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Zusammenfassung 

Der unter der Erde liegende Bereich der kritischen Zone ist nicht nur einer der 

größten Kohlenstoff- und Stickstoffspeicher, sondern bietet auch 95% der weltweit 

geschätzten mikrobiellen Biomasse (Bakterien) einen Lebensraum. Darüber hinaus 

ist der Untergrund reich an mikrobieller Arten- und Funktionsvielfalt, wobei die 

Mikroorganismen eine Vielzahl von Möglichkeiten nutzen, um Kohlenstoff und 

Stickstoff aus ihrer Umgebung im Untergrund zu verstoffwechseln und aufzunehmen. 

Dies ist besonders herausfordernd, da der Untergrund ein oligotropher, d.h. 

produktionsarmer, weil energielimitierter Lebensraum ist. Insgesamt haben 

Mikroben ein großes Potenzial die globalen Kohlenstoff- und Stickstoffkreiläufe zu 

beeinflussen. Ihr Beitrag zu diesen globalen Kreisläufen ist jedoch kaum untersucht. 

Die Abschätzung des mikrobiellen Beitrags an den Kohlenstoff- und 

Stickstoffkreisläufen im Untergrund ist nicht trivial, da der Untergrund nur begrenzte 

Beobachtungsmöglichkeiten bietet, räumlich heterogen ist und auf die zeitliche 

Dynamik der Umwelteinflüsse an der Oberfläche reagiert. Die räumliche 

Heterogenität des Untergrunds führt zu heterogenen Wasserflüssen, die die 

Verteilung der mikrobiellen Biomasse und deren Aktivität beeinflussen. Nicht nur der 

Wasserfluss im Untergrund, sondern auch die mikrobielle Aktivität reagiert 

weiterhin auf die zeitliche Dynamik der Oberflächensignale. Trotz einer Vielzahl von 

Studien über diese Dynamik ist die Bedeutung der räumlichen Heterogenität und der 

zeitlichen Dynamik für die Kohlenstoff- und Stickstoffumsatzraten noch unbekannt. 

Dies erschwert die Planung von Ort und Zeit der Probennahmen, die Interpretation 

von Felddaten und die Konzipierung geeigneter Modellierungsstudien. 

Ziel dieser Arbeit ist es, die oben genannten Forschungslücken zu schließen, indem 

der Einfluss der räumlichen Heterogenität auf die räumliche Verteilung von 
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chemischen Stoffen und mikrobieller Biomasse bestimmt und so die Auswirkungen 

auf den Kohlenstoff- und Stickstoffumsatz im heterogenen Untergrund bewertetet 

werden. Die Forschungshypothesen lauten dabei wie folgt: 

H1. Räumliche Heterogenität führt zu Nischen für mikrobielle Arten, die so mit 

anderen konkurrierenden Arten koexistieren. 

H2. In räumlich heterogenen Systemen findet ein geringerer reaktiver Stoffumsatz 

statt als in vergleichbaren homogenen Systemen. 

H3. Zeitliche Dynamik führt zu einem variierenden Nährstoffaustrag aus dem 

System, welcher wiederum eine Funktion der variierenden Verweilzeit im System ist. 

H4. Räumliche und zeitliche Heterogenität interagieren und verstärken sich 

gegenseitig in ihren Auswirkungen auf das System. Eine stärkere zeitliche Dynamik 

in räumlich heterogenen Systemen führt zu größeren Unterschieden im Vergleich zu 

homogenen Systemen mit einheitlichen Bedingungen. 

In meiner Arbeit habe ich numerische Modellierung verwendet, um diese 

Hypothesen anhand von verschiedenen Modellszenarien übergreifend zu testen. Im 

ersten Schritt konzipierte ich ein Reaktionsnetzwerk, das verschiedene mikrobielle 

Stoffumsatz- und Wachstumsstrategien sowie weitere Prozesse der Interaktion der 

Mikroben mit Ihrer heterogenen Umwelt abbildet. Nachfolgend entwarf ich ein 

Konzept für die Bestimmung der Eigenschaften der Simulationsdomäne, so dass sie 

je nach Bedarf repräsentativ für ungesättigte und gesättigte Zonen des Untergrunds 

ist. Für die porösen Medien dieser Simulationsdomäne wurde die räumliche 

Heterogenität mittels zweier Parameter initialisiert: Varianz und Anisotropie der 

räumlichen Verteilung sowohl von der log-transformierten Permeabilität 

(ungesättigte Zone) als auch von der log-transformierten hydraulischen Leitfähigkeit 

(gesättigte Zone). Anschließend setzte ich diese homogenen und heterogenen Medien 

einer zeitlichen Dynamik aus, bei der der Wasserfluss (durchschnittliche 

Wassergeschwindigkeit im System) täglich variierte. Alle Systeme wiesen im 
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Durchschnitt dieselben Eigenschaften auf. So war die durchschnittliche 

Fließgeschwindigkeit des Wassers über den gesamten instationären 

Simulationszeitraum in allen heterogenen und homogenen Medien sowohl in den 

gesättigten als auch in den ungesättigten Medien identisch. Darauf aufbauend 

quantifizierte ich die Auswirkungen der räumlichen Heterogenität auf die mikrobielle 

Aktivität und den Nährstoffkreislauf unter gesättigten und ungesättigten 

Bedingungen sowie die Auswirkungen der zeitlichen Dynamik in gesättigten 

Verhältnissen. Durch den Vergleich zu homogenen Medien und stationären 

Bedingungen testete ich meine Hypothesen. 

Die Modellergebnisse zeigten, dass im Untergrund eine Kombination aus 

räumlicher Heterogenität und bestimmten Strömungsverhältnissen den Zugang der 

Mikroben zu Kohlenstoffsubstrat, Nährstoffen und Energiegradienten bestimmt. 

Abhängig von dem Transportprozess, der den konservativen Transport gelöster 

Stoffe bestimmte, wirkte sich die räumliche Heterogenität unterschiedlich auf das 

Verhalten reaktiver Stoffe aus. Meine Ergebnisse ergaben, dass Hypothese H1 in allen 

untersuchten reaktiven Systemen korrekt war, während Hypothesen H2 und H3 nur 

in ausgewählten reaktiven Systemen korrekt waren. Hypothese H4 erwies sich als 

falsch. 

Diese Arbeit liefert Erkenntnisse darüber, wie sich mikrobielle Gemeinschaften im 

räumlich heterogenen Untergrund organisieren und wie sich diese Gemeinschaften 

unter zeitlich dynamischen Bedingungen verändern können. Um ein allgemeines, 

aber dennoch vorhersagbares Verhalten eines Systems zu beschreiben, war ein 

Kriterium unerlässlich, welches die Verweilzeit eines nichtreaktiven Tracers im 

System und den (durch Feldbeobachtungen) geschätzten Stoffumsatz der 

chemischen Spezies im System  berücksichtigt. Das Verhältnis (Damköhler-Zahl, Da) 

dieser beiden Größen klassifiziert das System dabei als reaktions- oder 

strömungsdominant. Bei reaktionsdominanten Systemen wirkt sich die räumliche 

Heterogenität nur begrenzt auf den Umsatz von Kohlenstoff und Stickstoff aus, 

während bei strömungsdominanten Systemen der Einfluss deutlich stärker ist. Daher 
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ist es sinnvoll, die statistischen Verteilungen der Verweilzeiten in den zu 

untersuchenden natürlichen Systemen abzuschätzen, um das vorherrschende 

reaktive System zu bestimmen und dann das Ausmaß der zu erwartenden räumlich-

zeitlichen Variation bei Feldbeobachtungen abzuschätzen. 

Durch die Identifizierung reaktiver Systeme, die empfindlich auf eine räumlich-

zeitliche Heterogenität reagieren, konnte die Unsicherheit der Modellergebnisse 

abgeschätzt werden. Außerdem konnten Feldbeobachtungen im Zusammenhang mit 

der Heterogenität der Geologie interpretiert werden. Dabei ist zu beachten, dass 

Feldbeobachtungen bereits von der gegebenen räumlichen Heterogenität der 

Geologie beeinflusst sind (und nicht wie hier aus einem Modellsystem mit 

angenommener hypothetisch homogener Geologie stammen). Die aus den 

Feldbeobachtungen abgeleiteten Parameter des Reaktionsnetzes haben daher eine 

entsprechende Wahrscheinlichkeitsverteilung. Diese Verteilung kann anhand der in 

dieser Arbeit vorgeschlagenen Beziehungen abgeleitet werden, in dem man den 

Verbrauch von Kohlenstoff und Stickstoff in verschiedenen räumlich heterogenen 

und unterschiedlich gesättigten Bereichen vergleicht. Die Übertragung von aus dem 

Feld abgeleiteten Reaktionsratenparametern auf andere Standorte, auf 

Laborbedingungen oder umgekehrt muss natürlich mit Vorsicht erfolgen. Jedoch legt 

diese Arbeit den Grundstein für künftige methodische Arbeiten zur Übertragung 

solcher Parameter zwischen verschiedenen Systemen und unterschiedlichen Skalen. 

Auf diese Weise hat diese Arbeit nicht nur dazu beigetragen, die Unsicherheit beim 

Kohlenstoff- und Stickstoffaustrag aus reaktiven unterirdischen Systemen zu 

quantifizieren, sondern auch die Skalierung der effektiven Ratenausprägung über 

verschiedene Standorte und räumliche Skalen hinweg zu unterstützen. 

Der Ansatz, das reaktive System anhand von leicht abschätzbaren Indikatoren zu 

identifizieren, kann bei der Hochskalierung der effektiven Ratenausdrücke helfen. 

Modellierer müssen die Berücksichtigung oder Vernachlässigung von räumlicher 

Heterogenität und zeitlichen Dynamiken in jeder Studie neu begründen. Sie 

benötigen ebenfalls effektive Ratenausdrücke oder Ratenmodifikatoren für die 
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Implementierung auf größere Skalen. Diese Ratenmodifikatoren, die subskalige 

Heterogenitäten berücksichtigen, können dann in das Reaktionsnetzwerk integriert 

werden, um den reaktiven Transport auf größeren Skalen zu simulieren. So kann die 

Genauigkeit der Modellergebnisse beibehalten und gleichzeitig der Bedarf an 

Rechenressourcen verringert werden. Dies kann zu einer schnellen und genauen 

Vorhersage des Nährstoffaustrags in unterirdischen Systemen beitragen. Dieser 

Ansatz kann auch auf wirtschaftlich relevante Skalen wie die Einzugsgebietsskala 

übertragen werden.  

Der in dieser Arbeit verwendete Ansatz ist anwendbar, übertragbar und in 

geeigneter Weise auf verschiedene Studien und Standorte skalierbar. Ein 

ganzheitliches Verständnis der mikrobiellen Gemeinschaften, ihrer Aktivität und 

ihres Beitrags zum Kohlenstoff- und Stickstoffkreislauf im Untergrund kann dazu 

beitragen, eine entscheidende Wissenslücke im globalen biogeochemischen Budget 

zu schließen. Darüber hinaus kann es auch dazu beitragen, das Verhalten heterogener 

reaktiver Systeme unter zeitlich dynamischen Bedingungen vorherzusagen, was zu 

einem besseren Verständnis der Ökosystemdienstleistungen führt. Dies wiederum 

wird dazu beitragen, den Zugang zu Wasser für die Trinkwasserversorgung, die 

Bewässerung und die Industrie zu sichern, was uns in der ungewissen Zukunft des 

Klimawandels unterstützen wird.
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Summary 

The Earth’s Critical Zone extends from the top of the canopy till the deep 

subsurface. Carbon and nitrogen transform between different oxidation states and 

move between different ecosystems in the Critical Zone. Biogeochemical cycles 

describe this movement of carbon and nitrogen, and microbial species play a 

significant role in the natural processes that govern these biogeochemical cycles. 

The subsurface compartment of the Critical Zone is not only one of the biggest 

stores of carbon and nitrogen, but also provides habitat for 95% of the global 

estimates of microbial biomass. The subsurface is also inhabited by functionally 

diverse microbial communities with microbial species using a variety of pathways to 

metabolize and take up carbon and nitrogen from their environment. They are 

especially creative since the subsurface is an oligotrophic, that is, energy limiting, 

environment. Thus, microbial species have a large potential to influence global 

carbon and nitrogen cycles. But their contribution to these global cycles on a global 

scale is not yet estimated. 

The assessment of microbial contribution to carbon and nitrogen cycles in the 

subsurface is complicated as the subsurface provides limited observational 

opportunities, is spatially heterogeneous and responds to surficial temporal 

dynamics. The spatially heterogeneous subsurface results in heterogeneous water 

flux, thus influencing the distribution of microbial biomass and activity. The 

subsurface also exhibits temporal dynamics and responds to surface signals, with 

subsurficial microbial activity also varying in response to these temporally dynamic 

surface signals. Despite a plethora of studies on these dynamics, the relevance of sub-

scale spatial heterogeneities and temporal dynamics with respect to bulk carbon and 

nitrogen cycling rates is not fully understood. This has strong implications for locating 



Summary Dissertation  

x  

and timing of sampling events, for interpreting field data, as well as for formulating 

suitably modelling studies. 

In this work, I sought to address this gap by deriving the effect of spatial 

heterogeneity on the distribution of chemical species and microbial biomass, thereby 

assessing the impact on bulk consumption of carbona and nitrogen in the system. My 

research hypotheses are as follows: 

H1. Spatial heterogeneity results in niches for microbial species to co-exist with 

other competitive species. 

H2. Spatial heterogeneity results in lower consumption of reactive species in the 

system than expected in a homogeneous system. 

H3. Temporal dynamics results in varying nutrient discharge from the domain, and 

this is a function of varying residence time in the domain. 

H4. Spatio-temporal heterogeneities interact and result in compounding each 

other’s effects on the system. Higher temporal dynamics in high spatially 

heterogeneous domains behave the most different from homogeneous 

domains in uniform conditions. 

I used a numerical modelling approach to investigate a variety of scenarios to 

form a comprehensive study to explore the above-mentioned hypotheses. I 

conceptualized a reaction network capturing various respiration and growth 

strategies, and other microbial life processes, and a simulation domain 

representative of unsaturated and saturated zones of the subsurface. For the 

simulation domain, I subsequently initialized spatially heterogeneous domains 

using two parameters: Variance in log permeability field (in the unsaturated 

domain) or in log hydraulic conductivity field (in the saturated domain), and 

anisotropy. Next, I subjected these homogeneous and heterogeneous domains to 

temporal dynamics wherein the water flux (average water velocity in the system) 

varied on a daily basis. Since all the systems displayed the same average 

properties, i.e., same average water flow velocity in all the heterogeneous and 
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homogeneous media in both saturated and unsaturated domains, as well as same 

water velocity when averaged over the entire transient simulation period, I 

quantified the impact of spatial heterogeneity on microbial activity and nutrient 

cycling in the saturated and unsaturated zones and quantified the impact of temporal 

dynamics in the saturated zone. Thus, I tested my hypotheses with respect to 

homogeneous domains and uniform flow conditions. 

In the subsurface, a combination of spatial heterogeneity and flow regime 

governed the access of microbes to carbon substrate, nutrients and energy gradients. 

The same domain with different dominant flow processes (diffusion v/s dispersion 

v/s advection) of a conservative solute responded differently to spatial heterogeneity. 

The results of the studies established Hypothesis H1 to be correct in all possible 

reactive systems, while hypotheses H2 and H3 were correct in selected reactive 

systems only. Lastly, hypothesis H4 was proven to be false. 

This work provided insights into how microbial communities organize in space in 

the spatially heterogeneous subsurface, and how these communities may change in 

temporally dynamic conditions. To formulate a general yet predictive understanding 

of any system, a criterion that considered the residence time of a conservative tracer 

in the system and estimated bulk consumption of the chemical species in the system 

(through field observations) was essential. Their ratio (Damköhler number, Da) 

categorized the system to be reaction dominant or flow dominant. Reaction dominant 

systems exhibited limited impact of spatial heterogeneity on bulk carbon and 

nitrogen consumption, while flow dominant systems did. Thus, it is useful to estimate 

travel time distributions in the natural systems of interest to categorize the prevalent 

reactive system, and then to estimate the extent of spatio-temporal variation to 

expect in field observations. 

By identifying reactive systems that were sensitive to spatio-temporal 

heterogeneities, the uncertainty in model outcomes could be estimated. Additionally, 

field observations could be interpreted in context of the heterogeneity of the 
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geological material. It must be noted that field observations already result from the 

existing spatial heterogeneity of the geological material (not from an 

assumed/hypothetical homogeneous geological material). Thus, any reaction 

network parameters that are derived from these field observations have an 

associated probability distribution. This distribution may be derived using the 

relationships proposed in this thesis comparing consumption of carbon and nitrogen 

in different spatially heterogeneous and variably saturated domains. While 

transferring field derived reaction rate parameters across sites or even to the lab or 

vice versa must be done with care, this thesis lays the foundation to future work on 

the methodology to transfer such parameters between different systems at different 

spatial scales. In this way, this thesis not only assisted in quantifying uncertainty in 

carbon and nitrogen discharge from reactive sub surficial systems, but also assisted 

in scaling effective rate expression across different sites and spatial scales. 

The approach of identifying the reactive system of interest using easily estimable 

indicators can assist in upscaling effective rate expressions and modelling reactive 

transport at field or regional scales where the modelling community needs to 

carefully consider the use or rejection of sub-scale spatial heterogeneities and 

temporal dynamics in each study. This can assist in rapid and accurate predictions of 

nutrient discharge in subsurface systems. This approach can be upscaled to even 

policy-relevant scales such as the catchment scale.  

The approach used in this thesis is applicable, transferrable, and suitably scalable 

across different studies and sites. A holistic understanding of microbial communities, 

their activity, their contribution to carbon and nitrogen cycling in the subsurface can 

help in filling a critical gap in the global biogeochemical budgets. Not only this, but it 

can also assist in forming a predictive understanding of the behavior of 

heterogeneous reactive systems in temporally dynamic conditions which results in 

an improved understanding of ecosystem services. This, in turn, will help to secure 

access to water for drinking, irrigation and industry, thus supporting and propelling 

us forward into the uncertain future of climate change.
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1  General Introduction 

All the compartments of the Earth’s Critical Zone (extending from the top of the 

vegetation canopy to aquifers in the bedrock (Giardino and Houser, 2015;Küsel et al., 

2016) are connected by water flux. The movement of carbon and nitrogen, on which 

all life on earth depends, between different oxidation states and different ecosystems 

in the Earth’s Critical Zone (Fig 1.1) is controlled by water flux and is captured in 

biogeochemical cycles. Microbial species play a significant role in the natural 

processes that govern these biogeochemical cycles (Falkowski et al., 2008). These 

microbial species are ubiquitous, having been identified in various environments, 

from the land surface where most of macro life exists, to extreme environments such 

as deep in the subsurface, oceanic sediments, and permafrost/polar regions, 

contributing approximately 15% to the total biomass on Earth (Bar-On et al., 2018). 

The subsurface of the Critical Zone may further be categorized as shallow and deep 

(Fig 1.1). The shallow subsurface includes soil and the root zone, extending up till 8 

meters (m) depth. The deep subsurface includes the vadose zone, or the variably 

saturated zone between soil and permanently saturated zone in the subsurface, and 

aquifers, or the permanently saturated zone in the subsurface. While 10% of the 

global estimates of microbial biomass inhabit the shallow subsurface, 85% of 

microbial biomass inhabits the deep subsurface, with the rest in marine 

environments (Bar-On et al., 2018). Recent inventories have also revealed the soil and 

deeper subsurface compartments account for almost 50% of the global carbon 

budget, and the subsurface is also one of the biggest storage compartments of 

nitrogen (McMahon and Parnell, 2014;Schlesinger and Andrews, 2000). 

The presence of microbial life in the subsurface is not a recent discovery 

(Kotelnikova, 2002), but still astounding as the deep subsurface is predominantly 

oligotrophic (i.e., energy limiting) (Lever et al., 2015). With improved molecular 
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techniques, the subsurface has been found to be rich in microbial diversity and 

function (Ghiorse, 1997;Pace, 1997;Sogin et al., 2006) with microbial species using a 

variety of pathways to metabolize and take up carbon and nitrogen from their 

environment in the subsurface. Microbial species primarily require an energy 

gradient (LaRowe and Amend, 2015a), carbon source and other nutrients such as 

nitrogen and phosphorus to survive. Exploiting the energy gradient via a redox 

reaction using oxygen, nitrate, or any other available electron acceptor, microbial 

species can execute a variety of life processes. These life processes include growth, 

maintenance (repairing biomolecules), reactivation from dormant states etc. To allow 

for growth, microbial species also require a carbon source, either organic matter for 

heterotrophic growth or inorganic carbon for autotrophic growth. Both mechanisms 

of growth have been discovered in the subsurface (Anantharaman et al., 

2016;Herrmann et al., 2015;Konhauser et al., 2011;Lam and Kuypers, 2011;Rivett et 

al., 2008;Zhang et al., 2013). Additionally, aerobic respiration, nitrate reduction, iron 

oxidation, ammonia oxidation, sulphate reduction account for most of the respiration 

pathways, and microbial species of different functional capacities interact with each 

other as well (Anantharaman et al., 2016). Thus, microbial species in the subsurface 

have a large potential to influence global carbon and nitrogen cycles but their 

contribution to these cycles on a global scale is not yet estimated. 

The assessment of microbial contribution to carbon and nitrogen cycles in the 

subsurface is complicated as the subsurface provides limited observational 

opportunities, is spatially heterogeneous and responds to surficial temporal 

dynamics. The subsurface (soil, the vadose zone and aquifers) is heterogeneous at all 

length scales (Desbarats, 1987). Ecologically, heterogeneity refers to dissimilar or 

diverse constituents of a system, while statistically, it refers to the degree of similarity 

of two distributions (Dutilleul and Legendre, 1993). On the other hand, spatial 

heterogeneity refers to spatial pattern of the property of concern (Dutilleul and 

Legendre, 1993), and it is well-studied in geospatial analysis (Jiang, 2015). 
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Figure 1.1 Schematic diagram of the subsurface compartment of the Earth’s Critical 

Zone. 

Spatially heterogeneous properties of the subsurface result from multiple 

geological factors such as geologic formation process, geologic materials, chemical 

composition, and physical structure. These properties include permeability, i.e., the 

ability of the medium to transmit fluids (Amyx et al., 1960), and porosity, i.e., the ratio 

of volume of void space and bulk volume of the medium, (Amyx et al., 1960), and 

influence the flow of water in the subsurface. Measurement of these properties in the 

laboratory or in-situ ignores sub-sampling scale heterogeneities (Berkowitz, 2002). 

These properties are then described as Gaussian process models (Gelhar and Axness, 

1983;Johnson and Dreiss, 1989;Webb and Andersen, 1996), making use of a limited 



General Introduction Dissertation  

4 

parameter set: Mean of the distribution, variance in the distribution, anisotropy 

(degree of channelization), and spatial distance (Berkowitz, 2002;Dagan et al., 

2003;Delhomme, 1979;Heße et al., 2014;Jiang, 2015;Kitanidis and Vomvoris, 

1983;Rodrigo et al., 2002;Zimmerman et al., 1998). A domain of low variance in 

permeability and low anisotropy would be similar to a uniform layer of alluvial 

deposits (Davis et al., 1997;Johnson and Dreiss, 1989). In contrast, high variance and 

high anisotropy would be similar to a domain with clay lenses interspersed with 

sandy aquifers, or a domain with fractured bedrock. 

This spatial heterogeneity of the subsurface results in the heterogeneous 

distribution of water and water flux in the subsurface, having strong implications for 

variability in subsurface microbial and nutrient dynamics (Cole et al., 2007;Harden et 

al., 1997;Holt, 2000;Küsel et al., 2016;Murphy et al., 1997;van Leeuwen, 2000). 

The subsurface also responds to temporally dynamic external forcing such as 

weather events (Nippgen et al., 2015;Robinson et al., 2009;Yabusaki et al., 2008). 

Similar numerical methods also exist for describing temporal dynamics of external 

forcing which can take multiple forms. These forcing could be changing nutrient input 

from the surface or changing water flux from the surface (De Castro Ochoa and Muñoz 

Reinoso, 1997), or both. For example, precipitation events may be predicted using 

Poisson distributions (Rodriguez-Iturbe et al., 1999) using a limited set of parameters 

(average number of events occurring within a time interval) to describe region or 

hydrological regime of interest. Precipitation also varies both in form (e.g., snowfall 

and rainfall) and in intensity across different hydrological regimes. This results in 

different patterns and rates of infiltration into the shallow subsurface, further 

confounded by several factors including land use, land cover, slope, soil type, soil 

structure, root uptake, and evapotranspiration (Corradini et al., 2000;Lei et al., 

2006;Lundberg et al., 2016;Okkonen et al., 2010;Pohl et al., 2006;Rascón-Ramos et 

al., 2021;Rasiah et al., 2007;Seyfried, 1991;Wang et al., 2008;Xue and Gavin, 2008). 
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Deeper in the subsurface, groundwater also exhibits temporal dynamics. 

Groundwater elevation (or water table in unconfined aquifers) varies on a diurnal 

scale since it depends on temperature and pressure. On a seasonal scale, recharge 

from the shallow subsurface raises the water table surface (De Castro Ochoa and 

Muñoz Reinoso, 1997), thus potentially increasing the hydraulic gradient in the 

domain. 

Temporal dynamics in infiltration patterns and water flux further impact 

groundwater and surface water quality (Okkonen et al., 2010). Coupling temporal 

dynamics with spatial heterogeneity of the subsurface, a subsequent impact on 

microbial activity, carbon and nitrogen cycles at the lab or field scale has also been 

observed (Benk et al., 2019;Hofmann et al., 2020;Lohmann et al., 2020;Schwab et al., 

2017;Zhou et al., 2012), giving rise to hot spots and hot moments. Hot spots and hot 

moments refer to points in space and in time where microbial activity is higher than 

the average, and higher with respect to its neighboring areas (Kuzyakov and 

Blagodatskaya, 2015;Parkin, 1987). 

Varying groundwater head or incoming water flux results in varying water flux 

through the subsurface, thereby influencing chemical species distribution (Jacques et 

al., 2008), nutrient take-up (Gross et al., 2020), carbon turnover/discharge (Pett-

Ridge et al., 2013;Pronk et al., 2020;Rezanezhad et al., 2014), subsequently impacting 

the physicochemical characteristics of groundwater (Zheng et al., 2019) and even the 

water quality of the receiving surface water bodies (Basu et al., 2010). It also results 

in varying microbial community structures (Zheng et al., 2019;Zhou et al., 2012) with 

different functional guilds dominant in recharge/high flow periods and others in 

recession/low flow periods (Lohmann et al., 2020;Zhou et al., 2012). Alternatively, 

studies suggest that microbial community structures are relatively stable 

(Rezanezhad et al., 2014) in regularly fluctuating redox conditions in soil as they are 

well-adapted to these conditions (Pett-Ridge et al., 2013). 
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To conclude, geomicrobial communities are complex with multiple respiration and 

growth strategies, even in the deep subsurface (Anantharaman et al., 

2016;Christensen et al., 2001;Eilers et al., 2012;Stegen et al., 2012), and also respond 

to surface signals, e.g. with changing microbial activity in different seasons per 

prevailing flow regime, dissolved organic matter (DOM) quality (Hofmann et al., 

2020;Lohmann et al., 2020;Zhou et al., 2012). Given the complexity of the response of 

heterogeneous natural systems to temporal dynamics, it is difficult to predict the 

impact of spatio-temporal heterogeneities on microbial redox dynamics in the 

subsurface, and carbon and nitrogen cycling thereof. In this thesis, I aim to fill this 

gap. 

1.1 State of the art 

Spatial heterogeneity in the vadose zone, and complexity of the capillary fringe 

influence water and solute transport (Berkowitz et al., 2004;Vogel et al., 2018). The 

presence and nature of DOM in soil is linked with prevailing hydrologic conditions 

(Bol et al., 2015;De Troyer et al., 2014;Klotzbücher et al., 2014;Van Gaelen et al., 

2014), implying that water flux and associated degree of saturation controls solute 

transport and access to nutrients, and thereby microbial activity and nutrient export 

to the groundwater. 

While transport processes are dependent on the degree of saturation, microbial 

kinetics are dependent on access to substrate and electron donor (Manzoni et al., 

2016;Michaelis and Menten, 1913), which are in turn dependent on 

saturation/hydration profile (Ebrahimi and Or, 2015;Golparvar et al., 

2021;Leinemann et al., 2016). Being a spatially heterogeneous medium, the 

subsurface does not allow for the water flux to be homogeneously distributed (Levy 

and Berkowitz, 2003;Schincariol and Schwartz, 1990). Soils and the subsurface are 

also dominated by preferential flow paths (Gerke, 2006;Kitanidis and Vomvoris, 

1983). Microbial species are also not distributed homogeneously in the subsurface 
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since microbial respiration and growth is dependent on the availability of suitable 

carbon sources and energy gradients, access to which is governed by water flux. 

These spatial variations in microbial activity give rise to microbial hot spots. 

Similarly, temporal variations in microbial activity (and carbon and nitrogen cycling 

thereof) may result in hot moments. 

Microbial hotspots have been hypothesized to exist in soil aggregates (Sexstone et 

al., 1985), and in preferential flow paths (Bundt et al., 2001). A higher rate of 

degradation of chemical species (20% higher than that of bulk material) by microbial 

species has been attributed to such preferential flow paths and macropores in soil 

(Pivetz and Steenhuis, 1995), while Bundt et al. (2001) found that microbial biomass 

in preferential flow paths can be almost twice the amount detected in bulk soil matrix. 

Subsequent studies have revealed coefficient of variation of microbial activity in soil 

cores to be higher than 20% (Raynaud and Nunan, 2014;Pallud et al., 2004;Dechesne 

et al., 2005;Gutiérrez Castorena et al., 2016). 

A higher microbial biomass along preferential flow paths could be attributable to 

leveraging a variety of energy gradients and carbon substrates (Bundt et al., 2001). 

Alternatively, it could be a result of access to optimum conditions such as soil 

moisture and access to oxygenated water (Franklin et al., 2019;Or et al., 2007): 

Microbial activity initially increases with better access to nutrients with rise in 

moisture (till ~ 30% soil moisture (Barros et al., 1995), up to 50% (Schjønning et al., 

2011)), and subsequently decreases due to limited gaseous diffusion at higher 

moisture content. Other aspects controlling microbial activity in soil include salinity, 

osmotic pressure, and temperature (Or et al., 2007). More recently, microbial activity 

has also been shown to influence the soil matrix and its structure (Li et al., 

2018;Morales et al., 2010) thus providing a feedback loop between spatially 

heterogeneous subsurface and microbial activity. Thus, spatial heterogeneity 

influenced the distribution of biomass into active/dormant fractions (Couradeau et 

al., 2019;Grösbacher et al., 2018) with 60-80% of the soil microbial biomass 

estimated to be dormant (Lennon and Jones, 2011). 
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Data on the active/inactive fractions of microbes in the deeper subsurface and in 

aquifer systems is scarce. But it has been hypothesized that microbial life is 

hypothesized to exist in a non-growing state, or semi-active to dormant state, 

carrying out only the most fundamental life processes required to exist in extremely 

energy limiting environments such as deep below the oceanic sub-seafloor where the 

energy gradient available to microbial life can be as small as 10-21 zeptowatts cell-

1(ZW cell-1) (LaRowe and Amend, 2015b). Assessing the contribution of microbial life 

to carbon and nitrogen cycles is complicated by these varying states of activity (active 

growing stage, to solely respiring, to some stage of dormancy) of microbial life in the 

subsurface (Stolpovsky et al., 2011;Bradley et al., 2018). 

Higher microbial activity along preferential flow paths and in spatial 

heterogeneous subsurface is also attributable to higher microbial diversity (Horner-

Devine et al., 2004) in the shallow subsurface (soil studies). But microbial diversity 

decreases with increasing depth (distance from the surface), potentially due to the 

lack of diversity of bioavailable nutrients (Du et al., 2021;Griebler et al., 

2010;Humphreys, 2009;Lin et al., 2012). 

Microbial and functional diversity in the subsurface have also been observed to 

vary in time (Blazewicz et al., 2020;Freimann et al., 2014;Hofmann et al., 

2020;Schwab et al., 2017;Zhou et al., 2012). Seasonal changes such as the freeze-thaw 

cycle have been known to impact the physical properties of soil, thereby influencing 

water flux (Hayashi, 2013). Seasonal changes also result in higher microbial activity 

in coordination with higher substrate input from the surface (Zhou et al., 2012), 

changing chemical nature of DOM and translocation of younger and more labile DOM 

to the deeper subsurface (Benk et al., 2019). Microbial community structure also 

changes with season year on year, with anaerobic respiration pathways prevalent 

during wet periods (Lohmann et al., 2020). At the same time, extreme weather events 

have also been known to result in bypass-flows in variably saturated zones and reach 

the saturated zone depending on the geology of the site (McMillan and Srinivasan, 

2015;Renck and Lehmann, 2004) perhaps resulting in no impact or reduced 
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microbial activity due to translocation of microbes (Yan et al., 2021). For example, 

increased water flux resulted in higher reduction processes in homogeneous and 

vertically stratified soil columns, while it resulted in higher transport in macropores 

(Arora and Mohanty, 2017). With weather events influencing water flux in the 

subsurface, there is a cascading effect on soil seepage and groundwater quality, and 

nutrient access of microbial species. Arora and Mohanty (2017) thus displayed that 

this effect is dependent on the structure of spatial heterogeneity of the matrix. At the 

same time, Schwab et al. (2017), Zhou et al. (2012) and Hofmann et al. (2020) linked 

variable diversity of microbial communities in the deep subsurface with variation of 

the groundwater quality in space and time, thus implying that spatio-temporal 

heterogeneities influenced the distribution of microbial biomass into 

mobile/immobile fractions (Griebler and Lueders, 2009;Grösbacher et al., 2018). 

While these phenomena are of great interest and have been studied (as detailed 

earlier), observational opportunities in the field are limited. This constraint makes 

modelling studies the approach of choice to monitor and predict geomicrobial activity 

in the spatio-temporally heterogeneous subsurface (Molins et al., 2014). While 

seasonal water table and temperature fluctuations were found to be important for 

accurately modelling carbon discharge in a flood plain site (Arora et al., 2016), the 

temporally changing infiltration was found to affect this site heterogeneously 

(Dwivedi et al., 2018) with only naturally reduced sub-zones responding to these 

temporal dynamics. The model outcomes thus indicated that the geomicrobial 

activity responds heterogeneously to environmental disturbances such as seasonal 

change in water flux (Yabusaki et al., 2017) and must be further incorporated in 

modelling studies. 

It must be noted that numerical modelling studies have historically focused on 

incorporating only one or two key microbial species based on site-specific 

geomicrobiology and hydrogeology, given the oligotrophic conditions prevalent in 

the subsurface (Aguilera et al., 2005;Arora et al., 2016;Herrmann et al., 2015;Schäfer 

et al., 1998a;Steefel et al., 2014;Thullner et al., 2007;Yabusaki et al., 2017). The 
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reaction networks used to describe the deep subsurface not only need to account for 

multiple growth and respiration strategies, as widely used already, but also dormancy 

and reactivation given dynamic conditions, and mobilization into the groundwater 

(Bradley et al., 2018). Thus, there is a need to update reaction networks that are used 

in reactive transport models in the deep subsurface. 

Despite the extensive use of numerical modelling approaches to predict 

groundwater quality, parameterization of the flow field and the reaction network 

using lab-scale and field-scale studies remains a challenging task (Berkowitz et al., 

2016). Reaction parameters may vary from the batch scale derived parameters by up 

to 50 times when implemented at the field scale (Rodríguez-Escales et al., 2016). 

Using inadequately resolved field measurements to parameterize flow and transport 

at the field scale may further add uncertainty to the modelling exercise. At the same 

time, incorporating high resolution data from lab-scale studies, e.g., pore-scale 

heterogeneous structure of the solid matrix, in policy-relevant catchment scale 

models is computationally expensive. Thus, there is a need for a methodology to 

evaluate the relevance of sub-scale spatio-temporal heterogeneities for long-term 

geomicrobial activity and carbon and nitrogen cycling thereof in natural systems of 

interest. 

In surface water systems, methodologies such as concentration-discharge (C-Q) 

relationships (Creed et al., 2015;Ebeling et al., 2021;Evans and Davies, 1998;Gorski 

and Zimmer, 2021;Heathwaite and Bieroza, 2021;Liu et al., 2021;Saberi et al., 2021), 

and Damköhler number (Da, historically used in the field of chemical engineering) 

(Briggs et al., 2014;Pittroff et al., 2017;Oldham et al., 2013) are widely used to 

describe surface water systems as chemostats, and to predict the response of these 

systems to seasonal variations. Da is also used to describe subsurface systems (Jung 

and Meile, 2019) to be reaction dominant or transport dominant. Lastly, the Peclet 

number (Pe, also originating from the field of chemical engineering) is used to 

characterize the flow regime of sub surficial domains to be diffusion or dispersion or 

advection dominated (Field and Nash, 1997). Thus, easily estimable proxy indicators 
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are already extensively used to classify flow and reaction regimes in natural systems. 

It will be beneficial to evaluate the relevance of spatio-temporal heterogeneities for 

geomicrobial activity to evaluate broad system behavior such as that suggested by C-

Q relationships, Da and Pe. 

1.2 Research Objective 

The aforementioned studies have hitherto explored microbial activity in select, 

somewhat simplified, scenarios (Fig. 1.2). These studies have investigated various 

aspects of microbial activity such as microbial biomass distribution and, microbial 

activity in aquifers, in hyporheic zones and in soil columns, even at the microscale 

with fluctuating saturation in space or in time, or both (highlighted areas in Fig. 1.2). 

Both lab-scale and field scale studies inform parameterization of reactive transport 

models, also lending uncertainty to the modelling predictions due to multiple factors 

such as scale-mismatch, and spatio-temporal heterogeneities in the natural systems 

to be simulated (Berkowitz et al., 2016). Furthermore, no functional relationship has 

been drawn between these different scenarios of structural heterogeneity and impact 

on microbial activity and nutrient cycling. 

Secondly, with changing climate regime, there is large uncertainty in the future 

behavior of sub surficial reactive systems. Weather events are predicted to increase 

in intensity, and extreme events are predicted to increase in frequency as well 

(Trenberth, 2011), depending on the geographical region. An understanding of the 

impact of these changing patterns on the flow of water in the subsurface (both vadose 

zone and saturated aquifer) is limited. For example, weather events following 

intensely dry periods are expected to trigger run-off events initially with delayed 

infiltration into the deeper zones, but the dynamics of soil moisture, temperature and 

precipitation feedback are more complex (Betts et al., 1996;Schär et al., 1999). 

Additionally, the groundwater table is expected to continue to decline (Zektser et al., 

2005) due to anthropogenic activities, impacting travel times of solutes in the 
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subsurface. This is expected to have a further impact on nutrient access of microbial 

species in the subsurface (detailed earlier). A functional relationship between 

different scenarios of temporal dynamics in the climate regime and resulting 

variability in microbial activity or nutrient cycling and discharge thereof is lacking. In 

my thesis, I aimed to fill these knowledge gaps. 

 

Figure 1.2 Studies incorporating spatio-temporal heterogeneities and degree of 

saturation to explore microbial activity in porous or fractured sub surficial media 

In this thesis, I aimed to derive a functional and predictive relationship between 

subsurficial spatio-temporal heterogeneities and microbial redox dynamics and 

nutrient cycling thereof. I attempted to address the following questions: 

1. How does spatial heterogeneity impact microbial nutrient cycling? 

2. How do temporal dynamics impact microbial nutrient cycling? 

3. How do spatio-temporal heterogeneities interact with each other and govern 

microbial nutrient cycling? 
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1.2.2 Research hypothesis 

In this thesis, I aimed to address the gap of functional relationships between 

spatio-temporal heterogeneities and nutrient cycling in the subsurface. My research 

hypotheses are as follows: 

H1. Spatial heterogeneity results in niches for microbial species to co-exist with 

other competitive species. 

H2. Spatial heterogeneity results in lower consumption of reactive species in the 

system than expected in a homogeneous system. 

H3. Temporal dynamics results in varying nutrient discharge from the domain, and 

this is a function of varying travel time in the domain. 

H4. Spatio-temporal heterogeneities interact and result in compounding each 

other’s effects on the system. Higher temporal dynamics in high spatially 

heterogeneous domains behave the most different from homogeneous 

domains in uniform conditions. 

1.2.3  Approach 

Using a numerical modelling approach, I investigated a variety of in silico scenarios 

to form a comprehensive study to explore the above-mentioned hypotheses. I 

formulated a pertinent reaction network with adequate complexity to represent 

microbial diversity and life processes in the subsurface. Using this, I sought to 

investigate the impact of spatial heterogeneity on microbial biomass distribution, 

activity in the subsurface, and consequent effects on biogeochemical cycles thereof in 

steady state conditions. I then subjected these domains at steady state in the spatially 

heterogeneous subsurface to temporal dynamics, with the aim to resolve the impact 

of temporal dynamics on microbial activity in spatially heterogeneous domains. I 

imposed different temporal dynamics depending on the location of the domain (i.e., 

in the saturated or the unsaturated zone). This assisted in setting up the problem to 

be as close to a physically plausible system as possible. At the same time, I used 
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numerical methods to ensure comparability between the different scenarios. In 

summary, I followed the steps below to address the research gap: 

1. Formulate a reaction network capturing various respiration and growth 

strategies, and other microbial life processes, 

2. Conceptualize simulation domain adequately representing unsaturated and 

saturated zones of the subsurface, 

3. Formulate in silico spatially heterogeneous domains using two parameters: 

Variance (in log permeability field for unsaturated domains, and in log 

conductivity field for saturated domains) and anisotropy, 

4. Quantify impact of spatial heterogeneity on microbial activity and nutrient 

cycling in saturated and unsaturated zones, and 

5. Quantify impact of temporal dynamics in the saturated zone. 

Addressing the research gap using the above stepwise approach, I am equipped to 

formulate recommendations when spatio-temporal heterogeneities are of concern to 

subsurficial microbial life in a changing climate. I used proxy indicators to express 

different spatio-temporal heterogeneity scenarios (such as travel time) to be able to 

contextualize the extent of spatio-temporal heterogeneities with respect to a base 

case (uniform conditions in homogeneous domains). I thus explored the use of these 

indicators in conjunction with existing ones (such as Da and Pe number) to build a 

functional relationship between spatio-temporal heterogeneities and nutrient 

cycling. The results of this thesis support the identification of key drivers of microbial 

dynamics in the Critical Zone and assist in effective upscaling these process 

descriptions. 

1.3 Outline 

The thesis consists of six (6) chapters. Chapter 1 is the current chapter, i.e., 

Introduction. Chapter 2 describes the approach to set up the simulation domains and 
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the process network used for all investigated scenarios. Chapters 3-5 describe studies 

investigating the above mentioned hypotheses. Parts of Chapters 2-4 have been 

submitted as a scientific journal article in (Khurana et al., 2021b) while Chapter 5 has 

been submitted as a separate scientific journal article (further information in 

Appendix C). 

The formulation of the reaction network and conceptualization of suitable 

domains to investigate in the unsaturated and saturated zones of the subsurface are 

described in Chapter 2. I established the baseline system behavior that was different 

for domains with different saturation and flow regimes in Chapter 3. I then 

investigated the impact of spatial heterogeneity on nutrient cycling in the saturated 

and unsaturated zones zone in Chapter 4. In the vadose zone, spatial heterogeneity 

impacted the saturation/moisture content which further influenced travel time in the 

domain, as well as the concentration of dissolved oxygen in the water phase. I 

established that the extent of spatial heterogeneity can be expressed in terms of travel 

time. Consequently, I displayed that the removal of reactive species from the domain 

can be predicted as function of travel time in the domain. This relationship varied 

according to the reaction and flow regime, indicated by the Da. The work described 

in Chapters 2-4 enabled the evaluations of hypotheses H1 and H2. Chapter 5 

investigated the impact of temporal dynamics on fully saturated domains. I explored 

in detail how the impact of temporal dynamics on chemical discharge at the outlet of 

the domain depends on the Da. In addition, I explored how spatio-temporal 

heterogeneities interacted with each other in saturated domains. The work presented 

in Chapter 5, in combination with that presented in Chapter 4, enabled the evaluation 

of hypotheses H3 and H4. Finally, I discussed the results and presented the caveats of 

my thesis in Chapter 6. This assisted in forming a holistic view of how spatio-

temporal heterogeneities interact in the subsurface and improving predictability of 

the behaviour of subsurface reactive systems with the help of limited indicators, 

relatively easily estimated at the field scale. Additionally, I gave an outlook into future 

research opportunities based on the results and shortcomings of this thesis.
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2 Simulating microbial activity and nutrient cycling in the 

subsurface 

To simulate a subsurficial reactive system of interest, a conceptual model is first 

needed. For this thesis, the conceptual model needs to adequately capture microbial 

mediated reactions transforming carbon and nitrogen in the subsurface. 

Incorporating microbial species explicitly allows the capture of transient conditions 

and associated impacts (Thullner et al., 2007). The reaction networks used for 

modelling soil carbon dynamics have historically employed bucket-type or pool-type 

systems (Thullner et al., 2007;Thullner and Regnier, 2019;Manzoni and Porporato, 

2009;Yabusaki et al., 2017), while those for modelling carbon dynamics in the 

subsurface are seldom complex. Thus, there is a need for a microbial explicit reaction 

network, that represents growth conditions in the subsurface. This will assist in the 

evaluation of microbial mediated nutrient dynamics. Secondly, the conceptual model 

must also account for a simulation domain that adequately represents the flow and 

transport of the fluid in natural systems of interest. 

In this chapter, I aimed to aimed to set up a comprehensive reaction network at 

the continuum scale (sub-meter scale in our case). For setting up the simulation 

domain and the process network, I used long-term observations from a subject site in 

the Hainich Critical Zone Exploratory (CZE, (Jing et al., 2018;Kohlhepp et al., 

2017;Küsel et al., 2016)). This information constrained the conceptual approach and 

the simulated scenarios to realistic conditions, such as average hydraulic conductivity 

and permeability, porosity, chemical and water flux. However, since I aimed to 

generate a system understanding beyond the specific subject site, I considered 

variations from the observations thereof. These variations included considering 

additional scenarios for water flux in the domain (details below), extreme scenarios 
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for spatial heterogeneity, intensity of temporal dynamics. This enlarged the range of 

conditions covered by our model scenarios. 

2.1 Solute transport in the simulation domain 

The change in concentration of a chemical species in a reactive transport model is 

solved by the Advection-dispersion-reaction equation (Bauer et al., 2012): 

𝜕𝐶

𝜕𝑡
= ∇(𝐷∇𝐶) − ∇. (𝐶𝑣) − 𝑅,       (2.1) 

where, C is the concentration in molar [N L-1], R is the rate of change in 

concentration of the chemical species (N L-1 T-1), D is hydrodynamic dispersion 

coefficient [L2 T-1], v is the advective velocity [L T-1]. The advective velocity is 

calculated using the Darcy equation in the saturated domain (Sun et al., 2012): 

𝑣 =  −𝐾
𝑑ℎ

𝑑𝑙
,          (2.2) 

where, v is the advective velocity, K is the hydraulic conductivity [L T-1], and dh is the 

difference in hydraulic head [L] across a length of dl [L]. 
𝑑ℎ

𝑑𝑙
 is referred to as the 

hydraulic gradient. The advective velocity in the unsaturated domain is calculated 

using the Richards flow (Kalbacher and Du, 2012) equation: 

∅𝜌𝑤
𝜕𝑆

𝜕𝑝𝑐

𝜕𝑝𝑐

𝜕𝑡
+ ∇. (𝑘𝑟𝑒𝑙𝐾 (∇𝑝𝑤 − 𝜌𝑤𝑔)) =  𝑄𝑤,     (2.3) 

where, ∅ is the porosity, t is time [T], 𝜌𝑤 is the liquid density [M L-3], 𝑝𝑐 is the capillary 

pressure [M L-1 T-2] with 𝑝𝑐 = − 𝑝𝑤, 𝑝𝑤 is the water pressure [M L-1 T-2], S is the water 

saturation [-], g is the acceleration [L T-2] due to gravity, Qw is the water discharge [L3 

T-1], krel is the relative permeability [-]. Both krel and pc are dependent on the degree 

of saturation in the medium. pc and krel are given by: 

𝑝𝑐  =  
𝜌𝑤𝑔

𝛼
[𝑆
𝑒𝑓𝑓

−
1

𝑚 − 1]1/𝑛, and        (2.4) 
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𝑘𝑟𝑒𝑙 = 𝑆𝑒𝑓𝑓
1/2
[1 − 1(1 − 𝑆𝑒𝑓𝑓

1/𝑚
)
𝑚
]2,       (2.5) 

where, m [-] and n [-] are shape defining van-Genuchten parameters, with m = 1 – 

(1/n), and α [-] is a van-Genuchten parameter associated with the air entry pressure. 

In this thesis, m = 0.3, and α = 0.5. Seff is the effective Saturation given by: 

𝑆𝑒𝑓𝑓 =
𝑆−𝑆𝑟

𝑆𝑚𝑎𝑥−𝑆𝑟
,         (2.6) 

where, S [-] is the degree of saturation, that is, ratio of pore volume occupied by water. 

Smax is the maximum saturation (0.8 in this work), and Sr (0.2 in this work) is the 

residual saturation of the domain.  

Simulating solute transport in the subsurface is thus already a complex problem, 

taking into account various physical properties of the domain (permeability or 

conductivity, van-Genuchten parameters of unsaturated systems, porosity, viscosity 

of the liquid medium) and reactive processes. 

2.2 Reaction component: Process Network 

I conceptualized an extended biogeochemical process network to describe the 

turnover of carbon and nitrogen (Fig.2.1). The reaction network captured the 

transformation of DOC, particulate organic carbon (POC), dissolved oxygen (DO or 

O2), nitrate (NO3-), Sulphate (SO42-), and ammonium (NH4) by one or more of the 

four microbial function groups: Aerobic DOC degraders (BO2), nitrate reducers 

(BNO3), sulphate reducers (BSO4) and ammonia oxidizers (BNH4), adapted from the 

carbon dynamics and select processes described in previous studies (Manzoni and 

Porporato, 2009;Vogel et al., 2018). 

Broadly, the network accounted for aerobic autotrophy, aerobic heterotrophy and 

anaerobic heterotrophy and microbial growth thereof. The transformation of the 
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chemical species occurs per the following processes out of which Eq. 2.7-2.10 were 

mediated by microbial species: 

Aerobic respiration: 𝐶𝐻2𝑂 + 𝑂2 → 𝐻𝐶𝑂3
− +𝐻+     (2.7) 

Nitrate reduction: 𝐶𝐻2𝑂 + 0.8𝑁𝑂3
− + 0.8𝐻+  → 𝐻𝐶𝑂3

− + 0.4𝑁2 + 0.4𝐻2𝑂 + 𝐻
+ 

           (2.8) 

Sulphate reduction: 𝐶𝐻2𝑂 + 0.5𝑆𝑂4
2− + 𝐻+ → 𝐻𝐶𝑂3

− + 0.5𝐻𝑆− + 1.5𝐻+  

           (2.9) 

Ammonia oxidation: 0.5𝑁𝐻4
+ + 𝑂2 → 0.5𝑁𝑂3

− + 0.5𝐻2𝑂 + 𝐻
+  (2.10) 

Hydrolysis of POC:  𝐶10𝐻7𝑂2𝑁 + 8𝐻2𝑂 + 𝐻
+ → 10𝐶𝐻2𝑂 + 𝑁𝐻4

+ (2.11) 

 

Figure 2.1: Schematic of the simulated biochemical reaction network 

Each microbial functional group was further partitioned into four (4) fractions or 

subpopulations. While both immobile and mobile active bacteria could respire and 

grow and perform biogeochemical reactions, immobile and mobile inactive bacteria 

were able to do neither. Both active and inactive immobile bacteria were attached to 

the matrix of the domain, while active and inactive mobile bacteria represented 
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phytoplanktonic microbial species. In summary, active immobile (Xa,s), active mobile 

(Xa,w), inactive immobile (Xi,s) and inactive mobile (Xi,w) subpopulations for each 

microbial function group (X) were present in the process network. 

2.2.1 Microbial respiration 

Modified Michaelis-Menten type expressions to described microbial respiration 

(Eq. 2.12-2.15 and Table 2.1). The parameters for these processes are presented in 

Table A1. 

1. Aerobic respiration: 

𝑟 =
1−𝑂2𝑚𝑖𝑛×𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

 (𝐵𝑂2𝑎,𝑠 + 𝐵𝑂2𝑎,𝑤)      (2.12) 

2. Nitrate reduction: 

 𝑟 =
1−𝑁𝑂3𝑚𝑖𝑛×𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

 (𝐵𝑁𝑂3𝑎,𝑠 + 𝐵𝑁𝑂3𝑎,𝑤)     (2.13) 

3. Sulphate reduction: 

𝑟 =
1−𝑆𝑂4𝑚𝑖𝑛×𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

 (𝐵𝑆𝑂4𝑎,𝑠 + 𝐵𝑆𝑂4𝑎,𝑤)     (2.14) 

4. Ammonia oxidation: 

𝑟 =
1−𝑁𝐻4𝑚𝑖𝑛∗𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

 (𝐵𝑁𝐻4𝑎,𝑠 + 𝐵𝑁𝐻4𝑎,𝑤)     (2.15) 

2.2.2 Microbial growth 

A modified Monod type expression described microbial growth (i.e., formation of 

biomass carbon), further linked with microbial respiration rates using a yield 

coefficient, and with a dependency on the concentration and ammonium as the source 

of nitrogen (Eq. 2.16-2.20 and Table 2.1). The parameters for these processes are 

presented in Table A1. 
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1. Dependency on ammonium: 

𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 =  
1

𝑒
𝑎𝑚𝑚𝑖𝑛𝑔−𝑁𝐻4
𝑠𝑡×𝑎𝑚𝑚𝑖𝑛𝑔 +1

       (2.16) 

2. Active aerobic DOC degraders: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
1−𝑂2𝑚𝑖𝑛×𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

 𝑌𝑜  × 𝐵𝑂2𝑎,𝑥     (2.17) 

with a = active biomass, x=s for attached and x=w for mobile bacteria 

Table 2.1 Expressions controlling respiration, growth, dormancy and reactivation 

of microbial species 

Notation Descriptors 

Aerobic degraders Nitrate reducers Sulphate reducers Ammonia oxidizers 

Bxx BO2a,s and BO2a,w BNO3a,s and 
BNO3a,w 

BSO4a,s and 
BSO4a,w 

BNH4a,s and 
BNH4a,w 

Byy BO2i,s and BO2i,w BNO3i,s and BNO3i,w BSO4a,s and BSO4i,w BNH4a,s and 
BNH4i,w 

Kxx 1 − 𝑘𝑚𝑎𝑥1 

× (
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐1 + 𝐷𝑂𝐶
)

× (
𝑂2

𝑘𝑠𝑜𝑥1 + 𝑂2
)

/𝑂2𝑚𝑖𝑛 

1 − 𝑘𝑚𝑎𝑥2 

 ×  (
𝐷𝑂𝐶

𝑘𝑠𝑛𝑑𝑜𝑐 + 𝐷𝑂𝐶
) 

×  (
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥 + 𝑂2
) 

×  (
𝑁𝑂3

𝑘𝑠𝑛𝑜3 + 𝑁𝑂3
)

/𝑁𝑂3𝑚𝑖𝑛 

1 − 𝑘𝑚𝑎𝑥3 

× (
𝐷𝑂𝐶

𝑘𝑠𝑠𝑑𝑜𝑐 + 𝐷𝑂𝐶
) 

×  (
𝑆𝑂4

𝑘𝑠𝑠𝑜4 + 𝑆𝑂4
) 

×  (
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥 + 𝑂2
) 

×  (
𝑘𝑖𝑛𝑛𝑜3

𝑘𝑖𝑛𝑛𝑜3 + 𝑁𝑂3
)

/𝑆𝑂4𝑚𝑖𝑛 

1 − 𝑘𝑚𝑎𝑥4 

× (
𝑁𝐻4

𝑘𝑠𝑎𝑚𝑚 + 𝑁𝐻4
) 

×  (
𝑂2

𝑘𝑠𝑜𝑥 + 𝑂2
)

/𝑁𝐻4𝑚𝑖𝑛 

3. Active nitrate reducers: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
1−𝑁𝑂3𝑚𝑖𝑛×𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

𝑌𝑛 × 𝐵𝑁𝑂3𝑎,𝑥     (2.18) 

4. Active sulphate reducers: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
1−𝑆𝑂4𝑚𝑖𝑛×𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

 𝑌𝑠 × 𝐵𝑆𝑂4𝑎,𝑥     (2.19) 
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5. Active ammonia oxidizers: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
1−𝑁𝐻4𝑚𝑖𝑛×𝐾𝑥𝑥

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

 𝑌𝑎 × 𝐵𝑁𝐻4𝑎,𝑥     (2.20) 

2.2.3 Processes governing the location of the microbes 

The process network allowed for microbial species to mobilize into the 

groundwater or attach to the solid matrix. Mobile bacteria are transported by the 

flowing water. 

1. Mobilization of immobilized bacteria (Bxx) into the fluid medium (i.e. the 

transfer of attached bacteria into mobile bacteria) were adapted from (Rittman and 

McCarty, 2001) assuming additionally that high total attached biomasses led to 

higher detachment rates (adapted from Clement et al. (1997)): 

𝑟 = 𝑘𝑙 ×  (𝑣𝑞0 × 𝑣𝑝𝑜𝑟0)0.58 × 𝐵𝑥𝑥 +

 
𝑘𝑑𝑒𝑡

𝑒

𝐵𝑓𝑚𝑎𝑥−𝐵𝑜2𝑎,𝑠−𝐵𝑂2𝑖,𝑠−𝐵𝑁𝑂3𝑎,𝑠−𝐵𝑁𝑂3𝑖,𝑠−𝐵𝑆𝑂4𝑎,𝑠−𝐵𝑆𝑂4𝑖,𝑠−𝐵𝑁𝐻4𝑎,𝑠−𝐵𝑁𝐻4𝑖,𝑠
𝑠𝑡×𝐵𝑓𝑚𝑎𝑥 +1

× 𝐵𝑥𝑥   (2.21) 

 2. Immobilization or reattachment: Attachment rates of mobile bacteria Byy also 

depended on the total concentration of attached biomass: 

𝑟 =  𝑘𝑎𝑡𝑡 × 𝐵𝑦𝑦 × 

(1 −
1

𝑒

𝐵𝑓𝑚𝑎𝑥−𝐵𝑜2𝑎,𝑠−𝐵𝑂2𝑖,𝑠−𝐵𝑁𝑂3𝑎,𝑠−𝐵𝑁𝑂3𝑖,𝑠−𝐵𝑆𝑂4𝑎,𝑠−𝐵𝑆𝑂4𝑖,𝑠−𝐵𝑁𝐻4𝑎,𝑠−𝐵𝑁𝐻4𝑖,𝑠
𝑠𝑡×𝐵𝑓𝑚𝑎𝑥 +1

)  (2.22) 

2.2.4 Processes governing the activity states of microbes 

The network also accounted for dormancy given inhospitable conditions for 

microbial growth and respiration, and reactivation. Associated parameters are 

presented in Table A1. 
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1. Deactivation/Dormancy: Deactivation rates of active bacteria (i.e., conversion of 

active (mobile/attached) into inactive or dormant (mobile/attached) bacteria) at 

unfavourable substrate conditions were expressed following Stolpovsky et al. (2011). 

𝑟 = 𝑘𝑑𝑒𝑎𝑐 × 𝐵𝑥𝑥 × (1 − 
1

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

)       (2.23) 

with the term Kxx depending on the bacterial species Byy and its substrate source 

(see Table 2.1). 

2. Reactivation: In analogy to the deactivation rates, reactivation rates were 

expressed as: 

𝑟 = 𝑘𝑟𝑒𝑎𝑐 × 𝐵𝑦𝑦 ×
1  

𝑒
𝐾𝑥𝑥
𝑠𝑡 +1

        (2.24) 

with the term Kxx depending on the bacterial species as described in Table 2.1. 

3. Mortality: Mortality rates followed a first-order dependency on biomass 

concentration: 

𝑟 = 𝑘𝑚 × 𝑓𝑑𝑜𝑟𝑚 ×  𝐵𝑥𝑥       (2.25) 

For active bacteria fdorm = 1, for inactive bacteria fdorm = 0.1. Dead bacterial 

biomass was added to the POM pool. 

2.2.5 Miscellaneous processes 

1. Hydrolysis of POC was described by first order rate kinetics: Hydrolysis of 

particulate organic matter added bioavailable dissolved organic carbon and 

ammonium back at a fixed C:N ratio (fcn) into the process network, thus completing 

the loop. 

𝑟 = 𝑘𝑝𝑑 × 𝑃𝑂𝐶         (2.26) 
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2. Background autotrophic microbial growth: Background autotrophic microbial 

growth adhering to Monod type kinetics again, and limited by ammonium availability 

was given by: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 × 𝑘𝑚𝑎𝑥5  × (
𝑁𝐻4

𝑘𝑠𝑎𝑚𝑚+𝑁𝐻4
)     (2.27) 

3. Diffusion of dissolved oxygen (DO): DO diffused from the air phase to the water 

phase in the unsaturated domain, with a dependency on the concentration of DO in 

the water phase and the degree of saturation 

𝑟 = (𝐷𝑂𝑠𝑎𝑡  −  𝑂2) (1 − 
1

𝑒
0.4−𝑤𝑠
0.4×𝑠𝑡 +1

),      (2.28) 

where, DOsat is the saturation concentration of DO in groundwater (approximately 

8 mg/L), ws is the degree of saturation and O2 is the concentration of DO in the liquid 

phase. 

2.3 Simulation domain 

The simulation domains set up for testing the hypotheses were two dimensional 

(2D, thickness defaulted to 1 m for subsequent calculations). The conceptual setup of 

the permanently saturated and unsaturated domains is presented in Fig. 2.2. The 

boundary conditions allowed for water to flow in predominantly vertically 

downward direction. The water flux carrying chemical and microbial species entered 

the domain from the top (also called inlet boundary or inlet) and it exited from the 

bottom (also called outlet boundary or outlet). The side boundaries of the domain 

were no-flow boundaries. In both saturated and unsaturated domains, I set up three 

(3) different flow regimes: Slow flow, medium flow and fast flow. The velocity 

increased by a factor of 10 between the slow and medium flow regimes, and a factor 

of 100 between the slow and fast flow regimes. The transport regimes accounted for 

advection, dispersion and diffusion. Table 2.2 summarizes these details of the 
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simulation domain. The chemical reaction related boundary conditions were the 

same in both saturated and unsaturated domains (Table 2.3). 

Table 2.2 Summary of model domain setup 

Parameter Units Saturated 
domain 

Unsaturated 
domain 

Domain size m x m 0.3 x 0.5 0.3 x 0.7 

Observation zone m x m 0.3 x 0.5 0.3 x 0.5 

Discretization in the observation 
zone (Δx x Δy)  

m x m 0.01 x 0.01 0.005 x 0.005 

Porosity - 0.2 0.2 

Average conductivity m d-1 2 10-6 - 

Average permeability m d-1 - 2 10-8 

Diffusion coefficient m2 d-1 8.64 10-5 8.64 10-5 

Longitudinal dispersivity m 0.02 0.02 

Average water velocity: Slow 
flow 

m d-1 3.8 10-4 7.6 10-4 

Average water velocity: Medium 
flow 

m d-1 3.8 10-3 7.6 10-3 

Average water velocity: Fast flow m d-1 3.8 10-2 7.6 10-2 

2.4 Numerical Tools 

I carried out numerical simulations using OGS#BRNS (Centler et al., 2010), a tool 

that couples BRNS (Biochemical Reaction Network Solver (Aguilera et al., 

2005;Regnier et al., 2002) with OpenGeosys (OGS, Kolditz et al. (2012)). Both BRNS 

and OGS are state of the art tools and have the ability to solve complex reactive 

transport models (Thullner et al., 2005) and groundwater flow models, respectively 

(Jing et al., 2018). 
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Figure 2.2 Domain set up for the (a) permanently saturated and (b) unsaturated 

domains, displaying dimensions, boundary conditions, discretization and 

predominant groundwater flow direction. 

The entire workflow was realized in the Python programming language (van 

Rossum and Drake, 2006) (referred to as Python henceforth), taking advantage of 

various packages to set up the simulation scenarios, to process simulation outputs 

and further analysis and generation of graphical outputs. The scripts used for the 

Python workflow along are available in online repositories for ease of reproducibility 

(Khurana et al., 2021a). 

Table 2.3 Dirichlet boundary condition for the reactive species at the inlet of the 

domain. 

Chemical species  Cin (units) 

POC 5 (µM C) 

DOC 800 (µM C) 

DO 250 (µM) 

Nitrate 250 (µM) 

Ammonium 60 (µM) 

Sulphate 1,500 (µM) 

Bx,w 2 (µM C) 
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As mentioned in Chapter 2.1, Richard’s flow implementation solved the flow 

regime in the unsaturated domain. Richards flow equation being non-linear is more 

difficult to solve using numerical solvers. The Galerkin Finite Element Method (FEM) 

is used to solve the Richards flow equation (Kolditz et al., 2008) subject to enforced 

boundary and initial conditions in ogs5. It is known to lead to failure of water mass 

conservation computations (Suk et al., 2020). The errors are as high as 30% in 

complex problems. Having observed similar errors in the simulations carried out in 

the unsaturated domains, especially in extremely high spatially heterogeneous 

scenarios, I refined the mesh further with smaller discretization (Chapter 2.3, Fig. 

2.2). This resulted in the mass balance error reducing to 3% in the homogeneous 

scenario, and within 5% for the in silico spatially heterogeneous scenarios. The 

refined mesh thus lent confidence to the simulation results of the unsaturated 

domain. 

2.5 Data analysis 

The breakthrough time is a useful metric to evaluate the matter flux in the domain. 

The breakthrough time of a conservative tracer was the time taken for the flux 

averaged concentration at the outlet of the domain to be 50% of the continuous tracer 

input concentration at the inlet of the domain. This enabled the evaluation of the 

impact of varying flow regimes with respect to the transport time scale in the 

simulation domains. Flux averaged concentration (Cj at cross-section j) of mobile 

species at each cross-section along the predominant flow direction (top to bottom) 

was calculated using Eq. 2.29: 

𝐶𝑗 = 
∑ (𝐶𝑖,𝑗×𝑣𝑖,𝑗 × ∅𝑖,𝑗 ×𝑆𝑖,𝑗)
𝑛−1
𝑖=2 + 

1

2
 × ∑ (𝐶𝑖,𝑗×𝑣𝑖,𝑗 × ∅𝑖,𝑗 ×𝑆𝑖,𝑗 )𝑖=1,𝑛

∑ (𝑣𝑖,𝑗 × ∅𝑖,𝑗 ×𝑆𝑖,𝑗)
𝑛−1
𝑖=2 + 

1

2
 × ∑ (𝑣𝑖,𝑗 × ∅𝑖,𝑗 ×𝑆𝑖,𝑗)𝑖=1,𝑛

,    (2.29) 

where, Ci,j is the concentration, vi,j is the velocity, ∅i,j is the porosity, Si,j is the 

saturation at node [i,j] in the model domain, Δx is the discretization in the X direction, 

and n is the total number of nodes in the X direction. Porosity is constant across the 
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domain, and the saturation is 1 for the saturated domain. The unsaturated domains 

are effectively saturated (Seff = 1) at saturation of 0.8. Since microbial species also 

have a mobile subpopulation, they also contain nitrogen and carbon elements. These 

concentrations of nitrogen and carbon were included to derive the concentration of 

total nitrogen and total organic carbon (TOC) at each cross-section by also 

considering the ratio of nitrogen and carbon present in the microbial species, given 

by fcn (the carbon to nitrogen ratio in biomolecules as described in Chapter 2.2). For 

biomass, spatially averaged concentration of all subpopulations was given by Eq. 2.30 

𝐶𝑗 = 

{
 
 

 
 1

2
 ×

∑ (𝐶𝑖,𝑗×∅𝑖,𝑗 ×𝑆𝑖,𝑗 )
𝑛−1
𝑖=2 +

1

2
 × ∑ (𝐶𝑖,𝑗× ∅𝑖,𝑗 ×𝑆𝑖,𝑗)𝑖=1,𝑛

∑ ( ∅𝑖,𝑗 ×𝑆𝑖,𝑗 )
𝑛−1
𝑖=2 +

1

2
 ×∑ ( ∅𝑖,𝑗 ×𝑆𝑖,𝑗)𝑖=1,𝑛

, 𝑗 = 1, 𝑦𝑛

∑ (𝐶𝑖,𝑗×∅𝑖,𝑗 ×𝑆𝑖,𝑗 )
𝑛−1
𝑖=2 +

1

2
 × ∑ (𝐶𝑖,𝑗× ∅𝑖,𝑗 ×𝑆𝑖,𝑗)𝑖=1,𝑛

∑ ( ∅𝑖,𝑗 ×𝑆𝑖,𝑗 )
𝑛−1
𝑖=2 +

1

2
 ×∑ ( ∅𝑖,𝑗 ×𝑆𝑖,𝑗)𝑖=1,𝑛

, 𝑗 =  2 𝑡𝑜 𝑦𝑛 − 1

,  (2.30) 

where yn is the number of nodes in the predominant flow direction, and Δy is the 

discretization in the predominant flow direction. 

The removal of dissolved chemical species (that is, DOC, DO, ammonium, and 

nitrate) from the domain was then given by Eq. 2.31. 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑓 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =  1 −
𝐶𝑡𝑛

𝐶1
 =  1 − 

𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
,   (2.31) 

where Cout was the flux averaged concentration of the chemical species at the outlet 

(j = tn) and Cin was the flux averaged concentration of the chemical species at the inlet 

(j = 1). The Da indicated the reaction regime for each reactive species. Da is defined 

as the ratio of the advective transport time scale and the reaction time scale as 

described in Eq. 2.32. 

𝐷𝑎 =  
𝜏𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
,         (2.32) 

where, τreaction was the characteristic reaction time scale and τtransport was the 

characteristic transport time scale given by the breakthrough time of a conservative 

tracer in the domain. The characteristic reaction time scale assuming 63% loss 
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(Pittroff et al., 2017) was thus given by Eq. 2.33 to calculate the apparent Da using 

values estimable in the field when 
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
> 5%. 

𝐷𝑎 =  − ln
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
,         (2.33) 

If  
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
≤ 5%., the characteristic reaction time scale was then given by Eq. 2.34 and 

2.35 to derive the apparent Da of the chemical species 

𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 
−ln (0.37)

− ln(
𝐶𝑦5

𝐶𝑖𝑛
)
 ×  𝜏𝑦5,       (2.34) 

𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 = 
𝜏𝑦5

ln(
𝐶𝑦5

𝐶𝑖𝑛
)
,         (2.35) 

where, 𝐶𝑦5 was the concentration of the chemical species at the first cross-section 

(y = y5) when 
𝐶

𝐶𝑖𝑛
≤ 5%, and 𝜏𝑦5 was the breakthrough time for a conservative tracer 

at the same cross-section, i.e., y = y5. In this case, 𝜏𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 case was the same as the 

breakthrough time of the conservative tracer in the domain (Eq. 2.36). 

𝐷𝑎 =  
𝑏𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡𝑖𝑚𝑒

𝜏𝑦5

ln(
𝐶𝑦5
𝐶𝑖𝑛

)

,        (2.36) 

The logarithm of Da to the base 10 (log10Da) characterized the reactive system, i.e., 

the domain with reaction and flow components with respect to a particular chemical 

species (further demonstration in Chapter 4). 

2.6 Summary 

In this chapter, I presented the case for the formulation of a comprehensive 

reaction network to simulate nutrient cycling in the subsurface using literature 

knowledge and geomicrobial activity identified at the subject site that adequately 

represented a variety of microbial life processes as well as carbon and nitrogen 
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transformation pathways. I conceptualized two simulation domains that described 

two distinct zones in the subsurface, the vadose zone and the permanently saturated 

deeper subsurface. The reaction network captured varying growth and respiration 

pathways. Its parameterization was challenging due to limited information on 

microbial activity in oligotrophic conditions. The presented conceptual approach and 

assessment scheme will be applied in Chapters 3-5 to study the effects of spatial 

heterogeneity and transient conditions on microbial biomass, activity and nutrient 

cycling. 
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3 Establishing baseline in saturated and unsaturated 

domains 

The first step to assess the impact of spatio-temporal heterogeneities is to consider 

the baseline, or the base cases. The base cases refer to the homogeneous domain, with 

a uniform flow field at steady state conditions in each flow regime. Thus, there are six 

(6) base cases, one in each flow regime in saturated domain and also in unsaturated 

domain. This sets the stage for the discussion of the chemical removal and microbial 

biomass distribution in the spatially heterogeneous domains in Chapter 4, as well as 

for the same in temporally dynamic regimes in Chapter 5. To characterize the base 

cases, the following aspects were explored: 

1. Concentration profile of chemical and microbial species along the 

predominant flow direction of the domain, 

2. Removal of chemical species from the domain, and 

3. Contribution of microbial subpopulations to the total biomass. 

These results are also partially presented in Khurana et al. (2021b). 

3.1 Base case in the saturated domain 

Since the reaction network is complex and novel, adherence to general redox 

hierarchy was an important aspect to check. The residence time (or the breakthrough 

time) of a conservative tracer was 205 days in the slow flow regime, 24 days in the 

medium flow regime and 2.4 days in the fast flow regime at steady state conditions 

since the imposed average velocity was different in each flow regime. 
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3.1.1 Chemical species 

The flux averaged concentration profile in the three investigated flow regimes 

(slow flow, medium flow, and fast flow) of chemical species in the saturated domain 

are presented in Fig. 3.1. The concentration at the inlet was the same for all scenarios, 

while it varied at the outlet. DOC concentration decreased continuously along the 

dominant flow direction. Initially, this reduction in DOC concentration was due to 

aerobic heterotrophy (henceforth referred to as activity) in all flow regimes. In slow 

and medium flow regimes, DOC concentrations continued to decrease due to 

anaerobic activity. This can be correlated with the growth and abundance of aerobic 

degraders (Fig. 3.3) in the same zones where DO removal and DOC reduction takes 

place in the upgradient parts of the domain (Fig. 3.1). In the slow flow and medium 

flow regimes, aerobic reducers decreased in biomass, and ammonia oxidisers and 

nitrate reducers emerged in suboxic (DO < 15 µM) and in anoxic conditions (where 

DO < 3 µM, detection limit of DO sensors (ISO, 2014)). Thus, ammonium 

concentration also reduced due to the growth of ammonia oxidisers and nitrate 

reducers. 

The predominant activity in the fast flow regime, on the other hand, was aerobic 

since the entire domain was predominantly oxic. The DO concentration at the outlet 

was approximately 4 µM. There were no ideal conditions for nitrate reducers to grow 

and proliferate, nor for nitrate reduction to take place. Lastly, since the concentration 

of nitrate was still high (> 63 µM) at the outlet in all base cases, no sulphate reduction 

takes place. In conclusion, the reaction network adheres to overall redox hierarchy; 

energetically favourable aerobic degradation occurred preferentially upgradient in 

the domain promoted by a relatively high concentration of aerobic degraders, 

followed by anaerobic heterotrophy and aerobic autotrophy at lower rates. 

Since the breakthrough time was the highest in the slow flow regime, the removal 

of reactive species, DOC (59.2%), DO (99.6%), ammonium (19.8%) and nitrate 

(74.7%), was also the highest there (Fig. 3.2). It follows that the rate of removal 
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decreased in the medium and fast flow regimes. Also, the removal of total nitrogen 

was the highest in the slow flow regime (57%), while the removal of TOC was the 

lowest there (32.6%) and highest in the medium flow regime (42.6%). 

3.1.2 Microbial biomass 

The total biomass concentration was the lowest in the fast flow regime (86 µM C) 

and the highest in the slow flow regime (122 µM C). The mobile biomass decreased 

with increasing flow rates, but the immobile biomass was constant between all the 

flow regimes. The microbial community was dominated by aerobes due to the influx 

of oxygenated water at the inlet. 

The proportion of active aerobic degraders and ammonia oxidizers increased with 

increasing flow rate; it was the lowest in the slow flow regime (~5%) and it was the 

dominant subpopulation in the fast flow regime (~87%) (Fig. 3.4). This was primarily 

due to the emergence of a small oxic zone in the slow flow regime domain, which 

expanded further downgradient in the medium and fast flow regimes (Fig. 3.1 and 

Fig. 3.3), also resulting in higher aerobic activity. Consequently, the contribution of 

active nitrate reducers to the total biomass was lowest in the fast flow regime (~3%); 

they grew near the outlet of the domain (Fig. 3.3). Due to the emergence of sub-oxic 

zones in the medium flow regime, active nitrate reducers sustained and formed a 

substantial proportion of the microbial community (14% as opposed to ~4% in slow 

flow regime and ~3% in fast flow regime). Overall, the immobile active fraction was 

higher than the mobile active fraction in all flow regimes (more than 7 times in the 

slow flow regime, more than 4 times in the medium flow regime and more than 2 

times in the fast flow regime). 
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Figure 3.1 Flux averaged concentration of chemical species in the base case 

(homogeneous domain) in each flow regime in saturated domain. 

 
Figure 3.2 Removal of chemical species in the base case of each flow regime relative 

to the incoming mass flux 
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Figure 3.3 Spatially averaged concentration of chemical species in the base case 

(homogeneous domain) in each flow regime in the saturated domain. 

 

 
Figure 3.4 Percentage contribution of each subpopulation of each microbial 

functional group in the base case of each flow regime in the saturated domain. 
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3.2 Base case in the unsaturated domain 

The average effective saturation (hereon referred to as saturation) was 0.57 in the 

slow flow regime, 0.65 in the medium flow regime, and 0.72 in the fast flow regime. 

The breakthrough time in the unsaturated domains was different from that in the 

saturated domain. It was 77 days at the average velocity of 7.3 10-4m d-1 in the slow 

flow regime, 16 days at the average velocity of 7.3 10-3 m d-1 in the medium flow 

regime, and 1.6 days at the average velocity of 7.3 10-2 m d-1 in the fast flow regime. 

3.2.1 Chemical species 

Since the process network in the unsaturated domain allowed for diffusion of DO 

from the air phase to the liquid phase (Chapter 2.2.5) when the degree of saturation 

was low, the analysis of the simulation results of the unsaturated domain was more 

complex. Having said that, DO was first consumed, then ammonium in sub-oxic 

and/or carbon limited conditions and then nitrate in sub-oxic to anoxic conditions 

but carbon rich conditions, Fig 3.5). The net removal of all chemical species, except 

nitrate and nitrogen, from the domain decreased with increasing flow rates (Fig. 3.6). 

The slow flow regime was a predominantly oxic system (in the water phase) at low 

degree of saturation, with DO continuously diffusing from the air phase to the water 

phase. This suppressed the reduction of nitrate in the downgradient region of the 

domain but allowed for continuous removal of ammonium via oxidation. In the 

medium flow regime, DO was fully consumed in the upgradient region of the system, 

which allowed for the reduction and removal of nitrate from the domain. The removal 

of ammonium via oxidation was, therefore, limited due to the limited presence of DO 

in the domain. The base case of the fast flow regime was predominantly oxic due to 

the persistent presence of DO and low aerobic heterotrophy. Thus, limited removal of 

nitrate and ammonium occurred in the fast flow regime. 
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Figure 3.5 Flux averaged 1D concentration profile of chemical species in the base 

case (homogeneous domain) of the unsaturated domain. 

 

Figure 3.6 Removal of chemical species from the base case in each flow regime 

normalized relative to flux at inlet of the domain. 

3.2.2 Microbial biomass 

The total biomass in all the flow regimes was approximately the same: 265 μM C 

in the slow flow regime, 248 μM C in the medium flow regime and 253 μM C in the 
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fast flow regime. The biomass subpopulations did shift considerably among 

themselves, between active and inactive fractions. 

In the slow flow regime, the highest contributor to microbial biomass were inactive 

aerobic degraders contributing 69% of total biomass in the domain (48% immobile 

and 21% mobile). Among active species, aerobic degraders contributed the most to 

the biomass in the domain (18%, 13% immobile and 5% mobile, Fig. 3.7 and Fig. 3.8). 

In the medium flow regime, active microbial species contributed 46% of the total 

microbial biomass in the domain (21% immobile and 5% mobile aerobic degraders, 

14% immobile and 3% mobile nitrate reducers, and 3% immobile ammonia 

oxidizers). Among the inactive species, aerobic degraders were the largest 

contributors at 42% (33% immobile and 9% mobile). Lastly, in the fast flow regime, 

aerobic degraders were the largest contributors to the microbial biomass in the 

system (81% immobile and 7% mobile). 

3.3 Discussion 

The activity of geomicrobial reactive systems is dependent on a variety of factors, 

such as nutrient availability, access to energy gradients, pH, pore size, hydraulic 

conductivity, particle size distribution (Smith et al., 2018). Testing the same reaction 

network (with the same parameter set) in a variety of flow regimes provided a view 

on both reaction dominant systems and flow dominant systems. This compensated 

for my approach wherein I did not explore additional scenarios varying 

concentrations of chemical species and their influence on microbial growth and 

distribution. Lastly, the results discussed in this chapter are useful base cases for 

further studies to test the hypotheses introduced in Chapter 1. 

There were several differences in microbial distribution among different 

functional groups as well as the abundance of each functional group within similar 

flow regimes between the unsaturated and saturated domains. 
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Figure 3.7 Spatially averaged immobile active biomass in the base case of the 

unsaturated domain. 

 

 

Figure 3.8 Percentage contribution of each subpopulation of each microbial 

functional group in the base case of each flow regime in the unsaturated domain. 

Microbial abundance can be derived from carbon content in the biomass using 

available conversion factors varying from 5 - 39 femtogram (fg) C/cell (Fukuda et al., 

1998;Vrede et al., 2002). This resulted in median values of total mobile biomass in 
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the saturated domain to be 109 to 1011 cells L-1 and in the unsaturated domain to be 

~1014 cells L-1. The biomass in the simulation results was higher than that reported 

in the aquifer at the subject site (Opitz et al., 2014a) while it is in the same order of 

magnitude of other studies (Akob and Küsel, 2011;Griebler and Lueders, 

2009;Grösbacher et al., 2018;Holm et al., 1992). 

Overall, the unsaturated domains contained higher biomass irrespective of the 

flow regime than the saturated domains. This fits with the general understanding that 

the shallow subsurface contains higher biomass than the deeper saturated subsurface 

(Magnabosco et al., 2018). Unsaturated domains provided conditions for 

proliferation of active aerobic degraders due to the constant diffusion of DO in low 

saturation sub-zones of the domain. Curiously, despite low saturation, mobile 

microbial species were also higher in the unsaturated domain in each flow regime. 

While the higher active biomass was mostly attributable to active aerobic degraders, 

inactive aerobic degraders were also much higher in the slow and medium flow 

unsaturated domains, compared to the saturated counterparts. At the same time, the 

biomass of the rest of the functional groups was similar in both saturated and 

unsaturated domains, accounting for differences in the flow regimes. For example, 

immobile active nitrate reducers were the highest in the medium flow regime among 

the unsaturated domains (at average saturation of 0.59) and they were also the 

highest in the medium flow regime among the saturated domains, with the nitrate 

reducers having a higher biomass in the lower saturation domain. 

The higher active biomass in unsaturated domains resulted in carbon limited 

conditions in transport limited regimes (that is, slow flow regime), resulting in 

carbon-depleted discharge from the domain. With the exception of nitrate, the 

removal of dissolved chemical species was higher in the unsaturated domain. The 

removal of nitrate, in contrast, was lower in the unsaturated slow and medium flow 

regimes, while it was comparable in the medium flow regime. This points to an 

optimum degree of saturation that enables removal of excessive nutrients (both 

carbon and nitrate) at about 50-60%, slightly higher than earlier reported values by 
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(Barros et al., 1995) and (Schjønning et al., 2011). This is also well studied in various 

carbon use efficiency with respect to degree of saturation. Nitrogen uptake should 

also be considered by practitioners; the optimal degree of saturation for microbial 

activity with respect to nitrogen removal is expected to be higher than that derived 

from carbon use efficiency studies alone. 

While the total biomass did not match the subject site observations, the relative 

contribution of the subpopulations of microbial species followed established findings. 

Interestingly, the relative contribution of the subpopulations was also the same 

between the unsaturated and saturated domains even though the absolute values of 

the biomass was different. For example, immobile microbial biomass indeed formed 

the majority biomass in the subsurface, with its ratio with mobile biomass changing 

based on nutrient availability, flow velocity and other environmental conditions 

(Griebler et al., 2002;Grösbacher et al., 2018), with higher ratios observed in 

oligotrophic conditions and lower ratios in nutrient rich conditions. This study 

treated oligotrophic conditions akin to transport limited systems, and nutrient rich 

conditions akin to transport dominant systems. 

While the relative contribution of microbial species was the same in corresponding 

flow regimes of varying saturations, it did change between locally mixed flow regimes 

and advection dominated flow regime, irrespective of saturation. It is further 

estimated that 60%-80% of microbial biomass in soil may be inactive (Lennon and 

Jones, 2011), similar to the observations in the slow and medium flow regimes, but 

not similar to those in the fast flow regime. This points to an interplay of the flow 

regime and degree of saturation, both governing the access to nutrient supplies and 

microbial activity (Grösbacher et al., 2018;Or et al., 2007). This implies that relative 

abundance only gives us a partial view of the microbial activity prevalent in the 

domain of our interest (Hunt et al., 2013;Kim et al., 2021). To understand the extent 

of microbial activity, the absolute values of the active fraction of the biomass are more 

useful. With newer technologies equipped to better characterize activity of microbes 

in environmental samples (Couradeau et al., 2019), it will be easier to draw the 
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comparison in the future. More importantly, the immobile fraction of the active 

biomass must be quantified since it was invariably higher than the mobile fraction of 

active species (Griebler et al., 2002;Grösbacher et al., 2018).  

This chapter provided preliminary insights into how varying water velocities/flow 

regimes and varying saturation may impact relative contribution of microbial species 

between inactive, active, mobile and immobile fractions in sub surficial homogeneous 

domains. The response of the system to chemical input may vary in spatially 

heterogeneous domains and/or temporally dynamic fluctuations in groundwater, 

further studied in Chapters 4 and 5. 

3.4 Summary and Conclusions 

I tested the reaction network in the homogeneous saturated domain at three 

different flow regimes. This is akin to testing the same in a batch culture with time 

being the only dimension. The process network adhered to basic redox hierarchy in 

that aerobic processes were energetically favourable over anaerobic processes, 

effectively capturing the transformation of carbon and nitrogen in the domain 

through a variety of pathways. 

Overall, transport limited processes, flow regimes, and saturation influenced the 

biomass abundance, which in turn influenced the removal of the chemical species 

from the domain. With this chapter as the foundation, further studies may be 

conducted to explore the effect of spatio-temporal heterogeneities on the 

biogeochemical potential of subsurface systems (Chapters 4 and 5).
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4 Impact of spatial heterogeneity on carbon and nitrogen 

cycling 

In this chapter, I aimed to quantify the impact of spatially distributed properties of 

the sub surficial solid matrix on the in situ biogeochemical function of 

microorganisms using a numerical modelling approach. I focused on spatial 

heterogeneity alone since varying permeability and conductivity in the subsurface 

influences water flux, degree of saturation and thus influences the establishment of 

microbial hotspots (Franklin et al., 2019). To do so, I realized 12 in silico scenarios of 

permeability and hydraulic conductivity fields of varying heterogeneity for all 

simulations. I imposed boundary conditions to achieve steady state flow conditions 

as described in Chapter 2, keeping the average water flux the same in all scenarios 

belonging to a particular flow regime. I ran simulations in all the two-dimensional 

domains till steady state conditions were achieved. This enabled me to investigate the 

impact of spatially distributed matrix properties in the subsurface (permeability, van-

Genuchten parameters in the unsaturated vadose zone and hydraulic conductivity of 

the aquifer matrix) on nutrient cycling in the subsurface with a focus on microbial 

activity and consumption of carbon and nitrogen thereof using reactive transport 

modelling. 

4.1 Simulated scenarios 

For each flow regime in both unsaturated and saturated domains, the 

homogeneous flow field was the base case scenario, described in detail in Chapter 3. 

I generated spatially heterogeneous domains in silico using a combination of variance 

in the log permeability field in the unsaturated domain and in the log hydraulic 
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conductivity field in the saturated domain, in addition to anisotropy to enforce highly 

variable flow conditions (Heße et al., 2014). The values of these parameters were 

based on literature and the subject site (Heath, 1983;Kohlhepp et al., 2017), aiming 

to represent a wide variety of geological features. See Table 4.1 for the scenario 

descriptions. The combination of variance and anisotropy effectively captured a 

variety of geological media ranging from alluvial sediments with low permeable 

lenses and preferential flow paths to fractured flow. Each random field was 

characterized by the same mean value of permeability and hydraulic conductivity in 

unsaturated and saturated domains, respectively. 

In total, I ran 147 simulations for the three different flow regimes in unsaturated 

spatially heterogeneous domains, and another 147 simulations in saturated spatially 

heterogeneous domains. A Python package, GSTools (Müller and Schüler, 2019), 

generated the described spatial random fields  for the spatially heterogeneous 

scenarios. 

The van-Genuchten parameters (m and α) in the unsaturated domain varied with 

permeability, scaled by the ratio of permeability and mean permeability in the 

domain (Schlüter et al., 2013): 

𝑉𝐺𝑖,𝑗
𝑝 = 𝑉𝐺𝑎𝑣𝑔

𝑝  ×  
𝑘𝑖,𝑗

𝑘𝑎𝑣𝑔
,        (4.1) 

where, 𝑉𝐺𝑖,𝑗
𝑝  is a van Genuchten parameter at node (i,j), 𝑉𝐺𝑎𝑣𝑔

𝑝  is the bulk property of 

the respective van Genuchten parameter for the entire domain (Chapter 2), kavg is the 

average permeability of the domain and ki,j is the permeability at node (i,j). The 

parameters were subject to limits based on observations recorded for clayey soils 

(Carsel and Parrish, 1988). 
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Table 4.1: Summary of spatially heterogeneous scenarios investigated for each flow 

regime. S. No. 1 is the homogeneous base case. 

S. No. Variance in 
permeability 

Anisotropy Number of 
realizations 

Category type 

1 0 1 1 0:1 

2 0.1 2 4 0.1:2 

3 0.1 5 4 0.1:5 

4 0.1 10 4 0.1:10 

5 1 2 4 1:2 

6 1 5 4 1:5 

7 1 10 4 1:10 

8 5 2 4 5:2 

9 5 5 4 5:5 

10 5 10 4 5:10 

11 10 2 4 10:2 

12 10 5 4 10:5 

13 10 10 4 10:10 

4.2 Data Analysis 

The breakthrough time was used as a metric to characterize the spatial 

heterogeneity in the domain. This enabled evaluating impact of spatial heterogeneity 

on matter flux alone, without considering impact of reactions. 

To evaluate the impact of spatial heterogeneity, I compared the mass removal of 

chemical species in spatially heterogeneous domains with the respective base case 

(homogeneous domains). I primarily used the Da (described in Chapter 2) to study 

the biogeochemical potential of a given domain in steady state conditions. The 

coefficient of variation of the concentration of these chemical species within the 

domain was given by Eq. 4.2. 
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𝑐𝑣 =  
𝜎

𝜇
,          (4.2) 

where, σ is the standard deviation of the observations and μ is the mean of the 

observations. A linear regression analysis of species removal vs. residence time (both 

in relative units to the homogeneous reference cases) for different log10Da ranges 

revealed the scalable relationship to address the impact of spatial heterogeneity on 

reactive species removal. For comparison with this regression analysis, the following 

expression predicted the impact of reducing breakthrough time alone on removal of 

reactive species, in case of a first order removal rate expression (Eq. 4.3): 

𝐶𝑡 = 𝐶𝑖𝑒
−𝑘𝑡,         (4.3) 

with Ci [ML-3] as initial concentration of reactive species, Ct [ML-3] as concentration 

of reactive species at time t [T], k as first order rate constant [T-1], and t as time taken 

for the reaction to occur. Then it follows that, normalized removal of reactive species 

may be described with: 

𝐶𝑖− 𝐶𝑡

𝐶𝑖
= 1 −  𝑒−𝑘𝑡         (4.4) 

To compare the removal of reactive species between two different time points, I 

adapted the above equation using Da to derive the analytical solution to the impact 

on removal of chemical species with respect to base case (“impact” for brevity): 

𝐼𝑚𝑝𝑎𝑐𝑡 =  
1− 𝑒−𝐷𝑎.𝑡𝑓

1− 𝑒−𝐷𝑎
        (4.5) 

with tf as ratio of the time taken for the reaction to take place in the two (2) 

different scenarios. This was same as the ratio of breakthrough time in the 

heterogeneous domain and that in the base case in this work. Furthermore, the 

impact of reducing breakthrough time on removal of reactive species, in case of a 

zeroth order (i.e., constant) removal rate R0 was given by:  

𝐼𝑚𝑝𝑎𝑐𝑡 =  𝑡𝑓 𝑅0         (4.6) 
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To evaluate the impact on microbial activity, I explored the contribution of active 

and inactive immobile and mobile fractions of the different microbial species present 

in the domain, and also the coefficient of variation of the concentration of microbial 

species and compared with their contribution in the respective base case scenarios. 

4.3 Results 

The characteristics of flow and transport of porous media such as conservative 

tracer breakthrough, microbial biomass in the domain and nutrient removal from the 

domain for heterogeneous domains differed from the base case in some scenarios. 

The base case was the homogeneous domain in all the three considered flow regimes 

in both unsaturated and saturated conditions (Chapter 3). I explored flux-averaged 

concentrations of mobile species and spatially averaged concentrations of immobile 

species in 1-D, along the predominant flow direction, and explored the 2-D 

concentration heat maps of the domain to compare the information lost when 

neglecting sub-sampling scale spatial heterogeneity. To aggregate results, the total 

microbial biomass in the domain, and nutrient removal from the domain were 

compared between the heterogeneous domains and respective base cases. 

4.3.1 Average saturation 

The average saturation was dependent on the average water flux in the system, 

with the fast flow regime being nearly saturated, and the slow flow regime being the 

driest (Chapter 3). In heterogeneous domains, the average saturation decreased 

monotonously with increasing variance in the log permeability field, irrespective of 

the flow regime (Fig 4.1) even though the average water flux in the base case and the 

corresponding heterogeneous domain was the same. The highest reduction in 

average saturation was within 20% of that in the base case (19% for slow flow regime, 

17% for medium flow regime and 15% for the fast flow regime). At the same time, the 

coefficient of variation of saturation increased in all flow regimes with increasing 
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heterogeneity with the highest impact on the slow flow regime (increased to more 

than 0.15) and the lowest impact on the fast flow regime (increased to more than 

0.13). 

4.3.2 Tracer breakthrough times  

For each flow regime, the tracer breakthrough time in heterogeneous domains 

varied from that in the base case. In both saturated and unsaturated domains, the 

breakthrough time in spatially heterogeneous scenarios was less than that in the 

corresponding base case (Fig. 4.2). This was a result of preferential flow paths that 

were introduced by the heterogeneous hydraulic conductivity fields. The same 

“category” (combination of variance and anisotropy) of heterogeneity induced 

varying impact depending on the flow regime, with higher average flow velocities 

leading to relatively stronger reductions of the breakthrough times. This difference 

in the impact of heterogeneity on tracer breakthrough times and thus the residence 

time of solutes in the domain was attributed to the dominant transport processes in 

the regimes. Diffusion played a stronger role in the transport processes in the slow 

flow regime, promoting mixing effects and reduced influence of the preferential flow 

paths in heterogeneous domains. This resulted in the lower deviation in 

breakthrough time from the base case in the slow flow regime. In contrast, in the 

medium and in the fast flow regime, transport was dominated by advection with little 

mixing between flow paths. The preferential flow paths in the heterogeneous 

domains therefore had a higher influence on the resulting tracer breakthrough times, 

and thus on the residence time of dissolved species in these regimes. 

4.3.3 Distribution of chemical species 

Unsaturated domains 

The spatial heterogeneity resulted in varying distribution of chemical species in 

both saturated and unsaturated domains. In the unsaturated domain, the low flow 

zones were unsaturated compared to the high flow zones with preferential flowpaths, 
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Figure 4.1 Decreasing average saturation with decreasing average water flux and 

increasing spatial heterogeneity 

 

Figure 4.2 Breakthrough time in different heterogeneous scenarios normalized by 

that in the base case (%) in three flow regimes: Slow, medium, and fast flow in 

saturated and unsaturated conditions. The variance is defined as the variance in the 

log permeability field in unsaturated conditions, and in the log hydraulic conductivity 

field in saturated conditions. 
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resulting in persistent oxic conditions in the low flow zones and consequently, 

continuous diffusion of oxygen from the air phase to the water phase in these zones. 

However, even the spatially heterogeneous domains remained largely oxic in the slow 

flow regime, also evident in the low coefficient of variation of the concentration of DO 

(Fig. A1, Fig. A3 and Fig A4). The low flow zones thus allowed for proliferation of 

aerobic activity and consumption of DOC. Thus, the coefficient of variation of DOC 

concentration was the highest in the slow flow regime, regardless of the extent of 

spatial heterogeneity. At the same time, the variation in the concentration of the 

chemical species was not impacted by spatial heterogeneity (Fig. A3). 

Saturated domains 

All the saturated domains allowed for higher persistence of DO in the high flow 

zones. Similar to the unsaturated domains, the distribution of chemical species was 

not impacted by spatial heterogeneity in the slow flow regime due to high rates of 

microbial activity near the inlet of the domain (Fig. A2). In contrast, a larger oxic zone 

with aerobic activity existed in the upgradient section of the domains in medium and 

fast flow regimes. There, spatial heterogeneity resulted in observable shifts of the 

transition from oxic to sub-oxic conditions or from aerobic activity to anaerobic 

activity to further downgradient parts of the domain. Because of the shift of the oxic-

anoxic interface, nitrate reduction took place further downgradient in the domain and 

at the interface of high flow and low flow zones (Fig. A2 and Fig. A5). However, the 

coefficient of variation of the chemical concentrations did not vary much with spatial 

heterogeneity despite these shifts in the oxic-anoxic interfaces (Fig. A3). 

It was only in the fast flow regime, that the coefficient of variation of nitrate 

concentration increased with spatial heterogeneity. This is attributable to the domain 

being predominantly oxic. Thus, the low flow zones that allowed for marginal 

reduction in nitrate concentration resulted in a much higher coefficient of variation 

in the domains (Fig. A3). 
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4.3.4 Aerobic activity 

Aerobic activity in the unsaturated and saturated domains was assessed 

separately since the diffusion of oxygen from the air phase to water phase in 

unsaturated domains resulted in a confounding relationship. 

Unsaturated domains 

In the unsaturated domains, consumption, or removal of DO was estimated by 

combining the rate of aerobic respiration by aerobic degraders, and that of ammonia 

oxidation by ammonia oxidisers. These rates represent the consumption of DO 

through different routes, and the impact of spatial heterogeneity on these rates with 

respect to the base case is presented in Fig. 4.3. The left panel of Fig. 4.3 presents this 

impact against changing saturation in the heterogeneous domains. The right panel 

presents the same data against changing breakthrough time in the domain. 

 
Figure 4.3 Total rate of consumption of DO normalised by that in the base case in 

each flow regime in unsaturated domains. 

In the base case of the fast flow regime, DO was consumed at the highest rate (at 

~40 μM d-1) despite the fast flow regime being near saturation, while DO was 

consumed at the lowest rate in the slow flow regime (~0.6 μM d-1) despite it being 

predominantly oxic. Thus, a reduction of ~15% in the aerobic activity in slow flow 



Spatial heterogeneity Dissertation  

54 

regime is very little absolute variation from the base case, with the lowest aerobic 

activity in spatially heterogeneous domain at ~0.51 μM d-1. However, in the fast flow 

regime, aerobic activity in heterogeneous domains decreased to ~55% of that in the 

base case, resulting in the DO consumption rate dropping to ~20 μM d-1. In the 

medium flow regime, on the other hand, DO consumption increased to 140% of that 

in the base case with decreasing saturation and decreasing breakthrough time, from 

~5 μM d-1 to higher than 7 μM d-1. 

Saturated domains 

The impact of spatial heterogeneity on the consumption of DO in saturated 

domains was like that in the unsaturated domains for the slow and fast flow regimes 

(top right panel in Fig. A7). Like the unsaturated domain, there was no remarkable 

impact on consumption of DO in the slow flow regime, while the consumption of DO 

decreased monotonously with decreasing breakthrough time and increasing spatial 

heterogeneity in the fast flow regime (Fig. A7). In contrast to the unsaturated domain, 

the removal of DO was not impacted by spatial heterogeneity in the medium flow 

regime. 

4.3.5 Removal of chemical species 

With spatial heterogeneity influencing chemical species distribution, water 

saturation and aerobic activity, the persistence of the other chemical species in the 

domain was also impacted. The concentration of the reactive species leaving the 

spatially heterogeneous domains differed from that in the corresponding base cases. 

Thus, the removal of chemical species from the domain was dependent on spatial 

heterogeneity and the flow regime. 

Unsaturated domains 

In the slow flow regime, removal of chemical species was affected by spatial 

heterogeneity. DOC removal was marginally affected with reduction in removal by 
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20% in extremely high spatially heterogeneous domain, and nitrate removal 

decreased down to less than 5% of that in the base case. This extremely low value is 

due to the introduction of low saturation, oxic subzones in heterogeneous domains, 

leading to complete suppression of nitrate reduction, also evident in the 

concentration profiles (Fig A4). 

In the medium flow regime, DOC removal increased with increasing heterogeneity, 

and nitrate removal decreased with increasing spatial heterogeneity, and the 

variation in the concentration of nitrate in the domain also reduced with increasing 

spatial heterogeneity. DOC removal, on the other hand, first increased 120% of that 

in the base case in select heterogeneous scenarios, and then was similar to that in the 

base case for highly spatially heterogeneous domains. 

In the fast flow regime, DOC removal decreased linearly to ~80% of that in the base 

case (Fig A6). Ammonium removal was linked with DOC removal and decreased with 

increasing spatial heterogeneity. Nitrate removal increased by several orders of 

magnitude. The high scale was attributable to negligible removal of nitrate in the base 

case (~10-5 μM). Thus, even a slight increase in removal of nitrate from the domain 

resulted in seemingly high impact on nitrate removal, even though the absolute 

removal of nitrate was still low. 

Saturated domains 

Spatial heterogeneity did not affect removal of most chemical species in the slow 

flow regime. However, it impacted (decreased) the removal of carbon and nitrogen in 

heterogeneous domains with increasing spatial heterogeneity compared to the base 

cases (Fig. A7). DOC removal was less than in the base case in all the flow regimes  (as 

low as 40% of the base case values in the fast flow regime. The removal of DO also 

similarly reduced in the fast flow regime while no or negligible reductions were 

observed for most slow and medium flow scenarios. Nitrogen removal was reduced 

in the slow and medium flow regimes yet reaching (as low as 70% of base case 
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values). One exception was nitrogen removal in the fast flow regime, which increased 

(up to 6 times the base values) compared to the base case. 

4.3.6 Predicting impact of spatial heterogeneity on redox regimes and biomass 

Da was useful to describe the above results for both saturated and unsaturated 

domains (Fig. 4.4-4.5) as it assisted in categorizing simulation domains with 

respective flow regimes and reaction regimes into 4 categories of reactive systems: 

Transport dominated/reaction limited where log10Da<-1, transport influenced where 

1<log10Da<0, reaction influenced where 0<log10Da<0.5, and reaction 

dominated/transport limited where log10Da>0.5. Thus, the impact of spatial 

heterogeneity on bulk chemical removal can be predicted using estimates of Da and 

breakthrough time in both saturated and unsaturated domains. 

4.3.7 Contribution and distribution microbial biomass 

Since spatial heterogeneity affected the distribution of chemical species in the 

domain, the distribution of microbial biomass was likewise affected (Fig. A8 for 

selected heterogeneous scenarios in the unsaturated domain and Fig. A9 in the 

saturated domain). While aerobic immobile degraders were active and most 

abundant near the inlet of all the domains, and along the preferential flow paths in 

the downgradient zone of the domain, they were also active in low saturation and low 

flow zones. Ammonia oxidizers were active at the interfaces between high flow and 

low flow regions of all the domains as well as in carbon limited and oxygen rich 

unsaturated domains. They co-existed with high concentration of active aerobic 

degraders, but at concentrations lower by more than an order of magnitude. Since 

nitrate reducers also required carbon to proliferate, they only persisted in carbon-

rich but oxygen depleted zones of all heterogeneous domains. They co-existed with 

ammonia oxidizers but typically, at higher concentrations. 
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Figure 4.4 Predicting impact of spatial heterogeneity on reactive species removal 

in different reaction regimes indicated by log10Da in unsaturated domains. 

 

Figure 4.5 Predicting impact of spatial heterogeneity on reactive species removal in 

different reaction regimes indicated by log10Da in saturated domains. 

While the distribution between inactive and active subpopulations depended on 

the degree of saturation and the flow regime (Fig. 4.6 and Fig. 4.7), the active 

immobile fraction of the biomass was much higher than active mobile fraction. Thus, 

the immobile fraction made a substantial contribution to nutrient cycling in all 

domains irrespective of the flow regime and degree of saturation. The coefficient of 

variation of this fraction also increased for all species with increasing spatial 

heterogeneity (Fig. A10) regardless of degree of saturation and flow regime. 
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Unsaturated domains 

In the slow flow regime, the inactive fraction of microbial biomass was the highest 

contributor to the total biomass, also in heterogeneous domains. Whereas the 

immobile fraction decreased with increasing spatial heterogeneity, the mobile 

fraction increased. The shift in the fraction is attributable to a shift in location of 

aerobic degraders from immobilized on the matrix to mobile in the groundwater. The 

active fraction on the other hand was stable with changing spatial heterogeneity (Fig. 

4.6). 

In the medium flow regime, the immobile fraction of both active and inactive 

species decreased by up to 20% with increasing spatial heterogeneity (reduction 

attributable to reduction in biomass of nitrate reducers and inactive aerobic 

degraders), while the mobile fractions increased (Fig. A11). The inactive mobile 

fraction increased by up to 40%, attributable to aerobic degraders (Fig. 4.6). Except 

for immobile active aerobic degraders and immobile inactive nitrate reducers, the 

variation in the concentration of all the species increased with spatial heterogeneity. 

In the fast flow regime, the active immobile fraction decreased by up to 40%, that 

transferred to an increase in inactive fraction (by up to 20% for each immobile and 

mobile). This shift in fraction is attributable to aerobic degraders, as they are the 

largest contributors to microbial biomass in the fast flow regime. The active mobile 

fraction was relatively stable with increasing spatial heterogeneity. With the 

exception of immobile inactive aerobic degraders and immobile active nitrate 

reducers, the coefficient of variation of the biomass of all microbial species increased 

with increasing spatial heterogeneity. Overall, active immobile biomass decreased to 

varying extents (depending on the flow regime) with decreasing breakthrough time 

and decreasing saturation (Fig. 4.6). 
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Saturated domains 

The distribution of microbial biomass among different fractions for changing 

spatial heterogeneity was similar in the saturated domains (Fig. A12). As in the 

unsaturated domain, total active immobile biomass concentration in the domain, 

diverged from the base case as heterogeneity increased. The biomass of active 

immobile aerobic degraders decreased with increasing heterogeneity regardless of 

the flow regime, with lowest values reaching only 40% of the base case biomass. The 

biomass of immobile active ammonia oxidizers and nitrate reducers also decreased 

with increasing heterogeneity in slow (~75% and ~90% of base case, respectively) 

and medium flow regimes (30% and 85% respectively). However, the impact on the 

biomass of immobile active nitrate reducers was the reverse in fast flow regime 

(increase to 5 times the concentration in the base case). Lastly, there was no impact 

of spatial heterogeneity in the biomass of immobile active ammonia oxidizers in the 

fast flow regime. 

Overall, active immobile biomass decreased with increase in spatial heterogeneity 

in all the flow regimes, while active mobile biomass increased marginally. Inactive 

immobile biomass reduced with spatial heterogeneity in slow and medium flow 

regimes, while it increased in the fast flow regime. Lastly, inactive mobile biomass 

increased with heterogeneity in all flow regimes. While the ratio of the 

subpopulations differed between the flow regimes, the ratio decreased linearly with 

respect to the base case in each flow regime (Fig. 4.7). 

4.4 Discussion 

In this chapter in silico scenarios representing a wide variety of geological settings 

to study the fate of reactive chemical species in the spatially heterogeneous 

subsurface revealed the influence of spatial heterogeneity on microbial redox 

dynamics. In total, 12 scenarios represented a variety of heterogeneous flow fields 
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from layered alluvial deposits to fractured bedrock, covering most physically 

(variance) and geometrically (anisotropy) plausible scenarios. 

 

Figure 4.6 Relative contribution of subpopulations of all the microbial functional 

groups based on the state of activity and the location to the total biomass in spatially 

heterogeneous unsaturated domains. 

 

Figure 4.7 Relative contribution of subpopulations of all the microbial functional 

groups based on the state of activity and the location to the total biomass in spatially 

heterogeneous saturated domains. 

As described in Chapter 2, the same comprehensive reaction network was used in 

all the flow regimes at varying saturation as well as in the base cases. This enabled 
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me to study of the impact of spatial heterogeneity on microbial activity and sub 

surficial nutrient dynamics. 

Solute transport in the subsurface is affected by both spatial heterogeneity and the 

degree of saturation, displayed in the varying impact on breakthrough time with 

varying saturation. Lower velocity and lower saturation results in higher 

contribution of matrix flow for solute transport in heterogeneous domains (McIntosh 

et al., 1999), In contrast, preferential flow contributes more to solute transport in 

domains exhibiting higher degree saturation, or with higher water flux rates (Koestel 

et al., 2012). This resulted in varying impact on tracer breakthrough time in all 

heterogeneous domains at steady state conditions, with the saturated domains 

exhibiting a stronger reduction in breakthrough time with increasing heterogeneity. 

In near saturation domains, it can be as low as 40% of average flow characteristics 

(Koestel et al., 2013), in the same scale as that displayed in this chapter. Concurrently, 

the flow regimes with higher average water flux rates exhibited a stronger reduction 

in breakthrough time compared to the slower flow regimes. 

4.4.1 Implications of spatial heterogeneity 

In the subsurface, water flux influenced by spatial heterogeneity governs the 

distribution of microbial hotspots resulting in preferential flow paths hosting aerobic 

microbial activity (Franklin et al., 2019). The results presented in this chapter give 

important insights into how a microbial community with varying respiration 

strategies (both aerobic and anaerobic) may evolve in spatially heterogeneous (both 

saturated and unsaturated) environments. 

Spatial heterogeneity results in differential distribution of saturation and velocity 

patterns. Drier domains (slow flow regime) exhibited higher variation in saturation 

compared to wetter domains (fast flow regime, (Basu et al., 2010)). Penna et al. 

(2009) however reported that moderately saturated soils exhibited the highest 

coefficient of variation. Given that these studies examined soil samples from different 
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locations with different topographic conditions and land use/cover (not considered 

in this thesis) and the simulations are also limited by enforced boundary conditions, 

the results are not directly comparable. However, the trend of increasing coefficient 

of variation with increasing spatial heterogeneity in the domain is clear. 

The varying saturation in unsaturated heterogeneous domains does heavily 

influence gaseous diffusion. This is important to note as the rate of DO diffusion from 

the air phase to the water phase was higher than that of the substrate flux in the slow 

flow regime, making the system carbon limited (Or et al., 2007). Surprisingly, the 

higher variation in saturation does not result in higher variation in concentration of 

DO in the domain in the slow flow regime. This is because the diffusion of DO occurs 

throughout the domain (except for select preferential flow paths where advective 

transport supersedes gaseous diffusion) almost uniformly, despite the spatially 

heterogeneous structure. In turn, the coefficient of variation was also similar for DOC, 

DO and nitrate since they are consumed relatively quickly in the slow flow regime. 

This resulted in much lower impact of spatial heterogeneity on microbial biomass and 

removal of chemical species. The transport limitation of the substrate flux has thus 

the highest control on the distribution of microbial biomass among different 

subpopulations and subsequent chemical removal from the reactive system (Thullner 

et al., 2005). 

In contrast to the slow flow regime, the domain in the fast flow regime was almost 

saturated, and gaseous diffusion did not influence DO concentration in the domain. 

The variation in DO concentration increased with increasing spatial heterogeneity 

and reducing breakthrough time. Further, DO concentration was higher in 

preferential flow paths and DO removal (and thereby DOC removal) was linearly 

dependent on breakthrough time alone (Sanz-Prat et al., 2016), being a reaction 

limited system. Given the dominant oxic system, anaerobic activity did not occur in 

the system at all, or to a marginal extent in the saturated domain. 
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The medium flow regime was advection dominated, exhibiting lower average 

saturation than the fast flow regime but higher than the slow flow regime. This 

regime, thus, did not allow for uniform gaseous diffusion along the preferential flow 

paths (in contrast to the slow flow regime) but allowed for higher persistence of DO 

in the low-flow zones of the domain (in contrast to the fast flow regime). At the same 

time, it allowed for higher persistence of DOC further downgradient in the domain 

(similar to the fast flow regime). Thus, aerobic microbial activity was limited by 

gaseous diffusion in these systems and enabled by advective transport processes. 

This interplay of gaseous diffusion and solute transport gave rise to sub-oxic and 

anoxic niches in downgradient areas of the domain, which allowed for the growth of 

nitrate reducers and higher removal of nitrate from the system, and carbon. Previous 

studies have also displayed higher microbial activity in higher saturation systems 

(Brangarí et al., 2018). In contrast, chemical species removal decreased with 

increasing spatial heterogeneity in the saturated medium flow regime, despite them 

allowing for both aerobic and anaerobic activity.  

Overall, characterizing the orientation of the spatially heterogeneous soil 

properties, although important (Jang et al., 2017), did not accurately predict the 

distribution of microbial and chemical species in heterogeneous domains alone. The 

flow regime (and thereby the average saturation) had a critical role to play 

(Grösbacher et al., 2018;Gurevich et al., 2021). For the same orientation of spatially 

heterogeneous permeability field, DO distribution (and thereby aerobic activity) may 

be distributed differently in the system. Spatial heterogeneity allowed for this 

apparent co-occurrence of several microbial species by providing appropriate niches, 

similar to observations in the field (Alewell et al., 2006;Grösbacher et al., 

2018;Lohmann et al., 2020;Schwab et al., 2017;Waldron et al., 2009), although the 

diversity of microbial communities varied in both space and time. Thus, sub-field 

scale geologic heterogeneity governs microbial activity (Gurevich et al., 2021), and 

these heterogeneities do not allow for sequential redox hierarchy to be applicable at 

larger scales (Alewell et al., 2006). At the same time, spatially distributed microbial 
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growth can also be linked to both carbon limitation (Geza et al., 2021) and nitrogen 

limitation (Austin et al., 2004;Schimel and Weintraub, 2003) in substrate flux limited 

systems, because of hydrologic controls (Kim et al., 2019;Kim et al., 2009).  

While these sub-scale differences may not impact bulk microbial activity or 

chemical species removal (see below), they can still inform our interpretation of 

sampling techniques and data obtained from the subsurface: from lysimeters, 

monitoring wells, soil and rock cores. Since immobile microbes account for more 

microbial activity compared to mobile microbes (Grösbacher et al., 2018), they are 

necessarily the subpopulation to quantify. Estimating microbial activity based on the 

mobile planktonic biomass (Smith et al., 2018) present in groundwater or seepage 

water may thus be inaccurate. The ratio of immobile and mobile species, however, 

depended on the degree of saturation, the flow regime, and the breakthrough time. 

Thus, the results of this chapter support previous studies in that the immobile 

microbes are the major contributors to microbial respiration in the subsurface 

(Alfreider et al., 1997;Griebler et al., 2002;Grösbacher et al., 2018), by providing the 

link between heterogeneous structures in the domain, and also providing a scaling 

relationship to estimate the immobile biomass on the basis of sampled planktonic 

biomass. Having said that, all functional groups were present in all subpopulations, 

and thus, seepage water and groundwater samples are useful to evaluate microbial 

diversity in the reactive system of interest. 

Lastly, the ratio of active and inactive biomass is predictable, given the extent of 

spatial heterogeneity and the prevailing flow regime in the reactive system of interest 

if fully saturated, or the degree of saturation if variably saturated. Since spatial 

heterogeneity and the flow regime combined to make nutrient limiting/nutrient 

scarce conditions for microorganisms in all simulated scenarios, inactive biomass 

reduced with both increasing spatial heterogeneity and decreasing saturation 

(Manzoni et al., 2014). 
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4.4.2 Predicting chemical removal in heterogeneous saturated reactive systems 

Since spatial heterogeneity impacted microbial biomass distribution and microbial 

activity, it was not surprising that spatial heterogeneity also impacted carbon and 

nitrogen removal. In advective systems, travel time could be used as an indicator of 

the spatial heterogeneity of the domain (Painter, 2018), and steady state reactive 

transport models could be replaced by travel time models as well (Sanz-Prat et al., 

2015, 2016). But for locally mixed flow regimes, this did not hold. Additionally, the 

validity of using the travel time approach depended on the estimated Da number of 

the saturated reactive system as well. 

In the simulated scenarios, Da varied over 4 orders of magnitude, and the impact 

of spatial heterogeneity depended on the breakthrough time and log10Da. Since 

spatial heterogeneity governed the distribution of water flux and access to nutrients, 

it had limited impact on reaction dominated (or transport limited) systems where 

log10Da was higher than 0.5. In reaction and transport influenced systems, spatial 

heterogeneity impacted the mass removal in a linear relationship with the 

breakthrough time. 

To explore the impact of decreasing breakthrough time further, I compared the 

trend of removal of reactive species in first order rates and zero order rates with 

reduced residence times with the simulation results for varying values of log10Da. 

With increasing log10Da (between 0 and 0.5), the root mean squared error (RMSE) 

between the approximated analytical solution for a first order reaction and the 

simulation results decreases. Additionally, the data points lie in between the solutions 

for first order and zero order kinetics, as it would be the case for Monod kinetics in 

case of reduced residence times. Consequently, the impact of spatial heterogeneity on 

reaction influenced systems may be described on the basis of reducing residence time 

alone and the results do not allow to determine if additional heterogeneity effects on 

removal take place. For transport influenced systems first order kinetics approximate 

to zero order kinetics. Additionally, the impact on mass removal of reactive species in 
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this domain is lower than estimated from the analytical solution. Therefore, while 

mass removal of reactive species reduces with reducing breakthrough times, it does 

not follow Monod kinetics which implies that heterogeneity has a different impact on 

removal than changing only the residence time. In fact, the impact of spatial 

heterogeneity on mass removal is lower than that predicted by reducing residence 

time alone.  

In transport limited systems, on the other hand, the mass removal either 

dramatically increased in the fast flow regimes or dramatically decreased in the slow 

flow unsaturated domains. In the fast flow regimes, the increase is attributable to 

negligible removal of the corresponding nutrients in the base case (specifically, 

nitrogen in the fast flow regime). The heterogeneous conditions in these domains 

provided niches to the relevant microbial species to become active, and thus even a 

marginal increase in the relevant microbial activity results in a remarkably high 

impact on the removal of the corresponding nutrient when compared to the base case. 

On the same lines, in the slow flow unsaturated domains, the heterogeneous 

conditions and lower saturation provided for higher aerobic activity. This resulted in 

the complete elimination of nitrate reduction processes. The observed high impact in 

mass removal with heterogeneity was thus to some extent an artefact that may not 

represent a general trend. Overall, while heterogeneity dids have an impact on 

nitrogen removal in transport limited systems, the log10Da value remained below -1, 

indicating low absolute activity/removal. 

4.5 Summary and Conclusions 

In this chapter, I explored the impact of spatial heterogeneity on geomicrobial 

redox dynamics in the subsurface by exploring a wide range of unsaturated and 

saturated reactive systems, spatially heterogeneous domains and flow regimes, from 

locally mixed regimes to dominantly advective flow regimes and a complex process 
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network accounting for a variety of reactive species across both aerobic and 

anaerobic microbial processes. 

A combination of variance in the log permeability (unsaturated domain) and 

hydraulic conductivity (saturated domain) fields, and anisotropy resulted in a variety 

of spatially heterogeneous domains. Reduction in solute residence time in the domain 

adequately represented this spatial heterogeneity. Biomass persistence, distribution, 

and nutrient cycling depended on the spatial heterogeneity at the sub-meter scale in 

the subsurface to varying extents. Flow regime played an influential role in the 

average behaviour of both unsaturated and saturated domains. 

The total microbial biomass, as well as the subpopulations thereof (between active 

or dormant, mobile or immobile) depended on the flow regime and spatial 

heterogeneity. This had a cumulative impact on nutrient cycling in the subsurface. 

The activity of the microbial species in the domain was governed by the spatial 

heterogeneity as it influenced the distribution of nutrients and energy sources. 

Several microbial species that are conventionally accepted to occupy mutually 

exclusive niches may co-exist in the subsurface in close vicinity at varying activity 

states. The evolution of sub-oxic zones with anaerobic activity in predominantly oxic 

systems depended on both spatial heterogeneity and the flow regime, but surely 

impacted the overall chemical removal from the domain. Since modelers and 

experimentalists do not conventionally resolve these small-scale heterogeneities the 

accuracy of the prediction of biogeochemical cycles at the larger scale suffers. Overall, 

spatial heterogeneity is not of significance in transport limited reactive systems, 

while it is more relevant in advection dominated reactive systems.
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5 Impact of temporal dynamics on carbon and nitrogen 

cycling in the subsurface 

In this chapter, I aimed to quantify the impact of temporal dynamics on microbial 

activity and chemical discharge in terrestrial subsurface settings through numerical 

simulations since there is considerable interest in linking processes occurring in 

different compartments of the Earth’s Critical Zone such as weather events above the 

surface with those in the surficial soil, root zone, the vadose zone and eventually the 

deep subsurface (Guo and Lin, 2016). 

Linking these processes is not a trivial task as they take place along time scales 

from days to millions of years (Brantley et al., 2017;Guo and Lin, 2016). I used the 

novel and comprehensive reaction network in Chapter 2 to simulate scenarios that 

combined temporal fluctuations of the external forcing with different types of 

subsurface heterogeneities to determine the responsiveness of the subsurface 

reactive system. I assumed that the infiltration recharge and groundwater head 

fluctuated responding to weather events, diurnal, seasonal and inter-annual cycles in 

atmospheric conditions. The results help estimate the variability in nutrient 

discharge in a wide range of sub-surficial microbial reactive systems. This, in turn, 

contributes towards improved predictability of reactive transport models in 

transient conditions at field scales. 

This chapter investigated the effect of temporal dynamics in forcings on microbial 

activity in and chemical discharge from reactive subsurficial systems. For this, I used 

the previously introduced model set up (Chapter 2) and used homogeneous domains 

in all the flow regimes in steady state conditions (Chapter 3) as the base case. Since 

the subsurface is spatially heterogeneous, the steady state conditions in spatially 

heterogeneous systems (Chapter 4) were also used as base cases. I subjected these 

reactive systems at steady state conditions to temporal dynamics by varying the 
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external forcing, that is, groundwater head at the inlet. I considered diurnal 

fluctuations, seasonal and inter-annual cycles in groundwater head, and thereby flow 

velocity, in conjunction with varying spatial heterogeneity of the aquifer. 

5.1 Simulated scenarios 

Based on the long-term groundwater head observations used by Jing et al. (2018), 

I determined that groundwater head can be described by a Gaussian process model 

(also known as a multivariant Gaussian distribution) with an exponential like 

covariance model. I, thus, generated three scenarios capturing different aspects of 

temporal dynamics based on this model; using three values of the variance (1,2, and 

5 m2) and two correlation time scales to incorporate annual (or seasonal with length 

scale as 365 days, referred to as g1(t)) and super-annual cycles (with length scale as 

730 days, 2 years, referred to as g2(t)) in the groundwater head. Superimposing the 

time series g1(t) and g2(t) and centring the mean of the distribution around 1 using 

Eq. 5.1 resulted in the time series imposed on the inlet of the boundary (f(t)): 

𝑓(𝑡) =
𝑔1(𝑡)+𝑔2(𝑡)

𝜇 
,          (5.1) 

where, μ is the mean of the sum of g1(t) an g2(t). I applied the product of this time 

series (f(t)) with the recharge (for the unsaturated domain) and with the head (for 

the saturated domain) at the inlet for each scenario as the temporally varying forcing. 

The three imposed time series showed varying temporal characteristics (Table 5.1). 

The covariance of the mean-adjusted time series varied between 0.15 and 0.27. For 

the first time series, the memory (the time lag when autocorrelation reduces to below 

0.7, see below) was 39 days, while for the third time series with the highest 

covariance, the traceability was 166 days. See Fig. A13 for the autocorrelation 

function. 
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Table 5.1 Summary of temporally dynamic scenarios investigated. 

S. No. Scenario name Co-variance^ Traceability (days) 

1 T1 0.15 39 

2 T2 0.17 155 

3 T5 0.27 166 

*Super-annual (time scale of 2 years) superposed with annual cycle (time scale of 1 year, representing seasonal cycles), both 

having the same variance. ^The co-variance is of the resulting superposed time series 

I ran transient simulations for a period of 15 years to evaluate the impact of long-

term temporal dynamics. The initial conditions for these simulations were steady 

state conditions induced in each domain as described in Chapter 4. Even though the 

water flux varied in time to simulate temporal dynamics; the time averaged water flux 

in each domain was constant for each flow regime over the entire simulation period 

of 15 years for the purposes of keeping the results of the simulations comparable. In 

total, imposing three time series scenarios on 48 spatially heterogeneous domains 

and one homogeneous domain in three different flow regimes resulted in 441 

simulations. 

5.2 Data analysis 

I recorded observations at a time interval of 5 days in all scenarios, extracting the 

following response variables from the simulation results: 

1. Chemical/reactive species: Normalized flux averaged concentration of each 

species leaving the domain, and 

2. Microbial biomass: Normalized total biomass of each microbial species in the 

domain. 

The impact of temporal dynamics in the external forcing on the above response 

variables was characterized by cross-correlation, backward traceability, and 

responsiveness. Using these characteristics of response variables, I evaluated the 
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impact of spatio-temporal heterogeneities (base case being homogeneous domains in 

temporally dynamic conditions) and the impact of temporal dynamics (base case 

being spatially heterogeneous and homogeneous domains in steady state conditions). 

5.2.1 Cross-correlation, memory and backward traceability 

I used the peak value of time lagged cross-correlation (Pearson, referred to as R 

hereon) to investigate the strength of the link between response variables and 

external forcing. I adapted classification of correlation into strong, moderate and 

weak types from (Lehmann et al., 2021;Moore et al., 2013). Weak correlation (-

0.4<R<0.4) indicated that the value did not change in a synchronized manner with the 

head signal at the inlet. If R>0.7, then it was strongly correlated with the forcing, 

indicating that the response variable is changing synchronously with the forcing. 

Temporal variations in a time series signal were linearly traceable when the 

autocorrelation of the time series is strong even over a time lag. The time point (in 

days) after which the lag autocorrelation fell below 0.7 was referred to as “memory” 

of the time series signal. 

A traceable linear relation also existed between the forcing and the response 

variables as long as the lag cross-correlation was strong even over a time lag. The time 

point (in days) after which the lag cross-correlation fell below 0.7 was referred to as 

"backward traceability”. In other words, backward traceability indicated the duration 

of the impact of the forcing on response variables of a system. 

5.2.2 Responsiveness 

In this chapter, the root mean squared amplitude of the variation induced in the 

response variables due to temporal dynamics at the inlet was referred to as 

“responsiveness” for brevity, calculated using Scipy package (Virtanen et al., 2020) as 

explained in Eq. 5.2: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =  √max (𝑃𝑜𝑤𝑒𝑟 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝐶𝑛𝑜𝑟𝑚(𝑡))),  (5.2) 
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where Cnorm(t) was calculated using Eq. 5.3: 

𝐶𝑛𝑜𝑟𝑚(𝑡) =  
𝐶𝑜𝑢𝑡(𝑡)

𝐶𝑜𝑢𝑡,𝑏𝑎𝑠𝑒
,        (5.3) 

where Cout(t) was the time series signal of concentration of chemical species at the 

outlet and Cout,base was the concentration of the same chemical species at the outlet in 

steady state conditions. To assess the responsiveness of spatially heterogeneous 

domains specifically, I normalized it by the responsiveness (NR) of corresponding 

base case (homogeneous domains in temporally dynamic conditions) using Eq. 5.4: 

𝑁𝑅 = 
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑙𝑦 ℎ𝑒𝑡𝑒𝑟𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑑𝑜𝑚𝑎𝑖𝑛

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑙𝑦 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑑𝑜𝑚𝑎𝑖𝑛 
 × 100%,    (5.4) 

where, a normalized responsiveness of 100% indicated that the spatially 

heterogeneous domain responded the same as the homogeneous domain, given the 

same temporal dynamics in the forcing. 

To generalize results and to move away from domain specific, flow regime specific, 

chemical, or microbial biomass specific discussions, I used the Da (Chapter 2) and the 

breakthrough time (Chapter 4) to characterize reaction regimes in steady state 

conditions. 

5.3 Results 

In the saturated domain, the temporal dynamics in the groundwater head at the 

inlet induced a change in the water flux in the domain. It further induced a change in 

the concentration of chemical species leaving the domain, concentration of microbial 

biomass in the domain, and also concentration of mobile biomass leaving the domain. 

To characterize the temporal variation, I first explored the aggregated impact on mass 

removal of chemical species over 15 years. I then derived the responsiveness and 

cross-correlation of the time series signal of variables mentioned in Chapter 5.2 in 
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response to the temporally dynamic forcing. I then explored the memory of the 

system with respect to variations induced in these variables to the forcing. 

5.3.1 Homogeneous domains (base case) 

Homogeneous domains provided the opportunity to consider the impact of 

temporal dynamics alone on microbial biomass and nutrient cycling. I considered the 

removal of mobile chemical species and average biomass over the entire simulation 

period of 15 years, and the responsiveness of the homogeneous domains to the 

forcing in detail. 

Aggregated results 

In all the flow regimes, the aggregated removal in temporally dynamic conditions 

and steady state conditions was approximately the same for most chemical species 

with the aggregated impact being marginal (within 20% of that in steady state 

conditions, Table B2). The notable exception was nitrate and nitrogen removal in the 

fast flow regime, which increased to more than twice of that in steady state conditions 

(240% and 211% of steady state conditions in scenario T5, respectively). 

The microbial biomass also was the same in all flow regimes in temporally dynamic 

conditions, as that in steady state conditions. The exception was the mass of inactive 

ammonia oxidizers in the medium flow regime (increased by 200% in scenario T5) 

and active nitrate reducers in the fast flow regime (increased by more than 200%) 

compared to steady state conditions. 

Responsiveness and correlation to forcing 

The forcing induced fluctuations in the response variables in the homogeneous 

domains to varying degrees. The range of flux averaged concentrations of chemical 

species is presented in Fig. A14, and that of spatially averaged concentration of 

immobile active microbial biomass observed in scenario T5 in the domain is 

presented in Fig. A15. 
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The chemical species at the outlet in the slow flow regime did not respond to the 

forcing (Fig. A18). This was also reflected in weak to moderate correlation with the 

forcing (between 0 and 0.7, Table B3). Among the microbial species, the active 

ammonia oxidizers were the most responsive to the forcing (37% of steady state 

conditions in scenario T5, Fig. A19). The active biomass concentration dynamics was 

moderately to strongly correlated with the forcing (R >0.67, Table B5). 

In the medium flow regime, DO was most responsive to the forcing (at 16% of the 

steady state conditions in scenario T5, Fig. A18) among the chemical species. All 

chemical species except ammonium and TOC were moderately to strongly correlated 

with the forcing (Table B3). In contrast, ammonium and TOC were weakly correlated 

with the forcing (<0.4). All the microbial species were responsive to the forcing, and 

moderately to strongly correlated (>0.77, Table B5). While inactive aerobic degraders 

varied the least (6%), the inactive ammonia oxidizers responded the most (62%) to 

the forcing. 

Lastly, in the fast flow regime, the chemical species were moderately to strongly 

correlated with the forcing, with DO most responsive (92% in T5) and nitrogen least 

responsive (5.5%) to the forcing (Fig. A18). The microbial species, with exception of 

active mobile aerobic degraders, were also moderately to strongly correlated with 

the forcing, with active nitrate reducers and inactive aerobic degraders the most 

responsive, exceeding 70% in scenario T2. 

The cross-correlation of the chemical and microbial species in the homogeneous 

domain to temporal dynamics are presented in Table B3 and Table B5 respectively. 

5.3.2 Heterogeneous domains 

Similar to homogeneous domains, I investigated the response of spatially 

heterogeneous domains to the forcing by first considering aggregated removal of 

chemical species, and then characterizing the temporal behavior of the domains in 
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terms of responsiveness, cross-correlation and then deriving the backward 

traceability. 

Aggregated results 

The aggregated removal of chemical species in all the flow regimes (except for 

nitrate in the fast flow regime) was not impacted by temporal dynamics. The time-

averaged contribution of the various microbial subpopulations was also similar to 

that in steady state conditions. The removal of nitrate and nitrogen in the fast flow 

regime, however, increased to more than 200% (in scenario T5) of steady state 

conditions, with higher impact in low to moderate spatially heterogeneous domains. 

Temporal variation in chemical discharge 

The four (4) types of reactive systems identified in Chapter 4 using Da responded 

differently to forcings. I analysed temporally varying concentration of the chemical 

species leaving the domain normalized by that in steady state conditions (Fig. 5.1 and 

Fig. A20). For transport dominated systems, the concentration of chemical species 

reduced below steady state conditions (down to 40%) only in unusually low flow 

conditions when velocity was less than half of that in steady state conditions. But the 

concentration did not increase when the flow was higher than the steady state 

conditions. Similarly, in transport influenced systems, the concentration reduced (to 

less than 10%) during periods of low flow (when velocity was less than 50%) but did 

not increase by more than 30% even when the flow was twice of that in steady state 

conditions. In reaction influenced systems, the system was responsive to velocity 

fluctuations in both directions; the concentration reduced (to less than 10%) in low 

flow conditions, and the concentration increased (as high as 10 times) in high flow 

periods. In contrast, in reaction dominated systems, the concentration increased (as 

high as 12 times) in high flow conditions (velocity higher by 50%) and reduced down 

to 20% in low flow conditions (when velocity was less than half of steady state 

conditions). Fig. 5.2 presents the time series signal of the normalised velocity, and of 
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the median of the response variables bound by quartile ranges in the same reactive 

system categories. Even though the normalised concentration exceeds the steady 

state conditions by more than 100% in few selected scenarios when systems were 

characterized by log10Da>0 (Fig. 5.1), these extreme scenarios lie outside the third 

quartile (Fig. 5.2). 

 

Figure 5.1 Concentration of chemical species belonging to identified categories of 

reaction regimes (red for reaction dominant regimes with log10Da > 0.5, green for 

regimes with 0<log10Da<0.5, orange for regimes with -1<log10Da<0 and blue for 

reaction-limited regimes with log10Da<-1) in all investigated domains normalized by 

that in steady state conditions over the entire simulation period of 15 years for the 

three investigated time series (T1, T2, and T5). 

Temporal variation in microbial biomass 

The contribution of different fractions of microbial species also varied with 

temporally dynamic forcing. In all flow regimes, the ratio of active to dormant species 

increased with increasing velocity. The increase in the ratio was attributable to both, 

increasing active and decreasing dormant species with increasing velocity. The ratio 

of immobile and mobile species also increased with increasing velocity, but 
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attributable only to decreasing mobile species in the domain (Fig. 5.3). The shifting 

contribution of each microbial sub-population is presented in Fig. A21. 

Normalized responsiveness 

Since in some conditions, the outliers varied from steady state conditions by more 

than 10%, I explored the responsiveness of the time series signal of each reactive 

system. This enabled the estimation of the uncertainty band in temporally dynamic 

conditions with respect to homogeneous steady state domains (base cases described 

in Chapter 3). 

Chemical species: Each chemical species responded differently to forcing based 

on the flow regime. The normalized responsiveness in terms of the Da of the 

prevailing reaction regime (estimated in corresponding steady state conditions) is 

presented in Fig. 5.4. Transport dominated systems with heterogeneous domains 

were little affected by temporal dynamics, the responsiveness of temporally dynamic 

spatially homogeneous domains being slightly higher. For transport influenced 

systems and reaction influenced systems, spatio-temporal heterogeneities induced a 

normalized responsiveness of 6-7 (that is, the amplitude was 500%-600% higher 

than in homogeneous domains). With average residence time less than ~30 days, the 

normalized responsiveness increased, in moderately heterogeneous domains, and 

then tended back towards that in homogeneous domains when average residence 

time reduced to approximately a day. For reaction dominated systems, the 

normalized responsiveness also depended on the average residence time. For 

average residence time of approximately one day, there was limited impact of 

temporal dynamics. With average residence time between one day and 30 days, the 

responsiveness increased with increasing spatial heterogeneity, inducing a 

normalized responsiveness higher than 10. 
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Figure 5.2 Median concentration of chemical species belonging to identified 

categories of reaction regimes in all investigated domains bound by 25% and 75% 

quartile ranges (red for reaction dominant regimes where log10Da > 0.5, green for 

regimes where, 0<log10Da<0.5, orange for regimes with -1<log10Da<0 and blue for 

reaction-limited regimes with log10Da<-1) over the entire simulation period of 15 

years for the three investigated time series (T1, T2, and T5). 

 
Figure 5.3 Density plot of contribution of microbial subpopulations in all 

investigated domains normalized by that in steady state conditions with normalized 

velocity in corresponding domain (velocity normalized by that in steady state 

conditions) over the entire simulation period of 15 years for the three investigated 

time series (T1, T2, and T5). Darker colours indicate higher density of points. 
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Figure 5.4 Normalised responsiveness of chemical species leaving the domain in 

temporally dynamic and spatially heterogeneous domains with respect to temporally 

dynamic homogeneous domain. The colour varies with the prevalent reaction-flow 

regime (red for reaction dominant regimes where log10Da > 0.5, green for reaction 

influenced regimes where, 0<log10Da<0.5, orange for transport influenced regimes 

with -1<log10Da<0 and blue for transport dominated regimes with log10Da<-1). 

Normalised responsiveness close to 1 indicates that the temporal dynamics induced in 

a spatially heterogeneous domain is similar to those induced in the corresponding 

homogeneous domain. 

Microbial species: For all microbial species highest normalised responsiveness 

values were approximately 1. The normalized responsiveness of all microbial species 

in all flow regimes, except for aerobes in the slow and medium flow regimes, reduced 

with increasing spatio-temporal heterogeneity (Fig. 5.5). Refer to Fig. A26 for the 

normalized responsiveness of mobile active microbial species. 

Cross-correlation 

The chemical species were moderately to strongly correlated with the forcing in 

medium and fast flow regimes. In the slow flow regime, DOC and DO were weakly to 
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moderately positively correlated with the forcing. In contrast, TOC and nitrogen had 

weak to moderately negative correlation (Fig. A22). 

 

Figure 5.5 Normalised responsiveness of concentration of active fraction of biomass 

in the domain in response to temporal dynamics in the forcing (changing groundwater 

head at the inlet of the domain). The colour varies with the prevalent flow regime (red 

for slow flow, green for medium flow and blue for fast flow regimes). Normalised 

responsiveness close to 1 indicates that the temporal dynamics induced in a spatially 

heterogeneous domain is similar to those induced in the corresponding homogeneous 

domain. 

The active microbial species in the medium flow regime were moderately to 

strongly correlated with the forcing. All the microbial species (except mobile aerobic 

degraders) were also similarly correlated with the forcing in the slow flow regime. 

Mobile aerobic degraders, on the other hand, were negatively correlated with the 

forcing. Lastly, all the microbial species (except aerobic degraders) were negatively 

correlated with the forcing in the fast flow regime. The immobile aerobic degraders 

were positively correlated with the forcing (Fig. A23). 
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Backward traceability 

The variation in response variables was traced to the variation in the forcing 

(changes in groundwater head in this chapter). I contextualized backward 

traceability of the reactive systems with the memory of the temporally dynamic 

forcing (Table 5.1). 

Chemical species: The backward traceability varied from 0 (in buffered slow flow 

regimes, for TOC in relatively homogeneous domains, and for nitrogen in select high 

response fast flow regime) to up to 245 days (nitrate in medium flow regime in T5). 

In the fast flow regime, the backward traceability of chemical species was less than 

that of the forcing in low heterogeneous domains in the fast flow regime, increasing 

and plateauing in domains of moderate spatial heterogeneity before decreasing again 

in high spatial heterogeneity scenarios for DOC, TOC and DO (Fig. A24). In the medium 

flow regime, the backward traceability increased with spatial heterogeneity for all 

chemical species except for DO, for which it remained constant. The backward 

traceability of chemical species was not evaluated in the slow flow regime as the 

correlation with the forcing was weak to moderate (Fig. A24). This meant that any 

fluctuation in the concentration profile of the flux averaged concentrations of mobile 

species at the outlet of the domain is not attributable to a change in the forcing in the 

slow flow regime.  

Microbial species: The backward traceability for active microbial biomass varied 

from 0 days (ammonia oxidizers, nitrate reducers and mobile aerobes in the fast flow 

regime) to approximately 280 days (immobile active ammonia oxidizers in slow flow 

regime in T5). 

The backward traceability of the microbial species biomass in the slow flow regime 

was the highest (active immobile aerobes, ammonia oxidizers and nitrate reducers), 

followed by that in the medium flow regime and the fast flow regime (Fig. A25). 

Except for nitrate reducers, the backward traceability remained independent of the 
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spatial heterogeneity in the domain. Among the nitrate reducers, the backward 

traceability decreased with increasing spatial heterogeneity in the medium flow 

regime only. The backward traceability for nitrate reducers in the slow flow and fast 

flow regimes also remained independent of spatial heterogeneity. 

5.4 Discussion  

The analysis of time series signals of chemical discharge from spatially 

heterogeneous saturated domains, and that of the microbial biomass subpopulations 

in the same domains was analogous to real-time data collected during long term 

environmental monitoring studies where varying groundwater head in monitoring 

wells is linked with varying physicochemical characteristics of groundwater. I found 

the variation in the response to be dependent on the flow regime and spatial 

heterogeneity. Here I shed light on the individual contributions of spatio-temporal 

heterogeneities on nutrient cycling and the consequences for modelling predictions. 

5.4.1 Response of microbial biomass and nutrient cycling to temporal dynamics 

The distribution of the biomass among the various types of species changed in the 

temporally dynamic regimes. This agrees with previous research attributing species 

composition to the difference in the flow regimes and the maximum carrying capacity 

of a reactive system (Grösbacher et al., 2018) and spatial heterogeneity of a system 

(Franklin et al., 2019;Khurana et al., 2021b;Or et al., 2007). Since the slow flow regime 

is already transport limited, the temporal variation in inactive species is not 

predictable. With increasing contribution of advection flow processes, the shifting 

microbial communities tends to be predictable (Stegen et al., 2016). However, the 

extent of the impact varied widely between the different heterogeneous domains and 

the homogeneous domains (considering the induced normalized amplitude of 

biomass time series signals). The biomass in high heterogeneous domains in 

transport dominated reactive systems was less sensitive to temporal dynamics as the 
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biomass in low-flow zones was not exposed to fluctuations in water flow. In contrast, 

locally mixed or diffusion dominated heterogeneous domains were impacted the 

same as homogeneous domains. Spatial heterogeneity and long transport time scales 

thus helped overall resilience of microbial communities to disturbances (Koenig, 

2016;Koenig et al., 2017;Yabusaki et al., 2017). Thus, the relevance of spatio-temporal 

heterogeneities (and uncertainty thereof) for geomicrobial community structure and 

nutrient cycling is dependent on travel time and dominant flow processes. 

As previously discussed, discharge of DO, DOC, nitrate and ammonia also varied 

with time. This coordinated fluctuation of microbial communities and redox 

conditions in line with groundwater or surface inputs was also observed in other 

studies. For example, King et al. (2017) demonstrated that the relative contribution 

of bacterial species in an in-field bioreactor changes between dry periods (oxic 

conditions) and wet periods (sub-oxic) conditions. Benk et al. (2019) further 

demonstrated that changing input of DOM between dry and wet seasons influences 

bacterial community evolution in a pristine oligotrophic aquifer under minimal 

anthropogenic impact or disturbance. Lohmann et al. (2020) also then focused on the 

shift from aerobic to anaerobic ammonium oxidation between summer (dry 

conditions) and autumn (wet conditions) at the same site. The change in relative 

abundance of active species in the microbial community or the change in microbial 

activity did not lead to an impact of the same magnitude on chemical discharge. For 

example, even though the contribution of active nitrate reducers decreased during 

low flow conditions in the medium flow regime, nitrate removal increased. This 

points to the low microbial activity in low-flow periods as discussed by Stegen et al. 

(2016). Even though nitrate reduction increased during these periods, the 

proliferation and activity of nitrate reducers decreased as microbial activity is limited 

by transport. In contrast, during high flow periods, even though the discharge of 

nitrate increased, the contribution of active nitrate reducers did not change from 

steady state conditions, while the contribution of inactive nitrate reducers decreased. 

This points to flushing of both microbes and organic carbon due to high flow rates 
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(Stegen et al., 2016). Temporal dynamics thus enable higher diversity in the 

subsurface microbiome by enabling mobility of microbial species higher microbial 

activity in high flow periods (King et al., 2017). 

5.4.2 Assisting sampling decisions 

The impact of temporal dynamics in forcing on the mobile species signal leaving 

the domain and microbial biomass within the domain can now be considered for 

sampling design. Low variation of mobile species at the outlet of the domain indicates 

that the temporal dynamics in the forcing are potentially buffered by the flow regime 

at the scale of the domain (Alewell et al., 2006). Alternatively, the corresponding 

chemical species is not affected by excessive flow rates induced in the domain, for 

example nitrogen in the fast flow regime. Since nitrogen removal was already 

marginal at steady state conditions in the fast flow regime (Khurana et al., 2021b), 

higher flow rates do little to reduce the consumption further. In contrast, lower flow 

rates induced in heterogeneous domains in the fast flow regime provide an 

opportunity for nitrate reducers to thrive in suboxic and anoxic microsites in 

heterogeneous domains, thereby resulting in increased consumption of nitrogen with 

both temporal dynamics and spatial heterogeneity. Lohmann et al. (2020) observed 

similar shifts from aerobic metabolism (ammonia oxidation during dry periods) to 

anaerobic metabolism (nitrate reduction and anaerobic ammonia oxidation during 

wet periods) in functional diversity of microbial communities in groundwater. This is 

a potential effect of climate change driven changing surficial processes by Stegen et 

al. (2016) as well. Interestingly, the low flow zones provided buffer zones to these 

anoxic microsites in domains with high flow rates, and therefore the amplitude of 

anaerobic microbial species was lower compared to temporally dynamic regimes in 

lower average flow rates (see discussion above). 

The traceability of the signal of mobile species with temporal dynamics poses an 

additional challenge. The time-lag analysis provided insight into the traceability of 

temporal dynamics of the system to forcings (Kim et al., 2019). The lag between the 
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forcing of groundwater head and corresponding response in the domain and at the 

outlet of the domain varied as per the flow regime, as well as the microbial and 

chemical species of concern. Depending on the time scale of interest, the frequency of 

sampling and timing of sampling must be informed by occurrence of weather events 

as well as broader seasonal changes. While the response in dissolved chemical species 

signal may be immediate (shorter than observation frequency, and shorter than the 

traceability of the time series signal itself) in high spatio-temporal heterogeneity and 

high flow rate regimes, the response is induced later and lasts longer on microbial 

species in medium and slow flow regimes. Moreover, the traceability for microbial 

biomass in slow and medium flow regimes was in the same range as that of the 

traceability of the forcing and was largely not dependent on the residence time of the 

domain. Interestingly, Hofmann et al. (2020) concluded that microbial communities 

present in the shallow subsurface respond to changing surficial inputs over 170 days, 

which is in the same order of magnitude as the traceability observed in this chapter. 

It was also in the same order of magnitude of that observed by Zhou et al. (2012), 

even though their study was at the field scale as opposed to the sub-meter scale of 

this thesis. Thus, backward traceability of a reactive system is linked with the time 

scale of respective microbial growth kinetics. Microbial species with lower 

respiration and growth rates are slower to adapt to dynamic environmental 

conditions, and therefore display a large time lag (or high traceability). Microbial 

population distribution shifts are attributable to shifting hospitable conditions for 

high adaptable microbial species, and increased mobility for low adaptable microbial 

species(Sugiyama et al., 2018). Therefore, the time scale of temporal dynamics of 

environmental conditions and subsequent impact must be considered in relation to 

the time scale of microbial kinetics. If the time scale of changing forcing is short in 

comparison to the time scale of microbial kinetics, then the observable impact on 

microbial biomass is expected to be less. Regardless of these differences in the extent 

of the system response, the time series signal of dissolved chemical species and 

microbial biomass is linked with that of groundwater head, which is in turn linked 
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with surficial events. Therefore, none of these analyses may be undertaken in 

isolation. 

5.4.3 Predicting relevance of spatio-temporal heterogeneities for chemical discharge 

Since I considered a wide variety of flow regimes, a comprehensive and detailed 

process network, homogeneous uniform flow conditions as the base case, and 

stochastically generated time series of the forcing, I was in the unique position to 

quantify temporal variation in chemical discharge from a system relevant at the field 

and policy scale (Muniruzzaman and Pedretti, 2021). While there was no substantial 

impact of temporal dynamics on the response variables when aggregated over the 

entire simulation period, the response variables did fluctuate as a result of the 

temporally dynamic forcing. Thus, the relevance of uncertainty quantification in 

modelling studies must be examined with the research objective in mind. 

Sub-scale temporal dynamics in chemical discharge can be characterized based on 

Da as in Khurana et al. (2021b). Neglecting spatial heterogeneity alone may result in 

errors in predicted outcomes from -60% to +500% (Khurana et al., 2021b). Transport 

dominated heterogeneous systems showed limited impact to temporal dynamics; 

most of which was attributable to the reduction of nitrate in unusually low flow 

conditions when velocity reduced to less than 50% of that in steady state conditions. 

Furthermore, the response of temporally dynamic spatially homogeneous domains 

was higher than that of heterogeneous domains. In other words, spatial heterogeneity 

dampened the impact of temporal dynamics on the reactive system. Temporal 

dynamics are therefore important in only unusually low flow conditions. Unusual 

here means that the average residence time is less than half of that in a corresponding 

homogeneous domain, caused by the strong heterogeneity, and at time points when 

the flow rate is also less than half of that in steady state conditions. 

For transport or reaction influenced systems, spatio-temporal heterogeneities 

induce a normalised responsiveness of 6-7 (that is, moderately heterogeneous 
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domains respond more than homogeneous domains by 500%-600%). At the same 

time, high spatially heterogeneous domains respond the same as homogeneous 

domains. Thus, predictive uncertainty associated with temporal dynamics was 

adequately captured by homogeneous domains in high heterogeneity scenarios. 

However, in moderately heterogeneous domains, both spatial heterogeneity and 

temporal dynamics lead to strong deviations from the homogeneous cases and 

therefore heterogeneity needs to be accounted for when modelling these systems. 

For reaction dominated regimes, the amplitude depended on the average 

residence time as well. When residence time was short (approximately a day), there 

was limited impact of temporal dynamics on the system. On the other hand, in 

medium flow systems, when residence time was higher than a fortnight, spatial 

heterogeneity accentuated the impact of temporal dynamics on the amplitude of the 

system, and the third quartile could be as high as twice the steady state conditions. 

Thus, spatio-temporal heterogeneities may not be neglected in these systems. 

In general, the high responsiveness of the systems in the chapter was due to DO, 

nitrate and DOC travelling through the preferential flow paths in spatially 

heterogeneous domains. This behavior and extent of impact is consistent with 

previous studies. Gwo et al. (1996), for example, proposed that 64% of variation in 

fluxes is attributable to spatial heterogeneity (hydraulic conductivity and anisotropy) 

and temporal dynamics (rainfall intensity). Later, Van Der Hoven et al. (2005) 

observed even higher dynamics with a variation of DO over 2 orders of magnitude at 

their site, and Rein et al. (2009) observed that temporal variation in groundwater 

flow conditions resulted in variation of contaminant concentration (as high as the 

steady state/average concentration). More recently, Küsel et al. (2016) discussed 

variation of chemical species (such as DOC, DO, nitrate) by a factor of 3-4, both in 

space and in time. While a direct comparison between these previous studies and the 

results of this chapter is ill advised considering differences in flow regimes, 

conceptual model and site settings, it is worth to note that the temporal dynamics in 
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the response variables observed in this chapter were at similar orders of magnitude 

and even higher since this chapter explored a larger range of scenarios. 

5.5 Summary and Conclusions 

Computational costs, lack of detailed characterization of geological setting, lack of 

temporal resolution in field monitoring leads to modelers assuming steady state 

homogeneous conditions of a natural system. Field scale studies do not resolve sub-

scale spatial heterogeneity, thus contributing to uncertainty with respect to both 

parametrization and predictive outcomes of modelling studies. Neglecting spatial 

heterogeneity alone results in prediction errors associated with chemical removal 

between 60% and 500 times of that in homogeneous domains (Khurana et al., 

2021b).The uncertainty induced due to lack of characterization of spatial 

heterogeneity is further exacerbated by neglecting temporal dynamics. Additionally, 

prediction of temporal dynamics is also increasingly uncertain in a changing climate 

scenario. We are not yet equipped to estimate the uncertainty in microbial activity, 

and chemical discharge thereof from subsurface reactive systems in hitherto 

unforeseen scenarios. This chapter is a first attempt to capture the extent of 

uncertainty were spatio-temporal heterogeneities to be neglected in modelling 

studies. With accurate site characterization, and contextualizing temporal dynamics, 

this chapter can now assist in field sampling design to correlate field data with 

dynamics in forcing. With this work, I aimed to reduce predictive uncertainty in 

modelling studies.
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6 Synthesis 

Groundwater is a major source of freshwater supply (Oki and Kanae, 2006) and is 

critical to ensure water access, quality, and security to the world population. This makes 

variation of groundwater quality an on-going concern and indeed, numerous 

investigators have studied the spatio-temporal variation of groundwater quality. 

Various studies have described the variation of microbial abundance, distribution, 

diversity and associated variation in groundwater characteristics (McGuire et al., 

2000;Schwab et al., 2017;Zhou et al., 2012) in both space and time, i.e., across several 

subject sites and also exploring seasonal variation. At the same time, computational 

modelers often use subject site data to parameterize their models and predict 

groundwater discharge as well as groundwater quality in the future. They often simplify 

their models limiting incorporation of spatially distributed physico-chemical properties 

of the system (such as hydraulic conductivity, chemical concentration, microbial 

biomass), or assuming steady state conditions due to paucity of field data (Berkowitz et 

al., 2016), or to optimize the use of computational resources. In this process, accuracy of 

model parameterization as well model predictions gets compromised, reflected in the 

mismatch of model predictions with field observations (Berkowitz et al., 2016). 

I wanted to understand the repercussions of these assumptions in context of errors 

induced in resulting model predictions. Specifically, I wanted to identify under which 

conditions, the assumptions of a homogeneous domain and uniform conditions hold. In 

doing so, I answered the following overarching questions: 

1. In which systems does spatial heterogeneity in the subsurface impact microbial 

activity and resulting carbon and nitrogen cycling? 

2. When do temporal dynamics in the flow conditions in the subsurface affect 

microbial activity and the export of carbon and nitrogen from the system? 
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6.1 Review of hypotheses 

Regarding spatial heterogeneity, I focused on the spatial distribution of 

matrix/material properties alone, specifically the property that governs the ability of the 

medium to conduct a liquid fluid (groundwater, in our case). Regarding temporal 

dynamics, I focused on the temporal dynamics in water flux (average water velocity in 

the system) alone. Thus, I was able to test my hypotheses (summarized in Table 6.1) 

with respect to homogeneous domains and uniform flow conditions, wherein all the 

systems displayed the same average properties: Same average water flow velocity in all 

the heterogeneous and homogeneous media in both saturated and unsaturated domains, 

as well as same water velocity when averaged over the entire transient simulation 

period. Lastly, when characterizing domains with varying flow regimes (Fast, medium 

and slow) and multiple reactive components (DOC, DO, nitrate, ammonium), I used the 

Damköhler number (Da) to qualify the reactive system as reaction or transport 

dominant. Thus, not only was I able to effectively test my hypotheses, but I was also able 

to generalize discussions to derive a broader system understanding and facilitate a 

transfer into practice. 

I displayed that spatial heterogeneity governs the access of microbes to carbon 

substrate, nutrients and energy gradients (Franklin et al., 2019). However, this 

distribution is also impacted by the flow regime for the same orientation of spatial 

heterogeneity; the same domain having different dominant flow processes (diffusion v/s 

dispersion v/s advection) and different saturation responds differently to spatial 

heterogeneity (Edery et al., 2016;Nissan and Berkowitz, 2019). Spatial heterogeneity, 

residence time and different chemical species of concern in the system thus necessitated 

the use of Da. 

Spatial heterogeneity did not impact or affect the spatial distribution of microbial 

functional groups, and the consumption of carbon and nitrogen species by microbial 

biomass thereof in permanently saturated, reaction dominated and with locally mixed 

flow regimes, where (log10Da > 0.5). Thus, for reaction dominant systems with locally 
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Table 6.1 Review of hypotheses 

Hypothesis Reaction 

dominant system, 

locally mixed flow 

processes 

Reaction-transport 

mixed system, 

advection 

dominant flow 

processes 

Advection 

dominant 

system 

H1: Spatial heterogeneity results in niches for microbial 

species to co-exist with other competitive species. 

Confirmed Confirmed Confirmed 

H2: Spatial heterogeneity results in lower consumption of 

reactive species in the system than expected in a 

homogeneous system. 

Disconfirmed Confirmed Disconfirmed 

H3: Temporal dynamics results in varying nutrient 

discharge from the domain, and this is a function of varying 

travel time in the domain. 

Confirmed Confirmed Confirmed 

H4: Spatio-temporal heterogeneities interact and result in 

compounding each other’s effects on the system. Higher 

temporal dynamics in high spatially heterogeneous 

domains behave the most different from homogeneous 

domains in uniform conditions 

Confirmed Confirmed Disconfirmed 
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mixed flow regimes in permanently saturated zones, hypotheses H1 and H2 were 

disconfirmed. In contrast, in reaction dominant variably saturated domains, spatial 

heterogeneity provided for microbial niches to emerge, confirming hypothesis H1. As 

in the case for saturated domains, H2 was disconfirmed in reaction dominant variably 

saturated systems as there was no impact of spatial heterogeneity on consumption of 

DOC via the aerobic pathway, while there was a general reduction in anaerobic 

activity. 

In transport influenced or reaction influenced systems where log10Da<0.5, spatial 

heterogeneity resulted in microbial niches to form regardless of degree of saturation. 

Thus, for systems characterized by these Da and with advection dominated flow 

processes, hypothesis H1 was confirmed. The bulk consumption of chemical species 

in these reactive systems also decreased, confirming hypothesis H2 in these systems. 

However, the response of the domains was noisier in variably saturated domains, 

pointing to a more complex interplay between the formation of microbial niches, 

saturation and consumption of chemical species. 

In contrast, for transport dominant systems, where log10Da<-1, the consumption 

of the chemical species increased with spatial heterogeneity in saturated advection 

dominant flow regimes while the consumption decreased with spatial heterogeneity 

in locally mixed flow regimes with lower saturation. These cases were limited to the 

scenarios where the entire domain is predominantly oxic, and heterogeneity resulted 

in the emergence of microbial niches that allowed the reduction of nitrate in 

saturated systems and suppressed the reduction of nitrate in variably saturated 

systems due to the introduction of oxic subzones. Thus, for systems characterized by 

these Da, the hypotheses H1 was confirmed. While H2 was disconfirmed for saturated 

domains, it was confirmed for unsaturated domains. 

By condensing the discussion of effect of spatio-temporal heterogeneities on 

systems cycling different chemical species, biomass distributions at different flow 
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rates in terms of Da, I confirmed H3, that is, residence time and reaction time scales 

characterized the response of the system to spatio-temporal heterogeneities. 

6.2 Conceptualizing spatio-temporal heterogeneities of natural 

systems 

Describing natural systems and dynamics therein is not a trivial task since natural 

systems are complex, have non-linear dynamics and are not in equilibrium 

(Berkowitz et al., 2016). I aimed to evaluate the relevance of spatio-temporal 

heterogeneities on microbial activity, and thus focused on simplifying their 

description to one or two easily estimable control variables. Using this approach, I 

was already able to draw functional relationships between the extent of spatio-

temporal heterogeneities and subsequent impact on microbial biomass, distribution 

and biogeochemical cycling thereof. 

Spatial heterogeneity in the subsurface is well-studied and well described using 

statistical approaches. I used Gaussian random fields to describe the permeability 

field (in unsaturated systems) and hydraulic conductivity field (in saturated systems) 

of the domain, generating spatial random fields. Since microbial activity and 

emergence of microbial hotspots in porous media depend on the orientation of 

preferential flow paths in the medium(Franklin et al., 2019), I focused on varying the 

permeability and anisotropy (degree of channelization) in the domain. Varying 

permeability and anisotropy resulted in spatially heterogeneous domains that 

covered most physically plausible scenarios, from inherent heterogeneity of a single 

formation of alluvial sediment, to a layered aquifer system such as a sandy aquifer 

interspersed with clay lenses, to a fractured flow system. Since I further consider the 

impact of these varying heterogeneous domains with respect to a homogeneous 

domain in different flow regimes, I am confident that a generalized discussion of 

results is applicable and transferable across a wide range of systems. 
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Like spatial heterogeneity, the conceptualization of temporal dynamics was also 

an important aspect to consider. Water, solute and energy are always in flux in all 

compartments of the Critical Zone, and measuring them provides insights into the 

processes of the Critical Zone (Brantley et al., 2017). Similar to geologic formations, 

there is also a wide variation in the nature of temporal dynamics of these fluxes across 

the globe. Thus, groundwater head data, being commonly observed and recorded in 

long-term monitoring studies, was ideal to formulate the synthetic time series data of 

varying external forcing in subsurface systems. I evaluated the data distribution of 

groundwater head in several monitoring well locations in the Nägelstadt catchment 

(Jing et al., 2018) and generated other randomized time series of varying 

groundwater head displaying the same characteristics as those observed in a real-

world system. The time series of the external forcing was modelled as Gaussian 

process and hence could be condensed to a limited number of control variables: 

Variance and correlation time scale. The results of temporally dynamic scenarios 

were comparable since the mean of the synthetically generated time series of 

groundwater head was the same as the groundwater head in steady state conditions 

of each flow regime. This also enabled a generalized discussion of results across 

different climatic systems and geological materials. 

Lastly, the complex reaction network accounted for different respiration strategies 

(both aerobic and anaerobic), growth strategies (both heterotrophic and 

autotrophic) and interactions between the microbial species present in different 

states (inactivation or reactivation, mobilization or immobilization). The 

parameterization of the reaction network in these numerical experiments enforced 

high microbial growth for some functional guilds (such as aerobic heterotrophs), and 

slower growth for others (such as autotrophs and anaerobic heterotrophs). Since the 

parameterization of these complex reaction networks is challenging (Chen et al., 

2018), the focus of the thesis was not on simulating a real-world subject site as such. 

Instead, the focus was on adhering to established redox hierarchy in the control 

system, or the homogeneous domain in each flow regime. This resulted in biomass 
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concentrations in the modelling system (109 to 1011 cells L-1) that may be higher than 

those observed in some sites (up to 108 suspended cells L-1 reported by Zhou et al. 

(2012) and Opitz et al. (2014b)), while they are in the same range of concentrations 

observed in other sites (Akob and Küsel, 2011;Griebler and Lueders, 

2009;Grösbacher et al., 2018;Holm et al., 1992). Essentially, the parameterizations of 

the model scenarios covered as many physically plausible situations as possible. 

In terms of incorporated processes, the reaction network does not capture abiotic 

processes in either water (such as chemical speciation) or on the surface (sorption), 

even though these processes occur abundantly in the subsurface (Maher et al., 

2013;Zhang et al., 2014). Since the aim of the thesis was to study microbial activity 

and their role in consumption of carbon and nitrogen, abiotic reactions were not 

included. However, these abiotic reactions affect microbial activity (Hunter et al., 

1998;Saalfield and Bostick, 2009) supporting microbial life. Therefore, it is possible 

that the estimates of microbial activity do not match a real-world subject site. Having 

said that, Edery et al. (2016)and Nissan and Berkowitz (2019) on the other hand, 

explored the effect of spatial heterogeneity on simple bimolecular reactions and 

concluded that the flow regime is a critical factor to consider, similar to the results of 

this thesis. 

Focusing on the aspect of microbial activity alone, the reaction network also does 

not consider facultative organisms, that is organisms that are capable to of switching 

from aerobic to anaerobic respiration strategies, in the process network. Thus, in 

addition to a shift between active and dormant states, it is likely that microbial 

communities in soil shift between different respiration strategies instead (Lin et al., 

2012;Pett-Ridge et al., 2013) resulting in relatively stable microbial communities 

during fluctuating conditions (Veach and Zeglin, 2020). While the reaction network 

is suitably complex to explore aspects of this thesis, it can be modified as per the 

requirements of future studies. In this way, this thesis provides the blueprint that can 

be used to answer these questions about shifting microbial communities in the 

subsurface under temporally fluctuating conditions. 
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To conclude, I am confident that my approach of using well-established statistical 

methods to realize different scenarios of spatio-temporal heterogeneities enables a 

generalized discussion of the results. It is also easily reproducible as I used open-

source software and numerical solvers for generating the scenarios and for running 

the simulations. I am, furthermore, confident that the results will be applicable 

widely. The results provide insight into natural systems that are not easy to observe, 

enabling a predictive understanding of these systems to hitherto unforeseen external 

forcings. 

6.3 Results and implications 

With the help of this work, I add to growing knowledge of spatio-temporal 

variation in geomicrobiology and physico-chemical quality of water. Additionally, I 

provide insights into how microbial communities organize in space in the spatially 

heterogeneous subsurface, and how these communities may change in temporally 

dynamic conditions 

The flow of water controls access to nutrients and energy gradients, that are 

essential for microbial species to survive and persist in the environment. Thus, the 

emergence of microbial hotspots in the subsurface, particularly oligotrophic 

environments, can be explained through the approach undertaken in this thesis 

(Franklin et al., 2019;Kuzyakov and Blagodatskaya, 2015;McClain et al., 2003;Or et 

al., 2007). Changing orientation of heterogeneous structures due to processes such as 

weathering, clogging at the pore scale leads to a patchy distribution of microbial 

biomass (Or et al., 2007) in the subsurface, or the microbial species at erstwhile 

microbial hotspot locations may switch to a dormant or inactive mode (Kuzyakov and 

Blagodatskaya, 2015). In addition, the microbial species may be mobilized in the 

groundwater or attached to the geological material. The distribution of microbial 

species within these states depends on numerous well-studied factors such as 

nutrient availability, pH, water velocity (Griebler and Lueders, 2009;Griebler et al., 
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2002;Griebler et al., 2010). In summary, the ratio of attached to mobile biomass 

increases in nutrient scarce conditions and reduces in nutrient poor conditions 

(Grösbacher et al., 2018). 

In this thesis, I extend the findings of previous work by proposing a method to 

predict the ratio of immobile and mobile as well as active and dormant cells 

depending on the reactive system of concern, dominant flow process, and the 

residence time in the system. Using the results of this thesis, the fractionation of 

microbial biomass into these different states is now estimable, and it can be validated 

by newer measurement technologies such as BONCAT-FISH (Couradeau et al., 2019). 

To formulate a general yet predictive understanding of any system, I propose the 

use of a criterion that considers the residence time of a conservative tracer in the 

system and estimated bulk consumption of the chemical species in the system. Their 

ratio, known as the Damköhler number (Da), categorizes the system to be reaction 

dominant or flow dominant. While studies exploring varying nutrient discharge in 

surface water bodies already have a well-developed mechanism to evaluate spatio-

temporally changing surface water quality (Andrea et al., 2006;Basu et al., 

2010;Bieroza and Heathwaite, 2015;Bieroza et al., 2018;Herndon et al., 2015), this 

thesis is among the first to my knowledge to implement such an approach for 

subsurface systems. A similar approach was used at the continental scale by Kumar 

et al. (2020) focusing on nitrate leaching from soil, and a power law approach was 

used by Holden and Fierer (2005) to estimate the concentration of organic carbon at 

varying depth. The constraint for the establishment of this in subsurface systems 

stems from limited observational opportunities and limited long term data 

availability; this constraint is overcome by the numerical modelling approach. 

The travel time approach simplifies reactive transport modelling in a 

heterogeneous medium to a simpler one-dimensional problem (Sanz-Prat et al., 2015, 

2016;Waring et al., 2020). Conducting a tracer study as well as particle tracking 

studies to estimate travel time distributions of conservative tracers is also a well-used 
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and accepted approach in the field (Edmunds and Smedley, 2000;McGuire et al., 

2002;Uhlenbrook et al., 2002;Valett et al., 1996). Newer technologies also take 

advantage of big data obtained from satellite imagery to estimate the groundwater 

storage, elevation, average water flux and associated variation with seasons (Henry 

et al., 2011;Huang et al., 2015;Li and Rodell, 2015;Pfeffer et al., 2011;Vergnes et al., 

2012). This travel time approach can easily be, and already has been, scaled up to the 

field and regional scale (Kumar et al., 2020). This thesis adds to this state-of-the-art 

knowledge by clearly delineating the reactive systems where the travel time 

approach holds, by formulating a more realistic reaction network incorporating 

microbial mediated transformation of carbon and nitrogen compounds. This 

approach resulted in a wider variety of reactions occurring at varying time scales, that 

further resulted in effective Da that varied over three (3) orders of magnitude in the 

research. Thus, this thesis not only takes advantage of previous work, but it is also a 

crucial and a much more comprehensive extension of it. 

In conclusion, this thesis characterizes subsurficial reactive system behavior with 

respect to the relevance of spatio-temporal heterogeneities on geomicrobial activity 

and biogeochemical cycling in the subsurface. 

6.4 Outlook 

By identifying reactive systems that are sensitive to spatio-temporal 

heterogeneities, it is now possible to estimate the error in model predictions, and to 

consider the field observations in context of the heterogeneity of the geological 

material. Field observations already result from the existing spatial heterogeneity of 

the geological material (not from an assumed/hypothetical homogeneous geological 

material). Thus, any reaction network parameters that are derived from these field 

observations have an associated probability distribution. This distribution may be 

derived using the relationships proposed in this thesis, comparing consumption of 

carbon and nitrogen in different spatially heterogeneous and variably saturated 
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domains. While transferring field derived reaction rate parameters across sites or 

even to the lab or vice versa requires careful thought, this thesis lays the foundation 

to future work on the methodology to transfer such parameters between different 

systems at different spatial scales. In this way, this thesis not only assists in 

quantifying uncertainty in carbon and nitrogen discharge from reactive sub surficial 

systems, but also assists in scaling effective rate expression across different sites and 

spatial scales. 

A plethora of studies have studied microbial life processes at lab-scale (Griebler 

and Lueders, 2009;Griebler et al., 2002;Griebler et al., 2010;Grösbacher et al., 

2018;Hofmann et al., 2020), field scale (Bouskill et al., 2019;Kumar et al., 2017;Zhou 

et al., 2012) and using numerical modelling (Gharasoo et al., 2012;Heße et al., 

2010;Schäfer et al., 1998a, b;Stegen et al., 2016;Thullner and Regnier, 2019). For each 

numerical study, parameterization of the reaction network is a key feature, and 

modelers often spend a substantial amount of time conducting a thorough literature 

review or partnering with experimentalists, identifying the most suitable set of 

parameters, and calibrating them. This thesis supports transfer of effective rate 

expressions across different geological formations given the availability of travel time 

distributions at the sites of concern and a similar combination of dominant microbial 

functional groups. 

A similar strategy for evaluating seasonal variation and scenarios in a changing 

climate can also be implemented. Climate change presents us now with hitherto 

unseen temporal dynamics with respect to extreme weather events (Kothavala, 1997, 

1999). For example, precipitation events are now expected to occur with increasing 

intensity (Kothavala, 1999;Trenberth et al., 2003;Zwiers and Kharin, 1998), but 

reduced frequency (Gregory et al., 1997). The incidence of climate extremes such as 

heat waves, droughts and higher humidity in higher latitudes (Francis and Vavrus, 

2012;Trenberth et al., 2003;Wetherald and Manabe, 1999) is also increasing and cold 

weather in mid-lower latitudes lasts longer and occurs further south than usual 

(Francis and Vavrus, 2012;Screen et al., 2015). It is not possible to look at the 
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historical data alone to be able to predict the response of subsurficial systems to these 

unseen temporal dynamics. Using the proposed approach to couple travel time 

distribution with identification of the reactive system category, however, the 

uncertainty associated with microbial community shifts and varying nutrient 

discharge from the system of concern is now predictable. This further assists in 

monitoring and maintaining the water quality for human consumption and 

sustainable habitats for other species across seasons and for several generations. 

It must be noted however that the presented analysis of impact of temporal 

dynamics on nutrient export is from the long-term perspective; I explored aggregated 

impact of temporal dynamics on nutrient discharge over 15 years. The average 

conditions over this entire simulation period were the same as that in steady state 

conditions. While this maintained comparability between different scenarios, this 

does not really reflect real-world conditions. Groundwater storage and the water 

table changes with catchment, season, specific area of interest in a catchment and 

anthropogenic activities (Henry et al., 2011;Huang et al., 2015;Vergnes et al., 2012). 

Long term modelling studies suggest that groundwater discharge may increase in 

northern latitudes with melting permafrost (Bense et al., 2009), increase in surface 

water irrigated agricultural regions such as China and Thailand (Huang et al., 

2015;Pholkern et al., 2018), while decrease in groundwater irrigated agricultural 

systems (Huang et al., 2015). This implies that the long-term mean water flux in the 

subsurface is not expected to be constant, but rather is expected to have either an 

upward or downward trend. Decreasing water flux results in longer residence times, 

which will shift the bulk consumption rate of chemical species in the reactive system, 

even shifting the system from permanently saturated to variably saturated. 

Increasing water flux will have an opposite effect. Thus, these dynamics are much 

more complex than what I explore in this thesis. Having said that, the approach 

established in this thesis may be followed to evaluate these complex dynamics as well. 

In other words, with increasing travel time in reactive systems, nitrogen consumption 

will first increase with increased consumption of carbon as well. But with further 
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increase in travel time and decreasing moisture content in the said reactive system, 

aerobic activity will increase resulting in higher consumption of carbon but lower 

consumptions of nitrate. 

Last, but not the least, the presented approach can also assist in upscaling effective 

rate expressions. Incorporating such a complex reaction network for predicting 

reactive transport in larger domains is computationally expensive. Thus, the 

modelling community typically justifies the use or rejection of sub-scale spatial 

heterogeneities and temporal dynamics. Furthermore, the modelling community 

requires effective rate expressions or rate modifiers to model biogeochemical cycles 

at large scales. These rate modifiers accounting for sub-scale heterogeneities can then 

be incorporated into the reaction network, simulating reactive transport at larger 

scales, thus maintaining accuracy of model outcomes while reducing the need for 

computational resources. This, in turn, can assist in rapid and accurate predictions of 

nutrient discharge in subsurface systems. This approach can be upscaled to even 

policy-relevant scales such as the catchment scale. At these scales the available data 

observations are often lower in resolution, as they rely on satellite imagery. Thus, the 

presented approach can also inform relevant policymakers and ensuring water 

access and security at larger scales, serving larger populations. 

Cumulatively, I explored the interaction of environmental variables (degree of 

saturation, travel time, degree of spatial heterogeneity, degree of temporal dynamics) 

and microbial biomass, activity and carbon and nitrogen cycling thereof in this work. 

Coupling this thesis with a laboratory scale experiment for validation will lend further 

confidence to the results. Comparison of relative contributions of immobile/mobile 

and dormant/active subpopulations with field observations will further help in 

assessing the suitability of the parameterization of the reaction network. Lastly, 

utilizing the methodology for a field scale subject site to predict change in nutrient 

discharge given a prediction of changing water flux will be a beneficial use-case for 

reference and scaling up. 
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The approach I have used is applicable, transferrable, and suitably scalable across 

different studies. This approach can thus be used to answer the above questions. A 

holistic understanding of microbial communities, their activity, their contribution to 

carbon and nitrogen cycling in the subsurface can help in filling a critical gap in the 

global biogeochemical budgets. Not only this, but it can also assist in forming a 

predictive understanding of the behavior of heterogeneous reactive systems in 

temporally dynamic conditions which results in better understanding of ecosystem 

services that we may be able to use for our benefit. This, in turn, will help to secure 

access to water for drinking, irrigation and industry, thus supporting and propelling 

us forward into the uncertain future of climate change.
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Figure A 1 2D concentration distributions of dissolved species in heterogeneous 

domains (µM) with the velocity distribution (in m d-1) in these spatially heterogeneous 

unsaturated domains.  
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Figure A 2 2D concentration distributions of dissolved species in heterogeneous 

domains (µM) with the velocity distribution (in m d-1) in these spatially 

heterogeneous saturated domains. 
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Figure A 3 Coefficient of variation of dissolved chemical species in the domain with 

increasing heterogeneity (variance in log permeability field in the unsaturated 

domain, and variance in the log hydraulic conductivity field in the saturated domain) 

in three different flow regimes: Slow, medium and fast flow. 
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Figure A 4 Flux averaged concentrations of dissolved species in heterogeneous 

unsaturated domains in three types of heterogeneous scenarios (solid lines) compared 

to that in the homogeneous base case (dashed-dot lines) in all flow regimes 
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Figure A 5 Flux averaged concentrations of dissolved species in heterogeneous 

saturated domains in three types of heterogeneous scenarios (solid lines) compared 

to that in the homogeneous base case (dashed-dot lines) in all flow regimes 
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Figure A 6 Impact on removal of chemical species in heterogeneous unsaturated 

domains with decreasing breakthrough time and increasing spatial heterogeneity.  

 

Figure A 7 Removal of chemical species in spatially heterogeneous saturated 

domains in different flow regimes. Values show mass flux differences between inlet 

and outlet of the heterogeneous domains normalized by the flux differences for the 

homogeneous base case of each flow regime 
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Figure A 8 2D concentration distributions of microbial species in heterogeneous unsaturated domains (µM C) with the 

velocity distribution (in m d-1) in these domains 
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Figure A 9 2D concentration distributions of microbial species in heterogeneous saturated domains (µM C) with the 

velocity distribution (in m d-1) in these domains 
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Figure A 10 Coefficient of variation of immobile active microbial species in the domain 

with increasing heterogeneity (variance in log permeability field in the unsaturated 

domain, and variance in the log hydraulic conductivity field in the saturated domain) in 

three different flow regimes: Slow, medium and fast flow. 
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Figure A 11 Relative contribution of all subpopulations of all the microbial functional 

groups to the total biomass in spatially heterogeneous unsaturated domains. 
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Figure A 12 Relative contribution of subpopulations of all the microbial functional 

groups based on the state of activity and the location to the total biomass in spatially 

heterogeneous saturated domains. 
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Figure A 13 Autocorrelation function of the three time series of groundwater head 

imposed as the boundary condition at the inlet of the domain. The dashed grey lines 

indicate the time point where the autocorrelation drops below 0.75 indicating the 

traceability of each external forcing (39 days for scenario T1, 155 days for scenario T2, 

166 days for scenario T5). 

 

Figure A 14 Variation of flux averaged concentration of dissolved species in the 

homogeneous domain for the time series T5 over a simulation period of 15 years. Colour 

varies with the chemical species (blue for ammonium, green for nitrate, black for DOC and 

red for DO), and the line style varies with the value (solid for average concentration, 

similar to steady state conditions, dotted lines for minimum observed concentration and 

dashed line for maximum observed concentration).  
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Figure A 15 Variation of spatially averaged concentration of immobile and active 

microbial species in the homogeneous domain for the time series T5 over a simulation 

period of 15 years. Colour varies with the chemical species (blue for ammonium, green for 

nitrate, black for DOC and red for DO), and the line style varies with the value (solid for 

average concentration, similar to steady state conditions, dotted lines for minimum 

observed concentration and dashed line for maximum observed concentration). 
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Figure A 16 Variation of flux averaged concentration of dissolved species in select 

heterogeneous domains (indicated by Variance and Anisotropy) for the time series T5 

over a simulation period of 15 years. Colour varies with the chemical species (blue for 

ammonium, green for nitrate, black for DOC and red for DO), and the line style varies with 

the value (solid for average concentration, similar to steady state conditions, dotted lines 

for minimum observed concentration and dashed line for maximum observed 

concentration).  
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Figure A 17 Variation of spatially averaged concentration of immobile and active 

microbial species in select heterogeneous domains for the time series T5 over a simulation 

period of 15 years. Colour varies with the chemical species (blue for ammonium, green for 

nitrate, black for DOC and red for DO), and the line style varies with the value (solid for 

average concentration, like steady state conditions, dotted lines for minimum observed 

concentration and dashed line for maximum observed concentration).  
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Figure A 18 Responsiveness (%) of flux averaged concentrations leaving the 

homogeneous domain in temporally dynamic conditions with respect to steady state 

conditions. The colour varies with the prevalent flow regime (red for slow flow, green for 

medium flow and blue for fast flow regimes) and symbol with the chemical species (square 

for DOC, circle or DO and triangle for nitrogen). The intensity of temporal dynamics is 

indicated by the temporal dynamics factor (ratio of residence time in steady state 

conditions and the traceability of the external forcing). The lower the value, the higher the 

temporal dynamics.  
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Figure A 19 Responsiveness (%) of active immobile biomass in the homogeneous 

domain in temporally dynamic conditions with respect to steady state conditions. The 

colour varies with the prevalent flow regime (red for slow flow, green for medium flow 

and blue for fast flow regimes). 
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Figure A 20 Concentration of chemical species belonging to identified categories of 

reaction regimes (red for reaction dominant regimes with log10Da > 0.5, green for regimes 

with 0<log10Da<0.5, orange for regimes with -1<log10Da<0 and blue for reaction-limited 

regimes with log10Da<-1) in all investigated domains normalised by that in steady state 

conditions with changing normalised velocity in corresponding domain (velocity 

normalised by that in steady state conditions) over the entire simulation period of 15 

years for the three investigated time series (T1, T2, and T5). Points are coloured when the 

change in concentration is 20% or higher, otherwise points are grey. Dashed black lines 

mark a change of 20% in normalised concentration and in normalised velocity. 
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Figure A 21 Contribution of microbial biomass in all investigated domains normalised 

by that in steady state conditions with changing normalised velocity in corresponding 

domain (velocity normalised by that in steady state conditions) over the entire simulation 

period of 15 years for the three investigated time series (T1, T2, and T5). Points are 

coloured when the change in concentration is 20% or higher, otherwise points are grey. 

Dashed black lines mark a change of 20% in normalised concentration and in normalised 

velocity. 
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Figure A 22 Distribution of peak cross-correlation of concentration of chemical species 

leaving the domain in response to temporally dynamic externally forcing at the inlet of the 

domain. 

 

Figure A 23 Distribution of peak cross-correlation of concentration of active fraction of 

microbial species in the domain in response to temporally dynamic externally forcing at 

the inlet of the domain.  
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Figure A 24 Ratio of traceability of time series signal of chemical species (DOC, DO, TOC, 

nitrogen) and traceability of the forcing (changing groundwater head at the inlet of the 

domain). The colour varies with the prevalent flow regime (red for slow flow, green for 

medium flow and blue for fast flow regimes) and the intensity of the colour varies with the 

traceability of the external forcing (lighter colours represent scenario T1, and dark 

colours represent scenario T5). The spatially heterogeneous domains are indicated by the 

reducing residence time of solutes derived in steady state conditions, where a value of 

100% indicates the base case or the homogeneous domain. Lower residence time 

indicates a higher spatially heterogeneous domain.  
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Figure A 25 Ratio of system memory of the domain and traceability of the external 

forcing (changing groundwater head at the inlet of the domain) for different active 

microbial species (aerobic degraders, ammonia oxidisers and nitrate reducers). The 

colour varies with the prevalent flow regime (red for slow flow, green for medium flow 

and blue for fast flow regimes) and the intensity of the colour varies with the traceability 

of the external forcing (lighter colours represent scenario T1, and dark colours represent 

scenario T5). The spatially heterogeneous domains are indicated by the reducing 

residence time of solutes derived in steady state conditions, where a value of 100% 

indicates the base case or the homogeneous domain. Lower residence time indicates a 

higher spatially heterogeneous domain. The system memory of mobile microbes in most 

domains is 0 in temporally dynamic heterogeneous domains, leading to overlapping data 

points in the figure. 



Supplementary Figures Appendix A  

128 

 

Figure A 26 Normalized amplitude (%) of active immobile biomass in the homogeneous 

domain in temporally dynamic conditions with respect to steady state conditions. 

 

Figure A 27 Predicting impact of spatial heterogeneity on reactive species removal in 

different reaction regimes indicated by log10Da in saturated domains. 
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Table B 1 Parameterization of microbial respiration and growth processes 

S. No. Description Notation Value Units Source 

1 Rate constant for aerobic 

reduction of DOC 

kmax1 1 d-1 Calibrated 

2 Minimum biomass 

normalized rate value for 

aerobic respiration to be 

favourable 

o2min 0.06 d-1 Calibrated 

3 Yield coefficient for growth 

of aerobic degraders of DOC 

Yo 0.25 - calibrated, based on 

Thullner et al. (2005) 

4 Half-velocity DOC 

concentration 

ksodoc 1,000 µM C calibrated, based on 

concentrations observed 

in the field 

5 Half velocity oxygen 

concentration 

ksox 2- µM Thullner et al. (2005), 

Wang and Van Cappellen 

(1996) 

6 Rate constant for nitrate 

reduction 

kmax2 0.9 d-1 calibrated, based on 

Schäfer et al. (1998b) 

7 Minimum biomass 

normalized rate value for 

respiration to be favourable 

no3min 0.1 d-1 Calibrated 

8 Yield coefficient for growth 

of nitrate reducers 

Yn 0.17 - calibrated, based on 

Clement et al. (1997) and 

Thullner et al. (2005) 

9 Half-velocity DOC 

concentration 

ksndoc 1,000 µM C calibrated, based on 

concentrations observed 

in the field 

10 Half velocity nitrate 

concentration 

ksno3 100 µM calibrated, based on 

Clément et al. (1997) and 

André et al. (2011) 

11 Inhibition constant for 

presence of oxygen 

kindox 1 µM calibrated, based on 

detection limits of 

sensors defining 

anaerobic conditions 

12 Rate constant for sulphate 

reduction 

kmax3 0.03 d-1 Calibrated 

13 Minimum biomass 

normalized rate value for 

respiration to be favourable 

so4min 0.0039 d-1 Calibrated 

14 Yield coefficient for growth 

of sulphate reducers 

Ys 0.02 - calibrated, based on 

Thullner et al. (2005) 
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S. No. Description Notation Value Units Source 

15 Half-velocity DOC 

concentration 

kssdoc 1,000 µM C calibrated, based on 

concentrations observed 

in the field 

16 Half velocity sulphate 

concentration 

ksso4 1,000 µM calibrated, based on 

Pallud and Van Cappellen 

(2006), Thullner et al. 

(2005) and Boudreau and 

Westrich (1984) 

17 Inhibition constant for 

presence of oxygen 

kindox 1 µM calibrated, based on 

detection limits of 

sensors defining 

anaerobic conditions 

18 Inhibition constant for 

presence of nitrate 

kinno3 50 µM Calibrated 

19 Rate constant for ammonia 

oxidation 

kmax4 0.1 d-1 Calibrated 

20 Minimum biomass 

normalized rate value for 

respiration to be favourable 

ammin 0.004 d-1 Calibrated 

21 Yield coefficient for growth 

of ammonia oxidizers 

Ya 0.0038  Calibrated 

22 Half-velocity Ammonia 

concentration 

ksamm 20 µM calibrated based on 

conditions observed in 

the field 

23 Half velocity oxygen 

concentration 

ksox 20 µM De Brabandere et al. 

(2014), Kalvelage et al. 

(2013), Seitzinger et al. 

(2006) 

24 Sigmoidal function slope 

parameter 

st 0.1 - Stolpovsky et al. (2011) 

25 Minimum concentration of 

Ammonium for growth to 

remain favourable 

amming 10 µM calibrated based on 

review by Jin et al. (2013) 

26 Maximum/Carrying capacity 

at a node 

Bfmax 500 µM C calibrated, based on 

Fukuda et al. (1998), 

Vrede et al. (2002) and 

Grösbacher et al. (2018). 

27 Mobilisation rate constant 

due to exceedance of 

carrying capacity 

kdet 1 µM C d-1 calibrated, based on 

Clément et al. (1997) 
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S. No. Description Notation Value Units Source 

28 Immobilisation rate 

constant 

katt 0.3 µM C d-1 calibrated, based on kdet 

29 Deactivation/dormancy rate 

constant 

kdeac 1 d-1 calibrated, based on 

Stolpovsky et al. (2016) 

30 Reactivation rate constant kreac 0.3 d-1 calibrated, based on 

Stolpovsky et al (2016). 

31 Mortality rate constant km 0.01 d-1 calibrated, based on 

Clément et al. (1997) 

32 Hydrolysis constant kpd 0.03 d-1 calibrated 

33 Carbon Nitrogen ratio for 

hydrolysis of particulate 

organic matter 

fcn 10:1 - calibrated, based on 

Wang and van Cappellen 

(1996) 

34 Desorption constant kl 0.00544 - Rittmann and McCarty 

(2001) 

35 Rate constant for 

background activity 

kmax5 0.00038 d-1 calibrated 
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Table B 2 Relative removal of dissolved species (%) leaving the domain in three (3) flow regimes - slow flow, medium 

flow and fast flow and three (3) temporally dynamic scenarios in the homogeneous domain aggregated over 15 years of 

simulation period. 

Chemical 
species/Removal 
in -> 

Slow flow Medium flow Fast flow 

T0 T1 T2 T5 T0 T1 T2 T5 T0 T1 T2 T5 

Ammonium 19.8 19.4 19.4 19.4 19.4 19.1 19.0 18.9 11.5 11.1 11.0 10.7 

DO 99.6 99.6 99.6 99.6 99.4 99.4 99.4 99.3 98.3 93.8 93.1 89.5 

DOC 59.2 59.2 59.2 59.2 56.5 56.0 55.8 55.4 31.1 29.9 29.9 29.0 

Nitrate 74.7 74.6 74.5 74.4 65.8 64.4 64.1 62.9 1.14 1.74 2.15 2.74 

Nitrogen 57.0 56.8 56.7 56.5 53.1 52.0 51.7 50.8 1.14 1.62 1.95 2.41 

TOC 32.6 32.4 32.2 31.7 42.6 42.1 42.0 41.6 22.7 21.8 21.8 21.2 
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Table B 3 Peak correlation of concentration of chemical species at the outlet of the 

domain in response to temporal dynamics at the inlet of the domain in three flow 

regimes in the homogeneous domain 

Chemical Species Slow flow Medium flow Fast flow 

T1 T2 T5 T1 T2 T5 T1 T2 T5 

Ammonium 0.1 0.2 0.3 0.3 0.3 0.3 0.5 0.5 0.6 

DO 0.6 0.6 0.7 0.9 1.0 1.0 0.8 0.8 0.9 

DOC 0.2 0.1 0.2 0.7 0.7 0.8 0.8 0.8 0.9 

Nitrate 0.6 0.8 0.8 0.9 1.0 1.0 0.7 0.7 0.7 

Nitrogen 0.4 0.6 0.5 0.9 0.9 0.9 0.6 0.6 0.7 

TOC 0.6 0.8 0.7 0.4 0.3 0.4 0.7 0.7 0.8 
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Table B 4 Biomass (B in µM C) in the homogeneous domain of each microbial species in three (3) flow regimes and in 

three (3) temporally dynamic scenarios averaged over 15 years of simulation period. 

Microbial species Slow flow Medium flow Fast flow 

T0 T1 T2 T5 T0 T1 T2 T5 T0 T1 T2 T5 

Total biomass (µM C) 124 126 129 133 96.6 97.1 97.3 97.8 89.3 89.3 89.3 89.4 

Fraction of each species: Active immobile(%) 

Aerobes 3.45 3.38 3.28 3.17 11.5 11.5 11.4 11.5 71.5 65.0 64.1 61.2 

Ammonia oxidizers 0.45 0.41 0.40 0.37 2.21 2.20 2.11 2.21 2.34 2.38 2.39 2.41 

Nitrate reducers 2.42 2.38 2.30 2.22 11.4 11.3 11.0 11.4 2.26 2.98 3.53 4.34 

Fraction of each species: Active mobile(%) 

Aerobes 1.03 1.08 1.05 1.09 2.11 2.10 2.10 2.11 9.23 8.05 7.93 7.45 

Ammonia oxidizers 0.23 0.21 0.21 0.19 0.67 0.66 0.64 0.67 0.64 0.65 0.65 0.65 

Nitrate reducers 1.22 1.24 1.23 1.25 2.89 2.87 2.77 2.89 0.26 0.45 0.51 0.66 

Fraction of each species: Inactive immobile(%) 

Aerobes 43.3 42.7 41.9 41.0 40.4 40.3 40.4 40.4 5.04 10.5 10.9 12.9 

Ammonia oxidizers 0.54 0.58 0.55 0.54 0.29 0.28 0.32 0.29 0.17 0.16 0.16 0.16 
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Nitrate reducers 14.5 14.5 14.1 13.8 10.1 10.3 10.4 10.1 3.11 3.14 3.04 2.96 

Microbial species Slow flow Medium flow Fast flow 

T0 T1 T2 T5 T0 T1 T2 T5 T0 T1 T2 T5 

Fraction of each species: Inactive mobile(%) 

Aerobes 23.1 23.5 24.7 25.8 11.9 11.9 12.1 11.9 0.47 1.75 1.84 2.40 

Ammonia oxidizers 0.29 0.33 0.32 0.34 0.12 0.12 0.14 0.12 0.26 0.24 0.24 0.24 

Nitrate reducers 7.72 7.91 8.22 8.52 2.95 3.03 3.17 2.95 1.33 1.25 1.24 1.20 
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Table B 5 Peak correlation of biomass (B in µM C) in the homogeneous domain of each microbial species in three (3) 

flow regimes and in three (3) temporally dynamic scenarios 

Microbial species Slow flow Medium flow Fast flow 

T1 T2 T5 T1 T2 T5 T1 T2 T5 

Active fixed Aerobes 0.97 0.98 0.98 0.99 1.00 1.00 0.91 0.93 0.90 

Active fixed ammonia oxidizers 0.87 0.93 0.94 0.90 0.92 0.90 0.94 0.96 0.94 

Active fixed nitrate reducers 0.95 0.98 0.99 0.97 0.98 0.98 0.88 0.90 0.88 

Active mobile aerobes 0.76 0.73 0.74 0.99 1.00 1.00 0.21 0.32 0.32 

Active mobile ammonia oxidizers 0.76 0.73 0.81 0.84 0.87 0.84 0.96 0.97 0.96 

Active mobile nitrate reducers 0.70 0.72 0.70 0.95 0.95 0.92 0.74 0.71 0.74 

Inactive fixed aerobes 0.68 0.89 0.91 0.97 0.96 0.96 0.89 0.92 0.89 

Inactive fixed ammonia oxidizers 0.78 0.66 0.46 0.86 0.87 0.85 0.91 0.90 0.56 

Inactive fixed nitrate reducers 0.89 0.85 0.86 0.97 0.99 0.99 0.83 0.87 0.67 

Inactive mobile aerobes 0.73 0.88 0.86 0.93 0.91 0.91 0.78 0.81 0.78 

Inactive mobile ammonia oxidizers 0.73 0.72 0.79 0.80 0.79 0.77 0.96 0.97 0.95 

Inactive mobile nitrate reducers 0.73 0.87 0.85 0.96 0.97 0.96 0.79 0.83 0.65 
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Appendix C: Publications from this thesis 

Chapters 2,3 and 4/ Khurana et al., 2021 

The description of the model set up in the saturated domain, the reaction network, 

and all results pertaining to the numerical experiments in the saturated domain are 

based on the following publication, currently in review: 

Khurana, S., Heße, F., Hildebrandt, A., and Thullner, M.: Predicting the impact of 

spatial heterogeneity on microbial redox dynamics and nutrient cycling in the 

subsurface, Biogeosciences Discussions [preprint], in review, 

https://doi.org/10.5194/bg-2021-72, 2021. 

 

Chapter 5/ Khurana et al., 2021 

The results of numerical experiments in transient conditions in the saturated 

domain are based on the following publication, currently submitted for review: 

Khurana, S., Heße, F., Hildebrandt, A., and Thullner, M.: Should we worry about 

surficial dynamics when assessing nutrient cycling in the groundwater? Front. Water 

- Water and Hydrocomplexity Manuscript ID: 780297, submitted, 2021. 

 



 

140 



 

141 

Selbständigkeitserklärung 

 

Ich erkläre, dass ich die vorliegende Arbeit selbständig und unter Verwendung der 

angegebenen Hilfsmittel, persönlichen Mitteilungen und Quellen angerfetigt habe. 

 

 

 

Ort, Datum       Unterschrift der Verfasserin 

 



 

142 



 

143 

References 

Aguilera, D. R., Jourabchi, P., Spiteri, C., and Regnier, P.: A knowledge-based reactive transport approach for the simulation 
of biogeochemical dynamics in Earth systems, Geochemistry, Geophysics, Geosystems, 6, n/a-n/a, 10.1029/2004gc000899, 
2005. 

Akob, D. M., and Küsel, K.: Where microorganisms meet rocks in the Earth's Critical Zone, Biogeosciences, 8, 3531-3543, 
10.5194/bg-8-3531-2011, 2011. 

Alewell, C., Paul, S., Lischeid, G., Küsel, K., and Gehre, M.: Characterizing the redox status in three different forested wetlands 
with geochemical data, Environmental Science and Technology, 40, 7609-7615, 10.1021/es061018y, 2006. 

Alfreider, A., Krossbacher, M., and Psenner, R.: Groundwater samples do not reflect bacterial densities and activity in 
subsurface systems, Water Research, 31, 832-840, 1997. 

Amyx, J. W., Daniel M. Bass, J., and Whiting, R. L.: Petroleum Reservoir Engineering, United States of America, 1960. 
Anantharaman, K., Brown, C. T., Hug, L. A., Sharon, I., Castelle, C. J., Probst, A. J., Thomas, B. C., Singh, A., Wilkins, M. J., Karaoz, 

U., Brodie, E. L., Williams, K. H., Hubbard, S. S., and Banfield, J. F.: Thousands of microbial genomes shed light on interconnected 
biogeochemical processes in an aquifer system, Nat Commun, 7, 13219, 10.1038/ncomms13219, 2016. 

André, L., Pauwels, H., Dictor, M. C., Parmentier, M., and Azaroual, M.: Experiments and numerical modelling of microbially-
catalysed denitrification reactions, Chemical Geology, 287, 171-181, 10.1016/j.chemgeo.2011.06.008, 2011. 

Andrea, B., Francesc, G., Jérôme, L., Eusebi, V., and Francesc, S.: Cross-site comparison of variability of DOC and nitrate c-q 
hysteresis during the autumn-winter period in three Mediterranean headwater streams: A synthetic approach, Biogeochemistry, 
77, 327-349, 10.1007/s10533-005-0711-7, 2006. 

Arora, B., Spycher, N. F., Steefel, C. I., Molins, S., Bill, M., Conrad, M. E., Dong, W., Faybishenko, B., Tokunaga, T. K., Wan, J., 
Williams, K. H., and Yabusaki, S. B.: Influence of hydrological, biogeochemical and temperature transients on subsurface carbon 
fluxes in a flood plain environment, Biogeochemistry, 127, 367-396, 10.1007/s10533-016-0186-8, 2016. 

Arora, B., and Mohanty, B. P.: Influence of Spatial Heterogeneity and Hydrological Perturbations on Redox Dynamics: A 
Column Study, Procedia Earth and Planetary Science, 17, 869-872, https://doi.org/10.1016/j.proeps.2017.01.046, 2017. 

Austin, A. T., Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A., Norton, U., Ravetta, D. A., and Schaeffer, S. M.: Water pulses 
and biogeochemical cycles in arid and semiarid ecosystems, Oecologia, 141, 221-235, 10.1007/s00442-004-1519-1, 2004. 

Bar-On, Y. M., Phillips, R., and Milo, R.: The biomass distribution on Earth, Proceedings of the National Academy of Sciences 
of the United States of America, 115, 6506-6511, 10.1073/pnas.1711842115, 2018. 

Barros, N., Gomez-Orellana, I., Feijóo, S., and Balsa, R.: The effect of soil moisture on soil microbial activity studied by 
microcalorimetry, Thermochimica Acta, 249, 161-168, 10.1016/0040-6031(95)90686-X, 1995. 

Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V., Darracq, A., Zanardo, S., Yaeger, M., Sivapalan, M., 
Rinaldo, A., and Rao, P. S. C.: Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity, 
Geophysical Research Letters, 37, 10.1029/2010GL045168, 2010. 

Bauer, S., Beyer, C., McDermott, C., Kosakowski, G., Krug, S., Park, C.-H., Pichot, G., Shao, H., Sun, Y., and Taron, J.: Mass 
Transport, in: Thermo-Hydro-Mechanical-Chemical Processes in Porous Media: Benchmarks and Examples, edited by: Kolditz, 
O., Görke, U.-J., Shao, H., and Wang, W., Springer Berlin Heidelberg, Berlin, Heidelberg, 201-231, 2012. 

Benk, S. A., Yan, L., Lehmann, R., Roth, V.-N., Schwab, V. F., Totsche, K. U., Küsel, K., and Gleixner, G.: Fueling Diversity in the 
Subsurface: Composition and Age of Dissolved Organic Matter in the Critical Zone, Frontiers in Earth Science, 7, 
10.3389/feart.2019.00296, 2019. 

Bense, V. F., Ferguson, G., and Kooi, H.: Evolution of shallow groundwater flow systems in areas of degrading permafrost, 
Geophysical Research Letters, 36, 10.1029/2009GL039225, 2009. 

Berkowitz, B.: Characterizing flow and transport in fractured geological media: A review, Advances in Water Resources, 25, 
861-884, 10.1016/S0309-1708(02)00042-8, 2002. 

Berkowitz, B., Silliman, S. E., and Dunn, A. M.: Impact of the Capillary Fringe on Local Flow, Chemical Migration, and 
Microbiology, Vadose Zone Journal, 3, 534-548, 2004. 

Berkowitz, B., Dror, I., Hansen, S. K., and Scher, H.: Measurements and models of reactive transport in geological media, 
Reviews of Geophysics, 54, 930-986, https://doi.org/10.1002/2016RG000524, 2016. 

Betts, A. K., Ball, J. H., Beljaars, A. C. M., Miller, M. J., and Viterbo, P. A.: The land surface-atmosphere interaction: A review 
based on observational and global modeling perspectives, Journal of Geophysical Research Atmospheres, 101, 7209-7225, 
10.1029/95JD02135, 1996. 

Bieroza, M. Z., and Heathwaite, A. L.: Seasonal variation in phosphorus concentration-discharge hysteresis inferred from 
high-frequency in situ monitoring, Journal of Hydrology, 524, 333-347, 10.1016/j.jhydrol.2015.02.036, 2015. 

Bieroza, M. Z., Heathwaite, A. L., Bechmann, M., Kyllmar, K., and Jordan, P.: The concentration-discharge slope as a tool for 
water quality management, Science of the Total Environment, 630, 738-749, 10.1016/j.scitotenv.2018.02.256, 2018. 

Blazewicz, S. J., Hungate, B. A., Koch, B. J., Nuccio, E. E., Morrissey, E., Brodie, E. L., Schwartz, E., Pett-Ridge, J., and Firestone, 
M. K.: Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a 
California grassland soil, ISME Journal, 14, 1520-1532, 10.1038/s41396-020-0617-3, 2020. 

Bol, R., Lücke, A., Tappe, W., Kummer, S., Krause, M., Weigand, S., Pütz, T., and Vereecken, H.: Spatio-temporal variations of 
dissolved organic matter in a german forested mountainous headwater catchment, Vadose Zone Journal, 14, 
10.2136/vzj2015.01.0005, 2015. 

https://doi.org/10.1016/j.proeps.2017.01.046
https://doi.org/10.1002/2016RG000524


References   

144 

Boudreau, B. P., and Westrich, J. T.: The dependence of bacterial sulfate reduction on sulfate concentration in marine 
sediments, Geochimica et Cosmochimica Acta, 48, 2503-2516, 10.1016/0016-7037(84)90301-6, 1984. 

Bouskill, N. J., Conrad, M. E., Bill, M., Brodie, E. L., Cheng, Y., Hobson, C., Forbes, M., Casciotti, K. L., and Williams, K. H.: Evidence 
for Microbial Mediated NO3− Cycling Within Floodplain Sediments During Groundwater Fluctuations, Frontiers in Earth Science, 
7, 10.3389/feart.2019.00189, 2019. 

Bradley, J. A., Amend, J. P., and LaRowe, D. E.: Bioenergetic Controls on Microbial Ecophysiology in Marine Sediments, Front 
Microbiol, 9, 180, 10.3389/fmicb.2018.00180, 2018. 

Brangarí, A. C., Fernàndez-Garcia, D., Sanchez-Vila, X., and Manzoni, S.: Ecological and soil hydraulic implications of microbial 
responses to stress – A modeling analysis, Advances in Water Resources, 116, 178-194, 10.1016/j.advwatres.2017.11.005, 2018. 

Brantley, S. L., McDowell, W. H., Dietrich, W. E., White, T. S., Kumar, P., Anderson, S. P., Chorover, J., Lohse, K. A., Bales, R. C., 
Richter, D. D., Grant, G., and Gaillardet, J.: Designing a network of critical zone observatories to explore the living skin of the 
terrestrial Earth, Earth Surface Dynamics, 5, 841-860, 10.5194/esurf-5-841-2017, 2017. 

Briggs, M. A., Lautz, L. K., and Hare, D. K.: Residence time control on hot moments of net nitrate production and uptake in 
the hyporheic zone, Hydrological Processes, 28, 3741-3751, 10.1002/hyp.9921, 2014. 

Bundt, M., Widmer, F., Pesaro, M., Zeyer, J., and Blaser, P.: Preferential flow paths: biological 'hot spots' in soils, Soil Biology 
and Biochemistry, 33, 729-738, 2001. 

Carsel, R. F., and Parrish, R. S.: Developing Joint Probability Distributions of Soil Water Retention Characteristics, Water 
Resources Research, 24, 755-769, 1988. 

Centler, F., Shao, H., De Biase, C., Park, C.-H., Regnier, P., Kolditz, O., and Thullner, M.: GeoSysBRNS—A flexible 
multidimensional reactive transport model for simulating biogeochemical subsurface processes, Computers & Geosciences, 36, 
397-405, 10.1016/j.cageo.2009.06.009, 2010. 

Chen, Z., Shi, L., Ye, M., Zhu, Y., and Yang, J.: Global sensitivity analysis for identifying important parameters of nitrogen 
nitrification and denitrification under model uncertainty and scenario uncertainty, Journal of Hydrology, 561, 884-895, 
10.1016/j.jhydrol.2018.04.031, 2018. 

Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H. J., and Heron, G.: 
Biogeochemistry of landfill leachate plumes, Applied Geochemistry, 16, 659-718, 10.1016/S0883-2927(00)00082-2, 2001. 

Clement, T. P., Peyton, B. M., Skeen, R. S., Jennings, D. A., and Petersen, J. N.: Microbial growth and transport in porous media 
under denitrification conditions: experiments and simulations, Journal of Contaminant Hydrology, 24, 269-285, 1997. 

Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., 
Middelburg, J. J., and Melack, J.: Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget, 
Ecosystems, 10, 172-185, 10.1007/s10021-006-9013-8, 2007. 

Corradini, C., Melone, F., and Smith, R. E.: Modeling local infiltration for a two-layered soil under complex rainfall patterns, 
Journal of Hydrology, 237, 58-73, 10.1016/S0022-1694(00)00298-5, 2000. 

Couradeau, E., Sasse, J., Goudeau, D., Nath, N., Hazen, T. C., Bowen, B. P., Chakraborty, R., Malmstrom, R. R., and Northen, T. 
R.: Probing the active fraction of soil microbiomes using BONCAT-FACS, Nature Communications, 10, 10.1038/s41467-019-
10542-0, 2019. 

Creed, I. F., McKnight, D. M., Pellerin, B. A., Green, M. B., Bergamaschi, B. A., Aiken, G. R., Burns, D. A., Findlay, S. E. G., Shanley, 
J. B., Striegl, R. G., Aulenbach, B. T., Clow, D. W., Laudon, H., McGlynn, B. L., McGuire, K. J., Smith, R. A., and Stackpoole, S. M.: The 
river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum, Canadian Journal of 
Fisheries and Aquatic Sciences, 72, 1272-1285, 10.1139/cjfas-2014-0400, 2015. 

Dagan, G., Fiori, A., and Janković, I.: Flow and transport in highly heterogeneous formations: 1. Conceptual framework and 
validity of first-order approximations, Water Resources Research, 39, SBH141-SBH1412, 10.1029/2002WR001717, 2003. 

Davis, J. M., Wilson, J. L., Phillips, F. M., and Gotkowitz, M. B.: Relationship between fluvial bounding surfaces and the 
permeability correlation structure, Water Resources Research, 33, 1843-1854, 10.1029/97wr01003, 1997. 

De Castro Ochoa, F., and Muñoz Reinoso, J. C.: Model of long-term water-table dynamics at Donana National park, Water 
Research, 31, 2586-2596, 10.1016/S0043-1354(97)00098-5, 1997. 

De Troyer, I., Merckx, R., Amery, F., and Smolders, E.: Factors controlling the dissolved organic matter concentration in pore 
waters of agricultural soils, Vadose Zone Journal, 13, 10.2136/vzj2013.09.0167, 2014. 

Dechesne, A., Pallud, C., Bertolla, F., and Grundmann, G. L.: Impact of the microscale distribution of a Pseudomonas strain 
introduced into soil on potential contacts with indigenous bacteria, Applied and Environmental Microbiology, 71, 8123-8131, 
10.1128/AEM.71.12.8123-8131.2005, 2005. 

Delhomme, J. P.: Spatial variability and uncertainty in groundwater flow parameters: A geostatistical approach, Water 
Resources Research, 15, 269-280, 10.1029/WR015i002p00269, 1979. 

Desbarats, A. J.: Numerical estimation of effective permeability in sand‐shale formations, Water Resources Research, 23, 
273-286, 10.1029/WR023i002p00273, 1987. 

Du, X., Deng, Y., Li, S., Escalas, A., Feng, K., He, Q., Wang, Z., Wu, Y., Wang, D., Peng, X., and Wang, S.: Steeper spatial scaling 
patterns of subsoil microbiota are shaped by deterministic assembly process, Molecular Ecology, 30, 1072-1085, 
10.1111/mec.15777, 2021. 

Dutilleul, P., and Legendre, P.: Spatial Heterogeneity against Heteroscedasticity: An Ecological Paradigm versus a Statistical 
Concept, Oikos, 66, 152-171, 1993. 

Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B., and Versteeg, R.: Hot Spots and Hot Moments of Nitrogen in a Riparian 
Corridor, Water Resources Research, 54, 205-222, 10.1002/2017wr022346, 2018. 

Ebeling, P., Kumar, R., Weber, M., Knoll, L., Fleckenstein, J. H., and Musolff, A.: Archetypes and Controls of Riverine Nutrient 
Export Across German Catchments, Water Resources Research, 57, 10.1029/2020WR028134, 2021. 

Ebrahimi, A., and Or, D.: Hydration and diffusion processes shape microbial community organization and function in model 
soil aggregates, Water Resources Research, 51, 9804-9827, 10.1002/2015wr017565, 2015. 



  References 

145 

Edery, Y., Porta, G. M., Guadagnini, A., Scher, H., and Berkowitz, B.: Characterization of Bimolecular Reactive Transport in 
Heterogeneous Porous Media, Transport in Porous Media, 115, 291-310, 10.1007/s11242-016-0684-0, 2016. 

Edmunds, W. M., and Smedley, P. L.: Residence time indicators in groundwater: The East Midlands Triassic sandstone 
aquifer, Applied Geochemistry, 15, 737-752, 10.1016/S0883-2927(99)00079-7, 2000. 

Eilers, K. G., Debenport, S., Anderson, S., and Fierer, N.: Digging deeper to find unique microbial communities: The strong 
effect of depth on the structure of bacterial and archaeal communities in soil, Soil Biology and Biochemistry, 50, 58-65, 
10.1016/j.soilbio.2012.03.011, 2012. 

Evans, C., and Davies, T. D.: Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode 
hydrochemistry, Water Resources Research, 34, 129-137, 10.1029/97WR01881, 1998. 

Falkowski, P. G., Fenchel, T., and Delong, E. F.: The Microbial Engines That Drive Earth's Biogeochemical Cycles, Science, 320, 
1034-1039, 10.1126/science.1153213, 2008. 

Field, M. S., and Nash, S. G.: Risk assessment methodology for karst aquifers: (1) Estimating karst conduit-flow parameters', 
Environmental Monitoring and Assessment, 47, 1-21, 10.1023/A:1005753919403, 1997. 

Francis, J. A., and Vavrus, S. J.: Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophysical 
Research Letters, 39, 10.1029/2012GL051000, 2012. 

Franklin, S., Vasilas, B., and Jin, Y.: More than Meets the Dye: Evaluating Preferential Flow Paths as Microbial Hotspots, 
Vadose Zone Journal, 18, 190024, https://doi.org/10.2136/vzj2019.03.0024, 2019. 

Freimann, R., Bürgmann, H., Findlay, S. E. G., and Robinson, C. T.: Spatio-temporal patterns of major bacterial groups in alpine 
waters, PLoS ONE, 9, 10.1371/journal.pone.0113524, 2014. 

Fukuda, R., Ogawa, H., Nagata, T., and Koike, I.: Direct determination of carbon and nitrogen contents of natural bacterial 
assemblages in marine environments, Applied and Environmental Microbiology, 64, 3352-3358, 10.1128/aem.64.9.3352-
3358.1998, 1998. 

Gelhar, L. W., and Axness, C. L.: Three‐dimensional stochastic analysis of macrodispersion in aquifers, Water Resources 
Research, 19, 161-180, 10.1029/WR019i001p00161, 1983. 

Gerke, H. H.: Preferential flow descriptions for structured soils, Journal of Plant Nutrition and Soil Science, 169, 382-400, 
10.1002/jpln.200521955, 2006. 

Geza, M., Deb, S. K., Leinauer, B., Stanek, S., Sevostianova, E., and Serena, M.: Modeling NO3–N leaching during establishment 
of turfgrasses irrigated with tailored reclaimed water, Vadose Zone Journal, 20, e20112, https://doi.org/10.1002/vzj2.20112, 
2021. 

Gharasoo, M., Centler, F., Regnier, P., Harms, H., and Thullner, M.: A reactive transport modeling approach to simulate 
biogeochemical processes in pore structures with pore-scale heterogeneities, Environmental Modelling & Software, 30, 102-
114, 10.1016/j.envsoft.2011.10.010, 2012. 

Ghiorse, W. C.: Subterranean Life, Science, 275, 789-790, 1997. 
Giardino, J. R., and Houser, C.: A Summary and Future Direction of the Principles and Dynamics of the Critical Zone. In: 

Developments in Earth Surface Processes, 2015. 
Golparvar, A., Kästner, M., and Thullner, M.: Pore-scale modeling of microbial activity: What we have and what we need, 

Vadose Zone Journal, 20, 10.1002/vzj2.20087, 2021. 
Gorski, G., and Zimmer, M. A.: Hydrologic regimes drive nitrate export behavior in human-impacted watersheds, Hydrology 

and Earth System Sciences, 25, 1333-1345, 10.5194/hess-25-1333-2021, 2021. 
Gregory, J. M., Mitchell, J. F. B., and Brady, A. J.: Summer drought in Northern Midlatitudes in a time-dependent CO2 climate 

experiment, Journal of Climate, 10, 662-686, 10.1175/1520-0442(1997)010<0662:SDINMI>2.0.CO;2, 1997. 
Griebler, C., Mindl, B., Slezak, D., and Geiger-Kaiser, M.: Distribution patterns of attached and suspended bacteria in pristine 

and contaminated shallow aquifers studied with an in situ sediment exposure microcosm, Aquatic Microbial Ecology, 28, 117-
129, 2002. 

Griebler, C., and Lueders, T.: Microbial biodiversity in groundwater ecosystems, Freshwater Biology, 54, 649-677, 
10.1111/j.1365-2427.2008.02013.x, 2009. 

Griebler, C., Stein, H., Kellermann, C., Berkhoff, S., Brielmann, H., Schmidt, S., Selesi, D., Steube, C., Fuchs, A., and Hahn, H. J.: 
Ecological assessment of groundwater ecosystems - Vision or illusion?, Ecological Engineering, 36, 1174-1190, 
10.1016/j.ecoleng.2010.01.010, 2010. 

Grösbacher, M., Eckert, D., Cirpka, O. A., and Griebler, C.: Contaminant concentration versus flow velocity: drivers of 
biodegradation and microbial growth in groundwater model systems, Biodegradation, 29, 211-232, 10.1007/s10532-018-9824-
2, 2018. 

Gross, A., Lin, Y., Weber, P. K., Pett-Ridge, J., and Silver, W. L.: The role of soil redox conditions in microbial phosphorus 
cycling in humid tropical forests, Ecology, 101, 10.1002/ecy.2928, 2020. 

Guo, L., and Lin, H.: Critical Zone Research and Observatories: Current Status and Future Perspectives, Vadose Zone Journal, 
15, 10.2136/vzj2016.06.0050, 2016. 

Gurevich, H., Baram, S., and Harter, T.: Measuring nitrate leaching across the critical zone at the field to farm scale, Vadose 
Zone Journal, 20, e20094, https://doi.org/10.1002/vzj2.20094, 2021. 

Gutiérrez Castorena, E. V., Gutiérrez-Castorena, M. D. C., González Vargas, T., Cajuste Bontemps, L., Delgadillo Martínez, J., 
Suástegui Méndez, E., and Ortiz Solorio, C. A.: Micromapping of microbial hotspots and biofilms from different crops using digital 
image mosaics of soil thin sections, Geoderma, 279, 11-21, 10.1016/j.geoderma.2016.05.017, 2016. 

Gwo, J. P., Toran, L. E., Morris, M. D., and Wilson, G. V.: Subsurface Stormflow Modeling with Sensitivity Analysis Using a 
Latin-Hypercube Sampling Technique, Ground Water, 34, 811-818, 10.1111/j.1745-6584.1996.tb02075.x, 1996. 

Harden, J. W., O'Neill, K. P., Trumbore, S. E., Veldhuis, H., and Stocks, B. J.: Moss and soil contributions to the annual net carbon 
flux of a maturing boreal forest, Journal of Geophysical Research Atmospheres, 102, 28805-28816, 1997. 

Hayashi, M.: The cold vadose zone: Hydrological and ecological significance of frozen-soil processes, Vadose Zone Journal, 
12, 2013. 

https://doi.org/10.2136/vzj2019.03.0024
https://doi.org/10.1002/vzj2.20112
https://doi.org/10.1002/vzj2.20094


References   

146 

Heath, R. C.: Basic groundwater-hydrology, U.S. Geological Survey, U.S. Geological Survey Water-Supply Paper, 81, 1983. 
Heathwaite, A. L., and Bieroza, M.: Fingerprinting hydrological and biogeochemical drivers of freshwater quality, 

Hydrological Processes, 35, 10.1002/hyp.13973, 2021. 
Henry, C. M., Allen, D. M., and Huang, J.: Groundwater storage variability and annual recharge using well-hydrograph and 

GRACE satellite data, Hydrogeology Journal, 19, 741-755, 10.1007/s10040-011-0724-3, 2011. 
Herndon, E. M., Dere, A. L., Sullivan, P. L., Norris, D., Reynolds, B., and Brantley, S. L.: Landscape heterogeneity drives 

contrasting concentration-discharge relationships in shale headwater catchments, Hydrology and Earth System Sciences, 19, 
3333-3347, 10.5194/hess-19-3333-2015, 2015. 

Herrmann, M., Rusznyak, A., Akob, D. M., Schulze, I., Opitz, S., Totsche, K. U., and Kusel, K.: Large fractions of CO2-fixing 
microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds, 
Appl Environ Microbiol, 81, 2384-2394, 10.1128/AEM.03269-14, 2015. 

Heße, F., Harms, H., Attinger, S., and Thullner, M.: Linear exchange model for the description of mass transfer limited 
bioavailability at the pore scale, Environmental Science & Technology, 44, 2064-2071, 2010. 

Heße, F., Prykhodko, V., Schlüter, S., and Attinger, S.: Generating random fields with a truncated power-law variogram: 
A comparison of several numerical methods, Environmental Modelling & Software, 55, 32-48, 10.1016/j.envsoft.2014.01.013, 
2014. 

Hofmann, R., Uhl, J., Hertkorn, N., and Griebler, C.: Linkage Between Dissolved Organic Matter Transformation, Bacterial 
Carbon Production, and Diversity in a Shallow Oligotrophic Aquifer: Results From Flow-Through Sediment Microcosm 
Experiments, Frontiers in Microbiology, 11, 10.3389/fmicb.2020.543567, 2020. 

Holden, P. A., and Fierer, N.: Microbial processes in the vadose zone, Vadose Zone Journal, 4, 1-21, 2005. 
Holm, P. E., Nielsen, P. H., Albrechtsen, H. J., and Christensen, T. H.: Importance of unattached bacteria and bacteria attached 

to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer, Applied and 
Environmental Microbiology, 58, 3020-3026, 10.1128/aem.58.9.3020-3026.1992, 1992. 

Holt, M. S.: Sources of chemical contaminants and routes into the freshwater environment, Food and Chemical Toxicology, 
38, S21-S27, https://doi.org/10.1016/S0278-6915(99)00136-2, 2000. 

Horner-Devine, M. C., Carney, K. M., and Bohannan, B. J. M.: An ecological perspective on bacterial biodiversity, Proceedings 
of the Royal Society B: Biological Sciences, 271, 113-122, 10.1098/rspb.2003.2549, 2004. 

Huang, Y., Salama, M. S., Krol, M. S., Su, Z., Hoekstra, A. Y., Zeng, Y., and Zhou, Y.: Estimation of human-induced changes in 
terrestrial water storage through integration of GRACE satellite detection and hydrological modeling: A case study of the Yangtze 
River basin, Water Resources Research, 51, 8494-8516, 10.1002/2015WR016923, 2015. 

Humphreys, W. F.: Hydrogeology and groundwater ecology: Does each inform the other?, Hydrogeology Journal, 17, 5-21, 
10.1007/s10040-008-0349-3, 2009. 

Hunt, D. E., Lin, Y., Church, M. J., Karl, D. M., Tringe, S. G., Izzo, L. K., and Johnson, Z. I.: Relationship between abundance and 
specific activity of bacterioplankton in open ocean surface waters, Applied and Environmental Microbiology, 79, 177-184, 
10.1128/AEM.02155-12, 2013. 

Hunter, K. S., Wang, Y., and Van Cappellen, P.: Kinetic modeling of microbially-driven redox chemistry of subsurface 
environments: coupling transport, microbial metabolism and geochemistry, Journal of Hydrology, 209, 53-80, 1998. 

ISO, I. O. f. S.: ISO: 17289:2014-Water quality - Determination of dissolved oxygen - Optical sensor method. 2014. 
Jacques, D., Šimůnek, J., Mallants, D., and van Genuchten, M. T.: Modelling coupled water flow, solute transport and 

geochemical reactions affecting heavy metal migration in a podzol soil, Geoderma, 145, 449-461, 
10.1016/j.geoderma.2008.01.009, 2008. 

Jang, E., He, W., Savoy, H., Dietrich, P., Kolditz, O., Rubin, Y., Schüth, C., and Kalbacher, T.: Identifying the influential aquifer 
heterogeneity factor on nitrate reduction processes by numerical simulation, Advances in Water Resources, 99, 38-52, 
10.1016/j.advwatres.2016.11.007, 2017. 

Jiang, B.: Geospatial analysis requires a different way of thinking: the problem of spatial heterogeneity, GeoJournal, 80, 1-
13, 10.1007/sl0708-014-9537-y, 2015. 

Jing, M., Heße, F., Kumar, R., Wang, W., Fischer, T., Walther, M., Zink, M., Zech, A., Samaniego, L., Kolditz, O., and Attinger, S.: 
Improved regional-scale groundwater representation by the coupling of the mesoscale Hydrologic Model (mHM v5.7) to the 
groundwater model OpenGeoSys (OGS), Geosci. Model Dev., 11, 1989-2007, 10.5194/gmd-11-1989-2018, 2018. 

Johnson, N. M., and Dreiss, S. J.: Hydrostratigraphic interpretation using indicator geostatistics, Water Resources Research, 
25, 2501-2510, 10.1029/WR025i012p02501, 1989. 

Jung, H., and Meile, C.: Upscaling of microbially driven first-order reactions in heterogeneous porous media, J Contam Hydrol, 
224, 103483, 10.1016/j.jconhyd.2019.04.006, 2019. 

Kalbacher, T., and Du, Y.: Richards Flow, in: Thermo-Hydro-Mechanical-Chemical Processes in Porous Media: Benchmarks 
and Examples, edited by: Kolditz, O., Görke, U.-J., Shao, H., and Wang, W., Springer Berlin Heidelberg, Berlin, Heidelberg, 125-
142, 2012. 

Khurana, S., Heße, F., Hildebrandt, A., and Thullner, M.: Spatial heterogeneity impact on microbial redox dynamics (Version 
v1.0.0). Zenodo, 2021a. 

Khurana, S., Heße, F., Hildebrandt, A., and Thullner, M.: Predicting the impact of spatial heterogeneity on microbial redox 
dynamics and nutrient cycling in the subsurface, Biogeosciences Discussions [preprint], in review, https://doi.org/10.5194/bg-
2021-72, 2021b. 

Kim, K. H., Yun, S. T., Choi, B. Y., Chae, G. T., Joo, Y., Kim, K., and Kim, H. S.: Hydrochemical and multivariate statistical 
interpretations of spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central 
Korea), J Contam Hydrol, 107, 114-127, 10.1016/j.jconhyd.2009.04.007, 2009. 

Kim, K. H., Michael, H. A., Field, E. K., and Ullman, W. J.: Hydrologic Shifts Create Complex Transient Distributions of 
Particulate Organic Carbon and Biogeochemical Responses in Beach Aquifers, Journal of Geophysical Research: Biogeosciences, 
124, 3024-3038, 10.1029/2019jg005114, 2019. 

https://doi.org/10.1016/S0278-6915(99)00136-2
https://doi.org/10.5194/bg-2021-72
https://doi.org/10.5194/bg-2021-72


  References 

147 

Kim, T., Hite, M., Rogacki, L., Sealock, A. W., Sprouse, G., Novak, P. J., and LaPara, T. M.: Dissolved oxygen concentrations affect 
the function but not the relative abundance of nitrifying bacterial populations in full-scale municipal wastewater treatment 
bioreactors during cold weather, Science of the Total Environment, 781, 10.1016/j.scitotenv.2021.146719, 2021. 

King, A. J., Preheim, S. P., Bailey, K. L., Robeson, M. S., Roy Chowdhury, T., Crable, B. R., Hurt, R. A., Mehlhorn, T., Lowe, K. A., 
Phelps, T. J., Palumbo, A. V., Brandt, C. C., Brown, S. D., Podar, M., Zhang, P., Lancaster, W. A., Poole, F., Watson, D. B., Fields, M., 
Chandonia, J. M., Alm, E. J., Zhou, J., Adams, M. W. W., Hazen, T. C., Arkin, A. P., and Elias, D. A.: Temporal Dynamics of In-Field 
Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation, Environmental Science and 
Technology, 51, 2879-2889, 10.1021/acs.est.6b04751, 2017. 

Kitanidis, P. K., and Vomvoris, E. G.: A geostatistical approach to the inverse problem in groundwater modeling (steady state) 
and one‐dimensional simulations, Water Resources Research, 19, 677-690, 10.1029/WR019i003p00677, 1983. 

Klotzbücher, T., Kaiser, K., and Kalbitz, K.: Response of dissolved organic matter in the forest floor of a temperate spruce 
stand to increasing throughfall, Vadose Zone Journal, 13, 10.2136/vzj2013.10.0180, 2014. 

Koenig, S.: Modelling Spatiotemporal Dynamics of Biodegradation under Disturbances, 2016. 
Koenig, S., Worrich, A., Banitz, T., Harms, H., Kaestner, M. E., Miltner, A., Wick, L. Y., Frank, K., Thullner, M., and Centler, F.: 

Dynamic response of a virtual microbial ecosystem to recurrent disturbances - Mechanistic insights into functional and 
structural resistance, Frontiers in Microbiology, 2017. 

Koestel, J. K., Moeys, J., and Jarvis, N. J.: Meta-analysis of the effects of soil properties, site factors and experimental conditions 
on solute transport, Hydrology and Earth System Sciences, 16, 1647-1665, 10.5194/hess-16-1647-2012, 2012. 

Koestel, J. K., Norgaard, T., Luong, N. M., Vendelboe, A. L., Moldrup, P., Jarvis, N. J., Lamandé, M., Iversen, B. V., and Wollesen 
De Jonge, L.: Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale, Water 
Resources Research, 49, 790-807, 10.1002/wrcr.20079, 2013. 

Kohlhepp, B., Lehmann, R., Seeber, P., Küsel, K., Trumbore, S. E., and Totsche, K. U.: Aquifer configuration and geostructural 
links control the groundwater quality in thin-bedded carbonate–siliciclastic alternations of the Hainich CZE, central Germany, 
Hydrology and Earth System Sciences, 21, 6091-6116, 10.5194/hess-21-6091-2017, 2017. 

Kolditz, O., Delfs, J. O., Bürger, C., Beinhorn, M., and Park, C. H.: Numerical analysis of coupled hydrosystems based on an 
object-oriented compartment approach, Journal of Hydroinformatics, 10, 227-244, 10.2166/hydro.2008.003, 2008. 

Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J. O., Fischer, T., Görke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C. I., 
Park, C. H., Radu, F., Rink, K., Shao, H., Shao, H. B., Sun, F., Sun, Y. Y., Singh, A. K., Taron, J., Walther, M., Wang, W., Watanabe, N., 
Wu, Y., Xie, M., Xu, W., and Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-
mechanical/chemical (THM/C) processes in porous media, Environmental Earth Sciences, 67, 589-599, 10.1007/s12665-012-
1546-x, 2012. 

Konhauser, K. O., Kappler, A., and Roden, E. E.: Iron in microbial metabolisms, Elements, 7, 89-93, 
10.2113/gselements.7.2.89, 2011. 

Kotelnikova, S.: Kotelnikova S.. Microbial production and oxidation of methane in deep subsurface. Earth-Sci Rev 58: 367-
395, Earth-Science Reviews, 58, 367-395, 10.1016/S0012-8252(01)00082-4, 2002. 

Kothavala, Z.: Extreme precipitation events and the applicability of global climate models to the study of floods and droughts, 
Mathematics and Computers in Simulation, 43, 261-268, 10.1016/s0378-4754(97)00008-6, 1997. 

Kothavala, Z.: The duration and severity of drought over eastern Australia simulated by a coupled ocean-atmosphere GCM 
with a transient increase in CO2, Environmental Modelling and Software, 14, 243-252, 10.1016/S1364-8152(98)00076-0, 1999. 

Kumar, R., Heße, F., Rao, P. S. C., Musolff, A., Jawitz, J. W., Sarrazin, F., Samaniego, L., Fleckenstein, J. H., Rakovec, O., Thober, 
S., and Attinger, S.: Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe, Nature 
Communications, 11, 10.1038/s41467-020-19955-8, 2020. 

Kumar, S., Herrmann, M., Thamdrup, B., Schwab, V. F., Geesink, P., Trumbore, S. E., Totsche, K.-U., and Küsel, K.: Nitrogen Loss 
from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by 
Chemolithoautotrophic Anammox Processes, Frontiers in Microbiology, 8, 10.3389/fmicb.2017.01951, 2017. 

Küsel, K., Totsche, K. U., Trumbore, S. E., Lehmann, R., Steinhäuser, C., and Herrmann, M.: How Deep Can Surface Signals Be 
Traced in the Critical Zone? Merging Biodiversity with Biogeochemistry Research in a Central German Muschelkalk Landscape, 
Frontiers in Earth Science, 4, 10.3389/feart.2016.00032, 2016. 

Kuzyakov, Y., and Blagodatskaya, E.: Microbial hotspots and hot moments in soil: Concept & review, Soil Biology and 
Biochemistry, 83, 184-199, 10.1016/j.soilbio.2015.01.025, 2015. 

Lam, P., and Kuypers, M. M. M.: Microbial nitrogen cycling processes in oxygen minimum zones, Annual Review of Marine 
Science, 3, 317-345, 10.1146/annurev-marine-120709-142814, 2011. 

LaRowe, D. E., and Amend, J. P.: Catabolic rates, population sizes and doubling/replacement times of microorganisms in 
natural settings, American Journal of Science, 315, 167-203, 10.2475/03.2015.01, 2015a. 

LaRowe, D. E., and Amend, J. P.: Power limits for microbial life, Front Microbiol, 6, 718, 10.3389/fmicb.2015.00718, 2015b. 
Lehmann, K., Lehmann, R., and Totsche, K. U.: Event-driven dynamics of the total mobile inventory in undisturbed soil 

account for significant fluxes of particulate organic carbon, Science of the Total Environment, 756, 
10.1016/j.scitotenv.2020.143774, 2021. 

Lei, T., Pan, Y., Liu, H., Zhan, W., and Yuan, J.: A run off-on-ponding method and models for the transient infiltration capability 
process of sloped soil surface under rainfall and erosion impacts, Journal of Hydrology, 319, 216-226, 
10.1016/j.jhydrol.2005.06.029, 2006. 

Leinemann, T., Mikutta, R., Kalbitz, K., Schaarschmidt, F., and Guggenberger, G.: Small scale variability of vertical water and 
dissolved organic matter fluxes in sandy Cambisol subsoils as revealed by segmented suction plates, Biogeochemistry, 131, 1-
15, 10.1007/s10533-016-0259-8, 2016. 

Lennon, J. T., and Jones, S. E.: Microbial seed banks: the ecological and evolutionary implications of dormancy, Nat Rev 
Microbiol, 9, 119-130, 10.1038/nrmicro2504, 2011. 



References   

148 

Lever, M. A., Rogers, K. L., Lloyd, K. G., Overmann, J., Schink, B., Thauer, R. K., Hoehler, T. M., and Jorgensen, B. B.: Life under 
extreme energy limitation: a synthesis of laboratory- and field-based investigations, FEMS Microbiol Rev, 39, 688-728, 
10.1093/femsre/fuv020, 2015. 

Levy, M., and Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media, Journal 
of Contaminant Hydrology, 64, 203-226, 10.1016/S0169-7722(02)00204-8, 2003. 

Li, B., and Rodell, M.: Evaluation of a model-based groundwater drought indicator in the conterminous U.S, Journal of 
Hydrology, 526, 78-88, 10.1016/j.jhydrol.2014.09.027, 2015. 

Li, B., Pales, A. R., Clifford, H. M., Kupis, S., Hennessy, S., Liang, W. Z., Moysey, S., Powell, B., Finneran, K. T., and Darnault, C. J. 
G.: Preferential flow in the vadose zone and interface dynamics: Impact of microbial exudates, Journal of Hydrology, 558, 72-89, 
2018. 

Lin, X., McKinley, J., Resch, C. T., Kaluzny, R., Lauber, C. L., Fredrickson, J., Knight, R., and Konopka, A.: Spatial and temporal 
dynamics of the microbial community in the Hanford unconfined aquifer, ISME Journal, 6, 1665-1676, 10.1038/ismej.2012.26, 
2012. 

Liu, W., Birgand, F., Tian, S., and Chen, C.: Event-scale hysteresis metrics to reveal processes and mechanisms controlling 

constituent export from watersheds: A review✰, Water Research, 200, 10.1016/j.watres.2021.117254, 2021. 
Lohmann, P., Benk, S., Gleixner, G., Potthast, K., Michalzik, B., Jehmlich, N., and Bergen, M. V.: Seasonal Patterns of Dominant 

Microbes Involved in Central Nutrient Cycles in the Subsurface, Microorganisms, 8, 10.3390/microorganisms8111694, 2020. 
Lundberg, A., Ala-Aho, P., Eklo, O., Klöve, B., Kværner, J., and Stumpp, C.: Snow and frost: Implications for spatiotemporal 

infiltration patterns - a review, Hydrological Processes, 30, 1230-1250, 10.1002/hyp.10703, 2016. 
Magnabosco, C., Lin, L. H., Dong, H., Bomberg, M., Ghiorse, W., Stan-Lotter, H., Pedersen, K., Kieft, T. L., van Heerden, E., and 

Onstott, T. C.: The biomass and biodiversity of the continental subsurface, Nature Geoscience, 11, 707-717, 10.1038/s41561-
018-0221-6, 2018. 

Maher, K., Bargar, J. R., and Brown Jr, G. E.: Environmental speciation of actinides, Inorganic Chemistry, 52, 3510-3532, 
10.1021/ic301686d, 2013. 

Manzoni, S., and Porporato, A.: Soil carbon and nitrogen mineralization: Theory and models across scales, Soil Biology and 
Biochemistry, 41, 1355-1379, 10.1016/j.soilbio.2009.02.031, 2009. 

Manzoni, S., Schaeffer, S. M., Katul, G., Porporato, A., and Schimel, J. P.: A theoretical analysis of microbial eco-physiological 
and diffusion limitations to carbon cycling in drying soils, Soil Biology and Biochemistry, 73, 69-83, 
10.1016/j.soilbio.2014.02.008, 2014. 

Manzoni, S., Moyano, F., Kätterer, T., and Schimel, J.: Modeling coupled enzymatic and solute transport controls on 
decomposition in drying soils, Soil Biology and Biochemistry, 95, 275-287, 10.1016/j.soilbio.2016.01.006, 2016. 

McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., 
Mayorga, E., McDowell, W. H., and Pinay, G.: Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and 
Aquatic Ecosystems, Ecosystems, 6, 301-312, 10.1007/s10021-003-0161-9, 2003. 

McGuire, J. T., Smith, E. W., Long, D. T., Hyndman, D. W., Haack, S. K., Klug, M. J., and Velbel, M. A.: Temporal variations in 
parameters reflecting terminal-electron-accepting processes in an aquifer contaminated with waste fuel and chlorinated 
solvents, Chemical Geology, 169, 471-485, 10.1016/S0009-2541(00)00223-0, 2000. 

McGuire, K. J., DeWalle, D. R., and Gburek, W. J.: Evaluation of mean residence time in subsurface waters using oxygen-18 
fluctuations during drought conditions in the mid-Appalachians, Journal of Hydrology, 261, 132-149, 10.1016/S0022-
1694(02)00006-9, 2002. 

McIntosh, J., McDonnell, J. J., and Peters, N. E.: Tracer and hydrometric study of preferential flow in large undisturbed soil 
cores from the Georgia Piedmont, USA, Hydrological Processes, 13, 139-155, 10.1002/(SICI)1099-
1085(19990215)13:2<139::AID-HYP703>3.0.CO;2-E, 1999. 

McMahon, S., and Parnell, J.: Weighing the deep continental biosphere, FEMS Microbiol Ecol, 87, 113-120, 10.1111/1574-
6941.12196, 2014. 

McMillan, H. K., and Srinivasan, M. S.: Characteristics and controls of variability in soil moisture and groundwater in a 
headwater catchment, Hydrology and Earth System Sciences, 19, 1767-1786, 10.5194/hess-19-1767-2015, 2015. 

Michaelis, L., and Menten, M. L.: Die kinetik der invertinwirkung, Biochem. z, 49, 352, 1913. 
Molins, S., Trebotich, D., Yang, L., Ajo-Franklin, J. B., Ligocki, T. J., Shen, C., and Steefel, C. I.: Pore-scale controls on calcite 

dissolution rates from flow-through laboratory and numerical experiments, Environ Sci Technol, 48, 7453-7460, 
10.1021/es5013438, 2014. 

Moore, D. S., Notz., W. I., and Flinger, M. A.: The basic practice of statistics (6th ed.), W. H. Freeman and Company, New York, 
NY, 2013. 

Morales, V. L., Parlange, J. Y., and Steenhuis, T. S.: Are preferential flow paths perpetuated by microbial activity in the soil 
matrix? A review, Journal of Hydrology, 393, 29-36, 10.1016/j.jhydrol.2009.12.048, 2010. 

Müller, S., and Schüler, L.: GeoStat-Framework/GSTools: Bouncy Blue (Version v1.0.1). Zenodo, 
http://doi.org/10.5281/zenodo.2543658, 2019. 

Müller, S.: GeoStat-Framework/ogs5py: v1.1.1 (Version v1.1.1). Zenodo, 2020. 
Muniruzzaman, M., and Pedretti, D.: Mechanistic models supporting uncertainty quantification of water quality predictions 

in heterogeneous mining waste rocks: a review, Stochastic Environmental Research and Risk Assessment, 35, 985-1001, 
10.1007/s00477-020-01884-z, 2021. 

Murphy, E. M., Ginn, T. R., Chilakapati, A., Resch, C. T., Phillips, J. L., Wietsma, T. W., and Spadoni, C. M.: The influence of 
physical heterogeneity on microbial degradation and distribution in porous media, Water Resources Research, 33, 1087-1103, 
10.1029/96wr03851, 1997. 

Nippgen, F., McGlynn, B. L., and Emanuel, R. E.: The spatial and temporal evolution of contributing areas, Water Resources 
Research, 51, 4550-4573, 10.1002/2014WR016719, 2015. 

http://doi.org/10.5281/zenodo.2543658


  References 

149 

Nissan, A., and Berkowitz, B.: Reactive Transport in Heterogeneous Porous Media Under Different Péclet Numbers, Water 
Resources Research, 55, 10119-10129, 10.1029/2019WR025585, 2019. 

Oki, T., and Kanae, S.: Global hydrological cycles and world water resources, Science, 313, 1068-1072, 
10.1126/science.1128845, 2006. 

Okkonen, J., Jyrkama, M., and Kløve, B.: A conceptual approach for assessing the impact of climate change on groundwater 
and related surface waters in cold regions (Finland), Hydrogeology Journal, 18, 429-439, 10.1007/s10040-009-0529-9, 2010. 

Oldham, C. E., Farrow, D. E., and Peiffer, S.: A generalized Damköhler number for classifying material processing in 
hydrological systems, Hydrology and Earth System Sciences, 17, 1133-1148, 10.5194/hess-17-1133-2013, 2013. 

Opitz, S., Kusel, K., Spott, O., Totsche, K. U., and Herrmann, M.: Oxygen availability and distance to surface environments 
determine community composition and abundance of ammonia-oxidizing prokaroytes in two superimposed pristine limestone 
aquifers in the Hainich region, Germany, FEMS Microbiol Ecol, 90, 39-53, 10.1111/1574-6941.12370, 2014a. 

Opitz, S., Küsel, K., Spott, O., Totsche, K. U., and Herrmann, M.: Oxygen availability and distance to surface environments 
determine community composition and abundance of ammonia-oxidizing prokaroytes in two superimposed pristine limestone 
aquifers in the Hainich region, Germany, FEMS Microbiology Ecology, 90, 39-53, 10.1111/1574-6941.12370, 2014b. 

Or, D., Smets, B. F., Wraith, J. M., Dechesne, A., and Friedman, S. P.: Physical constraints affecting bacterial habitats and activity 
in unsaturated porous media - a review, Advances in Water Resources, 30, 1505-1527, 10.1016/j.advwatres.2006.05.025, 2007. 

Pace, N. R.: A molecular view of microbial diversity and the biosphere, Science, 276, 734-740, 
10.1126/science.276.5313.734, 1997. 

Painter, S. L.: Multiscale Framework for Modeling Multicomponent Reactive Transport in Stream Corridors, Water 
Resources Research, 54, 7216-7230, 10.1029/2018WR022831, 2018. 

Pallud, C., Dechesne, A., Gaudet, J. P., Debouzie, D., and Grundmann, G. L.: Modification of spatial distribution of 2,4-
dichlorophenoxyacetic acid degrader microhabitats during growth in soil columns, Applied and Environmental Microbiology, 
70, 2709-2716, 10.1128/AEM.70.5.2709-2716.2004, 2004. 

Pallud, C., and Van Cappellen, P.: Kinetics of microbial sulfate reduction in estuarine sediments, Geochimica et Cosmochimica 
Acta, 70, 1148-1162, 10.1016/j.gca.2005.11.002, 2006. 

Parkin, T. B.: SOIL MICROSITES AS A SOURCE OF DENITRIFICATION VARIABILITY, Soil Science Society of America Journal, 
51, 1194-1199, 10.2136/sssaj1987.03615995005100050019x, 1987. 

Penna, D., Borga, M., Norbiato, D., and Dalla Fontana, G.: Hillslope scale soil moisture variability in a steep alpine terrain, 
Journal of Hydrology, 364, 311-327, 10.1016/j.jhydrol.2008.11.009, 2009. 

Pett-Ridge, J., Petersen, D. G., Nuccio, E., and Firestone, M. K.: Influence of oxic/anoxic fluctuations on ammonia oxidizers 
and nitrification potential in a wet tropical soil, FEMS Microbiology Ecology, 85, 179-194, 10.1111/1574-6941.12111, 2013. 

Pfeffer, J., Boucher, M., Hinderer, J., Favreau, G., Boy, J. P., De Linage, C., Cappelaere, B., Luck, B., Oi, M., and Le Moigne, N.: 
Local and global hydrological contributions to time-variable gravity in Southwest Niger, Geophysical Journal International, 184, 
661-672, 10.1111/j.1365-246X.2010.04894.x, 2011. 

Pholkern, K., Saraphirom, P., and Srisuk, K.: Potential impact of climate change on groundwater resources in the Central Huai 
Luang Basin, Northeast Thailand, Science of the Total Environment, 633, 1518-1535, 10.1016/j.scitotenv.2018.03.300, 2018. 

Pittroff, M., Frei, S., and Gilfedder, B. S.: Quantifying nitrate and oxygen reduction rates in the hyporheic zone using 222Rn 
to upscale biogeochemical turnover in rivers, Water Resources Research, 53, 563-579, 
https://doi.org/10.1002/2016WR018917, 2017. 

Pivetz, B. E., and Steenhuis, T. S.: Soil Matrix and Macropore Biodegradation of 2,4-D, Journal of Environmental Quality, 24, 
564-570, https://doi.org/10.2134/jeq1995.00472425002400040002x, 1995. 

Pohl, S., Marsh, P., and Liston, G. E.: Spatial-temporal variability in turbulent fluxes during spring snowmelt, Arctic, Antarctic, 
and Alpine Research, 38, 136-146, 10.1657/1523-0430(2006)038[0136:SVITFD]2.0.CO;2, 2006. 

Pronk, G. J., Mellage, A., Milojevic, T., Smeaton, C. M., Engel, K., Neufeld, J. D., Rezanezhad, F., and Van Cappellen, P.: Carbon 
turnover and microbial activity in an artificial soil under imposed cyclic drainage and imbibition, Vadose Zone Journal, 19, 
10.1002/vzj2.20021, 2020. 

Rascón-Ramos, A. E., Martínez-Salvador, M., Sosa-Pérez, G., Villarreal-Guerrero, F., Pinedo-Alvarez, A., Santellano-Estrada, 
E., and Corrales-Lerma, R.: Soil moisture dynamics in response to precipitation and thinning in a semi-dry forest in northern 
Mexico, Water (Switzerland), 13, 10.3390/w13010105, 2021. 

Rasiah, V., Armour, J. D., and Cogle, A. L.: Statistical characterization of impact of system variables on temporal dynamics of 
groundwater in highly weathered regoliths, Hydrological Processes, 21, 2435-2446, 10.1002/hyp.6404, 2007. 

Raynaud, X., and Nunan, N.: Spatial ecology of bacteria at the microscale in soil, PLoS ONE, 9, 10.1371/journal.pone.0087217, 
2014. 

Regnier, P., O'Kane, J. P., Steefel, C. I., and vanderborght, J. P.: Modeling complex multi-component reactive-transport 
systems: towards a simulation environment based on the concept of a Knowledge Base, Applied Mathematical Modelling, 26, 
913-927, 2002. 

Rein, A., Bauer, S., Dietrich, P., and Beyer, C.: Influence of temporally variable groundwater flow conditions on point 
measurements and contaminant mass flux estimations, J Contam Hydrol, 108, 118-133, 10.1016/j.jconhyd.2009.06.005, 2009. 

Renck, A., and Lehmann, J.: Rapid water flow and transport of inorganic and organic nitrogen in a highly aggregated tropical 
soil, Soil Science, 169, 330-341, 10.1097/01.ss.0000128016.00021.3d, 2004. 

Rezanezhad, F., Couture, R. M., Kovac, R., O'Connell, D., and Van Cappellen, P.: Water table fluctuations and soil 
biogeochemistry: An experimental approach using an automated soil column system, Journal of Hydrology, 509, 245-256, 
10.1016/j.jhydrol.2013.11.036, 2014. 

Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., and Bemment, C. D.: Nitrate attenuation in groundwater: A review of 
biogeochemical controlling processes, Water Research, 42, 4215-4232, 10.1016/j.watres.2008.07.020, 2008. 

https://doi.org/10.1002/2016WR018917
https://doi.org/10.2134/jeq1995.00472425002400040002x


References   

150 

Robinson, D. A., Lebron, I., Kocar, B., Phan, K., Sampson, M., Crook, N., and Fendorf, S.: Time-lapse geophysical imaging of soil 
moisture dynamics in tropical deltaic soils: An aid to interpreting hydrological and geochemical processes, Water Resources 
Research, 46, 10.1029/2008WR006984, 2009. 

Rodrigo, J., Capilla, J. E., and Gómez-Hernández, J. J.: The impact of random function model assumption for the identification 
fo hydraulic conductivity fields in fractured media: Gaussian and non-Gaussian approaches, Acta Universitatis Carolinae, 
Geologica, 46, 540-543, 2002. 

Rodríguez-Escales, P., Folch, A., van Breukelen, B. M., Vidal-Gavilan, G., and Sanchez-Vila, X.: Modeling long term Enhanced 
in situ Biodenitrification and induced heterogeneity in column experiments under different feeding strategies, Journal of 
Hydrology, 538, 127-137, 10.1016/j.jhydrol.2016.04.012, 2016. 

Rodriguez-Iturbe, I., Porporato, A., Rldolfi, L., Isham, V., and Cox, D. R.: Probabilistic modelling of water balance at a point: 
The role of climate, soil and vegetation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 
455, 3789-3805, 10.1098/rspa.1999.0477, 1999. 

Saalfield, S. L., and Bostick, B. C.: Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction 
in ferrihydrite-rich systems, Environmental Science and Technology, 43, 8787-8793, 10.1021/es901651k, 2009. 

Saberi, L., Crystal Ng, G. H., Nelson, L., Zhi, W., Li, L., La Frenierre, J., and Johnstone, M.: Spatiotemporal Drivers of 
Hydrochemical Variability in a Tropical Glacierized Watershed in the Andes, Water Resources Research, 57, 
10.1029/2020WR028722, 2021. 

Sanz-Prat, A., Lu, C., Finkel, M., and Cirpka, O. A.: On the validity of travel-time based nonlinear bioreactive transport models 
in steady-state flow, J Contam Hydrol, 175-176, 26-43, 10.1016/j.jconhyd.2015.02.003, 2015. 

Sanz-Prat, A., Lu, C., Finkel, M., and Cirpka, O. A.: Using travel times to simulate multi-dimensional bioreactive transport in 
time-periodic flows, J Contam Hydrol, 187, 1-17, 10.1016/j.jconhyd.2016.01.005, 2016. 

Schäfer, D., Schäfer, W., and Kinzelbach, W.: Simulation of reactive processes related to biodegradation in aquifers. 1. 
Structure of the three-dimensional reactive transport model, Journal of Contaminant Hydrology, 31, 167-186, 10.1016/S0169-
7722(97)00060-0, 1998a. 

Schäfer, D., Schäfer, W., and Kinzelbach, W.: Simulation of reactive processes related to biodegradation in aquifers. 2. Model 
application to a column study on organic carbon degradation, Journal of Contaminant Hydrology, 31, 187-209, 10.1016/S0169-
7722(97)00061-2, 1998b. 

Schär, C., Lüthi, D., Beyerle, U., and Heise, E.: The soil-precipitation feedback: A process study with a regional climate model, 
Journal of Climate, 12, 722-741, 10.1175/1520-0442(1999)012<0722:tspfap>2.0.co;2, 1999. 

Schimel, J. P., and Weintraub, M. N.: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in 
soil: A theoretical model, Soil Biology and Biochemistry, 35, 549-563, 10.1016/S0038-0717(03)00015-4, 2003. 

Schincariol, R. A., and Schwartz, F. W.: An experimental investigation of variable density flow and mixing in homogeneous 
and heterogeneous media, Water Resources Research, 26, 2317-2329, 10.1029/WR026i010p02317, 1990. 

Schjønning, P., Thomsen, I. K., Petersen, S. O., Kristensen, K., and Christensen, B. T.: Relating soil microbial activity to water 
content and tillage-induced differences in soil structure, Geoderma, 163, 256-264, 10.1016/j.geoderma.2011.04.022, 2011. 

Schlesinger, W. H., and Andrews, J. A.: Soil respiration and the global carbon cycle, Biogeochemistry, 48, 7-20, 2000. 
Schlüter, S., Vogel, H.-J., Ippisch, O., and Vanderborght, J.: Combined Impact of Soil Heterogeneity and Vegetation Type on 

the Annual Water Balance at the Field Scale, Vadose Zone Journal, 12, 10.2136/vzj2013.03.0053, 2013. 
Schwab, V. F., Herrmann, M., Roth, V. N., Gleixner, G., Lehmann, R., Pohnert, G., Trumbore, S., Küsel, K., and Totsche, K. U.: 

Functional diversity of microbial communities in pristine aquifers inferred by PLFA- and sequencing-based approaches, 
Biogeosciences, 14, 2697-2714, 10.5194/bg-14-2697-2017, 2017. 

Screen, J. A., Deser, C., and Sun, L.: Projected changes in regional climate extremes arising from Arctic sea ice loss, 
Environ.Res.Lett., 10, 10.1088/1748-9326/10/8/084006, 2015. 

Sexstone, A. J., Revsbech, N. P., Parkin, T. B., and Tiedje, J. M.: DIRECT MEASUREMENT OF OXYGEN PROFILES AND 
DENITRIFICATION RATES IN SOIL AGGREGATES, Soil Science Society of America Journal, 49, 645-651, 
10.2136/sssaj1985.03615995004900030024x, 1985. 

Seyfried, M. S.: Infiltration patterns from simulated rainfall on a semiarid rangeland soil, Soil Science Society of America 
Journal, 55, 1726-1734, 10.2136/sssaj1991.03615995005500060037x, 1991. 

Smith, H. J., Zelaya, A. J., De León, K. B., Chakraborty, R., Elias, D. A., Hazen, T. C., Arkin, A. P., Cunningham, A. B., and Fields, M. 
W.: Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface 
environments, FEMS microbiology ecology, 94, 10.1093/femsec/fiy191, 2018. 

Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., and Herndl, G. J.: Microbial diversity 
in the deep sea and the underexplored "rare biosphere", Proceedings of the National Academy of Sciences of the United States 
of America, 103, 12115-12120, 10.1073/pnas.0605127103, 2006. 

Steefel, C. I., Appelo, C. A. J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P. C., Mayer, K. U., Meeussen, 
J. C. L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S. B., and Yeh, G. T.: Reactive transport codes for 
subsurface environmental simulation, Computational Geosciences, 19, 445-478, 10.1007/s10596-014-9443-x, 2014. 

Stegen, J. C., Lin, X., Konopka, A. E., and Fredrickson, J. K.: Stochastic and deterministic assembly processes in subsurface 
microbial communities, ISME Journal, 6, 1653-1664, 10.1038/ismej.2012.22, 2012. 

Stegen, J. C., Fredrickson, J. K., Wilkins, M. J., Konopka, A. E., Nelson, W. C., Arntzen, E. V., Chrisler, W. B., Chu, R. K., Danczak, 
R. E., Fansler, S. J., Kennedy, D. W., Resch, C. T., and Tfaily, M.: Groundwater-surface water mixing shifts ecological assembly 
processes and stimulates organic carbon turnover, Nature Communications, 7, 10.1038/ncomms11237, 2016. 

Stolpovsky, K., Martinez-Lavanchy, P., Heipieper, H. J., Van Cappellen, P., and Thullner, M.: Incorporating dormancy in 
dynamic microbial community models, Ecological Modelling, 222, 3092-3102, 10.1016/j.ecolmodel.2011.07.006, 2011. 

Sugiyama, A., Masuda, S., Nagaosa, K., Tsujimura, M., and Kato, K.: Tracking the direct impact of rainfall on groundwater at 
Mt. Fuji by multiple analyses including microbial DNA, Biogeosciences, 15, 721-732, 10.5194/bg-15-721-2018, 2018. 



  References 

151 

Suk, H., Chen, J.-S., Park, E., and Kihm, Y. H.: Practical Application of the Galerkin Finite Element Method with a Mass 
Conservation Scheme under Dirichlet Boundary Conditions to Solve Groundwater Problems, Sustainability, 12, 
10.3390/su12145627, 2020. 

Sun, F., Watanabe, N., and Delfs, J.-O.: Groundwater Flow, in: Thermo-Hydro-Mechanical-Chemical Processes in Porous 
Media: Benchmarks and Examples, edited by: Kolditz, O., Görke, U.-J., Shao, H., and Wang, W., Springer Berlin Heidelberg, Berlin, 
Heidelberg, 107-123, 2012. 

Thullner, M., Van Cappellen, P., and Regnier, P.: Modeling the impact of microbial activity on redox dynamics in porous 
media, Geochimica et Cosmochimica Acta, 69, 5005-5019, 10.1016/j.gca.2005.04.026, 2005. 

Thullner, M., Regnier, P., and Van Cappellen, P.: Modeling Microbially Induced Carbon Degradation in Redox-Stratified 
Subsurface Environments: Concepts and Open Questions, Geomicrobiology Journal, 24, 139-155, 
10.1080/01490450701459275, 2007. 

Thullner, M., and Regnier, P.: Microbial Controls on the Biogeochemical Dynamics in the Subsurface, Reviews in Mineralogy 
and Geochemistry, 85, 265-302, 10.2138/rmg.2019.85.9, 2019. 

Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B.: The changing character of precipitation, Bulletin of the 
American Meteorological Society, 84, 1205-1217+1161, 10.1175/BAMS-84-9-1205, 2003. 

Trenberth, K. E.: Changes in precipitation with climate change, Climate Research, 47, 123-138, 10.3354/cr00953, 2011. 
Uhlenbrook, S., Frey, M., Leibundgut, C., and Maloszewski, P.: Hydrograph separations in a mesoscale mountainous basin at 

event and seasonal timescales, Water Resources Research, 38, 31-31-31-14, 10.1029/2001wr000938, 2002. 
Valett, H. M., Morrice, J. A., Dahm, C. N., and Campana, M. E.: Parent lithology, surface-groundwater exchange, and nitrate 

retention in headwater streams, Limnology and Oceanography, 41, 333-345, 10.4319/lo.1996.41.2.0333, 1996. 
Van Der Hoven, S. J., Solomon, D. K., and Moline, G. R.: Natural spatial and temporal variations in groundwater chemistry in 

fractured, sedimentary rocks: Scale and implications for solute transport, Applied Geochemistry, 20, 861-873, 
10.1016/j.apgeochem.2004.11.013, 2005. 

Van Gaelen, N., Verheyen, D., Ronchi, B., Struyf, E., Govers, G., Vanderborght, J., and Diels, J.: Identifying the transport 
pathways of dissolved organic carbon in contrasting catchments, Vadose Zone Journal, 13, 10.2136/vzj2013.11.0199, 2014. 

van Leeuwen, F. X. R.: Safe Drinking Water: the Toxicologist's Approach, Food and Chemical Toxicology, 38, S51-S58, 
https://doi.org/10.1016/S0278-6915(99)00140-4, 2000. 

van Rossum, G., and Drake, F. L., Jr.: The Python Language Reference Manual (version 3.2), edited by: Drake, F. L., Jr., Network 
Theory Ltd, 120 pp., 2006. 

Veach, A. M., and Zeglin, L. H.: Historical Drought Affects Microbial Population Dynamics and Activity During Soil Drying and 
Re-Wet, Microbial Ecology, 79, 662-674, 10.1007/s00248-019-01432-5, 2020. 

Vergnes, J. P., Decharme, B., Alkama, R., Martin, E., Habets, F., and Douville, H.: A simple groundwater scheme for hydrological 
and climate applications: Description and offline evaluation over France, Journal of Hydrometeorology, 13, 1149-1171, 
10.1175/JHM-D-11-0149.1, 2012. 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., 
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. 
J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A. , Harris, C. R., 
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors, S.: SciPy 1.0: Fundamental Algorithms for 
Scientific Computing in Python, Nature Methods, 17, 261-272, 10.1038/s41592-019-0686-2, 2020. 

Vogel, L. E., Pot, V., Makowski, D., Garnier, P., and Baveye, P. C.: To what extent do uncertainty and sensitivity analyses help 
unravel the influence of microscale physical and biological drivers in soil carbon dynamics models?, Ecological Modelling, 383, 
10-22, 10.1016/j.ecolmodel.2018.05.007, 2018. 

Vrede, K., Heldal, M., Norland, S., and Bratbak, G.: Elemental composition (C, N, P) and cell volume of exponentially growing 
and nutrient-limited bacterioplankton, Applied and Environmental Microbiology, 68, 2965-2971, 10.1128/AEM.68.6.2965-
2971.2002, 2002. 

Waldron, P. J., Wu, L., Van Nostrand, J. D., Schadt, C. W., He, Z., Watson, D. B., Jardine, P. M., Palumbo, A. V., Hazen, T. C., and 
Zhou, J.: Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant 
levels, Environmental Science and Technology, 43, 3529-3534, 10.1021/es803423p, 2009. 

Wang, X. P., Cui, Y., Pan, Y. X., Li, X. R., Yu, Z., and Young, M. H.: Effects of rainfall characteristics on infiltration and 
redistribution patterns in revegetation-stabilized desert ecosystems, Journal of Hydrology, 358, 134-143, 
10.1016/j.jhydrol.2008.06.002, 2008. 

Wang, Y., and Van Cappellen, P.: A multicomponent reactive transport model of early diagenesis: Application to redox cycling 
in coastal marine sediments, Geochemica et Cosmochimica Acta, 60, 2993-3014, 1996. 

Waring, B. G., Sulman, B. N., Reed, S., Smith, A. P., Averill, C., Creamer, C. A., Cusack, D. F., Hall, S. J., Jastrow, J. D., Jilling, A., 
Kemner, K. M., Kleber, M., Liu, X. J. A., Pett-Ridge, J., and Schulz, M.: From pools to flow: The PROMISE framework for new insights 
on soil carbon cycling in a changing world, Global Change Biology, 26, 6631-6643, 10.1111/gcb.15365, 2020. 

Webb, E. K., and Andersen, M. P.: Simulation of preferential flow in three-dimensional, heterogeneous conductivity fields 
with realistic internal architecture, Water Resources Research, 32, 533-545, 10.1029/95WR03399, 1996. 

Wetherald, R. T., and Manabe, S.: Detectability of summer dryness caused by greenhouse warming, Climatic Change, 43, 495-
511, 10.1023/A:1005499220385, 1999. 

Xue, J., and Gavin, K.: Effect of rainfall intensity on infiltration into partly saturated slopes, Geotechnical and Geological 
Engineering, 26, 199-209, 10.1007/s10706-007-9157-0, 2008. 

Yabusaki, S. B., Fang, Y., and Waichler, S. R.: Building conceptual models of field-scale uranium reactive transport in a 
dynamic vadose zone-aquifer-river system, Water Resources Research, 44, 10.1029/2007WR006617, 2008. 

Yabusaki, S. B., Wilkins, M. J., Fang, Y., Williams, K. H., Arora, B., Bargar, J., Beller, H. R., Bouskill, N. J., Brodie, E. L., Christensen, 
J. N., Conrad, M. E., Danczak, R. E., King, E., Soltanian, M., R., Spycher, N. F., Steefel, C. I., Tokunaga, T. K., Versteeg, R., Waichler, S. 

https://doi.org/10.1016/S0278-6915(99)00140-4


References   

152 

T., and Wainwright, H. M.: Water Table Dynamics and Biogeochemical Cycling in a Shallow, Variably-Saturated Floodplain, 
Environmental Science & Technology, 51, 3307-3317, 10.1021/acs.est.6b04873, 2017. 

Yan, L., Hermans, S. M., Totsche, K. U., Lehmann, R., Herrmann, M., and Küsel, K.: Groundwater bacterial communities evolve 
over time in response to recharge, Water Research, 201, 10.1016/j.watres.2021.117290, 2021. 

Zektser, S., Loáiciga, H. A., and Wolf, J. T.: Environmental impacts of groundwater overdraft: Selected case studies in the 
southwestern United States, Environmental Geology, 47, 396-404, 10.1007/s00254-004-1164-3, 2005. 

Zhang, Q., Lei, H. M., and Yang, D. W.: Seasonal variations in soil respiration, heterotrophic respiration and autotrophic 
respiration of a wheat and maize rotation cropland in the North China Plain, Agricultural and Forest Meteorology, 180, 34-43, 
10.1016/j.agrformet.2013.04.028, 2013. 

Zhang, S., Ho, Y. F., Creeley, D., Roberts, K. A., Xu, C., Li, H. P., Schwehr, K. A., Kaplan, D. I., Yeager, C. M., and Santschi, P. H.: 
Temporal variation of iodine concentration and speciation (127I and 129I) in wetland groundwater from the Savannah River 
Site, USA, Environmental Science and Technology, 48, 11218-11226, 10.1021/es502003q, 2014. 

Zheng, T., Deng, Y., Wang, Y., Jiang, H., O'Loughlin, E. J., Flynn, T. M., Gan, Y., and Ma, T.: Seasonal microbial variation accounts 
for arsenic dynamics in shallow alluvial aquifer systems, Journal of Hazardous Materials, 367, 109-119, 
10.1016/j.jhazmat.2018.12.087, 2019. 

Zhou, Y., Kellermann, C., and Griebler, C.: Spatio-temporal patterns of microbial communities in a hydrologically dynamic 
pristine aquifer, FEMS Microbiology Ecology, 81, 230-242, 10.1111/j.1574-6941.2012.01371.x, 2012. 

Zimmerman, D. A., De Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., Bras, R. L., Carrera, J., Dagan, G., 
Davies, P. B., Gallegos, D. P., Galli, A., Gómez-Hernández, J., Grindrod, P., Gutjahr, A. L., Kitanidis, P. K., Lavenue, A. M., McLaughlin, 
D., Neuman, S. P., RamaRao, B. S., Ravenne, C., and Rubin, Y.: A comparison of seven geostatistically based inverse approaches to 
estimate transmissivities for modeling advective transport by groundwater flow, Water Resources Research, 34, 1373-1413, 
10.1029/98WR00003, 1998. 

Zwiers, F. W., and Kharin, V. V.: Changes in the extremes of the climate simulated by CGC GCM2 under CO 2 doubling, Journal 
of Climate, 11, 2200-2222, 10.1175/1520-0442(1998)011<2200:CITEOT>2.0.CO;2, 1998. 

 


