 1

0

exBz(Bz)v ds. (5.4)

By using first Fubini’s Theorem and then the Minkowski inequality for integrals

(see (A.21)), we get:∥∥∥∥∫ 1

0

esBzBzv ds

∥∥∥∥
Hθ−1

=

(∫
Rd

∣∣∣∣(1 + ξ2)
θ−1
2

1√
2π

∫
Rd

e−iξx
∫ 1

0

esBzBzv(x) ds dx

∣∣∣∣2 dξ

) 1
2

=

(∫
Rd

∣∣∣∣∫ 1

0

(1 + ξ2)
θ−1
2

1√
2π

∫
Rd

e−iξxesBzBzv(x) ds dx

∣∣∣∣2 dξ

) 1
2

≤
∫ 1

0

(∫
Rd

∣∣∣(1 + ξ2)
θ−1
2 (FesBzBzv)(ξ)

∣∣∣2 dξ

) 1
2

ds

=

∫ 1

0

‖esBzBzv‖Hθ−1 ds.

Note here that using Fubini’s Theorem in the first step is not trivial and this

step actually uses some conditions that otherwise would not be needed for the

theorem. Obviously |e−iξx| = 1, and it is enough to check that |esBzBzu(x)| is in

fact integrable. Due to the Sobolev embedding we can consider this function to

be continuous. On the other hand, Assumption 5.1 ensures that the function will

disappear outside of a ball around the origin, hence we can assume integrability.

The operator Bz is bounded, specifically

‖Bzu‖Hθ−1 ≤ C|z|‖u‖Hθ .

Furthermore, for |z| ≤ α, ‖eBz‖L(Hθ−1,Hθ−1) is bounded and thus

‖(eBz − Id)‖L(Hθ,Hθ−1) = sup
u:‖u‖θH=1

‖(eBz − Id)u‖Hθ−1 ≤ C|z|.
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Taking the norm of the integral w.r.t. Ñ and using Lemma 2.11 we get∥∥∥∥∫ t

0

∫
0<|z|≤α

S(t− s)(eBz − Id)u(s, ·) Ñ(dz, ds)

∥∥∥∥
λ

=

(
E
∫ T

0

e−λt
∥∥∥∥∫ t

0

∫
0<|z|≤α

S(t− s)(eBz − Id)u(s, ·) Ñ(dz, ds)

∥∥∥∥2

Hθ

dt

) 1
2

≤ C

(
E
∫ T

0

e−λt
(∫ t

0

∫
0<|z|≤α

‖S(t− s)(eBz − Id)u(s, ·)‖p
Hθ ν(dz) ds

) 2
p

dt

) 1
2

≤ C

(
E
∫ T

0

e−λt
(∫ t

0

(t− s)−
p
2‖u(s, ·)‖p

Hθ

∫
0<|z|≤α

|z|p ν(dz) ds

) 2
p

dt

) 1
2

≤ C

(
E
∫ T

0

e−λt
(∫ t

0

(t− s)−
p
2‖u(s, ·)‖p

Hθ ds

) 2
p

dt

) 1
2

,

where the second inequality follows from

‖S(t− s)(eBz − Id)u(s, ·)‖p
Hθ

≤ ‖S(t− s)‖p
L(Hθ,Hθ−1)

· ‖(eBz − Id)‖p
L(Hθ−1,Hθ)

· ‖u(s, ·)‖p
Hθ

≤ C(t− s)−
p
2 |z|p ‖u(s, ·)‖p

Hθ .

We now rewrite the integral and use Young’s inequality for convolution integrals

(see (A.20) for r = 1 and q = 2/p):

(
E
∫ T

0

e−λt
(∫ t

0

(t− s)−
p
2‖u(s, ·)‖p

Hθ ds

) 2
p

dt

) 1
2

=

(
E
∫ T

0

(∫ t

0

e−
pλ
2

(t−s)(t− s)−
p
2 e−

pλ
2
s‖u(s, ·)‖p

Hθ ds

) 2
p

dt

) 1
2

≤

(
E
(∫ T

0

e−
pλ
2

(t)t−
p
2 dt

) 2
p
(∫ T

0

e−λ(t)‖u(s, ·)‖2
Hθ dt

)) 1
2

=

(∫ T

0

e−
pλ
2

(t)t−
p
2 dt

) 1
p

‖u‖λ.
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A simple substitution then gives us in conclusion

∥∥∥∥∫ t

0

∫
0<|z|≤1

S(t− s)(eBz − Id)u(s, ·)Ñ(dz, ds)

∥∥∥∥
λ

≤ C

(∫ T

0

e−
pλ
2

(t)t−
p
2 dt

) 1
p

‖u‖λ

≤ C

(
2

pλ

) 1
p
− 1

2
(∫ T

0

e−(t)t−
p
2 dt

) 1
p

‖u‖λ ≤ C

(
2

pλ

) 1
p
− 1

2

‖u‖λ.

Note that the constant C depends on b, p and θ, but not on u or λ, which is the

first step to show that I maps M2 into M2. On the other hand, p < 2 and so

1
p
− 1

2
> 0. This means, λ can be chosen big enough, so that C

(
2
pλ

) 1
p
− 1

2
< 1.

Replacing u with u− v for u, v ∈Mp, this also gives us the first step to showing

that I is in fact a contraction.

We now turn to the integral w.r.t. the Lévy measure ν. Most of the steps

from above work analogously for this part, but a few additional steps are needed

beforehand. It is clear that

‖(eBz − Id−Bz)‖L(Hθ,Hθ−1) ≤ ‖(eBz − Id)‖L(Hθ,Hθ−1) + ‖Bz‖L(Hθ,Hθ−1) ≤ C|z|,
(5.5)

but of course this is not good enough, since
∫
|z|≤1
|z| ν(dz) may diverge. It is

necessary to estimate the term (eBz − Id−Bz) in a way that gives us |z|p to work

with, which will take a little more effort.

Treating the expression (eBz − Id−Bz) similar to (5.4) before gives us

(eBz − Id−Bz)v =

∫ 1

0

∫ r

0

esBz(Bz)
2v ds dr.

Repeating the steps we did for (eBz − Id), we finally get

‖(eBz − Id−Bz)‖L(Hθ,Hθ−2) ≤ C|z|2. (5.6)

This looks sufficient at first glance, because |z|2 is integrable. However, using

this would mean that we could not benefit from the smoothing property of the

semigroup, see (5.3), since∫ t

0

‖S(t− s)‖L(Hθ−2,Hθ) ds ≤ C

∫ t

0

t−1 dt =∞

is not useful.

The solution to this problem comes from some interpolation theory, see the ap-

pendix for details. Using (5.5) and (5.6) with ϑ = p − 1, Theorem A.4 gives
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us

‖(eBz − Id−Bz)‖L(Hθ,Hθ−p) ≤ C|z|p.

Thus the integral w.r.t. ν can also be estimated by a constant∫
0<|z|≤α

‖(eBz − Id−Bz)‖L(Hθ,Hθ−p) ν(dz) <∞,

and using the semigroup as before we see that∫ t

0

∫
0<|z|≤α

‖S(t− s)(eBz − Id−Bz)u(s, ·)‖Hθ ν(dz) ds

≤ C

∫ t

0

∫
0<|z|≤α

‖S(t− s)‖L(Hθ−p,Hθ)‖(eBz − Id−Bz)u(s, ·)‖Hθ−p ν(dz) ds

≤ C

∫ t

0

(t− s)−
p
2‖u(s, ·)‖Hθ ds

∫
0<|z|≤α

‖(eBz − Id−Bz)‖L(Hθ,Hθ−p) ν(dz)

≤ C

∫ t

0

(t− s)−
p
2‖u(s, ·)‖Hθ ds.

Using the same tactics as before we get∥∥∥∥∫ t

0

∫
|z|≤α

S(t− s)(eBz − Id−Bz)u(s, ·) ν(dz) ds

∥∥∥∥
λ

=

(
E
∫ T

0

e−λt
∥∥∥∥∫ t

0

∫
|z|≤α

S(t− s)(eBz − Id−Bz)u(s, ·) ν(dz) ds

∥∥∥∥2

Hθ

dt

) 1
2

≤ C

(
E
∫ T

0

e−λt
(∫ t

0

∫
|z|≤α
‖S(t− s)(eBz − Id−Bz)u(s, ·)‖Hθ ν(dz) ds

)2

dt

) 1
2

≤ C

(
E
∫ T

0

e−λt
(∫ t

0

(t− s)−
p
2‖u(s, ·)‖Hθ ds

)2

dt

) 1
2

= C

(
E
∫ T

0

(∫ t

0

e−
λ
2

(t−s)(t− s)−
p
2 e−

λ
2
s‖u(s, ·)‖Hθ ds

)2

dt

) 1
2

≤ C

∫ T

0

e−
λ
2
ss−

p
2 ds

(
E
∫ T

0

e−λt‖u(t, ·)‖2
Hθ dt

) 1
2

.
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Another substitution then gives us in conclusion∥∥∥∥∫ t

0

∫
|z|≤α

S(t− s)(eBz − Id−Bz)u(s, ·) ν(dz) ds

∥∥∥∥
λ

≤ C

(
2

λ

)1−p/2 ∫ ∞
0

e−tt−
p
2 dt · ‖u‖λ

≤ C

(
2

λ

)1−p/2

· ‖u‖λ.

Again, we see that this integral also stays in M2 and that for λ big enough we

get a contraction in ‖ · ‖λ.
We have not mentioned the initial condition until now. However, by [Paz83,

Theorem 1.2.2], it is immediately clear that ‖S(t)u0(x)‖λ < ∞. This suffices to

finish the proof.

Example 5.6. Let d = m = 1. We look at the equation

du(t, x) =∆u(t, x)dt+ b(x)∇u(t, x) � dZt,

where ∆ is the Laplacian and b is some R-valued function. It is well-known, that

∆ satisfies the Assumption (5.2). To ensure the existence of the solution according

to the theorem we only need to choose b regular enough, for example take some

b ∈ H2 with compact support. Then, Theorem A.3 with p = p1 = p2 = 2,

θ1 = θ − 1, θ2 = 1, f = ∇u, g = b gives us

‖Bu‖Hθ−1 =‖b · ∇u‖Hθ−1

≤C‖∇u‖Hθ−1‖b‖Hθ−1

≤C‖∆−
1
2∇u‖Hθ

≤C‖u‖Hθ ,

where C depends on b and the last part comes from the Fourier multiplier property.

Mild solution for general Lévy processes

Obviously, the next step is to ask what happens when the drift and the Brownian

motion part are added to the Lévy process. Consider the Lévy process Lt =

µt + Wt + Zt, where µ ∈ Rm, W is a Brownian motion and Z is the pure jump

process from before.
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Now consider the new equation:

du(t, x) =Au(t, x) + Bu(t, x)µ dt+ Bu(t, x) � dZt + Cu(t, x) dW, (5.7)

where B is the same linear operator as in Theorem (5.5) and C is another linear

operator.

We first see that the drift part can easily be incorporated using the same argu-

ments as in the proof for the discontinuous part. However, this does not work as

well for the Brownian motion.

The case when C is bounded in the norm of L(Hθ, Hθ−γ) with γ < 1 is easy to

deal with: Obviously it follows from the smoothing property of A that∫ t

0

‖S(t− s)Cu(s, ·)‖2
Hθ dt ≤ ‖C‖2

L(Hθ,Hθ−γ)

∫ t

0

t−γ‖u(s, ·)‖Hθ dt.

It is enough to apply the Itô isometry and Young’s inequality in addition to the

steps of the proof of the Theorem to incorporate the Brownian motion part.

However, in the case where C is a first order differential operator, e.g. C = ∇, we

would have γ = 1 and could not proceed in the same way as above. If we tried to

use the smoothing property of the semigroup the result would not be integrable.





Chapter 6

Advection-Diffusion Equation

with Noise on the Boundary

This chapter is motivated by a physically important model of a contaminant

transport in a one-dimensional semi-infinite pipe with a constant flow velocity

and diffusion. In the classical setting, the contaminant concentration u = u(t, x)

satisfies the advection-diffusion equation
∂tu(t, x) = ∂xxu(t, x)− µ∂xu(t, x), t > 0, x > 0,

u(0, x) = 0,

Bu(t, 0) = g(t), t ≥ 0,

(6.1)

with zero initial concentration and continuously differentiable source process g =

g(t), which affects the concentration of the contaminant at the boundary point

x = 0. We assume that the diffusion coefficient equals 1, the flow velocity µ ∈
R. The boundary conditions are treated in a unified way with the help of the

boundary operator B, namely we set

BDu(t, 0) = lim
x↓0

u(t, x), (6.2)

BNu(t, 0) = − lim
x↓0

∂xu(t, x), (6.3)

for the Dirichlet and Neumann problems respectively. In the Dirichlet case, the

source g prescribes the concentration of the contaminant at the boundary, in the

Neumann setting it determines the transfer rate through the boundary. If the

input function g ∈ C1
b (R+,R), the solution (6.1) is well known in the closed form,

see e.g. [CJ86, Pol02].

In realistic models, the assumption that g is smooth and deterministic is too

81
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restrictive. For instance, in [WZ05, CS06, MT07] the authors allow g to be a

random source of contamination in an open channel flow. In particular, the

contaminant can be released at random time instants, so that g can consist of a

random train of delta-spikes or be a Brownian noise.

In this chapter we tackle two problems. First, we will solve equation (6.1) with

a general boundary Lévy noise g = Ż, including Brownian motion or Poisson

process. We will determine the mild solution of (6.1) as process with values

in the fractional Sobolev space Hθ(R+), find its explicit form as a convolution

integral w.r.t. the driving Lévy process and determine its law in the large time

limit. Second, we study the Wong–Zakai approximations of solutions, namely we

consider absolutely continuous approximations of the driving process Z and study

convergence of classical solutions to the mild solution of the original equation in

the non-standard M1-Skorokhod topology.

The results of this chapter have been published in [HP19]. More details on the

theory of PDEs with boundary noise can be found e.g. in [DZ93, CS04, BDS09].

PDEs with Lévy noise on the boundary were considered in [PZ07], and more

recently in [HR15] and [BGPR15]. In the deterministic case, controllability of the

one-dimensional heat equation on the half line was studied in [MZ00], whereas

[AB02b, AB02a, FG09, Mas10] considered the one-dimensional heat equation on

the half line with white Gaussian noise on the boundary.

Eventually, we mention the works [KZ78, WZ05, MT07] for applications of the

mathematical model (6.1) to hydrology, [PvG84] for a discussion on the proper

choice of boundary conditions from the physical point of view, and [JF92] for a

bibliography on transport of chemicals through soil.

6.1 Existence of Solutions

Let Z = (Z(t))t≥0 be an R-valued Lévy process with the characteristic function

EeiλZ(t) = etΦ(λ), λ ∈ R,

Φ(λ) = −σ
2

2
λ2 + iaλ+

∫
R
(eiλz − 1− iλzI(|z| ≤ 1))µ(dz),

(6.4)

where the Gaussian variance, drift and the Lévy measure satisfy σ2 ≥ 0, a ∈ R,

and µ({0}) = 0,
∫

(z2 ∧ 1)µ(dz) <∞.



6.1. EXISTENCE OF SOLUTIONS 83

We solve the advection-diffusion equation
∂tu(t, x) = ∂xxu(t, x)− µ∂xu(t, x), t > 0, x > 0,

u(0, x) = 0,

Bu(t, 0) = Ż(t), t ≥ 0,

(6.5)

where B is given by a Dirichlet or Neumann boundary operator (6.2) or (6.3).

Following [Bal81, FG09, PZ07], we consider (6.5) as an evolution equation in

an appropriate Hilbert space H and derive an integral formula for its solution.

The space H should satisfy two properties. First, the operator AB = ∂xx − µ∂x
with the domain D(AB) = {u ∈ H : ABu ∈ H, Bu = 0} should generate a

C0-semigroup (SB(t))t≥0 in H. Second, H should be rich enough to guarantee

that the solution of (6.5) is càdlàg, so that we can talk about convergence in

the Skorokhod topology. It turns out that it is convenient to work in fractional

Sobolev spaces H = Hθ(R+), θ ∈ R (see Section 2.4 for definitions).

Define the Dirichlet map operator DB : R 7→ C2
b (R+,R) by the relation DBa =

ϕ, where ϕ is a unique bounded solution of the ordinary differential equationϕ′′(x)− µϕ′(x) = (1 + µ)ϕ(x), x > 0,

Bϕ(0) = a.

A straightforward calculation yields that

(DBa)(x) = ae−x.

Assume for a moment that we are in the classical setting (6.1) and the input

g ≡ Ż is a smooth function, g ∈ C1(R). Consider the non-homogeneous equation
∂tũ(t, x) = Aũ(t, x) dt+

(
(1 + µ)DBg(t)−DB ġ(t)

)
(x), t > 0, x > 0,

ũ(0, x) = −(DB(g(0))(x),

Bũ(t, 0) = 0.

(6.6)

We claim that u(t, x) = ũ(t, x) +
(
DB(g(t))

)
(x). Indeed, the direct substitution
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yields

∂tu(t, x) = ∂tũ(t, x) +
(
DB(ġ(t))

)
(x)

= ∂xxũ(t, x)− µ∂xũ(t, x) +
(

(1 + µ)DB(g(t))
)

(x)

= ∂xxu(t, x)− µ∂xu(t, x),

and the initial and boundary conditions of (6.1) are also satisfied:

u(0, x) = ũ(0, x) +
(
DB(g(0))

)
(x) = 0,

Bu(t, 0) = Bũ(t, 0) +
(
BDB(g(t))

)
(0) = g(t).

The solution to the problem (6.6) is found with the help of the convolution formula

(Duhamel’s principle). Let SB be the C0-semigroup of the operator AB = ∂xx −
µ∂x on the domain D(AB). Then ũ is found explicitly as

ũ(t) = −SB(t)DB(g(0)) +

∫ t

0

SB(t− s)
(

(1 + µ)DBg(t)−DB ġ(t)
)

ds. (6.7)

Using the C0-continuity of SB we note that

d

ds
SB(t− s) = −ABSB(t− s),

so that the integration by parts gives∫ t

0

SB(t− s)DB(ġ(s)) ds = SB(t− s)DB(g(s))
∣∣∣t
0
−
∫ t

0

ABSB(t− s)DB(g(s)) ds.

Together with (6.7) this gives

u(t, x) =

∫ t

0

(
(1 + µ) Id−AB

)
SB(t− s)DB(g(s))(x) ds. (6.8)

The formula (6.8) allows us to work with the following definition.

Definition 6.1. We call the process

u(t, x) :=

∫ t

0

(
(1 + µ) Id−AB

)
(SB(t− s)DB)(x) dZ(s)

a mild solution of (6.5) in the state space H.

The latter definition presupposes that the integral on the right hand side
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exists. The construction of an integral of Hilbert-valued deterministic integrand

w.r.t. a Lévy process is standard, see e.g. [CM87, Rie15].

The semigroup SB has a well-known explicit representation in terms of the

Green function of the heat equation, see [CJ86, Pol02]:

SB(t)f(x) =

∫ ∞
0

f(y)ΛB(x, y, t) dy, f ∈ Cb(R+,R),

where

ΛD(x, y, t) =
1

2
√
πt

e−
µ(y−x)

2
−µ

2t
4

(
e−

(x−y)2
4t − e−

(x+y)2

4t

)
,

ΛN(x, y, t) =
1

2
√
πt

e−
µ2

4
t+

µ(x−y)
2

(
e−

(x−y)2
4t + e−

(x+y)2

4t

)
+
µ

2
e−yµ erfc

(x+ y − µt
2
√
t

)
,

erfc(x) =
2√
π

∫ ∞
x

e−y
2

dy.

Hence straightforward integration allows us to simplify

GD(x, t) :=
(

(1 + µ) Id−AD
)
SD(t)e−x =

x

2
√
πt3/2

e−
(x−µt)2

4t , (6.9)

GN(x, t) :=
(

(1 + µ) Id−AN
)
SN(t)e−x =

1√
πt

e−
(x−µt)2

4t +
µ

2
erfc

(x− µt
2
√
t

)
,

(6.10)

which yields the closed form solution for u.

To show the existence of a mild solution we first have to determine a suitable

Hilbert spaceH, so that the operator AB = ∂xx−µ∂x with the boundary condition

B generates a C0-semigroup. We will find that in this case fractional Sobolev

spaces are a good choice. First note that if Au ∈ Hθ(R+) then u ∈ Hθ+2(R+)

(see the following Lemma 6.2 and its proof). However, since Sobolev spaces are

spaces of equivalence classes of functions, the meaning of the boundary conditions

u(0) = 0 and ∂xu(0) = 0 for u ∈ Hθ+2(R+) may not be obvious. For this reason

we write D(R+) for the space of infinitely differentiable functions f : R+ → C with

compact support in (0,∞). We use this space to give meaning to the boundary

condition of operator A, since for u ∈ D(R+) these conditions are well defined.

So in what follows, the expressions u(0) = 0 and ∂xu(0) = 0 will be understood

in the sense of closures of D(R+) in Hθ+2(R+). This relies on the important fact

that if θ < 1
2
, then D(R+) is dense in Hθ(R+), see Lemma A.2 in the appendix

for details.
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Lemma 6.2. (i) For θ < −3
2
, the operator A = AD with the domain D(A) =

{u ∈ Hθ(R+) : Au ∈ Hθ(R+), u(0) = 0} generates a C0-semigroup in

Hθ(R+).

(ii) For θ < −1
2
, the operator A = AN with the domain D(A) = {u ∈ Hθ(R+) :

Au ∈ Hθ(R+), ∂xu(0) = 0} generates a C0-semigroup in Hθ(R+).

Proof. In the following we write H for Hθ(R+).

We use the Hille–Yosida Theorem for contractive C0-semigroups (see Theorem

2.17). First we show, that D(A) = Hθ+2(R+) and therefore D(A) is dense in H.

For the Laplace operator ∆D on R+ with the Dirichlet boundary condition we

have D(∆D) = Hθ+2(R+) for θ < −3
2
. Now note, that

‖Au‖H <∞⇒ ‖∆Du‖H <∞

and on the other hand

‖u‖Hθ+2(R+) <∞⇒ ‖Au‖H <∞

and so,

D(∆D) ⊆ D(A) ⊆ Hθ+2(R+) = D(∆D).

Now, we need to take a look at the resolvent set ρ(A) and show that (0,∞) ⊆ ρ(A)

and for all λ > 0 ∥∥(λ Id−A)−1
∥∥
L(Hθ(R+),D(A))

≤ 1

λ
.

Let f ∈ H. We define

h := F−1
((F ext(f))(ξ)

λ+ ξ2 + iµξ

)
and g := h|R+ . Then, because of the properties of the Fourier transform,

g = (λ Id−A)−1f.

Furthermore

‖g‖2
H ≤ ‖h‖2

θ,2 =

∫ ∞
−∞

(1 + ξ2)θ
|F ext(f)|2

(λ+ ξ2)2 + (µξ)2
dξ

≤ 1

λ2

∫ ∞
−∞

(1 + ξ2)θ|F ext(f)|2 dξ

=
1

λ2
‖ ext(f)‖2

θ,2 =
1

λ2
‖f‖2

H.
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Noting that

1

λ2

∫ ∞
−∞

(1 + ξ2)θ|F ext(f)|2 dξ <∞

⇒
∫ ∞
−∞

(1 + ξ2)θ+2 |F ext(f)|2

(λ+ ξ2)2 + (µξ)2
dξ <∞,

we also get g ∈ Hθ+2(R+) = D(A) and thus∥∥∥(λ Id−A)−1
∥∥∥
L(Hθ(R+),D(A))

≤ sup
‖f‖H≤1

1

λ
‖f‖H =

1

λ
.

From Lemma 6.2 we can now easily deduce the first result of this chapter

which is formulated in the following Theorem and gives us the existence of the

mild solution.

Theorem 6.3. (D) The equation (6.5) with a Dirichlet boundary condition has

a mild solution in Hθ(R+) for θ < −3
2

which has the explicit form

u(t, x) =

∫ t

0

x

2
√
π(t− s)3/2

e−
(x−µ(t−s))2

4(t−s) dZ(s).

(N) The equation (6.5) with a Neumann boundary condition has a mild solution

in Hθ(R+) for θ < −1
2

which has the explicit form

u(t, x) =

∫ t

0

( 1√
π(t− s)

e−
(x−µ(t−s))2

4(t−s) +
µ

2
erfc

(x− µ(t− s)
2
√
t− s

))
dZ(s).

In all cases the mild solution is unique and the paths t 7→ u(t, ·) are càdlàg in

Hθ(R+) a.s. Moreover, for any x > 0, the paths t 7→ u(t, x) are continuous in R.

Sample paths of solutions u driven by an α-stable Lévy subordinator and a

symmetric α-stable Lévy process are presented in Fig. 6.1 and Fig. 6.2. Note

that negative jumps of the noise may cause negative values of the solution. This

explains why Lévy subordinators should be used to model contaminant concen-

trations.
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Figure 6.1: A sample path of an α-stable Lévy subordinator Z with Ee−λZ1 =
e−λ

α
for α = 0.9 (a); solutions t 7→ uD(t, x) with Dirichlet boundary noise for

ν = −1, x = 1 (b) and ν = 1, x = 1 (d); the concentration curve x 7→ uD(t, x)
for ν = 1, t = 55 (c).
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Figure 6.2: A sample path of a symmetric α-stable Lévy process Z with Ee−iλZ1 =
e−|λ|

α
for α = 1.75 (a); the solution t 7→ uD(t, x) with Dirichlet boundary noise

for ν = 1, x = 1.
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6.2 Limiting Probability Distribution of the

Contaminant Concentration

The explicit form of the solution allows us to calculate the stationary contaminant

distribution in the large time limit.

To determine the limiting distribution of u in the stationary regime, we con-

sider the equation (6.5) on the time interval [−τ, 0], τ > 0, driven by a shifted

Lévy process Zτ = (Z(t − τ))t≥τ . Let uτ = uτ (t, x), t ∈ [−τ, 0] be its solution.

For x > 0, we consider the limit in law

u(x) = lim
−τ→−∞

uτ (0, x) = lim
−τ→−∞

∫ 0

−τ
G(−s, x) dZτ (s)

d
=

∫ ∞
0

G(s, x) dZ(s),

provided the integral on the r.h.s. exists. Recalling (6.4) we find the Fourier

transform of u(x) explicitly as

Eeiλu(x) = exp
(∫ ∞

0

Φ
(
G(s, x)λ

)
ds
)
, λ ∈ R,

provided the integral in the exponent exists.

In physically meaningful models, the process Z does not take negative values,

i.e. is a Lévy subordinator with the Laplace transform

Ee−λZ(t) = etΨ(λ), λ ≥ 0,

Ψ(λ) = −bλ+

∫ ∞
0

(e−λz − 1)µ(dz),

with b ≥ 0 and the jump measure satisfying µ({0}) = 0,
∫∞

0
(z ∧ 1)µ(dz) < ∞.

In this case, u(t, x) ≥ 0 a.s. and its Laplace transform is

Ee−λu(x) = exp
(∫ ∞

0

Ψ
(
G(s, x)λ

)
ds
)
, λ ≥ 0.

It is instructive to calculate the limiting law in the following particular case.

Let Z be an α-stable subordinator with Ψ(λ) = −cλα, c > 0 being the scale

parameter and α ∈ (0, 1) the stability index. Then

Ee−λu(x) = exp
(
− cλα

∫ ∞
0

G(s, x)α ds
)
, λ ≥ 0.

In other words, the limiting concentration u(x) at the location x > 0 has a
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Figure 6.3: The scales c(x) of the limiting distribution in the Dirichlet case for
ν = ±1, 0 (left), and the Neumann case for ν = −1 (right); α = 0.9, c = 1.

spectrally positive α-stable distribution with the scale

c(x) = c

∫ ∞
0

G(s, x)α ds. (6.11)

The straightforward integration allows to determine the limiting scale cD(x) in

case of the Dirichlet boundary noise as

cD(x) =


c · 21−α

πα/2
|µ|

3α−2
2 · e−

1
2
xαµx1−α

2K 3α−2
2

(αx|µ|
2

)
, µ 6= 0, α ∈ (0, 1),

c · Γ
(3α− 2

2

) α
2−3α

2

22(1−α)πα/2
· x2(1−α), µ = 0, α ∈ (2/3, 1),

+∞, µ = 0, α ∈ (0, 2/3].

where Kµ is the modified Bessel function of the second kind. Taking into account

the asymptotic expansion

Kµ(x) =

√
π

2
x−1/2e−x(1 +O(|x−1|)), |x| → ∞,

we get that for large values of x and α ∈ (0, 1)

cD(x) ≈


c · 21−απ

1−α
2

α1/2
µ

3
2

(α−1) · e−xαµx
1−α
2 , µ > 0,

c · 21−απ
1−α
2

α1/2
|µ|

3
2

(α−1) · x
1−α
2 , µ < 0,

see Fig. 6.3 (left).

In the Neumann case, it is clear that cN(x) = +∞ for µ ≥ 0. For µ < 0, the

result of numerical integration is presented in Fig. 6.3 (right).

It is interesting to note that the integral (6.11) diverges for µ = 0 and α ∈



6.3. WONG–ZAKAI APPROXIMATIONS 91

(0, 2/3] in the Dirichlet case. The same critical value α = 2/3 was discovered in

[PS08] in the analysis of limiting distributions of Lévy driven transport dynamics.

6.3 Wong–Zakai Approximations

From the point of view of applications, the boundary noise Ż in (6.5) is an

idealization of a very fast continuous injection process taking place at the opening

of the pipe. A natural question about the convergence of approximations to the

solution u arises.

Commonly used examples of absolutely continuous approximations of a Lévy

process Z are polygonal approximations,

Zn(t) = Z
(k − 1

n

)
+ n
(
Z
(k
n

)
− Z

(k − 1

n

))(
t− k − 1

n

)
, k ≥ 1, n ≥ 1,

(6.12)

red noise approximations

Zn(t) =

∫ t

0

(
1− e−n(t−s)

)
dZ(s), n ≥ 1, (6.13)

or short memory averaging

Zn(t) = n

∫ t

(t−n−1)∧0

Z(s) ds, n ≥ 1. (6.14)

A common feature of these approximations is that they approximate a continuous

process Z (i.e. a Brownian motion with drift) in the uniform topology. If Z has

jumps, these jumps are approximated continuously and in a monotonous way.

Such type of approximations can be very well described with the help of the

so-called M1-Skorokhod topology.

Let V be a separable Banach space with the norm ‖ · ‖. In this section,

we will mainly deal with V = R for approximations of the Lévy process Z and

V = Hθ(R+) for approximations of solutions of the equation (6.5). For a fixed

time T > 0, the space of V -valued càdlàg functions is denoted by D([0, T ], V ).

Each f ∈ D([0, T ], V ) may have at most countably many discontinuities.

For two elements v1, v2 ∈ V we define a segment [[v1, v2]] as a straight line

between v1 and v2:

[[v1, v2]] := {v ∈ V : v = αv1 + (1− α)v2 for α ∈ [0, 1]}.
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In order to define the so-called (strong) M1 metric on D([0, T ];V ), we define for

each f ∈ D([0, T ], V ) the extended graph of f by

Γ(f) := {(t, v) ∈ [0, T ]× V : v ∈ [[f(t−), f(t)]]},

where f(0−) := f(0). A total order relation on Γ(f) is given by

(t1, v1) ≤ (t2, v2) ⇔

t1 < t2 or

t1 = t2 and ‖f1(t1−)− v1‖ ≤ ‖f1(t1−)− v2‖.
.

A parametric representation of the extended graph of f is a continuous, non-

decreasing, surjective function

(r, u) : [0, 1]→ Γ(f), (r, u)(0) = (0, f(0)), (r, u)(1) = (T, f(T )).

Let Π(f) denote the set of all parametric representations of f .

For f1, f2 ∈ D([0, T ], V ), we define

dM(f1, f2) := inf
{
|r1 − r2|∞ ∨ ‖u1 − u2‖∞ : (ri, ui) ∈ Π(fi), i = 1, 2

}
.

The mapping dM is called strong M1 metric on D([0, T ], V ). This topology was

introduced by Skorokhod in his seminal paper [Sko56]. The extensive analysis

of M1-topology in the finite dimensional setting can be found in [Whi02]. For a

generalization to Banach and Hilbert spaces, see [PR15].

Remark 6.4. The approximations Zn defined in (6.12), (6.13) and (6.14) are

absolutely continuous and converge to Z a.s. in the (strong) M1 topology in

D([0, T ],R).

The second main result of this chapter is the following theorem:

Theorem 6.5. Let T > 0 and let Zn → Z in probability in D([0, T ],R; dM)

as n → ∞, and let Zn, n ≥ 1, be absolutely continuous. Then the classical

solutions un driven by Zn converge to u determined in Theorem 6.3 in probability

in D([0, T ], Hθ(R+); dM) as n→∞.

Proof. Similarly to the convergence in the uniform topology and in the standard

Skorokhod metric J1, convergence of a sequence of functions in the metric dM

can be described by quantifying the oscillation of the functions. For v, v1, v2 ∈ V
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the distance from v to the segment [[v1, v2]] is defined by

M(v1, v, v2) := inf
α∈[0,1]

‖v − (αv1 + (1− α)v2)‖.

Define for f ∈ D([0, T ];V ) and δ > 0 the oscillation function by

M(f ; δ) := sup
{
M
(
f(t1), f(t), f(t2)

)
: 0 ≤ t1 < t < t2 ≤ T and t2 − t1 ≤ δ

}
.

Let T > 0, and let {Zn}n≥1 be a sequence of absolutely continuous functions,

such that Zn → Z a.s. in M1-topology on [0, T ]. Since

lim
A→∞

P
(

sup
t∈[0,T ]

|∆Z(t)| > A
)

= 0

from now on we assume that the jumps of Z are bounded by some constant A > 0.

Furthermore due to the M1-convergence we can assume that for n large enough

sup
s∈[0,T ]

|Zn(s)| ≤ sup
s∈[0,T ]

|Z(s)|+ 1. (6.15)

Let un be classical continuous solutions to (6.1). From [PR15], Theorem 3.2,

we know it is sufficient to show that

(i) for every t ∈ [0, T ] we have ‖un(t, ·)− u(t, ·)‖Hθ(R+)
P→ 0, n→∞, and

(ii) for every ε > 0 the oscillation function M(un, δ) obeys

lim
δ↓0

lim sup
n→∞

P(M(un, δ) ≥ ε) = 0.

1. Neumann case (θ < −1
2
):

First note that we can extend the solutions u(t, ·) and un(t, ·) to R, simply

by extending GN(s, x) defined in (6.10) to a function GN : R+ × R → R+ in the

following way:

GN(x, s) :=
1√
πs

e−
(µs−x)2

4s +
µ

2
erfc

( |x| − µs
2
√
s

)
and

FGN(·, t− s)(ξ) = 2e−(ξ2+iµξ)(t−s) +
µ

2
F erfc

( | · | − µ(t− s)
2
√

(t− s)

)
(ξ).

If we can show that (i) and (ii) hold in Hθ(R) for these explicit extensions, then
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the result follows easily for Hθ(R+).

Linearity of the integral allows us to split both u and un into two parts and

consider each separately. So, for (i), we see that for every t ∈ [0, T ]

‖un(t, ·)− u(t, ·)‖Hθ(R+) ≤ ‖un1 (t, ·)− u1(t, ·)‖Hθ(R+) + ‖un2 (t, ·)− u2(t, ·)‖Hθ(R+),

where

u1(t, x) =

∫ t

0

1√
πs

e−
(µ(t−s)−x)2

4(t−s) dZ(s),

u2(t, x) =

∫ t

0

µ

2
erfc

(x− µ(t− s)
2
√

(t− s)

)
dZ(s),

and un1 and un2 are defined analogously.

To estimate the convergence un1 → u1, we integrate by parts to obtain

‖un1 (t, ·)− u1(t, ·)‖2
Hθ(R+)

≤ 4

∫ ∞
−∞

(1 + ξ2)θ
∣∣∣ ∫ t

0

e−(ξ2+iµξ)(t−s) d(Zn(s)− Z(s))
∣∣∣2 dξ

≤ 4

∫ ∞
−∞

(1 + ξ2)θ
∣∣∣Zn(t)− Z(t)− Zn(0)

+

∫ t

0

e−(ξ2+iµξ)(t−s)(ξ2 + iµξ)(Zn(s)− Z(s)) ds
∣∣∣2dξ

≤ 8
(
|Zn(t)− Z(t)|2 + |Zn(0)|2

)∫ ∞
−∞

(1 + ξ2)θ dξ

+ 8

∫ ∞
−∞

(1 + ξ2)θ
∣∣∣ ∫ t

0

e−(ξ2+iµξ)(t−s)(ξ2 + iµξ)(Zn(s)− Z(s)) ds
∣∣∣2dξ.

Since {Zn}n≥1 converge to Z in M1 on [0, T ] and Z is stochastically continuous,

it follows that Zn(t) → Z(t) for any t ∈ [0, T ] in probability, so that the first

summand vanishes in probability as n→∞.

To estimate the second summand, we apply the Hölder inequality:

∣∣∣ ∫ t

0

e−(ξ2+iµξ)(t−s)(ξ2 + iµξ)(Zn(s)− Z(s)) ds
∣∣∣

≤ (ξ2 + |µ||ξ|)
∫ t

0

e−ξ
2(t−s)|Zn(s)− Z(s)| ds

≤ (ξ2 + |µ||ξ|)|ξ|−2/pp−1/p
(∫ t

0

pξ2e−pξ
2(t−s) ds

)1/p(∫ t

0

|Zn(s)− Z(s)|q ds
)1/q

≤ (ξ2 + |µ||ξ|)|ξ|−2/p
(

1− e−pξ
2t
)(∫ t

0

|Zn(s)− Z(s)|q ds
)1/q
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and choose p > 1 such that 1− 1
p
< 2|θ|−1

4
to get∫ ∞

−∞
(1 + ξ2)θ(ξ2 + |µ||ξ|)2|ξ|−4/p

(
1− e−pξ

2t
)2

dξ =: C(θ, p, µ, t) <∞.

Finally we note that the estimate (6.15) and the boundedness of jumps of Z imply

that for any q > 1 and n large enough there are C1, C2 > 0 such that

E

∫ t

0

|Zn(s)− Z(s)|q ds ≤ C1 + C2E sup
s∈[0,T ]

|Z(t)|q <∞.

Hence, the dominated convergence theorem yields

E

∫ t

0

|Zn(s)− Z(s)|q ds→ 0.

To estimate the difference ‖un2 (t, ·) − u2(t, ·)‖2
Hθ(R+)

, we integrate by parts

again. Note that for 0 ≤ s < t ≤ T and x ∈ R, |x|−µ(t−s)
2
√

(t−s)
≥ − |µ|

2

√
T . Since

x 7→ erfc(|x|) is integrable, so is x 7→ erfc
(
|x|−µ(t−s)
2
√

(t−s)

)
, and we can estimate the

Fourier transform in the following way:

sup
ξ∈R

∣∣∣F erfc
( | · | − µ(t− s)

2
√

(t− s)

)
(ξ)
∣∣∣ ≤ 1√

2π

∥∥∥ erfc
( | · | − µ(t− s)

2
√

(t− s)

)∥∥∥
L1(R)

≤ C(T ),

where C(T ) is a constant that only depends on T . It follows, that∣∣∣[(Zn(s)− Z(s))F µ
2

erfc
( |x| − µ(t− s)

2
√

(t− s)

)]s=t
s=0

∣∣∣2
≤ 2
(
|Zn(t)− Z(t)|2 + |Zn(0)|2

)
(C(T ))2.

Furthermore, for the derivative of the error function we see:

d

ds
erfc

( |x| − µ(t− s)
2
√

(t− s)

)
= − 1√

π

( µ

2
√

(t− s)
+

|x|
2(t− s) 3

2

)
e−

(|x|−µ(t−s))2
4(t−s)

= − 1√
π

( µ√
(t− s)

+
|x| − µ(t− s)

2(t− s) 3
2

)
e−

(|x|−µ(t−s))2
4(t−s) .

Obviously, x 7→ e−
(|x|−µ(t−s))2

4(t−s) is integrable for every s ∈ [0, t), so we can estimate

sup
ξ∈R

∣∣∣F(µ
2

µ√
π(t− s)

e−
(|·|−µ(t−s))2

4(t−s)

)
(ξ)
∣∣∣ ≤ C1√

t− s
,
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for some constant C1, that does not depend on ξ or s. For the second term we

make a simple substitution to see∫ ∞
0

x− µ(t− s)
2(t− s) 3

2

e−
(x−µ(t−s))2

4(t−s) dx =

∫ ∞
−µ(t−s)
2
√
t−s

2y√
t− s

ey
2

dy

≤
∫ ∞
−∞

2|y|√
t− s

ey
2

dy ≤ C2√
t− s

,

with C2 being another constant. Eventually this yields for some C3 > 0

‖un2 (t, ·)− u2(t, ·)‖2
Hθ(R+)

≤ 8
(
|Zn(t)− Z(t)|2 + |Zn(0)|2

)
(C(T ))2

∫ ∞
−∞

(1 + ξ2)θ dξ

+ 8

∫ ∞
−∞

(1 + ξ2)θ dξ ·
(∫ t

0

C3√
(t− s)

|(Zn(s)− Z(s))| ds
)2

.

Since
∫ t

0
(t− s)−p/2 ds <∞ for any 1 < p < 2 we can use the Hölder inequality to

get the anticipated convergence.

Now, we turn to condition (ii). We will only look at the first summand of GN

here. The term containing un2 can be treated similarly. For any 0 ≤ t1 ≤ t ≤ t2 ≤
T , |t2 − t1| ≤ δ and any α ∈ [0, 1] we estimate

|M(un1 (t1), un1 (t), un1 (t2))|2

≤
∫ ∞
−∞

(1 + ξ2)θ |F(un(t)− αun(t1)− (1− α)un(t2))|2 dξ,

where

|F(un(t)− αun(t1)− (1− α)un(t2))|

=
∣∣∣ ∫ t

0

e−(ξ2+iµξ)(t−s) dZn(s)

− α
∫ t1

0

e−(ξ2+iµξ)(t1−s) dZn(s)− (1− α)

∫ t2

0

e−(ξ2+iµξ)(t2−s) dZn(s)
∣∣∣,
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and hence

|F(un(t)− αun(t1)− (1− α)un(t2))|

≤ |Zn(t)− αZn(t1)− (1− α)Zn(t2)|

+ α
∣∣∣ ∫ t1

0

(e−(ξ2+iµξ)(t−s) − e−(ξ2+iµξ)(t1−s))(ξ2 + iµξ)Zn(s) ds
∣∣∣

+ (1− α)
∣∣∣ ∫ t

0

(e−(ξ2+iµξ)(t−s) − e−(ξ2+iµξ)(t2−s))(ξ2 + iµξ)Zn(s) ds
∣∣∣

+ α
∣∣∣ ∫ t

t1

e−(ξ2+iµξ)(t−s)(ξ2 + iµξ)Zn(s) ds
∣∣∣

+ (1− α)
∣∣∣ ∫ t2

t

e−(ξ2+iµξ)(t2−s)(ξ2 + iµξ)Zn(s) ds
∣∣∣

= |Zn(t)− αZn(t1)− (1− α)Zn(t2)|+ αI1 + (1− α)I2 + αI3 + (1− α)I4.

Because of the M1-convergence of Zn, for any ε > 0 there is α, such that for

n→∞
|Zn(t)− αZn(t1)− (1− α)Zn(t2)| < ε.

We estimate the first integral as

I1 ≤ sup
s∈[0,T ]

|Zn(s)| · (ξ2 + |µ||ξ|)
∫ t1

0

|e−(ξ2+iµξ)(t1−s) − e−(ξ2+iµξ)(t−s)| ds,

and ∫ t1

0

|e−(ξ2+iµξ)(t1−s) − e−(ξ2+iµξ)(t−s)| ds

=

∫ t1

0

e−ξ
2r|eiµξr − eiµξ(t−t1+r) + eiµξ(t−t1+r) − e−ξ

2(t−t1)eiµξ(t−t1+r)| dr

≤
∫ t1

0

e−ξ
2r|1− eiµξ(t−t1)| dr +

∫ t1

0

e−ξ
2r|1− e−ξ

2(t−t1)| dr

≤ (|µξδ| ∧ 2)

∫ t1

0

e−ξ
2r dr + (1− e−ξ

2δ)

∫ t1

0

e−ξ
2r dr

= (|µξδ| ∧ 2)ξ−2(1− e−ξ
2t1) + (1− e−ξ

2δ)ξ−2(1− e−ξ
2t1).
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Finally ∫ ∞
−∞

(1 + ξ2)θ(ξ2 + |µ||ξ|)2ξ−2(|µξδ| ∧ 2)2(1− e−ξ
2t1)2 dξ

= µ2δ2

∫
|ξ|≤2/|µ|δ

(1 + ξ2)θ(ξ2 + |µ||ξ|)2ξ−2(1− e−ξ
2t1)2 dξ

+ 4

∫
|ξ|>2/|µ|δ

(1 + ξ2)θ(ξ2 + |µ||ξ|)2ξ−4 dξ ≤ Cδ2|θ|−1 → 0, δ → 0.

The terms I2, I3, I4 are estimated analogously.

2. Dirichlet case (θ < −3
2
):

In the Dirichlet case the Fourier transform of GD has the explicit form

FGD(·, t− s)(ξ) = −(µ− 2iξ)e−(ξ2+iµξ)(t−s).

Obviously, the only difference to the first summand in the Neumann case is the

factor −(µ− 2iξ). But since in this case θ < −3
2
, we only have to note, that the

term

|(µ− 2iξ)|2(1 + ξ2)θ (6.16)

plays the same role as (1+ξ2)θ for θ < −1
2

in the Neumann case. Consequently, the

proof in the Dirichlet case essentially repeats the steps of the Neumann case.

Finally we note that away of the boundary x = 0, the solution (t, x) 7→ u(t, x)

is a smooth function. Thus the following theorem holds.

Theorem 6.6. Let T > 0 and let Zn → Z in probability in D([0, T ],R; dM) as

n→∞, and let Zn, n ≥ 1, be absolutely continuous. Then for any x > 0

sup
t∈[0,T ]

|un(t, x)− u(t, x)| → 0

in probability, as n→∞.

Proof. We consider the case of Neumann boundary conditions.

It is easy to see that for x > 0 and t > 0 the function

GN(t, x) =
1√
πt

e−
(x−µt)2

4t +
µ

2
erfc

(x− µt
2
√
t

)
, t > 0,

GN(0, x) = lim
t↓0

GN(t, x) = 0,
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is absolutely continuous, and its time derivative equals

ĠN(t, x) =
d

dt
GN(t, x) =

x2 − t(2 + tµ2)

4
√
πt5/2

e−
(x−tµ)2

4t +
µ√
π

( µ

4
√
t

+
x

4t
3
2

)
e−

(x−µt)2
4t

=
x2 + µtx− 2t

4
√
πt5/2

e−
(x−µt)2

4t

and is also continuous, ĠN(0, x) = 0, supt≥0 |Ġ(t, x)| ≤ M(x) < ∞. Thus inte-

gration by parts yields

u(t, x) =

∫ t

0

GN(t− s, x) dZ(s) =

∫ t

0

ĠN(t− s, x)Z(s) ds,

un(t, x) =

∫ t

0

GN(t− s, x) dZn(s) = Zn(0) +

∫ t

0

ĠN(t− s, x)Zn(s) ds.

Thus,

sup
t∈[0,T ]

|u(t, x)− un(t, x)| ≤ |Zn(0)|+ sup
t∈[0,T ]

∫ t

0

|ĠN(t− s, x)| · |Z(s)− Zn(s)| ds

≤ |Zn(0)|+M(x)

∫ T

0

|Z(s)− Zn(s)| ds,

which converges to 0 in probability due to convergence Zn(t) → Z(t) in M1 in

probability.





Appendix

In the following we write L(X, Y ) for the space of all bounded, linear operators

from X to Y . For p ≥ 1 and U ∈ Rd, Lp(U) denotes the Banach space of

(equivalence classes of) all complex-valued, measurable functions in U, such that

‖f‖p =

(∫
U

|f(x)|p dx

) 1
p

<∞.

In Chapters 5 and 6 we work with the so-called fractional Sobolev (or Bessel-

potential) spaces

Hθ
p(Rd) = {f ∈ S ′(Rd) : F−1(1 + ξ2)

θ
2 (Ff)(ξ) ∈ Lp(Rd)},

where S ′ denotes the space of tempered distributions and F the Fourier trans-

form on S ′.
Sobolev spaces have been studied in numerous books, e.g. in [HT08, Tri92]. How-

ever, a lot of the results presented there are either valid for θ > 0, or they are

proved in a much broader generality and the proofs rely heavily on the more

complex theory of function spaces. The aim of this appendix is to direct proofs

specifically for the properties of Hθ(R+) that we needed for this thesis. Lemmas

A.1 and A.2 have been published in [HP19].

For our main result of Chapter 6 on differential equations with noise on the

boundary (Theorem 6.3) we are using that Hθ(R+) is a separable Hilbert space.

For θ > 0 this result follows, e.g. from [HT08, Proposition 3.39]. In [Tri92,

Theorem 4.5.5], an explicit extension operator is given for a more general class

of function spaces. In the following lemma we will prove the minimality of the

norm of the extension directly.

Lemma A.1. Let θ ∈ R.

(i) For every f ∈ Hθ(R+), there is a unique extension ext f to R such that

‖f‖Hθ(R+) = ‖ ext f‖θ,2.

101
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(ii) The operator ext : Hθ(R+)→ Hθ(R) is bounded and linear.

Proof. We start by showing the existence of the extension for fixed f ∈ Hθ(R+).

Let E be the subset of Hθ(R), containing all extensions of f to R. Let

δ := ‖f‖Hθ(R+) = inf
g∈E
‖g‖θ,2.

For g, h ∈ E we have by the parallelogram law that

‖g − h‖2
θ,2 =2‖g‖2

θ,2 + 2‖h‖2
θ,2 − 4

∥∥∥g + h

2

∥∥∥2

θ,2
.

Since for every ϕ ∈ D(R+)(g + h

2

)
(ϕ) =

1

2
(g(ϕ) + h(ϕ)) =

1

2
(f(ϕ) + f(ϕ)) = f(ϕ),

g+h
2
∈ E and ‖g+h

2
‖2
θ,2 ≥ δ2. So we get

‖g − h‖2
θ,2 ≤ 2‖g‖2

θ,2 + 2‖h‖2
θ,2 − 4δ2. (A.17)

Now, there is a sequence (gn)n∈N in E with limn→∞ ‖gn‖θ,2 = δ. Then by

(A.17) we have

‖gn − gm‖2
θ,2 ≤ 2‖gn‖2

θ,2 + 2‖gm‖2
θ,2 − 4δ2 → 0, n,m→∞.

That means, (gn) is a Cauchy sequence and since Hθ(R) is complete, there is

f̃ ∈ Hθ(R) with f̃ = limn→∞ gn in Hθ(R). Since Hθ(R) is a subspace of S ′(R),

this especially implies, that for ϕ ∈ D(R+),

f̃(ϕ) = lim
n→∞

gn(ϕ) = lim
n→∞

f(ϕ) = f(ϕ).

Thus f̃ ∈ E and, due to the continuity of the norm, ‖f̃‖θ,2 = limn→∞ ‖gn‖θ,2 = δ.

The uniqueness (in the sense of equivalent classes) follows easily from (A.17). Let

g ∈ E be another element with ‖g‖θ,2 = δ. Then

‖g − f̃‖2
θ,2 ≤ 2‖g‖2

θ,2 + 2‖f̃‖2
θ,2 − 4δ2 = 0.

For (ii) we only have to prove the linearity of the operator. Boundedness

directly follows from the definition.

To show linearity we define M := {f ∈ Hθ(R) : f |R+ = 0} and its orthogonal

complement M⊥ = {g ∈ Hθ(R) : 〈g, f〉θ,2 = 0 for all f ∈ M}. First we show,
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that for every h ∈ Hθ(R+), ext(h) ∈M⊥.

Indeed, it is enough to show, that 〈h,m〉θ,2 = 0 for all m ∈M with ‖m‖θ,2 = 1.

Note that, since m|R+ = 0, ext(h)− αm is another extension of h for any α ∈ C.

Due to its definition, the norm of ext(h) is minimal in comparison to every other

extension and therefore

〈exth, exth〉θ,2
≤ 〈exth− αm, exth− αm〉θ,2
= 〈exth, exth〉θ,2 + |α|2〈m,m〉θ,2 − α〈exth,m〉θ,2 − α〈m, exth〉θ,2.

Choosing α = 〈exth,m〉θ,2 we get

0 ≤ |α|2 − αα− αα = −|α|2 = −|〈ext(h),m〉θ,2|2

and hence

〈ext(h),m〉θ,2 = 0. (A.18)

Let now f, g ∈ Hθ(R+) and λ ∈ C. We have to show that

‖ ext(f + λg)− ext(f)− λ ext(g)‖θ,2 = 0.

It is easy to see, that (ext(f) + λ ext(g))|R+ = f + λg and thus

m := ext(f + λg)− ext(f)− λ ext(g) ∈M.

By (A.18) we have

0 =〈ext(f + λg),m〉θ,2 − 〈ext(f),m〉θ,2 − λ〈ext(g),m〉θ,2
=〈m,m〉θ,2
=‖ ext(f + λg)− ext(f)− λ ext(g)‖2

θ,2.

Lemma A.1 and the properties of Hθ(R) imply that Hθ(R+) is a complete,

separable Hilbert space with

‖f‖2
Hθ(R+) = 〈f, f〉Hθ(R+) = 〈ext f, ext f〉θ,2.

Eventually we show denseness of test functions in Hθ(R+) for negative θ. The
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idea of the proof follows the argument of Lemma 1.11.1 in [LM72].

Lemma A.2. If θ < 1
2
, then D(R+) is dense in Hθ(R+).

Proof. Denote by D0(R) the subspace of all ϕ ∈ D(R) with ϕ = 0 in a neigh-

bourhood of 0, that is:

D0(R) := {ϕ ∈ D(R) : ∃r > 0 such that ∀x ∈ Br(0) ϕ(x) = 0}.

Obviously it is enough to show that D0(R) ⊂ Hθ(R) is dense if θ < 1
2
, because

then for any h ∈ Hθ(R+) there is a sequence {dn}n∈N ⊂ D0(R) that approximates

the extension of h in Hθ(R). Since for every n ∈ N, dn = 0 in a neighbourhood of

zero, the restriction dn|R+ is in D(R+) and {dn|R+}n∈N approximates h in Hθ(R+).

Let N : Hθ(R) → C be a continuous linear functional. A consequence of the

Hahn-Banach Theorem states, that we only have to show, that if N vanishes

on D0(R), it also vanishes on the whole space Hθ(R) (see [Bre11], Corollary 1.8

and Remark 5). According to the Riesz representation theorem there is a unique

element hN ∈ Hθ(R), such that for every u ∈ Hθ(R)

N(u) = 〈u, hN〉Hθ(R) =

∫
R
(1 + |ξ|2)θF(hN)(ξ)F(u)(ξ) dξ.

Let now N(u) = 0 for all u ∈ D0(R). We can interpret the function f(ξ) =

F(1 + |ξ|2)θF(hN)(ξ) as an element of S ′(R) and get by the definition of F on

S ′(R) that

(f, u) = ((1 + |ξ|2)θF(hN),Fu) = N(u) = 0 ∀u ∈ D0(R).

This, however, means that supp f = {0}, from which follows (see [HT08], Theo-

rem 2.31), that

f =
∑
j≤m

cjD
jδ0

for some m ∈ N0 and cj ∈ C, j = 0, . . . ,m, where δ0 is the δ-distribution.

Hence, we know

(1 + |ξ|2)θF(hN)(ξ) = (1 + |ξ|2)−
θ
2 (F−1f)(ξ) = (1 + |ξ|2)−

θ
2

m∑
j=0

cj(−i)jξj F−1δ0︸ ︷︷ ︸
=1

,
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and since hN ∈ Hθ(R), (1 + |ξ|2)
θ
2F(hN)(ξ) ∈ L2(R), so that

∫
R

∣∣∣∑m
j=0 cj(−i)jξj

∣∣∣2
(1 + |ξ|2)θ

dξ <∞.

For θ < 1
2

this is only possible, if cj = 0 for j = 0, . . . ,m, and so hN ≡ 0 and

therefore N ≡ 0 on Hθ(R).

An embedding theorem used in Chapter 5 is [RS96, Theorem 4.4.3.2], which

deals with the products of distributions and functions in Triebel-Lizorkin and

Besov spaces. Since fractional Sobolev spaces are a special case of Triebel-Lizorkin

spaces we can deduce the following theorem from Theorem 4.4.3.2:

Theorem A.3. Assume that θ1, θ2 ∈ R and p1, p2 ∈ R+ satisfy the following

conditions:

θ1 < 0 < θ2

θ1 + θ2 > 0

θ1 + θ2 >
n

p1

+
n

p2

− n

1

p
≤ 1

p1

+
1

p2

θ2 >
n

p2

.

Then there is a constant C > 0, so that

‖f · g‖
H
θ1
p1

≤ C‖f‖
H
θ1
p1

· ‖g‖
H
θ2
p2

(A.19)

for all f ∈ Hθ1
p1

and g ∈ Hθ2
p2

.

Note that there is a close connection between fractional Sobolev spaces and

weighted L2-spaces, since Hs
2(R) can be understood as FL2(R, ws), where ws(ξ) =

(1+ξ2)
s
2 . Considering this, the Interpolation Theorem of Stein-Weiss (see [BL76,

Theorem 5.4.1]) implies the following result:

Theorem A.4. Let 0 < ϑ < 1 and T be a linear operator with

T ∈ L(Hs
2 , H

s1
2 ) and

T ∈ L(Hs
2 , H

s2
2 ).
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Then for s̃ = (1− ϑ)s1 + ϑs2,

T ∈ L(Hs
2 , H

s̃
2),

and we can estimate the operator norm of T in the following way:

‖T‖L(Hs
2 ,H

s̃
2) ≤ ‖T‖1−ϑ

L(Hs
2 ,H

s1
2 )
‖T‖ϑ

L(Hs
2 ,H

s2
2 )
.

To prove the existence of mild solutions in Chapter 5, we also need some basic

integral inequalities, namely Young’s inequality for convolution integrals, which

states that

∥∥ ∫
Rd
g(· − y)f(y) dy

∥∥
Lq(Rd)

≤ ‖g‖Lr(Rd) · ‖f‖Lp(Rd), (A.20)

for 1 ≤ r <∞, 1 ≤ p ≤ q with 1
r
+ 1
p

= 1+ 1
q
, and f ∈ Lp(Rd), g ∈ Lr(Rd), and the

following corollary of Hölder’s inequality, which is sometimes called Minkowski’s

inequality for integrals and states that for two measure spaces (S1, σ1), (S2, σ2)

and a measurable function f : S1 × S2 → C,

(∫
S2

∣∣∣∣∫
S1

f(x, y)σ1(dx)

∣∣∣∣p σ2(dy)

) 1
p

≤
∫
S1

(∫
S2

|f(x, y)|pσ2(dy)

) 1
p

σ1(dx),

(A.21)

see for example [Gar07, Corollary 5.4.2].



Index of Notation

Acronyms

a.s. almost surely

càdlàg right continuous with left limits (continu á droite, limitè á gauche), page 8

cf. compare (confer)

e.g. for example (exempli gratia)

i.e. that is (id est)

PRM Poisson random measure, page 11

r.h.s. right hand side

s.t. such that

SDE stochastic differential equation

SPDE stochastic partial differential equation

w.r.t. with regard to

Symbols

∇f gradient of f , page 16

1[a,b)(·) indicator function

〈f, g〉θ,2 scalar product in Hθ(R), page 17

〈f, g〉2 scalar product in L2(Rd), page 16

〈f, g〉Hθ(R+) scalar product in Hθ(R+), page 17

〈·, ·〉H scalar product in the Hilbert space H, page 18
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‖f‖ supremum norm for bounded function f , page 16

‖f‖2 norm in L2(Rd), page 16

‖f‖θ,2 norm in Hθ(R), page 17

‖g‖Hθ(R+) norm in Hθ(R+), page 17

‖ · ‖λ norm in M2, page 73

‖A‖L(E,F ) sup{‖Ax‖F : x ∈ E with ‖x‖E ≤ 1}, page 18

‖ · ‖E norm in the Banach space E, page 18

〈M〉t , page 7

〈M,N〉t angle bracket, page 7

[X, Y ]t quadratic co-variation of the processes X and Y , page 9

[X]t quadratic variation of the process X, page 9

BD Dirichlet boundary operator, page 81

BN Neumann boundary operator, page 81

B(Rd) Borel σ-algebra

C placeholder for constant bigger than zero; the value may vary from line to

line, page 7

Cn n times continuously differentiable functions, page 16

Cn
b n times continuously differentiable bounded functions with bounded deri-

vatives, page 16

Cn
c n times continuously differentiable functions with compact support, page 16

D([0, T ], V ) space of V -valued càdlàg functions, page 91

D(A) domain of the operator A, page 18

∆Xt ∆Xt = Xt −Xt−

Df Jacobian matrix of f , page 16

dM(f1, f2) M1 metric on D([0, T ], V ), page 92
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D(R+) space of infinitely differentiable functions, page 85

eϕ(·;r,z)(x) exponential mapping, page 27

erfc(x) , page 85

E expected value

Fϕ Fourier transform of ϕ, page 16

Hθ(R) fractional Sobolev space, page 17

Hθ(R+) , page 17

Id identity operator, page 18

L2(Rd) , page 16

L2(〈M〉 Hilbert space of predictable processes that are integrable w.r.t. M , page 8

L(E,F ) space of all bounded, linear operators from E to F , page 18

M2 M2(0, T ;Hθ), page 73

Ñ compensated Poisson random measure, page 11

N Poisson random measure, page 11

N {1, 2, 3, . . . }

ν Lévy measure of the Lévy process, page 11

(Ω,F ,F,P) filtered probability space, satisfying the usual conditions

Rm
∗ Rm

∗ = Rm\{0}, page 59

ρ(A) resolvent set of the operator A, page 19

R real numbers

R+ positive real numbers (without zero)

S(Rd) Schwartz space, page 16

S ′(Rd) space of tempered distributions, page 16

Xt− Xt− = lims→t,s<tXs





Bibliography
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dere Abhandlung bei einer anderen Hochschule als Dissertation eingereicht

habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des

Manuskripts hat mich Prof. Dr. Ilya Pavlyukevich unterstützt.

Jena, den 27.06.2022

119


