
TU Ilmenau | Universitätsbibliothek | ilmedia, 2022
http://www.tu-ilmenau.de/ilmedia

Jibril, Muhammad Attahir; Götze, Philipp; Broneske, David; Sattler, Kai-Uwe

Selective caching : a persistent memory approach for multi-dimensional index
structures

Original published in: Distributed and parallel databases. - New York, NY [u.a.] : Consultants
Bureau. - 40 (2022), 1, p. 47-66.

Original published: 2021-03-14

ISSN: 1573-7578
DOI: 10.1007/s10619-021-07327-0
[Visited: 2022-05-10]

This work is licensed under a Creative Commons Attribution 4.0
International license. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1007/s10619-021-07327-0
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

Distributed and Parallel Databases (2022) 40:47–66
https://doi.org/10.1007/s10619-021-07327-0

1 3

Selective caching: a persistent memory approach
for multi‑dimensional index structures

Muhammad Attahir Jibril1 · Philipp Götze1 · David Broneske2,3 ·
Kai‑Uwe Sattler1

Accepted: 22 February 2021 / Published online: 14 March 2021
© The Author(s) 2021

Abstract
After the introduction of Persistent Memory in the form of Intel’s Optane DC Per-
sistent Memory on the market in 2019, it has found its way into manifold applica-
tions and systems. As Google and other cloud infrastructure providers are starting
to incorporate Persistent Memory into their portfolio, it is only logical that cloud
applications have to exploit its inherent properties. Persistent Memory can serve as a
DRAM substitute, but guarantees persistence at the cost of compromised read/write
performance compared to standard DRAM. These properties particularly affect the
performance of index structures, since they are subject to frequent updates and que-
ries. However, adapting each and every index structure to exploit the properties of
Persistent Memory is tedious. Hence, we require a general technique that hides this
access gap, e.g., by using DRAM caching strategies. To exploit Persistent Mem-
ory properties for analytical index structures, we propose selective caching. It is
based on a mixture of dynamic and static caching of tree nodes in DRAM to reach
near-DRAM access speeds for index structures. In this paper, we evaluate selec-
tive caching on the OLAP-optimized main-memory index structure Elf, because its
memory layout allows for an easy caching. Our experiments show that if config-
ured well, selective caching with a suitable replacement strategy can keep pace with
pure DRAM storage of Elf while guaranteeing persistence. These results are also
reflected when selective caching is used for parallel workloads.

Keywords Persistent memory · Non-volatile memory · Index structures · Data
management · Databases

 * Muhammad Attahir Jibril
 muhammad-attahir.jibril@tu-ilmenau.de

Extended author information available on the last page of the article

https://orcid.org/0000-0003-2138-881X
http://orcid.org/0000-0002-5076-5007
https://orcid.org/0000-0002-9580-740X
https://orcid.org/0000-0003-1608-7721
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-021-07327-0&domain=pdf

48 Distributed and Parallel Databases (2022) 40:47–66

1 3

1 Introduction

In the competition for ever-increasing performance for cloud computing, cloud
systems providers grant more and more access to specialized hardware. After
offering dedicated GPUs and FPGAs, cloud providers like Google now offer Per-
sistent Memory (PMem) as their new selling point. However, PMem is of no use
for cloud applications that do not exploit its properties [27].

Depending on the underlying technology, the density and the performance
of reading and writing on PMem differ. Although first promoted performance
numbers suggested that reads on PMem are almost as fast as on DRAM, the real
behavior is different. This paper is based on Optane DC Persistent Memory Mod-
ules (DCPMMs), which under heavy load cannot keep up with the latency of
DRAM. This circumstance suggests that PMem is just filling up the gap between
SSD and DRAM [9]. Hence, read and write-heavy applications such as main-
memory database management systems have to cope with the new challenges by
adapting their data structures to this new architecture.

Recent solutions for the architectural challenges of PMem—especially for
index structures—consist in keeping the essential part of the data structure
in PMem and, for faster access, the reconstructible part in DRAM. Especially
PMem-tuned B +-Tree structures and algorithms (e.g., NVTree [40], FPTree [28],
FAST & FAIR [15], wB+-Tree [6], CDDS-Tree [36]) can rely on the property that
all data is redundantly stored in the leaf nodes. These nodes can be easily used to
reconstruct parts of the upper tree that are kept in DRAM. Such selective persis-
tence [28] can be used to balance between reconstruction effort (more levels of
the tree stored in PMem) and query/maintenance effort (more levels of the tree
stored in DRAM).

Despite their simplicity, the persistence approaches for B +-Trees are not
directly applicable to other index structures. Particularly in multi-dimensional
index structures, the possibility to reconstruct upper tree nodes from the stored
data in leaf nodes is lacking due to the stored data. Hence, new methods need to
be designed to holistically support PMem for multi-dimensional index structures.

In this paper, we extend our proposed approach, selective caching [17], which
was a first step to exploit PMem for multi-dimensional index structures. As a
representative, we use Elf [4], a multi-dimensional index structure. Due to its
explicit memory layout for main-memory-optimized database systems, it is a per-
fect fit for optimization towards PMem. The idea of selective caching is to per-
sist the whole data structure in PMem and buffer nodes of the data structure in
DRAM in order to improve query performance. Overall, our experiments show
that when well configured, selective caching reaches query performance that is
close to DRAM performance while keeping persistence guarantees untouched.

In summary, after an introduction of necessary background (Sect. 2) and
related work (Sect. 3), we contribute the following:

• We present selective caching—an approach for caching tree nodes statically
and dynamically in DRAM (Sect. 4).

49

1 3

Distributed and Parallel Databases (2022) 40:47–66

• As an extension to our prior work [17], we implement several replacement strate-
gies for dynamic caching (Sect. 4.2).

• As a baseline, we evaluate the impact of PMem storage compared to keeping
the whole Elf in DRAM (Sect. 5.3). This evaluation shows clear deficiencies for
PMem-only storage.

• We evaluate different configurations as well as eviction policies of our selective
caching approach for different query types on uniform synthetic data and TPC-H
data with correlated dimensions (Sect. 5.4). We show that selective caching
effectively counters the PMem deficiencies, when well configured.

• We also analyze harder use cases for caching, which is running parallel queries
on the Elf (Sect. 5.4). We conclude that apart from general benefits of caching
for parallel workloads, there are use cases where a perfect caching strategy still
needs to be found (Sect. 6).

2 Background

In this section, we first introduce the necessary background to understand PMem
characteristics and workings. Afterwards, we introduce the selected multi-dimen-
sional index structure Elf.

2.1 Persistent memory characteristics

The most common PMem technologies are PCM [37], STT-MRAM [14], and mem-
ristor [33]. However, up to now, only the 3D XPoint technology is available as
Optane DCPMM [7]. All technologies provide byte-addressability, persistence, and
DRAM-like performance. They can be directly accessed through the memory bus
using the CPU’s load and store instructions without the need for OS caches. Further-
more, they scale better in terms of capacity, while DRAM is hitting its limits.

In the remainder of the paper, we focus on Optane DCPMMs due to their avail-
ability. Table 1 classifies this product in comparison to today’s typical DRAM and
NAND flash. The latency and bandwidth are measured on our own system (see
Sect. 5). Due to a write-combining buffer within the PMem modules, it is difficult
to measure actual write latencies. Therefore, we give bandwidth measures instead.
Currently, there are two operating modes of the DCPMMs, namely Memory and App

Table 1 Main characteristics
of different memory/storage
technologies. (cf. [10, 22, 24,
29, 32, 35, 38])

DRAM Optane DC PM NAND Flash

Idle seq. read latency 80 ns 175 ns 16 μm
Idle rand. read lat. 90 ns 325 ns 200 μm
Max. read bandwidth 85 GB/s 32 GB/s 3 GB/s
Max. write bandwidth 46 GB/s 13 GB/s 0.6 GB/s
Write endurance > 1015 N/A 104 − 105

Density 1X 2X − 4X 4X − 8X

50 Distributed and Parallel Databases (2022) 40:47–66

1 3

Direct (or a mixture). The Memory mode extends the main memory capacity by uti-
lizing DRAM as a cache above PMem. There are no persistence guarantees in Mem-
ory mode, but existing in-memory applications work out of the box with it. The App
Direct mode provides persistence and allows full utilization of the device. However,
developers still have to handle failure-atomicity, concurrency, and performance.

On the software part, we used the Persistent Memory Development Kit (PMDK)
[16] to access and manage data on PMem. Several included libraries offer different
abstraction levels and relieve the developer of some common steps. In this work, we
used the C++ bindings of the libpmemobj library which provides general-purpose
transactions and object management. In the following, the used terms and concepts
of this library are briefly explained.

Persistent memory pools. PMem is managed by the operating system using a
PMem-aware file system that grants applications direct access to PMem as memory-
mapped files. These files are called pools in this context. libpmemobj provides inter-
faces to easily create, open, manage, and close those pools.

Persistent pointers. A persistent pointer to a persistent data object contains an
8-byte ID of the persistent memory pool and an 8-byte offset of the object within
this pool. Since the actual address of a memory-mapped region can differ for each
instance of the application, persistent pointers are used to map back objects in the
virtual address space of the application.

Root object. A root object is an object to which all other data structures in the
pool are attached. It is allocated from the pool, initially zeroed, has a user-defined
size, and always exists. A persistent pointer to the root object is kept at a known off-
set, which enables the application to recover its data.

Persistent properties. Another class template within PMDK is called persistent
property. By wrapping a variable with this property, all modifications are atomically
registered without adding any extra storage overhead. Sect. 4.1 explains where these
concepts are used in Elf.

2.2 The Elf storage layout

Elf is a multi-dimensional structure that clusters column values according to their
prefix. Elf is well suited for analytical workloads due to its main-memory optimized
storage layout. In the following, we outline Elf’s key design choices, which is neces-
sary for understanding our PMem adaptations to Elf.

Design principles and optimizations. Conceptually, Elf is a prefix tree similar to
ART [20] which, however, works on the granularity of column values instead of
digits. Hence, each level in the tree corresponds to the values of a specific column.
In each node, the entries are sorted, ultimately introducing a total order into the data
and allowing pruning within a node. In Fig. 1b, we visualize the conceptual Elf built
for the example table in Fig. 1a consisting of four columns and six tuples. As data-
sensitive optimizations, Elf features two different node types: DimensionLists,
labeled (1), (2), (5), and (6) as inner nodes that hold sorted column values of sev-
eral tuples and MonoLists as a special type of DimensionList, labeled (3),
(4), (7), (8), (9), and (10), that represent values of a single tuple spanning across

51

1 3

Distributed and Parallel Databases (2022) 40:47–66

several columns. The idea of MonoLists is that whenever there is no branch-out
on deeper levels, the linked lists are merged to a single MonoList, thus eliminating
pointers and distributed storage. To this end, on the upper level, Elf is similar to a
column store. On deeper levels, it slowly converges to a row-store-like layout. This
effectively compresses the data set [5].

Another optimization that is particularly designed for read-intensive analytical
workloads is the linearization of Elf, which we show in Fig. 1c. Here, each Dimen-
sionList and MonoList is stored in a contiguous array. What used to be point-
ers are now offsets within the array itself. This optimization, which has also been
applied for B-Trees [30], has proven to accelerate selections in Elf by a factor of 10
[5].

Parallel search algorithms. To evaluate the impact of parallel workloads on
PMem, we also executed multi-threaded search algorithms on our Elf. For an effi-
cient parallel search, there are different strategies to split the search space—espe-
cially for range queries. However, we found that a fine-granular splitting (on the
granularity of single DimensionLists) adds too much synchronization overhead
[3]. Hence, an interleaved per-subtree parallelization proved to be the best parallel
search algorithm. This means that each thread is assigned an entry from the first
DimensionList until all available threads are busy. Once a thread finishes, it is
assigned the next entry until all entries of the first DimensionList are covered.
For instance, given the Elf in Fig. 1 with three values in the first DimensionList
and two threads, the first two entries (0 and 1) and their subtrees will be individu-
ally evaluated by these two threads. The first thread to finish will then work on the
third entry. This strategy has shown to work well for the inherently imbalanced sub-
trees of Elf [3].

3 Related work

PMem-based data structures. Most prior work on PMem-based data structures
focuses on B +-Trees [1, 6, 23, 28, 36, 40] targeting OLTP systems. Their main con-
sensus is to leave nodes unsorted and generally reduce writes. There is also some
work on radix trees [19], LSM-Trees [18, 21] and hash maps [26, 31]. To the best of
our knowledge, so far, only [8] considers a multi-dimensional layout and analytical
queries. It bases on a clustering approach and unsorted blocks covering a three-tier
architecture (DRAM, PMem, SSD). However, in contrast to Elf, this approach is
only suitable as a storage layout and cannot serve as an index. Still, a combination

Fig. 1 Example table (a), conceptual Elf (b), and the OLAP and main-memory optimized storage layout
of Elf (c)

52 Distributed and Parallel Databases (2022) 40:47–66

1 3

of both seems promising. Since former experiments work on emulated PMem, in
[22], the authors re-evaluated the B +-Tree variants on real hardware. In [10, 11], the
underlying primitives of these trees are also analyzed on real PMem.

Selective persistence. To keep up the performance of persistent data structures
compared to volatile counterparts, only necessary fractions of data are stored in
PMem. The remaining part is placed in DRAM and rebuilt upon recovery. In the
FPTree [28] and a derivative of it optimized for 3D XPoint called LB+-Tree [23], the
leaf nodes are placed in PMem using a persistent linked-list, while the inner nodes
are placed in DRAM. Consequently, only accessing the leaves is more expensive
compared to the volatile tree, while minimizing the use of DRAM. HiKV [39] runs
on hybrid memory, too: a hash index is placed in PMem and a B +-Tree in DRAM.
Thus, it allows for fast searching of the hash index for basic key-value operations
(Put, Get, Update, Delete) which require locating the key-value item. However, for
operations (Scan) that benefit from sorted indexing, the hybrid index employs a B +
-Tree, whose updating involves many writes due to sorting, splitting, and merging
of nodes and is, thus, placed in DRAM. The DPTree [41] also utilizes a volatile B +
-Tree backed by a PMem log serving as a buffer. Once this buffer reaches the defined
capacity, it is merged into the base tree. This is implemented as a volatile radix tree
for navigating to persistent leaf nodes. A versioning scheme is used to support crash
consistent merging. Instead of designing individual hybrid data structures, in [34]
and [2], the authors investigate general-purpose multi-tier buffer management cov-
ering DRAM, PMem, and SSDs. This is a similar direction we strive for with our
dynamic caching approach (Sect. 4.2).

4 Selective caching for Elf

In this section, we first present our baseline implementations, which are naïve trans-
lations of the Elf to PMem. Afterwards, we discuss our improvement of selective
caching as a strategy to exploit available DRAM as a cache.

4.1 Naïve PMem‑based approaches

We propose two naïve PMem approaches: the Elf can be stored in PMem only,
which means full persistence but also a possible performance degeneration under
heavy load. The exact impact is an objective of the first experiment of our evalu-
ation. The second possibility (hybrid Elf) is to create a redundant copy of Elf in
DRAM, giving the best query performance, but at the cost of doubling the size.

Pure PMem-based Elf. To make Elf suitable for PMem, we rely on PMDK
described in Sect. 2. The use of its features is illustrated in Fig. 2. The persistent
tree is stored as a data object residing in a persistent memory pool. On opening, the
position of the Elf object is determined by following the root and subsequent persis-
tent pointer (see Sect. 2.1). We then always access the persistent Elf via the current

53

1 3

Distributed and Parallel Databases (2022) 40:47–66

virtual object pointer.1 The linearized Elf array is stored separately and reachable
from the Elf object. Similarly, the virtual address of the array is stored to avoid
costly persistent dereferencing. Another drawback of persistent pointers is that they
are twice the size of virtual pointers. Actually, it is not necessary to store volatile
pointers in the persistent pool, but it helps with the visualization of our utilization
of them. To ensure atomicity, we used libpmemobj transactions in memory alloca-
tions for the persistent Elf object, the persistent Elf array, and the index build. We
additionally wrap the member variables of the persistent Elf class, such as the sizes
and the number of dimensions, with the persistent property class. Although in our
experiments we do not modify the tree after initially building it, this is reasonable
for later inserts or in-place updates. Due to its size, the data array is not wrapped as
one persistent property. Instead, the modified ranges in the array need to be manu-
ally added to a transaction.

Hybrid Elf. In the hybrid Elf, we propose to create a volatile copy in DRAM
upon the initial build of the persistent Elf (or reproduced upon subsequent restarts).
All queries are run on the volatile Elf. We argue that the hybrid Elf results in query
performance at DRAM speed. Moreover, we save the cost of rebuilding in case of a
system failure, and we can alternatively execute queries on the persistent Elf if the
available DRAM is insufficient to hold the copy.

However, the hybrid Elf has a performance and memory overhead. The perfor-
mance overhead is the extra time required for constructing the volatile copy of Elf
on DRAM, which we expect to be negligible compared with the initial build time
of the persistent Elf. Moreover, since Elf mainly supports periodic insertions for its
primary field of application like data warehousing, there would be recurrent copying
of Elf to DRAM. The memory overhead of hybrid Elf is the DRAM space used to
hold the volatile copy.

Fig. 2 Organization of persistent
Elf in PMem pool

1 A virtual object pointer is mapped to different addresses in the virtual memory address space at differ-
ent instances of the application. We obtain the current memory address by dereferencing the persistent
object identifier into a virtual object pointer.

54 Distributed and Parallel Databases (2022) 40:47–66

1 3

4.2 Selective caching

Cached Elf. In case that keeping a full volatile copy of persistent Elf in DRAM (cf.
hybrid Elf) needs too much space, we propose to cache crucial parts of Elf that are
most frequently traversed in query execution in DRAM. There are two strategies to
build up such a DRAM cache:

• Dynamic caching The first naïve way is to cache every traversed Dimension-
List in a hash map. This can be extended by a replacement/eviction strategy
to limit the cache size. However, CPU caches are already dynamic caches and,
hence, an additional dynamic cache has to be well designed to give an edge over
CPU caches.

• Static caching Instead of dynamically caching, an alternative is to cache a fixed
(static) part of Elf such as the first x dimension levels directly at build or recov-
ery time. Hence, we do not have to probe the cache and the persistent Elf but
know directly which part is in DRAM or in PMem.

Static caching creates an FPTree-like hybrid layout [28], keeping inner nodes in
DRAM and leaf nodes in PMem. In addition, the dynamic approach can be used on
the lower dimensions resulting in a split cache.

Replacement strategies for dynamic caching. Regarding the replacement strategy,
Lersch et al. [21] already investigated the application of a dynamic cache with evic-
tion policy in the context of LSM-Trees on PMem. As these have shown possible
benefits for a read-only setup, we envisage to re-use the tested LRU (least recently
used) and the more optimized 2Q policies in our analytical context. The latter basi-
cally divides the cache into two separate queues each implementing, e.g., LRU. One
is holding the actual cached data items (AM) and the other only stores IDs—offsets
in case of Elf—of uncached items (A1). If an item is requested and is not in any
of the queues, its ID is stored in A1 and the data is loaded directly from PMem. If
it is present in A1, the data is first copied to AM and the item is accessed over the
DRAM cache. Otherwise, we have a cache hit in AM. Apart from LRU and 2Q, we
add another typical candidate, namely LFU (least frequently used), which we further
try to optimize as described in the following.

Our idea to populate the cache is to use probabilities for traversing each
DimensionList. The probability assigned to a DimensionList is the ratio
of the number of tuples, for whose retrieval the DimensionList is traversed,
to the total number of inserted tuples. We start with the DimensionList of
the first dimension which has a probability of one because traversals always
begin from it. Every MonoList has a probability of the inverse of the number
of inserted tuples because each MonoList is traversed to retrieve only a single
TID. All other DimensionLists have probabilities as per the data and its
prefix redundancies. Consider Fig. 1 with six inserted tuples. Since the Dimen-
sionList (6) is traversed to retrieve three tuples, it has a probability of 3

6
 . Sim-

ilarly, DimensionLists (1), (2), and (5) have probabilities of one, 2
6
 , and 3

6
 ,

respectively. Each of the MonoLists (3), (4), (7), (8), (9), and (10) has a prob-
ability of 1

6
 . Note that, although DimensionList (6) is at a lower dimension

55

1 3

Distributed and Parallel Databases (2022) 40:47–66

than (2), it still has a higher probability. Furthermore, DimensionList (5)
has a probability of 3

6
 even though it has only one DimensionList element.

After obtaining a ‘tree’ of probabilities, we choose which DimensionLists
to cache in DRAM based on cut-off probabilities and the DRAM memory space
allotted to caching the Elf. This approach is either implemented dynamically as
part of an eviction policy or statically at the time the tree is built. The former is
what we refer to as LLA (least likely to be accessed) in the experiments below. It
behaves similarly to LFU but uses fixed frequency values (probabilities) for each
DimensionList and it will only evict the DimensionList that is least
likely to be accessed from the cache if the new DimensionList has a higher
probability.

Overall, our two introduced approaches for selective caching (i.e., dynamic
and static caching) have different advantages, which we investigate in the follow-
ing section. However, selective caching in Elf comes at a price: query execution
consists of switching between PMem and DRAM, which incurs penalties of more
cache misses especially for the dynamic parts. Furthermore, the static parts cost
extra build and recovery time.

5 Evaluation

In our experiments, we investigate the performance of Elf for the beforemen-
tioned persistent variants. We focus on the building time as well as three query
types, namely exact-match, range, and partial-match. Obviously, the persistent Elf
will be slower than the volatile counterpart. Hence, we want to quantify this over-
head. Thereafter, we validate the optimization techniques proposed in Sect. 4.2,
which should reduce the overhead. As a result, we show that with sophisticated
optimizations, a DRAM-like performance is possible.

5.1 Environment

Our experiments were conducted on a dual-socket Intel Xeon Gold 5215 server
as outlined in Table 2. Each socket is equipped with six DCPMMs interleaved
to one region and namespace. The PMem modules are operating in App Direct
mode via an ext4 file system and dax mount option. All experiments allocate their
resources always on the same socket to preclude NUMA effects.

Table 2 Environment

Processor 2× Intel® Xeon® Gold 5215, 10 cores / 20 threads each, max. 3.4 GHz)
Caches 32 KB L1d, 32 KB L1i, 1024 KB L2, 13.75 MB LLC
Memory 2×6× 32 GB DDR4, 2 ×6×128 GB Intel® Optane™DCPMM
OS & Compiler CentOS 7.8, Linux 5.7.7 kernel, cmake 3.15.3, GCC 9.3.1 (-O3), PMDK 1.9.1

56 Distributed and Parallel Databases (2022) 40:47–66

1 3

5.2 Experimental setup

We carried out our experiments on two data sets. The primary set is a table of 100
million rows and 10 dimensions that follows a uniform distribution over all inserted
tuples. Each dimension is of integer type2—with a cardinality of 100 if not stated
otherwise—resulting in approximately 4 GiB. To show that our optimization tech-
niques are also valid for more realistic data with characteristics such as correlation
between dimensions, we also conducted experiments on the TPC-H Lineitem table
(with 15 columns) at scale factor 10 (about 3.5 GiB). As Elf is built around prefixes
of columns, the order of dimensions determine the structure of the index. Thus, we
reordered the columns of the table in ascending order of cardinality to exploit prefix
redundancies and maximize benefits of caching DimensionLists.

For the queries, we used a Zipfian distribution [13] with skewness parameter
� = 0.5 to simulate a more realistic access pattern. The experiments were repeated at
least ten times in a single-threaded environment (except for parallel measurements)
to obtain reliable measurements. Besides the building, the three tested query types
are briefly explained below. The throughput of these queries is expressed in queries
per second (qps).

Exact-match query. The exact-match query takes one equality predicate for each
dimension and returns the TID of the matching tuple. In each run, we first selected
tuples from the table according to a Zipfian distribution, then used all dimension
values of each tuple for constructing the exact-match selection predicates.

Range query. The range query returns a list of TIDs, as per the selection predi-
cates. Two sets of x values define the lower and upper boundaries of the selection
predicates for the respective x dimensions. In each run, we similarly selected tuples,
based on a Zipfian distribution, whose dimension values served as lower boundaries
and set the upper boundaries according to the defined range size (which we specify
in due course).

Partial-match query. A partial-match is a special form of range query. The bound-
aries are used in the search only for pre-selected dimensions. All other dimensions
are wildcarded and, hence, all dimension values are evaluated. We select the lower
and upper boundaries in the same way as for the range queries and set the dimen-
sions on which the boundaries are evaluated as well as those that are wildcarded.

5.3 DRAM vs. PMem

At first, we investigate the performance overhead of the pure PMem-based Elf
against its DRAM counterpart on the uniform data set. In Fig. 3, the correspond-
ing measurements are depicted. The reported runtimes are averages of 1M, 10K,
and 1K executed queries for the three query types respectively. The range and

2 Notably, wider data types increase the used DRAM-cache size, but also put more pressure on CPU
caches. Hence, the DRAM cache becomes even more valuable as a layer between CPU caches and
PMem.

57

1 3

Distributed and Parallel Databases (2022) 40:47–66

partial-match queries use a range size of 2% and 100% per set dimension to demon-
strate the extremes. As expected, DRAM exhibits a better performance than PMem.
The overhead of building the Elf and of executing the three query types yield to
18%, 223%, 210%/70%, and 236%/66%, respectively. For range and partial-match
queries with a higher range size, the runtimes of the volatile and persistent versions
are much closer. Greater ranges lead to more sequential access pattern and more
commonly traversed DimensionLists which will end up in the CPU caches for
both the volatile and the persistent version. This is not the case for most exact-match
queries due to their tiny query windows. Altogether, our results show that the per-
formance gap between DRAM and PMem is wider for queries—especially exact-
match queries—than for building. Our explanation is that a sequential access pattern
is better supported on PMem than a random one. Particularly during building, the
write-combining buffer of PMem seems to be quite efficient if there is only a single
sequentially writing thread. In the following experiments, we primarily focus on a
low selection percentage since random access patterns offer the greatest potential for
improvement by selective caching.

5.4 Optimizations

Hybrid Elf. As a first optimization step, we evaluate the build and recovery per-
formance of the hybrid Elf. In this case, the query performance will be the same
as for DRAM. The actual measurement we did here is simply the cost of copying
the Elf data array to DRAM. For our setup with 100M tuples (∼ 4 GB), this took
1770 ms. The total building time, thus, increases to 58.3 s which is a mere 3%
overhead. Furthermore, recovery improves by a factor of around 30. This solution is
therefore highly recommended if there is enough DRAM.

Dynamic caching—eviction policies. Since the last condition is not always given
especially for analytical tasks, we next evaluate the different caching approaches
described above. We start with the analysis of the eviction policies applied to the
dynamic caching and choose the best-performing ones for the subsequent experi-
ments. The experiment includes the naïve, LRU, LFU, LLA, and 2Q strategies as
explained in the previous section. During the experiments, we varied the cache size

Fig. 3 Build and query performance of Elf

58 Distributed and Parallel Databases (2022) 40:47–66

1 3

to identify their optimal setting. On top of that, we added two baselines. First, the
pure PMem-based variant (labeled as w/o caching) and second, a hybrid variant,
which this time, however, only accesses the DRAM copy for DimensionLists
and always obtains MonoLists via the PMem copy of the Elf (labeled as dual
access).3 The results are shown in Fig. 4a for exact-match queries and Fig. 4b for
range queries.

The caches were warmed up with 100M exact-match queries and the through-
put was measured as mean over another 1M. For the range queries, the warm-up
includes 100K queries and the measurement is on another 1K. We omit results for
partial-match queries as they behave similarly to the range queries.

In the case of the uniform data set, the best setting for exact-match queries using
the dynamic cache is LLA with a capacity of 1M entries (up to 3.8% of Dimen-
sionLists), whereas for range queries, naïve with 4M entries (up to 15.2% of
DimensionLists) performs best. For the TPC-H data, the results for range
queries are similar to the uniform data set and, thus, we also opted for the naïve
approach with 4M entries. Exact-match queries, on the other hand, had their peak
with LLA having 64K entries. Nevertheless, our initial assumption that an additional
dynamic DRAM cache must be very sophisticated to keep up with the strengths of
PMem and dynamic CPU caches has proven true. Only some of our tested settings
could outperform the pure PMem-based Elf. Profiling revealed that the number of
instructions between dynamic and without caching is about the same. However, the
often worse performance is mainly due to more LLC misses. We identified three hot
spots responsible for this behaviour (in warmed-up state):

(HS1) The lookup performance of the hashmap4 used as part of the caches wors-
ens drastically with increasing size (≈ 25% performance impact).

(HS2) The traversal of the DimensionLists which could be either in PMem or
DRAM (≈ 25% performance impact).

Fig. 4 Throughput of dynamic caching variants on the uniform data set

4 robin_hood unordered map: https:// github. com/ marti nus/ robin- hood- hashi ng

3 Since the PMem access is actually unnecessary for the second baseline as we already have a copy in
DRAM, it is rather a theoretical baseline to show the upper limit.

https://github.com/martinus/robin-hood-hashing

59

1 3

Distributed and Parallel Databases (2022) 40:47–66

(HS3) The access to the always persistent MonoList for each query (≈ 50% per-
formance impact).

 The first hot spot (HS1) leads to the conflict that an increasing cache size provides
higher chances of a DRAM cache hit but simultaneously worsens the lookup per-
formance. We have taken countermeasures by partitioning all cache variants into
several smaller hash tables. This has already led to a significant performance gain
for larger caches. However, even this could not always surpass the pure PMem case
and it probably needs further fine-tuning. The two latter hot spots (HS2 & HS3)
cause DRAM and PMem parts to evict each other from the CPU caches. In case of
no caching, the CPU caches are mainly used for PMem content. However, we can-
not improve much for these two bottlenecks (HS2 & HS3) as they are inevitable
steps that are algorithmically the same as without caching. The hybrid dual access
baseline shows the theoretical limit if HS1 would be eliminated. The competition of
PMem and DRAM for free space in the CPU caches is still included here.

In our initial results [17], we have shown that dynamic caching definitely gives
benefits when executing the same set of queries twice (selective warm-up). Now,
we query different points or ranges, but still keep a certain skewness and find that
dynamic caching is no longer that significantly better. This means that the benefit
of dynamic caching highly depends on the similarity or skewness of the queries.
Nonetheless, we choose the best performing LLA and naïve strategies as mentioned
above for the following experiments.

Throughput over time. Next, we compare the throughput of the three query types
for the approaches over a time course expressed in queries run up to that point. In
contrast to our prior work [17], the system and caches are not warmed up before to
show how the setup and its performance evolves over time. We show the results for
the persistent Elf without DRAM caching, the corresponding best dynamic caching,
static caching of the first x dimension levels as well as the combination of dynamic
and static caches. In Fig. 5, the results of the exact-match queries are shown.

The dynamic caching (LLA) needs the most time to warm up as it has to fill an
additional cache during runtime. However, after being warmed up (around 1M–10M

Fig. 5 Continuous throughput of cached Elf variants for exact-match queries

60 Distributed and Parallel Databases (2022) 40:47–66

1 3

queries), on the uniform data, it can outperform the pure PMem-based Elf by up to
25%. For the TPC-H data only 1–2% were possible. For static caching, we omitted
some configurations to keep the figures clean. Caching the first one or two levels
statically has similar performance and leads already to a little better initial perfor-
mance. The peak for this setup could be achieved when statically caching the first
four levels. Caching three or more than four levels behaves similarly to static 6 levels
in Fig. 5a. The correlated Lineitem table reached its peak performance with eleven
levels and higher. Again, the behaviour is not linear as, e.g., for four levels the per-
formance goes up, with five levels down again, and from nine levels it gets con-
tinuously better. Contrary to what we assumed before [17], more caching levels do
not necessarily result in better performance. Rather, the size compared to the CPU
caches, successful branch predictions, the commonly accessed DimensionLists,
and again the size of the underlying hash table5 are more important. For Fig. 5a,
dimension levels one and two completely fit in the L1 cache, level three is slightly
larger than L2, and all others are greater than the LLC. For instance, four levels
require 136 MiB of DRAM which is 10× the LLC. Compared to the total size of Elf
, this is merely 3% space overhead for about a 30% performance boost. Adding the
dynamic cache on top of the static cache with four levels leads to the best currently
achieved performance. It also increases the throughput for the TPC-H data. Here, we
combined it with nine static levels since with eleven, the static and dynamic caches
would contain almost the same DimensionLists and there would be no more
DimensionLists left to be cached by the dynamic part. As mentioned earlier,
we reordered the columns of the TPC-H Lineitem table to exploit prefix redundan-
cies. Unique columns do not allow for DimensionLists. After reordering the
columns, the dimensions twelve to fifteen were the primary and foreign keys, which
have no DimensionLists except for a relatively few in dimension twelve. Thus
the limitation of combining the dynamic cache with nine static levels instead of

Fig. 6 Continuous throughput of cached Elf variants for range queries

5 Partitioning the hash table, however, did not have a positive effect here.

61

1 3

Distributed and Parallel Databases (2022) 40:47–66

eleven. However, compared to the static-only caching it only led to a small increase,
which may not justify the additional invested DRAM. Therefore, we conclude that
the combination of dynamic and static caching may not be worthwhile in the current
state. Both caching strategies separately, however, can be quite profitable.

Now, we consider range and partial-match queries with a range size of 2%. Since
these are long-running queries, the number of queries and the throughput is much
lower. Figures 6a, and 7a show the results for the uniform data set. The dynamic
approach (this time naïve) performs a bit worse for these kinds of queries and is
only faster with smaller ranges. The reason for this is that these queries probe much
more DimensionLists per query. This causes more dynamic cache misses and
also utilizes a more sequential access pattern which can be handled more efficiently
by PMem (cf. Fig. 3). For partial-match queries, which probe even more Dimen-
sionLists than range queries due to the wildcarded dimensions, the profit of the
dynamic strategy is only minimal (5–10%). For range queries, on the other hand,
the performance improves by around 20%. Running the same experiments on the
TPC-H data—as shown in Figs. 6b, and 7b—resulted in an improvement of over
30% for range queries. Dynamic caching for partial-match queries led to a deterio-
ration of 10%. The static approach shows nearly the same behaviour as for exact-
match queries, although fluctuating a little more. Interestingly, for range queries in
Fig. 6a, increasing the number of statically cached levels beyond four does not sig-
nificantly degrade performance. Static 2 levels in Fig. 6b is one of the rare cases
where the static caching strategy performs worse than without caching. With the
best setting, however, we were able to achieve a performance boost of 50% and 40%
compared to the uncached version for the uniform and TPC-H data respectively. For
partial-match queries, it resulted in a 40% improvement for the uniform data and
15% for the TPC-H data.

Looking back at Fig. 4b, the static approach is even better than the adapted hybrid
dual access version. This additionally supports the idea of selective caching instead
of caching all DimensionLists. However, for both query types, combining the
static with the dynamic cache reduces the throughput, making this option rather

Fig. 7 Continuous throughput of cached Elf variants for partial-match queries

62 Distributed and Parallel Databases (2022) 40:47–66

1 3

counterproductive. It was only with the TPC-H data that we achieved an improve-
ment on range queries—which however was minimal. Hence, we come to the same
conclusion as for exact-match queries that in the current state, only the stand-alone
strategies are worth the extra DRAM spend.

5.5 Parallel range queries

The last experiment investigates the impact of parallel range and partial-match que-
ries including the application of static caching. Dynamic caching was omitted here
since the eviction process would require additional synchronization mechanisms,
making it perform much worse. Furthermore, this would add more parameters, com-
plicating the analysis. We compare the parallel and sequential performance both
without caching and with static caching (four levels) on the uniform data set since it
can be easily customized. In doing so, we vary the cardinalities and the query range
size for all 10 dimensions. The experiments were bound to a single socket with the
same number of threads as available logical cores (20). The results are shown in
Fig. 8.

When looking at the results, it becomes clear that using both no caching and also
static caching profit from a parallel execution if the cardinality and range size is
large enough. The most extreme example here is shown at the right lower edge with
a cardinality of 100 and a range size of 100%. This provides a speedup of 12× com-
pared to the sequential execution. The cardinality and the number of total tuples are
upwardly open, which means that the speedup in higher regions will most likely also
increase up to a certain extent. With smaller query windows (e.g., the other extreme
on the left upper edge with a cardinality of 20 and a range size of 5%), the overhead
of creating threads and collecting their results is too high, causing the sequential

Fig. 8 Sequential vs. parallel range and partial-match queries

63

1 3

Distributed and Parallel Databases (2022) 40:47–66

execution to outperform the parallel one. This worsens the throughput by two orders
of magnitude , which is quite drastic. Thus, the parallel implementation cannot be
used as a pure replacement. Instead, the system should decide to choose either the
sequential or parallel execution based on the passed range parameters. This could be
implemented with the help of a cost model calculating a specific threshold for this
decision.

The differences between static and w/o caching with the used logarithmic scale
are barely visible. However, if we take a closer look, we find that a static cache only
provides an additional gain with smaller range sizes. This is consistent with our first
experiment, where we had already assumed that there is less potential for improve-
ment with strongly sequential access patterns.

6 Discussion & conclusion

In this work, we investigated various caching approaches to accelerate OLAP que-
ries on multi-dimensional index structures utilizing PMem. In particular, we pro-
posed selective caching consisting of static and dynamic strategies to cache tree
nodes in DRAM. In our experimental setup using a skewed distribution, we found
that especially random access patterns can highly profit by investing extra DRAM
to buffer commonly traversed nodes. For example, we were able to reduce the over-
head for exact-match queries from about 223% to 150% compared to a pure DRAM
solution with a sole space overhead of 3%. For range and partial-match queries
with a 2% range, there is an improvement from about 210% to 110% and 236% to
140%, respectively. However, it has also turned out that a combination of static and
dynamic strategies is not always worthwhile. It is necessary to adjust the caching
very sophisticatedly to the access pattern to achieve bigger performance advantages.
Particularly, the typical eviction policies like LRU, LFU, and 2Q never paid off
in our setup. Only the naïve approach, which never replaces entries, and LLA, an
approach we devised which works on access probabilities, achieved positive results.
Especially the LLA strategy offers even more potential if the probabilities are
adapted more precisely to the access patterns. In the parallel investigations, we have
found that caching brings additional advantages as well. However, it is more suitable
for range queries with a higher selectivity (i.e., smaller ranges). With increasing car-
dinality of dimensions, parallel execution becomes more lucrative.

Overall, we have shown that selective caching of parts of PMem-based data struc-
tures in DRAM is definitely beneficial. Although the research was done on the Elf
data structure, we envisage that this approach is generic enough to be easily appli-
cable to other index structures. However, as underpinned with our two different data
sets, the granularity of cached objects may differ and sweet spots have to be identi-
fied manually or by a suitable cost model. Since we have determined the underly-
ing hash table of the caches as one of the primary bottlenecks, an idea for further
optimization is the application of pointer swizzling [12, 25]. Furthermore, instead of
only caching DimensionLists, we could also add MonoLists as cache items.
Thus, some queries would run without ever touching PMem. On the other hand,
each MonoList is only used by a single data point, which may not pay off. Another

64 Distributed and Parallel Databases (2022) 40:47–66

1 3

idea for future work is to enable parallel queries with dynamic caching. This would
require either a synchronisation protocol for the eviction policies but could also be
realized by leveraging the partitioned hash tables where each partition is assigned to
only one thread.

Acknowledgements This work was partially funded by the German Research Foundation (DFG) in the
context of the project “Transactional Stream Processing on Non-Volatile Memory” (SA 782/28) and
the ADAMANT project (SA 465/51-1) as part of the priority program “Scalable Data Management for
Future Hardware” (SPP 2037). We particularly thank Lucas Lersch for his suggestions regarding the
implementation of dynamic caching.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Arulraj, J., Levandoski, J., et al.: BzTree: a high-performance latch-free range index for non-volatile
memory. PVLDB 11(5), 553–565 (2018)

 2. Arulraj, J., Pavlo, A., Malladi, K.T.: Multi-tier buffer management and storage system design for
non-volatile memory. CoRR abs/1901.10938 (2019)

 3. Blockhaus, P.: Parallelizing the Elf: a task parallel approach. Bachelor thesis, University of Magde-
burg (2019)

 4. Broneske, D., Köppen, V., et al.: Accelerating multi-column selection predicates in main-memory—
the Elf approach. In: IEEE ICDE, pp 647–658 (2017)

 5. Broneske, D., Köppen, V., et al.: Efficient evaluation of multi-column selection predicates in main-
memory. IEEE TKDE 31(7), 1296–1311 (2019)

 6. Chen, S., Jin, Q.: Persistent B+-trees in non-volatile main memory. PVLDB 8(7), 786–797 (2015)
 7. Cutress, I., Tallis, B.: Intel launches optane DIMMs up to 512GB: apache pass is here! https://

www. anand tech. com/ show/ 12828/ intel- launc hes- optane- dimms- up- to- 512gb- apache- pass- is- here.
Accessed 14 Dec 2020

 8. Götze, P., Baumann, S., Sattler, K.: An NVM-aware storage layout for analytical workloads. In:
HardBD & Active @ ICDE, pp 110–115 (2018)

 9. Götze, P., van Renen, A., et al.: Data management on non-volatile memory: a perspective. DB-Spek-
trum 18(3), 171–182 (2018)

 10. Götze, P., Tharanatha, A.K., Sattler, K.: Data structure primitives on persistent memory: an evalua-
tion. CoRR abs/2001.02172 (2020)

 11. Götze, P., Tharanatha, A.K., Sattler, K.: Data structure primitives on persistent memory: an evalua-
tion. In: 16th International Workshop on Data Management on New Hardware, DaMoN 2020, Port-
land, Oregon, June 15, 2020, pp 15:1–15:3 (2020) https:// doi. org/ 10. 1145/ 33996 66. 33999 00

 12. Graefe, G., Volos, H., Kimura, H., Kuno, H.A., Tucek, J., Lillibridge, M., Veitch, A.C.: In-memory
performance for big data. Proc VLDB Endow 8(1), 37–48 (2014). https:// doi. org/ 10. 14778/ 27354
61. 27354 65

 13. Gray, J., Sundaresan, P., et al.: Quickly generating billion-record synthetic databases. In: Proceed-
ings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis,
Minnesota, May 24–27, 1994., pp 243–252 (1994). https:// doi. org/ 10. 1145/ 191839. 191886

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here
https://www.anandtech.com/show/12828/intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here
https://doi.org/10.1145/3399666.3399900
https://doi.org/10.14778/2735461.2735465
https://doi.org/10.14778/2735461.2735465
https://doi.org/10.1145/191839.191886

65

1 3

Distributed and Parallel Databases (2022) 40:47–66

 14. Hosomi, M., Yamagishi, H., et al.: A novel nonvolatile memory with spin torque transfer magnetiza-
tion switching: spin-RAM. IEEE IEDM, pp 459–462 (2005)

 15. Hwang, D., Kim, W., et al.: Endurable transient inconsistency in byte-addressable persistent B+-
tree. In: USENIX FAST, pp 187–200 (2018)

 16. Intel Corporation Persistent Memory Development Kit. http:// pmem. io/ pmdk. Accessed 14 Dec
2020

 17. Jibril, M.A., Götze, P., Broneske, D., Sattler, K.: Selective caching: a persistent memory approach
for multi-dimensional index structures. In: 36th IEEE international conference on data engineering
workshops, ICDE workshops 2020, Dallas, TX, April 20–24, 2020, pp 115–120 (2020). https:// doi.
org/ 10. 1109/ ICDEW 49219. 2020. 00010

 18. Kannan, S., Bhat, N., et al.: Redesigning LSMs for nonvolatile memory with NoveLSM. In: USE-
NIX ATC, pp 993–1005 (2018)

 19. Lee, S.K., Lim, K.H., et al.: WORT: write optimal radix tree for persistent memory storage systems.
In: USENIX FAST, pp 257–270 (2017)

 20. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing for main-memory
databases. In: IEEE ICDE, pp 38–49 (2013)

 21. Lersch, L., Oukid, I., et al.: An analysis of LSM caching in NVRAM. In: DaMoN @ SIGMOD, pp
9:1–9:5 (2017)

 22. Lersch, L., Hao, X., et al.: Evaluating persistent memory range indexes. PVLDB 13(4), 574–587
(2019)

 23. Liu, J., Chen, S., Wang, L.: LB+-trees: optimizing persistent index performance on 3DXPoint mem-
ory. PVLDB 13(7), 1078–1090 (2020). https:// doi. org/ 10. 14778/ 33843 45. 33843 55

 24. Mittal, S., Vetter, J.S.: A survey of software techniques for using non-volatile memories for storage
and main memory systems. IEEE TPDS 27(5), 1537–1550 (2016)

 25. Moss, J.E.B.: Working with persistent objects: to swizzle or not to swizzle. IEEE Trans. Softw. Eng.
18(8), 657–673 (1992). https:// doi. org/ 10. 1109/ 32. 153378

 26. Nam, M., Cha, H., et al.: Write-optimized dynamic hashing for persistent memory. In: USENIX
FAST, pp 31–44 (2019)

 27. Oukid, I., Lersch, L.: On the diversity of memory and storage technologies. CoRR abs/1908.07431
(2019)

 28. Oukid, I., Lasperas, J., et al.: FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree for
storage class memory. In: SIGMOD, pp 371–386 (2016)

 29. Rao, D.S., Kumar, S., et al.: System software for persistent memory. In: EuroSys, pp 15:1–15:15
(2014)

 30. Rao, J., Ross, K.A.: Making B$^+$-trees cache conscious in main memory. In: SIGMOD, pp 475–
486 (2000)

 31. Schwalb, D., Dreseler, M., et al.: NVC-hashmap: a persistent and concurrent hashmap for non-vola-
tile memories. In: IMDM @ VLDB, pp 4:1–4:8 (2015)

 32. Shanbhag, A., Tatbul, N., Cohen, D., Madden, S.: Large-scale in-memory analytics on Intel®
Optane™ DC persistent memory. In: DaMoN @ SIGMOD, pp 4:1–4:8 (2020) https:// doi. org/ 10.
1145/ 33996 66. 33999 33

 33. Strukov, D.B., Snider, G.S., et al.: The missing memristor found. Nature 453(7191), 80–83 (2008)
 34. van Renen, A., Leis, V., et al.: Managing non-volatile memory in database systems. SIGMOD,

1541–1555 (2018). https:// doi. org/ 10. 1145/ 31837 13. 31968 97
 35. van Renen, A., Vogel, L., et al.: Persistent memory I/O primitives. In: DaMoN @ SIGMOD, pp

12:1–12:7 (2019)
 36. Venkataraman, S., Tolia, N., et al.: Consistent and durable data structures for non-volatile byte-

addressable memory. In: USENIX FAST, pp 61–75 (2011)
 37. Wong, H.P., Raoux, S., et al.: Phase change memory. PIEEE 98(12), 2201–2227 (2010)
 38. Wu, Y., Park, K., Sen, R., Kroth, B., Do, J.: Lessons learned from the early performance evaluation

of Intel Optane DC Persistent Memory in DBMS. In: DaMoN @ SIGMOD, pp 14:1–14:3 (2020).
https:// doi. org/ 10. 1145/ 33996 66. 33998 98

 39. Xia, F., Jiang, D., et al.: HiKV: a hybrid index key-value store for DRAM-NVM memory systems.
In: USENIX ATC, pp 349–362 (2017)

 40. Yang, J., Wei, Q., et al.: NV-tree: reducing consistency cost for NVM-based single level systems. In:
USENIX FAST, pp 167–181 (2015)

 41. Zhou, X., Shou, L., Chen, K., Hu, W., Chen, G.: DPTree: differential indexing for persistent mem-
ory. PVLDB 13(4), 421–434 (2019)

http://pmem.io/pmdk
https://doi.org/10.1109/ICDEW49219.2020.00010
https://doi.org/10.1109/ICDEW49219.2020.00010
https://doi.org/10.14778/3384345.3384355
https://doi.org/10.1109/32.153378
https://doi.org/10.1145/3399666.3399933
https://doi.org/10.1145/3399666.3399933
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3399666.3399898

66 Distributed and Parallel Databases (2022) 40:47–66

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Muhammad Attahir Jibril1 · Philipp Götze1 · David Broneske2,3 ·
Kai‑Uwe Sattler1

 Philipp Götze
 philipp.goetze@tu-ilmenau.de

 David Broneske
 david.broneske@ovgu.de

 Kai-Uwe Sattler
 kus@tu-ilmenau.de

1 Technische Universität Ilmenau, Ilmenau, Germany
2 OvG University Magdeburg, Magdeburg, Germany
3 German Centre For Higher Education Research And Science Studies (DZHW), Hannover,

Germany

https://orcid.org/0000-0003-2138-881X
http://orcid.org/0000-0002-5076-5007
https://orcid.org/0000-0002-9580-740X
https://orcid.org/0000-0003-1608-7721

	Selective caching: a persistent memory approach for multi-dimensional index structures
	Abstract
	1 Introduction
	2 Background
	2.1 Persistent memory characteristics
	2.2 The Elf storage layout

	3 Related work
	4 Selective caching for Elf
	4.1 Naïve PMem-based approaches
	4.2 Selective caching

	5 Evaluation
	5.1 Environment
	5.2 Experimental setup
	5.3 DRAM vs. PMem
	5.4 Optimizations
	5.5 Parallel range queries

	6 Discussion & conclusion
	Acknowledgements
	References

