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Abstract: The purpose of this exploratory study was to determine whether liver dysfunction can
be generally classified using a wearable electronic nose based on semiconductor metal oxide (MOx)
gas sensors, and whether the extent of this dysfunction can be quantified. MOx gas sensors are
attractive because of their simplicity, high sensitivity, low cost, and stability. A total of 30 participants
were enrolled, 10 of them being healthy controls, 10 with compensated cirrhosis, and 10 with
decompensated cirrhosis. We used three sensor modules with a total of nine different MOx layers to
detect reducible, easily oxidizable, and highly oxidizable gases. The complex data analysis in the
time and non-linear dynamics domains is based on the extraction of 10 features from the sensor time
series of the extracted breathing gas measurement cycles. The sensitivity, specificity, and accuracy for
distinguishing compensated and decompensated cirrhosis patients from healthy controls was 1.00.
Patients with compensated and decompensated cirrhosis could be separated with a sensitivity of 0.90
(correctly classified decompensated cirrhosis), a specificity of 1.00 (correctly classified compensated
cirrhosis), and an accuracy of 0.95. Our wearable, non-invasive system provides a promising tool
to detect liver dysfunctions on a functional basis. Therefore, it could provide valuable support in
preoperative examinations or for initial diagnosis by the general practitioner, as it provides non-
invasive, rapid, and cost-effective analysis results.

Keywords: electronic nose; liver dysfunction; cirrhosis; semiconductor metal oxide gas sensor

1. Introduction

Metabolic disorders are sometimes connected with typical odors which can be mea-
sured on breath, sweat, or other excreta from humans. Examples are ammonia odor, which
is related to renal diseases, and acetone odor, which is related to diabetes.

The beginnings of the use of electronic noses (e-noses) date back to pioneering work
by a few research groups, such as Hartman, Wilkens, Dodd, and Moncrieff [1–4]. Here,
the foundation was laid for specific odors to be detectable and, thus, evaluable with
suitable electronics and analysis technology. The concept of sampling breath for health
monitoring was initially conceived in the 20th century. In 1952, Henderson [5] reported
on the increased acetone content of breath samples from young diabetics, promoting an
interest in the content of breath [6].

In recent decades, improvements in materials, sensors, electronics, and signal pro-
cessing technologies have led to a rapid increase in the development and application of
e-noses [7–9]. E-noses are used, among other things, to analyze, detect, discriminate, clas-
sify, and monitor gas components or odors in many fields of science and industry, and are
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of interest for numerous applications. For example, e-noses are used in the food and bever-
age industry to monitor processing and determine the quality of the final product [10,11],
in pharmaceutical science for formulation development and quality assurance [8], and
for air quality monitoring [12]. In addition, e-noses are also used in agriculture, water
management, medicine, security systems, and many other fields [13].

In the following, we will only deal with the e-noses that meet Gardner’s definition [14].
He stated that an e-nose is an instrument, which comprises an array of electronic chemical
sensors with partial specificity and an appropriate pattern-recognition system, capable
of recognizing simple or complex odors. However, unlike other analytical methods, an
e-nose does not detect directly specific volatile organic components (VOCs); rather, it builds
chemical patterns to form an identity. The sensor array produces output patterns that
represent VOCs in the breath (or different substances), and the data processing extracts
a set of mathematical descriptors that represent the signature of the breath sample as a
pattern [15]. The detection of the input signal occurs depending on the operating principle
implemented in the sensor arrays. There are a variety of sensor types used in e-nose
technology. These include the following in particular [13,16]:

• Metal oxide,
• Conducting polymer,
• Quartz crystal microbalance,
• Acoustic wave,
• Electro-chemical,
• Catalytic bead,
• Optical.

Among these available gas sensing methods, semiconducting metal oxide gas (MOx)
sensor devices have several unique advantages, such as low cost, small size, easy measure-
ment, durability, ease of fabrication, and low detection limits (low ppm level). In addition,
most MOx-based sensors are relatively resistant to poisoning. For these reasons, they have
quickly gained popularity and have become the most widely used gas sensors today [13].

E-noses have also been developed for medical applications. Here, e-noses can dis-
tinguish between different types of diseases and their severity by analyzing body odor.
This includes disease-related metabolic changes especially [17], but any kind of drug
consumption [18] can also be detected on the skin surface and/or exhaled breath.

One can show that such e-noses can be successfully used to improve the diagnosis of
various diseases, ranging from kidney disease [19] and diabetes [20], to various types of
respiratory diseases [21] and carcinoma [22,23], up to heart diseases [24]. These and other
studies provide evidence that, after a necessary validation, a cost-effective, portable, and
fast working e-nose system could be useful for improved diagnostics and health protection.

The diagnosis of chronic liver disease is usually based on a combination of clinical
signs, laboratory parameters, and imaging results [25]. However, this approach has several
important weaknesses. First, the prognosis of cirrhosis depends on the structure and
function of the liver, but even more important is the occurrence of complications, such as
variceal bleeding or infections [26,27]. Second, laboratory values can be influenced by other
conditions that present in the same way as cirrhosis, which may lead to misinterpretation.
Third, some imaging techniques, such as transient elastography, are influenced by “non-
liver” factors, such as central venous pressure [28]. Fourth, there is a great need for an
exact measurement of the current patient’s situation to choose the optimal treatment, e.g., if
transplantation is needed or a non-hepatic or hepatic surgery must be performed. In current
scoring systems, such as the Model for End-stage Liver Disease (MELD) [29], patients with
portal hypertension as a decompensating event (ascites, variceal bleeding) are poorly
represented due to the nature of the score.

Based on a proof-of-concept study, De Vicentis et al. [30] showed that an e-nose based
on piezoelectric gas sensors could be a valid non-invasive instrument for characterizing
chronic liver disease and monitoring hepatic function over time.
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The advantages of piezoelectric gas sensors are high sensitivity, small size, fast re-
sponse time, low power consumption, and robustness [31]. However, these piezoelectric
sensors have a poor signal-to-noise ratio, as they operate at very high frequencies and
require complex electronic circuits to delineate the signal response, making it difficult for
them to act as a supportive element for an efficient e-nose system.

Therefore, the objective of this study was to determine, within the framework of an
explorative study, whether liver dysfunction is generally recognizable and whether the
level of this dysfunction can be classified utilizing a wearable semiconducting MOx gas
sensor-based e-nose.

2. Materials and Methods
2.1. Electronic Nose and Signal Processing

In this study, a system called “LiverTracer” was developed. It is based on an e-nose
system that detects changes in the VOCs from exhaled breath caused by liver dysfunctions
and their severity. This system consists of a measuring head, which contains the sensor
array, and a base unit for measurement control and data analysis (Figure 1).
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Figure 1. Setup of the electronic nose system “LiverTracer”.

The sensor head contains three active MOx semiconductor gas sensor modules (TripleSensor®,
UST Umweltsensortechnik GmbH, Geschwenda, Germany). Each sensor module consists
of three different gas-sensitive MOx layers that can detect reducible, easily oxidizable, and
highly oxidizable gases. The selectivity and sensitivity of the sensor layers for different
gas molecules depend mainly on the MOx semiconductor materials and specific catalyst
additives used, and can additionally be varied by temperature changes. The latter are
controlled by a platinum (PD) heater integrated into each sensor module. Depending on
the type of gas, the gas molecules interact specifically with the surface of the different
sensor layers, resulting in changes to their electrical conductivity. This conductivity (here
measured as resistance) is registered and evaluated. According to the type of gas and sensor
layer, concentration ranges from a few ppb up to the percentage range can be detected.

The used gas sensor elements (Triplesensor®) S1, S2, and S3 are realized through
hybrid technology: they include a ceramic carrier substrate (aluminum oxide (Al2O3)) with
a micro-structured PD thin-film layer, covered with a passivation layer, specific layers for
contacts, as well as a gas-sensitive metal-oxide semiconductor layer (or layers) [32–34].

S1 is a ceramic MOx semiconductor gas sensor element with PD multi-electrodes, with
a length × width × height (L × W × H) of 2.1 mm × 2.3 mm × 0.63 mm, respectively,
with one sensitive MOx layer 2000C2+ (tin oxide (SnO2) thick film layer with a specific
catalyst, for the detection of easily oxidizable gases, mainly carbon monoxide (CO), as well
as hydrogen (H2) and ethanol (C2H5OH)). The processing of multi-electrode structure
signals will be used for the detection of non-desorbing components/contaminations.
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S2 is a ceramic MOx semiconductor gas sensor element UST Triplesensor® (type
3A4P10), with an L × W × H of 2.1 mm × 2.3 mm × 0.63 mm, with three sensitive MOx
layers: 2000C2+ (specific SnO2 compound with a specific catalyst and a thick film, for the
detection of easily oxidizable gases, mainly CO, as well as H2 and C2H5OH), 3000C2+ (a
specific SnO2 compound with a specific Pd catalyst and a thick film, for the detection of
heavily oxidizable gases, mainly hydrocarbons (CxHy), and which is optimal especially
for a number of carbon atoms (C1 to C8)), and 5000C2+ (a specific tungsten trioxide
(WO3) compound with a thick film, for the detection of reducible gases, e.g., nitrogen
dioxide (NO2)).

S3 is a ceramic MOx semiconductor gas sensor element UST Triplesensor® (type
3A4P10), with a L × W × H of 2.1 mm × 2.4 mm × 0.63 mm, with three sensitive metal-
oxide layers: 1000C2+ (a specific SnO2 compound with a catalyst and a thick film), 2000C2+
(a specific SnO2 compound with a specific catalyst and a thick film, for the detection of easily
oxidizable gases, mainly CO, as well as H2 and C2H5OH), and 9000C2+ (a specific SnO2
compound with a catalyst and a thick-film, for the detection of long chain hydrocarbons).

The electronic microcontroller modules installed in the measuring head, with an
analog-to-digital converter for each sensor element, control the heating temperature, the
preprocessing of the sensor signals, the storage of the calibration data and the communica-
tion with the basic unit.

A spirometer “SPIROSTIK COMPLETE” (Geratherm Respiratory GmbH, Bad Kis-
singen, Germany) was used as the basic unit. It contains a Windows 10 computer system.
This device was modified according to our requirements. In particular, the sensor control,
data storage, operator guidance (semi-automatic patient measurement), and data analysis
were developed and integrated on the software side, as were the pump system for flushing
and calibrating the measuring head on the hardware side. The principle of the measurement
regime is shown in Figure 2.

After starting the system, it is checked whether a scheduled calibration of the e-
nose is necessary to verify the correctness of the reference resistance values of the sensor
layers to avoid measurement errors. For this purpose, a commercially available test gas
(consisting of the components carbon monoxide, oxygen, and nitrogen) is used. Strong
deviations of the measurement results from the resistance pattern typical for the applied
calibration gas indicate the contamination or aging of the sensor layers. In this case, suitable
countermeasures (cleaning, sensor replacement . . . ) must be carried out.

If calibration is not required, or after successful calibration, preparation for the actual
patient measurement begins. For this purpose, the operator selects an existing patient from
the patient database (in case of repetition) or enters the required data for a new patient into
the patient database and starts the patient data acquisition.

The processing of the patient measurement protocol (based on a predefined temper-
ature control of the sensor heater optimized in preliminary studies [35]; see Figure 3a)
is started with a cyclic thermal cleaning of the sensors until the sensor layers reach their
original reference resistances (time-variable process). This is followed by the recording
of the room air composition and the actual two patient measurements. By controlling the
sensor heating temperature, it is possible to influence the sensitivity of the sensors for
different VOCs (extension of the detection range). Burn-off cleaning phases serve to burn or
evaporate impurities that may have adhered to the sensor surface. The measurement proto-
col has a duration of about 16 min. The temperature profile and the associated resistance
data curves of all sensor layers are stored for subsequent analysis.

Data analyses were performed using MATLAB R2019a (The MathWorks, Inc., Natick,
MA, USA). The 9 raw resistance waveforms were evaluated for outliers, technical problems,
artifacts, and measurement errors. No measurement had to be discarded. For the analysis
of the respective breathing air segments, the relevant 30 s segments were extracted from
the measurement (Figure 3b, marked by vertical dashed lines). This was performed
automatically based on the specified temperature measurement protocol, which clearly
defines where the breath measurement starts and ends (Figure 3a, “bc1” and “bc2”).
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The data analysis is based on the extraction of 10 features (time domain and non-
linear dynamics domain) from the resistance time series of the extracted breathing gas
measurement cycles for each sensor layer.
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ambient air measurement cycle “ac”, and two breathing gas measurement cycles “bc1” and “bc2”.
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layer resistance curves. Vertical dashed lines mark the two breathing gas measurements.

In the time domain, the following features (Figure 4) were calculated:

• slope_startmax (Ω/s): slope from cycle start (Start) to absolute maximum (Max);
• s_slope_startmax (Ω/s): steepest slope of 1s duration from cycle start to Max;
• s_slope_startmax_pos (s): corresponding position of s_slope_startmax;
• s_slope_maxmin (Ω/s): steepest slope of 1s duration from Max to minimum (Min);
• area1 (Ω·s): area under the curve from cycle start to Max;
• area2 (Ω·s): area under the curve from cycle Max to midpoint;
• area3 (Ω·s): area under the curve from cycle midpoint to Min;
• area4 (Ω·s): area under the curve from cycle Min to cycle end;
• area3sec_9 (Ω·s): ninth subarea (24 s to 27 s); area under the curve is evaluated

incrementally in 3 s subareas beginning from cycle start.

From the nonlinear dynamics domain, a feature of classical symbolic dynamics and
one entropy measure were used. By employing symbolic dynamics [36,37], the original
time series is transformed into a symbolic sequence and, thus, presented in a coarser form.
Detailed information is lost, which allows the quantification of the dynamics contained in
the time series. In the present study, for the quantification of symbolic dynamics of the
resistance time series R of the breathing gas measuring cycles, the symbols 0 and 1 were
assigned according to the following transformation rules:

0 : Rn+1 − Rn ≤ 0,
1 : Rn+1 − Rn > 0.

(1)

Here, Rn and Rn+1 are the resistance values at the time points n and n + 1. While
symbol 0 indicates decreasing resistance values, symbol 1 reflects increasing resistance
values. Based on the transformed symbol string, words were formed consisting of two
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successive symbols. The frequency distribution of the word type 00 was determined (this
was less dependent on minor fluctuations):

• p00—probability for the occurrence of the word type 00 within the resistance value
time series.

The entropy measure, Renyi entropy, was calculated [37]. The density distribution
(histogram) of resistance values in the resistance time series required for entropy calcula-
tions was determined using six classes. The optimal number of classes k was calculated
using Sturges’ criterion [38]:

k = 1 + 3.32 ∗ log(N), N . . . number o f resistance values. (2)

Based on the density distributions, the individual class probabilities pi were calculated
(with i = 1 to k), followed by the estimation of the following Renyi entropy measures:

Renyi−α [bit] =
1

1 − α
∗ log2

k

∑
i=1

pi
α (3)

Renyi entropy was estimated considering the coefficient value α = 4, which influences the
weighting of the probabilities pi (weights larger fluctuations stronger than smaller ones).
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2.2. Patients

A total of 30 participants were enrolled, 10 of them being healthy controls, 10 with
compensated cirrhosis, and 10 with decompensated cirrhosis, between October 2019 and
March 2020. Participating patients were randomly recruited consecutively according to
availability in the normal care unit. Patients with ongoing acute-on-chronic liver failure,
mechanical cholestasis, acute renal failure, malignant disease, severe cardiopulmonary
disease (New York Heart Association classification severity level of heart failure NYHA
III/IV (severe heart failure) [39] and/or chronic obstructive pulmonary disease (according
to Global Initiative for Chronic Obstructive Lung Disease (GOLD) categories C (high
risk/less symptoms) and D (high risk/more symptoms)) [40], and uncontrolled diabetes
mellitus were excluded from the study. Control patients were either admitted to the hospital
for elective hospitalization for non-liver disease (n = 8) or healthy medical staff (n = 2).
Controls were matched for age, sex, and bodyweight. Decompensation was classified
according to the Child–Pugh classification score (CPS) [41]. Patients that were classified as
CPS B (significant functional compromise) or C (decompensated disease) were allocated to
the decompensated group. In addition, patients with variceal hemorrhage were classified
as decompensated.
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The patients with compensated cirrhosis were male in 7 cases, had a median body
weight of 94 kg and a median age of 57 years. Four of them were smokers. The etiology of
cirrhosis was ethanol in 6 of these patients and four had other reasons for cirrhosis (2 viral
hepatitis, 2 cholestatic liver disease). Patients with decompensated cirrhosis were male in
8 cases, had a median bodyweight of 80 kg and a median age of 62 years. Three of them
were smokers and, again, the main etiology of cirrhosis was ethanol consumption in 8 of
the patients (the others were 1 autoimmune hepatitis and 1 nonalcoholic steatohepatitis).

Control participants were male in 5 cases and had a median bodyweight of 81 kg.
They had a median age of 58 years and one of them was a smoker. They had no history of
known liver disease. None of the demographic parameters showed significant differences
between the three groups. Vital parameters at inclusion between these groups did not differ
as well (Table 1).

Table 1. Patient data (values in parentheses represent the respective minimum and maximum values
or describe percentages).

Control (n = 10) Compensated
Cirrhosis (n = 10)

Decompensated
Cirrhosis (n = 10) p-Value

Sex (f/m) 5/5 3/7 2/8 0.500
Age (years) 58 (51; 65) 57 (52; 64) 62 (56; 67) 0.543

Bodyweight (kg) 81 (68; 96) 94 (79; 101) 80 (68; 97) 0.136
Height (cm) 175 (167; 178) 176 (167; 178) 176 (169; 181) 0.712

Smoker (n,%) 1 (10%) 4 (40%) 3 (30%) 0.450

Vital signs
RR systolic (mmHg) 135 (118; 161) 126 (107; 155) 122 (103; 136) 0.266
RR diastolic (mmHg) 81 (76; 104) 76 (61; 92) 72 (63; 79) 0.146

Heart rate (pbm) 78 (67; 102) 85 (71; 88) 92 (81; 104) 0.212
Temperature (◦C) 36.8 (3.4; 37.0) 36.6 (36.1; 37.0) 36.7 (36.4; 37.1) 0.523

Etiology of cirrhosis (n,%)
Ethanol N/A 6 (60%) 8 (80%) 0.628
Other N/A 4 (40%) 2 (20%)

Co-medication (n,%)
Lactulose 1 (10%) 3 (30%) 8 (80%) 0.009

Proton pump inhibitors 5 (50%) 7 (70%) 9 (90%) 0.262
B-Blocker 5 (50%) 4 (40%) 5 (50%) 0.897

Antibiotics 1 (10%) 3 (30%) 7 (70%) 0.016
Rifaximin 0 1 (10%) 6 (60%)

other 1 (10%) 2 (20%) 1 (10%)

f—females; m—males; n—number of patients; p—significance.

Relevant co-medication with known influence on intestinal flora and, therefore, on the
results of the LiverTracer was analyzed. Lactulose was taken by 1 control patient, 3 patients
with compensated cirrhosis, and 8 patients with decompensated cirrhosis (p = 0.009).
Antibiotics were taken by 1 control patient, 3 patients with compensated cirrhosis, and 8
patients with decompensated cirrhosis (p = 0.016); however, the difference in antibiotics
were caused by rifaxmin, which was taken by 1 patient with compensated and 6 with
decompensated cirrhosis. Protone pump inhibitors (p = 0.262) and betablockers (p = 0.897)
did not show differences between both groups (Table 1).

All procedures performed in the study involving human participants were approved
by the Institutional Ethics Commission of the University Hospital Jena (5359-11/17), and
were performed in accordance with the 1964 Helsinki declaration and its later amendments.
Written informed consent was obtained from all individual participants prior to inclusion
in the study.
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2.3. Statistics

Statistical analyses were performed using IBM SPSS 21.0 (IBM Corp. Released 2012.
IBM SPSS Statistics for Windows, version 21.0. Armonk, NY, USA: IBM Corp). Descriptive
statistics were used to calculate means, standard deviations, medians, and interquartile
ranges for all features calculated from the resistance time series separately for all nine
sensor layers for respiratory gas measurement. The Kolmogorov–Smirnov test was applied
to check the normal distribution of the features. The presence of statistical differences
between the respiratory gas analysis characteristics of the control group (CON) and the
two groups of patients with compensated (COMP) and decompensated (DECOMP) cir-
rhosis was tested with Welch’s t-test for normally distributed characteristics and with
the nonparametric exact two-sided Mann–Whitney U test for non-normally distributed
characteristics. A significance level of p < 0.05 was considered to be the criterion for sta-
tistical differences. Consistent with most of the published work on this topic, this paper
presents only means and standard deviations for the identified features, regardless of
the distribution or significance test applied, which improves the comparability of study
results. Forward stepwise linear discriminant analyses combined with the leave-one-out
cross-validation procedure were performed, and receiver operator characteristic (ROC)
curves were calculated to assess the classification strength of the feature sets. Sensitivity
(SENS), specificity (SPEC), area under the ROC curve (AUC), and accuracy (ACC) were
determined for significant features and feature sets, each consisting of 2 or 3 uncorrelated
(Pearson correlation coefficient) significant features. The resulting discriminant function
analysis was then determined to be the classifier for automatic classification.

3. Results

We report below only the results of the first breathing gas cycle, as we did not find
significant differences between the first and second breathing gas cycles. Let us first
consider the classification results of the LiverTracer e-nose (Tables 2 and 3). The separation
of the patient groups (Table 2) from the controls was 100% successful in each case. Between
the patient groups, a correct classification of 95% was achieved, where 90% of the patients
from the DECOMP group and 100% of patients from the COMP group were correctly
classified. Interestingly, these remarkable classification results were reached using only
the features of sensors 1 and 3. Sensor 3 mainly contributed to the result. Sensor 2 did
not make any significant contribution. Table 3 shows the descriptive statistics of those
features that were automatically selected by the discriminant analysis to obtain the optimal
separation results.

Table 2. Percentage classification rate of e-nose features. The optimal parameter set (consisting of
either double or triple sets) is shown for each group comparison.

Group Features SENS SPEC ACC AUC

CON—COMP
RS11_s_slope_maxmin (Ohm/s)

RS32_area3sec_9 (Ohm·s)
RS32_p00

1.00 1.00 1.00 1.00

CON—DECOMP
RS31_slope_startmax (Ohm/s)
RS32_s_slope_startmax_pos (s)

RS33_p00
1.00 1.00 1.00 1.00

COMP—DECOMP RS32_Renyi4_entropy (bit)
RS33_area2 (Ohm·s) 0.90 1.00 0.95 0.97

CON—control group; COMP—patients with compensated cirrhosis; DECOMP—patients with decompensated
cirrhosis; RSxy—R denotes resistance measurement values of sensor layer y of sensor Sx (e.g., RS12 describes
the resistance readings of sensor layer 2 of sensor S1); SENS—sensitivity; SPEC—specificity; ACC—Accuracy;
AUC—area under the receiver operator characteristic curve.
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Table 3. Classification results of features automatically selected by discriminant analysis (mv—mean
value, sd—standard deviation).

Group CON COMP DECOMP

Test Features p mv ± sd mv ± sd mv ± sd

CON vs. COMP
RS11_s_slope_maxmin (Ohm/s) 0.046 −86,258 ± 5225 −81,023 ± 5676

RS32_area3sec_9 (Ohm·s) 0.038 1,807,616 ± 207,540 2,071,884 ± 309,151
RS32_p00 0.017 0.336 ± 0.050 0.276 ± 0.045

CON vs. DECOMP
RS31_slope_startmax (Ohm/s) 0.029 8901 ± 3207 6956 ± 1845
RS32_s_slope_startmax_pos (s) 0.019 6.250 ± 1.161 6.900 ± 0.211

RS33_p00 0.041 0.369 ± 0.045 0.319 ± 0.056

COMP vs. DECOMP
RS32_Renyi4_entropy (bit) 0.028 1.843 ± 0.386 2.179 ± 0.185

RS33_area2 (Ohm·s) 0.131 48,252 ± 23,296 34,507 ± 14,547

CON—control group; COMP—patients with compensated cirrhosis; DECOMP—patients with decompensated
cirrhosis; RSxy—R denotes the resistance measurement values of sensor layer y of sensor Sx (e.g., RS12 de-
scribes the resistance readings of sensor layer 2 of sensor S1); p—significance value; mv ± sd—mean value ±
standard deviation.

In Table 4, we included four clinical parameters for the stratification, which are
based on the Child–Pugh score and represent different aspects of liver disease, including
two laboratory values and two clinical aspects. Bilirubin, the end product of hemoglobin
degradation, is cleared from circulation via hepatic elimination and, therefore, elevated
in patients with cirrhosis and disturbed liver function. The international normalized
ratio (INR), a marker of coagulation, includes proteins synthetized in the liver, which are
therefore lowered in cirrhosis. Ascites is frequently present in advanced cirrhosis and is a
consequence of cirrhosis-associated portal hypertension, while the occurrence of a hepatic
encephalopathy is a typical complication of disturbed detoxification. We decided to skip
the fifth parameter, albumin, as this also represents liver synthesis. Except for hepatic
encephalopathy, no parameter was convincingly successful. While the controls could still
be separated successfully, the detection of liver dysfunction severity was not convincing.
The successful classification by hepatic encephalopathy is not surprising, since it was a
component of clinical diagnostics.

Table 4. Classification rate (in %) of the clinical parameters that achieved an overall accuracy for
discriminating the groups greater than 50%.

Categorized Bilirubin Categorized INR Ascites Hepatic Encephalopathy

CON 100 86 100 100
COMP 10 40 70 100

DECOMP 90 60 50 50
ACC 63 59 73 83

CON—control group; COMP—patients with compensated cirrhosis; DECOMP—patients with decompensated
cirrhosis; INR—international normalized ratio of blood clotting test; ACC—Accuracy.

4. Discussion

This exploratory pilot study extracted and analyzed unique VOC fingerprints in the
breath of patients and provides initial evidence that breath VOC analysis using MOx
sensors is a potential diagnostic tool for detecting liver dysfunction of different severities.

The sensitivity, specificity, and accuracy for distinguishing compensated and decom-
pensated cirrhosis from healthy controls was 1.00 in all cases. Compensated and decompen-
sated cirrhosis patients could be distinguished with a sensitivity of 0.90, a specificity of 1.00,
and an accuracy of 0.95. Sensor 3 (with its three layers) showed the highest discriminatory
power, and sensor 1, layer 1 could improve the result of sensor 3 by up to 5%. It was quite
sufficient to evaluate only the first exhalation cycle of the patient. The inclusion of the
second exhalation cycle did not bring any improvement.
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In this study, we included patients with different stages of liver cirrhosis. Differen-
tiation between patients with and without early stages of cirrhosis is challenging, but of
great clinical importance. It is usually based on a combination of clinical, imaging, and
laboratory parameters, but all of these can be influenced by non-liver related factors as well.
Despite these weaknesses, the differentiation between cirrhosis and non-cirrhosis is of great
clinical relevance, as the rate of postoperative complications and the mortality are higher
in patients with cirrhosis [42]. However, the main predictor of these complications is the
hepatic portal venous pressure gradient [43], which is not routinely measured. Using single
laboratory parameters or clinical features does not result in the satisfying identification of
patients with especially compensated cirrhosis in our study.

A study by Germanese et al. [44] that attempted to discriminate the severity of liver
disease, particularly based on detected breath ammonia with MOx sensors, showed that
the accuracy of discriminating between non-cirrhotic patients with chronic liver disease
and cirrhotic ones was only 0.63, while that of discriminating between liver diseases and
healthy controls was 0.81.

The generation of specific VOCs within the body can be the result of metabolic derange-
ment, toxin or teratogen exposure, and finally microbiological processes [45]. Breath tests,
which provide an indirect, non-invasive, and relatively low-input evaluation of various
diseases, are used as diagnostic tools for quantifying the presence of one or more metabo-
lites of a particular substrate in exhaled breath. Qin et al. [46] analyzed breath samples in
hepatocellular carcinoma patients and controls by means of gas chromatography–mass
spectrometry (GC/MS) combined with solid phase microextraction. Three potential VOCs,
3-hydroxy-2-butanone, styrene, and decane, were selected as promising biomarkers. A
survey of other potential biomarkers in various liver diseases can be found in the publica-
tion by De Vincentis et al. [47]. Interestingly, alkanes (decanes) are precisely the group of
markers that are particularly favorably detected by the sensors used in our study.

Even though these preliminary results are very promising, several limitations of this
explorative pilot study are worth noting. First, it must be noted that the number of patients
included is relatively small. However, it should be noted that this is a proof-of-concept
study with a new sensor technology compared to previous studies [48]. It should also
be noted that, in general, e-noses allow only indirect gas compound detection. In future
studies, we intend to combine them with classical laboratory methods (e.g., GC/MS)
to enable a direct assignment of biomarkers to the sensors. This would also have the
advantage whereby the sensors could be optimally adapted to the pathology via the
appropriate doping of the sensor layers. Another limitation of this study is that only a
single measurement was performed per patient. Therefore, the system should be validated
in a long-term and repeatability study. Additionally, we must mention that the influence
of acute events, such as infections, was not studied in detail. This should be addressed
in a subsequent study. Finally, MOx sensors also have drawbacks that are mainly related
to the lack of sensor stability and the production of sensors with nearly identical sensor
characteristics [13,49,50]. Among other factors, contamination and aging of the sensors
may lead to short- and long-term drift of the sensors, causing differences in the measured
sensor values compared to the originally measured values of new sensors, and reducing the
accuracy of pattern recognition based on a trained pattern. Time-consuming recalibrations
are often required to compensate for the drift [51]. Replacing a nearly identical sensor is
usually difficult. Our approach to significantly reduce the drift and aging problems of the
MOx sensors we use is to automatically assess the quality of the sensors before each breath
measurement based on the resistance values of the individual sensor layers. In doing so,
we compare these with stored threshold values of the original resistances (values of the
sensor when it was newly installed). If there are deviations from the original resistance
thresholds beyond a certain threshold, cyclic thermal cleaning is automatically performed
until the sensor reaches the stored thresholds. If the thresholds are not reached within a
specified cycle frequency, the sensor is recalibrated with a test gas. If all these measures fail,
the sensor should be replaced with an adequate sensor with as close to identical resistance
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values as possible, and the e-nose may need to be recalibrated. However, throughout the
study period, the values of our applied sensor array remained within the approved quality
level. We therefore assume that the drift problem can be largely compensated for by sensor
monitoring and calibration, but there remains some residual risk (especially in the case of
sensor failure), the impact of which is currently being investigated in a validation study.

The results from this pilot study are very promising and suggest the principal suitabil-
ity (especially by using the complex feature extraction method) of the MOx multisensory
signals for the analysis of breath changes and, thus, for the identification of liver dysfunc-
tions. Among the sensors used in e-noses for medical diagnostics, MOx semiconductor
sensors are by far the most popular. They have high sensitivity, are durable, and, probably
most importantly, are relatively inexpensive. Price is an important factor when considering
large-scale commercial deployment, especially in developing countries. In addition, be-
cause they can operate in a wide range of relative humidity, they are particularly suitable
for outdoor use [13,31].

In medicine and biology, e-noses are intelligent biosensor-based systems for the rapid
detection, analysis, and classification of complex gaseous odors (usually as VOC mixtures
of compound metabolite profiles). These instruments are innovative diagnostic tools with
great potential for the non-invasive early detection of many types of diseases based on
the analysis of VOC metabolites in the form of gaseous clinical samples [52]. They are
inexpensive, have low operating and maintenance costs, and provide real-time analysis.
Due to the growing demand for improved healthcare devices and procedures, the need
for simpler and wearable e-nose systems that can provide fast and accurate diagnostic
results and replace traditional, complex, often expensive and time-consuming clinical and
laboratory methods has permanently increased. Such systems should non-invasively detect
VOCs and accelerate on-site testing, allowing earlier diagnosis, faster treatment of disease,
better prognosis, shorter hospital stays, faster recovery, and ultimately lower healthcare
costs. Further development and point-of-care testing of new e-nose technologies and the
development of standardized diagnostic methods will help bring these e-noses into routine
clinical practice.

In summary, the multisensory analyses performed in this study based on a wearable
MOx sensor array showed high separation accuracies of 95% to 100% between the studied
groups. It was not only possible to distinguish liver dysfunctions of different severity
from controls at 100%, but also to discriminate between the severities of liver dysfunction
at 95% with a correct identification of 100% of all COMP cirrhosis and of 90% of all
DECOMP cirrhosis).

Based on a semiconductor MOx sensor array, the wearable e-nose system for detecting
disease—in this case liver dysfunction—offers significant advantages over conventional
laboratory analysis and the use of other sensor systems when combined with the nonlinear
processing of sensor signals. Our system thus represents a promising tool for distinguishing
between patients with compensated and decompensated cirrhosis on a functional basis, and
can thus make an important contribution, e.g., in preoperative workup or at the level of the
general practitioner for the initial diagnosis and, thus, early detection of liver dysfunction.
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