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a b s t r a c t

Scientific computing requires handling large linear models, which are often composed of structured
matrices. With increasing model size, dense representations quickly become infeasible to compute or
store. Matrix-free implementations are suited to mitigate this problem at the expense of additional
implementation overhead, which complicates research and development effort by months, when
applied to practical research problems. Fastmat is a framework for handling large structured matrices
by offering an easy-to-use abstraction model. It allows for the expression of matrix-free linear
operators in a mathematically intuitive way, while retaining their benefits in computation performance
and memory efficiency. A built-in hierarchical unit-test system boosts debugging productivity and
run-time execution path optimization improves the performance of highly-structured operators. The
architecture is completed with an interface for abstractly describing algorithms that apply such
matrix-free linear operators, while maintaining clear separation of their respective implementation
levels. Fastmat achieves establishing a close relationship between implementation code and the actual
mathematical notation of a given problem, promoting readable, portable and re-usable scientific code.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.2
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00172
Code Ocean compute capsule
Legal Code License Apache License Version 2.0
Code versioning system used git
Software code languages, tools, and services used Python, Cython
Compilation requirements, operating environments & dependencies Numpy, Scipy, Cython, some C-Compiler
If available Link to developer documentation/manual https://fastmat.readthedocs.io/en/latest/
Support email for questions sebastian.semper.tu-ilmenau.de christoph.wagner@tu-ilmenau.de

1. Motivation and significance

Linear transformations are one of the corner stones in applied
ath, physics, engineering and data science for they enable the
odeling of objects using vector spaces. In case of finite dimen-
ional vector spaces, linear mappings are represented by matrices
hat encode how coordinates of an image space can be used to
xpress the image of all basis vectors of another vector space.
However, in many applications linear mappings are not com-

letely arbitrary, but exhibit some structure that often stems from
hysical models [1,2], descriptions of natural processes [3,4] or
ssumptions from side constraints [5,6]. One prominent example
s the Discrete Fourier Transform (DFT) of order n ∈ N, which

∗ Corresponding author.
E-mail address: christoph.wagner@tu-ilmenau.de (Christoph W. Wagner).

transforms periodic discrete signals into the respective frequency
domain and which also has a plethora of applications in spectral
analysis, radar, array processing and beyond. Given the canonical
standard basis in Cn, the corresponding matrix elements are
expressed as

F =
[
fi,k

]n
i,k=1 =

[
exp

(
−ȷ2π
n

· i · k
)]n

i,k=1
, (1)

where ȷ =
√
−1. As we can see, the Fourier matrix F ∈ Cn×n is

highly structured with no degrees of freedom, since the size of
the involved vector space already fully defines its elements.

In order to actually carry out a linear mappingm, which means
evaluating it at a given input vector x to get its image y = m(x),
one simply calculates y = M · x, if M ∈ Cm×n is the matrix
encoding the linear mapping m. Generally, this is accomplished
ttps://doi.org/10.1016/j.softx.2022.101013
352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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= [yi]mi=1 =

⎡⎣ n∑
j=1

mi,j · xj

⎤⎦m

i=1

= M · x. (2)

Note that this formula entails a computational complexity of
O(n ·m), both in terms of runtime and memory consumption.

Returning to our DFT example, instead of simply applying (2)
literally, one should make use of the Fast Fourier Transform
(FFT) [7] in order to calculate y = F · x with runtime complexity
O(n log n). The FFT exploits structural redundancy by decompos-
ing the DFT matrix into smaller so-called butterfly-structures,
depending on the transform size and its prime factorization. Such
redundancy reductions are key in enabling practical applications
of modern signal processing.

Dedicated and highly optimized libraries [7–10] exist that
offer ‘‘simple’’ access to the FFT, but performance and developer-
experience alone are not their only benefits: Since they are highly
tested and thoroughly examined, they tend to produce less ‘‘soft’’
errors (i.e. numerical accuracy or -stability) than some custom
code written from scratch. Especially since devising numerically
stable algorithms is far from trivial, such abstract libraries are
often considered highly trusted. As a result, the FFT is com-
monly considered as the primary choice for spectral analysis over
the DFT – not only for its better performance, but also due to
developer-experience and trust.

For many such matrix–vector-products an efficient algorithm,
tailored to the specific linear mapping at hand, can be imple-
mented, giving rise to the distinction of two representations of
that mapping: The matrix itself as a rectangle of scalars (in our
example the DFT-matrix F ), which we call the dense represen-
tation, and said algorithm (FFT) that replaces the matrix–vector
product entirely, which we call thematrix-free representation. We
further define the forward transform φM : Cn

→ Cn as

x ↦→ φM (x) = m(x) = Mx (3)

and the backward transform βM : Cn
→ Cn as

x ↦→ βM (x) = MHx, (4)

where MH denotes the Hermitian transpose of the matrix M .
To derive an important implication of handling (more com-

plex) matrix-free representations, let us consider the cyclic con-
volution with a vector c ∈ Cn, which is usually implemented as

y = ifft(fft(c)⊙ fft(x)), (5)

where ⊙ : Cn
× Cn

→ Cn carries out a pointwise multiplication
(i.e. Hadamard product) of two vectors in Cn. We can now see
that the two representations begin to diverge (both in notation
and program code), making it both harder to cope with on a
theoretical level and keeping both representations in-sync. As
a consequence, the risk of implementation errors increases and
researchers get distracted from their main quest by obfuscated
(‘‘bloated’’) code and all kinds of maintenance issues.

2. Software description

Our software provides an object-oriented programming in-
terface for matrix-free linear operators that closely ties result-
ing application code to its corresponding mathematical nota-
tion. The unique Matrix-class Application Programming Inter-
face (API) abstracts any (internal) matrix-free representation in
such form that they can be treated like dense representations

products, unfoldings of structured tensors or block matrices) fur-
ther provide the ability to combine existing operators for con-
structing complicated linear mappings abstractly, while exploit-
ing matrix-free benefits along the way. A user may choose from
a wide range of built-in matrices (see Fig. 1), or decide to imple-
ment a custom one using fastmat’s rich built-in functionality
for quickly assessing numerical accuracy, class performance or
run-time execution-path-optimization. Finally, the Matrix-class-
API is complemented by the Algorithm-API for implementing
(signal processing) algorithms that utilize Matrix operators.

2.1. General Matrix-free Representations

Every linear transform can be described by a matrix (or inter-
actions of matrices) in either its dense or matrix-free representa-
tion. The Matrix baseclass implements a general and structure-
independent basic API, from which more specific class imple-
mentations can be derived using Object-Oriented-Programming
(OOP)-principles. The user is thus empowered to easily and se-
lectively extend an existing Matrix class with only having to
implement new functionality, as new classes by default inherit
all structure from their parent. This is possible since the class-
API makes no structural assumptions about the linear trans-
form internally. Our architecture thus reflects the path from no
structural assumptions (Matrix baseclass) to more constraints,
less generality and more efficiency (inherited classes) in a way
that is completely transparent to the user, which promotes code
portability and -reuse.

Many properties of a given matrix M can also be calculated
from the forward and backward transforms in Eqs. (3) and (4).
For instance, the single matrix element mi,j can be accessed via
eTi φM (ej), independently of M or φM . The Matrix baseclass offers
plenty such general implementations of common quantities and
properties (see Table 1), which also benefit from overloading
efficient means for φ and β in a specialized class.

All properties and methods of the class-API are wrapped with
some entry-level interface code that ensures input sanity and of-
fers extended features, such as run-time execution optimizations
(see Appendix B). Still, the mechanism ensures that a user can
override their central computation code without regard for not
breaking this interface code (see Appendix C). By definition, all
Matrix instances and their instantiation arguments are consid-
ered immutable, as this provides the immense benefit of allowing
for pre-computations and caching of static results without imped-
ing run-time consistency. The latter is provided transparently by
the class-API interface code for the respective general properties.

A good illustration for these mechanisms is the Circulant
class, which realizes the computation given in (5). Since c accu-
rately defines the circulant matrix, pre-computing fft(c) is done
during instantiation and its result is then reused in every subse-
quent call to φ and β.

As a manifestation of the overall architecture philosophy, the
Circulant matrix is also not implemented by hacking down (5)
in closed form, but rather by defining it as a product of three
matrices: A conjugated and transposed Fourier matrix, a diagonal
matrix and another Fourier matrix. Given that we have imple-
mented the Product, Fourier and Diag classes correctly, we
can rely on them to serve as abstraction layers for the defini-
tion of Circulant with an overall efficiency comparable to a
closed-form implementation.

A wide range of operators is provided with fastmat out-of-
the-box (see Fig. 1), which regularly reference each-other. As a
consequence, the code of fastmat also resembles the mathe-
matical notation closely, while runtime and memory performance
benefits from any piece of matrix-free implementation anywhere
in the class architecture.
(externally). Binary and unary operators (such as matrix–matrix

2
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Fig. 1. Listing of fastmat classes, grouped by elementary and composite type.

For being able to rely on individual operator correctness (es-
pecially as they tightly interact with each other), fastmat offers
flexible unit-test mechanism, which is capable of running fine-
ranular automated tests for any fastmat class implementation

(including user-defined ones) at run-time. Even subtle implemen-
tation errors rooted deep inside a complicated web of hierarchical
matrix-free operators can be identified quickly using the hier-
archical analysis of the unit-test results. For more information
consult the package documentation.

In summarizing, for certain types of composite operators, their
respective forward and backward transforms can themselves be
described solely from the respective transforms of their opera-
tor terms. Structural knowledge is fully retained even through
multiple layers of structural abstraction and a close relationship
between fastmat-powered code and its theoretical computation
description using mathematical notation is established, meeting
fastmat’s main architectural goal.

2.2. Matrix-free Algorithm Representation

On top of the pure matrices we also offer the Algorithm base-
class that facilitates the usage of Matrix instances for more
complex routines that make use of linear transforms relying on
the fastmat Matrix class-API. This provides some significant
advantages: First, the algorithm implementation itself is com-
pletely agnostic about the actual structure of the underlying ma-
trices it employs. As a direct consequence, any Matrix instance,
that exploits structural knowledge for efficiency, also passes its
benefits on to any Algorithm that it is employed in. Secondly,
the Algorithm baseclass offers means to easily establish user
callbacks for various purposes, making it easily possible to in-
spect, tune or override certain aspects of an algorithm during
runtime, such as break conditions, step sizes, thresholding or the
custom determination of regularization parameters. And last but
not least, of course does the algorithm’s code structure also reflect
3
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Table 1
The Matrix baseclass: properties, methods, overloading and caching.

the mathematical notation more closely in its implementation,
especially since the heavy lifting required for matrix-free rep-
esentations no longer clutters the algorithm’s implementation.
ost pitfalls associated with overly complicated code units are
irectly alleviated through the resulting code-tidying, provided
y the Matrix and Algorithm class-API of fastmat.

. Illustrative Examples

After establishing fastmat’s design philosophy, we will now
onsider how a user solves linear problems with fastmat, focus-
ng on workflow and methodological implications arising from
sing matrix-free representations. Let us consider the case,
here some linear mappings in simulation or measurement anal-
sis are so complex and large in size that choosing dense repre-

sentations regularly lead to runtime and/or memory exhaustion.
Still, due to them being related to physical processes, their em-
bedded structure gives rise to optimization potential from using
matrix-free representations. Unfortunately, embedding such rep-
resentations in scientific code often leads to the situation, where
representation-level code optimizations clutter the higher-level
application code, adding a readability and maintenance penalty.
The resulting code of such solutions is highly specific, causing
portability issues and impeding design reuse.

In applying the added abstraction of fastmat’s class-API, this
crisis can be averted, freeing valuable resources for advancing
the actual problem — while still being able to resolve acute
bottleneck-problems (due to the underlying matrix-free imple-
mentations). The atomic class implementations encourage build-
ing shared libraries and the API also serves as a useful entry-point
for numerical unit-tests, ensuring that the linear operators meet
specification, independent from application-level testing.

In combination, these effects encourage the use of matrix-free
methods over sticking with badly-performing dense representa-
tions out of fearing the opportunity cost of trying.

3.1. Defining your Custom Matrix-free Operators and Algorithms

Before diving into a full-blown example of higher-dimension
physical modeling in Section 3.2, we will use fastmat for a quick
matrix-free implementation of a 1 matrix of shape N×M , defined
such that every scalar element of its dense representation equals
to 1.

Choosing a proper baseline class to inherit from may save
much implementation effort for a new class, which very well
may be any other Matrix class, with some parametrization.
For our example, the Matrix baseclass is already well suited.
The general behavior of the new class is defined by overriding
the methods _forward(•) and _backward(•), corresponding to
φ and β. The __init__(•) method must be specified, which
performs pre-computations (if required) and either finishes with
calling self.initProperties(•) directly, or by passing on to
its parent class’ __init__(•). Due to the general Matrix base-
class implementations, the class is now complete (see Listing 1). If
known, further optimizations may be added through overloading
specific class properties and methods (see Appendix C).

The remainder of this section will shortly outline how to make
use of the fastmat testing-, benchmark- and calibration systems
for a new class. The testing subsystem, designed to unit-test a
particular class for numerical accuracy, requires the definition of
two methods: The reference() method is supposed to return
a dense reference array to compare against, while _getTest()
must return a valid configuration for the test case generator.
For the calibration feature to be available, _getComplexity()
must implement a model for returning relative complexity es-
timates for φ and β and finally, the run-time benchmark must
be configured by declaring _getBenchmark() such that a valid
benchmark configuration is returned. With those four methods
declared, all features of fastmat are now enabled for the newly
defined class.

To make use of run-time execution-path optimization (see
Appendix B), either load pre-existing calibration data from disk,
or generate it at run-time (prior to instantiating •) by invoking
fastmat.core.calibrateClass(•).

1 import numpy, fastmat
2
3 class Ones(fastmat.Matrix):
4 '''A simple 1-Matrix implementation'''
5
6 def __init__(self, numRows, numCols):
7 '''Initialize fastmat class-API and define shapes'''
8 self._initProperties(numRows, numCols, numpy.int8)
9

10 def _forward(self, arrX):
11 '''Define forward transform'''
12 return numpy.resize(
13 numpy.sum(arrX, axis=0, keepdims=True),
14 (self.numRows, arrX.shape[1])
15 )
16
17 def _backward(self, arrX):
18 '''Define backward transform'''
19 return numpy.resize(
20 numpy.sum(arrX, axis=0, keepdims=True),
21 (self.numCols, arrX.shape[1])
22 )
23
24 ### Additional methods required to be defined for...
25 ### - Testing: reference(), _getTest()
26 ### - Calibration: _getComplexity(), _getBenchmark()
27
28 # ##################### Instantiate and Use the new class
29 N, M = 4, 5 ; O = Ones(N, M)
30 xf = numpy.random.randn(M) ; xb = numpy.random.randn(N)
31 print(xf, '\n', O * xf) ; print(xb, '\n', O.H * xb)

Listing 1: Minimal Working Example of a matrix-free implemen-
tation of our 1-Matrix.
4
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Fig. 2. Transducer path and the measurement positions.

3.2. Application to Ultrasonic Nondestructive Testing

Ultrasound is used in a wide range of fields such as manufac-
uring, medicine or maintenance as a nondestructive modality to
haracterize the interior of an object under test. In
on-destructive testing one is further interested in detecting
nd characterizing possible defects within a specimen without
fflicting any damage or alterations to the object. Following, we
ummarize an example of recent research carried out on the 3D
econstruction of defects using ultrasonic non-destructive test-
ng [11] with special focus on its implementation using matrix-
ree methods and the proposed package fastmat.

A transducer, emitting ultrasonic pulses into the specimen,
s moved along a predefined trajectory to collect the measure-
ent data. At each position, we take snapshots by inserting a
nown waveform and recording the echoes originating at mate-
ial boundaries, due to the change in acoustic impedance. This
rocess, as depicted in Fig. 2, creates a synthetic aperture, which
llows us to recover the (previously unknown) locations of such
apid impedance changes in the investigated medium. These usu-
lly indicate interesting areas, which we aim to extract from the
easurements.
In order to formulate a tractable parameter estimation prob-

em, we first introduce a linear model, which maps a vector
ncoding possible defect locations onto a possible observation
aptured by the transducer. Very generally, this reads as

= H · x+ n, (6)

where b, x ∈ Cn and H ∈ Cn×n. In this equation, b is the obtained
measurement from the transducer as in Fig. 2. The matrix H
models our assumptions of the physical process taking place in
the medium: if we insert pulsed waveforms, these pulses get
reflected by possible defects and can be seen in the recorded
echos. Based on this model, the entries in x correspond to certain
ositions in the object. A nonzero entry indicates a reflector or
efect at said position. Consequently, we wish to recover x from
he measurements b in order to infer these positions.

The transducer moves over points that are aligned on a regular
D grid located in a hyperplane of R3. In case when we introduce

a well chosen grid for the possible defect locations, one can show
that the matrix

H =
[
H i,j

]N1
i,j=1 ,

is a block matrix, where each H i,j ∈ C(2N2−1)(2N3−1)×(2N2−1)(2N3−1)

s a 2-level Toeplitz matrix. Since N1, N2 and N3 scale with the
patial resolution during measurement and reconstruction of the
efects locations, as they constitute the number of samples in
ach of the spatial directions. The dense matrix H quickly as-
umes an insane amount of elements (N2

1 (2N2 − 1)2(2N3 − 1)2).
ince this is simply too much for current system memory and
omputation resources we have to employ a matrix-free imple-
entation of the transforms involving the dense matrix H to stay
ithin the realms of practical feasibility.

Now, consider a single H i,j, which due to its structure rep-
resents a 2D non-cyclic convolution. Such a convolution can be
implemented by means of a larger cyclic convolution and appro-
priate zero-padding of the input. Leaving out technical details,
one can show that

H i,j = P
(
(F 2N2−1 ⊗ F 2N3−1) · diag(hi,j) · (FH

2N3−1 ⊗ FH
2N2−1)

)
, (7)

where ⊗ denotes the matrix Kronecker product, diag(x) is a
diagonal matrix with x as its diagonal and P is the operator in
charge of the correct zero-padding. To implement this matrix,
one would use a suitable combination of Partial, Kron, Diag,
Product, Hermitian and Fourier classes of fastmat.

In order to carry out the estimation of x based on H and b, one
popular approach is the following optimization problem:

minx ∥Hx− b∥22 + τ∥x∥1, (8)

where ∥x∥p = (
∑

i |xi|
p)(1/p) and τ > 0 being some suitably

chosen hyper parameter. Interestingly, there are algorithms to
approximately solve problems like in (8) efficiently, solely based
on matrix–vector products. It has been discovered in recent years,
that the regularizing term τ∥x∥1 is able to enforce sparsity in x,
which corresponds to the assumption that there are only a few
defects within the specimen under test. One way of solving the
problem in (8) is the Iterative Shrinkage-Thresholding Algorithm
(ISTA) [12], which is the basic inspiration for a whole array of
similar algorithms with varying performance. However, for the
sake of simplicity, we present the simple and basic version. For
a given initial estimate x0 ∈ Cn we simply iterate the following
expressions until we have satisfied some stopping criterion:

xk+1 = τs
(
HH

· (H · xk − b)
)
,

where τs : Cn
→ Cn is a non-linear function (called the soft

thresholding operator) to the level s > 0, which exhibits linear
runtime over the size of x. This means the largest computational
effort for ISTA resides in the computation of the φH and βH
projections respectively, rendering it a perfect application for a
matrix-free implementation. For ISTA we simply end up with

xk+1 = τs
(
βH (φH (xk)− b)

)
.

The fact, that the modeling stage and the algorithm design
stage remain completely separate from each other, renders the

Fig. 3. Sparse recovery results for a steel specimen (top view) – Top to bottom:
Sketch of the specimen (Top View), Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA) reconstruction, Orthogonal Matching Pursuit (OMP) reconstruction,
beamforming via Synthetic Aperture Focusing Technique (SAFT).
5
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roposed toolbox very advantageous as a research tool. The same
atrix-free representation can easily be plugged into other suit-
ble algorithms that use the described class-API.
On the other hand, we can also easily adapt for a different

easurement scenario. Compressed Sensing (CS) uses the tech-
iques developed in Sparse Signal Recovery (SSR) for estimating
ignal parameters from compressed measurements. If we ap-
ly this approach to the problem of defect detection we get a
ifferent observation model, which reads as

ˆ = Ψ · H · x+ n, (9)

where the matrix Ψ ∈ Cm×n is such that m ≪ n, resulting in a b̂,
containing far fewer measurements than b.

In research on ultrasonic non-destructive testing, a common
procedure is to compare imaging algorithms using a test speci-
men with artificially introduced target defects. Such defects are
commonly represented by flat holes that are drilled into the
bottom of the specimen. In Fig. 3 we show some examples for
possible reconstructions of such defects in a steel block. In this
case we use the transducer to localize these defects by measuring
into the specimen from the top side. See Fig. 3 for results of three
ifferent algorithms, namely FISTA [12], a slight variant of the
escribed ISTA, OMP [13] (another sparsity-enforcing algorithm
ell suited for matrix-free methods), and SAFT, a beamforming
ethod that simply computes x̂ = βH (b).
In our case we use Ψ to compress the N2 · N3 many single-

ulse-echo-measurements independently in frequency domain.
his way we get

= blkdiag{Φ1,1, . . . ,ΦN1,N2},

where each Φ i,j is a matrix containing a random selection of
f ∈ N rows of the Fourier matrix and the blkdiag operator

arranges the matrices in a block-diagonal structure. Clearly, the
measurement matrix Ψ has a matrix-free representation and
as such also does the product ΨH . If we simply plug the new
easurements b̂ and the product ΨH into the already discussed
lgorithms like OMP, FISTA or ISTA, we get results as depicted in
ig. 4. There, we only used a single Fourier coefficient from each
f the originally collected pulse-echo-measurements.
To proof our claim, that fastmat tightens code-notation re-

lationship, we show a simplified example implementation of (7)
nd (8) in Listing 2. The example not only shows that mod-

eling and algorithmic design is fully separated, is also empha-
sizes the value of properly abstracted models, by easily adding
a compressive data acquisition model to the design. In then
swapping models (reflecting different sampling schemes or phys-
ical models) and algorithms in-place, a wide range of research
results is now quickly attained, while reusing most of the easy-to-
follow programming code, that also resembles our mathematical
formulation closely.

Fig. 4. Top and side view of a FISTA reconstruction using 20 steps, nf = 1
Fourier coefficients and ΨH as the system matrix.

1 # either you could go by coding Eq. (7) literally,
2 FK = fastmat.Kron(
3 fastmat.Fourier(N2), fastmat.Fourier(N3)
4 )
5 H = fastmat.Blocks([
6 [ fastmat.Partial(
7 FK * fastmat.Diag(h[i, j]) * FK.H, cols=vec_zeropad
8 )
9 for j in range(N1)

10 ] for i in range(N1)
11 ])
12
13 # or you could just use the Multi-Level Toeplitz class
14 H = fastmat.Blocks([
15 [ fastmat.Toeplitz(h[i, j])
16 for j in range(N1)
17 ] for i in range(N1)
18 ])
19
20 # Using H in an algorithm (8) works as follows:
21 import fastmat.algorithms
22 alg = fastmat.algorithms.ISTA(H, numLambda=lambda)
23 x = alg.process(b)

Listing 2: The code implementation for Eq. (7) (two variants
given) and Eq. (8).

4. Impact

By design of the API presented in Section 2, a research pro-
grammer can abstract low-level optimization away from high-
level algorithm design without sacrificing general performance
optimizations, resulting in greatly improved readability, exten-
sibility and portability of the produced code. Due to the OOP
approach resembling a construction-kit, linear mappings can be
implemented very rapidly, even for complex matrix-free repre-
sentations with high performance optimization potential. The
integrated testing functionality greatly reduces maintenance time
by focussing debugging effort at the precise abstraction level re-
quired, even for complex implementations. Consequent abstrac-
tion establishes the isolation of individual efficiency-boosting
tweaks to their particular architecture level. This improves on
code maintenance, interface clarity and early bug-detection all
the way up to the algorithmic design level, accelerating devel-
opment cycles.

All those features result in fastmat being a tool to boost
the work efficiency of researchers, engineers or teams thereof,
that regularly have to deal with large-scale structural models
and algorithms that apply those. Since team communication is
limited (even already by available time), this puts a direct limit
on the sustainable problem complexity and team efficiency –
especially when groups grow in size [14] – introducing a ‘‘spe-
cialization trap’’, where at some point every colleague in a design
team maintains some different, highly specialized piece of a large
common project, that is infeasible to communicate fully to others
(due to overall complexity). Our package helps breaking this situ-
ation by enabling individual team members to better understand
their peers problems, exchange ideas quicker and find solutions,
improving their overall team collaboration efficiency to prepare
for solving even more complex problems.

On top of the team-dynamic aspects, the resulting imple-
mentation efficiency is also sufficiently close to the optimum,
such that the opportunity cost of living with the remaining ef-
ficiency gap (that stems from the implementation generality)
is low. Therefore, the best of both worlds can be achieved in
that convenience no longer must be sacrificed for speed (and
vice-versa).

Finally we would like to reference original research that ap-
plied fastmat. In Section 3.2 we showed its application to
6
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he problem of CS-based 3D reconstruction of defects from ul-
rasound measurements, involving dense, yet highly structured
ulti-dimensional linear models. fastmat enabled this research
y reducing the memory footprint of these models from many
etabytes down to the gigabyte-range [11,15,16]. For a novel CS-
ased ultra-wideband radar architecture, fastmat was used to
odel the whole signal-acquisition hardware frontend to assess

he impact of circuit design and signaling choices to the resulting
econstruction performance [17]. In the field of machine learning,
ur package is utilized to perform Structured Kernel Interpolation
SKI) for scaling Gaussian Processes (GP) to massive datasets on
he example of three-dimensional weather radar datasets with
ver 100 million points [18]. One mentionable application of
ur algorithmic subsystem, being used for its high-performing
fficient rank-1 update OMP implementation, is in pygpc, a
ensitivity and uncertainty analysis toolbox for Python [19].

. Conclusions

We have shown that with a carefully designed API one can
esign an architecture that unifies dense and matrix-free linear
appings, while leveraging the strengths of both approaches,
nd keeping the complications between them at a minimum. As
e demonstrate this results in simplifications both in terms of
he written code as well as the design process that is needed
o construct a specific implementation. In essence, the described
ackage allows to focus more on the actual problems at hand,
hen dealing with large-scale structured linear models, without
eing subjected to the obstacles of realizing them from scratch.
uture versions of the package will include support for ten-
or unfoldings in order to realize higher-order linear mappings
ore rigorously. Further, improved support for the specification
f more complex block structures aims to make better use of
he redundancy occurring from repeating structures within a
atrix-presentation.
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ppendix A. Prevent Python performance penalties: Cython

Partly due to its interpreted, abstract and permissive (duck-
yping) nature, Python is not particularly known for rapid code
xecution. To mitigate this we make extensive use of Cython
hroughout the architecture to reduce the additional call over-
ead (introduced with our object oriented model) by reduc-
ng Python interpreter interaction where possible. Especially for
atrix-free operators that combine thousands small (N)-operators,
urbing Python’s flexibility where it is not of benefit (e.g. un-
er the hood of fastmat) becomes imperative, as (superfluous)
nterpreter interaction quickly begins to dominate runtime.

To minimize call overhead, the complete class model archi-
ecture and all built-in class implementations utilize Cython to

compile the code and statically-link it back into the Python API.
This way the Python interpreter can be evaded not only during
intra-package execution flow (e.g. method calls), but also for most
interactions with Numpy (by means of its provided C-API), re-
sulting in a significant performance boost over pure (interpreted)
Python code. Dodging the runtime penalty that comes with run-
time dynamic typing, fastmat internally makes heavy use of
static typing and supports the data types integer (8, 16, 32 and
64 bit), float and complex (both for single and double precision).
Another runtime penalty arises from the creation of vast amounts
of Views into ndarray‘s during internal array slicing operations.
This is mitigated by the use of a dedicated mutable striding
operator that works on arrays, which greatly relieves the stress of
creating and garbage-collecting many short-lived Python objects,
such as array views.

Appendix B. Class calibration and execution path optimization

Since a modern CPU is highly optimized for crunching num-
bers, the dense representation is likely to compute faster than the
matrix-free for very small transform sizes — even if complexity
analysis predicts the opposite. This is mostly due to the scaling-
insensitivity of complexity models, but is also promoted by the
impact of processor caches and memory speeds. In this case, using
the conventional dense matrix–vector ‘‘dot’’ product as a shortcut
might be more efficient than using the matrix-free φ or β rep-
resentation. However, determining the threshold problem size,
from below which the dense representation should be preferred,
is highly individual to any particular problem and processing
system and must be determined at run-time.

In fastmat this process is called calibration and is available for
any Matrix class (also user-defined ones) as part of the normal
user interface. For this, fastmat offers a simple interface for the
one-time generation of problem-size-agnostic runtime estimation
models (which also consider simultaneous processing of multiple
vectors) for φ and β. During the instantiation of a Matrix in-
stance its runtime performance and that of a comparable dense
product are estimated, given calibration data is available in the
context of the current session. When φ or β is finally used, the
optimal path for a particular number of simultaneous vectors can
immediately be chosen. This way, fastmat features integrated
run-time computation path optimization.

Appendix C. Overloading classes from a user’s perspective

To promote usability, a major challenge for fastmat is to
simultaneous achieve the following goals: First, a Matrix in-
stance must behave the same regardless of context as long it
makes sense mathematically. Therefore, in embracing the duck
typing mantra of Python, input and output sanitizing is required
for all user-interface methods — regardless of whether they are
subject to overloading or not. Secondly, it must be easily possible
to define new or extend existing classes, regardless of them
being built-in (Cython) or user defined (Python), or to override
particular portions of any classes’ take on the user interface. And
finally, readability, use- and reusability must be maintained to
establish a user experience of lowest possible complexity. The
user must be able to enjoy the comfortable position of not having
to care about breaking the internal API or functionality when
overloading classes.

Adding an extra input preparation layer directly at the class-
API entry methods of the Matrix baseclass achieves all goals.
Every class-API method takes care of input compliance and ap-
plies more advanced features, such as pre-computation, result
caching or runtime execution path optimization (calibration, see
Appendix B). The actual implementation code is provided in a
7
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eparate private method. Since the user only overrides these
rivate methods when implementing custom structured matrices,
nterface consistency is always guaranteed.

For properties that apply pre-computation caching, the over-
ll code execution (and implementation overloading) mecha-
ism is as follows: Assume one wishes to access the property
.foo. There exists a shadowed attribute A._foo, which caches
he computation result for immediate return in all subsequent
ueries. During the first query, A.getFoo() is invoked as the
irect API entry point for the computation of ‘foo‘. This entry
oint handles interface integrity (similar to any other class-API
ethod) and may not be overloaded directly. Instead, it redirects

he execution flow to A._getFoo() for the actual computation,
hich is the lean method that a user would overload. Therefore,

f a user wants to alter the behavior of A.foo or A.getFoo(),
verloading A._getFoo() with a new implementation is all that
eeds to be done.
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