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Abstract: As uncertainty and sensitivity analysis of complex models grows ever more important, the
difficulty of their timely realizations highlights a need for more efficient numerical operations. Non-
intrusive Polynomial Chaos methods are highly efficient and accurate methods of mapping input-output
relationships to investigate complex models. There is substantial potential to increase the efficacy of
the method regarding the selected sampling scheme. We examine state-of-the-art sampling schemes
categorized in space-filling-optimal designs such as Latin Hypercube sampling and L1-optimal sam-
pling and compare their empirical performance against standard random sampling. The analysis was
performed in the context of L1 minimization using the least-angle regression algorithm to fit the GPCE
regression models. Due to the random nature of the sampling schemes, we compared different sampling
approaches using statistical stability measures and evaluated the success rates to construct a surrogate
model with relative errors of < 0.1%, < 1%, and < 10%, respectively. The sampling schemes are
thoroughly investigated by evaluating the y of surrogate models constructed for various distinct test
cases, which represent different problem classes covering low, medium and high dimensional prob-
lems. Finally, the sampling schemes are tested on an application example to estimate the sensitivity of
the self-impedance of a probe that is used to measure the impedance of biological tissues at different
frequencies. We observed strong differences in the convergence properties of the methods between the
analyzed test functions.

Keywords: uncertainty analysis; sensitivity analysis; random sampling; polynomial chaos; sensitivity
analysis; L1-minimization; optimization
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1. Introduction

1.1. Background

During the last several decades, computational advances as well as new insights that reduce the
computational cost of methods have made many problems feasible to solve. This has a great impact
for uncertainty and sensitivity analysis as a means of reliability engineering, where a huge number of
evaluations need to be carried out to thoroughly investigate their behavior and to identify critical model
parameters. In recent years, substantial development has advanced the current landscape of stochastic
computational problems. Surrogate modeling has become a very popular method to effectively map
complex input-output relationships and to tremendously reduce the computational cost of successive
uncertainty and sensitivity evaluations. The general Polynomial Chaos Expansion (GPCE) [1–3] has
proven to be a versatile method to predict model behavior for systems where direct evaluation can be
cumbersome and very time consuming [4]. GPCE allows physical and engineering systems to be inves-
tigated with various Quantities Of Interest (QOI) as functions of various uncertain model parameters.
The goal lies in characterizing the sensitivities of the output dependencies of the system inputs, which
can be done by performing a Sobol decomposition [5] or gradient based measures [6]. A lot of research
can be found on this process of uncertainty quantification (UQ) using the GPCE model [2, 3, 7]. It has
found applications in non-destructive material testing [8], neuroscience [9–12], mechanical engineer-
ing [13], aerospace engineering [14], electrical engineering [15, 16], fluid dynamics [17], and various
other fields. However, compared to engineering, there is a relative lack of targeted applications of
GPCE in the life sciences [18–23]. In this branch of science, strong assumptions are made about the
parameter values to be chosen. Moreover, the analysis of individuals requires the analysis of model
behavior to consider stochastic parameter definitions instead of deterministic approaches.

1.2. Recent advancements

The majority of modern research on GPCE has focused on non-intrusive approaches where the
problem at hand can be treated as a black box system. There exist a number of possibilities to fur-
ther improve the basic GPCE approach. On one hand, it is possible to modify the assembly process
of the basis functions by identifying and choosing the most suitable order [24], splitting the GPCE
problem in a multi-element-GPCE (ME-GPCE) [25], or applying an adaptive algorithm to extend the
number of samples and basis functions iteratively [26,27]. This reduces the number of unknown GPCE
coefficients and the number of required model evaluations.

1.3. Improved sampling strategies

On the other hand, the potential of a more efficient GPCE approximation lies in the selection of
the sampling locations prior to any GPCE approximation. To take a closer look at this topic, we thor-
oughly investigate GPCE optimized sampling schemes compared to standard random sampling. We
will (i) show the performance of standard Monte Carlo methods in the framework of polynomial chaos,
(ii) improve them with space-filling sampling designs using state-of-the-art Latin Hypercube Sampling
(LHS) schemes [28, 29], (iii) apply principles of Compressed Sensing (CS) and optimal sampling for
L1-minimization [30–32]. We investigate the performance and reliability of the sampling schemes in
a comprehensive numerical study, which consists of three representative test cases and one practical
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example. On one hand, LHS has seen a lot of usage in the fields of reliability engineering and un-
certainty analysis since it is equipped with good space-filling properties [33, 34]. The basic principle
was improved by Jin et al. (2003) [35], who proposed an optimization scheme based on the Enhanced
Stochastic Evolutionary algorithm (ESE), which maximizes the Maximum-Minimal Distance crite-
rion [36] to reliably construct sample sets with a very even spread. It can be reasonably assumed that
GPCE can benefit significantly from this, since it ensures to some extent that the parameter space is
scanned evenly and thus all features of the transfer function can be found. On the other hand, CS
emerged in the field of efficient data recovery to reconstruct signals with a much smaller number of
samples than the Shannon-Nyquist criterion would suggest [30, 37–39]. This has been applied in a
number of cases where the number of samples available is limited [40–42]. Because it is not possible
to select the required basic functions in advance, most GPCE dictionaries are over-complete, which
leads to sparse coefficient vectors. Using these properties, compressive sampling recently became pop-
ular in the framework of UQ. Another appealing fact is that in computational UQ, it is possible to freely
draw additional samples, thus enabling a multitude of new possibilities compared to real data acquisi-
tion, where the number of measurements is limited and possibly even restricted. This provided a new
subcategory of sparse Polynomial Chaos Expansions [26, 43–45] where generally solvers like Least
Angle Regression (LARS) [46] or Orthogonal Matching Pursuit (OMP) [47] are used to determine
the sparse coefficient vectors. Better GPCE recoverability has also been shown by designing a unique
sampling method for Legendre Polynomials using the Chebyshev measure [31] or by extending this
with a distinct coherence parameter and sampling from an altered input variable distribution by using a
Monte-Carlo Markov-Chain algorithm [32]. Those methods, however, are restricted to problems with
a low number of random variables employing a high polynomial order. Progress has also been made in
defining criteria such as the mutual coherence µ, the RIP-constant [48], and a number of correlation-
constants to categorize measurement matrices and quantify their possible recovery. In this paper, we
focus on evaluating the mutual coherence parameter as a global measure for a minimization objective
and on a combination of different local criteria. We adopted the proposed "near optimal" sampling
method of Alemazkoor and Meidani [49], which uses a greedy algorithm to ensure a more stable re-
covery. We additionally use the same framework to create mutual coherence optimal GPCE matrices.
This is meant to serve as a comparative example. Additionally, we propose a global approach to cre-
ate an L1-optimal design by using an iterative algorithm to maximize the local and global optimality
criteria. Given those two approaches to construct the set of sampling points, we are proposing a hy-
brid design that is partially created using LHS and then expanded according to a chosen L1-optimality
criteria or vice versa. This aims to give a broad overview over not only the effectiveness of the two
branches, but also over possible enhancements or coupling occurrences from their interaction. In this
paper, we are going to compare the aforementioned sampling strategies on a set of test problems with
varying order and dimension. We investigate their error convergence over different sample sizes. We
also test their applicability on a practical example, which consists of an electrode-impedance model
used to characterize the impedance of brain tissue. All algorithms are implemented in the open source
python package "pygpc" [50], and the scripts to run the presented benchmarks are provided in the
Supplemental Material. The remainder of the paper is structured as follows.
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1.4. Content

The theoretical background of GPCE is revisited in Section 2. It is followed by introducing the
different sampling schemes, namely standard Random Sampling in Section 3.1, LHS in Section 3.4
and CS-optimal sampling in Section 3.6. An overview about the test problems to which the sampling
schemes are applied is given in Section 4 together with the benchmark results 4. Finally, the results are
discussed in Section 5.

2. Polynomial Chaos Expansion

In GPCE, the d parameters of interest, which are assumed to underlie a distinct level of uncertainty,
are modeled as a d-variate random vector denoted by ξ = (ξ1, ξ2, ...ξd) following some probability
density function (pdf) pi(ξi), with i = 1, ..., d. The random parameters are defined in the probability
space (Θ,Σ, P). The event or random space Θ contains all possible events. Σ is a σ-Algebra over Θ,
containing sets of events, and P is a function assigning the probabilities of occurrence to the events.
The number of random variables d determines the dimension of the uncertainty problem. It is assumed
that the parameters are statistically mutually independent from each other. In order to perform a GPCE
expansion, the random variables must have a finite variance, which defines the problem in the L2-
Hilbert space.

The quantity of interest (QOI) will be analyzed in terms of the random variables ξ, is y(r). It may
depend on some external parameters r = (r0, ..., rR−1) like space, where R = 3, or any other dependent
parameters. Those are treated as deterministic and are not considered in the uncertainty analysis.

The basic concept of GPCE is to find a functional dependence between the random variables ξ and
the solutions y(r, ξ) by means of an orthogonal polynomial basis Ψ(ξ). In its general form, it is given
by:

y(r, ξ) =
∑
α∈A

cα(r)Ψα(ξ). (2.1)

A separate GPCE expansion must be performed for every considered parameter set r. The discrete
number of QOIs is denoted as Ny.

The terms are indexed by the multi-index α = (α0, ..., αd−1), which is a d-tuple of non-negative
integers α ∈ Nd

0. The sum is carried out over the multi-indices, contained in the setA.
The function Ψα(ξ) are the polynomial basis functions of GPCE. They are composed of polynomials

ψαi(ξi).

Ψα(ξ) =

d∏
i=1

ψαi(ξi) (2.2)

The polynomials ψαi(ξi) are defined for each random variable separately according to the corre-
sponding input pdf pi(ξi). They must be chosen to be orthogonal with respect to the pdfs of the random
variables, e.g. Jacobin polynomials for beta-distributed random parameters or Hermite polynomials
for normal-distributed random variables. The family of polynomials for an optimal basis of continuous
probability distributions is given by the Askey scheme [51]. The index of the polynomials denotes
its order (or degree). In this way, the multi-index α corresponds to the order of the individual basis
functions forming the joint basis function.
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In general, the set A of multi-indices can be freely chosen according to the problem under inves-
tigation. In practical applications, the maximum order GPCE is frequently used. In this case, the set
A includes all polynomials whose total order does not exceed a predefined order p. In the present
work, the concept of maximum order GPCE is extended by introducing the interaction order pi. An
interaction order pi(α) can be assigned to each multi-index α. The multi-index reflects the respective
powers of the polynomial basis functions of random variables, Ψα(ξ):

pi(α) = ‖α‖0, (2.3)

where ‖α‖0 = #(i : αi > 0) is the zero (semi)-norm, quantifying the number of non-zero index
entries. The reduced set of multi-indices is then constructed by the following rule:

A(p, pi) :=
{
α ∈ Nd

0 : ‖α‖1 ≤ p ∧ ‖α‖0 ≤ pi

}
(2.4)

It includes all elements from a total order GPCE with the restriction of the interaction order pi. Re-
ducing the number of basis functions is advantageous especially in case of high-dimensional problems.
This is supported by observations in a number of studies, where the magnitude of the coefficients de-
creases with increasing order and interaction [52]. Besides that, no hyperbolic truncation was applied
to the basis functions [26].

After constructing the polynomial basis, the corresponding GPCE-coefficients cα(r) must be deter-
mined for each output quantity. In this regard, the output variables are projected from the d-dimensional
probability space Θ into the Nc-dimensional polynomial space PNc . This way, an analytical approx-
imation of the solutions y(r, ξ) as a function of its random input parameters ξ is derived and very
computationally-efficient investigation of its stochastics is made possible.

The GPCE from (2.1) can be written in matrix form as:

Y = ΨC (2.5)

Depending on the sampling strategy, one may define a diagonal positive-definite matrix W whose
diagonal elements Wi,i are given by a function of sampling points w(ξ(i)).

WY = WΨC (2.6)

The GPCE-coefficients for each QOI (columns of C) can then be found by using solvers that mini-
mize either the L1 or the L2 norm of the residuum depending on the expected sparsity of the coefficient
vectors. Each row in 2.6 corresponds to a distinct sampling point ξi. For this reason, the choice of the
sampling points has a considerable influence on the characteristics and solvability of the equation sys-
tem.

Complex numerical models can be very computationally intensive. To enable uncertainty and sen-
sitivity analysis of such models, the number of sampling points must be reduced to a minimum. Mini-
mizing the sampling points may lead to a situation where there are fewer observations than unknowns,
i.e. M ≤ K, resulting in a under-determined system of equations with infinitely many solutions for
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c. Considering compressive sampling, we want c to be the sparsest solution, formulating the recovery
problem as:

min
c
||c||0 subject to Ψc = u (2.7)

where ||.||0 indicates the `0-norm, the number of non-zero entries in c. This optimization problem is
NP-hard and not convex. The latter property can be overcome by reformulating it using the L1-norm:

min
c
||c||1 subject to Ψc = u (2.8)

It has been shown that if [Ψ] is sufficiently incoherent and c is sufficiently sparse, the solution of
the `0 minimization is unique and equal to the solution of the L1 minimization [53]. The minimization
in equation 2.8 is called basis pursuit [54] and can be solved using linear programming.

3. Sampling techniques

3.1. Standard Monte Carlo sampling

The most straightforward sampling method is to draw samples according to the input distributions.
In this case, one proceeds with a Monte Carlo method to sample the random domain without any
sophisticated process for choosing the sampling locations. The random samples must be chosen in-
dependently and should be uncorrelated, but a simple sampling process may inadvertently violate this
requirement, especially when the number of sampling points is small (a situation we are targeting).
For instance, the sampling points can be concentrated in certain regions that do not reveal some im-
portant features of the model’s behavior, thus significantly degrading the overall quality of the GPCE
approximation.

3.2. Coherence-optimal sampling

Coherence-optimal (CO) sampling aims to improve the stability of the coefficients when solving
(2.6). It was introduced by Hampton and Doostan in the framework of GPCE in [52]. The Gram
matrix (also referred to as the gramian or information matrix) defined in eq. (3.1) and its properties
play a central role when determining the GPCE coefficients. Coherence-optimal sampling has been
the building block for a number of sampling strategies that aim for an efficient sparse recovery of the
PC [49, 55]. It generally outperforms random sampling by a large margin on problems with higher
order than dimensionality p ≥ d and has been claimed to perform well on any given problem when
incorporated in compressive sampling approaches [32]. It is defined by:

GΨ =
1

Ng
ΨTΨ (3.1)

CO sampling seeks to minimize the spectral matrix norm between the Gram matrix and the identity
matrix, i.e. ||GΨ − I||, by minimizing the coherence parameter µ:

µ = sup
ξ∈Ω

P∑
j=1

∣∣∣w(ξ)ψ j(ξ)
∣∣∣2 (3.2)
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This can be done by sampling the input parameters with an alternative distribution:

PY(ξ) := c2P(ξ)B2(ξ), (3.3)

where c is a normalization constant, P(ξ) is the joint probability density function of the original
input distributions, and B(ξ) is an upper bound of the PC basis:

B(ξ) :=

√√√ P∑
j=1

|ψ j(ξ)|2 (3.4)

To avoid defining the normalization constant c, a Markov Chain Monte Carlo approach using a
Metropolis-Hastings sampler [56] is used to draw samples from PY(ξ) in (3.3). For the Mertopolis-
Hastings sampler, it is necessary to define a sufficient candidate distribution. For a coherence optimal
sampling according to (3.2), this is realized by a proposal distribution g(ξ) [52]. By sampling from a
different distribution than P(ξ), however, it is not possible to guaranteeΨ to be a matrix of orthonormal
polynomials. Therefore W needs to be a diagonal positive-definite matrix of weight-functions w(ξ). In
practice, it is possible to compute W with:

wi(ξ) =
1

Bi(ξ)
(3.5)

A detailed description about the technique can be found in [52].

3.3. Optimal design of experiment

A judicious choice of sampling points {ξ(i)}
Ng

i allows us to improve the properties of the Gramian
without any prior knowledge about the model under investigation. The selection of an appropriate
optimization criterion derived from [GΨ] and the identification of the corresponding optimal sampling
locations is the core concept of optimal design of experiment (ODE). The most popular criterion is
D-optimality, where the goal is to increase the information content from a given number of sampling
points by minimizing the determinant of the inverse of the Gramian:

φD =
∣∣∣GΨ−1

∣∣∣1/Nc
, (3.6)

D-optimal designs are focused on precise estimation of the coefficients. Besides D-optimal designs,
there exist many other alphabetic optimal designs, such as A-, E-, I-, or V- optimal designs with
different goals and criteria. A nice overview of these designs can be found in [57, 58].

Hadigol and Doostan investigated the convergence behavior of A-, D- and E-optimal designs [55]
in combination with coherence-optimal sampling in the framework of least squares GPCE. They found
that those designs clearly outperform standard random sampling. Their analysis was restricted to
cases where the number of sampling points is larger than the number of unknown coefficients (Ng >

Nc). Based on the current state of knowledge, our analysis focuses on investigating the convergence
properties of D-optimal and D-coherence-optimal designs in combination with L1 minimization where
Ng < Nc.
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3.4. Space-filling optimal sampling

In order to overcome the disadvantages of standard random sampling for low sample sizes, one may
use sampling schemes that improve the coverage of the random space. Early work on this topic fo-
cused on pseudo-random sampling while optimizing distinct distance and correlation criteria between
the sampling points. Designs optimizing the Maximum Minimal distance [35, 36, 59] or Audze-Eglais
Designs [60, 61] proved to be both more efficient and more reliable than standard random sampling
schemes. Space-filling optimal sampling such as Latin Hypercube Sampling (LHS) is nowadays fre-
quently being used in the framework of GPCE [14, 55, 62]. In the following, we briefly introduce two
prominent distance criteria we used in our space-filling optimal sampling approaches.

3.4.1. Space-filling optimality criteria

Maximum-Minimal distance criterion: The maximum-minimal distance criterion is a space-filling
optimality criterion. A design can be called maximum-minimum distance optimal if it maximizes the
minimum inter-site distance [36]:

min
1≤i, j≤n,i, j

d(xi, x j) subject to d(xi, x j) = di j =

 m∑
k=1

|xik − x jk|
t


1
t

(3.7)

where d(xi, x j) is the distance between two sampling points xi and x j, and t = 1 or 2. A design
optimized in its minimum inter-site distance is able to create well-distributed sampling points. For a
low number of sampling points, however, the sampling points may be heavily biased towards the edges
of the sampling space because the distance criterion pushes the sampling points relentlessly outwards
and away from possible features close to the center of the sampling space [59].

The ϕp criterion: To counteract the shortcomings of the plain inter-side distance in (3.7), the equiv-
alent ϕp criterion has been proposed [59]. A ϕp-optimal design can be constructed by setting up a
distance list (d1, ..., ds) obtained by sorting the inter-site distances di j together with a corresponding
index list (J1, ..., Js). The di are distinct distance values, d1 < d2 < ... < ds and Js are the corresponding
indices of pairs of sites in the design separated by di. A design can then be called ϕp-optimal if it
minimizes:

ϕp =

 s∑
i=1

Jid
−p
i


1
p

(3.8)

We empirically choose p as 10 in the numerical construction of LHS designs.

3.5. Limitations of the distance criterion for low sampling sizes

As the investigation of the following sampling schemes in a sparse reconstruction suggests, func-
tions with a high number of variables occur very commonly. Since the goal of a sparse reconstruction
is to reduce the sampling size, an important caveat to the optimization of criteria based around the dis-
tance di, di, j in the two criteria maximum-minimal distance and the φp is that it shows a systematic bias
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that breaks the uniformity sought in the following optimization algorithm in section 3.5.3. This prob-
lem has been identified recently by Vořechovský and Eliáš [63, 64] and becomes apparent in efficient
optimization. They introduced a new distance criterion called periodic distance:

d̄i j =

 m∑
k=1

(
min

(
|xik − x jk|, 1 − |xik − x jk|

))t


1
t

(3.9)

With d̄i j, it is possible to calculate the periodic maximum-minimum distance and the periodic φp

criterion as min1≤i, j≤n,i, j d̄i j and φp(d̄i j), respectively, by using the periodic distance instead of the con-
ventional euclidean distance metric. Further, for the φp criterion, it was shown by the same authors and
Mašek that specifying the p-exponent based on investigations of the potential energy of the design can
lead to an enhancement in the space-filling and projection properties as well as a decrease in its dis-
crepancy. For successful application of LHS, they recommend p = Nvar + 1, where Nvar is the number
of variables in the given function [65].

3.5.1. Standard Latin Hypercube Sampling (LHS)

In LHS, the d-dimensional sampling domain is segmented into n subregions corresponding to the
n sampling points to be drawn. LHS designs ensure that every subregion is sampled only once. This
method can be mathematically expressed by creating a matrix of sampling points Π with:

πi, j =
pi, j − ui, j

n
, (3.10)

where P is a matrix of column-wise randomly permuted indices of its rows and U is a matrix of
independent uniformly distributed random numbers u ∈ [0, 1].

3.5.2. ϕp-optimal Latin Hypercube Sampling

The space-filling properties of LHS designs can be improved by optimizing the ϕp criterion. A
pseudo-optimal design can be determined by creating a pool of ni standard LHS designs and choosing
the one with the best ϕp criterion. As ni reaches infinity, the design will become space-filling opti-
mal. In this study we used ni = 100 iterations, which was found to be an efficient trade-off between
computational cost and ϕp-optimality.

3.5.3. Enhanced Stochastic Evolutionary Algorithm LHS

The Enhanced Stochastic Evolutionary Algorithm Latin Hypercube Sampling (LHS-ESE) is a very
stable space-filling optimal algorithm designed by Jin et al. (2003) [35]. The resulting designs aim
for a specified ϕp parameter and achieve that by multiple element-wise exchanges of an initial LHD in
an inner loop while storing their respective ϕp - parameters in an outer loop. This process shows a far
smaller variance in the space-filling criteria of the created sample sets.

However, we observed that the LHS-ESE scheme often undersamples the boundaries of the random
domain, which is disadvantageous for transfer functions with high gradients close to the parameter
boundaries. This is less apparent for a high number of samples but becomes a serious drawback when
the number of sampling points is low; this effect can be linked to the systematic bias pointed out in [63].
In order to overcome this problem, we modified the LHS-ESE algorithm by shrinking the first and last
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subregion of the interval to a fraction of their original sizes while keeping the remaining intermediate
n − 2 subregions equally spaced. The procedure is illustrated in Figure 1. The initial matrix for the
Latin Hypercube design Π will then be changed as P is randomly permuted according to:

πi,1 = πi,n = α
pi, j − ui, j

n
, (3.11)

where α is the fraction to which the size of the border interval is decreased, and i ∈ [1, d] and
j ∈ [1, n] are used to cover the size reduction of the intervals at the edges. Our empirical studies
showed that a reduction of α = 1

4 counteracts the aforementioned undersampling close to the border.
We pick the index j to target these edges, since after the normalization by dividing by n, the indices 1
and n for j are expected for the values closest to 0 and 1 respectively, which occur at the borders of the
sampled section. The centre is then stretched by:

πi, jc =

 pi, jc−ui, jc
n −

(1−α)pi, jc
n−2 for j ≤ n

2
pi, jc−ui, jc

n +
(1−α)pi, jc

n−2 else,
(3.12)

with jc being the indices of j without the border domains 1 and n, jc = j\{1, n}. After that alteration,
the elements of each column in Π can be randomly permuted to proceed with the construction of the
Latin Hypercube design just like in 3.10. If α is made smaller, then the size of the guaranteed sampling
region at the border also becomes smaller, thus forcing the sampling point to be chosen closer to the
border as illustrated in Figure 1. To the best of our knowledge, the Enhanced Stochastic Evolutionary
LHS algorithm has not yet been studied in the context of GPCE.

Figure 1. Schematic representation of the SC-ESE, where the outer area is cut to an α

fraction of its original size and the center is stretched outward.

3.6. Compressive sampling

Compressive Sampling is a novel method, first introduced in the field of signal processing, that
allows the recovery of signals with significantly fewer samples assuming that the signals are sparse:
i.e. a certain portion of the coefficients are zero, meaning that the coefficient vector c can be well-
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approximated with only a small number of non-vanishing terms. A coefficient vector c that is s-sparse
obeys:

||c||0 ≤ s, ∀s ∈ N (3.13)

The locations of the sampling points have a profound impact on the reconstruction quality because
they determine the properties of the GPCE matrix. There are several criteria that can be evaluated
exclusively on the basis of the GPCE matrix that may favor the reconstruction. It could be shown that
optimization of those criteria lead to designs that promote successful reconstruction [49, 66]. In the
following, we give a brief overview about the different criteria we considered in this study.

3.6.1. L1-optimality criteria

Mutual Coherence The mutual coherence (MC) of a matrix measures the cross-correlations between
its columns by evaluating the largest absolute and normalized inner product between different columns.
It can be evaluated by:

µ(Ψ) = max
1≤i, j≤Nc, j,i

|ψT
i ψ j|

||ψi||2||ψ j||2
(3.14)

The objective is to select sampling points that minimize µ(Ψ) for a desired L1-optimal design. It
is noted that minimizing the mutual-coherence considers only the worst-case scenario and does not
necessarily improve compressive sampling performance in general [39].

Average Cross-Correlation It is shown in [39, 45, 46, 47] that the robustness and accuracy of signal
recovery can be increased by minimizing the distance between the Gram matrix GΨ and the identity
matrix INc:

γ(Ψ) =
1
N

min
Ψ∈RM×Nc

|INc −GΨ||2F (3.15)

where || · ||F denotes the Frobenius norm and N := K × (K − 1) is the total number of column pairs.
Note that the optimization of only the average cross-correlation can result in large mutual coherence
and is regularly prone to inaccurate recovery. In this context, Alemazkoor and Meidani (2018) [49]
proposed a hybrid optimization criteria f (Ψ), which minimizes both the average cross-correlation γ(Ψ)
and the mutual coherence µ(Ψ):

arg min f (Ψ) = arg min
(

µi −min(µ)
max(µ) −min(µ)

)2

+

(
γi −min(γ)

max(γ) −min(γ)

)2

(3.16)

with µ = (µ1, µ2, ..., µi) and γ = (γ1, γ2, ..., γi)

3.7. Greedy algorithm to determine optimal sets of sampling points

We used a greedy algorithm as shown in Algorithm 1 to determine L1-optimal sets of sampling
points. In this algorithm, we generate a pool of Mp samples and randomly pick an initial sample. In the
next iteration, we successively add a sampling point and calculate the respective optimization criteria.
After evaluating all possible candidates, we select the sampling point yielding the best criterion and
append it to the existing set. This process is repeated until the sampling set has the desired size M.
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Algorithm 1 Greedy algorithm to determine L1-optimal sets of sampling points
1: create a random pool of Mp samples
2: create the measurement matrix Ψpool of the samples
3: initiate Ψopt as a random row r of Ψpool

4: add row r to the added rows radded

5: for i in (2, M) do
6: for j in (1,Mp without radded) do
7: Ψj = row-concatenate (Ψopt, r j)
8: f j = f (Ψj)
9: evaluate f j = f (Ψj)

10: save fi = argmin( f j) for all j and jbest

11: add r jbest to radded

12: Ψopt = row-concatenate (Ψopt, r jbest)

13: Return Ψopt and radded = Xbest

4. Results

The respective performances of the sampling schemes are thoroughly investigated based on four
different scenarios. We compare the accuracy of the resulting GPCE approximation with respect to the
original model and investigate the convergence properties and recoverability of the different sampling
schemes. Following comparable studies [49], we used uniformly distributed random variables in all
examples and constructed GPCE bases using Legendre polynomials. This is the most general case,
as any other input distribution can (in principle) be emulated by modifying the post-processing stage
of the GPCE. The examples compare the sampling schemes on three theoretical test functions: (i)
The Ishigami Function representing a low-dimensional problem that requires a high approximation
order; (ii) the six-dimensional Rosenbrock Function representing a problem of medium dimension and
approximation order; and (iii) the 30-dimensional Linear Paired Product (LPP) Function [49] using
a low-order approximation. Finally, we consider a practical example, which consists of an electrode
model used to measure the impedance of biological tissues for different frequencies. All sampling
schemes were implemented in the open-source python package pygpc [50], and the corresponding
scripts to run the benchmarks are provided in the supplemental material. The sparse coefficient vectors
were determined using the LARS-Lasso solver from scipy [67].

A summary about the GPCE parameters for each test case is given in Table 1. For each test function,
we successively increased the approximation order until an NRMSD of ε < 10−5 is reached. We
assumed a very high number of sampling points. In this regard, we wanted to eliminate approximation
order effects in order to focus on the convergence with respect to the number of sampling points.

For each sampling scheme and test case, we created a large set of sampling points that can be
segmented in different sizes. For each case, we computed the associated GPCE approximation and
calculated the normalized root mean square deviation (NRMSD) between the GPCE approximation ỹ
and the solution of the original model y using an independent test set containing Nt = 10.000 random
sampling points. The NRMSD is given by:
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Table 1. Overview of numerical examples.

Function Problem Dim. Order Int. Order Basisfunctions

Ishigami Low dim., high order 2 12 2 91

Rosenbrock Med. dim., med. order 6 5 2 181

LPP High dim., low order 30 2 2 496

Electrode Application example 7 5 3 596

ε =

√
1
Nt

∑Nt
i=1 (yi − ỹi)2

max(y) −min(y)
(4.1)

We evaluated the average convergence of the NRMSD together with the success rate of each sam-
pling scheme by considering 30 repetitions. In addition, we quantified the convergence of the first
two statistical moments, i.e. the mean and the standard deviation. The results are presented in the
supplemental material. Reference values for the mean and standard deviation were obtained for each
test function from N = 107 evaluations from the original model functions.

4.1. Low-dimensional high-order problem (Ishigami function)

As a first test case, we investigate the performance of the different sampling schemes considering the
Ishigami function [68]. It is often used as an example for uncertainty and sensitivity analysis because
it exhibits strong nonlinearity and nonmonotonicity. It is given by:

y = sin(x1) + a sin(x2)2 + bx4
3 sin(x1) (4.2)

This example represents a low-dimensional problem requiring a high polynomial order to provide
an accurate surrogate model. We defined x1 and x2 as uniformly distributed random variables and set
x3 = 1. The remaining constants are a = 7 and b = 0.1 according to [69] and [70]. The approximation
order was set to p = 12, resulting in Nc = 91 basis functions. We investigated the function in the
interval (−π, π)2 as shown in Figure 2.

The convergence results for the different sampling schemes are shown in Figure 3. It shows the
dependence of the NRMSD ε on the number of sampling points N of the best sampling scheme from
the LHS (Figure 3(a)) and L1-optimal sampling schemes (Figure 3(b)). The graphs of the error con-
vergence consist of box-plots with whiskers of the error over different sampling sizes and are then
connected with lines representing the median. Standard random sampling has the largest boxes and a
black line on top for reference. We defined a target error level of 10−3, indicated by a horizontal red
line, which corresponds to a relative error between the GPCE approximation and the original model
function of 0.1%. Additionally, the mutual coherence of the sampling sets is shown in Figure 3(c)
and (d). The success rate of the best sampling schemes from both categories and standard random
sampling is shown in Figure 3(e). In the Table shown in Figure 3(f), the median number of grid points
required to reach that target error N̂ε together with its standard deviation is shown. We also evaluated
the median of the required number of sampling points for the random sampling scheme to determine
the GPCE coefficients considering the L2 norm using the Moore-Penrose pseudo-inverse. All other
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x1

x2

Figure 2. Two-dimensional Ishigami function used to investigate the performance of differ-
ent sampling schemes.

evaluations have been performed using the LARS-Lasso solver. The success rates of the algorithms
with the lowest 99% recovery sampling size N̂(99%)

ε of each category of sampling schemes are marked
in bold.

The sparsity of the model function greatly influences the reconstruction properties and hence the
effectiveness of the sampling schemes. A GPCE approximation of the Ishigami function with an accu-
racy of < 10−5 requires k = 12 out of the available Nc = 91 coefficients (13%). Considering standard
random sampling, the use of a conventional L2 solver requires 127 sampling points to achieve a GPCE
approximation with an error of less than 10−3 (see first row of Table in Figure 3(f)). In contrast, by
using the L1 based LARS-Lasso solver, the number of required sampling points reduces to 31, which
serves as a baseline to compare the performance of the investigated sampling schemes. By using the
ESE enhanced LHS sampling scheme, the number of sampling points could be reduced to 25, a sub-
stantial relative saving of 13% compared to standard random sampling. In the category of L1-optimal
sampling, D-coherence optimal sampling schemes performed best; these schemes showed a slight in-
crease in samples for the convergence.

In addition to the average convergence of the sampling schemes, their reliability was calculated
to evaluate their practical applicability. We have quantified reliability by calculating the number of
sampling points required to achieve success rates of 95% and 99% in reaching the target error of
10−3; the reliability is determined by the relative number of repetitions required to reach the target
error. Finally, we tested the hypothesis that the number of sampling points to reach the target error
is significantly lower compared to standard random sampling. The Shapiro-Wilk-Test indicated that
the error threshold distributions are not normally distributed. For this reason, we used the one-tailed
Mann-Whitney U-test to compute the corresponding p-values. The generally good performance of
LHS (SC-ESE) sampling is underpinned by a p-value of 4.3 · 10−5. D-Coherence-optimal grids show
a similar success rate and outperform standard random sampling (as measured by the numbers of
sampling points required to achieve success rates of 95% and 99%) by factors of 9 and 8 respectively,

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7425–7480.



7439

(a)

(c)

(b)

(d)

(e) (f)

Figure 3. (a) and (b) Convergence of the NRMSD ε with respect to the number of sampling
points N considering the Ishigami function. For reference, the convergence of the random
sampling scheme is shown as a black line in each plot. (abbreviations: SC-ESE: stretched
center enhanced stochastic evolutionary algorithm; MM: maximum-minimal distance; STD:
standard; MC: mutual coherence; CC: cross-correlation; D: determinant optimal; D-COH:
determinant-coherence optimal.); (c) and (d) mutual coherence of the gPC matrix; (e) success
rate of the best converging grids for error thresholds of 0.1%, 1%, and 10%; (f) average
number of sampling points needed to reach the error threshold of 0.1%, a success rate of
95%, 99%, and the associated p-value comparing if the grids require significantly lower
number of sampling points than standard random sampling.
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signifying higher stability compared to standard random sampling on the Ishigami function.
Alongside the NRMSD, we calculated the mutual coherence of the GPCE matrix for each sampling

scheme. It is shown in Figure 3(c) and (d). It can be seen that the mutual coherence is very stable
around 0.7 for all LHS schemes considering a sampling size of 25. In contrast, L1-optimal grids show
large variation. The coherence-optimal designs yield GPCE matrices with much higher coherences as
defined in (3.14) compared to standard random sampling. D-Coherence-optimal sampling manages to
reduce the mutual coherence the most after 25 samples; however, it shows very non-linear behavior for
larger sampling sets, where it increases strongly above the level of random sampling.

4.2. Medium-dimensional medium-order problem (Rosenbrock function)

As a second test case, we used the d-dimensional generalized Rosenbrock function, also referred to
as the Valley or Banana function [71]. It is given by:

y =

d−1∑
i=1

100
(
xi+1 − x2

i

)2
+ (xi − 1)2 (4.3)

The Rosenbrock function is a popular test problem for gradient-based optimization algorithms
[72, 73]. In Figure 4, the function is shown in its two-dimensional form. The function is unimodal,
and the global minimum lies in a narrow, parabolic valley. However, even though this valley is easy
to approximate, it has more complex behavior close to the boundaries. To be consistent with our defi-
nitions of "low", "medium", and "high" dimensions and approximation orders in the current work, we
classify this problem as medium-dimensional and requiring a moderate polynomial order approxima-
tion order to yield an accurate surrogate model. Accordingly, we defined the number of dimensions to
be d = 6 and set the approximation order to p = 5 to ensure an approximation with an NRMSD of
ε < 10−5 when using a high number of samples. This results in Nc = 181 basis functions. The gener-
alized Rosenbrock function is also used by Alemazkoor and Meidani [49] to compare the performance
of different L1-optimal sampling strategies. We have used the same test function to make the results
comparable and to be able to better integrate our study into the previous literature.

The results of the error convergence for the investigated sampling schemes are shown in Figure 5(a)
and (b). The mutual coherence of these algorithms is shown in Figure 5(c) and (d). The success rates of
the best-performing sampling schemes from each category are shown in Figure 5(e), and the statistics
are summarized in Table 5(f). The Rosenbrock function can be exactly replicated by the polynomial
basis functions of the GPCE using k = 23 out of the Nc = 181 available coefficients (13%). Random
sampling in combination with L2-minimization requires 190 sampling points to reach the target error
of 10−3. In contrast, only 76 samples are required when using the L1 based LARS-Lasso solver, which
again serves as a baseline for comparison. The LHS (SC-ESE) algorithm is substantially less efficient
than the other two LHS designs (STD and MM) in this test case. With LHS (MM) it is possible to
achieve a reduction of sampling points by roughly 8% compared to standard random sampling. From
all investigated sampling schemes, MC-CC optimal grids performed best and required 13% fewer
sampling points than standard random grids. It is followed by Coherence Optimal sampling, which
reduces the required samples by 4.5%.

In terms of success rate, the sampling schemes differ considerably. Standard random sampling
requires N95%

sr = 92.5 and N99%
sr = 112.5 sampling points to achieve success rates of 95% and 99%
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x1

x2

Rosenbrock function

Figure 4. Rosenbrock function in its two-dimensional form. In the present analysis, the
Rosenbrock function of dimension d = 6 is investigated.

respectively. Standard LHS designs are more stable and require only N95%
sr = 73.8 and N99%

sr = 75.4
sampling points, respectively. MC-CC grids are able to surpass all other L1-optimal grids by achieving
N95%

sr = 73 and N99%
sr = 75.4.

The mutual coherence of the measurement matrices for each algorithm is shown in Figure 5(c)
and (d). It shows the same behavior for LHS sampling schemes as in case of the Ishigami function.
This time, the sampling size of interest is larger, with about 80 samples for the random sampling
convergence. In this region, LHS (SC-ESE) shows the lowest mutual coherence at about 0.45. The
L1 sampling schemes are all able to reduce beyond the level of random sampling. This time, MC-CC
sampling emerges as the leading design in that regard, which is then followed by MC and D-Coherence
optimal designs.

4.3. High-dimensional low-order problem (LPP function)

As a third test case, we used the d-dimensional Linear Paired Product (LPP) function [49] assuming
a linear combination between two consecutive dimensions:

y =

d∑
i=1

xixi+1 (4.4)

It has d local minima except for the global one. It is continuous, convex and unimodal. In the
present context, it is investigated having d = 30 dimensions with an approximation order of p = 2,
resulting in Nc = 496 basis functions. This test case represents high-dimensional problems requiring a
low approximation order. This test function is also used by Alemazkoor and Meidani (2018) [49] but
considering d = 20 random variables.

The error convergence for the different sampling schemes is shown in Figure 7(a) and (b). The mu-
tual coherence is visualized in 7(c) and (d), the success rates of the best-performing sampling schemes
from each category are shown in Figure 7(e), and the statistics are summarized in Table 7(d). This test
function can be exactly replicated by the polynomial basis functions of the GPCE using k = 29 out
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(a)

(c)

(b)

(d)

(e) (f)

Figure 5. (a) and (b) Convergence of the NRMSD ε with respect to the number of sampling
points N considering the Rosenbrock function. For reference, the convergence of the random
sampling scheme is shown as a black line in each plot. (abbreviations: SC-ESE: stretched
center enhanced stochastic evolutionary algorithm; MM: maximum-minimal distance; STD:
standard; MC: mutual coherence; CC: cross-correlation; D: determinant optimal; D-COH:
determinant-coherence optimal.); (c) and (d) mutual coherence of the gPC matrix; (e) success
rate of the best converging grids for error thresholds of 0.1%, 1%, and 10%; (f) average
number of sampling points needed to reach the error threshold of 0.1%, a success rate of
95%, 99%, and the associated p-value comparing if the grids require significantly lower
number of sampling points than standard random sampling.
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x1

x2

Lin2Coupled function

Figure 6. Linear Paired Product (LPP) function in its two-dimensional form. In the present
analysis, we investigated it with d = 30 dimensions.

of Nc = 496 available coefficients (6%). In this case, random sampling requires 496 sampling points
using L2-minimization and 110 samples using L1-minimization. LHS designs showed similar conver-
gence behavior to standard random sampling, with no reported improvement for LHS (MM) and LHS
(STD) sampling and an increase in samples for LHS (SC-ESE). In contrast, L1-optimal designs did not
manage to improve on the sampling count, with MC-CC and Coherence-Optimal sampling showing
the best convergence rates. However, only D-optimal and D-Coherence optimal sampling increased by
more then 4%, indicating very little variability between the sampling schemes. It can be observed that
the variance in the range between 110 and 120 sampling points is very high for all sampling methods.
The reason for this is that the LPP function is very sparse, and the convergence is mainly determined
by the L1 solver. An additional sample point can lead to an abrupt reduction of the approximation error
and a "perfect" recovery. This is often observed with L1 minimization.

To achieve the 95% and 99% success rates, standard random sampling requires N(95%)
sr = 117 and

N(99%)
sr = 119.4 samples. The LHS (MM) algorithm performs slightly better and requires N(95%)

sr =

113.8 and N(99%)
sr = 115.4 samples. L1-optimal sampling schemes show tremendously weaker stability

for this test-function. Here, only D-optimal designs reach the range of standard random sampling and
the LHS variations, with N(95%)

sr = 128.1 and N(99%)
sr = 129.6.

The mutual coherence of the measurement matrices for this test case are shown in Figure 7(c) and
(d). The LHS (SC-ESE) shows the lowest coherence for the category of LHS grids, very similar to
the previous example. L1 (MC) and L1 (MC-CC) designs display the lowest mutual coherence for
L1-optimal designs, while the remaining L1-optimal sampling schemes are densely packed around the
region slightly below random sampling.

4.4. Practical example (Probe impedance model)

The last test case is an application example from electrical engineering. The aim is to estimate the
sensitivity of the intrinsic impedance of a probe used to measure the impedance of biological tissues
for different frequencies. The model is shown in Figure 8(a) and consists of a Randles circuit that
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(a)

(c)

(b)

(d)

(e) (f)

Figure 7. (a) and (b) Convergence of the NRMSD ε with respect to the number of sam-
pling points N considering the Linear Paired Product (LPP) function. For reference, the
convergence of the random sampling scheme is shown as a black line in each plot. (ab-
breviations: SC-ESE: stretched center enhanced stochastic evolutionary algorithm; MM:
maximum-minimal distance; STD: standard; MC: mutual coherence; CC: cross-correlation;
D: determinant optimal; D-COH: determinant-coherence optimal.); (c) and (d) mutual coher-
ence of the gPC matrix; (e) success rate of the best converging grids for error thresholds of
0.1%, 1%, and 10%; (f) average number of sampling points needed to reach the error thresh-
old of 0.1%, a success rate of 95%, 99%, and the associated p-value comparing if the grids
require significantly lower number of sampling points than standard random sampling.
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was modified according to the coaxial geometry of the electrode. The lumped parameters model the
different contributions of the physical phenomena. The resistance Rs models the contribution of the
serial resistance of the electrolyte into which the electrode is dipped. The constant phase element
Qdl models the distributed double layer capacitance of the electrode. The resistance Rct models the
charge transfer resistance between the electrode and the electrolyte. The elements Qd and Rd model
the diffusion of charge carriers and other particles towards the electrode surface. The constant phase
elements Qdl and Qd have impedances of 1/ (Qdl( jω)αdl) and 1/ (Qd( jω)αd ), respectively. The electrode
impedance, according to the Randles circuit shown in Figure 2(a), is given by:

Z̄(ω) = Rs +

Qdl( jω)αdl +
1

Rct +
Rd

1+RdQd( jω)αd


−1

(4.5)

The impedance is complex-valued and depends on the angular frequency ω = 2π f , which acts
as an equivalent to the deterministic parameter r from eq. 2.1. A separate GPCE is constructed for
each frequency. In this analysis, the angular frequency is varied between 1 Hz and 1 GHz with 1000
logarithmically spaced points. The real part and the imaginary part are treated independently. The
application example thus consists of 2000 QOIs, for each of which a separate GPCE is performed.
The approximation error is estimated by averaging the NRMSD over all QOIs. Accordingly, the
impedance of the equivalent circuit depends on seven parameters, which will be treated as uncertain:
(Rs,Rct,Rd,Qd, αd,Qdl, αdl). They are modeled as uniformly-distributed random variables with a devi-
ation of ±10% from their estimated mean values, with the exception of Rs, which was defined between
0Ω and 1kΩ. The parameters were estimated by fitting the model to impedance measurements from a
serial dilution experiment of KCl with different concentrations. The parameter limits are summarized
in Table 2. In preliminary investigations, we successively increased the approximation order until we
reached an accurate surrogate model with an NRMSD of ε < 1−5. It was found that the parameters in
this test problem strongly interact with each other, which explains the rather high order of approxima-
tion compared to the smooth progression of the real and imaginary parts in the cross sections shown
in Figure 8. This means that (for example) when five parameters of first order interact with each other,
the maximum GPCE order is reached, and this coefficient is significant compared to (for example) a
fifth order approximation of a single parameter.

Impedance (real part) Impedance (imaginary part)(c)(b)(a) Randles circuit

Rs Rs

α
d
l

α
d
l

Figure 8. Electrode impedance model: (a) Randles circuit; (b) Real part and (c) imaginary
part of the electrode impedance as a function of Rs and αdl. The remaining parameters are
set to their respective mean values.
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Table 2. Estimated mean values of the electrode impedance model, determined from calibra-
tion experiments, and limits of parameters.

Parameter Min. Mean Max.

Rs 0 Ω 0.5 kΩ 1 kΩ

Rct 9 kΩ 10 kΩ 1.1 kΩ

Rd 108 kΩ 120 kΩ 132 kΩ

Qd 3.6 · 10−10 F 4.0 · 10−10 F 4.4 · 10−10 F

Qdl 5.4 · 10−7 F 6 · 10−7 F 6.6 · 10−7 F

αd 0.855 0.95 1.0

αdl 0.603 0.67 0.737

The results of the error convergence are shown in Figure 9(a) and (b), and the corresponding mutual
coherences are shown in 9(c) and (d). The success rates of the best-performing sampling schemes
from each category are shown in Figure 9(e), and the statistics are summarized in the Table Figure
9(f). The practical example consisting of the probe impedance model can be considered as non-sparse.
It requires k = 500 out of Nc = 596 coefficients (84%) to reach an accuracy of < 10−5. Random
sampling requires 269 random samples to construct an accurate surrogate model using conventional
L2 minimization. By using L1 minimization, the number of samples reduces to 82. The LHS (SC-
ESE) sampling scheme shows very good performance, requiring only 70.2 samples to reach the target
error, which corresponds to a decrease of 14%. In this test case, for L1-optimal sampling schemes,
only MC-CC sampling managed to yield an improvement of the median by 2 samples, yet they display
a severe lack in stability as discussed in the next part.

Random grids require N(95%)
sr = 90.7 and N(99%)

sr = 93.8 samples to reach the desired success rates.
Besides its good average convergence, LHS (SC-ESE) grids show significantly better stability, requir-
ing only N(95%)

sr = 71.9 and N(99%)
sr = 84.4 samples, which corresponds to a decrease of 10% for both.

A general lack of robust recovery is found for pure L1-optimal sampling schemes. Their success rates
exceed those of random sampling, much like their median, rendering them inefficient on this test case.

Figure 9(c) and (d) shows the mutual coherences of the electrode impedance model. LHS (SC-ESE)
still has the lowest mutual coherence in their category and may even show a lower mutual coherence
than any L1-optimal design for single test runs. As seen previously, the lowest coherence for L1-
optimal sampling can be observed in the case of MC-CC and MC sampling. Both of them form the
bottom line of L1-optimal sampling in the region of 80 samples; MC sampling rises above D and
D-Coherence optimal sampling for larger sampling sizes.

4.5. Average performance over all test problems

The examined sampling schemes showed different strengths and weaknesses depending on the test
problem. In order make general statements regarding their performance, we have weighted the er-
ror crossing N̂ε and success rates N(95%)

sr and N(99%)
sr with the corresponding value of random sampling

and averaged the results over all investigated test problems. The results are shown in Table 3. It can
be observed that LHS (SC-ESE) grids outperform random sampling in terms of average convergence
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(b)

(d)

(e) (f)

Figure 9. (a) and (b) Convergence of the NRMSD ε with respect to the number of sam-
pling points N considering the probe impedance model. For reference, the convergence of
the random sampling scheme is shown as a black line in each plot. (abbreviations: SC-ESE:
stretched center enhanced stochastic evolutionary algorithm; MM: maximum-minimal dis-
tance; STD: standard; MC: mutual coherence; CC: cross-correlation; D: determinant optimal;
D-COH: determinant-coherence optimal.); (c) and (d) mutual coherence of the gPC matrix;
(e) success rate of the best converging grids for error thresholds of 0.1%, 1%, and 10%; (f)
average number of sampling points needed to reach the error threshold of 0.1%, a success
rate of 95%, 99%, and the associated p-value comparing if the grids require significantly
lower number of sampling points than standard random sampling.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7425–7480.



7448

and success rate for two of the test functions while maintaining a very competitive N(99%)
sr on all test

functions. They share this quality with the other LHS grids; however, the SC-ESE variation manages
to score the largest sample reduction of 14.6% regarding the N̂ε measure and about 35% on the two
success rate measures. It is still closely trailed by the other two LHS sampling schemes. For the two
higher-dimensional examples, however, LHS (STD) and LHS (MM) clearly show the most stable re-
covery success as seen in the N(99%)

sr for all test functions, with a sample reduction of 15% on average.
L1-optimal sampling schemes managed to achieve a significant sample reduction for the Rosenbrock
function; specifically, MC-CC sampling is unrivalled regarding the N̂ε decreases. However, the suc-
cess rate measures are paralleled by LHS sampling. In terms of stability, only D-Coherence optimal
sampling shows some perseverance, as its largest increase of samples for the N(99%)

sr is 52% for the
Electrode Model function. Surprisingly, the remaining L1-optimal grids, namely D-optimal, MC, MC-
CC and Coherence-optimal sampling, all require increased sampling sizes for the N(99%)

sr for the LPP
function and the Electrode Model. D-optimal sampling generally shows a slower convergence com-
pared to other L1 optimal schemes, however it still proved to be comparable to them for the success
rate of 99%. For the test functions that were investigated in the context of a high-order GPCE approx-
imation, no sampling scheme except MC-CC showed a reduction of samples, and all of them showed
large increases in the amount of samples needed for the success rate targets.

Table 3. Relative and average number of grid points N̂ε of different sampling schemes to
reach an NRMSD of 10−3 with respect to standard random sampling using the LARS-Lasso
solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr show the number

of samples needed to reach success rates of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.869 0.615 0.674 1.246 1.068 0.887 1.018 1 1 0.856 0.898 0.900 0.997 0.895 0.865

LHS (MM) 0.872 0.660 0.712 0.919 0.827 0.691 1 0.972 0.966 1.027 1.019 0.999 0.9545 0.870 0.842

LHS (STD) 0.872 0.649 0.706 0.921 0.798 0.670 1 0.987 0.983 1.006 1.030 1.017 0.950 0.866 0.844

L1 (MC) 1.131 0.887 0.956 0.961 1.049 1.378 1.037 1.282 - 1.039 2.226 - 1.042 1.361 1.167

L1 (MC-CC) 1.257 0.969 1.000 0.868 0.789 0.670 1.028 1.235 1.449 0.972 1.223 2.187 1.031 1.054 1.327

L1 (D) 1.503 1.026 1.048 1.038 0.953 0.797 1.091 1.079 1.082 1.429 1.427 1.433 1.265 1.121 1.089

L1 (D-COH) 1.076 0.820 0.847 0.999 0.941 0.797 1.082 1.154 1.164 1.414 1.526 1.518 1.143 1.110 1.082

L1 (CO) 1.882 2.010 2.183 0.955 0.892 0.751 1.009 1.132 1.160 1.05 1.289 1.351 1.224 1.331 1.361

5. Discussion

We thoroughly investigated the convergence properties of space-filling sampling schemes, L1-
optimal sampling schemes minimizing the mutual coherence of the GPCE matrix, hybrid versions
of both, and optimal designs of experiment by considering different classes of problems. We compared
their performance against standard random sampling and found great differences between the differ-
ent sampling schemes. To the best of our knowledge, this study is currently the most comprehensive
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comparing different sampling schemes for GPCE.
Very consistently, a great reduction in the number of sampling points was observed for all test cases

when using L1 minimization compared to least-squares approximations. The reason for this is that the
GPCE basis in its traditional form of construction is almost always over-complete, and oftentimes not
all basis functions and parameter interactions are required or appropriate for modeling the underlying
transfer function. For this reason, the use of L1 minimization algorithms in the context of GPCE is
strongly recommended as long as the approximation error is verified by an independent test set or
leave-one-out cross validation.

The first three test cases can be considered "sparse" in the framework of GPCE. It is noted that these
values are high in comparison to typical values in signal processing and do not fully meet the definition
of sparse signals, where ||c||0 � Nc. The sparse character is reflected in the shape of the convergence
curves, which show a steep drop in the approximation error after reaching a certain number of sampling
points. Non-sparse solutions (as in case of the probe impedance model) show a gradual exponential
decrease of the approximation error.

The Ishigami function represents a class of problems where the QOI exhibits comparatively com-
plex behavior within the parameter space. LHS designs, and especially LHS (SC-ESE), outperform all
other investigated sampling schemes by taking advantage of their regular and space-filling properties,
which ensures that model characteristics are covered over the whole sampling space. Similar benefits
were observed for the probe impedance model.

D-optimal and D-coherence optimal designs were investigated in [55] by comparing their perfor-
mance to standard random sampling using L2 minimization. In this context, the number of chosen
sampling points had to be considerably larger than the number of basis functions, i.e. Ng � Nc. In the
present analysis, we loosened this constraint and decreased the number of sampling points below the
number of basis functions Ng < Nc. We were able to observe improved performance for the first three
test cases (Ishigami function, Rosenbrock function, Linear Paired Product function), where the relative
number of non-zero coefficients is between 6 − 13%. In the case of the non-sparse probe impedance
model with a ratio of non-zero coefficients of 84%, D-optimal and D-coherence optimal designs were
less efficient compared to standard random sampling.

In our analysis, we did not find a relationship between mutual coherence and error convergence.
A good example is the excellent convergence of LHS algorithms and the comparatively high mutual
coherence in the case of the Ishigami function (Figure 3) or the comparatively late convergence of
mutual coherence optimized sampling schemes in the case of the Rosenbrock function (Figure 5). This
is in accordance with the observations reported by Alemazkoor et al. (2018) [49]. However, it has
been observed that minimizing maximum cross-correlation does not necessarily improve the recovery
accuracy of compressive sampling. It can be concluded that both the properties of the transfer function
and the sparsity of the model function greatly influence the reconstruction properties and hence the
effectiveness of the sampling schemes.

We minimized the maximum cross-correlation of the measurement matrix Ψ; however, this mini-
mization demonstrated few benefits in reducing the number of sampling points to determine a GPCE
approximation [39, 74].

All numerical examples were applied to uniformly distributed random inputs and Legendre polyno-
mials, while in many real-world applications, different distributions may have to be assigned to each
random variable. This requires the use of different polynomial basis functions, which would change
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the properties of the GPCE matrix. This can have a major influence on the performance of L1-optimal
sampling schemes. In contrast, we expect fewer differences for LHS based grids because they only
depend on the shape of the input pdfs and not additionally on the basis functions.

A large interest in the field of compressed sensing lies in identifying a lower bound on the sam-
pling size needed for an accurate reconstruction. This depends on two factors: the properties of the
measurement matrix and the sparsity of the solution. The formulation of general statements for GPCE
matrices, which are constructed dynamically and depend on the number of random variables and type
of input pdfs, is only possible with many preliminary considerations about their structure and type.
Moreover, it requires additional work on the topic of sparsity estimation. Both topics are very recent
and subject to current and future research.

The sampling methods analyzed were based on the premise that the entire grid is created prior
to the calculations. The importance of covering important aspects of the quantity of interest in the
sampling space suggests the development of adaptive sampling methods. An iterative construction of
the set of sampling points would benefit from information of already calculated function values. For
this purpose, e.g. the gradients in the sampling points could be used to refine regions with high spatial
frequencies. We believe that those methods would have great potential to further reduce the number of
sampling points.

As a result, the convergence rate as well as the reliability could be increased considerably when
using LHS or D-coherence optimal sampling schemes. Even though the LHS (SC-ESE) was enhanced
in this paper to perform better in corner regions, it still performs less than optimally in cases where
function features are close to the borders of the sampling region. In further investigations, it may
become crucial to address the systematic bias in the optimization of the criterion used for the ESE
algorithm by using the periodic distance as shown in section 3.5 to fully remedy this shortcoming.

The advantages of the more advanced sampling methods over standard random sampling were even
more pronounced when considering the first two statistical moments, i.e., the mean and standard devi-
ation (see supplemental material).

We minimized the maximum cross-correlation of the measurement matrixΨ, but few benefits arose
from reducing the number of sampling points to determine a GPCE approximation [39, 74]. We could
not observe that L1-optimal sampling schemes are superior to their competitors. It has also been re-
peatedly shown that µ may only be able to optimize the recovery in a worst case scenario and therefore
acts as a lower bound on the expected error [39]. In this sense, we also could not observe a direct
relationship between mutual coherence and error convergence. From our results, we conclude that the
sampling points should be chosen to capture all properties of the model function under investigation
rather than to optimize the properties of the GPCE matrix to yield an accurate surrogate model more
efficiently. This is in contrast to the results reported by Alemazkoor et al. (2018) [49] in case of the
LPP function. We could reproduce their results for mutual coherence optimal sampling. However,
random sampling performed much better in our case than they reported. For this reason, they argued
for an application of L1-optimized sampling schemes in case of high-dimensional sparse functions.
They investigated the LPP function considering 20 dimensions, whereas we considered 30 random
variables. Nevertheless, we could not reproduce their results for random sampling in this test case as
well. A possible reason could be the use of a different L1 solver, which could lead to potential changes
in effectiveness of certain algorithms and should therefore be taken into consideration when comparing
the results.
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Supplementary

6. NRMSD convergence results considering a 10% error threshold

In the following the convergence of the NRMSD and the success rates are examined considering an
error threshold of 10%.

6.1. Low-dimensional high-order problem (Ishigami function)

Table 4. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10−3 considering the Ishigami function. The columns for N(95%)

sr and N(99%)
sr show

the number of samples needed to reach a success rate of 95% and 99%, respectively. The
bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 20.5±7.1 40.5 41.7 1

LHS (SC-ESE) 14.9±1.8 18.2 18.9 1.3 · 10−08

LHS (MM) 16.8±3.0 20.8 23.1 2.6 · 10−05

LHS (STD) 17.6±3.3 24.0 25.7 2.9 · 10−03

L1 (MC) 21.2±4.7 30.0 33.4 0.72

L1 (MC-CC) 21.9±4.7 30.5 33.8 0.82

L1 (D) 25.3±4.0 34.3 34.9 1.0

L1 (D-COH) 20.7±2.5 23.2 23.8 0.21

L1 (CO) 41.4±9.9 46.5 65.2 1
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6.2. Medium-dimensional medium-order problem (Rosenbrock function)

Table 5. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10% considering the Rosenbrock function. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.
The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 51.3±8.9 62.0 64.7 1.0

LHS (SC-ESE) 50.7±5.3 58.5 60.4 0.36

LHS (MM) 46.1±4.7 54.5 58.8 1.2 · 10−02

LHS (STD) 47.3±4.3 52.8 55.1 2.9 · 10−02

L1 (MC) 49.7±11.0 65.3 67.7 0.31

L1 (MC-CC) 41.5±6.4 50.8 51.7 1.4 · 10−04

L1 (D) 41.0±5.4 50.8 51.7 6.6 · 10−05

L1 (D-COH) 37.6±5.1 44.0 49.9 9.3 · 10−07

L1 (CO) 45.9±7.7 56.5 61.2 2.1 · 10−02

6.3. High-dimensional low-order problem (LPP function)

Table 6. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10% considering the LPP function. The columns for N(95%)

sr and N(99%)
sr show

the number of samples needed to reach a success rate of 95% and 99%, respectively. The
bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 75.4±8.8 82.5 87.9 1.0

LHS (SC-ESE) 70.0±10.4 88.5 89.7 0.49

LHS (MM) 72.3±11.5 86.0 90.8 0.17

LHS (STD) 73.8±9.6 86.3 89.3 0.30

L1 (MC) 74.4±12.3 90.2 96.6 0.62

L1 (MC-CC) 71.5±12.2 90.5 100.4 0.21

L1 (D) 67.4±10.1 84.8 89.2 3.4 · 10−02

L1 (D-COH) 67.3±12.0 90.5 95.1 5.6 · 10−02

L1 (CO) 73.7±11.9 90.5 92.4 0.52
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6.4. Practical example (electrode impedance model)

Table 7. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10% considering the Ishigami function. The columns for N(95%)

sr and N(99%)
sr show

the number of samples needed to reach a success rate of 95% and 99%, respectively. The
bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 19.4±1.2 21.0 24.1 1.0 · 100

LHS (SC-ESE) 20.0±1.7 23.8 24.7 1.0 · 100

LHS (MM) 18.8±0.3 19.0 19.7 4.3 · 10−04

LHS (STD) 19.0±0.3 19.5 19.9 8.1 · 10−03

L1 (MC) 19.8±4.6 31.5 33.4 9.9 · 10−01

L1 (MC-CC) 19.5±7.5 39.5 49.1 8.8 · 10−01

L1 (D) 19.7±3.9 29.8 31.4 1.0 · 100

L1 (D-COH) 19.8±4.1 31.0 31.8 1.0 · 100

L1 (CO) 19.5±4.3 31.5 33.4 8.7 · 10−01

6.5. Average performance over all test problems (10%)

Table 8. Relative and average number of grid points N̂ε of different sampling schemes to
reach a NRMSD of 10% with respect to standard random sampling using the LARS-Lasso
solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr show the number

of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.728 0.451 0.452 0.987 0.944 0.934 0.928 1.073 1.020 1.029 1.135 1.025 0.932 0.901 0.858

LHS (MM) 0.818 0.514 0.554 0.898 0.879 0.909 0.959 1.042 1.033 0.971 0.904 0.817 0.912 0.835 0.828

LHS (STD) 0.859 0.593 0.616 0.921 0.851 0.851 0.979 1.045 1.015 0.981 0.929 0.826 0.935 0.855 0.844

L1 (MC) 1.030 0.741 0.801 0.968 1.05 1.046 0.987 1.094 1.099 1.018 1.500 1.386 1.001 1.096 1.083

L1 (MC-CC) 1.065 0.753 0.811 0.809 0.819 0.799 0.949 1.097 1.142 1.006 1.881 2.037 0.957 1.138 1.215

L1 (D) 1.232 0.846 0.836 0.798 0.819 0.799 0.894 1.027 1.015 1.016 1.417 1.303 0.985 1.027 0.988

L1 (D-COH) 1.007 0.574 0.572 0.733 0.710 0.771 0.893 1.097 1.082 1.022 1.476 1.320 0.914 0.964 0.921

L1 (CO) 2.015 1.148 1.564 0.894 0.911 0.946 0.978 1.097 1.051 1.005 1.500 1.386 1.223 1.164 1.237

7. NRMSD convergence results considering a 1% error threshold

In the following the convergence of the NRMSD and the success rates are examined considering an
error threshold of 1%.
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7.1. Low-dimensional high-order problem (Ishigami function)

Table 9. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10−3 considering the Ishigami function. The columns for N(95%)

sr and N(99%)
sr show

the number of samples needed to reach a success rate of 95% and 99%, respectively. The
bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 24.7±8.3 44.0 48.0 1.0 · 100

LHS (SC-ESE) 23.1±2.8 24.8 27.8 7.1 · 10−06

LHS (MM) 24.1±4.0 28.6 29.7 2.9 · 10−03

LHS (STD) 24.5±3.0 29.3 29.9 1.3 · 10−02

L1 (MC) 27.5±5.9 38.5 41.8 8.9 · 10−01

L1 (MC-CC) 29.7±6.2 39.5 44.2 1.0 · 100

L1 (D) 39.3±5.6 43.5 45.7 1.0 · 100

L1 (D-COH) 24.7±4.4 35.0 37.4 6.5 · 10−01

L1 (CO) 49.3±12.2 73.0 86.1 1.0 · 100

7.2. Medium-dimensional medium-order problem (Rosenbrock function)

Table 10. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10% considering the Rosenbrock function. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.
The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 72.2±10.7 90.0 108.1 1.0 · 100

LHS (SC-ESE) 91.4±4.9 97.6 98.7 1.0 · 100

LHS (MM) 65.8±4.5 75.5 76.7 2.1 · 10−04

LHS (STD) 69.3±3.8 72.8 74.4 4.7 · 10−03

L1 (MC) 71.7±18.3 93.0 143.7 4.7 · 10−01

L1 (MC-CC) 65.4±3.9 69.2 69.8 2.8 · 10−07

L1 (D) 61.3±6.2 68.9 75.3 1.7 · 10−06

L1 (D-COH) 74.9±5.9 82.5 85.8 6.5 · 10−01

L1 (CO) 69.6±6.6 81.5 83.4 7.3 · 10−02
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7.3. High-dimensional low-order problem (LPP function)

Table 11. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10% considering the LPP function. The columns for N(95%)

sr and N(99%)
sr show the

number of samples needed to reach a success rate of 95% and 99%, respectively. The bold
rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 109.4±4.8 117.0 119.4 1.0 · 100

LHS (SC-ESE) 111.7±5.1 117.0 119.4 9.5 · 10−01

LHS (MM) 109.4±3.9 113.8 115.4 3.8 · 10−01

LHS (STD) 109.5±4.2 115.5 117.4 8.0 · 10−01

L1 (MC) 113.7±12.0 147.5 - 9.9 · 10−01

L1 (MC-CC) 112.7±15.8 141.0 167.0 9.3 · 10−01

L1 (D) 119.1±6.7 125.2 128.2 1.0 · 100

L1 (D-COH) 118.7±10.0 133.5 137.1 1.0 · 100

L1 (CO) 110.5±11.1 133.5 138.7 7.6 · 10−01

7.4. Practical example (Electrode Model)

Table 12. Estimated number of grid points N̂ε of different sampling schemes to reach a
NRMSD of 10% considering the Electrode Model. The columns for N(95%)

sr and N(99%)
sr show

the number of samples needed to reach a success rate of 95% and 99%, respectively. The
bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 42.0±4.0 48.8 50.4 1.0 · 100

LHS (SC-ESE) 39.4±1.5 42.7 43.7 3.2 · 10−03

LHS (MM) 39.3±3.4 46.5 46.9 3.6 · 10−02

LHS (STD) 39.4±3.1 46.2 46.8 3.4 · 10−02

L1 (MC) 43.8±7.2 60.0 66.1 8.5 · 10−01

L1 (MC-CC) 39.6±26.0 72.0 149.0 2.8 · 10−01

L1 (D) 44.5±8.1 61.0 66.2 9.9 · 10−01

L1 (D-COH) 48.6±17.4 90.0 91.7 1.0 · 100

L1 (CO) 44.6±7.8 60.0 69.7 8.6 · 10−01
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7.5. Average performance over all test problems (1%)

Table 13. Relative and average number of grid points N̂ε of different sampling schemes
to reach a NRMSD of 1% with respect to standard random sampling using the LARS-Lasso
solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr show the number

of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.934 0.564 0.579 1.266 1.084 0.913 1.021 1 1 0.938 0.875 0.867 1.040 0.881 0.840

LHS (MM) 0.976 0.650 0.619 0.911 0.839 0.710 1 0.972 0.966 0.935 0.954 0.931 0.956 0.854 0.806

LHS (STD) 0.992 0.665 0.622 0.961 0.809 0.688 1.001 0.987 0.983 0.938 0.949 0.930 0.973 0.866 0.844

L1 (MC) 1.114 0.875 0.871 0.993 1.033 1.329 1.039 1.261 - 1.043 1.231 1.312 1.032 1.100 1.171

L1 (MC-CC) 1.201 0.898 0.921 0.906 0.769 0.646 1.030 1.205 1.399 0.942 1.477 2.956 1.020 1.087 1.481

L1 (D) 1.590 0.989 0.952 0.849 0.766 0.697 1.088 1.071 1.074 1.059 1.251 1.313 1.147 1.019 1.009

L1 (D-COH) 1.002 0.795 0.779 1.038 0.917 0.794 1.085 1.141 1.148 1.156 1.846 1.819 1.070 1.175 1.127

L1 (CO) 1.998 1.659 1.794 0.964 0.906 0.772 1.010 1.141 1.162 1.060 1.231 1.383 1.258 1.234 1.278

8. Convergence of mean and standard deviation

Besides of the NRMSD, which quantifies the general quality of the GPCE surrogates with the
original model function, we quantified the convergence of the first two statistical moments, i.e. the
mean and the standard deviation. Reference values were obtained for each testfunction by calculating
both the mean and the standard deviation from N = 107 model evaluations.

8.1. Ishigami function

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7425–7480.



7462

(a)

(c)

(b)

(d)

(e) (f)

Figure 10. (a) and (b) Convergence of the relative error of the mean with respect to the num-
ber of sampling points N considering the Ishigami function. For reference, the convergence
of the random sampling scheme is shown as a black line in each plot. (abbreviations: SC-
ESE: stretched center enhanced stochastic evolutionary algorithm; MM: maximum-minimal
distance; STD: standard; MC: mutual coherence; CC: cross-correlation; D: determinant opti-
mal; D-COH: determinant-coherence optimal.); (c) and (d) convergence of the relative error
of the standard deviation; (e) and (f) success rates of the best converging grids for error
thresholds of 0.1%, 1%, and 10% for the mean and the standard deviation, respectively.
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Table 14. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 0.1% considering the Ishigami function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 28.3±10.4 54.0 59.4 1.0 · 100

LHS (SC-ESE) 24.8±4.0 29.4 29.9 5.9 · 10−04

LHS (MM) 24.4±3.5 29.5 29.9 4.9 · 10−05

LHS (STD) 24.8±4.1 29.9 32.8 7.6 · 10−04

L1 (MC) 38.7±9.3 52.0 64.2 1.0 · 100

L1 (MC-CC) 37.3±7.5 48.0 49.7 1.0 · 100

L1 (D) 28.2±6.6 39.8 40.7 6.2 · 10−01

L1 (D-COH) 25.8±5.3 39.2 39.9 3.5 · 10−01

L1 (CO) 67.9±38.6 308.8 348.2 1.0 · 100

Table 15. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 1% considering the Ishigami function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 24.4±7.5 39.5 45.6 1.0 · 100

LHS (SC-ESE) 18.2±5.2 26.5 28.7 7.0 · 10−05

LHS (MM) 19.0±2.7 23.3 23.9 1.4 · 10−05

LHS (STD) 19.3±5.1 26.5 28.5 2.2 · 10−04

L1 (MC) 28.5±7.0 38.9 39.7 9.9 · 10−01

L1 (MC-CC) 29.8±6.6 39.8 44.9 1.0 · 100

L1 (D) 24.6±4.0 31.0 36.5 6.0 · 10−01

L1 (D-COH) 24.6±4.0 32.0 37.1 6.9 · 10−01

L1 (CO) 49.4±15.0 68.0 88.6 1.0 · 100
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Table 16. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 10% considering the Ishigami function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 14.4±5.3 22.3 25.8 1.0 · 100

LHS (SC-ESE) 9.7±2.4 13.6 13.9 5.0 · 10−04

LHS (MM) 10.7±3.2 14.8 15.7 6.6 · 10−03

LHS (STD) 12.6±2.3 14.9 17.1 2.3 · 10−02

L1 (MC) 21.5±7.2 32.5 34.4 1.0 · 100

L1 (MC-CC) 21.6±10.5 33.0 35.4 9.0 · 10−01

L1 (D) 18.6±4.0 22.2 22.9 9.8 · 10−01

L1 (D-COH) 19.5±5.1 22.8 23.7 1.0 · 100

L1 (CO) 36.8±13.6 47.5 73.9 1.0 · 100

Table 17. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 0.1% considering the Ishigami function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 29.9±11.1 54.5 61.8 1.0 · 100

LHS (SC-ESE) 29.1±3.8 35.5 36.7 2.2 · 10−02

LHS (MM) 28.1±2.8 29.9 33.5 9.8 · 10−04

LHS (STD) 28.3±4.0 35.2 37.7 1.4 · 10−02

L1 (MC) 48.2±22.2 162.5 198.1 1.0 · 100

L1 (MC-CC) 37.3±7.5 48.0 49.7 9.7 · 10−01

L1 (D) 39.6±12.2 59.5 65.1 9.9 · 10−01

L1 (D-COH) 39.5±9.4 48.5 67.2 1.0 · 100

L1 (CO) 86.0±46.0 292.2 297.6 1.0 · 100
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Table 18. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 1% considering the Ishigami function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 24.9±11.0 49.0 55.9 1.0 · 100

LHS (SC-ESE) 24.6±4.3 29.5 29.9 5.3 · 10−02

LHS (MM) 23.8±6.2 27.0 28.6 4.8 · 10−04

LHS (STD) 24.1±6.8 28.9 29.7 1.4 · 10−02

L1 (MC) 29.3±11.5 39.6 39.9 6.5 · 10−01

L1 (MC-CC) 29.8±6.6 39.8 44.9 9.8 · 10−01

L1 (D) 24.7±7.8 37.5 38.7 7.1 · 10−02

L1 (D-COH) 24.8±7.0 37.5 38.7 3.1 · 10−01

L1 (CO) 49.6±17.8 91.2 94.2 1.0 · 100

Table 19. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 10% considering the Ishigami function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 15.3±7.6 25.5 27.4 1.0 · 100

LHS (SC-ESE) 9.5±7.2 22.6 26.5 2.0 · 10−01

LHS (MM) 12.8±5.8 18.5 22.5 8.1 · 10−02

LHS (STD) 11.3±6.9 22.5 23.7 1.3 · 10−01

L1 (MC) 9.5±11.3 37.2 37.8 5.8 · 10−01

L1 (MC-CC) 21.6±10.5 33.0 35.4 9.6 · 10−01

L1 (D) 15.8±7.6 23.5 31.0 6.1 · 10−01

L1 (D-COH) 15.3±7.1 25.5 29.1 7.9 · 10−01

L1 (CO) 36.2±18.4 51.5 70.4 1.0 · 100
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8.2. Rosenbrock function

Table 20. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 0.1% considering the Rosenbrock function. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 76.0±10.9 92.5 112.5 1.0 · 100

LHS (SC-ESE) 94.8±5.0 99.1 99.8 1.0 · 100

LHS (MM) 70.0±5.1 75.8 77.4 8.8 · 10−04

LHS (STD) 69.9±3.3 73.5 75.4 1.8 · 10−04

L1 (MC) 72.0±9.0 97.0 125.6 2.6 · 10−01

L1 (MC-CC) 65.8±6.2 71.5 73.7 3.3 · 10−09

L1 (D) 78.9±7.5 88.1 89.6 7.5 · 10−01

L1 (D-COH) 76.0±6.8 86.3 89.3 6.9 · 10−01

L1 (CO) 72.4±6.4 84.2 84.8 4.4 · 10−02

Table 21. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 1% considering the Rosenbrock function. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 72.7±12.7 93.5 110.1 1.0 · 100

LHS (SC-ESE) 89.1±24.1 97.2 97.8 9.9 · 10−01

LHS (MM) 68.6±5.3 75.5 75.9 1.8 · 10−02

LHS (STD) 69.4±3.4 73.0 74.7 4.3 · 10−03

L1 (MC) 71.6±10.5 94.0 134.2 5.6 · 10−01

L1 (MC-CC) 59.8±9.3 66.7 67.7 3.0 · 10−08

L1 (D) 77.9±7.7 86.5 87.7 8.1 · 10−01

L1 (D-COH) 75.7±6.6 85.5 88.4 8.5 · 10−01

L1 (CO) 69.3±8.4 81.0 83.7 5.3 · 10−02
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(a)

(c)

(b)

(d)

(e) (f)

Figure 11. (a) and (b) Convergence of the relative error of the mean with respect to the
number of sampling points N considering the Rosenbrock function. For reference, the
convergence of the random sampling scheme is shown as a black line in each plot. (ab-
breviations: SC-ESE: stretched center enhanced stochastic evolutionary algorithm; MM:
maximum-minimal distance; STD: standard; MC: mutual coherence; CC: cross-correlation;
D: determinant optimal; D-COH: determinant-coherence optimal.); (c) and (d) convergence
of the relative error of the standard deviation; (e) and (f) success rates of the best converging
grids for error thresholds of 0.1%, 1%, and 10% for the mean and the standard deviation,
respectively.
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Table 22. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 10% considering the Rosenbrock function. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 59.5±13.4 67.5 72.9 1.0 · 100

LHS (SC-ESE) 22.2±7.6 37.5 38.7 7.7 · 10−1

LHS (MM) 54.9±10.0 60.5 61.7 1.2 · 10−02

LHS (STD) 55.3±9.7 62.5 62.9 4.0 · 10−02

L1 (MC) 49.3±26.6 78.0 131.6 6.4 · 10−03

L1 (MC-CC) 34.6±12.4 53.0 56.1 1.6 · 10−07

L1 (D) 42.4±7.8 50.0 52.4 1.3 · 10−06

L1 (D-COH) 53.9±21.9 66.5 68.7 2.2 · 10−02

L1 (CO) 51.6±14.0 64.0 70.2 3.6 · 10−03

Table 23. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 0.1% considering the Rosenbrock function. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 76.0±10.9 92.5 112.5 1.0 · 100

LHS (SC-ESE) 95.0±5.1 99.1 99.8 1.0 · 100

LHS (MM) 70.0±5.2 75.8 77.4 1.0 · 10−03

LHS (STD) 70.0±3.3 73.5 75.4 2.6 · 10−04

L1 (MC) 72.0±9.2 97.5 126.6 4.0 · 10−01

L1 (MC-CC) 66.0±4.2 73.0 75.4 5.8 · 10−08

L1 (D) 79.0±7.5 88.1 89.6 8.1 · 10−01

L1 (D-COH) 76.0±6.8 86.3 89.3 4.8 · 10−01

L1 (CO) 73.6±6.7 84.0 84.8 1.3 · 10−01
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Table 24. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 1% considering the Rosenbrock function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 75.7±16.8 91.8 110.8 1.0 · 100

LHS (SC-ESE) 94.6±5.0 99.8 100.0 1.0 · 100

LHS (MM) 69.9±11.9 75.8 76.7 2.1 · 10−03

LHS (STD) 69.8±15.6 73.5 75.4 1.8 · 10−04

L1 (MC) 71.8±22.8 92.0 96.8 1.3 · 10−01

L1 (MC-CC) 65.8±17.3 71.5 74.4 1.2 · 10−07

L1 (D) 78.5±7.3 87.1 88.6 7.8 · 10−01

L1 (D-COH) 75.7±6.6 85.5 88.4 5.1 · 10−01

L1 (CO) 71.8±6.5 83.0 84.7 8.1 · 10−02

Table 25. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 10% considering the Rosenbrock function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 66.3±32.5 85.5 98.2 1.0 · 100

LHS (SC-ESE) 6.3±42.8 96.2 96.8 6.0 · 10−01

LHS (MM) 62.4±29.4 71.5 72.7 1.0 · 10−01

LHS (STD) 62.0±29.4 69.8 72.1 1.1 · 10−01

L1 (MC) 34.1±34.5 84.0 90.5 2.7 · 10−01

L1 (MC-CC) 52.4±27.7 65.5 66.7 8.8 · 10−03

L1 (D) 56.5±17.2 67.2 70.8 6.3 · 10−02

L1 (D-COH) 53.9±21.9 66.5 68.7 1.6 · 10−02

L1 (CO) 35.7±31.0 75.5 80.2 8.8 · 10−02
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8.3. LPP function

Table 26. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 0.1% considering the LPP function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 5.0±0.0 5.0 5.0 1.0 · 100

LHS (SC-ESE) 5.0±0.0 5.0 5.0 1.0 · 100

LHS (MM) 5.0±0.0 5.0 5.0 1.0 · 100

LHS (STD) 5.0±0.0 5.0 5.0 1.0 · 100

L1 (MC) 5.0±0.0 5.0 5.0 1.0 · 100

L1 (MC-CC) 5.0±0.0 5.0 5.0 1.0 · 100

L1 (D) 5.0±0.0 5.0 5.0 1.0 · 100

L1 (D-COH) 5.0±0.0 5.0 5.0 1.0 · 100

L1 (CO) 5.0±0.0 5.0 5.0 1.0 · 100

Table 27. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 1% considering the LPP function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 4.9±0.0 5.0 5.0 1.0 · 100

LHS (SC-ESE) 4.9±0.0 5.0 5.0 1.0 · 100

LHS (MM) 4.9±0.0 5.0 5.0 1.0 · 100

LHS (STD) 4.9±0.0 5.0 5.0 1.0 · 100

L1 (MC) 4.9±0.0 5.0 5.0 1.0 · 100

L1 (MC-CC) 4.9±0.0 5.0 5.0 1.0 · 100

L1 (D) 4.9±0.0 5.0 5.0 1.0 · 100

L1 (D-COH) 4.9±0.0 5.0 5.0 1.0 · 100

L1 (CO) 4.9±0.0 5.0 5.0 1.0 · 100
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(e) (f)

Figure 12. (a) and (b) Convergence of the relative error of the mean with respect to the
number of sampling points N considering the linear paired product function. For refer-
ence, the convergence of the random sampling scheme is shown as a black line in each plot.
(abbreviations: SC-ESE: stretched center enhanced stochastic evolutionary algorithm; MM:
maximum-minimal distance; STD: standard; MC: mutual coherence; CC: cross-correlation;
D: determinant optimal; D-COH: determinant-coherence optimal.); (c) and (d) convergence
of the relative error of the standard deviation; (e) and (f) success rates of the best converging
grids for error thresholds of 0.1%, 1%, and 10% for the mean and the standard deviation,
respectively.
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Table 28. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 10% considering the LPP function. The columns for N(95%)

sr

and N(99%)
sr show the number of samples needed to reach a success rate of 95% and 99%,

respectively. The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 4.5±0.0 4.0 4.0 1.0 · 100

LHS (SC-ESE) 4.5±0.0 4.0 4.0 1.0 · 100

LHS (MM) 4.5±0.0 4.0 4.0 1.0 · 100

LHS (STD) 4.5±0.0 4.0 4.0 1.0 · 100

L1 (MC) 4.5±0.0 4.0 4.0 1.0 · 100

L1 (MC-CC) 4.5±0.0 4.0 4.0 1.0 · 100

L1 (D) 4.5±0.0 4.0 4.0 1.0 · 100

L1 (D-COH) 4.5±0.0 4.0 4.0 1.0 · 100

L1 (CO) 4.5±0.0 4.0 4.0 1.0 · 100

Table 29. Estimated number of grid points N̂ε of different sampling schemes to reach a rela-
tive error of the std of 0.1% considering the LPP function. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.
The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 114.0±9.4 127.5 137.0 1.0 · 100

LHS (SC-ESE) 110.0±5.1 117.0 119.4 1.5 · 10−02

LHS (MM) 110.0±5.8 117.0 119.4 3.8 · 10−03

LHS (STD) 110.0±5.2 115.8 118.8 2.2 · 10−02

L1 (MC) -±- - - -

L1 (MC-CC) 113.0±17.0 145.0 174.0 3.2 · 10−01

L1 (D) -±- - - -

L1 (D-COH) -±- - - -

L1 (CO) -±- - - -
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Table 30. Estimated number of grid points N̂ε of different sampling schemes to reach a rela-
tive error of the std of 1% considering the LPP function. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.
The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 113.9±9.4 127.5 137.0 1.0 · 100

LHS (SC-ESE) 109.9±5.1 117.0 119.4 2.8 · 10−02

LHS (MM) 109.8±5.8 117.0 119.4 6.6 · 10−03

LHS (STD) 109.9±5.3 115.8 118.8 4.1 · 10−02

L1 (MC) -±- - - -

L1 (MC-CC) 112.9±16.5 144.0 171.3 3.9 · 10−01

L1 (D) -±- - - -

L1 (D-COH) -±- - - -

L1 (CO) -±- - - -

Table 31. Estimated number of grid points N̂ε of different sampling schemes to reach a rela-
tive error of the std of 10% considering the LPP function. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.
The bold rows highlight the best performing sampling schemes in each category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 113.3±9.5 128.5 134.6 1.0 · 100

LHS (SC-ESE) 108.6±19.5 116.0 118.4 1.8 · 10−02

LHS (MM) 108.0±6.1 116.0 118.4 6.9 · 10−03

LHS (STD) 108.5±5.5 114.8 117.1 4.4 · 10−02

L1 (MC) 114.2±12.6 138.0 150.9 9.2 · 10−01

L1 (MC-CC) 111.2±9.8 123.5 127.5 2.6 · 10−01

L1 (D) 119.2±6.9 126.8 128.6 1.0 · 100

L1 (D-COH) 120.2±10.7 137.5 147.1 1.0 · 100

L1 (CO) 112.5±11.9 133.8 138.0 6.6 · 10−01
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8.4. Electrode Probe Model (practical example)

Table 32. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 0.1% considering the Electrode Probe Model. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 48.0±6.0 56.0 59.1 1.0 · 100

LHS (SC-ESE) 39.7±1.8 43.8 45.4 1.1 · 10−05

LHS (MM) 39.8±3.8 49.0 51.4 1.4 · 10−04

LHS (STD) 40.0±3.9 47.8 50.8 1.9 · 10−04

L1 (MC) 48.6±6.8 64.2 64.8 8.4 · 10−01

L1 (MC-CC) 47.6±24.1 70.0 147.2 4.0 · 10−01

L1 (D) 39.8±5.1 53.0 57.7 7.2 · 10−04

L1 (D-COH) 39.9±11.1 66.0 79.2 5.4 · 10−02

L1 (CO) 51.6±6.7 60.8 63.1 9.9 · 10−01

Table 33. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 1% considering the Electrode Probe Model. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 26.4±5.4 34.5 36.4 1.0 · 100

LHS (SC-ESE) 26.2±3.8 31.5 32.7 4.0 · 10−01

LHS (MM) 19.9±2.3 23.5 29.9 8.6 · 10−07

LHS (STD) 19.9±1.9 25.5 26.7 2.9 · 10−06

L1 (MC) 32.1±6.4 36.5 37.7 9.9 · 10−01

L1 (MC-CC) 30.1±9.5 48.0 59.7 9.6 · 10−01

L1 (D) 24.5±6.2 35.5 36.7 3.9 · 10−01

L1 (D-COH) 20.0±5.1 32.3 35.8 9.2 · 10−03

L1 (CO) 33.0±6.2 37.7 38.7 1.0 · 100
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Figure 13. (a) and (b) Convergence of the relative error of the mean with respect to the
number of sampling points N considering the electrode impedance model. For reference, the
convergence of the random sampling scheme is shown as a black line in each plot. (ab-
breviations: SC-ESE: stretched center enhanced stochastic evolutionary algorithm; MM:
maximum-minimal distance; STD: standard; MC: mutual coherence; CC: cross-correlation;
D: determinant optimal; D-COH: determinant-coherence optimal.); (c) and (d) convergence
of the relative error of the standard deviation; (e) and (f) success rates of the best converging
grids for error thresholds of 0.1%, 1%, and 10% for the mean and the standard deviation,
respectively.
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Table 34. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the mean of 10% considering the Electrode Probe Model. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 18.2±0.2 18.5 18.9 1.0 · 100

LHS (SC-ESE) 18.3±0.1 18.0 18.0 5.6 · 10−01

LHS (MM) 18.1±0.1 18.0 18.0 1.0 · 10−06

LHS (STD) 18.1±0.1 18.0 18.0 3.6 · 10−06

L1 (MC) 18.4±0.3 18.9 19.0 9.8 · 10−01

L1 (MC-CC) 18.3±5.1 24.0 36.0 9.6 · 10−01

L1 (D) 18.2±0.3 18.8 18.9 5.1 · 10−01

L1 (D-COH) 18.2±0.2 18.0 18.7 1.5 · 10−02

L1 (CO) 18.4±0.3 18.9 19.7 1.0 · 100

Table 35. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 0.1% considering the Electrode Probe Model. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 97.4±12.5 117.5 131.3 1.0 · 100

LHS (SC-ESE) 77.4±4.8 82.5 83.7 5.0 · 10−11

LHS (MM) 88.1±8.5 97.0 107.7 5.2 · 10−05

LHS (STD) 89.4±6.4 95.5 103.0 7.5 · 10−05

L1 (MC) 99.6±20.4 158.0 253.8 6.7 · 10−01

L1 (MC-CC) 86.7±28.4 117.5 202.3 5.6 · 10−04

L1 (D) 115.0±5.3 120.0 128.7 1.0 · 100

L1 (D-COH) 114.2±12.3 132.5 135.8 1.0 · 100

L1 (CO) 95.5±10.5 114.0 117.1 2.6 · 10−01
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Table 36. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 1% considering the Electrode Probe Model. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 54.7±10.0 75.0 79.8 1.0 · 100

LHS (SC-ESE) 45.9±3.4 48.8 49.7 1.2 · 10−06

LHS (MM) 49.2±3.9 53.9 55.4 3.0 · 10−03

LHS (STD) 49.0±3.5 55.0 57.4 1.3 · 10−02

L1 (MC) 57.1±8.2 72.5 77.5 9.5 · 10−01

L1 (MC-CC) 52.5±11.2 78.5 94.1 2.9 · 10−01

L1 (D) 46.0±5.5 56.0 58.4 2.6 · 10−05

L1 (D-COH) 47.3±12.7 79.0 86.5 2.4 · 10−03

L1 (CO) 59.0±7.1 67.5 74.3 9.2 · 10−01

Table 37. Estimated number of grid points N̂ε of different sampling schemes to reach a
relative error of the std of 10% considering the Electrode Probe Model. The columns for
N(95%)

sr and N(99%)
sr show the number of samples needed to reach a success rate of 95% and

99%, respectively. The bold rows highlight the best performing sampling schemes in each
category.

Grid N̂ε N(95%)
sr N(99%)

sr p-value

Random 32.7±5.0 36.8 37.7 1.0 · 100

LHS (SC-ESE) 29.6±2.6 32.5 33.7 2.7 · 10−02

LHS (MM) 23.5±4.6 33.5 34.7 1.0 · 10−05

LHS (STD) 28.2±4.0 32.2 32.9 8.8 · 10−04

L1 (MC) 33.6±5.5 37.7 39.4 9.1 · 10−01

L1 (MC-CC) 33.4±7.0 47.5 50.4 8.4 · 10−01

L1 (D) 32.7±4.6 35.2 35.9 2.7 · 10−01

L1 (D-COH) 32.9±4.5 36.8 37.7 6.8 · 10−01

L1 (CO) 34.3±3.9 39.0 40.7 9.8 · 10−01
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8.5. Average performance over all test problems (mean 0.1%)

Table 38. Relative and average number of grid points N̂ε of different sampling schemes to
reach a relative error of the mean of 0.1% with respect to standard random sampling using the
LARS-Lasso solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.877 0.544 0.503 1.248 1.071 0.887 1.000 1.000 1.000 0.828 0.781 0.768 0.988 0.849 0.790

LHS (MM) 0.864 0.546 0.503 0.921 0.819 0.688 1.000 1.000 1.000 0.829 0.875 0.870 0.904 0.810 0.765

LHS (STD) 0.877 0.554 0.552 0.921 0.795 0.670 1.000 1.000 1.000 0.835 0.854 0.860 0.908 0.801 0.770

L1 (MC) 1.367 0.963 1.081 0.947 1.049 1.116 1.000 1.000 1.000 1.013 1.147 1.097 1.082 1.040 1.074

L1 (MC-CC) 1.321 0.889 0.837 0.867 0.773 0.655 1.000 1.000 1.000 0.991 1.250 2.491 1.045 1.978 1.246

L1 (D) 0.996 0.738 0.685 1.039 0.953 0.797 1.000 1.000 1.000 0.829 0.946 0.976 0.966 1.896 0.905

L1 (D-COH) 0.912 0.727 0.671 1.000 0.932 0.793 1.000 1.000 1.000 0.832 1.179 1.340 0.936 0.960 0.955

L1 (CO) 2.403 5.719 5.861 0.953 0.911 0.754 1.000 1.000 1.000 1.076 1.085 1.068 1.358 2.179 2.171

8.6. Average performance over all test problems (mean 1%)

Table 39. Relative and average number of grid points N̂ε of different sampling schemes to
reach a relative error of the mean of 1% with respect to standard random sampling using the
LARS-Lasso solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.745 0.671 0.629 1.226 1.040 0.889 1.000 1.000 1.000 0.992 0.913 0.898 0.991 0.906 0.854

LHS (MM) 0.779 0.589 0.523 0.944 0.807 0.689 1.000 1.000 1.000 0.756 0.681 0.821 0.870 0.769 0.758

LHS (STD) 0.790 ,0.671 0.625 0.955 0.781 0.678 1.000 1.000 1.000 0.756 0.739 0.734 0.875 0.798 0.759

L1 (MC) 1.171 0.984 0.871 0.985 1.005 1.219 1.000 1.000 1.000 1.219 1.058 1.036 1.094 1.012 1.031

L1 (MC-CC) 1.223 1.008 0.985 0.824 0.714 0.615 1.000 1.000 1.000 1.143 1.391 1.640 1.048 1.028 1.060

L1 (D) 1.009 0.785 0.800 1.073 0.925 0.797 1.000 1.000 1.000 0.931 1.029 1.008 1.003 0.935 0.901

L1 (D-COH) 1.008 0.810 0.814 1.042 0.914 0.803 1.000 1.000 1.000 0.758 0.935 0.984 0.952 0.915 0.900

L1 (CO) 2.027 1.722 1.943 0.954 1.252 1.094 1.063 1.000 1.000 1.076 1.085 1.068 1.308 1.170 1.192
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8.7. Average performance over all test problems (mean 10%)

Table 40. Relative and average number of grid points N̂ε of different sampling schemes to
reach a relative error of the mean of 10% with respect to standard random sampling using the
LARS-Lasso solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.670 0.610 0.539 0.373 0.556 0.531 1.000 1.000 1.000 1.001 0.973 0.952 0.761 0.785 0.756

LHS (MM) 0.739 0.667 0.609 0.923 0.896 0.846 1.000 1.000 1.000 0.993 0.973 0.952 0.914 0.884 0.852

LHS (STD) 0.873 0.669 0.663 0.928 0.926 0.863 1.000 1.000 1.000 0.993 0.973 0.952 0.948 0.892 0.869

L1 (MC) 1.493 1.461 1.333 0.829 1.156 1.805 1.000 1.000 1.000 1.006 ,1.020 1.004 1.082 1.159 1.285

L1 (MC-CC) 1.497 1.483 1.372 0.581 0.785 0.770 1.000 1.000 1.000 1.005 1.297 1.905 1.021 1.145 1.262

L1 (D) 1.293 1.000 0.886 0.712 0.741 0.719 1.000 1.000 1.000 0.999 1.014 1.003 1.001 0.939 0.902

L1 (D-COH) 1.354 1.026 0.919 0.906 0.985 0.942 1.000 1.000 1.000 0.996 0.973 0.989 1.064 0.996 0.973

L1 (CO) 2.553 2.135 2.864 0.867 0.948 0.963 1.000 1.000 1.000 1.010 1.024 1.042 1.358 1.277 1.467

8.8. Average performance over all test problems (std 0.1%)

Table 41. Relative and average number of grid points N̂ε of different sampling schemes to
reach a relative error of the std of 0.1% with respect to standard random sampling using the
LARS-Lasso solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.970 0.651 0.594 1.250 1.071 0.887 0.965 0.918 ,0.872 0.794 0.702 0.637 0.988 0.849 0.790

LHS (MM) 0.937 0.549 0.542 0.921 0.819 0.688 0.965 0.918 ,0.872 0.904 0.826 0.820 0.904 0.810 0.765

LHS (STD) 0.946 ,0.647 0.610 0.921 0.795 0.670 0.965 0.908 0.867 0.918 0.813 0.784 0.908 0.801 0.770

L1 (MC) 1.609 ,2.982 3.206 0.947 1.054 1.125 - - - 1.022 1.345 1.933 1.082 1.040 1.074

L1 (MC-CC) 1.247 0.881 0.804 0.868 0.789 0.670 - - - 0.889 1.000 1.541 1.045 1.978 1.246

L1 (D) 1.324 1.092 1.053 1.039 0.953 0.797 - - - 1.180 1.021 0.980 0.966 1.896 0.905

L1 (D-COH) 1.318 0.890 1.087 1.000 0.932 0.793 - - - 1.172 1.128 1.034 0.936 0.960 0.955

L1 (CO) 2.871 5.362 4.816 0.969 0.908 0.754 - - - 0.980 0.970 0.892 1.358 2.179 2.171

8.9. Average performance over all test problems (std 1%)
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Table 42. Relative and average number of grid points N̂ε of different sampling schemes to
reach a relative error of the std of 1% with respect to standard random sampling using the
LARS-Lasso solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.989 0.602 0.535 1.250 1.088 0.902 0.964 0.918 0.872 0.839 0.650 0.623 1.010 0.814 0.733

LHS (MM) 0.956 0.551 0.512 0.923 0.826 0.692 0.964 ,0.918 0.872 0.898 0.718 0.694 0.935 0.753 0.692

LHS (STD) 0.968 0.590 0.531 0.922 0.801 0.681 0.964 0.908 0.867 0.895 0.733 0.719 0.937 0.758 0.733

L1 (MC) 1.175 0.809 0.714 0.948 1.003 0.874 - - - 1.042 0.967 0.971 1.041 0.945 0.890

L1 (MC-CC) 1.197 0.813 0.803 0.869 0.779 0.671 - - - 0.959 1.047 1.179 1.006 0.910 0.913

L1 (D) 0.992 0.765 0.692 1.037 0.950 0.800 - - - 0.839 0.747 0.732 0.967 0.865 0.806

L1 (D-COH) 0.997 0.765 0.692 1.000 0.932 0.798 - - - 0.863 1.053 1.084 0.965 0.938 0.894

L1 (CO) 1.989 1.862 1.686 0.948 0.905 0.764 - - - 1.077 0.900 0.931 1.254 1.135 1.095

8.10. Average performance over all test problems (std 10%)

Table 43. Relative and average number of grid points N̂ε of different sampling schemes to
reach a relative error of the std of 10% with respect to standard random sampling using the
LARS-Lasso solver (L1) considering all test functions. The columns for N(95%)

sr and N(99%)
sr

show the number of samples needed to reach a success rate of 95% and 99%, respectively.

Ishigami Rosenbrock LPP Electrode Average (all testfunctions)

Grid N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr N̂ε N(95%)
sr N(99%)

sr

Random (L1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LHS (SC-ESE) 0.620 0.887 0.967 0.096 1.126 0.986 0.959 0.903 0.880 0.905 0.884 0.894 0.645 0.950 0.932

LHS (MM) 0.841 0.725 0.821 0.942 0.836 0.740 0.954 0.903 0.880 0.721 0.912 0.920 0.865 0.868 0.840

LHS (STD) 0.740 0.882 0.865 0.936 0.816 0.734 0.958 0.893 0.870 0.863 0.878 0.871 0.874 0.867 0.835

L1 (MC) 0.624 1.461 1.381 0.515 0.982 0.922 1.008 1.074 1.121 1.027 1.027 1.045 0.794 1.136 1.117

L1 (MC-CC) 1.412 1.294 1.292 0.790 0.766 0.679 0.982 0.961 0.947 1.022 1.293 1.337 1.052 1.078 1.064

L1 (D) 1.032 0.922 1.131 0.853 0.787 0.721 1.052 0.986 0.955 1.001 0.959 0.951 0.984 0.966 0.940

L1 (D-COH) 1.001 1.000 1.062 0.814 0.778 0.700 1.061 1.070 1.093 1.008 1.000 1.000 0.971 0.962 0.964

L1 (CO) 2.366 2.020 2.569 0.540 0.883 0.817 0.993 1.041 1.025 1.049 1.061 1.080 1.237 1.256 1.373
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