
TU Ilmenau | Universitätsbibliothek | ilmedia, 2022 
http://www.tu-ilmenau.de/ilmedia 

Jibril, Muhammad Attahir; Götze, Philipp; Broneske, David; Sattler, Kai-Uwe 

Selective caching : a persistent memory approach for multi-dimensional index 
structures 

Original published in: Distributed and parallel databases. - New York, NY [u.a.] : Consultants 
Bureau. - 40 (2022), 1, p. 47-66. 

Original published: 2021-03-14 

ISSN: 1573-7578 
DOI: 10.1007/s10619-021-07327-0 
[Visited: 2022-05-10] 

This work is licensed under a Creative Commons Attribution 4.0 
International license. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/ 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1007/s10619-021-07327-0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Vol.:(0123456789)

Distributed and Parallel Databases (2022) 40:47–66
https://doi.org/10.1007/s10619-021-07327-0

1 3

Selective caching: a persistent memory approach 
for multi‑dimensional index structures

Muhammad Attahir Jibril1  · Philipp Götze1  · David Broneske2,3  · 
Kai‑Uwe Sattler1 

Accepted: 22 February 2021 / Published online: 14 March 2021 
© The Author(s) 2021

Abstract
After the introduction of Persistent Memory in the form of Intel’s Optane DC Per-
sistent Memory on the market in 2019, it has found its way into manifold applica-
tions and systems. As Google and other cloud infrastructure providers are starting 
to incorporate Persistent Memory into their portfolio, it is only logical that cloud 
applications have to exploit its inherent properties. Persistent Memory can serve as a 
DRAM substitute, but guarantees persistence at the cost of compromised read/write 
performance compared to standard DRAM. These properties particularly affect the 
performance of index structures, since they are subject to frequent updates and que-
ries. However, adapting each and every index structure to exploit the properties of 
Persistent Memory is tedious. Hence, we require a general technique that hides this 
access gap, e.g., by using DRAM caching strategies. To exploit Persistent Mem-
ory properties for analytical index structures, we propose selective caching. It is 
based on a mixture of dynamic and static caching of tree nodes in DRAM to reach 
near-DRAM access speeds for index structures. In this paper, we evaluate selec-
tive caching on the OLAP-optimized main-memory index structure Elf, because its 
memory layout allows for an easy caching. Our experiments show that if config-
ured well, selective caching with a suitable replacement strategy can keep pace with 
pure DRAM storage of Elf while guaranteeing persistence. These results are also 
reflected when selective caching is used for parallel workloads.
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1 Introduction

In the competition for ever-increasing performance for cloud computing, cloud 
systems providers grant more and more access to specialized hardware. After 
offering dedicated GPUs and FPGAs, cloud providers like Google now offer Per-
sistent Memory (PMem) as their new selling point. However, PMem is of no use 
for cloud applications that do not exploit its properties [27].

Depending on the underlying technology, the density and the performance 
of reading and writing on PMem differ. Although first promoted performance 
numbers suggested that reads on PMem are almost as fast as on DRAM, the real 
behavior is different. This paper is based on Optane DC Persistent Memory Mod-
ules (DCPMMs), which under heavy load cannot keep up with the latency of 
DRAM. This circumstance suggests that PMem is just filling up the gap between 
SSD and DRAM [9]. Hence, read and write-heavy applications such as main-
memory database management systems have to cope with the new challenges by 
adapting their data structures to this new architecture.

Recent solutions for the architectural challenges of PMem—especially for 
index structures—consist in keeping the essential part of the data structure 
in PMem and, for faster access, the reconstructible part in DRAM. Especially 
PMem-tuned B +-Tree structures and algorithms (e.g., NVTree [40], FPTree [28], 
FAST & FAIR [15], wB+-Tree [6], CDDS-Tree [36]) can rely on the property that 
all data is redundantly stored in the leaf nodes. These nodes can be easily used to 
reconstruct parts of the upper tree that are kept in DRAM. Such selective persis-
tence [28] can be used to balance between reconstruction effort (more levels of 
the tree stored in PMem) and query/maintenance effort (more levels of the tree 
stored in DRAM).

Despite their simplicity, the persistence approaches for B +-Trees are not 
directly applicable to other index structures. Particularly in multi-dimensional 
index structures, the possibility to reconstruct upper tree nodes from the stored 
data in leaf nodes is lacking due to the stored data. Hence, new methods need to 
be designed to holistically support PMem for multi-dimensional index structures.

In this paper, we extend our proposed approach, selective caching [17], which 
was a first step to exploit PMem for multi-dimensional index structures. As a 
representative, we use Elf [4], a multi-dimensional index structure. Due to its 
explicit memory layout for main-memory-optimized database systems, it is a per-
fect fit for optimization towards PMem. The idea of selective caching is to per-
sist the whole data structure in PMem and buffer nodes of the data structure in 
DRAM in order to improve query performance. Overall, our experiments show 
that when well configured, selective caching reaches query performance that is 
close to DRAM performance while keeping persistence guarantees untouched.

In summary, after an introduction of necessary background (Sect.  2) and 
related work (Sect. 3), we contribute the following:

• We present selective caching—an approach for caching tree nodes statically 
and dynamically in DRAM (Sect. 4).
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• As an extension to our prior work [17], we implement several replacement strate-
gies for dynamic caching (Sect. 4.2).

• As a baseline, we evaluate the impact of PMem storage compared to keeping 
the whole Elf in DRAM (Sect. 5.3). This evaluation shows clear deficiencies for 
PMem-only storage.

• We evaluate different configurations as well as eviction policies of our selective 
caching approach for different query types on uniform synthetic data and TPC-H 
data with correlated dimensions (Sect.  5.4). We show that selective caching 
effectively counters the PMem deficiencies, when well configured.

• We also analyze harder use cases for caching, which is running parallel queries 
on the Elf (Sect. 5.4). We conclude that apart from general benefits of caching 
for parallel workloads, there are use cases where a perfect caching strategy still 
needs to be found (Sect. 6).

2  Background

In this section, we first introduce the necessary background to understand PMem 
characteristics and workings. Afterwards, we introduce the selected multi-dimen-
sional index structure Elf.

2.1  Persistent memory characteristics

The most common PMem technologies are PCM [37], STT-MRAM [14], and mem-
ristor [33]. However, up to now, only the 3D  XPoint technology is available as 
Optane DCPMM [7]. All technologies provide byte-addressability, persistence, and 
DRAM-like performance. They can be directly accessed through the memory bus 
using the CPU’s load and store instructions without the need for OS caches. Further-
more, they scale better in terms of capacity, while DRAM is hitting its limits.

In the remainder of the paper, we focus on Optane DCPMMs due to their avail-
ability. Table 1 classifies this product in comparison to today’s typical DRAM and 
NAND flash. The latency and bandwidth are measured on our own system (see 
Sect. 5). Due to a write-combining buffer within the PMem modules, it is difficult 
to measure actual write latencies. Therefore, we give bandwidth measures instead. 
Currently, there are two operating modes of the DCPMMs, namely Memory and App 

Table 1  Main characteristics 
of different memory/storage 
technologies. (cf. [10, 22, 24, 
29, 32, 35, 38])

DRAM Optane DC PM NAND Flash

Idle seq. read latency 80 ns 175 ns 16 μm
Idle rand. read lat. 90 ns 325 ns 200 μm
Max. read bandwidth 85 GB/s 32 GB/s 3 GB/s
Max. write bandwidth 46 GB/s 13 GB/s 0.6 GB/s
Write endurance > 1015 N/A 104 − 105

Density 1X 2X − 4X 4X − 8X
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Direct (or a mixture). The Memory mode extends the main memory capacity by uti-
lizing DRAM as a cache above PMem. There are no persistence guarantees in Mem-
ory mode, but existing in-memory applications work out of the box with it. The App 
Direct mode provides persistence and allows full utilization of the device. However, 
developers still have to handle failure-atomicity, concurrency, and performance.

On the software part, we used the Persistent Memory Development Kit (PMDK) 
[16] to access and manage data on PMem. Several included libraries offer different 
abstraction levels and relieve the developer of some common steps. In this work, we 
used the C++ bindings of the libpmemobj library which provides general-purpose 
transactions and object management. In the following, the used terms and concepts 
of this library are briefly explained.

Persistent memory pools. PMem is managed by the operating system using a 
PMem-aware file system that grants applications direct access to PMem as memory-
mapped files. These files are called pools in this context. libpmemobj provides inter-
faces to easily create, open, manage, and close those pools.

Persistent pointers. A persistent pointer to a persistent data object contains an 
8-byte ID of the persistent memory pool and an 8-byte offset of the object within 
this pool. Since the actual address of a memory-mapped region can differ for each 
instance of the application, persistent pointers are used to map back objects in the 
virtual address space of the application.

Root object. A root object is an object to which all other data structures in the 
pool are attached. It is allocated from the pool, initially zeroed, has a user-defined 
size, and always exists. A persistent pointer to the root object is kept at a known off-
set, which enables the application to recover its data.

Persistent properties. Another class template within PMDK is called persistent 
property. By wrapping a variable with this property, all modifications are atomically 
registered without adding any extra storage overhead. Sect. 4.1 explains where these 
concepts are used in Elf.

2.2  The Elf storage layout

Elf is a multi-dimensional structure that clusters column values according to their 
prefix. Elf is well suited for analytical workloads due to its main-memory optimized 
storage layout. In the following, we outline Elf’s key design choices, which is neces-
sary for understanding our PMem adaptations to Elf.

Design principles and optimizations. Conceptually, Elf is a prefix tree similar to 
ART [20] which, however, works on the granularity of column values instead of 
digits. Hence, each level in the tree corresponds to the values of a specific column. 
In each node, the entries are sorted, ultimately introducing a total order into the data 
and allowing pruning within a node. In Fig. 1b, we visualize the conceptual Elf built 
for the example table in Fig. 1a consisting of four columns and six tuples. As data-
sensitive optimizations, Elf features two different node types: DimensionLists, 
labeled (1), (2), (5), and (6) as inner nodes that hold sorted column values of sev-
eral tuples and MonoLists as a special type of DimensionList, labeled (3), 
(4), (7), (8), (9), and (10), that represent values of a single tuple spanning across 
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several columns. The idea of MonoLists is that whenever there is no branch-out 
on deeper levels, the linked lists are merged to a single MonoList, thus eliminating 
pointers and distributed storage. To this end, on the upper level, Elf is similar to a 
column store. On deeper levels, it slowly converges to a row-store-like layout. This 
effectively compresses the data set [5].

Another optimization that is particularly designed for read-intensive analytical 
workloads is the linearization of Elf, which we show in Fig. 1c. Here, each Dimen-
sionList and MonoList is stored in a contiguous array. What used to be point-
ers are now offsets within the array itself. This optimization, which has also been 
applied for B-Trees [30], has proven to accelerate selections in Elf by a factor of 10 
[5].

Parallel search algorithms. To evaluate the impact of parallel workloads on 
PMem, we also executed multi-threaded search algorithms on our Elf. For an effi-
cient parallel search, there are different strategies to split the search space—espe-
cially for range queries. However, we found that a fine-granular splitting (on the 
granularity of single DimensionLists) adds too much synchronization overhead 
[3]. Hence, an interleaved per-subtree parallelization proved to be the best parallel 
search algorithm. This means that each thread is assigned an entry from the first 
DimensionList until all available threads are busy. Once a thread finishes, it is 
assigned the next entry until all entries of the first DimensionList are covered. 
For instance, given the Elf in Fig. 1 with three values in the first DimensionList 
and two threads, the first two entries (0 and 1) and their subtrees will be individu-
ally evaluated by these two threads. The first thread to finish will then work on the 
third entry. This strategy has shown to work well for the inherently imbalanced sub-
trees of Elf [3].

3  Related work

PMem-based data structures. Most prior work on PMem-based data structures 
focuses on B +-Trees [1, 6, 23, 28, 36, 40] targeting OLTP systems. Their main con-
sensus is to leave nodes unsorted and generally reduce writes. There is also some 
work on radix trees [19], LSM-Trees [18, 21] and hash maps [26, 31]. To the best of 
our knowledge, so far, only [8] considers a multi-dimensional layout and analytical 
queries. It bases on a clustering approach and unsorted blocks covering a three-tier 
architecture (DRAM, PMem, SSD). However, in contrast to Elf, this approach is 
only suitable as a storage layout and cannot serve as an index. Still, a combination 

Fig. 1  Example table (a), conceptual Elf (b), and the OLAP and main-memory optimized storage layout 
of Elf (c)
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of both seems promising. Since former experiments work on emulated PMem, in 
[22], the authors re-evaluated the B +-Tree variants on real hardware. In [10, 11], the 
underlying primitives of these trees are also analyzed on real PMem.

Selective persistence. To keep up the performance of persistent data structures 
compared to volatile counterparts, only necessary fractions of data are stored in 
PMem. The remaining part is placed in DRAM and rebuilt upon recovery. In the 
FPTree [28] and a derivative of it optimized for 3D XPoint called LB+-Tree [23], the 
leaf nodes are placed in PMem using a persistent linked-list, while the inner nodes 
are placed in DRAM. Consequently, only accessing the leaves is more expensive 
compared to the volatile tree, while minimizing the use of DRAM. HiKV [39] runs 
on hybrid memory, too: a hash index is placed in PMem and a B +-Tree in DRAM. 
Thus, it allows for fast searching of the hash index for basic key-value operations 
(Put, Get, Update, Delete) which require locating the key-value item. However, for 
operations (Scan) that benefit from sorted indexing, the hybrid index employs a B +
-Tree, whose updating involves many writes due to sorting, splitting, and merging 
of nodes and is, thus, placed in DRAM. The DPTree [41] also utilizes a volatile B +
-Tree backed by a PMem log serving as a buffer. Once this buffer reaches the defined 
capacity, it is merged into the base tree. This is implemented as a volatile radix tree 
for navigating to persistent leaf nodes. A versioning scheme is used to support crash 
consistent merging. Instead of designing individual hybrid data structures, in [34] 
and [2], the authors investigate general-purpose multi-tier buffer management cov-
ering DRAM, PMem, and SSDs. This is a similar direction we strive for with our 
dynamic caching approach (Sect. 4.2).

4  Selective caching for Elf

In this section, we first present our baseline implementations, which are naïve trans-
lations of the Elf to PMem. Afterwards, we discuss our improvement of selective 
caching as a strategy to exploit available DRAM as a cache.

4.1  Naïve PMem‑based approaches

We propose two naïve PMem approaches: the Elf can be stored in PMem only, 
which means full persistence but also a possible performance degeneration under 
heavy load. The exact impact is an objective of the first experiment of our evalu-
ation. The second possibility (hybrid Elf) is to create a redundant copy of Elf in 
DRAM, giving the best query performance, but at the cost of doubling the size.

Pure PMem-based Elf. To make Elf suitable for PMem, we rely on PMDK 
described in Sect. 2. The use of its features is illustrated in Fig. 2. The persistent 
tree is stored as a data object residing in a persistent memory pool. On opening, the 
position of the Elf object is determined by following the root and subsequent persis-
tent pointer (see Sect. 2.1). We then always access the persistent Elf via the current 
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virtual object pointer.1 The linearized Elf array is stored separately and reachable 
from the Elf object. Similarly, the virtual address of the array is stored to avoid 
costly persistent dereferencing. Another drawback of persistent pointers is that they 
are twice the size of virtual pointers. Actually, it is not necessary to store volatile 
pointers in the persistent pool, but it helps with the visualization of our utilization 
of them. To ensure atomicity, we used libpmemobj transactions in memory alloca-
tions for the persistent Elf object, the persistent Elf array, and the index build. We 
additionally wrap the member variables of the persistent Elf class, such as the sizes 
and the number of dimensions, with the persistent property class. Although in our 
experiments we do not modify the tree after initially building it, this is reasonable 
for later inserts or in-place updates. Due to its size, the data array is not wrapped as 
one persistent property. Instead, the modified ranges in the array need to be manu-
ally added to a transaction.

Hybrid Elf. In the hybrid Elf, we propose to create a volatile copy in DRAM 
upon the initial build of the persistent Elf (or reproduced upon subsequent restarts). 
All queries are run on the volatile Elf. We argue that the hybrid Elf results in query 
performance at DRAM speed. Moreover, we save the cost of rebuilding in case of a 
system failure, and we can alternatively execute queries on the persistent Elf if the 
available DRAM is insufficient to hold the copy.

However, the hybrid Elf has a performance and memory overhead. The perfor-
mance overhead is the extra time required for constructing the volatile copy of Elf 
on DRAM, which we expect to be negligible compared with the initial build time 
of the persistent Elf. Moreover, since Elf mainly supports periodic insertions for its 
primary field of application like data warehousing, there would be recurrent copying 
of Elf to DRAM. The memory overhead of hybrid Elf is the DRAM space used to 
hold the volatile copy.

Fig. 2  Organization of persistent 
Elf in PMem pool

1 A virtual object pointer is mapped to different addresses in the virtual memory address space at differ-
ent instances of the application. We obtain the current memory address by dereferencing the persistent 
object identifier into a virtual object pointer.
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4.2  Selective caching

Cached Elf. In case that keeping a full volatile copy of persistent Elf in DRAM (cf. 
hybrid Elf) needs too much space, we propose to cache crucial parts of Elf that are 
most frequently traversed in query execution in DRAM. There are two strategies to 
build up such a DRAM cache:

• Dynamic caching The first naïve way is to cache every traversed Dimension-
List in a hash map. This can be extended by a replacement/eviction strategy 
to limit the cache size. However, CPU caches are already dynamic caches and, 
hence, an additional dynamic cache has to be well designed to give an edge over 
CPU caches.

• Static caching Instead of dynamically caching, an alternative is to cache a fixed 
(static) part of Elf such as the first x dimension levels directly at build or recov-
ery time. Hence, we do not have to probe the cache and the persistent Elf but 
know directly which part is in DRAM or in PMem.

Static caching creates an FPTree-like hybrid layout [28], keeping inner nodes in 
DRAM and leaf nodes in PMem. In addition, the dynamic approach can be used on 
the lower dimensions resulting in a split cache.

Replacement strategies for dynamic caching. Regarding the replacement strategy, 
Lersch et al. [21] already investigated the application of a dynamic cache with evic-
tion policy in the context of LSM-Trees on PMem. As these have shown possible 
benefits for a read-only setup, we envisage to re-use the tested LRU (least recently 
used) and the more optimized 2Q policies in our analytical context. The latter basi-
cally divides the cache into two separate queues each implementing, e.g., LRU. One 
is holding the actual cached data items (AM) and the other only stores IDs—offsets 
in case of Elf—of uncached items (A1). If an item is requested and is not in any 
of the queues, its ID is stored in A1 and the data is loaded directly from PMem. If 
it is present in A1, the data is first copied to AM and the item is accessed over the 
DRAM cache. Otherwise, we have a cache hit in AM. Apart from LRU and 2Q, we 
add another typical candidate, namely LFU (least frequently used), which we further 
try to optimize as described in the following.

Our idea to populate the cache is to use probabilities for traversing each 
DimensionList. The probability assigned to a DimensionList is the ratio 
of the number of tuples, for whose retrieval the DimensionList is traversed, 
to the total number of inserted tuples. We start with the DimensionList of 
the first dimension which has a probability of one because traversals always 
begin from it. Every MonoList has a probability of the inverse of the number 
of inserted tuples because each MonoList is traversed to retrieve only a single 
TID. All other DimensionLists have probabilities as per the data and its 
prefix redundancies. Consider Fig. 1 with six inserted tuples. Since the Dimen-
sionList (6) is traversed to retrieve three tuples, it has a probability of 3

6
 . Sim-

ilarly, DimensionLists (1), (2), and (5) have probabilities of one, 2
6
 , and 3

6
 , 

respectively. Each of the MonoLists (3), (4), (7), (8), (9), and (10) has a prob-
ability of 1

6
 . Note that, although DimensionList (6) is at a lower dimension 
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than (2), it still has a higher probability. Furthermore, DimensionList (5) 
has a probability of 3

6
 even though it has only one DimensionList element. 

After obtaining a ‘tree’ of probabilities, we choose which DimensionLists 
to cache in DRAM based on cut-off probabilities and the DRAM memory space 
allotted to caching the Elf. This approach is either implemented dynamically as 
part of an eviction policy or statically at the time the tree is built. The former is 
what we refer to as LLA (least likely to be accessed) in the experiments below. It 
behaves similarly to LFU but uses fixed frequency values (probabilities) for each 
DimensionList and it will only evict the DimensionList that is least 
likely to be accessed from the cache if the new DimensionList has a higher 
probability.

Overall, our two introduced approaches for selective caching (i.e., dynamic 
and static caching) have different advantages, which we investigate in the follow-
ing section. However, selective caching in Elf comes at a price: query execution 
consists of switching between PMem and DRAM, which incurs penalties of more 
cache misses especially for the dynamic parts. Furthermore, the static parts cost 
extra build and recovery time.

5  Evaluation

In our experiments, we investigate the performance of Elf for the beforemen-
tioned persistent variants. We focus on the building time as well as three query 
types, namely exact-match, range, and partial-match. Obviously, the persistent Elf 
will be slower than the volatile counterpart. Hence, we want to quantify this over-
head. Thereafter, we validate the optimization techniques proposed in Sect. 4.2, 
which should reduce the overhead. As a result, we show that with sophisticated 
optimizations, a DRAM-like performance is possible.

5.1  Environment

Our experiments were conducted on a dual-socket Intel Xeon Gold 5215 server 
as outlined in Table  2. Each socket is equipped with six DCPMMs interleaved 
to one region and namespace. The PMem modules are operating in App Direct 
mode via an ext4 file system and dax mount option. All experiments allocate their 
resources always on the same socket to preclude NUMA effects.

Table 2  Environment

Processor 2×  Intel®  Xeon® Gold 5215, 10 cores / 20 threads each, max. 3.4 GHz)
Caches 32 KB L1d, 32 KB L1i, 1024 KB L2, 13.75 MB LLC
Memory 2×6× 32 GB DDR4, 2 ×6×128 GB  Intel® Optane™DCPMM
OS & Compiler CentOS 7.8, Linux 5.7.7 kernel, cmake 3.15.3, GCC 9.3.1 (-O3), PMDK 1.9.1
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5.2  Experimental setup

We carried out our experiments on two data sets. The primary set is a table of 100 
million rows and 10 dimensions that follows a uniform distribution over all inserted 
tuples. Each dimension is of integer type2—with a cardinality of 100 if not stated 
otherwise—resulting in approximately 4 GiB. To show that our optimization tech-
niques are also valid for more realistic data with characteristics such as correlation 
between dimensions, we also conducted experiments on the TPC-H Lineitem table 
(with 15 columns) at scale factor 10 (about 3.5 GiB). As Elf is built around prefixes 
of columns, the order of dimensions determine the structure of the index. Thus, we 
reordered the columns of the table in ascending order of cardinality to exploit prefix 
redundancies and maximize benefits of caching DimensionLists.

For the queries, we used a Zipfian distribution [13] with skewness parameter 
� = 0.5 to simulate a more realistic access pattern. The experiments were repeated at 
least ten times in a single-threaded environment (except for parallel measurements) 
to obtain reliable measurements. Besides the building, the three tested query types 
are briefly explained below. The throughput of these queries is expressed in queries 
per second (qps).

Exact-match query. The exact-match query takes one equality predicate for each 
dimension and returns the TID of the matching tuple. In each run, we first selected 
tuples from the table according to a Zipfian distribution, then used all dimension 
values of each tuple for constructing the exact-match selection predicates.

Range query. The range query returns a list of TIDs, as per the selection predi-
cates. Two sets of x values define the lower and upper boundaries of the selection 
predicates for the respective x dimensions. In each run, we similarly selected tuples, 
based on a Zipfian distribution, whose dimension values served as lower boundaries 
and set the upper boundaries according to the defined range size (which we specify 
in due course).

Partial-match query. A partial-match is a special form of range query. The bound-
aries are used in the search only for pre-selected dimensions. All other dimensions 
are wildcarded and, hence, all dimension values are evaluated. We select the lower 
and upper boundaries in the same way as for the range queries and set the dimen-
sions on which the boundaries are evaluated as well as those that are wildcarded.

5.3  DRAM vs. PMem

At first, we investigate the performance overhead of the pure PMem-based Elf 
against its DRAM counterpart on the uniform data set. In Fig. 3, the correspond-
ing measurements are depicted. The reported runtimes are averages of 1M, 10K, 
and 1K executed queries for the three query types respectively. The range and 

2 Notably, wider data types increase the used DRAM-cache size, but also put more pressure on CPU 
caches. Hence, the DRAM cache becomes even more valuable as a layer between CPU caches and 
PMem.
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partial-match queries use a range size of 2% and 100% per set dimension to demon-
strate the extremes. As expected, DRAM exhibits a better performance than PMem. 
The overhead of building the Elf and of executing the three query types yield to 
18%, 223%, 210%/70%, and 236%/66%, respectively. For range and partial-match 
queries with a higher range size, the runtimes of the volatile and persistent versions 
are much closer. Greater ranges lead to more sequential access pattern and more 
commonly traversed DimensionLists which will end up in the CPU caches for 
both the volatile and the persistent version. This is not the case for most exact-match 
queries due to their tiny query windows. Altogether, our results show that the per-
formance gap between DRAM and PMem is wider for queries—especially exact-
match queries—than for building. Our explanation is that a sequential access pattern 
is better supported on PMem than a random one. Particularly during building, the 
write-combining buffer of PMem seems to be quite efficient if there is only a single 
sequentially writing thread. In the following experiments, we primarily focus on a 
low selection percentage since random access patterns offer the greatest potential for 
improvement by selective caching.

5.4  Optimizations

Hybrid Elf. As a first optimization step, we evaluate the build and recovery per-
formance of the hybrid Elf. In this case, the query performance will be the same 
as for DRAM. The actual measurement we did here is simply the cost of copying 
the Elf data array to DRAM. For our setup with 100M tuples ( ∼ 4 GB), this took 
1770 ms. The total building time, thus, increases to 58.3 s which is a mere 3% 
overhead. Furthermore, recovery improves by a factor of around 30. This solution is 
therefore highly recommended if there is enough DRAM.

Dynamic caching—eviction policies. Since the last condition is not always given 
especially for analytical tasks, we next evaluate the different caching approaches 
described above. We start with the analysis of the eviction policies applied to the 
dynamic caching and choose the best-performing ones for the subsequent experi-
ments. The experiment includes the naïve, LRU, LFU, LLA, and 2Q strategies as 
explained in the previous section. During the experiments, we varied the cache size 

Fig. 3  Build and query performance of Elf
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to identify their optimal setting. On top of that, we added two baselines. First, the 
pure PMem-based variant (labeled as w/o caching) and second, a hybrid variant, 
which this time, however, only accesses the DRAM copy for DimensionLists 
and always obtains MonoLists via the PMem copy of the Elf (labeled as dual 
access).3 The results are shown in Fig. 4a for exact-match queries and Fig. 4b for 
range queries.

The caches were warmed up with 100M exact-match queries and the through-
put was measured as mean over another 1M. For the range queries, the warm-up 
includes 100K queries and the measurement is on another 1K. We omit results for 
partial-match queries as they behave similarly to the range queries.

In the case of the uniform data set, the best setting for exact-match queries using 
the dynamic cache is LLA with a capacity of 1M entries (up to 3.8% of Dimen-
sionLists), whereas for range queries, naïve with 4M entries (up to 15.2% of 
DimensionLists) performs best. For the TPC-H data, the results for range 
queries are similar to the uniform data set and, thus, we also opted for the naïve 
approach with 4M entries. Exact-match queries, on the other hand, had their peak 
with LLA having 64K entries. Nevertheless, our initial assumption that an additional 
dynamic DRAM cache must be very sophisticated to keep up with the strengths of 
PMem and dynamic CPU caches has proven true. Only some of our tested settings 
could outperform the pure PMem-based Elf. Profiling revealed that the number of 
instructions between dynamic and without caching is about the same. However, the 
often worse performance is mainly due to more LLC misses. We identified three hot 
spots responsible for this behaviour (in warmed-up state): 

(HS1)  The lookup performance of the hashmap4 used as part of the caches wors-
ens drastically with increasing size ( ≈ 25% performance impact).

(HS2)  The traversal of the DimensionLists which could be either in PMem or 
DRAM ( ≈ 25% performance impact).

Fig. 4  Throughput of dynamic caching variants on the uniform data set

4 robin_hood unordered map: https:// github. com/ marti nus/ robin- hood- hashi ng

3 Since the PMem access is actually unnecessary for the second baseline as we already have a copy in 
DRAM, it is rather a theoretical baseline to show the upper limit.

https://github.com/martinus/robin-hood-hashing
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(HS3)  The access to the always persistent MonoList for each query ( ≈ 50% per-
formance impact).

 The first hot spot (HS1) leads to the conflict that an increasing cache size provides 
higher chances of a DRAM cache hit but simultaneously worsens the lookup per-
formance. We have taken countermeasures by partitioning all cache variants into 
several smaller hash tables. This has already led to a significant performance gain 
for larger caches. However, even this could not always surpass the pure PMem case 
and it probably needs further fine-tuning. The two latter hot spots (HS2 & HS3) 
cause DRAM and PMem parts to evict each other from the CPU caches. In case of 
no caching, the CPU caches are mainly used for PMem content. However, we can-
not improve much for these two bottlenecks (HS2 & HS3) as they are inevitable 
steps that are algorithmically the same as without caching. The hybrid dual access 
baseline shows the theoretical limit if HS1 would be eliminated. The competition of 
PMem and DRAM for free space in the CPU caches is still included here.

In our initial results [17], we have shown that dynamic caching definitely gives 
benefits when executing the same set of queries twice (selective warm-up). Now, 
we query different points or ranges, but still keep a certain skewness and find that 
dynamic caching is no longer that significantly better. This means that the benefit 
of dynamic caching highly depends on the similarity or skewness of the queries. 
Nonetheless, we choose the best performing LLA and naïve strategies as mentioned 
above for the following experiments.

Throughput over time. Next, we compare the throughput of the three query types 
for the approaches over a time course expressed in queries run up to that point. In 
contrast to our prior work [17], the system and caches are not warmed up before to 
show how the setup and its performance evolves over time. We show the results for 
the persistent Elf without DRAM caching, the corresponding best dynamic caching, 
static caching of the first x dimension levels as well as the combination of dynamic 
and static caches. In Fig. 5, the results of the exact-match queries are shown.

The dynamic caching (LLA) needs the most time to warm up as it has to fill an 
additional cache during runtime. However, after being warmed up (around 1M–10M 

Fig. 5  Continuous throughput of cached Elf variants for exact-match queries
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queries), on the uniform data, it can outperform the pure PMem-based Elf by up to 
25%. For the TPC-H data only 1–2% were possible. For static caching, we omitted 
some configurations to keep the figures clean. Caching the first one or two levels 
statically has similar performance and leads already to a little better initial perfor-
mance. The peak for this setup could be achieved when statically caching the first 
four levels. Caching three or more than four levels behaves similarly to static 6 levels 
in Fig. 5a. The correlated Lineitem table reached its peak performance with eleven 
levels and higher. Again, the behaviour is not linear as, e.g., for four levels the per-
formance goes up, with five levels down again, and from nine levels it gets con-
tinuously better. Contrary to what we assumed before [17], more caching levels do 
not necessarily result in better performance. Rather, the size compared to the CPU 
caches, successful branch predictions, the commonly accessed DimensionLists, 
and again the size of the underlying hash table5 are more important. For Fig.  5a, 
dimension levels one and two completely fit in the L1 cache, level three is slightly 
larger than L2, and all others are greater than the LLC. For instance, four levels 
require 136 MiB of DRAM which is 10× the LLC. Compared to the total size of Elf 
, this is merely 3% space overhead for about a 30% performance boost. Adding the 
dynamic cache on top of the static cache with four levels leads to the best currently 
achieved performance. It also increases the throughput for the TPC-H data. Here, we 
combined it with nine static levels since with eleven, the static and dynamic caches 
would contain almost the same DimensionLists and there would be no more 
DimensionLists left to be cached by the dynamic part. As mentioned earlier, 
we reordered the columns of the TPC-H Lineitem table to exploit prefix redundan-
cies. Unique columns do not allow for DimensionLists. After reordering the 
columns, the dimensions twelve to fifteen were the primary and foreign keys, which 
have no DimensionLists except for a relatively few in dimension twelve. Thus 
the limitation of combining the dynamic cache with nine static levels instead of 

Fig. 6  Continuous throughput of cached Elf variants for range queries

5 Partitioning the hash table, however, did not have a positive effect here.
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eleven. However, compared to the static-only caching it only led to a small increase, 
which may not justify the additional invested DRAM. Therefore, we conclude that 
the combination of dynamic and static caching may not be worthwhile in the current 
state. Both caching strategies separately, however, can be quite profitable.

Now, we consider range and partial-match queries with a range size of 2%. Since 
these are long-running queries, the number of queries and the throughput is much 
lower. Figures 6a, and 7a show the results for the uniform data set. The dynamic 
approach (this time naïve) performs a bit worse for these kinds of queries and is 
only faster with smaller ranges. The reason for this is that these queries probe much 
more DimensionLists per query. This causes more dynamic cache misses and 
also utilizes a more sequential access pattern which can be handled more efficiently 
by PMem (cf. Fig. 3). For partial-match queries, which probe even more Dimen-
sionLists than range queries due to the wildcarded dimensions, the profit of the 
dynamic strategy is only minimal (5–10%). For range queries, on the other hand, 
the performance improves by around 20%. Running the same experiments on the 
TPC-H data—as shown in Figs.  6b, and 7b—resulted in an improvement of over 
30% for range queries. Dynamic caching for partial-match queries led to a deterio-
ration of 10%. The static approach shows nearly the same behaviour as for exact-
match queries, although fluctuating a little more. Interestingly, for range queries in 
Fig. 6a, increasing the number of statically cached levels beyond four does not sig-
nificantly degrade performance. Static 2 levels in Fig.  6b is one of the rare cases 
where the static caching strategy performs worse than without caching. With the 
best setting, however, we were able to achieve a performance boost of 50% and 40% 
compared to the uncached version for the uniform and TPC-H data respectively. For 
partial-match queries, it resulted in a 40% improvement for the uniform data and 
15% for the TPC-H data.

Looking back at Fig. 4b, the static approach is even better than the adapted hybrid 
dual access version. This additionally supports the idea of selective caching instead 
of caching all DimensionLists. However, for both query types, combining the 
static with the dynamic cache reduces the throughput, making this option rather 

Fig. 7  Continuous throughput of cached Elf variants for partial-match queries
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counterproductive. It was only with the TPC-H data that we achieved an improve-
ment on range queries—which however was minimal. Hence, we come to the same 
conclusion as for exact-match queries that in the current state, only the stand-alone 
strategies are worth the extra DRAM spend.

5.5  Parallel range queries

The last experiment investigates the impact of parallel range and partial-match que-
ries including the application of static caching. Dynamic caching was omitted here 
since the eviction process would require additional synchronization mechanisms, 
making it perform much worse. Furthermore, this would add more parameters, com-
plicating the analysis. We compare the parallel and sequential performance both 
without caching and with static caching (four levels) on the uniform data set since it 
can be easily customized. In doing so, we vary the cardinalities and the query range 
size for all 10 dimensions. The experiments were bound to a single socket with the 
same number of threads as available logical cores (20). The results are shown in 
Fig. 8.

When looking at the results, it becomes clear that using both no caching and also 
static caching profit from a parallel execution if the cardinality and range size is 
large enough. The most extreme example here is shown at the right lower edge with 
a cardinality of 100 and a range size of 100%. This provides a speedup of 12× com-
pared to the sequential execution. The cardinality and the number of total tuples are 
upwardly open, which means that the speedup in higher regions will most likely also 
increase up to a certain extent. With smaller query windows (e.g., the other extreme 
on the left upper edge with a cardinality of 20 and a range size of 5%), the overhead 
of creating threads and collecting their results is too high, causing the sequential 

Fig. 8  Sequential vs. parallel range and partial-match queries
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execution to outperform the parallel one. This worsens the throughput by two orders 
of magnitude , which is quite drastic. Thus, the parallel implementation cannot be 
used as a pure replacement. Instead, the system should decide to choose either the 
sequential or parallel execution based on the passed range parameters. This could be 
implemented with the help of a cost model calculating a specific threshold for this 
decision.

The differences between static and w/o caching with the used logarithmic scale 
are barely visible. However, if we take a closer look, we find that a static cache only 
provides an additional gain with smaller range sizes. This is consistent with our first 
experiment, where we had already assumed that there is less potential for improve-
ment with strongly sequential access patterns.

6  Discussion & conclusion

In this work, we investigated various caching approaches to accelerate OLAP que-
ries on multi-dimensional index structures utilizing PMem. In particular, we pro-
posed selective caching consisting of static and dynamic strategies to cache tree 
nodes in DRAM. In our experimental setup using a skewed distribution, we found 
that especially random access patterns can highly profit by investing extra DRAM 
to buffer commonly traversed nodes. For example, we were able to reduce the over-
head for exact-match queries from about 223% to 150% compared to a pure DRAM 
solution with a sole space overhead of 3%. For range and partial-match queries 
with a 2% range, there is an improvement from about 210% to 110% and 236% to 
140%, respectively. However, it has also turned out that a combination of static and 
dynamic strategies is not always worthwhile. It is necessary to adjust the caching 
very sophisticatedly to the access pattern to achieve bigger performance advantages. 
Particularly, the typical eviction policies like LRU, LFU, and 2Q never paid off 
in our setup. Only the naïve approach, which never replaces entries, and LLA, an 
approach we devised which works on access probabilities, achieved positive results. 
Especially the LLA strategy offers even more potential if the probabilities are 
adapted more precisely to the access patterns. In the parallel investigations, we have 
found that caching brings additional advantages as well. However, it is more suitable 
for range queries with a higher selectivity (i.e., smaller ranges). With increasing car-
dinality of dimensions, parallel execution becomes more lucrative.

Overall, we have shown that selective caching of parts of PMem-based data struc-
tures in DRAM is definitely beneficial. Although the research was done on the Elf 
data structure, we envisage that this approach is generic enough to be easily appli-
cable to other index structures. However, as underpinned with our two different data 
sets, the granularity of cached objects may differ and sweet spots have to be identi-
fied manually or by a suitable cost model. Since we have determined the underly-
ing hash table of the caches as one of the primary bottlenecks, an idea for further 
optimization is the application of pointer swizzling [12, 25]. Furthermore, instead of 
only caching DimensionLists, we could also add MonoLists as cache items. 
Thus, some queries would run without ever touching PMem. On the other hand, 
each MonoList is only used by a single data point, which may not pay off. Another 
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idea for future work is to enable parallel queries with dynamic caching. This would 
require either a synchronisation protocol for the eviction policies but could also be 
realized by leveraging the partitioned hash tables where each partition is assigned to 
only one thread.
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