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Abstract: In the development and optimization of biotechnological cultivation processes the continu-
ous monitoring through the acquisition and interpretation of spectral and morphological properties
of bioparticles are challenging. There is therefore a need for the parallel acquisition and interpretation
of spatially and spectrally resolved measurements with which particles can be characterized and
classified in-flow with high throughput. Therefore, in this paper we investigated the scientific and
technological connectivity of standard imaging flow cytometry (IFC) with filter-on-chip based spa-
tially and spectrally resolving snapshot-mosaic cameras for photonic sensing and control in a smart
and innovative microfluidic device. For the investigations presented here we used the microalgae
Haematococcus pluvialis (HP). These microalgae are used commercially to produce the antioxidant
keto-carotenoid astaxanthin. Therefore, HP is relevant to practically demonstrate the usability of
the developed system for Multispectral Imaging Flow Cytometry (MIFC) platform. The extension
of standard IFC with snapshot-mosaic cameras and multivariate data processing is an innovative
approach for the in-flow characterization and derived classification of bioparticles. Finally, the
multispectral data acquisition and the therefore developed methodology is generalizable and enables
further applications far beyond the here characterized population of HP cells.

Keywords: multispectral; imaging flow cytometry; filter-on-chip; snapshot-mosaic; spectral imaging;
population analysis; cultivation optimization

1. Introduction

Imaging Flow Cytometry (IFC) is an often used and powerful tool for the characteriza-
tion of particles based on their intrinsic properties in microfluidic flow. Since the 1970′s,
IFC has been used for a variety of applications in medicine, diagnostics, biotechnology,
and microbiology [1–4]. For example, abnormalities in a cell population can be detected
and identified [5]. Multispectral Imaging Flow Cytometry (MIFC) combines the spectral
with spatially resolved morphological properties of particles. The data recorded in this
way contain information about the material as well as spatial composition of the particles.
A key challenge for the implementation of such systems, besides the fluidic focusing of
the particles, is the design of the optical system. Previous approaches use complex optical
arrangements to decompose the light into its spectral components [6]. For example, laser
light sources [7], dispersive elements [8], optical filters [9], and special detector arrays [10]
have been used. Due to the number of components, these systems are complex, difficult to
operate and take up a lot of space.
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To visualize the different cell compartments and their spatial distribution within the
particles, often several fluorescent dyes are additionally used in parallel [11,12]. These
staining procedures are time-consuming and usually alter the sample. Basiji et al. uses a
so-called snapshot-method with multiple laser light sources and special dispersive elements
to decompose the emitting light of the particles in ten separate fluorescent channels on
two separate image sensors [11]. Di Caprio et al. applies a spectral scanning method
based on the usage of linear variable filters to characterize the spectral and morphological
properties of particles in-flow [9]. Within these scanning approaches the acquired image
information must be aligned before generating a so-called multispectral data cube. The
particles must not rotate when passing through the microfluidic system, because otherwise
the spectral information cannot be assigned to the spatial positions within the particles.
The here reported MIFC approach use a spatially and spectrally resolving snapshot-mosaic
camera therefore, the rotation of the particle in microfluidic channel is not an issue. Using
the MIFC approach for photonic sensing all spectral sub-images are acquired in parallel
and don’t have to be aligned.

Microalgae are increasingly becoming focused on in scientific research due to their
widely distributed nature and wide range of potential applications. Already, bioactive
substances [13–16] and other valuable materials [17,18] are produced in microalgae on an
industrial scale. For the evaluation of the developed MIFC system we used the microalgae
Haematococcus pluvialis (HP). HP is one of the microalgae species that is being used commer-
cially to produce biotechnologically the antioxidant keto-carotenoid astaxanthin (Ax) [19,20].

State of the art for the development and optimization of such biotechnological cul-
tivation processes is the morphological classification based on subjective microscopic
evaluation and spectrometric point measurements. Spectrometric point measurements
record a sum signal over numerous cells and does not contain information on population
composition at the single cell level. Spectral and morphological properties of the same cells
are not available at any time during these measurements. By using suitable optical mea-
surement technology, the subjective assessment can be replaced by an objective measured
value and thus a more precise indication of the prevailing conditions of the cells can be
obtained. Furthermore, a much larger and thus more representative sample of particles
can be analyzed and evaluated in a shorter time. In addition to process monitoring, the
optimal harvesting time can thus be determined, which saves time, resources, and costs.

Aim of this work is to open and practically evaluate the potential and suitability of
filter-on-chip based spatially and spectrally resolving snapshot-mosaic cameras for the
in-line characterization and classification of bioparticles in microfluidic flow.

2. Materials & Methods
2.1. Buffer and Sample Preparation

For the MIFC experiments, HP strain SAG34-1b (Culture Collection of Algae, Georg
August University Göttingen, Göttingen, Germany) have been used. HP cells were pre-
pared by cultivating HP strain SAG34-1b in standard culture medium BG1 [21]. The cells
were previously cultivated in 500 mL glass vessels under the following cultivation param-
eters described in Table 1. The cultivation was performed for 10 days with continuous
fumigation (gas mixture (1% CO2 (v/v)) under 350 mL/min flow volume. Before the MIFC
measurements the cells were dissolved (1:1) experiment in 25% (w/vol) Ficoll® 400 from
Merck KGaA (Darmstadt, Germany). This prevents sedimentation of the cells during
the experiments.
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Table 1. Summary of the cultivation parameter.

Culture Media Illumination

Nomenclature 1× BG-11
(+NaNO3)

1× BG-11
(−NaNO3)

Low Light (LL) 1

16 h Daily
High Light (HL) 2

24 h Daily

+N LL+C x x
+N HL+C x x
−N LL+C x x
−N HL+C x x

1 PFD, Spectral composition: 100 µE/m2s, 2700 K; 71 µE/m2s, 660 nm. 2 PFD, Spectral composition: 800 µE/m2s,
2700 K; 1065 µE/m2s; 450 nm; 724 µE/m2s, 470 nm.

2.2. Microfluidic Chip Design and Fabrication

The microfluidic chip devices consist of a two-layer system prepared by photolithog-
raphy and wet etching of the glass wafers (thickness 0.7 mm) with hydrofluoric acid at a
uniform etch depth of 100 µm. Nickel-chromium metallization was used as the mask. The
micro-structured wafers were bonded face-to-face to create the functional geometries and
closed microfluidic channels. The chip dimensions are 16.0 × 12.5 mm. The four fluid con-
nection ports (diameter 520 µm) are fabricated by using ultrasonic drilling. The detection
channel for flow-through image acquisition of the chip has a total width of 430 µm. The
full channel height is 100 µm with a planar channel bottom.

2.3. Microfluidic Particle Focusing

Basic requirement for image-based classification of particles within an image is that
all particles are recorded with a high optical quality for the spatial and spectral value
determination. Therefore, the particles are positioned in the focal plane of the optical
system when passing the field of view (FOV) of the camera. For the experiments, a
microfluidic chip with a fluid rotation unit designed for this purpose was used to focus all
particles on the same horizontal plane (Figure 1a) [22]. Kleiber 2020 describes in detail the
rotation and self-alignment of the particles in this microfluidic chip [23]. In the first step, the
particles are focused on the center of the channel to form a vertical lamella. This lamella is
rotated stepwise by 90◦ in the multi-layer rotation unit. This ends up in a horizontal lamella
where all particles are in the same z-plane. Subsequently, the particles are focused again on
the center of the channel to ensure that all particles pass the FOV of the snapshot-mosaic
camera. The described microfluidic system works under laminar flow conditions with
Reynolds numbers < 10 [24].
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Figure 1. (a) Microfluidic chip with (I) Sample inlet, (II) Sheath fluid 1, (III) Sheath fluid 2, (IV) Flow
Focusing Unit 1, (V) Flow rotation unit, (VI) Flow focusing unit 2, (VII) MIFC detection channel
and (VIII) Waste outlet; (b) Chip integration; (c) Optical system with (1) Snapshot-mosaic camera,
(2) Pressure-pump fluid management system, (3) Z-focus, (4) 20× Objective, (5) Microfluidic chip,
(6) XY-linear stage, (7) LED white light source.
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2.4. Optical Setup

The optical setup consisted of a self-build microscope mounted on an optical bench
(Figure 1c). The microscope was operated in transmitted light mode with a Köhler arrange-
ment. An LED module 36 W 3500 K LED from CREE Inc. (Durham, NC, USA) was used.
The microfluidic chip was integrated into an aluminum frame with the dimensions of a
standard microscope slide (Figure 1b). This cartridge was integrated into an XY-stage from
Märzhäuser Wetzlar GmbH & Co. KG (Wetzlar, Germany). A microscopy objective from
Mitutoyo Corporation (Kawasaki, Japan) with a 20× magnification, numerical aperture
(NA) of 0.42, was used. A filter-on-chip based spatially and spectrally resolving snapshot-
mosaic camera MQ022HG-IM-SM4 × 4-VIS with 16 spectral channels from XIMEA GmbH
(Münster, Germany) was used to record the data. The fluid management is controlled by
three syringe pump modules from CETONI GmbH (Korbußen, Germany) and the associ-
ated neMESYS software. The chip was connected via two PTFE-HPLC tubing with an inner
diameter (ID) 0.5 mm to two glass syringes (2500 µL) from ILS Innovative Laborsysteme
GmbH (Stützerbach, Germany). These supply the flow focusing units 1 and 2 continuously
with buffer. Additionally, tubing is connected to the outlet.

The sample channel is connected to a PEEK-HPLC tubing ID 0.1 mm, which prevents
cell aggregation in the sample channel. Each MIFC measurement requires approximately a
50 µL sample.

2.5. Camera Characterization Setup and Methodology

The setup which has been used for an extended characterization of the applied
snapshot-mosaic camera works in accordance with the EMVA Standard 1288—Release
4.0 Linear from 16 June 2021 [25,26]. A Czerny-Turner Monochromator MSH-300 from
Quantum Design GmbH (Darmstadt, Germany) has been used to illuminate the sensor sur-
face for characterization. An Ulbricht-Sphere with a ODP97 coating from Gigahertz Optik
GmbH (Türkenfeld, Germany) has been used to realize a reproducible and homogeneous
arrangement in accordance with the requirements from the EMVA Standard 1288. Further-
more, a calibrated detector head RW-3705 for the measurement of irradiance in W/m2 also
from Gigahertz Optik GmbH have been used [27]. The methods to measure and interpret
the characterization results are described in [28–30].

2.6. Spatially and Spectrally Resolving Snapshot-Mosaic Camera

As one of the key elements of the here presented approach is a filter-on-chip based
spatially and spectrally resolving snapshot-mosaic camera from XIMEA GmbH (Münster,
Germany). This camera uses Fabry-Pérot interference filters which have been directly
applied within the CMOS-sensor manufacturing process. The used sensor within the
camera is a CMV2000 CMOS-sensor from ams AG (Premstaetten, Austria) which have been
equipped with the multispectral resolving interference filters by IMEC (Loewe, Belgium).
The used camera has 16 spectral channels which lie between a usable wavelength range
from 450 to 650 nm. First order maxima of the interpretable spectral channels are not
arranged equidistantly. Due to the snapshot-mosaic arrangement of the spectral filters
directly on the camera sensor surface, the 16 spectral channels are recorded simultaneously
with one snapshot. The pixels are arranged periodically as a 4 × 4 matrix over the entire
CMOS-sensor surface. Each pixel is covered with a filter and is thus assigned to a specific
wavelength. All pixels of one wavelength are then combined to form a spectral sub image.

2.7. Software Environment for Multivariate Data Processing

For the multivariate data processing and spectral model building we use the software
fluxTrainer from LuxFlux GmbH (Reutlingen, Germany). This software allows complex
multivariate data analysis and processing with spectral model building. With this software
we developed a spectral model for the classification of HP cells on real multispectral data
and perform data interpretation and result writing as complex .h5 files. To acquire and
process data from snapshot-mosaic cameras we use .xml files with first- and second order
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filter wavelengths and the corresponding full width at half maximum (FWHM) values to
handle the data the snapshot-mosaic camera is providing.

3. Results & Discussion
3.1. Data Acquisition and Raw Data Correction

Prior to the experiments, an extended camera characterization was performed in
accordance with [28–30]. This is necessary because the behavior of the used snapshot-
mosaic camera concerning the spectral sensitivity differs from the generalized provided
manufacturers data. We have updated the provided snapshot-mosaic camera specific .xml
calibration file with the measured spectral sensitivity curves and the therefore derived first
order maxima and their related FWHM values see Figure 2.
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After connecting the snapshot-mosaic camera with the software using the updated
.xml calibration file bright and dark reference images must be acquired as a first step before
the actual processing. For setting up the multivariate data processing and spectral model
building, different cell samples have been acquired, and the spectral model have been
trained. The measurement image acquisition is done as a transmission image. This is
a common standard in UV-VIS spectroscopy. For correct referencing, a bright and dark
adjustment is performed to interpret the measurement image as a transmission image
shown in Equation (1).

T =
ISample − IDark

IBlank − IDark
(1)

where ISample represents the captured image during the experiment, IDark is the dark refer-
ence with the light source turned off, and IBlank is the bright reference in the microfluidic
channel filled with buffer and without particles.

After transmission image calculation demosaicing is performed by the software envi-
ronment shown in Figure 3.
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The result are 16 spectral sub images, each with a size of 512× 256 pixels. The resulting
spatial resolution is thus limited. The acquisition with a snapshot-mosaic camera has the
advantage that all spectral channels are recorded simultaneously. This means that the
object only must be in the FOV of the camera at one point in time. A possible rotation of
the objects while passing the FOV has no influence on the spectral evaluation compared
to spectral scanning methods. Here, the spatial orientation of the object must not change
when passing the FOV.

The objects are recorded in transmission. Intensities are thus measured, i.e., photons
per pixel. A correct substance quantity, i.e., a quantitative statement, can therefore only be
made approximately. Small image features such as the phase objects or inner cell structures
can thus only be resolved to a limited extent or not at all. For the training of the different
spectral components, the inner cell structures are assigned to the different material classes.
Due to the low spatial resolution, the phase objects are not considered in the calculation of
the spectral components. Phase objects do not have any spectral information, but they are a
part of the total cell. However, the measured spectral distribution within the cell allows an
estimation of the percentage material composition of the cell.

3.2. Multivariate Data Processing Model Building

A prerequisite for the reliable determination of the different cell stages is a robust and
reproducible multivariate data processing and spectral model building for the automated
in-line classification of HP cells. The spectral model is built by using reference spectra of
HP cells from cell stages 1 and 2. HP cells mainly form two components chlorophyll (Chl)
and Ax during the cultivation process. The spectral differentiation of the cell stages is based
on the absorption maxima of Chl and Ax and their spatial and percentage distribution
within the cells. Chl has two absorption maxima in the range of 400–500 and 630–690 nm.
Ax has its absorption maxima in the range of 450–550 nm. The absorption bands of the
two dyes partially overlap. However, in the range of 500–550 nm only Ax and in the range
of 620–690 nm only chlorophyll can be detected [31,32]. The applied snapshot-mosaic
camera is spectrally sensitive from 450 to 650 nm. Therefore, the ranges 500–550 nm and
620–650 nm are used for spectral discrimination between the cell stages.

The multivariate data processing and spectral model follows a modular approach
which means that different modules are logically linked (Figure 4). The definition of the
spectral classes is done by supervised learning.
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For this purpose, definitions of the spectral signatures of the pure components are
made. For the determination of the different cell stages, four spectral classes (red, green,
background and cell wall) have been defined. For Chl, green cells from early stage 1 have
been used. For Ax, cells from late stage 2. The spectral class of the image background is
defined as free space without objects. The spectral characteristic of the cell wall corresponds
to an empty cell envelope without dyes. These specifications ensure that the training data
is based on a valid, robust, and reproducible data basis.

The following section describes the spectral modeling procedure. After the definition
of the pure components, linear discriminant analysis (LDA) is performed to reduce the
spectral dimensions. By LDA each observation is assigned a score value. From this score,
the group membership of each observation and the boundaries between the groups are
calculated. If the spectral group membership of the observations is known, the feature
variables are combined into a single discriminant variable shown in Equation (2).

DLDA = β0 + β1X1 + β2X2 + · · ·+ βpXp (2)

with DLDA discriminant variable, βp discriminant coefficients and Xp feature variables.
A Mahalanobis distance classifier was used to determine the spectral similarity or

spectral distances shown in Equation (3). Due to the elliptical distribution of the data points.
This classifier is used to group unknown image data into classes that have a minimum
distance in multi-feature space. This makes the Mahalanobis distance particularly suitable
for cluster analyses and is therefore used here.

D2
MD = (x−m)T ·c−1·(x−m) (3)

D2
MD is the square of the Mahalanobis distance, x is the vector of the observation, m

is the vector of mean values of independent variables and c−1 is the inverse covariance
matrix of independent variables.

After the spectral classes are assigned, mask-based selection is performed based on
the classified individual pixels. Each pixel in the image is assigned to one of the defined
classes based on the highest spectral similarity (Figure 5). Due to the filter arrangement, the
snapshot-mosaic camera has less pixels per wavelength for the spatial scanning of the cell
resulting in a lower spatial resolution compared to rgb-cameras. Due to the lower spatial
resolution, only cell structures with a certain size can be reliably resolved. However, this is
sufficient for the determination of the cell stages. The detected cell wall is shown in the
false color image orange the detected background blue (Figure 5). For the further process
of the detected cells only the Chl (green) and Ax (red) classified pixels are considered.

In addition to spectral properties, morphological properties are also included for
classification. Only cells that correspond to the pre-defined parameters are recognized and
classified. To exclude cell fragments as well as cell clusters, min and max cell sizes as well
as cell areas are defined. All cells outside these boundaries are automatically excluded from
the further processing.

In the final step, all classified pixels within the object are counted and a percentage
distribution of Chl to Ax is calculated. A cell is classified as green if more than 90% of the
detected pixels were assigned to Chl. As a red cell, if more than 80% of the total area of
the detected object was classified as Ax. If neither condition is met, the cell is classified as
intermediate (late stage 1) (Figure 5).
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3.3. Single Cell Characterization in Flow

After sensor characterization and development of the spectral model, the MIFC system
was practically evaluated for suitability to determine different HP cell stages in microfluidic
flow. In addition to the reference experiments (C1–C4), mixtures (C5–C8) with unknown
cell stage composition were examined to demonstrate that it is feasible to accurately analyze
cell populations using the MIFC system. For statistical confidence, several thousand cells
per sample have been analyzed (Table 2). The microfluidic flow rate was synchronized
with frame rate of the snapshot-mosaic camera such that cells are captured only once as
they pass through the FOV. This ensures that the cells are not counted multiple times
during analysis.

Table 2. Conclusions of realized MIFC measurements.

ID Label Total
Cells

Red
Detected

Green
Detected

Intermediary
Detected

Ø
Red

Amount

Ø
Green

Amount

Ø
Area

in [µm2]

Red
Classified

Green
Classified

Intermediary
Classified

C1 +LL2 8326 96 8170 60 0.015 0.985 54.75 1.2% 98.1% 0.7%
C2 −HL2 9553 9483 6 64 0.997 0.003 85.03 99.3% 0.1% 0.7%
C3 +HL2 5549 1798 1680 2071 0.565 0.435 77.00 32.4% 30.3% 37.3%
C4 −LL2 1665 319 1284 62 0.211 0.789 57.39 19.2% 77.1% 3.7%
C5 Mix1 2919 2407 306 206 0.864 0.136 71.52 82.5% 10.5% 7.1%
C6 Mix2 2691 1360 1041 290 0.567 0.433 73.28 50.5% 38.7% 10.8%
C7 Mix3 1999 1354 456 189 0.733 0.267 79.75 67.7% 22.8% 9.5%
C8 Mix4 2189 1295 170 724 0.776 0.224 86.44 59.2% 7.8% 33.1%

HP cells are cultivated in a two-stage cultivation process over 10 days. The details of
cultivation conditions can be found in the “Material & methods” section. At the beginning
of cultivation, the HP cells are in stage 1. In this stage, cells are green, motile, proliferate
and therefore defined as green reference. Green cells have a smaller diameter compared to
cells in the red stage. The difference in cell size as a function of the amount of Ax within
the cell is shown in Figure 6. In the red stage, lipid vesicles are formed in which Ax is
accumulated. This increases the size of the HP cells. As already described in Section 3.2,
the cells are grouped into one of the three classes based on their predefined spectral and
morphological properties.
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Sample C1 was cultivated over the complied time under optimal conditions (moderate
illumination and nitrate in the media) for the entire cultivation process. In the C1 Sample
the cells mainly contain the green dye Chl (Figure 7C1). C2 represents the red reference. The
cells are cultivated with the start of the experiment with light stress and nitrate starvation.
The cells quickly enter cultivation stage 2, produce Ax and form round cysts (Figure 7C2).
This is also confirmed by the increase in cell size compared to C1 (Table 2). During the
transition from stage 1 to stage 2, the cells start to form Ax in their lipid vesicles and the
spectral characteristics of the cells changes.Micromachines 2022, 13, x  10 of 12 
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The varying influence of the applied stress factors is visible in samples C3 and C4. In
both experiments, only one stress factor was applied for the entire cultivation process. It
appears that light stress induces a higher Ax product formation rate than nitrate deficiency.
In C3, there are significantly more cells in intermediate or stage 2 than in C4 (Figure 7C3,C4).
This is an indication that light stress is more effective than nitrate deficiency. The high-
est product formation rate is achieved by applying both light stress factors at the same
time. The MIFC system was additionally evaluated with four unknown mixed samples
(Figure 7C5–C8). These experimental approaches correspond to different time points dur-
ing a cultivation process. By analyzing representative samples with serval thousand cells
per sample, MIFC system can help to accurately monitor the cultivation process. A figure
(Figure S1) and video sequence (Video S1) of the in-line classification can be found in
the supplementary information. The experimentally determined MIFC results have been
evaluated and confirmed by classical bright field microscopy. The reported MIFC system
can thus be used as a supporting tool for in-line classification of cells in microfluidic flow.

4. Conclusions

In this reported work we present a novel realization for the characterization and
classification of bioparticles in-flow using filter-on-chip based spatially and spectrally
resolving filter-on-chip snapshot-mosaic cameras within the visible wavelength range. In
this work we apply necessary sensor characterization for as close-to-reality as possible
spatial and spectral value determination. The developed system can handle particles with
sizes of 10 to 60 µm and is capable to classify up to 3600 HP cells per minute. Adaptation
to other types of particles such as pollen, cells or microplastics would be feasible. The
prerequisite for this is that the particles are in the size range of the system. This requires
adaptations to the microfluidic chip and the corresponding multivariate data processing
and spectral model building. Adaptions to the image acquisition system concerning camera
and depending on the spectral properties of the investigated particles necessary dispersive
elements or filters are not necessary because the snapshot-mosaic camera within its usable
wavelength range is therefore already equipped and more flexible. The limiting factor of
the MIFC system for the characterization of HP cells is neither hardware nor software, but
the sample itself. The particle throughput depends strongly on the type of sample. HP cells
tend to cluster at high particle concentrations. As a result, the described flow rotation unit
(FRU) does not work correctly anymore. The cells must pass through the FRU individually
to operate correctly. For particles that do not tend to cluster, the concentration can still be
increased significantly. This also increases the particle throughput of the system. Among
other things, it should be particularly emphasized that by using this type of snapshot-
mosaic camera, the optical system can be simplified, and the size of the overall measurement
system can be massively reduced. The multispectral data acquisition and the therefore
developed methodology is generalizable and enables further applications far beyond the
here characterized population of HP cells. With the MIFC system the spectral as well as the
morphological features like the size of the cells can be determined simultaneously. Cells at
the single cell level as well as whole cell populations can be spectrally and morphologically
analyzed and counted. The multivariate data processing with spectral model building
enables an in-flow characterization and classification of unknown mixtures of bioparticles.
Furthermore, we evaluate the MIFC system successfully with 8 different sets of bioparticles.

The reported MIFC system can thus be used as a supporting tool for in-line classifi-
cation of cells in microfluidic flow. The MIFC system can be extended by a subsequent
sorting unit [31,33]. This would enable the separation of targeted particles that exhibit
specific characteristics for further investigation from a mixed population. Furthermore, the
throughput and accuracy of the system could be improved by extending modern methods
such as deep learning [34,35] or neural networks [36,37]. Through intelligent and efficient
data reduction and subsequent processing, it is possible to evaluate these huge amounts of
data in a short time even on standard computers.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13020238/s1. Figure S1: Result images of snapshot-mosaic
camera—in-line classification and rgb-camera—reference. Video S1: In-line HP cell classification.
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