

TU Ilmenau | Universitätsbibliothek | ilmedia, 2022
http://www.tu-ilmenau.de/ilmedia

Tomova, Mihaela Todorova; Hofmann, Martin; Mäder, Patrick

SEOSS-Queries - a software engineering dataset for text-to-SQL and question
answering tasks

Original published in: Data in Brief. - Amsterdam [u.a.] : Elsevier. - 42 (2022), art. 108211, 11

pp.

Original published: 2022-04-27

ISSN: 2352-3409
DOI: 10.1016/j.dib.2022.108211
[Visited: 2022-07-04]

This work is licensed under a Creative Commons Attribution 4.0
International license. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1016/j.dib.2022.108211
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Data in Brief 42 (2022) 108211

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

SEOSS-Queries - a software engineering

dataset for text-to-SQL and question

answering tasks

Mihaela Todorova Tomova a , ∗, Martin Hofmann
a , Patrick Mäder a , b

a Technische Universität Ilmenau, Ilmenau 98693, Germany
b Faculty of Biological Sciences, Friedrich Schiller University, Jena 07745, Germany

a r t i c l e i n f o

Article history:

Received 17 December 2021

Revised 28 March 2022

Accepted 21 April 2022

Available online 27 April 2022

Dataset link: Dataset for hierarchical

tetramodal-porous architecture of zinc

oxide nanoparticles microfluidically

synthesized via dual-step nanofabrication

(Original data)

Dataset link: SEOSS - Queries (Original

data)

Keywords:

Software and systems requirement

engineering

Text-to-SQL

Dataset

Question answering

Natural language processing

a b s t r a c t

Stakeholders of software development projects have vari-

ous information needs for making rational decisions dur-

ing their daily work. Satisfying these needs requires sub-

stantial knowledge of where and how the relevant infor-

mation is stored and consumes valuable time that is of-

ten not available. Easing the need for this knowledge is an

ideal text-to-SQL benchmark problem, a field where pub-

lic datasets are scarce and needed. We propose the SEOSS-

Queries dataset consisting of natural language utterances and

accompanying SQL queries extracted from previous studies,

software projects, issue tracking tools, and through expert

surveys to cover a large variety of information need per-

spectives. Our dataset consists of 1,162 English utterances

translating into 166 SQL queries; each query has four pre-

cise utterances and three more general ones. Furthermore,

the dataset contains 393,086 labeled utterances extracted

from issue tracker comments. We provide pre-trained SQL-

Net and RatSQL baseline models for benchmark comparisons,

a replication package facilitating a seamless application, and

discuss various other tasks that may be solved and evalu-

ated using the dataset. The whole dataset with paraphrased

natural language utterances and SQL queries is hosted at

figshare.com/s/75ed49ef01ac2f83b3e2 .

∗ Corresponding author.

E-mail address: mihaela-todorova.tomova@tu-ilmenau.de (M.T. Tomova).

https://doi.org/10.1016/j.dib.2022.108211

2352-3409/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.dib.2022.108211
http://www.ScienceDirect.com
http://www.elsevier.com/locate/dib
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dib.2022.108211&domain=pdf
https://data.mendeley.com/datasets/sh4d5z2szx/1
https://figshare.com/s/75ed49ef01ac2f83b3e2
https://figshare.com/s/75ed49ef01ac2f83b3e2
mailto:mihaela-todorova.tomova@tu-ilmenau.de
https://doi.org/10.1016/j.dib.2022.108211
http://creativecommons.org/licenses/by/4.0/

2 M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211

© 2022 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

S

V

1

pecifications Table

Subject Software Engineering

Specific subject area Software and systems requirement engineering. Minimization risk in the

software development process.

Type of data Table Text

How data were acquired Utterances are collected from previous studies, software projects, issue

tracking tools, and through expert surveys found in literature. The SQLite

database based on which the SQL queries corresponding to the utterances

were constructed, was chosen from the SEOSS-dataset. The SQL queries are

developed to answer the collected utterances given the database. The labeled

questions are mined from comments found in databases part of the

SEOSS-dataset.

Data format Raw

Description of data collection We were motivated by the scenarios described in the literature we analyzed,

and questions asked by stakeholders that we found in these scenarios. We

formulated SQL queries for 166 corresponding natural language questions

using data from issues tracking systems and version control systems. We

paraphrased each of these natural language questions six more times, 3 of

which in a specific way and 3 in a non-specific way.

Data source location Institution: Technical University of Ilmenau City/Town/Region: Ilmenau

Country: / Germany

Data accessibility The data is publicly available under the link provided below. Repository name:

Figshare Data identification number: 75ed49ef01ac2f83b3e2 Direct URL to

data: https://figshare.com/s/75ed49ef01ac2f83b3e2

alue of the Data

• With the SEOSS-Queries orchestrated dataset we offer machine learning scientists and re-

searchers a dataset specifically designed to train and evaluate text-to-SQL models on data

derived from the software engineering domain. Additionally, we provide a large set of ques-

tions (SEOSS-Queries issue comments) extracted from issue comments, labeled by issue type

that can be of use to researchers who want to understand better software developers’ needs.

• Stakeholders (e.g. developers) of system and software engineering projects can use text-to-

SQL models trained on the SEOSS-Queries orchestrated dataset to query-database information

faster and easier to perform a task or to make a decision. Machine learning scientists and

researchers can use the SEOSS-Queries issue comments dataset to gain further insight into

the information needs of software developers by using machine learning and NLP techniques.

• The data from our datasets can be used in the field of Machine Learning and NLP. The SEOSS-

Queries orchestrated dataset can be used to train and evaluate text-to-SQL models. The op-

posite task (SQL-to-text) can be considered in the context of database engineering. The ques-

tions from the SEOSS-Queries issue comments dataset can be used for classification and clus-

tering of written user inquiries. Experiments can give insight into text similarities and give

hints leading to better prioritization of user inquiries. The data can also be used to further

analyze developers’ information needs.

. Data Description

SEOSS-Queries consists of two parts (cp. Table 1).

http://creativecommons.org/licenses/by/4.0/
https://figshare.com/s/75ed49ef01ac2f83b3e2

M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211 3

Table 1

Overview of the Spider and our proposed SEOSS-Queries text-to-SQL datasets.

Dataset # utterances # classes # queries # DBs # domains

tables

per DB

ORDER

BY

GROUP

BY

nested

queries # HAVING

Spider [2]

– full 10,181 – 5,693 200 138 5.1 1,335 1,491 844 388

– SW problems 49 – 24 1 1 6 12 8 12 0

SEOSS-Queries (ours)

– orchestrated 1,162 3 166 1 1 13 16 49 15 8

– issue comments 393,086 4 – – – – – – – –

SEOSS-Queries orchestrated is a set of natural language utterances available in seven para-

phrased versions accompanied by one SQL query each. In total, 166 questions (utterances) were

orchestrated. The natural language utterances were primarily derived from literature and were

refined to correspond to data found in an issue tracking system (ITS) and version control sys-

tem (VCS) of a real-world software project (i.e., Apache Pig) that was extracted and persisted

into an SQLite-database by Rath et al. [1] . To check if the constructed SQL queries were syntac-

tically correct, they were executed against the database. Based on the literature we examined,

we decided to split our utterances manually into two categories: development and research. We

marked utterances as ‘development’ that were motivated by papers addressing software needs

of stakeholders (e.g., developers, data scientists, etc.) or were derived from typical usage sce-

narios’ questions of issue tracking systems. Utterances motivated by papers in which data from

software repositories such as issue tracking systems or version control systems were used for

further analysis were marked as ‘research’. As a result, 81 are categorized as questions to be

likely asked in the domain development, and 63 to be likely asked in the domain research. The

remaining 22 were motivated by the content in questions stakeholders asked within the com-

ments section of issues of type bug, enhancement/improvement, new feature/feature request,

and tasks of 33 open-source Apache projects extracted and persisted into databases by Rath and

Mäder [1] . In the supplementary materials in Table 1, we list the 166 utterances, their category,

and the source from which they were motivated.

SEOSS-Queries issue comments is a set of labeled questions derived from issue comments

discussions extracted from 33 prominent Apache open-source software projects. After analyzing

the issue types in all 33 projects, we decided to look at comments of issues that are of the fol-

lowing four types: bug, enhancement/improvement, new feature/feature request, and tasks, since

they were present in almost all the projects. 1 In total, we extracted 393,086 questions from com-

ments of types bug, enhancement/improvement, new feature/feature request, and tasks. We ana-

lyzed some of the questions in the comments more precisely and based on their content derived

part of the utterances in the SEOSS-Queries orchestrated dataset. Furthermore, the content de-

rived from questions found in issue comments contains valuable information about how devel-

opers communicate with each other, how they express themselves, and what information needs

they have. From a semantic and syntactic point of view, these questions can interest the NLP

community. Understanding stakeholders’ information needs in the software engineering domain

is an undergoing research. Analyzing developers’ questions from real-world software projects can

thus further support this research. In a CSV-file, provided in our Figshare repository, we listed

each question, the project it belongs to, and the issue type of the comment from which the

question was extracted.

Table 1 gives an overview of Spider (a popular large text-to-SQL dataset) and SEOSS-Queries

(our dataset). Table 2 gives an example of natural language utterances from the SEOSS-Queries

orchestrated that were incompatible with the baseline models we chose. To check the validity of
1 Project Derby was the only one that did not have issues of type enhancement.

4 M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211

Table 2

Examples of utterances and SQL queries that are incompatible to the Spider grammar.

Problematic SQL query or NL utterance Incompatibility

List the descriptions and attachments’ files names that belong to the issue with id

PIG-3599

quote in question

SELECT CASE WHEN EXISTS (SELECT ∗ FROM change_set_link WHERE issue_id =

‘PIG-4092’ AND commit_hash = ‘[...]’) THEN ‘True’ ELSE ‘False’ END

CASE statement

SELECT ∗ FROM issue WHERE resolution = “Cannot Reproduce” OR resolution =

“Won’t fix”

quote in query

SELECT issue_id FROM issue WHERE strftime(’%Y-%m-%d’, created_date) =

DATE(’now’,’-1 day’)

srftime() function

SELECT ∗ FROM issue AS T1 WHERE T1.issue_id NOT IN (SELECT T2.issue_id FROM

issue_attachment AS T2)

NOT in WHERE clause

SELECT ∗ FROM issue WHERE type = ‘Bug’ and (status = ‘Resolved’ OR status =

‘Closed’) AND (resolution = ‘Fixed’ or resolution = ‘Done’)

brackets in WHERE clauses

SELECT T1. ∗ FROM issue AS T1 JOIN issue_fix_version AS T2 ON T1.issue_id =

T2.issue_id WHERE T2.fix_version = ‘0.12.1’

T1. ∗ in SELECT

SELECT AVG(count_per_issue) FROM (SELECT Count(DISTINCT username) AS

count_per_issue FROM issue_comment GROUP BY issue_id)

keyword AS in SELECT

SELECT Count(∗) FROM issue WHERE description IS NULL NULL in WHERE clause

Table 3

Results of experiment 1: SEOSS-Queries evaluation with models pre-trained on Spider.

easy medium hard extra hard all

count 392 378 77 84 931

exact match accuracy (SQLNet) 0.023 0.0 0 0 0.0 0 0 0.0 0 0 0.010

exact match accuracy (RatSQL, Glove) 0.309 0.214 0.091 0.0 0 0 0.224

exact match accuracy (RatSQL, Bert) 0.161 0.201 0.065 0.012 0.156

Table 4

Results of experiment 2: all queries trained and left-out utterances used for evaluation.

easy medium hard extra hard all

count 112 108 22 24 266

exact match accuracy (RatSQL, Glove) 0.911 0.806 0.636 0.292 0.789

exact match accuracy (RatSQL, Bert) 0.768 0.648 0.364 0.250 0.639

t

i

d

o

l

Q

i

F

w

p

p

q

c

u

C

t
he SEOSS-Queries orchestrated dataset we perfomed 4 experiments, which results we present

n Tables 3 , 4 , 5 , and 6 .

Fig. 1 depicts the main steps used to construct the SEOSS-Queries orchestrated dataset. Fig. 2

epicts the database schema of the Apache Pig project, used as a way to check the correctness

f the formulated SQL queries in our dataset. Fig. 3 gives an example of the different hardness

evels of SQL queries from our dataset. Fig. 5 depicts the main steps used to construct the SEOSS-

ueries issue comments dataset.

As supplementary materials in our Figshare repository, we provide the two datasets described

n this manuscript as CSV files (seoss_queries_orchestrated and seoss_queries_issue_comments).

urthermore, we provide steps and data files needed to reproduce the experiments with which

e checked the validity of our SEOSS-Queries orchestrated dataset. In the “read.me” file, we

rovide all necessary steps to execute the experiments. We included the database (apache-

ig.sqlite) and database schema (schema.sql) of the Apache Pig project based on which the SQL

ueries were formulated and against which their correctness was ensured. The approaches we

hose to perform the experiments to test the validity of our dataset could not handle all of the

tterance-SQL pairs in the SEOSS-Queries orchestrated dataset. We thus provide an additional

SV file (seoss_queries_used_for_experiments) with all utterance-SQL pairs that were used to

est the validity of our dataset. In the folder “reproduction”, we include files needed to train and

M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211 5

Table 5

Results of experiment 3: evaluation with 20% untrained queries.

easy medium hard extra hard all

all utterances

count 35 98 21 35 189

exact match accuracy (RatSQL, Glove) 0.743 0.357 0.619 0.143 0.418

exact match accuracy (RatSQL, Bert) 0.743 0.337 0.143 0.114 0.349

only non - specific utterances

count 15 42 9 15 81

exact match accuracy (RatSQL, Glove) 0.533 0.190 0.667 0.067 0.284

exact match accuracy (RatSQL, Bert) 0.533 0.143 0.222 0.0 0 0 0.198

only specific utterances

count 20 56 12 20 108

exact match accuracy (RatSQL, Glove) 0.900 0.482 0.583 0.200 0.519

exact match accuracy (RatSQL, Bert) 0.900 0.482 0.083 0.200 0.463

Table 6

Results of experiment 4: evaluation with balanced specific and non-specific utterances.

easy medium hard extra hard all

all utterances

count 112 108 22 24 266

exact match accuracy (RatSQL, Glove) 0.866 0.806 0.591 0.333 0.771

exact match accuracy (RatSQL, Bert) 0.732 0.574 0.364 0.083 0.579

only non-specific utterances

count 56 54 11 12 133

exact match accuracy (RatSQL, Glove) 0.839 0.704 0.636 0.250 0.714

exact match accuracy (RatSQL, Bert) 0.607 0.389 0.364 0.0 0 0 0.4 4 4

only specific utterances

count 56 54 11 12 133

exact match accuracy (RatSQL, Glove) 0.893 0.907 0.545 0.417 0.827

exact match accuracy (RatSQL, Bert) 0.857 0.759 0.364 0.167 0.714

evaluate the baseline models we used to validate our dataset. Details of each experiment are

included in separate folders titled “experiment_x”, x represents the experiment number. We in-

cluded the files needed to perform the training and evaluation of the baseline models we chose

in each experiment folder. The file “tables.json” gives details of all database tables used during

training and evaluation of a model. Originally, “train_others.json”2 includes only training data

from the Spider dataset. We, however, modify this file by appending data from our dataset in it.

Files named “dev.json” were also modified with data from our dataset that needs to be evaluated

by the model of our choice. To evaluate data only from our dataset, we included the predicted

results (predicted_x_x_x.txt) of each experiment and ground-truth results (gold_x_x.txt), as well

as the tables information (tables_pig.json) of the database we used for the evaluation.

2. Experimental Design, Materials and Methods

2.1. SEOSS-Queries orchestracted

In Fig. 1 we depict the main steps to construct the SEOSS-Queries orchestrated dataset.
2 https://github.com/taoyds/spider

https://github.com/taoyds/spider

6 M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211

Fig. 1. Main steps of constructing SEOSS-Queries orchestrated.

Fig. 2. Database schema of the Pig database.

i

s

v

q

o

c

fi
Identification of natural language utterances. We orchestrated natural language utterances

nto SEOSS-Queries that are likely to be asked by developers or researchers. To do this we used

nowball sampling to find literature in which the day-to-day information needs of software de-

elopers was studied or in which interviews were presented that determined developers’ specific

uestions as sources for the natural language utterances that they likely ask. We found devel-

pers to need often information, like “who is working on what,” “who solved what,” “what was

hanged,” “what files are related to a change,” as well as information from a specific time.

Based on the questions we found and based on the content of the SEOSS-33 projects, we re-

ned the respective questions. Furthermore, we also included typical usage scenarios’ questions

M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211 7

Fig. 3. Examples of different hardness levels of SQL queries from the SEOSS-Queries Dataset.

of issue tracking systems 3, 4, 5 . We refer as well to studies that analyze issue tracking systems

and code repositories to understand and support development processes. Some cases contain

formulated questions as sources for natural language utterances that are likely to be asked by

researchers [3–11] . Researchers are interested in more quantitative information (e.g., “How many

issues are not linked to change sets?”, “Count all distinct issue types.”, “Count issues of type

Bug.”), while developers request more specific information to solve a problem or to make deci-

sions (e.g., “Find all issues which either have the status ‘closed,’ ‘resolved’ or ‘patch available.”’,

“Who is the assignee working on an issue with id PIG-3599?”, “What is the issue type of issue

id PIG-3599?”). Researchers’ information needs often refer to a project’s characteristics, such as

the number of bugs or improvements in a project [9] or the number of related issues [5] , or

they assess quality measures (e.g., “rate of fixed issues of type bug”) [3] .

In addition to the natural language utterances strictly derived from literature, we identified

utterances from questions extracted from 1,440,941 issue comments of issue type bug, enhance-

ment/improvement, new feature/feature request, and tasks that are part of the 33 projects in the

SEOSS dataset provided by Rath and Mäder [1] . Given the significant number of questions we ex-

tracted we decided first to narrow them down. Thus, we looked only at questions that contained

column names from the database schema of our project. Based on their content, we extended

our dataset with natural language utterances that can be considered a resulting action from the

discussions in the questions. For example, developers discuss changing the priority or resolution

of an issue, or they want to contact other developers by email to exchange information or ask

for help. To do this, one must first find out what priorities or resolutions are specified in the

project or the email addresses of developers working in it. Hence, one must first list them.

In total, we orchestrated 166 questions (utterances), 81 are categorized as questions to be

likely asked in the domain development, and 63 to be likely asked in the domain research. The

remaining 22 were motivated by the content in questions stakeholders asked within the com-

ments section of issues of type bug, enhancement/improvement, new feature/feature request,

and tasks. We precisely formulated the orchestrated natural language utterances to contain the

exact column- and table-names from the database, minimizing different interpretations as much

as possible. Table 1 from the supplementary materials shows all 166 of these questions.
3 https://www.atlassian.com/blog/jira- software/jql- the- most- flexible- way- to- search- jira- 14
4 https://www.atlassian.com/software/jira/guides/expand-jira/jql#visualize-results
5 https://support.atlassian.com/jira- software- cloud/docs/advanced- search- reference- jql- fields/

https://www.atlassian.com/blog/jira-software/jql-the-most-flexible-way-to-search-jira-14
https://www.atlassian.com/software/jira/guides/expand-jira/jql#visualize-results
https://support.atlassian.com/jira-software-cloud/docs/advanced-search-reference-jql-fields/

8 M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211

Fig. 4. SQLNet-sketch, adapted from Xu et al. [12] .

t

t

v

p

d

g

p

m

r

w

c

P

c

c

r

s

l

w

q

s

w

e

J

s

a

A

e

“

o

a

t

p

b

b

v

t
Selecting and adapting a development project. We used content from ITSs and VCSs ex-

racted and persisted into an SQLite-database by Rath et al. [4] . Each of the 33 databases con-

ains the complete information of the respective project’s issue tracking system and the code

ersion repository at the time of collection. For this manuscript, we chose the Pig project to

erform baseline experiments with which we evaluate the applicability and the validity of our

ataset. Apache Pig 6 is “a platform for analyzing large datasets that consists of a high-level lan-

uage for expressing data analysis programs, coupled with infrastructure for evaluating these

rograms” and seems to be a representative choice being a long-term developed and maintained

id-size open-source project. Fig. 2 shows the schema of the Pig database. The database schema

eflexes the schema of all 33 SEOSS projects.

Formulating the SQL queries. For each of the 166 natural language utterances an SQL query

as formulated. Cases in which more than one possible SQL queries were formulated, were dis-

ussed and at the end only one was picked. Each SQL query was executed against the Apache

ig database to ensure the correctness of the formulated SQL query.

Paraphrasing the natural language utterances. To provide diversity to the dataset, we de-

ided to formulate paraphrased versions of the 166 natural language utterances that we have

ollected so far. The paraphrased utterances were not machine-generated since we wanted to

epresent how an individual would formulate questions.

Given the initial 166 natural language utterances, we aimed to create specific and non-

pecific paraphrased versions to account for the variety of natural language. We ended up formu-

ating six paraphrased natural language utterances. Three of which are paraphrased in a specific

ay, including the relevant column names and table names appearing in the corresponding SQL

uery, and three in a non-specific , aiming for a less precise formulation.

In both versions, we varied words that are used frequently in natural language utterances

uch as Return, “List,” “what,” “who.” In the non-specific case, the main rules we tried following

ere to use synonyms (e.g., “unique” = “distinct” = “different”) or to express things in a differ-

nt manner (e.g., “between 2014-10-01 and 2014-10-31” = “in the month of October”, “between

anuary and April 2015” = “in the first quarter of 2015”, “created an issue” = “reported an is-

ue”). We as well-formulated examples of syntactically incorrect sentences that did not include

 verb (e.g., Any issue ids with a created date between ‘2017-01-01’ and ‘2017-03-31’, Any bugs,

ny critical or blocking issues). Furthermore, in cases in which specific words can be linked

asily to a column or a table, we tried to express them differently. For exam ple, words like

assigned,” “reported” or “committed” can be easily linked to columns “assignee,” “reporter,”

r “committed_date.” In such cases, we used different ways to express the same phrase, e.g.,

ssigned → “Who is responsible for,” “Who is working on.”

Creating baselines for SEOSS-Queries orchestrated. We chose two main state-of-the-art

ext-to-SQL methods to generate baselines for our dataset: SQLNet and RatSQL. RatSQL is a top-

erforming method in the Spider datasets’ leaderboard 7 , and SQLNet is a frequently employed

aseline method for text-to-SQL approaches.

SQLNet by Xu et al. [12] is a sketch-based approach. In Fig. 4 we present the sketch used

y SQLNet. Tokens beginning with $ represent slots that can be aggregation operators, column,

alue, or one of the following symbols: >, <, = . In sketch-based approaches it is only necessary

o predict the content in an SQL query in the form of slots without the need of predicting the
6 https://pig.apache.org/
7 https://yale-lily.github.io/spider

https://pig.apache.org/
https://yale-lily.github.io/spider

M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211 9

Fig. 5. Main step of constructing SEOSS-Queries issue comments.

SQL grammar of the query [13] . In their work Xu et al. propose separate models for the gen-

eration of slot content in a SELECT clause and WHERE clause of an SQL query, making use of

two main techniques: sequence-to-set and column attention. Sequence-to-set is used to predict

which column names appear in a subset of interest by computing probabilities given a column

name and a natural language utterance. Column attention is used to capture dependency rela-

tionships defined in the sketch during prediction. Initially, SQLNet was trained on the WikiSQL

dataset. In our case, however, we used a version adapted to and trained on the Spider dataset. 8

Wang et al. [14] proposes RatSQL a relation-aware self-attention technique to handle schema en-

coding, schema linking, and feature representation. Following the original publication, we eval-

uate RatSQL with a pre-trained Glove embedding as well as a pre-trained BERT embedding. We

use SQLNet and RatSQL for the first experiment and then solely RatSQL for all remaining exper-

iments since SQLNet can only handle simple SQL queries referring to one table.

Data preprocessing. We had to ensure that our dataset was compatible with SQLNet and

RatSQL initially designed for the Spider dataset. By performing the preprocessing step of the

RatSQL approach, we filtered out utterance–SQL pairs from our dataset that were not compatible.

Table 2 shows examples of the 33 natural language utterances and SQL queries that could

not be processed and mentions the reason. As a result, we evaluated SQLNet and RatSQL with

the remaining 133 utterace-SQL pairs from our dataset. A CSV file listing the remaining 133

utterance-SQL pairs is provided in our Figshare repository as part of the supplementary materials

of the paper.

Categorizing the hardness level of the SQL queries of SEOSS-Queries orchestrated. Text-

to-SQL models may perform differently given how complex an SQL query is, which can be of

use during the evaluation of the performance of a text-to-SQL model.

To give an idea of the “hardness” level of the SQL queries in our dataset we used the evalu-

ation script of Yu et al. [2] to categorize our SQL queries into four levels of hardness: easy: 56,

medium: 54, hard: 11, extra hard: 12. Examples of each hardness level can be found in Fig. 3 .

Due to the evaluation scripts’ grammar limitations, the remaining 33 could not be processed.

Evaluation metrics. We used exact match accuracy as an evaluation metric across all ex-

periments. Exact match accuracy is the official evaluation metric of the Spider dataset [15] and

it measures the equality of the gold (i.e. the ground truth) and predicted SQL query. The ex-

act match accuracy handles the “ordering issue” [12] (e.g. (resolution = ‘Fixed’ or resolution =
‘Done’) = (resolution = ‘Done’ or resolution = ‘Fixed’)) by decomposing the SQL components of

the gold and predicted queries into bags of several sub-components and then matching them

[2] .

Furthermore, we used exact match accuracy based on difficulty level considering four diffi-

culty levels: “easy,” “medium,” “hard,” and “extra hard”. Thereby, the difficulty level is deter-

mined based on the type and number of SQL concepts contained in a SQL query [2] . SQL queries

marked as “extra hard” can contain, e.g., multiple JOINS, or nested queries, whereas SQL queries

marked as “easy” are more straightforward and may not contain even a WHERE clause. The re-
8 https://github.com/taoyds/spider/tree/master/baselines/sqlnet

https://github.com/taoyds/spider/tree/master/baselines/sqlnet

10 M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211

s

w

v

t

t

w

T

i

f

q

t

c

e

q

t

u

t

w

n

m

2

t

s

m

t

c

c

n

E

D

t
ults based on difficulty level were of interest to us since we can use them to better understand

hat SQL queries the model can handle.

Checking the validity of our dataset. We decided to perform four experiments to show the

alidity of our dataset regarding data quality and quantity. For each of the experiments, we used

he evaluation script provided by Yu et al. [2] to compute the exact match accuracy as well as

he Spider dataset distributed under the CC BY-SA 4.0 license. 9 Depending on our experiments,

e appended parts of our dataset to Spider’s train (i.e. train_others.json) and dev sets (dev.json).

he training and evaluation in all four experiments were performed based on the steps provided

n the GitHub repositories of SQLNet 10 and RatSQL 11 of the approaches we chose.

In all four experiments, the inputs to the models were a natural language utterance and in-

ormation about the database schema. Both were stored in JSON-files. The output was an SQL

uery. For the first experiment , we trained all models on Spider and evaluated our dataset. For

he second experiment we extend the Spider training set with our dataset leaving one spe-

ific and one non-specific utterance per query. With the first two experiments, we intended to

valuate the applicability of our dataset.

For the third experiment , we extend the Spider training set with a split of 80% of the SQL

ueries and their respective utterances, leaving 20% never seen queries for the evaluation. For

he fourth experiment , we extend the Spider training set with two specific and two non-specific

tterances per query and use one specific and one non-specific utterance per query for evalua-

ion creating a balanced training in terms of specificity. The last two experiments were created

ith the idea in mind to evaluate the performance of text-to-SQL models in cases in which the

atural language utterances can be either very specific or more general.

Table 3,4,5 and 6 show the experiments results and our dataset’s applicability.

The steps necessary to recreate the results from the experiments are provided in the supple-

entary materials.

.2 SEOSS-Queries issue comments

In Fig. 5 we depict the steps we used to extract questions from issue comments.

We split each comment into sentences to extract questions from comments via the nltk sen-

ence tokenizer. In some cases, the sentences contained a new line; we further filtered them and

plit them into separate lines. In the end, we checked if each sentence/line ends with a question

ark. In a CSV-file we included the question, the project we extracted the question from, and

he issue type of the comment from which we extracted the question. With this dataset, one

an gain insights into the structure of questions asked in software projects as well as to use the

ontent in them to analyze how developers communicate with each other and what information

eeds they have.

thics Statement

The dataset does not contain personal or confidential data.

eclaration of Competing Interest

The authors declare that they have no known competing financial interests or personal rela-

ionships which have, or could be perceived to have, influenced the work reported in this article.
9 https://creativecommons.org/licenses/by-sa/4.0/legalcode
10 https://github.com/taoyds/spider/tree/master/baselines/sqlnet
11 https://github.com/microsoft/rat-sql

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://github.com/taoyds/spider/tree/master/baselines/sqlnet
https://github.com/microsoft/rat-sql

M.T. Tomova, M. Hofmann and P. Mäder / Data in Brief 42 (2022) 108211 11

Data Availability

Dataset for hierarchical tetramodal-porous architecture of zinc oxide nanoparticles

microfluidically synthesized via dual-step nanofabrication (Original data) (Mendeley Data).

SEOSS - Queries (Original data) (figshare).

CRediT Author Statement

Mihaela Todorova Tomova: Conceptualization, Methodology, Software, Data curation, Writing

– original draft, Writing – review & editing; Martin Hofmann: Conceptualization, Methodology,

Software, Data curation, Writing – review & editing; Patrick Mäder: Conceptualization, Writing

– review & editing, Funding acquisition.

Acknowledgments

Our work was funded by the DFG grant MA 5030/3-1. We acknowledge support for the pub-

lication costs by the Open Access Publication Fund of the Technische Universität Ilmenau.

Supplementary Material

Supplementary material associated with this article can be found in the online version at

doi: 10.1016/j.dib.2022.108211 .

References

[1] M. Rath, P. Mäder, The SEOSS 33 dataset — requirements, bug reports, code history, and trace links for entire
projects, Data Brief 25 (2019) 104005, doi: 10.1016/j.dib.2019.104005 .

[2] T. Yu , R. Zhang , K. Yang , M. Yasunaga , D. Wang , Z. Li , J. Ma , I. Li , Q. Yao , S. Roman , Z. Zhang , D.R. Radev , Spider: a

large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task, in: EMNLP,
Association for Computational Linguistics, 2018, pp. 3911–3921 .

[3] A . Bachmann , A . Bernstein , Software process data quality and characteristics: a historical view on open and closed
source projects, in: EVOL/IWPSE, ACM, 2009, pp. 119–128 .

[4] M. Rath , P. Rempel , P. Mäder , The IlmSeven dataset, in: RE, IEEE Computer Society, 2017, pp. 516–519 .
[5] M.T. Tomova , M. Rath , P. Mäder , Use of trace link types in issue tracking systems, in: ICSE (Companion Volume),

ACM, 2018, pp. 181–182 .
[6] T. Merten , M. Falis , P. Hübner , T. Quirchmayr , S. Bürsner , B. Paech , Software feature request detection in issue track-

ing systems, in: RE, IEEE Computer Society, 2016, pp. 166–175 .

[7] T. Merten , B. Mager , P. Hübner , T. Quirchmayr , B. Paech , S. Bürsner , Requirements communication in issue track-
ing systems in four open-source projects, in: REFSQ Workshops, in: CEUR Workshop Proceedings, vol. 1342,

CEUR-WS.org, 2015, pp. 114–125 .
[8] M. Rath , P. Mäder , Influence of structured information in bug report descriptions on ir-based bug localization, in:

SEAA, IEEE Computer Society, 2018, pp. 26–32 .
[9] M. Rath , D. Lo , P. Mäder , Analyzing requirements and traceability information to improve bug localization, in: MSR,

ACM, 2018, pp. 442–453 .

[10] M. Rath , P. Mäder , Request for comments: conversation patterns in issue tracking systems of open-source projects,
in: SAC, ACM, 2020, pp. 1414–1417 .

[11] M. Rath , J. Rendall , J.L.C. Guo , J. Cleland-Huang , P. Mäder , Traceability in the wild: automatically augmenting incom-
plete trace links, in: SE/SWM, in: LNI, volume P-292, GI, 2019, p. 63 .

[12] X. Xu, C. Liu, D. Song, SQLNet: Generating structured queries from natural language without reinforcement learning,
CoRR (2017) abs/1711.04436 .

[13] D. Choi , M. Shin , E. Kim , D.R. Shin , RYANSQL: recursively applying sketch-based slot fillings for complex text-to-SQL

in cross-domain databases, Comput. Linguist. 47 (2) (2021) 309–332 .
[14] B. Wang , R. Shin , X. Liu , O. Polozov , M. Richardson , RAT-SQL: relation-aware schema encoding and linking for text–

to-SQL parsers, in: ACL, Association for Computational Linguistics, 2020, pp. 7567–7578 .
[15] R. Zhong, T. Yu, D. Klein, Semantic evaluation for text-to-SQL with distilled test suites, CoRR (2020) abs/2010.02840 .

https://data.mendeley.com/datasets/sh4d5z2szx/1
https://figshare.com/s/75ed49ef01ac2f83b3e2
https://doi.org/10.1016/j.dib.2022.108211
https://doi.org/10.1016/j.dib.2019.104005
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0002
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0003
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0004
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0004
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0004
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0004
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0005
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0005
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0005
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0005
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0006
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0006
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0006
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0006
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0006
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0006
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0006
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0007
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0007
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0007
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0007
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0007
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0007
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0007
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0008
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0008
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0008
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0009
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0009
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0009
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0009
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0010
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0010
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0010
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0011
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0011
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0011
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0011
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0011
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0011
http://arxiv.org/abs/1711.04436
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0013
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0013
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0013
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0013
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0013
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0014
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0014
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0014
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0014
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0014
http://refhub.elsevier.com/S2352-3409(22)00415-2/sbref0014
http://arxiv.org/abs/2010.02840

	SEOSS-Queries - a software engineering dataset for text-to-SQL and question answering tasks
	Specifications Table
	Value of the Data
	1 Data Description
	2 Experimental Design, Materials and Methods
	2.1 SEOSS-Queries orchestracted
	2.2 SEOSS-Queries issue comments

	Ethics Statement
	Declaration of Competing Interest
	Data Availability
	CRediT Author Statement
	Acknowledgments
	Supplementary Material

	References

