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Summary 
 

Elucidating cellular metabolism led to many breakthroughs in biotechnology, 

synthetic biology, and health sciences. To date, deriving metabolic fluxes by 
13C tracer experiments is the most prominent approach for studying metabolic 

fluxes quantitatively with high accuracy and precision. However, the technique 

has a high demand for experimental resources. Alternatively, flux balance 

analysis (FBA) has been employed to estimate metabolic fluxes without labeling 

experiments. It is less informative but can benefit from the low costs and low 

experimental efforts and gain flux estimates in experimentally difficult 

conditions. Methods to integrate relevant experimental data have been 

emerged to improve FBA flux estimations. For this, data from transcription 

profiling is often used since it is easy to generate at the genome scale, typically 

embedded by a binarization of differentially and non-differentially expressed 

genes coding for the respective enzymes. However, employing defined 

thresholds can result in disregarding the fine-grained regulation of metabolism. 

Besides this, thermodynamically infeasible loops (TIL) are a well-known 

complication in constraint-based modeling, leading to unrealistic flux 

distributions. 

In order to integrate transcriptomic data more efficiently and improve a 

context-specific model extraction method, the novel method named Linear 

Programming based Gene Expression Model (LPM-GEM) was established in 

this thesis. LPM-GEM linearly embeds gene expression into FBA constraints. It 

avoids binarization and preserves the natural characteristic of gene expression 

profiles as continuous data. Additionally, three strategies were implemented to 

reduce thermodynamically infeasible loops, which is necessary for such an 

omics-based model building. A model of Bacillus subtilis (B. subtilis) grown in 

eight different carbon sources was built as a case study to demonstrate the 

concept of LPM-GEM. The method obtained good flux predictions based on the 

respective transcription profiles when validating with 13C-tracer based metabolic 

flux data of the same conditions. LPM-GEM could well predict the specific 

carbon sources. When testing the model on another unseen dataset that was 

not used during training, good prediction performance was also observed. 
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Furthermore, LPM-GEM outperformed a well-established model building 

method. Employing LPM-GEM integrates gene expression data efficiently. The 

method supports gene expression-based FBA models and can be applied as 

an alternative to estimate metabolic fluxes when tracer experiments are 

inappropriate. 
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Zusammenfassung 
 

Die Aufklärung des zellulären Stoffwechsels hat zu vielen Durchbrüchen in der 

Biotechnologie, der synthetischen Biologie und den 

Gesundheitswissenschaften geführt. Bis heute ist die Rekonstruktion von 

Stoffwechselflüssen durch 13C-Tracerexperimente der bekannteste Ansatz zur 

quantitativen Untersuchung von Stoffwechselflüssen. Er ist sehr genau und 

präzise. Allerdings hat diese Technik einen hohen Bedarf an experimentellen 

Ressourcen. Alternativ wurde die Flux Balance Analysis (FBA) entwickelt, um 

metabolische Flüsse ohne Markierungsexperimente abzuschätzen. Sie ist 

weniger informativ, kann aber durch den geringen Kosten und dem geringen 

experimentellen Aufwand vorteilhaft sein, auch wenn  Flussabschätzungen 

unter experimentell schwierigen Bedingungen benötigt werden. Es wurden 

verschiedene Methoden zur Integration relevanter experimenteller Daten 

entwickelt, um die FBA-Fluxschätzungen zu verbessern. Daten aus 

Transkriptions-Profiling werden oft ausgewählt, da sie auf genomweit einfach 

zu generieren sind, typischerweise eingebettet durch eine Binarisierung von 

differentiell und nicht-differentiell exprimierten Genen, die für die jeweiligen 

Enzyme kodieren. Die Verwendung von definierten Schwellenwerten kann 

jedoch dazu führen, dass die feinkörnige Regulation des Stoffwechsels außer 

Acht gelassen wird. Zusätzlich sind bei der Einbettung derartiger Omics Daten   

thermodynamisch unmögliche Kreise (thermodynamically infeasible loops, TIL) 

eine bekannte Komplikation in derartigen Modellierungen, die zu 

unrealistischen Flussverteilungen führen. 

Um Transkriptomdaten effizienter zu integrieren und eine 

kontextspezifische Modellextraktionsmethode zu verbessern, wurde in dieser 

Arbeit eine neue Methode namens Linear Programming based Gene 

Expression Model (LPM-GEM) etabliert. LPM-GEM bettet die Genexpression 

linear in FBA Zwangsbedingungen ein. Es vermeidet die Binarisierung und 

bewahrt die natürliche Charakteristik von Genexpressionsprofilen als 

kontinuierliche Daten. Zusätzlich wurden drei Strategien implementiert, um TIL 

zu reduzieren, was für eine solche omics-basierte Modellbildung notwendig ist. 

Ein Modell von Bacillus subtilis (B. subtilis), das in acht verschiedenen 
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Kohlenstoffquellen gewachsen ist, wurde als Fallstudie erstellt, um das Konzept 

von LPM-GEM zu demonstrieren. Die Methode erzielte gute Flussvorhersagen 

basierend auf den jeweiligen Transkriptionsprofilen bei der Validierung mit 13C-

Tracer-basierten metabolischen Flussdaten der gleichen Bedingungen. LPM-

GEM konnte die spezifischen Kohlenstoffquellen gut vorhersagen. Beim Testen 

des Modells auf einem weiteren ungesehenen Datensatz, der beim Training 

nicht verwendet wurde, wurde ebenfalls eine gute Vorhersageleistung 

beobachtet. Darüber hinaus übertraf LPM-GEM eine andere, gut etablierte 

Methode zur Modellbildung. Der Einsatz von LPM-GEM integriert 

Genexpressionsdaten effizient. Die Methode unterstützt Genexpressions-

basierte FBA-Modelle und kann als Alternative zur Schätzung metabolischer 

Flüsse eingesetzt werden, wenn Tracer-Experimente ungeeignet sind.   
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Chapter 1 

Introduction 
 

1.1 Metabolism  
Metabolism is a term referred to as the set of chemical reactions inside an 

organism or cell. These reactions are involved in sustaining the living state of 

cells and can be divided into two categories: catabolism and anabolism. 

Catabolism is a process of breaking down large molecules (for example, 

carbohydrates, proteins, lipids) into smaller molecules (such as 

monosaccharides, amino acids, fatty acids). The process usually involves 

releasing energy. Opposite to catabolism, anabolism is a process of building 

macromolecules and requires energy. Catabolism and anabolism work together 

and keep the balance to maintain the normal functions of cells. Several control 

mechanisms at different levels, e.g., transcriptional regulation, translational 

regulation, enzyme-metabolite interactions, are employed and collaborated to 

achieve this balance. Gaining insight into metabolism is important since it can 

guide researchers to discover components and mechanisms behind these 

biochemical events, leading to numerous breakthroughs in many fields such as 

synthetic biology, metabolic engineering, biotechnology, or health sciences 

(Bideaux et al. 2016, Chenard et al. 2017, Chiewchankaset et al. 2019, Dang 

et al. 2017, DeWaal et al. 2018, Gatto et al. 2015, Lu et al. 2015, Shan et al. 

2018, Sung et al. 2017, Veras et al. 2019, Yao et al. 2019, Zhong et al. 2014). 

 

1.2 Network reconstruction and metabolic network 

Due to high throughput technology and next generation sequencing (NGS), 

many biological components, e.g., genes, enzymes, proteins, or metabolites, 

have been discovered. The demand to systematically pool, categorize, and link 

these components together to understand how they interact with each other and 

understand the general mechanisms behind these components is incredibly 

high. It led to a change in biology research from reductionism to holistic 

approaches and emerged a new interdisciplinary field of study called systems 

biology (Chuang et al. 2010, Palsson 2015).  
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System biology combines computational and mathematical methods to 

study biology mechanistically. A vast number of various types of networks such 

as gene regulatory networks (GRN), protein-protein interaction networks (PPI), 

or metabolic networks have been constructed as well as many theories have 

been brought up to explain biological phenomena within the same organism or 

across organisms (Barabasi and Oltvai 2004, Palsson 2015, Koutrouli et al. 

2020, Liu et al. 2020). A constraint-based metabolic network, a network 

combining stoichiometric data of biochemical reactions inside an organism 

(Figure 1.1), is used to systematically observe the functional state of 

metabolism (Palsson 2015, Liu et al. 2020). The network can be used to study 

metabolism when combined with laboratory experiments as in 13C metabolic 

flux analysis (Dai and Locasale 2017, Long and Antoniewicz 2019) or when 

employing purely computational approaches (Palsson 2015) (details in the 

following sections). Due to more data availability, a large number of metabolic 

models has been generated, and the number will continue to grow and cover 

more and more organisms, as well as the size of the models growths as more 

components and reactions have been discovered and annotated.  
Figure 1 Figure 1.1. Central energy metabolism inside the metabolic network of Bacillus subtilis 

 
(caption on the next page) 
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Figure 1.1. Central energy metabolism inside the metabolic network of 

Bacillus subtilis generated from a web application, Escher (King et al. 

2015). Central energy metabolism is commonly selected as a starting point to 

investigate the metabolism since it is where energy is generated. As shown in 

the zoom-in box, each edge of the network represents a reaction, while each 

node represents a metabolite. These reactions are connected via different 

metabolites and form the network. The flow of metabolites of each reaction is 

generally observed and used to assess the metabolic state. TCA cycle: 

tricarboxylic acid cycle; FUM: fumarase; MDH: malate dehydrogenase. 

 

1.3 13C metabolic flux analysis 

To access the state of metabolism, we generally observe the flow of metabolites 

(metabolic flux). By far, 13C metabolic flux analysis (13C-MFA) is the most 

prominent approach to determine fluxes in metabolic pathways (Buescher et al. 

2015, Long and Antoniewicz 2019). Typically, major metabolic pathways of 

central energy metabolism such as glycolysis, pentose phosphate pathway 

(PPP), and the tricarboxylic acid (TCA) cycle are included in 13C-MFA models 

to observe metabolic fluxes. Metabolites can be traced via 13C isotope labeling 

and measured employing mass spectrometry, either gas chromatography-mass 

spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS). 

The metabolite data are then processed and fitted to a metabolic network of the 

studied organism to estimate the metabolic fluxes. Because of its high accuracy 

and precision for flux visibility, it has been used as a gold standard and 

successfully applied in many different fields (Buescher et al. 2012, Chubukov 

et al. 2013, Zhong et al. 2014, Bideaux et al. 2016, Hauslein et al. 2016, DeWaal 

et al. 2018, Veras et al. 2019, Yao et al. 2019). Though the method can provide 

precise fluxes in high resolution, it highly demands experimental and 

computational resources (Antoniewicz 2015, Buescher et al. 2015, Dai and 

Locasale 2017, Antoniewicz 2018), shown in Figure 1.2.  
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Figure 2 Figure 1.2. Overview of 13C-MFA procedures 

 
Figure 1.2. Overview of 13C-MFA procedures (Adapted from Long and 

Antoniewicz 2019). The experimental design starts by selecting suitable 13C 

tracers to perform labeling experiments to investigate the pathway of interest. 

During labeling experiments, samples are collected to perform external rate 

determination (i.e., substrate uptake rate, product secretion rate, and growth 

rate) and isotopic labeling measurement via GC-MS or LC-MS. The external 

rates and quantified metabolite labeling are fed into the metabolic model to 

estimate fluxes by minimizing the differences between the observed and 

simulated isotope labeling patterns. Later, statistical analysis is performed to 

assess the fitness of fluxes and find the best global fit. When the quality of the 

fit is unacceptable, the metabolic model may need to be modified, e.g., by 

adding or removing reactions. If the fit is acceptable, the resolution needs to be 

assessed. In case of low flux resolution, a new experimental design is generally 
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conducted. Finally, flux results are obtained when the fit is good, and a high flux 

resolution is achieved. 

One important factor, which greatly determines the quality of flux 

visibility, is 13C tracer selection. Poorly selected 13C tracers can result in 

inadequate flux resolution, which leads to misinterpretation or uninterpretable 

results. In general, in silico simulations are recommended to find the optimal 

tracer with a narrow flux confidence interval among all pre-selected tracers. As 

a starting point, [1,2-13C]glucose and [1,6-13C]glucose tracers applied in parallel 

labeling experiments are recommended as the global default for high-resolution 
13C-MFA to study central energy metabolism (Long and Antoniewicz 2019). 

Further modifications can be added to suit specific needs in interested 

pathways or non-modeled organisms. By far, the most challenging limitation for 

this approach is to determine metabolic fluxes in complex environments in 

which it is difficult to derive the origin of certain metabolites, for example, 

metabolites in different compartments, e.g., the nucleus or cytosol (Antoniewicz 

2018), or in scenarios where pathogens are in host cells, and host cells and 

pathogens consume or produce the same metabolites. 

 

1.4 Constraint-based modeling  

1.4.1 Overview of constraint-based modeling and optimization methods 

Constraint-based modeling (CBM), a mathematical approach commonly used 

in mathematics and engineering fields to solve optimization problems, has been 

successfully adapted to biology and emerged as an alternative to estimate 

fluxes in cell metabolism without conducting labeling experiments (Bordbar et 

al. 2014, Palsson 2015). CBM solves a problem of interest and obtains an 

optimal feasible solution by optimizing an objective function (goal of the 

problem) within an allowable solution space. The optimization methods, which 

are usually applied, can be put into five major classes: linear programming (LP), 

mixed-integer linear programming (MILP), quadratic programming (QP), mixed-

integer quadratic programming (MIQP), and non-linear programming (NLP). LP 

and MILP are generally the most used and preferable optimization methods 

among all five classes (Heirendt et al. 2019, Palsson 2015). Particularly, LP has 

become a core optimization method (most CBM techniques were developed 
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using LP (Heirendt et al. 2019)) since it has the great advantage of having the 

simplest mathematical form and requires the least computational resources. 

 

1.4.1.1 Linear programming 

LP is an optimization technique using a linear objective function and a linear set 

of inequality constraints to find an optimal solution within a defined, convex 

solution space (Figure 1.3). LP is widely known as a special subclass of convex 

optimization (Boyd and Vandenberghe 2004).  The approach can be expressed 

in the standard form below. 

Maximize    "!#   (1.1) 

subject to 

    $#	 ≤ '  (1.2) 

where # is a vector of variables to be solved (# ∈ ℝ"). "! is a vector of 

coefficients (" ∈ ℝ"), which contribute to the objective function of the problem. 

$ is a given matrix ($ ∈ ℝ#$"). ' is a vector which determines the constraints 

(' ∈ ℝ#). By optimizing equation (1.1) while satisfying all constraints from 

equation (1.2), the optimal solution which maximizes equation (1.1) is found 

(Figure 1.3). 
Figure 3 Figure 1.3. The graphical representation of LP( 

 
Figure 1.3. The graphical representation of LP. The orange quadrilateral is 

the convex solution space. After optimizing the objective function, the optimal 

solution is found on the red spot.  

The following problem of oil blending demonstrates an easy example for 

an LP application. A fossil fuel company produces two types of oil blends, $ and 

*. Each oil blend contains similar + types of oil sources but differs in amount. 
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The difference in the amount of each type + of oil sources brings different costs 

and revenue to oil blend $ and *. To maximize a total profit for each production, 

the company must find the optimal amount between oil blends $ and * 

production that creates high revenue but requires low cost to increase profit 

(profit = revenue – cost). The problem can be formulated as follows. 

 Maximize   ,∑ .%#%,'"
'() +	∑ .*#*,'"

'() 0 − ,∑ "%#%,' +	∑ "*#*,'"
'()

"
'() 0    (1.3) 

 subject to 

   $!,#
∑ $!,#$
#%&

	≥ 	 3%,'           (1.4) 

   $',#
∑ $',#$
#%&

	≥ 	 3*,'           (1.5) 

   #%,' 	+ 	#*,' 	≤ ''           (1.6) 

where #%,' is a vector of oil source variables in oil blend $, and #*,' is a vector 

of oil source variables in oil blend *. .% is a vector of coefficients from revenue 

of oil blend $, while .* is a vector of coefficients from revenue of oil blend *. .%, 

"%, .*, and "* are representing the coefficients from revenue of oil blend $, cost 

of oil blend $, revenue of oil blend *, and cost of oil blend *, respectively. 3%,' 
and 3*,' are constraints for a minimum ratio of each oil source + in oil blend $ 

and *. '' is a constraint for an available stock of each oil source +. After 

maximizing the objective function (shown in equation (1.3)), which is the 

function of revenue subtracted with cost, if the problem is feasible under the 

confined solution space, the optimal amount of blend $ and * production that 

maximizes the profit is found.  

Besides the oil blending problem, LP has been frequently used to solved 

other similar optimization problems. Another example for LP application is 

shown below (see section 1.4.2.1 Flux balance analysis). 

 

1.4.1.2 Mixed-integer linear programming 

Besides using linear constraints to determine the feasible solution space as in 

LP, MILP also employs integers to form the optimization problem. Introducing 

integers into the system splits the continuous solution space into fractional sub-

spaces, and the optimal solution can be found on the integer point (Figure 1.4). 

The standard form of MILP is similar to LP shown in the following: 

Maximize   "!#    (1.7) 
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subject to 

   $#	 ≤ '   (1.8) 

   ∃#' 	 ∈ ℤ   (1.9) 

where # is a vector of variables to be solved (# ∈ ℝ"). "! is a vector of 

coefficients (" ∈ ℝ"), which contribute to the objective function of the problem. 

$ is a given matrix ($ ∈ ℝ#$"). ' is a vector which determines the constraints 

(' ∈ ℝ#). In MILP, some # are restricted to be integers, as shown in equation 

(1.9).  
Figure 4 Figure 1.4. The graphical representation of MILP 

 
Figure 1.4. The graphical representation of MILP. The orange quadrilateral 

is the convex solution space. By introducing integers, the solution space is 

separated into several fractional subspaces. Each gray line represents feasible 

solutions in the system. The optimal solution can be found on the red spot after 

optimizing the objective function.  

By including discrete values in the system, MILP can solve optimization 

problems that LP cannot solve, such as special problems that involve decision 

making (e.g., yes/no, 1/0) or integer quantity problems (e.g., number of cars, 

houses, cells, persons, reactions). The example showing how MILP is applied 

to solve the problem containing integers and continuous variables, which 

distinguishes MILP from LP, can be explained with a variant version of a well-

known knapsack problem. 

In this problem, there are two types of items, #' and 6'. #' is inseparable, 

but 6' can be split into different fractions. Both #' and 6' come with different 

values (7$,' and 7,,') and weights (8$,' and 8,,'). Although a goal is fitting items 

into a bag as many as possible while maximizing a total value, the optimal 
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solution of #' and 6' must be found under a maximum weight capacity of the 

bag of 9 kilograms. The problem can be formulated below. 

 Maximize  ∑ (7$,'#'"
'() +	7,,'6')   (1.10) 

subject to 

  ∑ (8$,'#'"
'() +	8,,'6') 	≤ 9  (1.11) 

  ∑ #'"
'() 	≥ 1    (1.12) 

where #' is an integer variable as the item #' must be counted integrally (#' ∈
ℤ). Meanwhile, 6' is a continuous variable since the item 6' can be fractional. In 

equation (1.12), it is also required that at least one #' be placed inside the bag. 

If all conditions are met, the algorithm finds the optimal solution for a 

combination of items from each item type that provides the highest total value. 

Another example to demonstrate the MILP optimization problem is shown in the 

newly developed method from this thesis (see Chapter 3, Materials and 

Methods). 

 

1.4.2 Fundamental methods in constraint-based modeling 

Being the purely computational approach, CBM circumvents limitations of 13C-

MFA and provides researchers opportunities to easily reconstruct metabolic 

networks at the genome scale as well as explore metabolic fluxes under 

different conditions ranging from simple (laboratory conditions) to complex 

environments (clinical settings). Many techniques, e.g., flux balance analysis 

(FBA), flux variability analysis (FVA), elementary flux mode analysis (EFM), or 

extreme pathway analysis (EPA), were developed and deployed to provide 

good predictive models and solve arisen questions such as increasing 

production yields in metabolic engineering (Bideaux et al. 2016, 

Chiewchankaset et al. 2019, Dang et al. 2017, Veras et al. 2019), improving 

bacteria strains by knocking out genes/enzymes in biotechnology (Lu et al. 

2015, Yao et al. 2019, Zhong et al. 2014), or discovering new drug targets in 

health sciences (Chenard et al. 2017, DeWaal et al. 2018, Gatto et al. 2015, 

Shan et al. 2018, Sung et al. 2017). The most used methods among other CBM 

approaches, which are considered fundamental techniques, are FBA and its 

variation, FVA (Orth et al. 2010, Bordbar et al. 2014, Palsson 2015). 
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1.4.2.1 Flux balance analysis 

FBA, known as the basis of flux estimation in CBM, employs LP for the 

optimization method to predict metabolic fluxes inside metabolic networks (Orth 

et al. 2010). To implement FBA for flux simulation (Figure 1.5), first, the models 

are assumed to be at a steady state. The steady-state condition means there is 

no accumulation of mass in the system resulting in constant metabolite 

concentrations over time. After selecting and applying the objective function 

"!7' of the model to optimize (e.g., biomass production in bacteria or cancer 

cells), the metabolic flux vector 7' is derived within a confined solution space 

based on physiochemical constraints from a stoichiometric matrix =' of 

metabolites and reactions inside the metabolic network. Each 7' is set to fall in 

between a lower bound >'' 	and an upper bound ?'' of each reaction +. The 

mathematical formulation is shown in the following. 

Maximize    "!7'   (1.13) 

subject to 

=' ∙ 	7' = 0  (1.14) 

>'' 	≤ 7' ≤ ?''  (1.15) 

where "! is a vector of weights, which accounts to how much each reaction 

contributes to the objective function. If there is only one reaction aimed for 

minimization or maximization (for example, biomass production reaction), "! is 

set to be the vector of zeros with a one at the position of the reaction of interest. 

To note, as FBA requires no experiment, choosing the rational objective 

function or modeling assumption is critical to final prediction results (Bordbar et 

al. 2014). Maximizing biomass production is commonly selected as the 

objective function for model optimization, as shown in bacterial or cancer 

models (Orth et al. 2010, Bordbar et al. 2014, Palsson 2015). The formation of 

biomass accumulation is based on the hypothesis that the primary objective of 

cells is to grow, which is reasonable for bacteria and cancer cells. However, in 

other circumstances, setting the biomass production reaction as the objective 

function can be inappropriate. Alternative objective functions such as 

minimizing ATP production to find conditions that show optimal metabolic 

energy efficiency or maximizing a particular metabolite production reaction to 
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determine production capability of a cell of interest can be a reasonable choice 

for the mentioned purposes (Raman and Chandra 2009, Bordbar et al. 2014). 

Figure 5 Figure 1.5. FBA concept 

 
Figure 1.5. The basic concept of FBA. With no constraint, any solution is 

possible within the solution space. To estimate fluxes with FBA, the system is 

in a steady state. Stoichiometric constraints are introduced together with 

capacity constraints (upper and lower bounds). The solution space is shrunk to 

form the feasible solution space. After setting the objective function, e.g., 

maximize a biomass production reaction, the optimal solution is found inside 

the feasible solution space. 

Besides stoichiometric constraints, additional constraints, e.g., 

thermodynamic constraints from reaction directionality or maximal flux (maximal 

enzymatic velocity, Vmax) from enzyme kinetic data, can also be added to limit 

the solution space further. However, this information is often not available as it 

can be experimentally demanding (Schellenberger et al. 2011, Bordbar et al. 

2014). Overall, by assuming a steady-state condition, FBA allows generating 

simplified models and requires no reaction kinetic parameters to construct the 

models at a genome scale, which can be a great benefit of constraint-based 

modeling compared to not only 13C-MFA but also other computational modeling 

methods, for example, kinetic models (Bordbar et al. 2014).  

 

1.4.2.2 Flux variability analysis 

At different steady-state conditions, feasible minimal and maximal fluxes for 

each reaction in the metabolic network can vary between environments and 

differ from their lower and upper bounds. Under the same framework as FBA, 

FVA is a well-known technique in CBM to determine flux ranges (Mahadevan 

and Schilling 2003). FVA is explained in the following. 
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For each reaction + in the metabolic network, it is assumed that the 

metabolic network is in steady state, and the stoichiometry is fulfilled. At a fixed 

objective function value, e.g., growth rate, FVA solves two LP problems, i.e., 

minimization and maximization of flux 7' to identify the flux span for reaction + 
while satisfying the FBA constraints, i.e. 

Minimize  7' 	    (1.16) 

subject to 

=' ∙ 	7' = 0   (1.17) 

>'' 	≤ 7' ≤ ?''   (1.18) 

For maximization, the objective function (equation (1.16)) switches from 

minimization to maximization, and the same procedure applies. After 

performing FVA for all reactions in the network, the flux span is obtained. The 

flux span is a useful measure to determine flux characteristics and assess 

flexibility of the network in the specific environment (Palsson 2015). 

Furthermore, as these metabolic network models generally allow a large range 

of solutions, it is possible that there are multiple optimal solutions existing for 

the same objective function. The alternative solution is called alternative optimal 

solution (AOS). FVA can also be combined with other CBM methods such as 

EPA and randomized sampling to identify AOS (Palsson 2015).  

 

1.4.3 Limitation of constraint-based modeling 

1.4.3.1 Physiochemical constraints alone may fail to reflect the 

actual flux state 

Although the CBM approach is beneficial for predicting metabolic fluxes in the 

metabolic network without conducting 13C isotope labeling experiments, it has 

its limitation. Myriad biological components from different regulatory levels, e.g., 

genomics, transcriptomics, proteomics, and metabolomics, are linked together 

in a fine-grained network to regulate metabolism to ensure survival and growth. 

The physiochemical data as the only layer of data in the model was shown to 

be inadequate to provide a good estimation of metabolic fluxes. This led to 

many attempts to integrate other relevant experimental data, in particular, 

transcriptomic data into the metabolic model to improve flux predictions (Becker 

and Palsson 2008, Shlomi et al. 2008, Chandrasekaran and Price 2010, Zur et 

al. 2010, Wang et al. 2012, Heirendt et al. 2019). Although the data is indirect 
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compared to 13C labeling data, it is less labor-intensive to generate (Lowe et al. 

2017, Uygun et al. 2016, van den Esker and Koets 2019) and was shown to 

deliver good predictions while preserving the simplicity of the model (Becker 

and Palsson 2008, Chandrasekaran and Price 2010, Shlomi et al. 2008, Wang 

et al. 2012, Zur et al. 2010).  

In the past years, various techniques were developed to integrate gene 

expression data and construct context-specific metabolic models. Most of the 

methods (e.g., Integrative Metabolic Analysis Tool (iMAT) (Shlomi et al. 2008, 

Zur et al. 2010), Gene Inactivity Moderated by Metabolism and Expression 

(GIMME) (Becker and Palsson 2008), Probabilistic Regulation of Metabolism 

(PROM) (Chandrasekaran and Price 2010) or the metabolic Context-specificity 

Assessed by Deterministic Reaction Evaluation (mCADRE) (Wang et al. 2012)) 

integrate gene expression data to the metabolic network by setting a threshold 

to define qualitatively binary expressed/non-expressed reactions. 

 

1.4.3.1.1 Gene Inactivity Moderated by Metabolism and Expression 

To build context-specific models from transcriptomic data, GIMME (Becker and 

Palsson 2008) introduces a threshold to define an expression state of a gene, 

which refers to an activity of a reaction. If a gene expression level is higher than 

the threshold, the reaction is active and remains in the model. If not, the reaction 

is first removed from the model, and it may be re-inserted to the reduced model 

by the algorithm if the particular reaction is required for the model to achieve its 

functional goal (e.g., biomass production or ATP production). However, the 

algorithm is set to minimize the number of re-inserted reactions as these 

reactions are shown to be inconsistent with the gene expression data (Becker 

and Palsson 2008). Finally, GIMME creates the context-specific model 

containing reactions with minimal disagreement with the transcription profiles 

under the selected threshold. 

 

1.4.3.1.2 Integrative Metabolic Analysis Tool 

In order to process and integrate transcriptomic data into the metabolic network, 

iMAT (Shlomi et al. 2008, Zur et al. 2010) first categorizes reactions into three 

groups: highly expressed (active) reaction, moderately expressed reaction, and 

lowly expressed (inactive) reaction. The categorization is based on gene 
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expression levels of corresponding genes related to each reaction, defined by 

two cutoffs, i.e., the upper and lower thresholds. By this, gene expression 

profiles are binarized, i.e., they are converted from a continuous to a discrete 

value. Then, iMAT forms a MILP optimization problem aiming to maximize the 

number of highly and lowly expressed reaction groups since their activity is 

consistent with their expression state (Shlomi et al. 2008, Zur et al. 2010). 

However, the moderately expressed reaction group is not part of the 

optimization goal since the situation is unclear whether it is controlled by 

transcriptional regulation or not, as the gene expression level falls between the 

upper and lower thresholds. If the model predicts the moderately expressed 

reaction having a non-zero flux, the reaction is interpreted as a post-

transcriptional regulated reaction. With this concept, iMAT can integrate gene 

expression data into the metabolic models and create various context-specific 

metabolic models based on different conditions. 

 
1.4.3.1.3 Probabilistic Regulation of Metabolism 

Like GIMME, PROM (Chandrasekaran and Price 2010) also uses a fixed 

threshold to define the state of a gene. When the threshold is higher than the 

expression level, the gene is set to be off. In contrast, if the threshold is lower 

than the expression level, the gene is set to be on. Despite using a similar 

approach as GIMME to binarize gene expression data, PROM introduces 

probability to further process the binarized gene expression data in order to 

prevent the algorithm from completely turning the corresponding reaction on or 

off. By calculating the probability of the gene being expressed to an activity of 

its transcription factor, the method predicts how often the specific gene is being 

on or off across all samples in each condition. The computed probability ranges 

from zero (completely off) to one (completely on). PROM uses the calculated 

probability to adjust a flux range for each corresponding reaction. This allows 

PROM to predict more than two states of the reaction making flux predictions 

become less binary (Chandrasekaran and Price 2010). Still, the threshold is 

implemented to decide the expression state of each gene, which can be 

problematic when the inappropriate threshold value is selected. Moreover, 

compared to other approaches which require only gene expression data, PROM 

needs prior knowledge of transcription factor-gene interactions. The method 
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also requires a large number of transcriptomic datasets of the same condition 

to correctly calculate the probability (Chandrasekaran and Price 2010), while 

the other approaches (e.g., GIMME, iMAT) can use a single transcriptomic 

dataset per condition (Becker and Palsson 2008, Shlomi et al. 2008, Zur et al. 

2010). 

 

1.4.3.1.4 The metabolic Context-specificity Assessed by Deterministic 

Reaction Evaluation 

In mCADRE (Wang et al. 2012), the method first transforms gene expression 

levels in continuous values to binary values. This separates genes into two 

groups: present call and absent call. While the present call is assigned to one, 

the absent call (a marginal call also counts in this case) is assigned to zero. 

With this binarized data, mCADRE calculates expression-based evidence 

scores to quantify how often a gene is expressed across all samples in each 

condition. The expression-based evidence score is compared to a certain 

threshold to identify two sets of corresponding reactions: a high-confidence core 

set (the expression-based evidence score is above the threshold) and a non-

core set (the expression-based evidence score is below the threshold). Notably, 

different data binarization techniques may require different values for the 

threshold (Wang et al. 2012). Then, mCADRE builds context-specific models 

by keeping high-confidence core reactions and removing unnecessary non-core 

reactions if removing these reactions does not prevent the model from 

achieving the functional goal.   

Although these methods succeeded in improving flux prediction 

compared to relying on physiochemical data alone, employing defined 

thresholds to decide the activity state of genes may disregard the fine-grained 

regulation of metabolism. Also, since appropriate values for the thresholds can 

vary between different genes, organisms, or conditions, finding the suitable 

threshold can be challenging. A novel technique to efficiently integrate 

transcriptomic data while preserving the characteristic of the data is still in need. 

 

1.4.3.2 Thermodynamic infeasible loops 
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Many CBM methods, including FBA, ignore the imposition of the loop law. The 

loop law is similar to Kirchhoff’s second law for electrical circuits (Price et al. 

2002). It states that there must not be any closed cycle or loop in the metabolic 

network with a non-zero net flux at a steady state. The non-zero net flux loop is 

also recognized as a type 3 extreme pathway in EPA (Figure 1.6, right). Such 

loops would disregard the second law of thermodynamics and are hence 

thermodynamically infeasible. 

  

 
Figure 1.6.  Three basic categories of extreme pathways. At steady state, 

sets of fluxes can be defined into three types via EPA: type 1, type 2, and type 

3. Type 1 has exchange fluxes connecting between the system and the external 

environment. The substrate S is used to drive other reactions in the network as 

well as used in co-factor pools and produce the product P. For type 2, although 

fluxes show no connection with external exchange fluxes, reactions are 

connected to reactions in co-factor pools (e.g., ATP-ADP, NADPH-NADP+) 

which drive the reactions internally. However, in type 3, fluxes do not connect 

to any exchange reactions that can act as a driving force for the cycle. This 

situation is considered thermodynamically infeasible and should be removed. 

S; substrate and P; product. Figure 6 Figure 1.6.  Three basic categories of extreme pathways  

Neglecting the loop law allows thermodynamically infeasible loops (TIL) 

to be used by the optimization algorithms resulting in an unrealistic flux 

distribution (Figure 1.7). The problem of avoiding thermodynamically infeasible 

loops can be solved by imposing thermodynamic constraints such as standard-

state free energy of reactions into the optimization. However, it is very 

challenging to acquire this information for the whole metabolic network as well 

as to implement it computationally (Schellenberger et al. 2011). 



  Chapter 1 – Introduction 
________________________________________________________________________________________________________________________________ 

 31 

 
Figure 1.7. The illustration shows a thermodynamically infeasible solution 

(left) and a thermodynamically feasible solution (right). The application of 

the loop law does not change the optimal value for the objective function of the 

optimization; however, it indeed restricts the allowable flux distribution inside 

the metabolic network. Figure 7 Figure 1.7. The illustration comparing the thermodynamically 

In order to impose the loop law into the optimization and simplify the 

computation complexity, Schellenberger et al. introduced a method called 

loopless-COBRA (ll-COBRA) (Schellenberger et al. 2011). Instead of 

enumerating all possible loops in the metabolic network using EPA or EFM, ll-

COBRA introduces a new binary variable derived from reaction directionality to 

force the optimization to occur in the thermodynamically feasible region 

(loopless) region and obtain loopless flux distribution. By utilizing reaction 

directionality that is the readily existing information in the metabolic network, 

the method bypasses the need for standard-state free energy and only creates 

a MILP problem. As a result of this, the approach takes less time to calculate 

the thermodynamically feasible flux distribution for the whole network than other 

methods to solve a similar problem (Schellenberger et al. 2011). However, 

although ll-COBRA reduces the computational time significantly, it takes a 

significant amount of time to find the loopless optimal solution; particularly, 

when the computation requires many iterations. As a result of this, the novel 

method, which can give a comparable result but consume less runtime, is still 

in need. 

   

1.5 Bacillus subtilis 
1.5.1 Overview 

Bacillus subtilis (B.  subtilis), also known as hay bacillus or grass bacillus, is a 

Gram-positive, rod-shaped bacterium. It can be found in soil and in the 
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gastrointestinal tract of ruminants and humans. Due to its high competence of 

extracellular DNA uptake for genetic manipulation, B.  subtilis gained its 

popularity in research and has been studied extensively in many aspects 

(Figure 1.8) such as bacterial cell division, surface motility, protein secretion, 

biofilm formation, and secondary metabolite production (Kovács 2019, 

Errington and Aart 2020, Su et al. 2020, Harwood et al. 2018). Also, B. subtilis 

has been used to study sporulation in bacteria as the bacterium undergoes 

sporulation processes and forms an endospore to survive in stressful 

environments, e.g., due to change of pH, radiation, starvation, or an extreme 

temperature (Paredes-Sabja et al. 2011, McKenney et al. 2013). Equivalent to 

Escherichia coli (E. coli) as a model organism for Gram-negative bacteria, B.  

subtilis is the model organism for Gram-positive bacteria (Kovács 2019, 

Errington and Aart 2020, Su et al. 2020). 

 

 
Figure 1.8. Major usages of B. subtilis in different aspects. Figure 8 
Figure 1.8. Major usages of B. subtilis in different aspects 

1.5.2 Carbon source utilization in Bacillus subtilis 

B. subtilis can utilize many different carbon sources such as monosaccharides, 

disaccharides, amino acids, or large molecules like cellulose to generate 

building blocks and energy for growth promotion (Stulke and Hillen 2000). 

However, like other bacteria, glucose is the preferred carbon source for B. 

subtilis (Kleijn et al. 2010, Stulke and Hillen 2000). When glucose is available 

in an environment, the bacteria exert catabolite repression to quickly uptake 
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glucose into the system and utilize it. Catabolite repression is a global regulatory 

system to allow micro-organisms to switch and utilize the preferred carbon 

sources (considered to be more beneficial for the cell) even though the other 

carbon sources are still present. The adaptation can be achieved by inhibiting 

the synthesis of enzymes involved in the catabolism of other carbon sources 

than the preferred ones (Deutscher 2008, Stulke and Hillen 2000). In the case 

of B. subtilis, this process is controlled by catabolite control protein A (CcpA), 

which is a transcription factor regulating carbon utilization in Gram-positive 

bacteria (Stulke and Hillen 2000, Lorca et al. 2005). 

Besides glucose, malate is recognized as another highly preferred 

carbon source of B. subtilis (Kleijn et al. 2010, Meyer and Stulke 2013). Kleijin 

et al. discovered that while B. subtilis suppressed the utilization of other carbon 

sources (gluconate, glycerol, succinate, fructose, arabinose, or pyruvate) when 

glucose was available, the bacteria co-utilized malate and glucose and 

achieved a higher growth rate compared to growing the bacteria on malate or 

glucose as the only carbon source (Kleijn et al. 2010). 
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Chapter 2 

Objectives 
 

Gaining insight into metabolism is of importance to understand how cells 

behave or adapt to changes in the environment. Studying metabolic fluxes 

provides access to this valuable information. Although 13C-MFA is by far the 

most prominent approach providing flux estimates with high accuracy and 

precision, it is experimentally and computationally expensive. Alternatively, FBA 

has been employed to estimate metabolic fluxes without labeling experiments. 

It is less informative but can benefit from the low costs and low experimental 

efforts and gain flux estimates in experimentally difficult conditions. Methods to 

integrate relevant experimental data have been established to improve FBA flux 

estimations. Transcriptomic profiling is often selected as the data of choice 

since it is easy to generate at the genome scale. Most methods typically embed 

gene expression data by binarizing differential and non-differential expressed 

genes coding for the respective enzymes. However, employing defined 

thresholds can result in disregarding the fine-grained regulation of metabolism. 

Thus, the first aim of this study was to develop a novel context-specific model 

extraction method employing transcriptomic data in a continuous way to 

improve flux prediction. 

Besides this, TIL is a well-known problem in constraint-based modeling, 

leading to unrealistic flux distributions, and particularly when studying such 

omics-based models. Though the problem is well-addressed theoretically, the 

practice of TIL removal is still challenging due to computational complexity. This 

led to the second goal of the study, which was to develop a new method to 

improve TIL reduction.  

Nutrition is essential for any cell to guarantee its survival. Having a model 

that can identify correct carbon sources of a cell is very beneficial to investigate 

how the cell utilizes its carbon sources under different environments. In this 

study, the Gram-positive bacterium B. subtilis, which is frequently used as the 

model organism in research and has good experimental data available, was 
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used to develop the context-specific model that can predict the correct carbon 

sources (this served as the final purpose of the study). 
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Chapter 3 

Materials and Methods 
 

3.1 Data assembly 

3.1.1 Experimental data of the eight-carbon-source study (first dataset) 

Published microarray gene expression data of the B. subtilis strain BSB1 was 

used. BSB1 is a tryptophan prototrophic derivative of strain 168. Tiling arrays 

covering the whole genome of B. subtilis 168 were used to measure the 

expression level (Nicolas et al. 2012). In this dataset, B. subtilis was grown in 

minimal medium in eight different carbon source conditions (glucose, fructose, 

gluconate, glutamate/succinate, glycerol, malate, malate/glucose, pyruvate). 

The data was taken from the original publication (Table S2 from (Nicolas et al. 

2012)). In order to validate the model, metabolic flux data from 13C isotope 

labeling experiments of the same eight carbon source conditions (Table S4 from 

(Chubukov et al. 2013)) was used. This data is denoted as the first dataset in 

the following. 

 

3.1.2 Experimental data of the nutritional-shift study (second dataset) 

In order to validate the trained model with a separate, unseen dataset, publicly 

available gene expression data and 13C-tracer based metabolic flux data from 

a time-series experiment of two nutritional shifts, i.e., the shift from glucose to 

glucose plus malate and the shift from malate to malate plus glucose, were used 

(Buescher et al. 2012). Gene expression data and 13C metabolic flux data were 

generated using the same experimental protocol described in the first dataset. 

B. subtilis was grown in minimal medium on a single carbon substrate until an 

OD600 of 0.5 was achieved. Then, the other substrate (glucose or malate) was 

added to the culture to assess the bacterial behavior at 0 (before the addition 

of the other substrate), 5, 10, 15, 25, 45, 60, and 90 minutes after the other 

substrate was added. Both gene expression data and 13C metabolic flux data 

were taken from the BaSysBio database 

(https://basysbio.ethz.ch/openbis/basysbio_openbis.html). This data is denoted 

as the second dataset in the following. 
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3.2 Data pre-processing 

The gene expression data of the first and second dataset had been pre-

processed by computing the median of the estimated transcription signal of all 

probes assigned to one corresponding gene (Buescher et al. 2012, Nicolas et 

al. 2012). The gene expression data in the second dataset had been further 

processed by quantile normalization (Buescher et al. 2012). All gene expression 

levels were provided after log2 transformation (Buescher et al. 2012, Nicolas et 

al. 2012). In order to obtain the gene symbols, BSU identifiers were matched 

with gene symbols using bioDBnet, version 2.1 (Mudunuri et al. 2009). In the 

first dataset, each condition contained three biological replicates.  For most of 

the time points of the second dataset, three biological replicates were available. 

The rest had two biological replicates. For each condition or time point, gene 

expression levels across the available replicates were averaged.  

Gene-protein-reaction (GPR) mapping was performed to map gene 

expression values to proteins and reactions. The GPR data was taken from the 

original publication of Chubukov et al. (Chubukov et al. 2013) and the metabolic 

network of B. subtilis 168 from the BiGG Models database (BiGG ID iYO844) 

(King et al. 2016). The data was compared with the information from UniProt 

(UniProt Consortium 2018) and KEGG (Kanehisa et al. 2017, Kanehisa and 

Goto 2000, Kanehisa et al. 2016) and corrected if these databases contained 

different information. Additionally, literature about two more genes (lrgA, lrgB) 

coding for a pyruvate transporter was found (van den Esker et al. 2017). 

Therefore, these two genes were added and linked to the corresponding 

reaction in the GPR data. 13C metabolic flux data from Chubukov et al. 

(Chubukov et al. 2013) and Buescher et al. (Buescher et al. 2012) were used 

as published without further processing. 

 

3.3 Model building 

3.3.1 Building the metabolic model 

The iYO844 model of B. subtilis was transferred from Matlab to R 

(stoichiometric matrix, lower and upper bounds, reversibility, metabolite, and 

reaction names) to develop a MILP based model in R. The 13C metabolic flux 

data was assessed if it fitted into the metabolic model in R. The solution from 

the 13C model needed to be a feasible solution complying with all set 
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constraints. Checking the feasibility of 13C metabolic flux data to the metabolic 

model was done to ensure that the prediction results from the approach 

developed within this study (named as Linear Programming based Gene 

Expression Model, LPM-GEM) and 13C metabolic flux data could be efficiently 

compared. However, initial trials showed that no solution was found in the 

solution space when flux values from the 13C metabolic flux data were used 

allowing only one exchange reaction flux to be non-zero, i.e., from the specific 

transporter of the corresponding carbon source. In turn, it was possible to find 

a feasible solution when fluxes from other exchange reactions besides the 

exchange reaction of the corresponding carbon source were allowed to be non-

zero for the influx. Although the solution was found, the flux values from other 

exchange reactions were substantially high, which was unrealistic. Hence, to 

find a reasonable boundary for each of these exchange reactions, an 

optimization problem was set up by letting the solution deviate from 13C 

metabolic flux data by maximal 0.1 mmol h−1 gcdw−1. After optimization, a sum 

of fluxes from other exchange reactions for each different condition was 

obtained and compared amongst all conditions. The lowest possible value (sum 

of fluxes = 0.688 mmol h−1 gcdw−1) restricting the influx of all other metabolites 

(not the metabolite of the corresponding condition) into the cell was applied to 

the model. The list of all exchange reactions besides the designated carbon 

sources of the corresponding minimal medium is provided in the appendix in 

Table A1. 

 

3.3.2 Defining the set of reactions for the optimization criterion 

As described below, the generated models were validated with a well-defined 

gold standard, i.e., flux values based on the 13C labeling data from the original 

publication. This gold standard data was available for 40 reactions, mostly 

covering central energy metabolism (Chubukov et al. 2013). Hence, these 

reactions were used in the optimization process when gene expression values 

were mapped to predicted fluxes in the metabolic model (explained in the next 

section). These reactions are called core reactions in the following. A selection 

of further reactions was added to the optimization function of the model to 

improve the model predictions, called associated reactions in the following. 

Associated reactions were added following three criteria, (1) they needed to be 
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reactions that were directly connected (via an exchanging metabolite) to the 

core reactions in central energy metabolism or amino acid biosynthesis, (2) 

important metabolites in glycolysis or tricarboxylic acid (TCA) cycle (e.g., 

glyceraldehyde 3-phosphate, pyruvate, oxaloacetate, α-ketoglutarate) which 

are substrates or products of these reactions, and (3) at least one of the 

associated genes to the reactions needed to be differentially expressed in at 

least one out of the eight carbon sources of the first dataset when compared to 

the expression of B. subtilis in the control medium (LB medium) (Buescher et 

al. 2012). In order to identify differentially expressed genes, T-tests were 

performed comparing the expression value of the corresponding gene in each 

specific carbon source condition versus its expression in the control medium. 

The Benjamini-Hochberg method was used to correct for multiple testing across 

all genes (Benjamini and Hochberg 1995). The p-value cutoff was 0.05. By this, 

119 genes and 138 reactions were assembled (Table A1). 

 

3.4 Formulating the optimization criterion 

Assuming that the metabolic flux correlates linearly with the expression of the 

gene coding for the responsible enzyme of the corresponding reaction (Figure 

A1), gene expression values were linearly mapped to predicted fluxes 

formulated within the following optimization problem. 

Let 7-',.
/'0  represent a gene expression-based flux for reaction .+ ( .+ is a 

reaction that is part of core or associated reactions) in condition ". 7-',.
/'0  is based 

on information from gene expression data and the flux range,   

7-',.
/'0 =	C-'#'" + ,D̅-',. −	D-'#'"0 F

12(#)*+3	2(#)#$5
67(#)*+3	7(#)#$8G  (3.1) 

where D̅-',. is the averaged gene expression value of the gene associated with 

reaction .+ in condition ". D-'#'" is the minimum gene expression value across 

all conditions of the gene associated with reaction .+, D-'#9$ is the maximum 

gene expression value. C-'#'" is the minimum possible flux and C-'#9$ is the 

maximum possible flux across all conditions obtained from flux variability 

analysis (FVA, see below) for core reactions (CR) and associated reactions 

(AR). 
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Under the FBA framework, the metabolism is assumed to be at steady 

state. Hence, there is no accumulation of mass, and specifically, no change of 

metabolite concentrations over time. =- is the stoichiometric matrix of the 

metabolic network, 7-,. represents the predicted flux in the metabolic network 

for reaction . (. is any reaction in the network) in condition ". The variable 7-,. 
must satisfy the constraints from the stoichiometry, as well as lower >'- and 

upper bounds ?'-, i.e.,  

=- ∙ 	7-,. = 0      (3.2) 

>'- 	≤ 7-,. ≤ ?'-      (3.3) 

Subject to constraints (3.2) to (3.3), the optimization problem was formulated 

by 

Minimize ∑ 8-' ∙ H7-',. −	7-',.
/'0 H-',. + 	! ∑ 7-:,.-:,.  (3.4) 

8-' = I
)

2(#
,-#./0 ,																								∀.+	 ∈ CR

)
2(#
,-#./0;)<<

, 															 ∀.+	 ∈ AR
  (3.5) 

The formulated objective function is a trade-off between two optimization 

criteria. The first term,  ∑ 8-' ∙ H7-',. −	7-',.
/'0 H-',. , minimizes the error between the 

predicted flux 7-',. and the gene expression-based flux 7-',.
/'0 . The weight 8-' is 

introduced to adjust the term through equation (3.5). The predicted flux 7-',. was 

adjusted by averaged gene expression values using the weight 8-' for each 

gene encoding the reaction .+.	C-'
=>'7?0 was obtained by selecting the maximum 

of absolute values of the maximum or minimum flux from the FVA derived 

maximal flux values. The weight was set as the reciprocal of this value to make 

reactions with small and high variances of fluxes equally important to the 

objective function. The associated reactions (AR) were down-weighted by 

adding the constant +100 in the denominator. Moreover, reactions which C-'#'" 

and C-'#9$ were zero, were discarded. This resulted in lower numbers of 

reactions leading to 98 reactions basing on 116 genes. 

The second term in formula (3.4), !∑ 7-:,.-:,. , was set to minimize the 

sum of all predicted fluxes 7-:,. from reactions being not CR nor AR coping for 

the problem of obtaining thermodynamically infeasible loops. To obtain an 

appropriate ! value, the sum of sums of absolute values of fluxes 7-:,. across 
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all conditions, ∑ ∑ H7-:,.H-:,.
.
'() , and a total model mapping discrepancy were 

assessed for each ! variation (see Chapter 4, Results). The total model 

mapping discrepancy O is a coefficient used to measure an overall deviated 

distance between 7-',. and 7-',.
/'0  from all reactions .+ across all conditions. It 

reflects how good 7-',. resembles 7-',.
/'0  and was derived by 

 O = 	∑ ∑ H7-',. −	7-',.
/'0 H-',.

.
'()     (3.6) 

After comparing the sum of sums of absolute values of fluxes 7-:,. and the total 

model mapping discrepancy from different ! values, the value of 0.01 was set 

and selected since the sum of sums of absolute values of fluxes 7-:,. was 

considerably reduced while the total model mapping discrepancy was only 

moderately increased (see Chapter 4, Results). 

The biomass constraint was set for each different condition " based on 

the publications of Chubukov et al. and Buescher et al. (Chubukov et al. 2013, 

Buescher et al. 2012). During learning of the model based on the corresponding 

gene expression profiles, the lower bounds for all eight carbon source exchange 

reactions were opened to allow influxes of any possible carbon source. The 

maximum substrate rate (negative lower bounds) reported in Chubukov et al. 

(Chubukov et al. 2013) across all conditions for each carbon source was taken. 

These lower bounds of all eight carbon source transporter reactions were set to 

the minimum values for all conditions. This setting was done to ensure that the 

method predicts carbon sources without prior knowledge of the carbon source 

in a certain carbon source condition. 

 

3.4.1 Reducing the search space employing Iterative Feasible Flux Space 

Reduction 

A realistic estimate of the lower and upper bounds for the reactions in the model 

was needed to correctly map the expression data to the metabolic flux. At 

different steady-state conditions, the feasible minimum and maximum flux 

within the solution space can differ from the initially set lower and upper bounds 

of each reaction. FVA is a well-known technique to determine flux ranges (see 

Chapter 1, Introduction). FVA was applied to determine the minimum and 

maximum possible fluxes as follows. For each reaction . in condition ", in FVA, 

it is assumed that the metabolic network is in a steady state and the 
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stoichiometry is fulfilled, as referred to equation (3.2) and (3.3). FVA minimizes 

and maximizes the flux 7-,. to find an upper and lower bound for the respective 

reaction. 

 In general, doing this for every reaction should narrow down the flux 

range of each reaction. However, the observed boundaries did not differ 

substantially after performing FVA for every core and associated reaction. To 

further reduce the solution space and limit its flexibility, an iterative approach 

was developed (Figure 3.1). The approach was part of the training scheme to 

narrow down the flux ranges; hence, this was applied only to the training data. 

The method was termed Iterative Feasible Flux Space Reduction (IFFPR). 

Figure 9Figure 3.1. The diagram of IFFPR 
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As depicted in Figure 3.1, the approach iteratively adjusts flux ranges based 

on the total model discrepancy and can be explained in detail as follows:  

a) C-'#9$ and C-'#'" are acquired by the above-described FVA for each 

reaction.  

b) Absolute values of C-'#9$ and C-'#'" from each reaction are compared and 

the maximum of these values used as the representative maximal bound for 

this reaction. Representative maximal bounds from all reactions are used to 

rank the reactions.  The reaction with the highest value is placed at the top 

position (.+ = 1). 

c) The first reaction .+, with .+ = 1 is selected.  

d) C-',@#9$  =	C-'#9$ and C-',@#'"= C-'#'" is set. 

e)   C-',A#9$ = 0.5 ∗ C-',@#9$     (3.7) 

C-',A#'" = 0.5 ∗ C-',@#'"     (3.8) 

in which C-',A#9$ is the new maximal possible flux for the current iteration, C-',A#'" is 

the new minimal possible flux for the current iteration. C-',@#9$ and C-',@#'" are 

reduced by half every iteration. Since the reaction can be unidirectional or bi-

directional, C-',@#9$ and C-',@#'" can have similar or different signs. Equation (3.7) 

and (3.8) are applied to reduce C-',@#9$ and C-',@#'". If  C-',@#9$ and C-',@#'" have the 

same sign, either equation (3.7) or (3.8) is used depending on the sign aiming 

to reduce the flux range (Figure 3.2).  
Figure 10 Figure 3.2. 

 
Figure 3.2. The graphical presentation of how IFFPR modifies a solution 

space regarding reaction directions. In the case of bi-directional reactions 
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(case 1), both equations (3.7) and (3.8) are applied to restrict the solution space. 

However, in the case of unidirectional reactions (case 2a and 2b), only equation 

(3.7) or (3.8) is applied to case 2a or 2b, respectively. 

f) C-',A#9$ and C-',A#'" are applied as C-'#9$ and C-'#'" in formula (3.1) mapping gene 

expression values to flux.  

g) After optimizing the objective function in formula (3.4), the total model 

mapping discrepancies are compared between the previous O@ and the new 

iteration OA. If the total model mapping discrepancy from the previous run is 

greater or equal (O@ 	≥ OA), the algorithm proceeds with the next iteration and 

proceeds with step e).  

h) The inner iterative process terminates for reaction .+. The next reaction in 

the list is selected by setting .+ = 	.+ + 1, and the algorithm proceeds with step 

d).  

i) The algorithm terminates if the total model mapping discrepancy becomes 

stable, or all reactions are processed. 

   In this study, the process was terminated before the algorithm reached 

the end of the list. As the algorithm processed around 80% of the reactions in 

the list, the total model mapping discrepancy became stable (see Chapter 4, 

Results). This was explainable as the rest of the reactions (~ 20%) already 

showed narrow flux ranges (Table 4.1). Reducing the flux ranges for these 

reactions could not influence the total model mapping discrepancy any further 

but only cost more computational time (see Chapter 4, Results). Hence, the 

algorithm was stopped, and the sets of 	C-',A#9$ and C-',A#'" were obtained. 

 

3.5 Reducing the number of thermodynamically infeasible loops 

As mentioned in the previous chapter (see Chapter 1, Introduction), 

thermodynamically infeasible loops can cause unrealistic fluxes predicted from 

constraint-based modeling methods (e.g., FBA, FVA). Many attempts have 

been made to solve the problem. By far, the most successful method which is 

considered as a gold standard method is ll-COBRA. The method successfully 

reduces computational complexity by introducing reaction directionality as a 

binary variable into the optimization function and generates only a MILP level 

problem to inhibit TIL at the genome scale.  Although ll-COBRA requires less 
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runtime compared to other methods (Schellenberger et al. 2011), it is still 

computationally intensive. In order to speed up the process to remove TIL, in 

this study, a novel iterative procedure was developed to detect and remove TIL 

called REDucing the number of Thermodynamically Infeasible Loops (RED-

TIL). After obtaining flux prediction results from the mapping procedure (see 

section 3.4 Formulating the optimization criterion), the results were used as an 

input for a MILP problem to identify TILs and to exclude them. 

External reactions are not regarded. Applying a maximal flux value 

threshold (threshold = 0.01) for TIL to be allowed, the set of reactions S?TT(7) 
known as the support of 7 is assembled. S?TT(7) contains a subset of the 

internal reactions (7	 ≥  0.01). The value of 0.01 was applied as a trade-off 

between CPU time and reasonable results. Next, an optimization problem is put 

up to determine the length of a minimum-containing TIL in the solution by 

 minimize  ∑ U--      (3.9) 

 subject to 

    ∑ =-- ∙ U- = 0     (3.10) 

    U- ≥ +VWX-    (3.11) 

∑ +VWX-- ≥ 2    (3.12) 

+VWX- ∈ {0, 1}    (3.13) 

where U- is the flux of reaction . (∀.	 ∈ S?TT(7)), =- is a stoichiometric matrix of 

the metabolic network with metabolites and reactions, 	+VWX- is a binary variable 

which equals to 1 for a reaction that is involved in the potential TIL. In a system 

that contains a TIL, there must be at least two reactions involved enforced by 

equation (3.12). If a solution of the problem put up by equation (3.9) – (3.13) is 

found, a TIL (of length k) is detected. A constraint is added not allowing this TIL 

by 

∑ +VWX-#B
'() 	≤ \ − 1    (3.14) 

Equation (3.14) forces the algorithm to search for a solution that puts at 

least one of these variables +VWX-& , +VWX-1 , … , +VWX-2 to 0 which leads to the TIL 

to be discarded from the solution. In the next optimization iteration, the mapping 

procedure is re-optimized using equation (3.1) to (3.5) together with the newly 

added constraint from equation (3.14), followed by finding new TIL employing 
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the MIP problem described by equation (3.9) – (3.13). The algorithm stops when 

no TIL above the threshold can be found. 

  

3.6 Workflow for validating the model  

The overview of the entire process is illustrated in Figure 3.3. The process 

started by allowing the model to learn based on gene expression profiles as 

explained above. The model was trained iteratively to reduce the total model 

mapping discrepancy and improve the model fitting. The total model mapping 

discrepancy was used to measure how well the estimated fluxes fitted to gene 

expression data. At the end of the model training, the best parameter setting 

was obtained at the lowest possible total model mapping discrepancy (total 

model mapping discrepancy becomes stable or the end of the IFFPR list is 

reached) (see section 3.4.1 Reducing the search space employing Iterative 

Feasible Flux Space Reduction). Then, the primary carbon source for each of 

the eight carbon source conditions was predicted by selecting the transporter 

(one out of eight potential transporters) with the highest flux in the 

corresponding condition. The prediction was validated by comparing it to the 

known carbon source of the according condition. Additionally, the flux 

predictions of the 40 core reactions were compared with the fluxes of the 

original publication (Chubukov et al. 2013) derived by 13C tracer analysis, and 

the similarity was quantified by calculating Pearson’s correlation of the 

predicted fluxes and 13C derived fluxes of the core reactions. The Benjamini-

Hochberg method was used to correct for multiple testing across all reactions 

(Benjamini and Hochberg 1995). Furthermore, the model was applied to an 

unknown dataset, i.e., data from the time series of B. subtilis grown on glucose 

spiked with malate and malate spiked with glucose as described above. 

 



 Chapter 3 – Materials and Methods 
________________________________________________________________________________________________________________________________ 

 

 48 

 
Figure 3.3. The workflow of LPM-GEM. The boxes in orange color are all the 

processes involving in model training. O: total model mapping discrepancy. 

(details, see main text). 

Figure 11 Figure 3.3. The workflow of LPM-GEM 

3.7 Implementation of the integrative Metabolic Analysis Tool 

To benchmark LPM-GEM, its prediction performance was compared with one 

of the well-known existing tools for generating context-specific metabolic 
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models, i.e., the integrative Metabolic Analysis Tool (iMAT) (Shlomi et al. 2008, 

Zur et al. 2010). As iMAT is implemented within the Cobra toolbox (Heirendt et 

al. 2019), both tutorials, i.e., from the toolbox (Heirendt et al. 2019) and from 

the iMAT protocol (Shlomi et al. 2008, Zur et al. 2010), was followed to ensure 

following the correct implementation of the method. The same metabolic model 

(as described above), gene expression data for the eight different carbon 

source conditions (Nicolas et al. 2012), and GPR mapping as in LPM-GEM were 

employed. Minimal lower bounds for all eight carbon source exchange reactions 

were also taken from Chubukov et al. (Chubukov et al. 2013). Upper (a cutoff 

for non-zero flux reactions) and lower thresholds (a cutoff for zero flux reactions) 

were set equal to +/- 0.3 SD from gene expression values following the 

suggested iMAT discretization process (Stempler et al. 2014, Shlomi et al. 

2008, Zur et al. 2010). 

 

3.8 Implementation environment 

All analyses were performed using R version 3.3.3 (www.r-project.org). The 

Cobra toolbox version 3.0 and Matlab version R2019a (www.mathworks.com) 

were used to obtain the initial stoichiometric matrix, lower and upper bounds, 

reversibility information, and metabolite and reaction names from the initial 

metabolic network and prediction results from iMAT models for benchmarking. 

All further analysis was performed using R. The Gurobi optimizer version 9.0.2 

(www.gurobi.com) was used to solve mixed-integer linear programming 

problems. 
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Chapter 4 
 

Results  
 

 

4.1 Employing three strategies to construct thermodynamically 

feasible context-specific models  

In order to efficiently integrate gene expression profiles into the metabolic 

models and obtain realistic flux distribution, LPM-GEM was developed based 

on solutions that are thermodynamically feasible. Three different strategies (i.e., 

IFFPR, RED-TIL, and adding a penalty for the sum of fluxes) were employed to 

reduce TIL. All strategies were able to improve the constructed models as 

described in the following.  

 

4.1.1 Iterative Feasible Flux Space Reduction 

Under various environments such as temperature, pH, or different carbon 

sources, a cell or an organism can adapt itself to changes and achieve different 

steady-state conditions of fluxes. A feasible flux range for each reaction at the 

specific steady-state condition can differ from its original upper and lower 

bounds in each particular condition. This feasible flux range generally 

represents the actual minimal and maximal flux boundaries better than the 

original upper and lower bounds from the metabolic network. To assess flux 

characteristics under different circumstances, FVA is typically used to find the 

allowable flux range for each reaction in the metabolic network (see Chapter 1, 

Introduction).  

In this thesis, FVA was first performed to reduce the maximal and 

minimal flux boundaries for all fitted reactions (core and associated reactions) 

of the model. However, it was observed that the resulting flux ranges did not 

substantially differ from the original upper and lower bounds for many reactions. 

These high flux ranges were expected not to reflect realistic situations and may 

facilitate using TILs by the optimization procedure when fitting the model to the 

transcription profiles. Hence, IFFPR was developed to iteratively reduce the flux 

boundaries from FVA by comparing the discrepancy between the fluxes derived 

from the expression values and the optimal feasible flux when obtaining newly 
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adjusted maximal (C-'#9$) and minimal (C-'#'") possible fluxes for every fitted 

reaction. This discrepancy was used as an indicator to measure how well the 

predicted fluxes resemble gene expression values, and it is denoted as the 

“total model mapping discrepancy” in the following (see section 3.4 Formulating 

the optimization criterion). Employing IFFPR led to new, considerably reduced 

flux bounds (Table 4.1).  

 

Table 4.1. Initial and final bounds after implementing IFFPR. 

Reaction 
Minimum flux 

(Before) 
Maximum flux 

(Before) 
Minimum flux 

(After) 
Maximum flux 

(After) 
2S6HCCi 4.52E-05 0.00028 4.52E-05 0.00028 

ACKr -210 210 -0.411 0.41 
ACONT -6.02 45.2 -3.01 22.6 
ACOTA -136 0 -0.0665 0 
AKGDH 0 44.6 0 22.3 
AKGt2r 0 0.688 0 0.688 

ALCD19y -6.22E+00 5.72 -6.22E+00 5.72 
ALDD31_1 0 0.688 0 0.688 

ARGSL -0.655 42.1 -0.00128 0.0822 
ARGabc 0 0.688 0 0.688 
ARGt2r 0 0.688 0 0.688 
ASPO1 0 119 0 29.7 
ASPT 0 185 0 0.00565 

ASPTA -186 0.362 -46.6 0.0905 
CDPDSP_BS 0.00952 0.059 0.00952 0.059 

CITt10 0 0.688 0 0.688 
CITt14 0 840 0 0.000801 
CITt15 0 840 0 0.103 
CITt2r -840 0.688 -0.103 8.40E-05 

CLPNS2_BS 8.50E-05 0.000527 8.50E-05 0.000527 
CS 0 45.2 0 22.6 

CYSS_2 0 78.9 0 0.0385 
CYSTGL_1 0 25.1 0 0.0122 
CYSTS_2 0 118 0 0.0018 

ENO -116 28.3 -29.1 7.08 
FRUK 0 6.22 0 6.22 
FBA -23.4 9.13 -11.7 4.57 
FBA2 -6.22 5.72 -6.22 5.72 
FBP 0 23.4 0.00E+00 0.0228 

FEDCabc 0 0.00364 0 0.00364 
FRUpts 0 5.72 0 5.72 

FUM -15.4 209 -1.93 26.1 
FUMt2r -17.1 0.688 -0.134 0.00537 

G6PDH2r 0 72.1 0 0.0352 
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Reaction 
Minimum flux 

(Before) 
Maximum flux 

(Before) 
Minimum flux 

(After) 
Maximum flux 

(After) 
GAPD 0 17.7 0 17.7 

GAPDi_nadp 0 30.6 0 0.0299 
GHMT2r 6.24E-05 48.4 1.22E-07 0.0945 
GLCNt2ir 0 5.13 0 5.13 
GLCpts 0 9.01 0 9.01 
GLUDxi 0 133 0 0.0081 
GLUSy 0 136 0 0.00104 
GLUt2r 0 3.59 0 3.59 
GLYCt -2.93 6.22 -2.93 6.22 
GLYK 0 6.22 0 6.22 

GLYO1 0 49.7 0 3.11 
GNKr 0 5.13 0 5.13 
HISTD 0 17.3 0 1.65E-05 
HISt2r 0 0.688 0 0.688 

HSTPTr 0 17.3 0 0.0169 
ICDHyr -6.02 45.2 -3.01 22.6 
ICITt10 0 0.688 0 0.688 
ICITt2 -11.3 0.688 -5.63 0.344 
LCADi 0 0.688 0 0.688 
LDH_L -17.5 0.688 -4.37 0.172 

L_LACt2r -17.5 27.2 -4.37 6.8 
MALt10 0 26.5 0 1.66 
MALt2r 0 26.5 0 26.5 
MALt4 0 26.5 0 0.0259 
MDH -185 139 -23.1 17.3 
ME2 0 235 0 0.000448 

MCITL2 0 24.9 0 0.0121 
OXGDC 0 44.5 0 0.0217 

PC 0 210 0 0.0032 
PDH 0 24.9 0 24.9 
PFK 0 9.13 0 9.13 

PGCD -0.555 119 -0.00108 0.232 
GND -6.16 72.1 -0.385 4.5 
PGI -72.2 9.55 -9.03 1.19 

PGK_1 -30.6 17.7 -30.6 17.7 
PGM_1 -116 28.3 -29.1 7.08 
PHETA1 -3.97 0 -3.97 0 

PPCK 0 235 0 3.67 
PPS 0 210 0 0.0032 

PRAGSr 0 18.8 0 0.00229 
PTAr -210 210 -0.411 0.41 
PYK 0 236 0 14.8 

PYRt2 -20.8 8.26 -10.4 4.13 
RPE -25.1 47.8 -0.784 1.49 
RPI -25.1 1.85 -1.57 0.116 

SERAT 0 78.9 0 0.0385 
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Reaction 
Minimum flux 

(Before) 
Maximum flux 

(Before) 
Minimum flux 

(After) 
Maximum flux 

(After) 
SERD_L 0 118 0 0.000902 
SHSL1_1 0 25.1 0 0.00614 
SHSL2 0 25.1 0 0.0982 
SHSL4r 0 25.1 0 0.0245 
SUCCt2r -13.9 3.35 -13.9 3.35 
SUCD1 -0.688 48 -0.344 24 

SUCOAS -187 44.5 -23.4 5.57 
TALA -12.5 24 -0.389 0.75 
THRD 0 43.9 0 11 

THRD_L 0 25.1 0 0.098 
THRS 0 44.2 0 5.53 
TKT1 -12.5 24 -0.778 1.5 
TKT2 -12.6 23.8 -0.791 1.49 
TPI -23.7 12.7 -11.9 6.34 

TRPAS1 0 78.9 0 0.077 
TRPS1 0 0.0573 0 0.0573 
TYRTA -3.94 0 -3.94 0 
UNK5 0 1.38 0 1.38 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 

2016).  

 

From all 98 fitted reactions, there were 50 reactions that either minimal 

or maximal bound (unidirectional reaction) or both bounds (bidirectional 

reaction) were reduced by at least 80% from the original value (Table 4.1). The 

reduced bounds greatly reduced the search space. The result of the search 

space reduction was observed by the declining total model mapping 

discrepancy. Notably, the total model mapping discrepancy decreased 

considerably by 95.65% from the original discrepancy (Figure 4.1). The lower 

total model mapping discrepancy indicated that the fitting of gene expression 

profiles to the metabolic model was improved after the solution space was 

forced to be more restricted by the newly adjusted bounds. All flux predictions 

with and without employing IFFPR are listed in Table A3 and Table A4. In 

summary, IFFPR improved the experimental data integration more efficiently, 

observed by a decreased total model mapping discrepancy. 
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Figure 4.1. The total model mapping discrepancy calculated over all eight 

conditions at ^ = 0.01 is shown with respect to the number of iterations of 

IFFPR algorithm. As the algorithm proceeds near the end of the list of reactions 

(>600 iterations), the total model mapping discrepancy does not further 

decrease. Figure 12  

 

4.1.2 REDucing the number of Thermodynamically Infeasible Loops 

ll-COBRA is a well-established and efficient method to remove TILs in 

constraint-based modeling. The method generates one large MILP problem 

finding an optimal solution while enforcing fluxes from internal reactions 

participating in all detected cycles to be zero (Schellenberger et al. 2011). 

Although the approach is very powerful, it is computationally demanding. 

Hence, RED-TIL was developed based on MILP to solve the same problem 

while improving the computation speed. The novel iterative approach required 

considerably less running time. To provide the thermodynamically feasible flux 

distribution, RED-TIL solves an FBA problem, identifies and removes TIL in the 

solution space iteratively by a bottom-up approach. The process is repeated 

until no TIL above a certain threshold (threshold = 0.01) is detected (see 

Chapter 3, 3.5 Reducing the number of thermodynamically infeasible loops).  
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In order to compare these approaches, both methods were implemented 

using the same R programming environment and the same numerical solver, 

yielding very similar solutions (Pearson’s correlation coefficient r = 0.96, Figure 

4.2). The predicted fluxes from RED-TIL and ll-COBRA are provided in Table 

A4 and Table A5. 

 

 
Figure 13 Figure 4.2. Flux distribution between RED-TIL and ll-COBRA 

Figure 4.2. Flux distribution between RED-TIL and ll-COBRA. Scatterplots 

display the predicted fluxes of the core and associated reactions (98 reactions) 

from RED-TIL versus the predicted fluxes from ll-COBRA from all eight different 

carbon source conditions.  
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Even though similar results from ll-COBRA and RED-TIL were observed, the 

runtimes from both methods were different. Explicitly, when many iterations 

were needed, i.e., performing FVA for the whole metabolic network, the benefit 

of employing RED-TIL was noticeable. In this study, FVA was performed for 

every reaction in the network (1,250 reactions equal to 2,500 iterations per 

condition). While ll-COBRA required 42.83 hours to perform this task for all eight 

conditions, RED-TIL only needed 12.89 hours (Figure 4.3). 

 

 

Figure 4.3. Computational running time (hours) of ll-COBRA and RED-TIL 

for each carbon source condition after performing FVA. Figure 14 Figure 4.3. Computational 

running time (hours) of ll-COBRA and RED-TIL for each carbon source condition 

In summary, for removing thermodynamically infeasible loops, the new 

approach RED-TIL led to similar models in much faster running time when 

compared to a well-established, commonly used method. 

 

4.1.3 Adding a penalty for the sum of fluxes 

In addition to optimizing the fitting of gene expression to the fluxes of the 

reactions, minimizing the sum of all predicted fluxes from reactions which were 

either core reactions or associated reactions was also considered to restrict the 

optimizer employing thermodynamically infeasible loops (see Chapter 3, 3.4 

Formulating the optimization criterion). Gauging between low total model 

mapping discrepancy and a low total sum of fluxes 7-:,. across all conditions 
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before applying IFFPR and RED-TIL, different strengths of the penalty (ranging 

from ! = 0 (no penalty) to α = 10 (high penalty)) were tested (Figure 4.4). In the 

end, ! = 0.01 was selected as a suitable trade-off parameter for preventing high 

fluxes. The considerable decrease from the total sum of fluxes (compare to	! = 

0) was observed while leaving the total model mapping discrepancy moderate.  
Figure 15Figure 4.4. Trade-off between the sum of sums of absolute 

 
Figure 4.4. Trade-off between the sum of sums of absolute values of fluxes 

from non-core and non-associated reactions and the total model mapping 

discrepancy calculated across all eight conditions at different values of 

parameter ^ before applying IFFPR and RED-TIL. At ! = 0.01, the sum of 

sums of absolute values of fluxes drops considerably while the total model 

mapping discrepancy only moderately increases. 

By employing all three different strategies, i.e., IFFPR, RED-TIL, and 

adding a penalty for the sum of fluxes, a novel mechanistic approach to extract 

context-specific metabolic models from gene expression profiles was 

established to provide thermodynamically feasible flux estimations, and we 

investigated this implementation described in the following sections.  

 

4.2 LPM-GEM identifies the correct carbon sources 

LPM-GEM mapped gene expression levels onto the reactions by a regression 
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generated context-specific metabolic models employing RED-TIL and IFFPR. 

This was done across each of the eight carbon sources (glucose, fructose, 

gluconate, glutamate, succinate, glycerol, malate, pyruvate). Besides the core 

reactions, for which 13C metabolic flux data was available, “associated 

reactions” were considered for fitting the solution to the transcription profiles of 

the corresponding coding genes. “Associated reactions” were neighbors of the 

core reactions and were assumed to be important for the carbon source 

prediction (see Chapter 3, 3.3.2 Defining the set of reactions for the optimization 

criterion). A major objective of the thesis was to construct models enabling to 

predict the carbon source. For this, after optimization, the prediction results of 

the eight transporter reactions (glucose, fructose, gluconate, glutamate, 

succinate, glycerol, malate, pyruvate) were assessed to identify the major 

carbon source for each condition. The z-scores of the corresponding carbon 

source transporters in each condition were compared to predict the primary 

(highest z-score) and secondary (second highest z-score) carbon sources 

(Figure 4.5 a and b). 
Figure 16 Figure 4.5. 
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b 

 
Figure 4.5. a Z-scores of the predictions of the carbon source transporters of 

the eight carbon sources study. A higher z-score indicates a higher probability 

for a specific carbon source; b Carbon source predictions of the eight-carbon-

sources study, 1: first prediction, 2: second prediction. 

For carbon source conditions with only one carbon source, all predictions 

were correct (n = 6, glucose, fructose, gluconate, glycerol, malate, pyruvate). 

For the two carbon sources (glutamate/succinate, malate/glucose), the primary 

carbon source was also correctly predicted. The secondary carbon source 

(succinate) was predicted correctly for the carbon sources glutamate and 

succinate. However, for the carbon sources malate and glucose, pyruvate was 

predicted as a second carbon source instead of glucose. Notably, the z-score 

of the glucose transporter was only slightly below the z-score of the pyruvate 

transporter (Figure 4.5 a). 

Overall, the method could well predict the carbon sources based on gene 

expression profiles of the respective conditions. 

 

4.3 Benchmarking result between LPM-GEM and iMAT 

For benchmarking, LPM-GEM was compared with the well-known method iMAT 

(Shlomi et al. 2008, Zur et al. 2010). The iMAT models were constructed using 

the same metabolic network of B. subtilis, the same gene expression profiles 
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(Shlomi et al. 2008, Stempler et al. 2014, Zur et al. 2010) (see Chapter 3, 3.7 

Implementation of the Integrative Metabolic Analysis Tool). The flux predictions 

from both methods were compared to the gold standard (13C tracer derived 

fluxes) for all 40 reactions (Chubukov et al. 2013) for which 13C metabolic flux 

data was available. All flux predictions are listed in Table A4 and Table A6. 

Pearson’s correlation coefficients for these reactions between the predictions 

and the gold standard are shown in Figure 4.6 (and listed in Table A7 and Table 

A8).  
Figure 17 Figure 4.6. Prediction performance of LPM-GEM and iMAT 

 
Figure 4.6. Prediction performance of LPM-GEM and iMAT. For all 40 core 

reactions for which gold standard data (from 13C tracer analysis) was available, 

Pearson’s correlation coefficients between the predicted fluxes and the fluxes 
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from the gold standard are shown (grey: fluxes are predicted to be zero in every 

condition); PPP: pentose phosphate pathway, TCA: tricarboxylic acid. 

Overall, the number of reactions that showed a good positive correlation 

when compared flux predictions to 13C metabolic flux data from LPM-GEM was 

higher than iMAT, showing the better performance of the model. For most 

reactions in substrate uptakes, glycolysis, TCA cycle, and others, it was clear 

that LPM-GEM performed better. However, in PPP, iMAT gave moderately 

better flux prediction (Figure 4.6). On average, LPM-GEM outperformed iMAT 

(averaged Pearson’s correlation coefficient, LPM-GEM: r = 0.55, iMAT: r = 

0.22). 

Next, the carbon source predictions were compared between LPM-GEM 

and iMAT. Although iMAT correctly predicted all two conditions of two-carbon-

source combinations (LPM-GEM: one condition was correct, while the other 

condition, only the primary source was correctly predicted), it correctly predicted 

only three out of six single carbon sources (LPM-GEM: all six out of six were 

correctly predicted) (Figure 4.7 a and b). Interestingly, iMAT completely failed 

to predict the pyruvate transporter at all as shown in Figure 4.7 a. It was 

because the flux from the transporter was predicted to be zero in all conditions 

(Table A6). In summary, LPM-GEM led to better flux predictions when 

compared to iMAT.  
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a 

 

b 

 

Figure 4.7. a Predictions of the carbon source of the first dataset using iMAT. 

A higher z-score indicates a higher probability for a specific carbon source; b 

Prediction of the carbon source for the eight carbon sources study from iMAT, 

1: first prediction, 2: second prediction. Figure 18 Figure 4.7. 
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However, in a natural environment, the bacteria may need to switch from one 

carbon source to another. Particularly, glucose and malate are preferred carbon 

sources for which such a switch may occur (Kleijn et al. 2010, Meyer and Stulke 

2013). To further test LPM-GEM, the method was applied to a publicly available 

time-series dataset consisting of two nutritional shifts, i.e., from glucose to 

glucose plus malate (malate was added as an additional carbon source) and 

from malate to malate plus glucose (glucose was added as an additional carbon 

source). In these assays, B. subtilis was grown on a single substrate leading to 

a steady-state-like initial condition. Then, the other substrate was added.  

Transcription profiles and 13C flux data were generated in a time series until the 

shift was performed (at an endpoint at 90 min) and the new steady state was 

reached, according to the authors of the original study (Buescher et al. 2012). 

The model which had been trained on the first dataset was applied to the data. 

The predictions were investigated of the two major carbon sources for the two 

initial conditions (before adding the other carbon source - only glucose and only 

malate at steady state) and for the two endpoint conditions (90 min after adding 

malate to glucose (glucose to glucose plus malate), and 90 min after adding 

glucose to malate (malate to malate plus glucose)). To predict the carbon 

sources, the z-scores of the transporters across these steady-state conditions 

were computed in a similar way to the study with the eight carbon sources 

(described above). Then, the predicted results were compared with the gold 

standard. All four out of four steady-state conditions were predicted correctly 

(Figure 4.8 a and b).   
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a 

 
b 

 
Figure 4.8. a Z-scores of the predictions of the carbon source for the nutritional 

shift. A higher z-score indicates a higher probability for a specific carbon source; 

b Prediction of the nutritional shift for the initial and the endpoint conditions. For 

a and b, GM: glucose to glucose plus malate shift, 90 min after adding malate; 

MG: malate to malate plus glucose shift, 90 min after adding glucose. Figure 19 Figure  

Next, to investigate how the LPM-GEM model predicted the time-series 

of the shifts, the predicted fluxes of the malate and glucose transporters were 

compared with the fluxes from the gold standard across all time points (Figure 

4.9). 
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Figure 4.9. Carbon source shifts between glucose and malate. After 

adding the second substrate, the malate transporter quickly adjusts the uptake 

rate as shown in both shifts. In contrast, the glucose transporter delays its 

response. Figure 20 

When the carbon source was shifted from malate to malate plus glucose, our 

predicted fluxes from glucose and malate transporters correlated quite well with 

the gold standard (r = 0.68 for the glucose transporter, r = 0.48 for the malate 

transporter) (Table 4.2). Good prediction results for the shift from glucose to 

glucose plus malate were also expected, as although the order was changed, 

the conditions were based on the same carbon sources. While the prediction 

for the malate transporter was very good (r = 0.98 for the shift of glucose to 

glucose plus malate), the prediction for the glucose transporter was very poor, 

i.e., the flux prediction was even negatively correlated to the gold standard (r = 

-0.21). This discrepancy will be discussed later. The flux predictions from both 

shifts are provided in Table A9 and Table A10.  
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Table 4.2. List of Pearson's correlation coefficients (r) between predicted 

fluxes from glucose and malate transporters and 13C metabolic flux data from 

the corresponding shifts (glucose to glucose plus malate and malate to malate 

plus glucose). 

Transporter Shift r P-value 
(adjusted for multiple testing) 

Glucose 
Glucose to glucose plus 

malate 
-0.21 0.69 

Malate 
Glucose to glucose plus 

malate 
0.98 5.28E-05 

Glucose 
Malate to malate plus 

glucose 
0.68 6.35E-02 

Malate 
Malate to malate plus 

glucose 
0.48 0.16 

 

In summary, applying the model trained with the data from the first study 

(eight carbon sources) to the unknown data from the validation set 

(glucose/malate carbon source shift), the model correctly identified the carbon 

sources at baseline and at the endpoints of the carbon source shifts.  For the 

prediction of the time lapse, the model predicted the time-lapse behavior of the 

main nutrients for the shift from malate to malate plus glucose correctly. 

However, the model had major difficulties for the shift from glucose to glucose 

plus malate, and this will be discussed in the next chapter. 
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Chapter 5 

Discussion 
 

5.1 Technical aspects of LPM-GEM as a novel transcriptomics-based 

context-specific model extraction method 

Most of existing context-specific extraction methods employ binarization to 

integrate gene expression data into the metabolic models. Generally, the 

methods binarize transcriptomic data using a threshold or thresholds (upper 

and lower thresholds in iMAT (Shlomi et al. 2008, Zur et al. 2010)) to define an 

expression state of a gene being on or off. Then, the algorithms use the 

binarized data to allow or restrict fluxes in the metabolic network (see details in 

Chapter 1, 1.4.3.1 Physiochemical constraints alone may fail to reflect the 

actual flux state). Though the methods successfully improved metabolic flux 

estimation compared to the normal FBA method, the binarization of 

transcriptomic data may disregard the fine-grained regulation of metabolism 

and overlook interesting biological events. Also, finding the optimal value of the 

thresholds can be troublesome since these values can vary between genes, 

organisms, conditions, or measurement techniques. To solve the arisen 

question and find the algorithm to efficiently integrate transcriptomic data and 

construct context-specific models, LPM-GEM was established based on a linear 

regression approach to estimate metabolic fluxes in a systems view. By 

assuming that the metabolic flux and the expression of the gene coding for the 

responsible enzyme of the corresponding reaction correlate linearly, the method 

formulated the linear optimization problem and avoided binarization of gene 

expression data by mapping gene expression values directly to fluxes through 

the gene expression-based flux constraint, 7-',.
/'0 . Doing this, LPM-GEM 

circumvented the need of setting thresholds to decide whether the reaction of 

interest would be expressed or non-expressed and let the expression of genes 

guide the model, which also preserved the continuous flux predictions 

compared to the method employing binarization shown in Table A4 and A6. 

Moreover, LPM-GEM does not require a large number of datasets per condition 

as in PROM (Chandrasekaran and Price 2010). Similar to GIMME (Becker and 
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Palsson 2008) or iMAT (Shlomi et al. 2008, Zur et al. 2010), it can work well 

with a single dataset per condition. However, as the expression level is 

compared relatively, it needs at least two different conditions to linearly map 

gene expression values to fluxes.   

Besides, TIL is a well-known issue in CBM when thermodynamic 

feasibility is neglected during the optimization process, resulting in unrealistic 

flux distribution. In order to obtain thermodynamically feasible flux predictions 

and increase the prediction performance, three different strategies (i.e., IFFPR, 

RED-TIL, and adding a penalty for the sum of fluxes) were developed to 

address this issue, and all of them were employed to support LPM-GEM. IFFPR 

was implemented to reduce the solution space by iteratively reducing the flux 

ranges of each considered reaction. By reducing the upper and lower bounds, 

the solution space became more constrained, which automatically forced the 

optimization algorithm to avoid fitting unreasonably high flux values to gene 

expression values. It indirectly prevented the algorithm from involving TIL in the 

system and improved the data integration process to be more efficient (total 

model mapping discrepancy decreased considerably). ll-COBRA is an existing 

well-established method to reduce TIL directly. IL-COBRA is very powerful, but 

also very CPU intensive. To speed up the process of TIL removal, a new 

method RED-TIL was developed. ll-COBRA formulates one large problem and 

searches for an optimal solution in a predefined-thermodynamic feasible region. 

In turn, employing a bottom-up design, RED-TIL splits the overall problem into 

smaller problems by detecting a TIL in the optimal solution, excluding it from 

the solution space, and re-optimizing the solution iteratively until no TIL (above 

a certain flux limit) is detected. While the results were comparable, the 

computational speed for RED-TIL was considerably faster. On average, RED-

TIL removed TIL from the relevant solution space three times faster than ll-

COBRA. Such a speed-up was relevant for this work as many computations 

were needed to generate solutions for a larger range of different parameter 

settings, particularly for optimizing the upper and lower bounds for each 

reaction when running IFFPR. Lastly, the third mean to reduce TIL was 

penalizing the sum of fluxes of non-core and non-associated reactions. 

Selecting a suitable tradeoff value (! = 0.01 in this thesis), these reactions were 

limited to reduced fluxes since high flux values can be a source for TIL, while 
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still addressing the optimization of good flux – gene expression value fits for the 

core and associated reactions. By this, an FBA model was set up based on a 

linear fit between the expression of the encoding genes for an enzyme and its 

predicted flux with considerably reduced TIL. 

 

5.2 LPM-GEM shows improved prediction performances when 

compared to an existing method  

LPM-GEM generated the context-specific models to predict the main carbon 

sources for the model organism B. subtilis in eight different conditions. LPM-

GEM mostly identified the correct major carbon sources for all eight conditions 

based on the corresponding gene expression profiles. Seven out of eight 

conditions were predicted correctly – except malate/glucose condition. Although 

LPM-GEM could predict the correct carbon source for the primary carbon 

source, it predicted pyruvate as the secondary carbon source instead of 

glucose. A hypothesis behind this wrong prediction can be explained in the 

following. In central energy metabolism, pyruvate and malate are closely 

related. Kleijn et al. observed that when B. subtilis was fed with glucose and 

malate, there was an overflow metabolites secreted from consumed malate and 

pyruvate was the main overflow product on malate (Kleijn et al. 2010). Although 

there were only malate and glucose in malate/glucose condition in the eight-

carbon-source dataset (Chubukov et al. 2013), it was possible that in this case 

pyruvate was also generated by the consumed malate, and the bacteria might 

sense this, which caused coding genes for the pyruvate transporter (lrgA, lrgB) 

to be expressed. It explained why LPM-GEM predicted pyruvate as the 

secondary carbon source instead of glucose in malate/glucose condition. 

Moreover, the flux prediction results from LPM-GEM were also validated with 
13C metabolic flux data. For most reactions in substrate uptakes, glycolysis, 

TCA cycle, and others (the rest of reactions which could not be put in the 

specific pathway), the flux prediction results correlated well with 13C metabolic 

flux data.  

Then, the approach was benchmarked with the well-known existing 

method, iMAT. Overall, LPM-GEM yielded better flux predictions and, on 

average, better predictions of the carbon source. A reason for this may be that 

our method requires no binarization of the transcription profiles. iMAT and other 
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approaches (Becker and Palsson 2008, Chandrasekaran and Price 2010, 

Shlomi et al. 2008, Wang et al. 2012, Zur et al. 2010) need expression level 

thresholds to decide whether a reaction needs to be active (constrained or part 

of the optimization to have a non-zero flux) or not. The drawback of employing 

binarization to integrate gene expression profiles was observed in the case of 

pyruvate transporter. It was clearly seen that iMAT failed to predict the pyruvate 

transporter having the highest flux at the condition in which pyruvate was the 

carbon source, as the expression values of corresponding genes of the 

pyruvate transporter (lrgA, lrgB) in every condition were lower compared to 

expression values of other genes. Even though the expression values of these 

two genes in the pyruvate condition were much higher than in any other 

condition, they were still lower than the lower threshold and were hence 

regarded as non-expressed by the iMAT algorithm. Thus, the method could not 

detect this expression and falsely categorized the corresponding reaction as 

non-expressed, resulting in an estimated zero flux in every condition for the 

pyruvate transporter (Table A6). In turn, LPM-GEM avoided binarization for data 

integration and employed the linear regression approach to estimate the 

metabolic fluxes. LPM-GEM predicted fluxes for the pyruvate transporter in 

every condition, and the predicted fluxes showed a high positive correlation 

when validated with 13C metabolic flux data (r = 0.78) (Table A7). In summary, 

LPM-GEM yielded improved flux predictions compared to iMAT, a well-

established context-specific model extraction method based on transcriptomic 

data. 

  

5.3 LPM-GEM provides good flux predictions for metabolic states 

mediated by transcriptional regulation but is not sensitive enough to 

capture fluxes controlled by other mechanisms 

Using the model trained with the dataset of the eight carbon sources, LPM-GEM 

was validated with a second publicly available dataset in which shifts in the 

carbon source from glucose to glucose plus malate and from malate to malate 

plus glucose were investigated (Buescher et al. 2012). The model correctly 

predicted the carbon sources of the initial setting and the endpoints. Besides, 

the model predictions of the shift from malate to malate plus glucose correlated 

well with the gold standard (13C tracer derived flux from the original study). 
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Although gene expression data is scalable and easy to obtain compared to 13C 

metabolic flux data (Lowe et al. 2017, Uygun et al. 2016, van den Esker and 

Koets 2019), it provides only indirect information for the estimation of metabolic 

fluxes. For some conditions or settings, the metabolic flux may not be controlled 

by transcription of the corresponding enzyme coding genes. Other flux control 

mechanisms, e.g., related to limitations due to substrate or product 

concentrations, translational regulation, covalent modification of the enzymes, 

or allosteric regulation, can influence the metabolic flux (Wegner et al. 2015). 

This limitation was observed in the nutrient shift from glucose to glucose plus 

malate. The very poor prediction results suggested that this shift might not be 

controlled by transcriptional regulation. The observation from the modeling is in 

line with the observations reported in the original study by Buescher et al. 

(Buescher et al. 2012). They assumed that these shifts are mediated by 

fundamentally different control mechanisms. In order to confirm their 

assumption, Buescher et al. performed a multi-omics analysis of time-lapse 

profiles from promoter activity, mRNA, and protein abundance to identify post-

transcriptional events (Buescher et al. 2012). After correlating the gene 

expression levels with the protein levels, they observed high positive 

correlations in gene-protein pairs related to glycolysis such as 

phosphoglycerate mutase (r = 0.96), PTS glucose transporter (r = 0.88), and 

glyceraldehyde 3-phosphate dehydrogenase (r = 0.96) for the shift from malate 

to malate plus glucose. However, they could not find correlations in gene-

protein pairs related to glycolysis in the glucose to glucose plus malate shift. 

From this, they concluded that the shift from glucose to glucose plus malate 

was dominantly controlled by post-transcriptional mechanisms (in contrast to 

the malate to malate plus glucose shift), or proteins for glycolysis are 

constitutively expressed. The latter is reasonable. As the benefit of glucose 

consumption is very high compared to malate, it may be beneficial to keep 

proteins for glycolysis constitutively expressed under the malate condition. This 

observation serves as a good example of a limitation of LPM-GEM. The method 

relies on gene expression profiles to predict metabolic fluxes. Hence, it requires 

a basic understanding of the cellular biology of the regulatory mechanism 

beforehand to avoid studying mechanisms that are likely to depend on other 

regulation mechanisms than transcriptional regulation.
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Chapter 6 

Conclusion and Perspectives 
  

This work introduced a novel computational approach to efficiently integrate 

gene expression profiles into a metabolic network called Linear Programming 

based Gene Expression Model (LPM-GEM). Unlike many previous methods, 

LPM-GEM linearly embeds gene expression values into FBA constraints and 

adjusts flux levels continuously. It avoids defining thresholds and binarization of 

the expression data, preventing loss of information and improving the data 

integration process. Also, to reduce solutions containing thermodynamically 

infeasible fluxes, LPM-GEM was supported by the implementation of three 

different strategies (i.e., IFFPR, RED-TIL, and adding a penalty for the sum of 

fluxes). IFFPR and adding a penalty for the sum of fluxes limits the FBA 

algorithm to use TIL during the optimization process, and RED-TIL is a direct 

method which detects and discards TIL from the solution space. RED-TIL 

successfully improved the computational speed compared to ll-COBRA, which 

is a well-established and commonly used method for removing TIL. The speed-

up was crucial for the success of our method, especially as many iterations 

were required. With all components, LPM-GEM successfully predicted carbon 

sources for B. subtilis from both datasets (the eight-carbon-source dataset and 

the time-series nutrient shift dataset). By this, LPM-GEP yielded improved 

prediction performance (validated by 13C metabolic flux data) compared to the 

well-known existing method, iMAT. This study supports the idea that FBA 

analysis based on gene expression profiles can serve as an alternative to 13C 

tracer analysis when conducting 13C labeling experiments can be hard to 

achieve. For example, it can be used to investigate intracellular pathogens as 

they can consume or produce the same metabolite as the host. In a publication 

of Zimmerman et al., iMAT was used to create context-specific models to help 

identifying the carbon sources of Mycobacterium tuberculosis (M. tuberculosis) 

inside the host cell since metabolome analysis alone could not distinguish the 

carbon sources used by the host or pathogen. Using transcriptomics-based 

context-specific models, they identified 33 carbon sources of M. tuberculosis, 
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and 31 predicted carbon sources were also detected by metabolomic 

measurements (Zimmermann et al. 2017). A similar thing can be applied to 

other pathogens (i.e., S. aureaus in osteocytes or P. falciparum in erythrocytes) 

or to track a metabolite in a cell that has different compartments. With the new 

method developed in this research, LPM-GEM should be assumed to deliver 

better flux prediction performance if performing the same task. Although gene-

expression-based FBA methods cannot provide the same flux resolution as 13C-

MFA, the methods require much less experimental and computational efforts 

while providing decent flux visibility. 
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Appendix 
 

Table A1: List of GPR associations from central energy metabolism of B. 

subtilis.  

Gene symbol Gene ID Flux name 

ackA BSU29470 ACKr 

citA BSU09440 CS 

citB BSU18000 ACONT 

citZ BSU29140 CS 

dctP BSU04470 SUCCt2r 

eno BSU33900 ENO 

fbaA BSU37120 FBA 

fbp BSU40190 FBP 

fruA BSU14400 FRUpts 

fumC BSU33040 FUM 

gapA BSU33940 GAPD 

gapB BSU29020 GAPDi_nadp 

glpF BSU09280 GLYCt 

gltP BSU02340 GLUt2r 

gndA BSU23860 GND 

gntP BSU40070 GLCNt2ir 

gntZ BSU40080 GND 

icd BSU29130 ICDHyr 

levD BSU27070 FRUpts 

levE BSU27060 FRUpts 

levF BSU27050 FRUpts 

levG BSU27040 FRUpts 

ptsH BSU13900 FRUpts 

ptsI BSU13910 FRUpts 

lrgA BSU28910 PYRt2 

lrgB BSU28900 PYRt2 

maeA BSU37050 ME2 

maeN BSU31580 MALt4 

yflS BSU07570 MALt4 

maeN BSU31580 MALt10 

yflS BSU07570 MALt10 

maeN BSU31580 MALt2r 

yflS BSU07570 MALt2r 

malS BSU29880 ME2 

mdh BSU29120 MDH 

mleA BSU23550 ME2 

odhA BSU19370 AKGDH 

odhB BSU19360 AKGDH 

pckA BSU30560 PPCK 

pdhA BSU14580 PDH 

pdhB BSU14590 PDH 

pdhC BSU14600 PDH 

pdhD BSU14610 PDH 

pfkA BSU29190 PFK 

pgi BSU31350 PGI 

pgk BSU33930 PGK_1 

pgm BSU33910 PGM_1 

pps BSU18830 PPS 

pta BSU37660 PTAr 
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Gene symbol Gene ID Flux name 

ptsG BSU13890 GLCpts 

ptsH BSU13900 GLCpts 

ptsI BSU13910 GLCpts 

pycA BSU14860 PC 

pyk BSU29180 PYK 

rpe BSU15790 RPE 

sdhA BSU28440 SUCD1 

sdhB BSU28430 SUCD1 

sdhC BSU28450 SUCD1 

sucC BSU16090 SUCOAS 

sucD BSU16100 SUCOAS 

tkt BSU17890 TKT1 

tkt BSU17890 TKT2 

tpiA BSU33920 TPI 

ykgB BSU13010 G6PDH2r 

ytsJ BSU29220 ME2 

ywjH BSU37110 TALA 

ywlF BSU36920 RPI 

zwf BSU23850 G6PDH2r 

fruK BSU14390 FRUK 

glpK BSU09290 GLYK 

serA BSU23070 PGCD 

serC BSU10020 PSERT 

yoaD BSU18560 PGCD 

rsbX BSU04740 PSP_L 

sdaAB BSU15850 SERD_L 

sdaAA BSU15860 SERD_L 

fbaA BSU37120 FBA2 

gntK BSU40060 GNKr 

glxK BSU40040 GLYCK 

nadB BSU27870 ASPO1 

aspB BSU22370 ASPTA 

mtnE BSU13580 UNK5 

citM BSU07610 CITt10 

citM BSU07610 CITt11 

citM BSU07610 CITt12 

citM BSU07610 CITt13 

citM BSU07610 CITt14 

citH BSU39060 CITt14 

citM BSU07610 CITt15 

cimH BSU38770 CITt2r 

yraO BSU26860 CITt2r 

yfiY BSU08440 FEDCabc 

yfhA BSU08460 FEDCabc 

yfiZ BSU08450 FEDCabc 

citM BSU07610 ICITt10 

citM BSU07610 ICITt2 

metA BSU21910 HSST 

scoA BSU38990 OCOAT1 

scoB BSU38980 OCOAT1 

prpB BSU24120 MCITL2 

yodQ BSU19710 SDPDS 

metI BSU11870 SHSL1_1 

metI BSU11870 SHSL2 

metI BSU11870 SHSL3 

metI BSU11870 SHSL4r 

gabD BSU03910 SSALy 

purB BSU06440 ADSL1r 

purB BSU06440 ADSL2r 

argH BSU29440 ARGSL 



   
 

 84 

Gene symbol Gene ID Flux name 

ansB BSU23570 ASPT 

yflS BSU07570 FUMt2r 

dctP BSU04470 FUMt2r 

menD BSU30820 2S6HCCi 

gabT BSU03900 ABTA 

argD BSU11220 ACOTA 

yflS BSU07570 AKGt2r 

yoaB BSU18540 AKGt2r 

yugH BSU31400 ALATA_L 

patA BSU14000 APTA1i 

gudB BSU22960 GLUDxi 

rocG BSU37790 GLUDxi 

gltA BSU18450 GLUSy 

gltB BSU18440 GLUSy 

hisH BSU34890 HSTPTr 

hisC BSU22620 HSTPTr 

rocD BSU40340 ORNTA_1 

menD BSU30820 OXGDC 

hisC BSU22620 PHETA1 

hisH BSU34890 PHETA1 

hisC BSU22620 TYRTA 

hisH BSU34890 TYRTA 

ywiE BSU37240 CLPNS2_BS 

clsB BSU37190 CLPNS2_BS 

clsA BSU36590 CLPNS2_BS 

yhdN BSU09530 ALCD19y 

iolS BSU39780 ALCD19y 

yhdN BSU09530 ALCD19_L 

iolS BSU39780 ALCD19_L 

glpQ BSU02130 GPDDA4 

bacD BSU37710 LAAL24 

bacD BSU37710 LAAL25 

bacD BSU37710 LAAL27 

bacD BSU37710 LAAL26 

bacD BSU37710 LAAL28 

speA BSU14630 ARGDC 

argI BSU40320 ARGN_1 

artP BSU23980 ARGabc 

artQ BSU23970 ARGabc 

artR BSU23960 ARGabc 

lysP BSU33330 ARGt2r 

rocE BSU40330 ARGt2r 

rocC BSU37760 ARGt2r 

aldX BSU39860 LCADi 

aldY BSU38830 LCADi 

dhaS BSU19310 LCADi 

ldh BSU03050 LDH_L 

lctP BSU03060 L_LACt2r 

yvfH BSU34190 L_LACt2r 

bacD BSU37710 LAAL33 

bacD BSU37710 LAAL34 

trpB BSU22640 TRPS1 

trpA BSU22630 TRPS1 

trpP BSU10010 TRPt2r 

cysK BSU00730 AHSERL4 

cysK BSU00730 CYSS_2 

mccB BSU27250 CYSTGL_1 

bacD BSU37710 LAAL9 

coaBC BSU15700 PPNCL 

mccB BSU27250 TRPAS1 
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Gene symbol Gene ID Flux name 

hutH BSU39350 HISDr 

hisD BSU34910 HISTD 

hutM BSU39390 HISt2r 

ybgF BSU02400 HISt2r 

bacD BSU37710 LAAL40 

bacD BSU37710 LAAL41 

bacD BSU37710 LAAL42 

bacD BSU37710 LAAL10 

bacD BSU37710 LAAL16 

bacD BSU37710 LAAL22 

bacD BSU37710 LAAL4 

tdh BSU16990 THRD 

ilvA BSU21770 THRD_L 

thrC BSU32250 THRS 

pssA BSU02270 CDPDSP_BS 

mccA BSU27260 CYSTS_2 

glyA BSU36900 GHMT2r 

bacD BSU37710 LAAL12 

bacD BSU37710 LAAL14 

bacD BSU37710 LAAL18 

bacD BSU37710 LAAL21 

bacD BSU37710 LAAL3 

bacD BSU37710 LAAL31 

bacD BSU37710 LAAL37 

bacD BSU37710 LAAL6 

bacD BSU37710 LAAL7 

bacD BSU37710 LAAL8 

cysE BSU00930 SERAT 

aldX BSU39860 ALDD31_1 

aldY BSU38830 ALDD31_1 

dhaS BSU19310 ALDD31_1 

kbl BSU17000 GLYAT 

thiO BSU11670 GLYO1 

bacD BSU37710 LAAL1 

bacD BSU37710 LAAL13 

bacD BSU37710 LAAL19 

bacD BSU37710 LAAL2 

bacD BSU37710 LAAL29 

bacD BSU37710 LAAL35 

purD BSU06530 PRAGSr 

thiO BSU11670 SARCOX 

 

*After applying a P-value cutoff of 0.05 cutoff (after correction for multiple testing), reactions of the according 

genes which were differentially expressed in at least one of all eight conditions are highlighted in yellow.  

**For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  

 



 86 

Table A2: List of other exchange reactions in the metabolic model of B. subtilis (excluding carbon sources used in this study).  

Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

EX_2ddglcn(e) 0 0 0.00E+00 0.00E+00 0 0 0.00E+00 0.00E+00 
EX_2hxmp(e) 0 0 0 0 0 0 0 0 

EX_2pg(e) 0 0 0 0 0 0 0 0 
EX_2pglyc(e) 0 0 0 0 0 0 0 0 
EX_3amba(e) 0 0 0 0 0 0 0 0 
EX_3amp(e) 0 0 0 0 0 0 0 0 
EX_3cmp(e) 0.00E+00 0 0 0 0 0 0 0 
EX_3gmp(e) 0 0 0 0 0 0 0 0 
EX_3pg(e) -0.209 0 -0.149 0 0 0 0.00E+00 0.00E+00 

EX_3ump(e) 0 0 0 0 0 0 0 0 
EX_4abut(e) 0 0 0 0 0 0 0 0 
EX_5mtr(e) 0 0 0 0 0 0 0 0 
EX_6pgc(e) 0 0 0 0 0 0 0 0 
EX_Larab(e) 0 0 0 0 0 0 0 0 
EX_Lcyst(e) 0 0 0 0 0 0 0 0 

EX_abt__L(e) 0 0 0 0 0 0 0 0 
EX_ac(e) 3.43 0.682 0.0428 0.0349 0.281 10.6 7.71 0.0553 

EX_acac(e) 0.679 0.597 0.503 0.212 0.0376 0.467 0.6 1.02 
EX_acgam(e) 0 0 0 0 0 0 0 0 

EX_acmana(e) 0 0 0 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
EX_acnam(e) -0.167 -0.13 -0.00676 0 0 0 -0.245 0 

EX_actn__R(e) 0 0 0 0 0 0 0 0 
EX_ade(e) 0 0 0 0 0 0 0 0 
EX_adn(e) 0 0 0 0 0 0 0 0 
EX_akg(e) 0 0 0 0 0 0 0 0 

EX_ala_B(e) 0 0 0 0 0 0 0 0 
EX_ala__D(e) 0 0 0 0 0 0 0 0 

EX_ala_L_Thr__L(e) 0 0 0 0 0 0 0 0 
EX_ala_L_asp__L(e) 0.00E+00 0 0 0 0 0 0 0 

EX_ala__L(e) 0 0 0 0 0 0 0 0 
EX_ala_L_gln__L(e) 0 0 0 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

EX_ala_L_glu__L(e) 0 0 0 0 0 0 0 0 
EX_L_alagly(e) 0 0 0 0 0 0 0 0 

EX_ala_L_his__L(e) 0 0 0 0 0 0 0 0 
EX_ala_L_leu__L(e) 0 0 0 0 0 0 0 0 

EX_alaala(e) -0.219 -0.413 -0.243 0 0 0 -1.91 -6.13E-02 
EX_alltn(e) 0 0 0 0 0 0 0 0.00E+00 
EX_amp(e) -0.108 -1.12 -0.0768 -0.0402 -0.0731 -0.213 -0.137 -0.0311 

EX_amylase(e) 0 0 0 0 0 0 0 0 
EX_antim(e) 0 0 0 0 0 0 0 0 

EX_arab__D(e) 0 0 0 0 0 0 0 0 
EX_arab__L(e) 0 0 0 0 0 0 0 0 

EX_arbt(e) 0 0 0 0 0 0 0 0 
EX_arg__L(e) 0 0 0 0 0 0 0 0 

EX_argp(e) 0 0 0 0.0613 -0.00673 0 0.158 0.0458 
EX_arsenb(e) 0 0 0 0 0 0 0 0 
EX_arsna(e) 0 0 0 0 0 0 0 0 
EX_arsni2(e) 0 0 0 0 0 0 0 0 

EX_asn__L(e) 0 0 0 0 0 0 0 0 
EX_asp__L(e) 0 0 0 0 0 0 0 0 

EX_bilea(e) 0 0 0 0 0 0 0 0 
EX_btd_RR(e) 0 0 0 0 0 0 0 0 

EX_buts(e) 0 0 0 0 0 0 0 0 
EX_cbl2(e) 0 0 0 0 0 0 0 0 
EX_cd2(e) 0 0 0 0 0 0 0 0 
EX_cellb(e) 0 0 0 0 0 0 0 0 
EX_cgly(e) 0 0 0 0 0 0 0 0 

EX_chitob(e) 0 0 0 0 0 0 0 0 
EX_chol(e) 0 0 0 0 0 0 0 0 
EX_chols(e) 0 0 0.00E+00 0.00E+00 0 0 0 0 
EX_chor(e) 0 0 0 0 0 0 0 0 
EX_cit(e) 0 0 0 0 0 0 0 0 

EX_citr__L(e) 0 0 0 0 0 0 0 0 
EX_cmp(e) 0 0 0 0 0 0 0 0 

EX_cobalt2(e) 0 0 0 0 0 0 0 0.00E+00 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

EX_crn(e) 0 0 0 0 0 0 0 0 
EX_cro4(e) 0 0 0 0 0 0 0 0 
EX_csn(e) 0 0 0 0 0 0 0 0 
EX_ctbt(e) 0 0 0 0 0 0 0 0 
EX_cu2(e) 0 0 0 0 0 0 0 0 

EX_cys__D(e) 0 0 0 0 0 0 0 0 
EX_cys__L(e) -0.0336 -0.0302 -0.0239 0 0 0 0 0 
EX_cyst__L(e) 0 0 0 0 0 0 0 0.00E+00 

EX_cytd(e) 0 0 0 0 0 0 0 0 
EX_dad_2(e) 0 0 0 0 0 0 0 0 
EX_dcyt(e) 0 0 0 0 0 0 0 0 

EX_dextrin(e) 0 0 0 0 0 0 0 0 
EX_dha(e) 0 0 0 0 0 0 0 0 
EX_diact(e) 0 0 0 0 0 0 0 0 
EX_djenk(e) 0 0 0 0 0 0 0 0 
EX_drib(e) 0 0 0 0 0 0 0 0 

EX_dtmp(e) 1.11 0.985 0.828 0.428 0.532 1.31 1.73 0.28 
EX_ectoine(e) 0 0 0 0 0 0 0 0 

EX_etha(e) 0 0 0 0 0 0 0 0 
EX_eths(e) 0 0 0 -0.0375 0 0 0 0 
EX_etoh(e) 0 0 0 0 0 0 0 0 
EX_fe2(e) 0 0 0 0 0 0 0 0 

EX_ferrich(e) 0 0 0 0 0 0 0 0 
EX_ferxa(e) 0 0 0 0 0 0 0 0 

EX_fol(e) 0.139 0.108 0.0997 0.0418 0 0.119 0.197 0.0231 
EX_for(e) 0 0 0 0.0419 0 0 0 0 
EX_fum(e) 0.114 0.101 0.0811 0.104 0.0705 0.257 0.303 0.0786 
EX_g1p(e) 0 0 0 0 0 0 0 0 
EX_g6p(e) 0 0 0 0 0 0 0 0 
EX_gal(e) 0 0 0 0 0 0 0 0 

EX_galctr__D(e) 0 0 0 -0.216 0 0 0 -0.161 
EX_galt(e) 0 0 0 0 0 0 0 0 

EX_galur(e) 0 0 0 0 0 0 0 0 
EX_gam6p(e) 0 0 0 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

EX_gam(e) 0 0 0 0 0 0 0 0 
EX_gbbtn(e) 0 0 0 0 0 0 0 0 
EX_glcr(e) 0 0 0 0 0 0 0 0 

EX_glcur(e) 0 0 0 0 0 0 0 0 
EX_gln__L(e) 0 0 0 0 0 0 0 0 
EX_glu__D(e) 0 0 0 0 0 0 0 0 

EX_glx(e) 0 0 0 0 0 0 0 0 
EX_gly_asn__L(e) 0 0 0 0 0 0 0 0 
EX_gly_asp__L(e) 0 0 0 0 0 0 0 0 

EX_gly(e) 0 0 0 0 0 0 0 0 
EX_gly_gln__L(e) 0 0 0 0 0 0 0 0 
EX_gly_glu__L(e) 0 0 0 0 0 0 0 0 
EX_gly_met__L(e) 0 0 0 0 0 0 0 0 
EX_gly_pro__L(e) 0 0 0 0 0 0 0 0 

EX_glyb(e) 0 0 0 0 0 0 0 0 
EX_glyc3p(e) 0 0 0 0 0 -0.322 0 0 
EX_glyclt(e) 0 0 0 0 0 0 0 0 

EX_glycogen(e) 0 0 0 0 0 0 0 0 
EX_gmp(e) -1.26 -1.2 -0.864 0 -0.00025 0 -0.197 -0.023 
EX_gsn(e) 0 0 0 0 0 0 0 0 

EX_gthox(e) 0 0 0 0 0 0 0 0 
EX_gthrd(e) 0 0 0 0 0 0 0 0 
EX_gua(e) 0 0 0 -0.00383 0 -0.00992 0 0 

EX_h2o2(e) 0 0 0 0 0 0 0 0 
EX_hexs(e) 0 0 0 0 0 0 0 0 
EX_hg2(e) 0 0 0 0 0 0 0 0 

EX_his__L(e) 0 0 0 0 0 0 0 0 
EX_hqn(e) 0 0 0 0 0 0 0 0 
EX_hxan(e) 0 0 0 -0.0378 0 0 0 0 
EX_icit(e) 0 0 0 0 0 0 0 0 

EX_ile__L(e) -0.224 -0.201 -0.159 -0.0835 -0.129 0 -0.285 -0.0645 
EX_inost(e) 0 0 0 0 0 0 0 0 
EX_ins(e) 0 0 0 0 0 0 0 0 

EX_istnt(e) 0 0 0 0 0 0 0 0 



   
 

 90 

Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

EX_lac__L(e) 0 0 0 0 0 0 0 0 
EX_lanth(e) 0 0 0 0 0 0 0 0 
EX_lcts(e) 0 0 0 0 0 0 0 0 

EX_leu__L(e) 0 0 0 0 0 0 0 0 
EX_lipt(e) 0 0 0 0 0 0 0 0 

EX_lys__L(e) -0.192 -0.172 -0.137 -0.0716 0 0 -0.244 -0.0553 
EX_madg(e) 0 0 0 0 0 0 0 0 

EX_mal__D(e) 0 0 0 0 0 0 0 0 
EX_malt(e) 0 0 0 0 0 0 0 0 

EX_malttr(e) 0 0 -0.0157 -0.169 -0.0862 -0.0399 -0.0039 -0.0254 
EX_man1p(e) 0 0 0 0 0 0 0 0.255 
EX_man6p(e) 0 0 0 0.714 0.171 0 0 0 

EX_man(e) 0 0 0 0 0 0 0 0 
EX_mbdg(e) 0 0 0 0 0 0 0 0 
EX_melib(e) 0 0 0 0 0 0 0 0 
EX_meoh(e) 0 0 0 0 0 0 0 0 

EX_met__D(e) 0 0 0 0 0 0 0 0 
EX_met_L_ala__L(e) 0 0 0 0 0 0 0 0 

EX_met__L(e) -0.0669 -0.0601 -0.0476 0 -0.0681 0 -0.085 -0.0193 
EX_metox__R(e) 0 0 0 0 0 0 0 0 

EX_metox(e) 0 0 0 0 0 0 0 0 
EX_mn2(e) 0 0 0 0 0 0 0 0 
EX_mnl(e) 0 0 0 0 0 0 0 0 

EX_mobd(e) 0 0 0 0 0 0 0 0 
EX_mops(e) 0 0 0 0 0 0 0 0 
EX_mso3(e) 0 0 0 0 0 0 0 0 
EX_nac(e) 0 0 0 -0.00381 0 -0.00987 0 -0.00294 
EX_ni2(e) 0 0 0 0 0 0 0 0 
EX_no2(e) 0 0 0 0 0 0 0 0 
EX_no3(e) 0 0 0 0 0 0 0 0 

EX_orn__L(e) 0 0 0 0 0 0 0 0 
EX_pala(e) 0 0 0 0 0 0 0 0 
EX_pep(e) 0 0 0 0 0 0 0 0 

EX_phe__L(e) -0.0442 -0.0316 -0.0424 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

EX_pnto__R(e) 0 0 0 0 0 0 0 0 
EX_ppa(e) 0 0 0 0 0.346 0.974 0 0 
EX_ppi(e) 0 0 0 0 0 0 0 0 

EX_pro__L(e) 0 0 0 0 0 0 0 0 
EX_prolb(e) 0 0 0 0 0 0 0 0 

EX_pser__D(e) 0 0 0 0 0 0 0 0 
EX_pser__L(e) 0 -0.132 0 0 0 -0.211 0 0 

EX_pur(e) 0 0 0 0 0 0 0 0 
EX_raffin(e) 0 0 0 -0.0554 0 0 0 -0.0428 

EX_rib__D(e) 1.42 2.36 0.951 0.0557 0.123 0.206 0.543 0.0632 
EX_ribflv(e) 0 0 0 0 5.00E-04 0 0 0 
EX_rmn(e) -0.283 -0.322 -0.238 -0.0325 -1.96 0 -0.355 -0.00719 

EX_salcn(e) 0 0 0 0 0 0 0 0 
EX_sbt__D(e) 0 0 0 0 0 0 0 0 
EX_ser__D(e) 0 0 0 0 0 0 0 0 
EX_ser__L(e) 0 0 0 0 0 0 0 0 
EX_spmd(e) 0 0 0 0 0 0.147 0 0 

EX_srb__L(e) 0 0 0 0 0 0 0 0 
EX_starch(e) 0 0 0 0 0 0 0 0 

EX_subtilisin(e) 0 0 0 0 0 0 0 0 
EX_sucr(e) 0 0 0 -0.0046 0 0 0 -0.00969 
EX_sula(e) 0 0 0 0 0 0 0 0 
EX_taur(e) 0 0 0 0 0 0 0 0 
EX_thiog(e) 0 0 0 0 0 0 0 0 

EX_thr__L(e) 0 0 0 0 0 0 0 0 
EX_thym(e) -1.12 -0.997 -0.838 -0.236 -0.44 -1.32 -0.843 -0.134 

EX_thymd(e) 0 0 0 0 0 0 0 0 
EX_tmp(e) 0 0 0 0 0 0 0 0 
EX_tre(e) 0 0 0 0 0 0 0 0 

EX_trp__L(e) -0.0321 -0.0288 -0.0228 -0.012 -0.0217 -0.031 -0.0408 -0.00924 
EX_tyr__L(e) 0 0 0 0 0.022 0 0 0 
EX_ump(e) 0 0 0 0 0 0 0 0 
EX_ura(e) 0 0 0 0 0 0 0 0 

EX_urate(e) 0 0 0 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

EX_urea(e) 0 0 0 0 0 0 0 0 
EX_uri(e) 0 0 0 0 0 0 0 0 

EX_val__L(e) -0.427 -0.163 -0.304 -0.113 0 0 0 -0.0415 
EX_xan(e) 0 0 0 0 0 0 0 0 
EX_xtsn(e) 0 0 0 0 0 0 0 0 

EX_xyl__D(e) 0 0 0 0 0 0 0 0 
EX_zn2(e) 0 0 0 0 0 0 0 0 
EX_f6p(e) 0 0 0 0 0 0 0 0 

 

*Common exchange reactions used by the model are highlighted in yellow. 

**For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  

Table A3: Predicted flux from RED-TIL before implementing IFFPR. 

Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

2S6HCCi 0.000157 0.000141 1.12E-04 5.85E-05 0.000106 0.000152 2.00E-04 4.52E-05 
ACKr -0.286 -0.257 -2.27 -0.107 2.47 -0.276 19.6 -0.0726 

ACONT 17.3 19.1 3.88 15.7 2.52 27.3 -1.62 7.63 
ACOTA -0.114 0 0 -0.0425 0 0 0 0 
AKGDH 18.9 20.9 2.93 16.4 4.05 27.8 0 7.4 
AKGt2r 0 0 0 0 0 0 0 0 

ALCD19y -3.11E-01 4.72 -0.544 -0.363 0 -0.826 -0.636 -0.49 
ALDD31_1 0 0 0 0 0 0 0 0 

ARGSL 0.114 0 0 0.0425 0 0 0 0 
ARGabc 0 0 0 0 0 0 0 0 
ARGt2r 0 0 0 0 0 0 0 0 
ASPO1 46.8 54.1 0 45.2 0 39.5 0 2.41 
ASPT 0 0 1.62 0 0.206 0 0 0 

ASPTA -48 -57.6 -2.6 -51.2 -0.884 -43.8 -1.29 -2.7 
CDPDSP_BS 0.033 0.0297 0.0235 0.0123 0.0224 0.0319 0.042 0.00952 

CITt10 0 0 0 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

CITt14 0.00189 0.0017 0.00135 0.000705 0.00128 0.00183 0.0024 0.000545 
CITt15 0.417 0.374 0 0.155 0 0.403 0 0.12 
CITt2r -0.423 -0.38 -0.00424 -0.158 -0.654 -0.405 -1.63 -0.122 

CLPNS2_BS 0.000295 0.000265 0.00021 1.10E-04 2.00E-04 2.85E-04 3.75E-04 8.50E-05 
CS 17.3 19.1 3.88 15.7 3.18 27.3 0 7.63 

CYSS_2 0.0336 0.0302 0 0.0125 0 0.0325 0 0 
CYSTGL_1 0 0 0.159 0 0.0228 0 0.0427 0 
CYSTS_2 0 0 0.0239 0 0.0228 0 0.0427 0 

ENO 25.2 25.8 11.7 18.2 16.4 13.9 16.3 -2.75 
FRUK 1.19 0.998 0.544 2.64 0.787 1.31 1.05 0.525 
FBA 10.3 8.69 4.56 7.53 5.09 6.41 8.25 -1.66 

FBA2 1.09 4.72 -0.544 -0.298 0 -0.826 -0.636 -0.49 
FBP 0 0 0 0 0 0 0 2.19 

FEDCabc 0.00204 0.00183 0.00145 0.000759 0 0.000345 0.00123 0.000586 
FRUpts 2.28 5.72 0 2.34 0.787 0.488 0.415 0.0354 

FUM 19.1 21.3 6.48 19.8 5.06 14 -11.1 6.98 
FUMt2r 0 0 0 0 0 0 -11.1 -3.77 

G6PDH2r 1.65 1.06 0 0 0 0 2.84 0 
GAPD 24.1 24.8 11.9 15.5 16.6 12.5 16.7 0 

GAPDi_nadp 0 0 0 0 0 0 0 2.70E+00 
GHMT2r 0.129 0.0603 0.0478 0.0481 0.0455 0.0648 0.0853 6.24E-05 
GLCNt2ir 2.11 1.14 5.13 0.889 1.05 1.39 1.18 0 
GLCpts 8.79 6.27 0.6 3.61 1.76 3.32 7.84 0 
GLUDxi 0 0 0 0 0 0 0 0 
GLUSy 19.2 11.7 1.39 0 0 21.6 0.963 0 
GLUt2r 0.567 1.17 1.19 3.51 0.865 0.601 0 3.06 
GLYCt 1.97 -2.48 2.39 3.76 6.22 2.91 0.635 2.76 
GLYK 1.66 2.25 1.84 3.4 6.22 2.08 0 2.27 

GLYO1 0 2.54 0 5.52 0 3.28 0 0 
GNKr 2.11 1.14 5.13 0.889 1.05 1.39 1.18 0 
HISTD 0.0482 0 0 0.018 0 0 0 0 
HISt2r 0 0.0433 0.0343 0 0.0327 0.0466 0.0613 0.0139 

HSTPTr 0.0482 0 0 0.018 0 0 0 0 
ICDHyr 17.3 19.1 1.05 13.1 2.52 26.1 -1.62 4.47 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

ICITt10 0.06 0.0539 0.0427 0.0224 0.0407 0.058 0 0.0173 
ICITt2 -0.06 -0.0539 -2.87 -2.64 -0.0407 -1.3 0 -3.18 
LCADi 0 0 0 0 0 0 0 0 
LDH_L -7.6 -12.4 -6.4 -9.87 -13.7 -4.38 -15 -2.01 

L_LACt2r -7.6 -11.1 -6.4 -8.24 -12.9 17.2 -10.5 -0.126 
MALt10 0 1.36 0 1.63 0.807 21.6 4.51 1.88 
MALt2r 0 1.36 0 1.63 0.807 0 19.7 1.88 
MALt4 0 1.36 0 1.63 0.807 4.95 2.3 1.88 
MDH 18.5 22.6 6.48 21.7 7.48 31.6 14.7 10.7 
ME2 0.612 2.78 0 3.02E+00 0 8.9 0.62 1.9 

MCITL2 0 0 0 0 0 0 0 0 
OXGDC 0 0 0 0 0 0 0 0 

PC 0 0 0 0 0 0 0 0 
PDH 18.3 17.3 0 10.6 6.36 24.9 21.1 7.82 
PFK 9.13 7.69 4.02 4.89 4.31 5.1 7.2 0 

PGCD 0.355 0.235 0.186 0.132 0.177 0.252 0.332 0.0463 
GND 3.76 2.2 5.13 -3.81 1.05 -3.43 4.01 -3.14 
PGI 6.99 6.4 0.494 7.57 1.66 7.49 4.81 -0.0428 

PGK_1 24.1 24.8 11.9 15.5 16.6 12.5 16.7 -2.7 
PGM_1 25.2 25.8 11.7 18.2 16.4 13.9 16.3 -2.75 
PHETA1 -0.104 0 0 -0.0387 0 -0.1 -0.107 0 

PPCK 0 0 0 0 3.42 0 13.5 2.79 
PPS 0 0 0 0 0 0 0 0.00E+00 

PRAGSr 0 0 0 0 0 0 0 0 
PTAr -0.286 -0.257 -2.27 -0.107 2.47 -0.276 19.6 -0.0726 
PYK 13.6 13.7 11.2 12.1 17.4 9.97 21.3 0 

PYRt2 2.32 2.35 0 0.098 1.38 8.26 8.26 8.26 
RPE 2.33 1.46 3.52 -2.61 0.817 -2.33 2.63 -2.1 
RPI -1.43 -0.741 -1.61 1.21 -0.233 1.1 -1.38 1.04 

SERAT 0.0336 0.0302 0 0.0125 0 0.0325 0 0 
SERD_L 0 0 0 0 0 0 0 0 
SHSL1_1 0 0 0.136 0 0 0 0 0 

SHSL2 0.0669 0.0601 0.0715 0.0249 0.0681 0.0646 0.128 0 
SHSL4r 0 0 0 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

SUCCt2r 0 0.351 1.93 3.35 0.809 -13.9 0 3.35 
SUCD1 18.9 21.3 4.86 19.8 4.85 14 0 10.8 

SUCOAS 18.8 20.8 2.73 16.4 3.98 27.8 -0.128 7.4 
TALA 1.27 0.732 1.76 -1.27 0.408 -1.11 1.37 -1.05 
THRD 0.112 2.69 0.391 5.56 0.118 3.45 0.221 0.0693 

THRD_L 0.224 0.201 0 0.0835 0.129 0.216 0.242 0.0645 
THRS 0.446 2.99 0.469 5.69 0.321 3.77 0.603 0.166 
TKT1 1.27 0.732 1.76 -1.27 0.408 -1.11 1.37 -1.05 
TKT2 1.07 0.732 1.76 -1.34 0.408 -1.21 1.26 -1.05 
TPI 12.7 15.3 5.62 9.29 11.1 7.32 7.16 0.0106 

TRPAS1 0 0 0 0 0 0 0 0 
TRPS1 0.0321 0 0 0.012 0 0 0 0 
TYRTA -0.0654 0 0 -0.0244 0 0 0 0 
UNK5 0 0 0 0 0 0 0 0 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016). 

Table A4: Predicted flux from RED-TIL after implementing IFFPR. 

Reaction Glucose Fructose Gluconate Glutamate/ 
Succinate 

Glycerol Malate Malate/ 
Glucose 

Pyruvate 

2S6HCCi 0.000157 0.000141 1.12E-04 5.85E-05 0.000106 0.000152 2.00E-04 4.52E-05 
ACKr -0.284 -0.255 -2.66 -0.106 1.76 9.91 19 -0.0726 

ACONT 17.2 19.3 2.6 8.16 1.84 14 -1.62 7.63 
ACOTA -0.114 0 0 -0.0425 0 0 0 0 
AKGDH 18 19.2 4.25 6.77 3.24 13.9 0 3.78 
AKGt2r 0 0 0 0 0 0 0 0 

ALCD19y 2.41E+00 4.72 -0.544 -0.363 0 -0.826 -0.636 -0.49 
ALDD31_1 0 0 0 0 0 0 0 0 

ARGSL 0.114 0 0 0.0425 0 0 -1.39E-17 0 
ARGabc 0 0 0 0 0 0 0 0 
ARGt2r 0 0 0 0 0 0 0 0 
ASPO1 29.7 24.3 0 21.5 0 20.1 0 0.65 
ASPT 0 0 0.000916 0 0.000728 0 0 1.76 
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Reaction Glucose Fructose Gluconate Glutamate/ 
Succinate 

Glycerol Malate Malate/ 
Glucose 

Pyruvate 

ASPTA -30.8 -28 -1.19 -21.9 -0.68 -21.1 -1.29 -2.7 
CDPDSP_BS 0.033 0.0297 0.0235 0.0123 0.0224 0.0319 0.042 0.00952 

CITt10 0.06 0 0 0.0224 0 0.058 0 0.0173 
CITt14 0.00189 0.0017 0.00135 0.000705 0.00128 0.00183 0.0024 0.000545 
CITt15 0.0136 0.0838 0 0 0 0.0219 0 0 
CITt2r -0.0796 -0.0891 -2.37 -2.09 -4.16 -0.0824 -2.2 -0.019 

CLPNS2_BS 0.000295 0.000265 0.00021 1.10E-04 2.00E-04 2.85E-04 3.75E-04 8.50E-05 
CS 17.2 19.3 4.96 10.2 6 14 0.575 7.63 

CYSS_2 0.0324 0.0289 0 0.0116 0.0187 0.0267 0.0333 0 
CYSTGL_1 0.00668 0.00598 0.0255 0.00506 0.00405 0.00909 0.00941 0 
CYSTS_2 0.00124 0.00126 0.0239 0.000953 0.00405 0.00582 0.00941 0 

ENO 21.5 22.1 10.1 12.4 16 10.5 16.6 0.0696 
FRUK 0 0.998 0.544 2.7 0.787 1.31 1.05 0.409 
FBA 9.36 8.69 4.35 8.7 4.9 7.35 8.79 0.106 

FBA2 2.41 4.72 -0.544 -0.363 0 -0.826 -0.636 -0.374 
FBP 1.81E-13 0 0 0 0 0 0 0.303 

FEDCabc 0.00204 0.00183 0.00138 0.000759 0 0.000345 0.00123 0.000586 
FRUpts 2.41 5.72 0 2.34 0.787 0.488 0.415 0.0354 

FUM 18.1 19.6 6.15 10.1 2.43 -0.134 -9.92 8.85 
FUMt2r 0 0 -0.0186 -0.0455 0 -0.134 -9.92 -0.0357 

G6PDH2r 0.0352 0 0 0 0 0 0.233 0 
GAPD 21.8 20.9 10.2 12.6 16.2 10.8 16.9 0 

GAPDi_nadp 0 0 0 0 0 0 0 0.00E+00 
GHMT2r 0.0807 0.0603 0.0017 0.0393 0.0455 0.0648 0.0853 6.24E-05 
GLCNt2ir 2.01 1.14 5.13 0.889 1.05 1.39 0.953 0 
GLCpts 8.69 6.27 0.6 3.61 1.76 3.32 7.63 0 
GLUDxi 0 0 0 0 0 0 0 0 
GLUSy 0.00104 0.000863 0 0 0 0.000617 0 0 
GLUt2r 0.567 1.17 1.19 3.49 0.865 0.601 0 3.06 
GLYCt -1.97 -2.48 2.39 3.76 6.22 2.91 0.635 2.76 
GLYK 0.443 2.25 1.84 3.4 6.22 2.08 0 2.27 

GLYO1 0 2.73 0 0 0 0 0 0 
GNKr 2.01 1.14 5.13 0.889 1.05 1.39 0.953 0 
HISTD 0 0 0 0.00919 0 0 0 0 
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Reaction Glucose Fructose Gluconate Glutamate/ 
Succinate 

Glycerol Malate Malate/ 
Glucose 

Pyruvate 

HISt2r 0.0482 0.0433 0.0343 0.00879 0.0327 0.0466 0.0613 0.0139 
HSTPTr 0 0 0 0.00919 0 0 0 0 
ICDHyr 16.4 17.5 2.3 3.5 1.84 12.1 -1.62 0.848 
ICITt10 0 0.0539 0.0427 0 0.0407 0 0 0 
ICITt2 -0.847 -1.9 -0.34 -4.66 -0.0407 -1.85 0 -6.79 
LCADi 0 0 0 0 0 0 0 0 
LDH_L -1.89 -2.85 -4.01 -2.26 -4.37 0 -7.21 -1.29 

L_LACt2r -1.89 -2.77 -4.01 -2.15 -3.68 1.62 -5.98 -1.18 
MALt10 0 0.085 0 0.102 0.692 1.62 1.23 0.118 
MALt2r 0 1.36 0 1.63 0.807 24.9 19.7 1.88 
MALt4 0 0.00133 0 0.0016 0.000788 0.00971 0.0192 0.00184 
MDH 18.1 21 6.15 11.9 3.93 26.4 6.06 10.8 
ME2 0 0 2.49E-05 9.73E-06 0 0.000385 4.98 0.000298 

MCITL2 0 0 0 0 0 0 0 0 
OXGDC 0 0 0 0 0 0 0 0 

PC 0.283 1.9 0 0 2.75 0 0 0 
PDH 18.2 17.3 0 10.6 8.49 24.9 21.1 7.82 
PFK 9.36 7.69 3.8 6 4.11 6.03 7.74 0 

PGCD 0.307 0.235 0.14 0.124 0.177 0.252 0.332 0.0463 
GND 2.05 1.14 1.5 -2.17 1.05 -1.58 1.19 -0.314 
PGI 8.51 7.11 1 5.3 1.66 5.7 7.21 -0.0428 

PGK_1 21.8 20.9 10.2 12.6 16.2 10.8 16.9 0 
PGM_1 21.5 22.1 10.1 12.4 16 10.5 16.6 0.0696 
PHETA1 -0.104 0 0 -0.0387 0 -0.0671 -0.00211 0 

PPCK 0 0 0 1.19 0 11.4 4.19 1.17 
PPS 0 0 0 0 0 0 0 0.00E+00 

PRAGSr 0 0 0 0 0 0 0 0 
PTAr -0.284 -0.255 -2.66 -0.106 1.76 9.91 19 -0.0726 
PYK 9.89 10 9.63 7.51 13.6 18 12.6 1.19 

PYRt2 1.16 1.17 0 0.049 0.689 4.32 4.93 8.26 
RPE 1.22 0.756 0.998 -1.5 0.817 -1.08 0.782 -0.212 
RPI -0.826 -0.387 -0.499 0.662 -0.233 0.498 -0.405 0.103 

SERAT 0.0324 0.0289 0 0.0116 0.0187 0.0267 0.0333 0 
SERD_L 0 0 0 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate Glutamate/ 
Succinate 

Glycerol Malate Malate/ 
Glucose 

Pyruvate 

SHSL1_1 0.00544 0.00472 0.00159 0.0041 0 0.00327 0 0 
SHSL2 0.0681 0.0613 0.0255 0.0259 0.0494 0.0704 0.0944 0 
SHSL4r 0 0 0.00636 0 0 0.0131 0 0 
SUCCt2r 0 0.351 1.93 3.35 -0.809 -13.9 0 3.35 
SUCD1 18 19.6 6.17 10.1 2.43 0 0 7.13 

SUCOAS 18 19.2 4.21 6.74 3.19 13.8 -0.0944 3.78 
TALA 0.711 0.378 0.499 -0.714 0.408 -0.508 0.392 -0.106 
THRD 0.16 2.89 0.639 0.0505 0.118 0.168 0.221 0.0693 

THRD_L 0.217 0.195 0.128 0.0785 0.148 0.194 0.275 0.0645 
THRS 0.487 3.18 0.845 0.17 0.34 0.468 0.636 0.166 
TKT1 0.711 0.378 0.499 -0.714 0.408 -0.508 0.392 -0.106 
TKT2 0.51 0.378 0.499 -0.789 0.408 -0.575 0.39 -0.106 
TPI 11.9 11.9 5.39 4.64 10.9 4.01 7.7 0 

TRPAS1 0 0 0 0 0 0 0 0 
TRPS1 0.0321 0 0 0.012 0 0 0 0 
TYRTA -0.0654 0 0 -0.0244 0 0 0 0 
UNK5 0 0 0 0 0 0 0 0 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  

Table A5: Predicted flux from ll-COBRA. 

Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

2S6HCCi 0.000157 0.000141 1.12E-04 5.85E-05 0.000106 0.000152 2.00E-04 4.52E-05 
ACKr -0.284 -0.255 -2.61 -0.106 2.29 9.91 9.17 -0.0726 

ACONT 17.2 16.3 2.6 8.94 1.84 14 3.43 7.63 
ACOTA -0.114 0 0 -0.0425 0 0 0 0 
AKGDH 16.7 16.2 4.54 12.2 3.24 13.9 0 3.4 
AKGt2r 0 0 0 0 0 0 0 0 

ALCD19y 2.41E+00 4.72 -0.544 -0.363 0 -0.826 -0.636 -0.49 
ALDD31_1 0 0 0 0 0 0 0 0 

ARGSL 0.114 0 0 0.0425 0 0 0.00E+00 8.67E-19 
ARGabc 0 0 0 0 0 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

ARGt2r 0 0 0 0 0 0 0 0 
ASPO1 29.7 24.3 0 21.5 0.083 20.1 0 2.41 
ASPT 0 0 0.0291 0 0 0 0 0 

ASPTA -30.8 -26.1 -1.25 -21.9 -0.762 -21.1 -1.29 -2.7 
CDPDSP_BS 0.033 0.0297 0.0235 0.0123 0.0224 0.0319 0.042 0.00952 

CITt10 0.06 0.00654 0 0 0 0.058 0.0763 0 
CITt14 0.00189 0.0017 0.00135 0.000705 0.00128 0.00183 0.0024 0.000545 
CITt15 0.0136 0.0838 0 0.0849 0 0.0119 0 0 
CITt2r -0.0796 -0.0957 -2.29 -0.0872 -3.58 -0.0724 -7.01 -0.00172 

CLPNS2_BS 0.000295 0.000265 0.00021 1.10E-04 2.00E-04 2.85E-04 3.75E-04 8.50E-05 
CS 17.2 16.3 4.88 8.94 5.41 14 10.4 7.63 

CYSS_2 0.0324 0.0289 0 0.0116 0.0187 0.0267 0.0333 0 
CYSTGL_1 0.00668 0.00598 0.0255 0.00506 0.00405 0.00909 0.00941 0 
CYSTS_2 0.00124 0.00126 0.0239 0.000953 0.00405 0.00582 0.00941 0 

ENO 21.5 19 9.98 12.4 16 10.5 16.6 0.0696 
FRUK 0 0.998 0.544 2.7 0.787 1.31 1.05 0.409 
FBA 9.36 8.69 4.35 8.7 4.9 7.35 8.79 0.106 

FBA2 2.41 4.72 -0.544 -0.363 0 -0.826 -0.636 -0.374 
FBP 4.08E-13 0 0 0 0 0 0 0.303 

FEDCabc 0.00204 0.00183 0.00138 0.000759 0 0.000345 0.00123 0.000586 
FRUpts 2.41 5.72 0 2.34 0.787 0.488 0.415 0.0354 

FUM 16.8 16.6 6.13 0.0604 2.43 -0.131 -0.134 6.72 
FUMt2r 0 0 -0.368 0 0 -0.131 -0.134 -0.0357 

G6PDH2r 0.0352 0 0 0 0 0 0.233 0 
GAPD 21.8 18.9 10.1 12.6 16.2 10.8 16.9 0 

GAPDi_nadp 0 0 0 0 0 0 0 0.00E+00 
GHMT2r 0.0807 0.0603 0.00182 0.0482 0.0455 0.0648 0.0853 6.24E-05 
GLCNt2ir 2.01 1.14 5.13 0.889 1.05 1.39 0.953 0 
GLCpts 8.69 6.27 0.6 3.61 1.76 3.32 7.63 0 
GLUDxi 0 0 0 0 0 0 0 0 
GLUSy 0.00104 0.000863 0 0 0 0.000617 0 0 
GLUt2r 0.567 1.17 1.19 3.51 0.865 0.601 0 3.06 
GLYCt -1.97 -2.48 2.39 3.76 6.22 2.91 0.635 2.76 
GLYK 0.443 2.25 1.84 3.4 6.22 2.08 0 2.27 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

GLYO1 0 0.839 0 0 0 0 0 0 
GNKr 2.01 1.14 5.13 0.889 1.05 1.39 0.953 0 
HISTD 0 0 0 0.018 0 0 0 0 
HISt2r 0.0482 0.0433 0.0343 0 0.0327 0.0466 0.0613 0.0139 

HSTPTr 0 0 0 0.018 0 0 0 0 
ICDHyr 15.1 14.4 2.6 8.94 1.84 12.1 -1.62 0.472 
ICITt10 0 0.0474 0.0427 0.0224 0.0407 0 0 0.0173 
ICITt2 -2.17 -1.89 -0.0427 -0.0224 -0.0407 -1.85 -5.05 -7.18 
LCADi 0 0 0 0 0 0 0 0 
LDH_L -0.574 -2.85 -4.01 -1.42 -4.37 0 -7.21 -0.919 

L_LACt2r -0.574 -2.77 -4.01 -1.32 -4.32 1.62 -5.98 -0.801 
MALt10 0 0.085 0 0.102 0.0505 1.62 1.23 0.118 
MALt2r 0 1.36 0 8.3 0.807 24.9 19.7 1.88 
MALt4 0 0.00133 0 0.0016 0.000788 0.00971 0.0192 0.00184 
MDH 16.8 18 6.13 8.47 3.29 26.4 15.8 8.34 
ME2 0 0 0.00E+00 0.00E+00 0 0.000356 4.98 0.376 

MCITL2 0 0 0 0 0 0 0 0 
OXGDC 0 0 0 0 0 0 0 0 

PC 1.6 0.00266 0 0.915 2.81 0 0 0 
PDH 18.2 16.1 0 9.33 8.43 24.9 21.1 7.82 
PFK 9.36 7.69 3.8 6 4.11 6.03 7.74 1.60E-12 

PGCD 0.307 0.235 0.14 0.133 0.177 0.252 0.332 0.0463 
GND 2.05 1.14 1.15 -2.16 1.05 -1.58 1.19 -0.314 
PGI 8.51 7.11 1 5.3 1.66 5.7 7.21 -0.0428 

PGK_1 21.8 18.9 10.1 12.6 16.2 10.8 16.9 0 
PGM_1 21.5 19 9.98 12.4 16 10.5 16.6 0.0696 
PHETA1 -0.104 0 0 -0.0387 0 -0.0671 -0.00211 0 

PPCK 0 0 0 0 0 11.4 4.19 0.416 
PPS 0 0 0 0 0 0 0 0.00E+00 

PRAGSr 0 0 0 0 0 0 0 0 
PTAr -0.284 -0.255 -2.61 -0.106 2.29 9.91 9.17 -0.0726 
PYK 9.89 7 9.52 6.31 13.6 18 12.6 0.44 

PYRt2 1.16 1.17 0 0.049 0.689 4.32 4.93 8.26 
RPE 1.22 0.756 0.768 -1.5 0.817 -1.08 0.782 -0.212 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

RPI -0.826 -0.387 -0.384 0.654 -0.233 0.498 -0.405 0.103 
SERAT 0.0324 0.0289 0 0.0116 0.0187 0.0267 0.0333 0 

SERD_L 0 0 0 0 0 0 0 0 
SHSL1_1 0.00544 0.00472 0.00159 0.0041 0 0.00327 0 0 

SHSL2 0.0681 0.0613 0.0255 0.026 0.0494 0.0704 0.0944 0 
SHSL4r 0 0 0.00636 0 0 0.0131 0 0 
SUCCt2r 0 0.351 1.93 -12.2 -0.809 -13.9 0 3.35 
SUCD1 16.7 16.6 6.47 0 2.43 0 0 6.75 

SUCOAS 16.6 16.2 4.51 12.2 3.19 13.8 -0.0944 3.4 
TALA 0.711 0.378 0.384 -0.714 0.408 -0.508 0.392 -0.106 
THRD 0.16 0.995 0.669 0.0416 0.118 0.168 0.221 0.0693 

THRD_L 0.217 0.195 0.128 0.0785 0.148 0.194 0.275 0.0645 
THRS 0.487 1.29 0.875 0.161 0.34 0.468 0.636 0.166 
TKT1 0.711 0.378 0.384 -0.714 0.408 -0.508 0.392 -0.106 
TKT2 0.51 0.378 0.384 -0.789 0.408 -0.575 0.39 -0.106 
TPI 11.9 9.8 5.39 4.64 10.9 4.01 7.7 0 

TRPAS1 0 0 0 0 0 0 0 0 
TRPS1 0.0321 0 0 0.012 0 0 0 0 
TYRTA -0.0654 0 0 -0.0244 0 0 0 0 
UNK5 0 0 0 0 0 0 0 0 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  

Table A6: Predicted flux from iMAT. 

Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

2S6HCCi 0 0 0 0 0 0 0 0 
ACKr 1000 1000 0 1000 0 1 -1 0 

ACONT 1 1.1 1 174 31 237 1 1 
ACOTA -1 -1 0 -1 0 -273 -1 -1 
AKGDH 5 7.8 2 177 34.2 238 4 1 
AKGt2r 0 0 0 0 0 0 0 0 

ALCD19y 0 0 0 0 -1 0 0 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

ALDD31_1 0 0 0 0 0 0 0 0 
ARGSL 1 1 1 1 217 1 1 1 
ARGabc 0 0 0 0 0 0 0 0 
ARGt2r 0 0 0 0 0 0 0 0 
ASPO1 642 1 1 590 0 149 504 1 
ASPT 0 0 0 0 0 0 0 0 

ASPTA -988 -11.9 -4 -597 -224 -154 -706 -5 
CDPDSP_BS 0 0 0 0 0 0 0 0 

CITt10 0 0 0 0 0 0 0 0 
CITt14 0 0 0 0 0 0 0 0 
CITt15 0 0 0 0 0 0 0 0 
CITt2r 0 0 0 0 0 0 0 0 

CLPNS2_BS 0 0 0 0 0 0 0 0 
CS 1 1.1 1 174 31 237 1 1 

CYSS_2 4 1 0 1 0 1 1 1 
CYSTGL_1 0 0 0 0 0 0 0 0 
CYSTS_2 0 0 0 0 0 0 0 0 

ENO 221 195 26.5 210 144 398 472 1 
FRUK 0 4.72 0 0 0 0 0 0 
FBA 1 5.72 1 1 1 1 2.32 1 

FBA2 0 1 0 1 1 0 0 5.72 
FBP 0 0 0 0 0 0 0 0 

FEDCabc 0 0 0 0 0 0 0 0 
FRUpts 0 5.72 0 1 1 0 0 5.72 

FUM 344 14.7 5 183 253 245 199 4 
FUMt2r 0 0 0 0 0 0 0 0 

G6PDH2r 8.63 6.63 1 3.63 2 11.3 8.63 1 
GAPD 229 203 137 323 146 409 977 129 

GAPDi_nadp 0 0 0 0 0 1 0 59.2 
GHMT2r 7.79 7.94 110 113 7 4 999 73.2 
GLCNt2ir 0 0 5.13 0 0 0 0 0 
GLCpts 7.63 1 0 0 0 0 1 0 
GLUDxi 1000 1 885 1 1 1000 1 1 
GLUSy 1 1 1 264 1 1 1 1 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

GLUt2r 0 0 0 0 0 0 0 0 
GLYCt 0 0 0 0 2 0 0 0 
GLYK 0 0 0 0 1 0 0 0 

GLYO1 6.58 6.94 106 112 6 1 998 73.2 
GNKr 0 0 5.13 0 0 0 0 0 
HISTD 1.79 4.94 1 1 1 1 1 1 
HISt2r 0 0 0 0 0 0 0 0 

HSTPTr 1.79 4.94 1 1 1 1 1 1 
ICDHyr 1 1.1 1 174 31 237 1 1 
ICITt10 0 0 0 0 0 0 0 0 
ICITt2 0 0 0 0 0 0 0 0 
LCADi 0 0 0 0 0 0 0 0 
LDH_L 0 0 0 0 -1 -344 -1000 -1 

L_LACt2r 0 0 0 0 -1 -343 -975 -1 
MALt10 0 0 0 0 0 1 24.5 0 
MALt2r 0 0 0 0 0 24.5 1 0 
MALt4 0 0 0 0 0 1 1 0 
MDH -1 11 3 181 253 242 -1 1 
ME2 345 3.69 2 2.56 0 28.9 227 3 

MCITL2 0 0 0 0 0 0 0 1 
OXGDC 0 0 0 0 0 0 0 0 

PC 348 1 1 1 1.79 1 204 24.7 
PDH 978 392 1 527 284 1 456 49.8 
PFK 1 1 1 1 1 1 2.32 1 

PGCD 11.8 8.94 110 114 7 5 1000 74.2 
GND 6.79 6.63 6.13 -1 2 11.3 8.63 1 
PGI -1 1 -1 4 1 -11.3 -1 -1 

PGK_1 229 203 137 323 146 408 977 69.5 
PGM_1 221 195 26.5 210 144 398 472 1 
PHETA1 -1 -1 -1 -1 -1 -1 -1 -1 

PPCK 0 0 0 1 0 1 0 19.7 
PPS 0 0 0 0 0 0 0 0 

PRAGSr 1 1 1 1 1 1 1 2.84E-14 
PTAr 1000 1000 0 1000 0 1 -1 0 
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Reaction Glucose Fructose Gluconate 
Glutamate/ 
Succinate 

Glycerol Malate 
Malate/ 

Glucose 
Pyruvate 

PYK 206 183 1 200 139 385 460 1 
PYRt2 0 0 0 0 0 0 0 0 
RPE 2 0 0 -3 0 4.63 3.31 -3 
RPI -4.79 -6.63 -6.13 -2 -2 -6.63 -5.31 -4 

SERAT 4 1 0 1 0 1 1 1 
SERD_L 0 0 0 0 0 0 0 0 
SHSL1_1 4 1 0 1 0 1 1 1 

SHSL2 1 1 0 1 5 0 4 0 
SHSL4r 1 1 0 1 0 0 1 0 
SUCCt2r 0 0 0 3.35 0 3.35 0 0 
SUCD1 5 7.8 2 180 34.2 242 4 2 

SUCOAS -1 4.8 221 174 1 237 -1 1 
TALA 3 1.23 5.13 1 1 5.63 4.31 2 
THRD 0 0 0 0 0 0 0 0 

THRD_L 1 1 0 1 0 1 1 1 
THRS 1 1 0 1 0 1 1 1 
TKT1 3 1.23 5.13 1 1 5.63 4.31 2 
TKT2 -1 -1.23 -5.13 -4 -1 -1 -1 -4.99 
TPI -536 -1 -736 -1 -1 1 2.32 6.72 

TRPAS1 0 0 0 0 0 0 0 0 
TRPS1 0 0 0 0 0 0 0 0 
TYRTA -1 -1 -1 -1 -1 -1 -1 -1 
UNK5 0 0 0 0 0 0 0 0 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  
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Table A7: List of Pearson's correlation coefficients (r) between LPM-GEM flux 

prediction results and 13C metabolic flux data. 

Reaction r P-value 
(adjusted for multiple testing) 

Glucose 0.51 0.16 

Fructose 0.87 1.89E-02 

Gluconate 0.93 4.94E-03 

Glycerol 0.61 0.12 

Malate 0.98 3.36E-04 

Pyruvate 0.78 4.75E-02 

Glutamate 0.76 5.16E-02 

Succinate 0.3 0.27 

PGI 0.43 0.19 

PFK 0.54 0.16 

FBP -0.14 0.66 

FBA 0.49 0.16 

TPI 0.89 1.62E-02 

GAPD 0.78 4.75E-02 

GAPDi_nadp NA NA 

PGK_1 0.73 5.72E-02 

PYK 0.64 0.11 

G6PDH2r 0.59 0.13 

GND 0.52 0.16 

RPE 0.48 0.16 

RPI -0.57 0.95 

TKT1 0.5 0.16 

TKT2 0.45 0.18 

TALA 0.5 0.16 

PDH 0.8 4.04E-02 

CS 0.6 0.13 

ICDHyr 0.55 0.16 

AKGDH 0.34 0.25 

SUCD1 0.4 0.21 

MDH 0.39 0.21 

PPCK 0.96 1.90E-03 

ME2 -0.01 0.55 

PC 0.23 0.33 

PTAr 0.81 4.01E-02 

PGM_1 0.73 5.72E-02 

ENO 0.73 5.72E-02 

ACONT 0.67 9.09E-02 

FUM 0.5 0.16 

ACKr 0.81 4.01E-02 

SUCOAS 0.34 0.25 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  
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Table A8: List of Pearson's correlation coefficients (r) between flux prediction 

results from integrative metabolic analysis tool (iMAT) and 13C metabolic flux 

data. 

Reaction r P-value 
(adjusted for multiple testing) 

Glucose 0.42 0.47 

Fructose 0.64 0.19 

Gluconate 1 0 

Glycerol 1 0 

Malate 0.95 2.21E-03 

Pyruvate NA NA 

Glutamate 0.31 0.51 

Succinate 0.65 0.19 

PGI 0.26 0.56 

PFK 0.44 0.47 

FBP NA NA 

FBA 0.5 0.38 

TPI -0.29 0.86 

GAPD 0.07 0.73 

GAPDi_nadp 0.07 0.73 

PGK_1 0.07 0.73 

PYK 0.81 5.57E-02 

G6PDH2r 0.85 3.67E-02 

GND 0.58 0.27 

RPE 0.36 0.49 

RPI -0.67 1 

TKT1 0.73 0.11 

TKT2 -0.25 0.86 

TALA 0.73 0.11 

PDH -0.11 0.84 

CS -0.3 0.86 

ICDHyr -0.3 0.86 

AKGDH 0.13 0.73 

SUCD1 0.38 0.49 

MDH 0.31 0.51 

PPCK -0.12 0.84 

ME2 -0.08 0.84 

PC 0.35 0.49 

PTAr -0.35 0.86 

PGM_1 -0.01 0.79 

ENO -0.01 0.79 

ACONT -0.3 0.86 

FUM -0.18 0.86 

ACKr -0.35 0.86 

SUCOAS 0.13 0.73 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  



   
 

 107 

Table A9:  Predicted flux from glucose to glucose plus malate shift. 

Reaction 0 min 5 min 10 min 15 min 25 min 45 min 60 min 90 min 

2S6HCCi 0.000149 0.000154 0.000157 0.00016 0.000162 0.00017 0.000176 0.000186 
ACKr -0.624 -0.25 -0.252 -3.68 6.34 2.79 4.29 6.49 

ACONT 6.96 9.67 8.47 6.15 2.1 5.19 7.24 6.93 
ACOTA -0.0157 -0.112 -0.0363 0 0 0 0 0 
AKGDH 9.46 12.1 10.9 6.89 3.91 4.82 5.53 7.08 
AKGt2r 0 0 0 0 0 0 0 0 

ALCD19y 4.38 4.61 3.48 1.24 0.948 0.868 -0.00033 1.43 
ALDD31_1 0 0 0 0 0 0 0 0 

ARGSL 0.0157 0.112 0.0363 -0.0732 -0.0641 -0.000344 0 0 
ARGabc 0 0 0 0 0 0 0 0 
ARGt2r 0 0 0 0 0 0 0 0 
ASPO1 0 0 0.22 0 0 0 0 0 
ASPT 0.433 0 0.00085 0.172 0 0 0 0 

ASPTA -1.43 -1.47 -1.27 -1.19 -0.986 -1.1 -1.13 -1.2 
CDPDSP_BS 0.0314 0.0325 0.033 0.0336 0.0342 0.0358 0.037 0.0392 

CITt10 0 0 0 0 0.062 0 0.0199 0 
CITt14 0.00179 0.00186 0.00189 0.00192 0.00196 0.00205 0.00212 0.00224 
CITt15 0 0 0 0 0 0 0 0 
CITt2r -0.00566 -0.00586 -0.00596 -0.00606 -0.0682 -0.00647 -0.0266 -0.00388 

CLPNS2_BS 0.00028 0.00029 0.000295 3.00E-04 0.000305 0.00032 0.00033 0.00035 
CS 6.96 9.67 8.47 6.15 2.1 5.19 7.24 6.93 

CYSS_2 0 0.00193 0 0 0 0 0.00315 0.00348 
CYSTGL_1 0.0319 0.0311 0.0354 0.0362 0.00936 0.0118 0.00527 0.00784 
CYSTS_2 0.0319 0.0311 0.0336 0.0342 0.0065 0.00991 0.000868 0.00666 

ENO 17.4 17.2 17.2 16.6 17.7 15.3 15.9 15.7 
FRUK 1.09 1.11 1.4 3.25 1.98 1.66 1.61 0.848 
FBA 6.11 5.95 6.47 7.72 6.95 6.65 7.39 7.28 

FBA2 4.38 4.61 3.48 1.24 2.31 1.32 0.962 1.43 
FBP 0 0 0 0 0 0 0 0 

FEDCabc 0.00193 0.002 0.00204 0.00207 0.0021 0.00221 0.00228 0.00082 
FRUpts 5.48 5.72 4.88 4.49 4.29 2.98 2.57 2.28 
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Reaction 0 min 5 min 10 min 15 min 25 min 45 min 60 min 90 min 

FUM 9.4 -5.91 -10.7 -11.9 -13.9 -11.4 -9.75 -12.3 
FUMt2r -0.506 -9.64 -15 -13.9 -13.9 -12.8 -12.1 -15.8 

G6PDH2r 0.0182 0 0.0178 0.0142 0.226 0.857 0 0.0101 
GAPD 17.7 17.4 17.5 16.8 16.6 15.1 15.1 16 

GAPDi_nadp 0 0 0 0 0 0 0 0 
GHMT2r 0.0637 0.0794 0.0671 0.0141 0.0601 0.000235 0.0396 0.0656 
GLCNt2ir 4.55 4.19 1.54 0.393 0.769 0 0 2.46 
GLCpts 6.58 6.43 6.39 4.83 5.65 5.65 6.56 7.16 
GLUDxi 0.000729 0 0 0 0 0 0 0 
GLUSy 0 0 0 0 0 0 0 0 
GLUt2r 2.95 3.28 2.91 2.48 1.82 1.01 0.32 0.194 
GLYCt -2.49 -2.87 -1.56 -0.684 -0.416 -0.317 0 -1.23 
GLYK 1.9 1.74 1.92 0.561 0.532 0.552 0 0.196 

GLYO1 0 0.304 0 0 0 0 0 0 
GNKr 4.55 4.19 1.54 0.393 0.769 0 0 2.46 
HISTD 0 0 0 0 0 0 0 0 
HISt2r 0.0458 0.0474 0.0482 0.049 0.0499 0.0523 0.0539 0.0572 

HSTPTr 0 0 0 0 0 0 0 0 
ICDHyr 6.96 9.36 8.47 4.81 2.1 3.12 4.57 5.42 
ICITt10 0.057 0.059 0.06 0.061 0 0.0651 0 0.0712 
ICITt2 -0.057 -0.367 -0.06 -1.41 0 -2.13 -2.67 -1.58 
LCADi 0 0 0 0 0 0 0 0 
LDH_L -8.82 -6.27 -8.09 -7.39 -5.65 -5.04 -4.8 -7.61 

L_LACt2r -8.82 -5.18 -6.8 -6.25 -4.55 -3.87 -3.63 -6.34 
MALt10 0 1.09 1.29 1.15 1.1 1.17 1.17 1.28 
MALt2r 0 17.5 20.6 18.3 17.6 18.7 18.7 20.4 
MALt4 0 0.0171 0.0201 0.0179 0.0172 0.0183 0.0183 0.0199 
MDH 8.43 12.7 10.6 7.63 3.08 8.34 9.66 9.37 
ME2 0.973 0.000121 0.62 7.31E-05 1.71 0.17 0.468 0.000266 

MCITL2 0 0 0 0 0 0 0 0 
OXGDC 0 0 0 0 0.0118 0.0125 0 0 

PC 0 0 0 0 0 0 0 0 
PDH 7.13 10.3 9.46 0 9.72 9.25 12.9 14.9 
PFK 5.01 4.84 5.07 4.47 4.98 4.99 5.78 6.44 
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Reaction 0 min 5 min 10 min 15 min 25 min 45 min 60 min 90 min 

PGCD 0.248 0.302 0.261 0.212 0.233 0.184 0.223 0.266 
GND 0.652 0.355 -1.16 0.407 0.62 0.857 -0.587 0.86 
PGI 6.42 6.28 6.23 4.67 5.27 4.64 6.39 6.97 

PGK_1 17.7 17.4 17.5 16.8 16.6 15.1 15.1 16 
PGM_1 17.4 17.2 17.2 16.6 17.7 15.3 15.9 15.7 
PHETA1 -0.0985 -0.102 -0.104 0 0 0 0 0 

PPCK 0.0376 1.53 1.06 0.289 0 2.06 1.29 1.24 
PPS 0 0 0 0 0 0 0 0.00E+00 

PRAGSr 0 0 0 0 0 0 0 0 
PTAr -0.624 -0.25 -0.252 -3.68 6.34 2.79 4.29 6.49 
PYK 5.04 6.16 6.61 7.41 7.69 8.69 7.98 7.47 

PYRt2 0.313 0.00184 0.79 -0.198 -2.15 -1.29 2.07 7.67 
RPE -0.769 -0.879 -0.834 0 0.363 0.563 -0.391 0.474 
RPI -1.42 -1.23 0.322 -0.407 -0.256 -0.293 0.196 -0.386 

SERAT 0 0.00193 0 0 0 0 0.00315 0.00348 
SERD_L 0 0 0 0 0 0 0 0 
SHSL1_1 0 0 0.00173 0.002 0.00286 0.00186 0.0044 0.00118 

SHSL2 0.0954 0.0969 0.1 0.0342 0.0065 0.00991 0.0402 0.072 
SHSL4r 0 0 0.0069 0.00799 0.222 0.148 0.00505 0.0047 
SUCCt2r 0 -8.45 -6.66 -4.92 -3.92 -3.42 -3.18 -3.6 
SUCD1 9.46 3.62 4.22 1.96 0 1.41 2.35 3.49 

SUCOAS 9.36 12 10.8 6.84 3.68 4.66 5.48 7.01 
TALA -0.304 -0.34 -0.332 0.0327 0.182 0.282 -0.196 0.237 
THRD 0.165 0.461 0.174 0.231 0.189 0.261 0.23 0.22 

THRD_L 0.181 0.189 0.182 0.184 0 0.0834 0.24 0.253 
THRS 0.45 0.758 0.465 0.526 0.303 0.464 0.593 0.604 
TKT1 -0.304 -0.34 -0.332 0.0327 0.182 0.282 -0.196 0.237 
TKT2 -0.465 -0.538 -0.502 -0.0327 0.182 0.282 -0.196 0.237 
TPI 12 11.9 11.5 9.16 9.43 8.13 7.95 8.48 

TRPAS1 0 0 0 0 0 0 0 0 
TRPS1 0 0.0315 0 0 0 0 0 0 
TYRTA -0.0621 -0.0643 -0.0654 -0.0653 0 0 0 0 
UNK5 0 0 0 0 0 0 0 0 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  
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Table A10: Predicted flux from malate to malate plus glucose shift. 

Reaction 0 min 5 min 10 min 15 min 25 min 45 min 60 min 90 min 

2S6HCCi 0.000181 0.000197 2.00E-04 0.000202 0.000207 0.000213 0.000213 0.000197 
ACKr 3.68 8.66 9.96 4.91 3.63 4.44 5.8 1.98 

ACONT 19.8 9.48 5.01 3.54 5.35 6.3 4.24 6.45 
ACOTA 0 0 0 0 0 0 0 -0.0471 
AKGDH 17.3 8.32 4.5 4.41 2.72 6.4 5.72 8.03 
AKGt2r 0 0 0 0 0 0 0 0 

ALCD19y -9.66E-05 -2.43 -1.25 -3.54 0.345 -0.0993 1.94 2.73 
ALDD31_1 0 0 0 0 0 0 0 0 

ARGSL 0 0 0 -0.0396 0 0 0 0.0471 
ARGabc 0 0 0 0 0 0 0 0 
ARGt2r 0 0 0 0 0 0 0 0 
ASPO1 9.42 0 0 0 0 0 0 0 
ASPT 0 0 0 0 0 0 0 0 

ASPTA -10.6 -1.27 -1.29 -1.29 -1.34 -1.37 -1.37 -1.37 
CDPDSP_BS 0.0381 0.0414 0.042 0.0426 0.0437 0.0448 0.0448 0.0414 

CITt10 0 0.0753 0.0436 0 0.0584 0 0 0 
CITt14 0.00218 0.00237 0.0024 0.00244 0.0025 0.00256 0.00256 0.00237 
CITt15 0.0731 0 0 0 0 0 0 0 
CITt2r -0.078 -0.0796 -0.912 -7.7 -6.2 -5.49 -8.27 -8.8 

CLPNS2_BS 0.00034 0.00037 0.000375 3.80E-04 0.00039 4.00E-04 4.00E-04 0.00037 
CS 19.8 9.48 5.88 11.2 11.5 11.8 12.5 15.2 

CYSS_2 0.0335 0.0374 0 0 0.0203 0.0367 0.0357 0.0356 
CYSTGL_1 0.00756 0.0103 0.0489 0.0469 0.026 0.00888 0.00989 0.00662 
CYSTS_2 0.00521 0.00479 0.0427 0.0433 0.0242 0.00888 0.00989 0.00662 

ENO 9.59 6.63 8.97 9.91 15.1 22.1 20.9 20.5 
FRUK 0 3.89 2.03 3.56 0 0.343 0 0 
FBA 7.38 8.13 6.87 9.56 7.98 9.43 9.23 8.64 

FBA2 2.29 -2.43 -1.25 -3.54 0.345 0.794 1.94 2.73 
FBP 0 0 0 0 0 0 0 0 

FEDCabc 0.00133 0.000983 0 0 0.000438 0.00209 0.00248 0.00198 
FRUpts 2.29 1.46 0.78 0.0109 0.345 1.14 1.94 2.73 
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Reaction 0 min 5 min 10 min 15 min 25 min 45 min 60 min 90 min 

FUM 3.41 1.72 -2.42 -0.168 -4.28 -9.71 -7.22 1.94 
FUMt2r 0 -0.13 -2.42 -0.129 -4.28 -9.71 -7.22 -0.071 

G6PDH2r 0 0 0.0138 0.0157 0.0153 0 0.0262 0.0224 
GAPD 7.6 6.96 9.31 10.3 15.5 21.6 21.2 20.9 

GAPDi_nadp 0 0 0 0 0 0 0 2.58E-13 
GHMT2r 0.0773 0.0841 0.0853 0.0945 0.0887 0.091 0.091 0.0841 
GLCNt2ir 5.13 0.0319 0.0388 0.531 0.747 3 3.47 5.08 
GLCpts 0 7.02 6.63 8.04 8.02 7.93 7.84 8.27 
GLUDxi 0 0 0 0 0 0 0 0 
GLUSy 3.91 0.000213 0 0 0 0.000813 0 0 
GLUt2r 1.24 1.29 0.715 0.427 0.354 0 0.0413 0.938 
GLYCt 6.22 2.43 1.28 3.54 1.04 1.81 -1.49 -1.81 
GLYK 6.22 0 0.0313 0 1.39 1.72 0.442 0.928 

GLYO1 0 0 0 0 0 0 0 0 
GNKr 5.13 0.0319 0.0388 0.531 0.747 3 3.47 5.08 
HISTD 0 0 0 0 0 0 0 0 
HISt2r 0.0556 0.0605 0.0613 0.0621 0.0638 0.0654 0.0654 0.0605 

HSTPTr 0 0 0 0 0 0 0 0 
ICDHyr 15.6 6.69 3.69 3.54 3.27 4.82 4.24 6.45 
ICITt10 0.0692 0 0.0327 0.0773 0.0209 0.0814 0.0814 0.0753 
ICITt2 -4.24 -2.78 -1.35 -0.0773 -2.09 -1.57 -0.0814 -0.0753 
LCADi 0 0 0 0 0 0 0 0 
LDH_L 0 -2.42 -2.91 -1.76 -4.13 -8.07 -7.08 -7.54 

L_LACt2r 1.66 -1.14 -1.74 -0.574 -2.88 -6.69 -5.7 -6.66 
MALt10 1.66 1.28 1.17 1.19 1.25 1.38 1.38 0.879 
MALt2r 24.8 20.6 18.8 19 20 22.1 22.1 14.1 
MALt4 0.0259 0.0201 0.0184 0.0185 0.0195 0.0216 0.0216 0.0137 
MDH 29.9 23.6 15.9 20 17 13.8 16.3 16.9 
ME2 0.000367 0.000377 1.65 3.78E-04 0.000351 0 0.000448 0.000171 

MCITL2 0 0 0 0 0 0 0 0 
OXGDC 0 0 0.816 0.783 2.15 0 0.0992 0 

PC 0 0 0 0 0 0 0 0 
PDH 24.9 19.7 17.4 17.7 16.8 17.9 20 18.8 
PFK 7.38 4.25 4.84 6 7.98 9.09 9.23 8.64 
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Reaction 0 min 5 min 10 min 15 min 25 min 45 min 60 min 90 min 

PGCD 0.301 0.328 0.332 0.345 0.345 0.354 0.354 0.328 
GND 2.84 -3.5 -2.02 -2.23 0.763 2.83 3.5 1.86 
PGI 5.99 6.83 6.43 7.84 7.81 7.72 7.61 8.06 

PGK_1 7.6 6.96 9.31 10.3 15.5 21.6 21.2 20.9 
PGM_1 9.59 6.63 8.97 9.91 15.1 22.1 20.9 20.5 
PHETA1 0 0 0 -0.134 -0.137 -0.141 -0.141 -0.13 

PPCK 8.98 12.8 8.76 7.48 4.16 0.669 2.38 0.274 
PPS 0 0 0 0 0 0 0 0.00E+00 

PRAGSr 0 0 0 0 0 0 0 0 
PTAr 3.68 8.66 9.96 4.91 3.63 4.44 5.8 1.98 
PYK 16.2 10.9 10.2 8.83 10.4 13.3 13.1 9.3 

PYRt2 8.26 4.94 3.28 4.9 4.45 6.07 6.6 8.26 
RPE 1.61 -2.35 -1.35 -1.58 0.425 1.62 1.93 0.931 
RPI -1.23 1.16 0.673 0.644 -0.338 -1.21 -1.57 -0.932 

SERAT 0.0335 0.0374 0 0 0.0203 0.0367 0.0357 0.0356 
SERD_L 0 0 0 0 0 0 0 0 
SHSL1_1 0.00235 0.00554 0.00614 0.00359 0.00182 0 0 0 

SHSL2 0.0823 0.0887 0.128 0.129 0.113 0.0995 0.101 0.0905 
SHSL4r 0 0 0.236 0.223 0.183 0 0 0 
SUCCt2r -13.9 -6.47 -5.32 -5.19 -4.87 -6.4 -5.82 -6.07 
SUCD1 3.41 1.85 0 0 0 0 0 1.96 

SUCOAS 17.2 8.23 4.13 4.05 2.42 6.3 5.62 7.94 
TALA 0.805 -1.17 -0.673 -0.683 0.324 0.91 1.04 0.572 
THRD 0.2 0.218 0.221 0.216 0.23 0.236 0.236 0.218 

THRD_L 0.251 0.271 0 0.019 0.0871 0.295 0.294 0.274 
THRS 0.578 0.626 0.361 0.376 0.462 0.68 0.679 0.63 
TKT1 0.805 -1.17 -0.673 -0.683 0.324 0.91 1.04 0.572 
TKT2 0.805 -1.17 -0.675 -0.902 0.1 0.713 0.888 0.359 
TPI -0.578 0 3.13 1.61 7.42 11.5 11.1 11.9 

TRPAS1 0 0 0 0 0 0 0 0 
TRPS1 0 0 0 0 0 0 0 0 
TYRTA 0 0 -0.00211 -0.0842 -0.0864 -0.0552 -0.0104 -0.082 
UNK5 0 0 0 0 0 0 0 0 

*For full reaction name, see the publication of B. subtilis 168 (iYO844) model (King et al. 2016).  
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Figure 21Figure A1 

Figure A1: The Scatterplot showing a relationship between 13C metabolic 
flux data and corresponding gene expression values. Z-scores of the 

absolute values of the 13C tracer derived metabolic flux data from 40 reactions 

of the gold standard and corresponding gene expression values from the same 

carbon source conditions, and a linear regression line are plotted. The 

scatterplot shows a linear tendency, Pearson’s correlation coefficient was 

significant (r = 0.59, p-value = 1.06E-53).  
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