
  
 

TU Ilmenau | Universitätsbibliothek | ilmedia, 2022 
http://www.tu-ilmenau.de/ilmedia 

Zhang, Daipeng; Moreno Pérez, Jaime Alberto; Reger, Johann 

Homogeneous Lp stability for homogeneous systems 

 
Original published in: IEEE access / Institute of Electrical and Electronics Engineers. - New 

York, NY : IEEE. - 10 (2022), p. 81654-81683. 

Original published: 2022-08-08 

ISSN: 2169-3536 
DOI: 10.1109/ACCESS.2022.3195505 
[Visited: 2022-09-16] 
 

   

This work is licensed under a Creative Commons Attribution 4.0 
International license. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/ 

 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1109/ACCESS.2022.3195505
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Received 11 July 2022, accepted 27 July 2022, date of publication 1 August 2022, date of current version 8 August 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3195505

Homogeneous Lp−Stability for
Homogeneous Systems
DAIPENG ZHANG 1, JAIME A. MORENO 2, (Member, IEEE),
AND JOHANN REGER 1, (Senior Member, IEEE)
1Control Engineering Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
2Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico

Corresponding author: Daipeng Zhang (daipengzhang@gmx.de; daipeng.zhang@tu-ilmenau.de)

This work was supported in part by the European Community Horizon 2020 Research and Innovation Program under the Marie
Skłodowska-Curie Grant under Agreement 824046, in part by the Dirección General de Asuntos del Personal Académico, Universidad
Nacional Autónoma de México (DGAPA-UNAM) under Grant PAPIIT IN102121, in part by Thüringer Graduiertenförderung, and in part
by the Open Access Publication Fund of the Technische Universität Ilmenau.

ABSTRACT The motivation of this paper comes from the fact that Lp−stability and Lp−gain, using
the classical signal norms, is not well-defined for arbitrary continuous weighted homogeneous systems.
However, using homogeneous signal norms it is possible to show that every internally stable homogeneous
system has a globally defined finite homogeneous Lp−gain, for p sufficiently large. If the system has a
homogeneous approximation, the homogeneous Lp−gain is inherited locally. Homogeneous Lp−stability
can be characterized by a homogeneous dissipation inequality, which in the input affine case can be
transformed to a homogeneous Hamilton-Jacobi inequality. An estimation of an upper bound for the
homogeneous Lp−gain can be derived from these inequalities. Homogeneous L∞−stability is also
considered and its strong relationship to Input-to-State stability is studied. These results are extensions to
arbitrary homogeneous systems of the well-known situation for linear time-invariant systems, where the
Hamilton-Jacobi inequality reduces to an algebraic Riccati inequality. A natural application of finite-gain
homogeneous Lp−stability is in the study of stability for interconnected systems. An extension of the
small-gain theorem for negative feedback systems and results for systems in cascade are derived for different
homogeneous norms. Previous results in the literature use classical signal norms, hence, they can only be
applied to a restricted class of homogeneous systems. The results are illustrated by several examples.

INDEX TERMS Homogeneity, continuous weighted homogeneous system, non-linear system, homoge-
neous Lp−norm, finite-gain homogeneous Lp−stability, input-to-state stability, homogeneous small gain
theorem.

I. INTRODUCTION
Input-Output Stability, e.g. Lp−stability, is a rather intuitive
concept. It implies that a small input causes a small
output in the system, where ‘‘small’’ is related to some
ways of measuring the size of the input and output
signals. Lp−stability and its related concept of Lp−gain of
a (dynamical) system are classical in systems and control
theory [1], [2]. They can be used for example to design
a controller that minimizes the effect of the perturbation
to the controlled output variable, as in the classical H∞
control [3]–[5] considering in particular the L2−gain.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

For linear systems these concepts are well understood
[1], [3], [4]. Special attention has been paid in the literature
to the particular case of L2−stability which for smooth
non-linear systems can be characterized by a Hamilton-
Jacobi Inequality [2], [6], [7]. In the linear case this inequal-
ity reduces to a more tractable matrix algebraic Riccati
inequality. Furthermore, the powerful concept of Input-to-
State Stability (ISS) is strongly related to L∞−stability, and
constitutes an important generalization [2], [6], [8]–[10].
Weighted homogeneous systems are an important class

of non-linear systems since they generalize linear systems
and can provide good local approximations for more general
non-linear systems [11], [12]. Moreover, they have been used
for the design of continuous and discontinuous controllers
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and observers, to induce e.g. convergence in finite time by
imposing a negative homogeneity degree [9], [11], [13]–[24].
Apparently, it is important to understand the concepts of
Lp−stability and Lp−gain for homogeneous systems. Since,
in general, homogeneous systems may be non-smooth and
their linearizations (whenmeaningful) are trivial, many of the
standard results for non-linear systems [2], [6]–[8] cannot be
used.

Despite of their importance, only few results about
Lp−stability of homogeneous systems have appeared in
the literature, and they apply only to very specific classes
of homogeneous systems. [9] shows that for smooth and
standard homogeneous systems, with homogeneous weights
equal to one and with non-negative homogeneity degree (see
the formal definition below), having the state variable as
output, the asymptotic stability of the origin of the unforced
system impliesLp−stability (for p sufficiently large) and ISS,
both with linear gain. However, [9] does not discuss how to
characterize and estimate the Lp−gain and the ISS-gain. [25]
considers a subclass of the systems treated in [9], which
are affine in the input with constant input matrix, and have
homogeneous output map. It is shown that internal Lyapunov
stability of the unforced system implies L2−stability with
finite L2−gain. The novelty consists in its characterization
by means of a homogeneous Hamilton-Jacobi inequality.

Paper [17] covers a class of smooth weighted homoge-
neous systems of arbitrary homogeneity degree, which are
affine in the input and have a homogeneous output map.
It is shown that internal stability implies again L2−stability
with finite L2−gain, and this can be characterized by
using a homogeneous Hamilton-Jacobi Inequality. More-
over, internal Lyapunov stability is also shown to imply
Lp−stability (for sufficiently large p) with finite Lp−gain
(including p = ∞). However, these results are obtained by
imposing strong restrictions on the homogeneous weights
of the inputs, outputs and states. Again, estimation of the
Lp−gains is not discussed. [13] and [26] discuss ISS and
other related properties for general weighted homogeneous
systems, generalizing the results of [9] relating the internal
stability of the unforced system and the ISS stability.
However, [13], [26] do not consider Lp−stability for any
value of p. Also the linear ISS gain is not clearly stated. This
latter issue is clarified in [27] for the more general version of
geometric homogeneity.

The authors of [28], [29] use a homeomorphism towrite the
super-twisting algorithm (STA), a second order homogeneous
non-linear system, in an almost linear form. Calculation
of the L2−gain (i.e. H∞−norm) for this almost linear
system leads to a local gain, which is used to optimize
the selection of parameters for the STA. In our previous
work [30], the basic idea of the present paper is applied to the
continuous super-twisting-like algorithm (CSTLA), which is
extended in the examples of this paper. There the (globally
defined) homogeneousH∞−norm (homogeneous L2−gain)
is calculated and used for the optimization of the gains of the
CSTLA.

The objective of this paper is to consider Lp−stability and
ISS for arbitrary continuous weighted homogeneous systems,
without imposing unnecessary restrictions on the homoge-
neous weights or degree. An interesting and surprising result
of [9], [17], [25] is the linearity in the Lp−stability and
ISS for the class of homogeneous systems treated in those
references, despite the fact that homogeneous systems can
be highly non-linear. Our first observation is that for general
homogeneous systems this is not possible, if the standard
signal and vector norms are used. Therefore, we introduce
homogeneous vector and signal norms and show that the
induced homogeneous Lp−stability and homogeneous ISS
concepts are linear for general continuous homogeneous
systems. This means that there are finite constant homo-
geneous Lp and homogeneous ISS gains, including the
case of systems without memory. We characterize this
homogeneous Lp−stability and the homogeneous Lp−gain
in the general dynamic case by a homogeneous dissipation
inequality. For systems affine in the input, this reduces to a
homogeneous Hamilton-Jacobi inequality. Further, we show
that for general dynamic homogeneous systems, asymptotic
stability of the equilibrium point of the unforced system
implies homogeneous Lp−stability (for sufficiently large
p) and ISS, obviously with finite linear gains. Using these
results, we propose a method to estimate the value of the
homogeneous Lp and ISS gains. We therefore extend all
the results of [9], [17], [25], [30] to arbitrary continuous
homogeneous systems.

In the present paper a new homogeneous Lp−stability
concept is introduced for an arbitrary continuous weighted
homogeneous system, based on homogeneous Lp−norms
for input and output signals. Every stable homogeneous
system has associated some homogeneous Lp−gain with
p sufficiently large that relates linearly and globally the
homogeneous norms of input and output variables. This
extends the well-known situation for linear systems. The so
defined homogeneous Lp−norms can then be used in the
traditional manner for e.g. controller design to minimize the
effect of perturbations, as it happens in the H∞−control
problem, or for parameter optimization, as illustrated in
our previous work [30]. For non-homogeneous systems
the homogeneous Lp−norm can be calculated for the
locally approximating homogeneous system, and its value
corresponds to a local norm for the non-homogeneous
system. This idea is a generalization of the use of linear
systems and their gains to non-linear systems. Interestingly,
the idea of using non-standard vector or signal norms to
establish a relationship from ISS or iISS to L2−stability for
general nonlinear systems has been used recently in [31].
However, the aims and results of that paper are rather different
from our paper.
The structure of the paper is as follows: In Section II

we introduce the weighted homogeneity for continuous
homogeneous dynamics or input-output maps as well as some
properties of homogeneous norms. Afterwards, we revisit
the traditional concept of Lp−stability and show that it is
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applicable to a homogeneous system only if the homogeneous
weights of inputs and outputs are all equal. In order to
extend the Lp−stability to arbitrary homogeneous systems,
in Section III we introduce the homogeneous Lp−norm and
the finite-gain homogeneous Lp−stability. In Section IV
we characterize homogeneous Lp−stability with the help
of a storage function and a corresponding homogeneous
dissipation inequality. We further prove that every continuous
homogeneous system is homogeneous Lp−stable for some
p large enough, if the unforced dynamics is asymptotically
stable.Moreover, when the dynamics is affine in the input, the
homogeneous dissipation inequality can be transformed into
a homogeneous Hamilton-Jacobi Inequality. For a smooth
non-linear system, if there exists a local homogeneous
approximation, then the homogeneous Lp−stability remains
true locally. In Section V the special case of homogeneous
L∞−stability and homogeneous input-to-state stability (ISS)
is brought up and proved. In Section VI the finite-gain
homogeneous Lp−stability of feedback and in cascade
interconnected systems is studied for different values of
p, and an extension of the classical small-gain theorem
is obtained. In Section VII we compare our results with
the previous literature involving Lp−stability or ISS for
homogeneous systems. In Section VIII we propose methods
to calculate an upper estimate of the homogeneous Lp−gain,
using either the homogeneous dissipation inequality or the
homogeneous Hamilton-Jacobi inequality. In Section IX
we present three examples. First of all, we show that all
continuous memoryless homogeneous input-output maps
are finite-gain homogeneous Lp−stable, and we provide
a method to estimate its true value, which turns out to
be independent of p. A numerical example is given to
illustrate the procedure. The second example considers a
scalar homogeneous system for which the homogeneous
Lp−gains can be derived analytically. In the third example
we provide data collected for the continuous super-twisting
like algorithm (CSTLA) as well as a comparison between
the linear case, where the H∞ norm is more thoroughly
studied, and the non-linear cases. A detailed analysis of the
homogeneous H∞−norm (homogeneous L2−gain) for the
CSTLA can be found in [30], whereas in this paper such
results are extended for homogeneous Lp−gain with p ≥ 2.
Finally, in Section X we draw our conclusions.

II. WEIGHTED HOMOGENEOUS SYSTEMS AND PROBLEM
FORMULATION
A. CONTINUOUS WEIGHTED HOMOGENEOUS DYNAMICS
We consider a class of systems with inputs and outputs

6 :

{
ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t))

(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm the input and y(t) ∈
Ro the output. We let u(·) ∈ U where U denotes the space of
measurable and locally essentially bounded functions fromR
toRm.We assume that the vector field f (x, u) and the function

TABLE 1. Table of notations.

h(x, u) are continuous in x and u. Moreover, we assume
that system (1) is homogeneous. To define this concept,
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with [15] introduce for a vector x = (x1, . . . , xn)> ∈ Rn the
weight vector rx = (rx1 , . . . , rxn )

>, which is an n-tuple of
positive real numbers, the one-parameter family of dilations
ν
rx
κ (associated with weight rx) for all x ∈ Rn and κ ≥ 0,
is given by

νrxκ (x) , (κrx1 x1, . . . , κrxn xn)> .

This way, rxi is the homogeneous weight of xi.
Definition 1 (Weighted Homogeneous System [15]): We

call system (1) homogeneous of degree d if there exists rxi >
0, rui > 0, for i = 1, . . . , n, d ∈ (−mini rxi ,∞) and ryi > 0,
for i = 1, . . . , o, s.t. ∀ x ∈ Rn, ∀ u ∈ Rm,∀ κ > 0

fi(νrxκ (x), νruκ (u)) = κ
d+rxi fi(x, u) , ∀ i = 1, . . . , n ,

hj(νrxκ (x), νruκ (u)) = κ
ryj hj(x, u) , ∀ j = 1, . . . , o .

In the rest of the paper, mini ri will be denoted as min r and
x ∈ Rn, u ∈ Rm as (x, u) ∈ Rn+m without ambiguity.
This definition is an extension of the one given in [16] to
systems with outputs (see also [17]). Homogeneity implies
that f (0, 0) = 0 and h(0, 0) = 0, i.e. the origin is an
equilibrium point when u = 0. From Definition 1 and the
weight associated to the time variable rt = −d , we obtain
that

dxi
dt
= fi(x, u) ⇔

κrxidxi
κrtdt

= κd+rxi fi(x, u) = fi(νrxκ (x), νruκ (u)) .

If we denote the trajectory of (1) by x(t) = ϕ(t, x0, u(·)),
where ϕ is the state transition map, defined for each x0 ∈ Rn

and each u(·) ∈ U , and satisfying ϕ(0, x0, u(·)) = x0, then the
previous relation implies that [16], [18], [32]

ϕ(t, νrxκ (x0), νruκ (u(κ
−rt ·))) = νrxκ (ϕ(κ−rt t, x0, u(·)))

hj(νrxκ (x), νruκ (u)) = κ
ryjhj(x, u) . (2)

This means that if the initial state x0 is dilated as νrxκ (x0)
and the input signal u(·) is not only dilated as νruκ (u(κ−rt ·))
in amplitude, but also its time evolution is scaled, then
the resulting state trajectory is scaled in amplitude as
ν
rx
κ (x(κ−rt t)), with the same time scaling. A similar effect
applies for the output signal y(·).

For every initial condition x0 ∈ Rn, system (1) defines,
in principle, an input-output map Gx0 : Substituting an input
signal u(·) and solving the differential equations for the
initial condition x0, one obtains the state trajectory x(·) and
the corresponding output signal y(·). In general, additional
conditions are necessary to ensure that for every input u(·)
there exist a state trajectory x(·) and an output signal y(·)
(see e.g. [2]).

In general, we can consider homogeneous (time-invariant
and causal) input-output maps [2].
Definition 2 (Homogeneous Input-Output Map): An

input-output map G is called homogeneous of degree d =
−rt ∈ R, if for each input u(·) ∈ U and its corresponding
output y(·) = G(u(·)) it satisfies

G
(
νruκ

(
u
(
κ−rt ·

)))
= ν

ry
κ

(
y
(
κ−rt ·

))
, ∀ κ > 0 . (3)

In particular, linear input-output maps are homogeneous
of degree rt = 0 with weights ru = 1m , (1, . . . , 1) ∈ Rm,
ry = 1o. Moreover, the input-output mapGx0 obtained from a
homogeneous state space realization (1) is homogeneous only
for x0 = 0. The corresponding fact for linear time invariant
systems ẋ = Ax+Bu, y = Cx is well-known, since the output
of the input-output map y(t) = CeAtx0 + C

∫ t
0 e

A(t−s)Bu(s)ds
is linear in the input u(·) only for x0 = 0.

B. HOMOGENEOUS NORMS FOR VECTORS
When working with (weighted) homogeneous systems, one
is naturally led to consider homogeneous norms.
Definition 3 (r−Homogeneous q−Norm [15], [16]): A

rx−homogeneous q−norm (qh−norm for short) for a vector
x = (x1, . . . , xn)> ∈ Rn is a map ‖ · ‖rx ,q : Rn

7→ R≥0,
where for any q ∈ [1,∞]

‖x‖rx ,q ,

(
n∑
i=1

|xi|
q
rxi

) 1
q

, (4)

in particular, ‖x‖rx ,∞ , maxi

{
|xi|

1
rxi

}
. The set Srx ,q ={

x ∈ Rn
| ‖x‖rx ,q = 1

}
is the corresponding homogeneous

unit sphere.
The rx−homogeneous norm ‖ · ‖rx ,q is rx−homogeneous

of degree 1 and it is positive definite. If q ≥ max rx , the
qh−norm ‖x‖rx ,q is continuously differentiable on Rn

\ {0}.
This is not needed in this paper. However, ‖·‖rx ,q is in general
not a norm in the usual sense, since it is not 1−homogeneous
in the classical sense, i.e. with rx = 1n. When rx = 1n the
rx−homogeneous q−norm becomes the usual q−norm inRn.
In that case, for q ≥ max rx = 1 the triangle inequality is
valid, i.e. ‖x+y‖1n,q ≤ ‖x‖1n,q+‖y‖1n,q. In the general case,
as it will be shown later in Lemma 2, the triangle inequality
will be replaced by the additive inequality (9).
Remark 1 (Effect of Homogeneous Weight Scaling on

Homogeneous q−Norm): It is well-known that if system (1) is
homogeneous of degree d with weight vectors rx , ru, ry, then it
is also homogeneous of degree λd for any λ > 0 with weight
vectors λrx , λru, λry. For most studies about homogeneous
systems, scaling the homogeneous weights by λ > 0 has no
impact on the results. Yet in this paper, such scaling does
matter. E.g. applying such scaling, the λr−homogeneous
q−norm from (4) is related to the original r−homogeneous
q/λ−norm by

‖x‖λrx ,q = ‖x‖
1/λ
rx ,q/λ , (5)

for 0 ≤ λ ≤ q. Usually, there is no need to relate
a λr−homogeneous q−norm back to a r−homogeneous
q/λ−norm, so any scaling λ > 0 on weight vectors is allowed.
Therefore, in this paper, it is important to fix the homogeneous
weights and degree of the system at the outset, for the results
to be consistent. In themain text of the paper, wewill not allow
such scaling. But we will discuss the effect of the scaling in
some remarks for the interested reader.
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Remark 2 (Companion Vector and Relationship Between
r−Homogeneous q−Norm and q−Norm): Note that for x ∈
Rn and (weight) rx ∈ Rn

>0, we may define the companion
vector as

x
1
rx ,

[
dx1c

1
rx1 , . . . , dxnc

1
rxn

]>
,

where d·cs = | · |ssign(·), s ∈ R, defines the sign preserving
power. Note that the mapping x 7→ x

1
rx is a homeomorphism,

and if min rx ≤ 1 it is a diffeomorphism. For homogeneous
norms it is possible to associate the qh−norm (4) of x with
the q−norm of its companion vector, i.e.

‖x‖rx ,q =
∥∥∥x 1

rx

∥∥∥
q
. (6)

This bears a relationship with the homeomorphic change of
coordinates in [31, Definition 7].
Remark 3 (Equivalence Between r−Homogeneous

q−Norms): All r−homogeneous q−norms, with the same
weighting vector r, are equivalent in the sense that if ‖ · ‖rx ,α
and ‖ · ‖rx ,β are two different homogeneous q−norms, with
α ≥ 1, β ≥ 1, then there exist positive constants c1 and c2
such that for all x ∈ Rn

c1‖x‖rx ,β ≤ ‖x‖rx ,α ≤ c2‖x‖rx ,β . (7)

This is easily seen using relation (6). Since q−norms are
equivalent [1], i.e. c1‖x‖β ≤ ‖x‖α ≤ c2‖x‖β , then

c1‖x‖rx ,β = c1
∥∥∥x 1

rx

∥∥∥
β
≤ ‖x‖rx ,α =

∥∥∥x 1
rx

∥∥∥
α

≤ c2
∥∥∥x 1

rx

∥∥∥
β
= c2‖x‖rx ,β .

Interestingly, the constants c1 and c2 relating two homoge-
neous q−norms are the same as the ones for the q−norms.

A natural question arises about the relationship between
different homogeneous norms with possibly different weight
vectors. The following Lemma clarifies this (and is a special
case of [27, Lemma 9]).
Lemma 1 (Relationship Between r−Homogeneous

q−Norm With Different r): Consider two homogeneous
norms ‖ · ‖r1,α and ‖ · ‖r2,β with (possibly) different weight
vectors r1 and r2. Then, there exist two K∞ functions α1(·)
and α2(·) such that

α1(‖x‖r2,β ) ≤ ‖x‖r1,α ≤ α2(‖x‖r2,β ) , ∀ x ∈ Rn. (8)

Proof: Since homogeneous norms are continuous,
positive definite and radially unbounded, it follows from a
classical result [6, Lemma 4.3] that there exist K∞ functions
µ1,α(·), µ2,α(·) and µ1,β (·), µ2,β (·) such that ∀ x ∈ Rn

µ1,α(‖x‖β ) ≤ ‖x‖r1,α ≤ µ2,α(‖x‖β ) ,

µ1,β (‖x‖β ) ≤ ‖x‖r2,β ≤ µ2,β (‖x‖β ) .

Using the properties of K∞ functions it follows that

µ1,α ◦ µ
−1
2,β (‖x‖r2,β )≤‖x‖r1,α≤µ2,α ◦ µ

−1
1,β (‖x‖r2,β ) .

This establishes the result. �

In particular, a relationship between q−norms and
r−homogeneous q−norms is obtained from (8) by setting
r1 = 1n or r2 = 1n. Relation (5) represents one example
of this general relation, when r2 = λr1 or vice versa. Note
that r−homogeneous q−norms w.r.t. different weights r are
usually not equivalent (different from Remark 3), since in
general α1(·) and α2(·) are not linear functions (e.g. (5) in
Remark 1).

The r−homogeneous q−norm of a vector in Rn satisfies
the triangle inequality when r = 1n and q ≥ 1. For other
cases we have instead the following additive inequality.
Lemma 2 (Additive Inequality forHomogeneous q−Norm):

The r−homogeneous q−norm satisfies the following inequal-
ity for two vectors x, y ∈ Rn and q ≥ 1:

‖x + y‖r,q ≤ max
{
1, 2

1
min r−

1
q

} (
‖x‖r,q + ‖y‖r,q

)
. (9)

Proof: Using the definition, we have

‖x + y‖r,q =

(
n∑
i=1

|xi + yi|
q
ri

) 1
q

≤

(
n∑
i=1

(|xi| + |yi|)
q
ri

) 1
q

≤

(
n∑
i=1

max
{
1, 2

q
ri
−1
}
|xi|

q
ri

+

n∑
i=1

max
{
1, 2

q
ri
−1
}
|yi|

q
ri

) 1
q

≤

(
max

{
1, 2

q
min r−1

}) 1
q

(
n∑
i=1

|xi|
q
ri +

n∑
i=1

|yi|
q
ri

) 1
q

≤ max
{
1, 2

1
min r−

1
q

} (
‖x‖r,q + ‖y‖r,q

)
,

where the second inequality comes from (72) and the fourth
inequality from (71). �
Remark 4 (Additive Inequality and Triangle Inequality

for qh−Norm): If min r > 1, then there exists some q ∈
[1,min r], s.t. inequality (9) is again in the form of the
triangle inequality, i.e. ‖x + y‖r,q ≤ ‖x‖r,q + ‖y‖r,q for
all q ∈ [1,min r]. And this is always possible by scaling the
weight vectors by λ > max{1, 1/min r}. Note that the value
of the qh−norm is changed with such λ−scaling on weight
vector r as shown in Remark 1.

C. Lp−STABILITY AND FINITE Lp−GAIN OF SYSTEMS
Usually, for analysis of the behavior of input-output maps,Lp
signal spaces and their extensions are considered [1], [2]. For
p ≥ 1 the set Lp[0,∞) = Lp consists of all functions f :
R+ → R (R+ = [0,∞)), which are measurable and satisfy∫
∞

0 |f (t)|
pdt <∞. Using the truncation fT of f to the interval

[0,T ], the extendedLpe space consists of all functions f such
that fT ∈ Lp for all 0 ≤ T < ∞. For multivariable signals
f : R+ → Rn the signal space Lnp consists of all measurable
signals such that ∫

∞

0
‖f (t)‖pdt <∞ ,
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where ‖ · ‖ is any norm in Rn. In this signal space

‖f ‖Lp =

(∫
∞

0
‖f (t)‖pdt

) 1
p

(10)

defines a signal norm, and Lnp becomes a Banach space for
any p ≥ 1. The extended space Lnpe is defined similarly.
However, it is not a Banach space [1], [2].

If we consider an input-output mapG : Lmpe→ Lrpe, we say
that it is Lp−stable[2] if

u ∈ Lmp ⇒ y ∈ Lrp .

The map G is said to have finite Lp−gain if there exist
non-negative constants γp and bp such that

‖(G(u))T ‖Lp ≤ γp‖uT ‖Lp + bp , ∀T ≥ 0, u ∈ Lmpe .

IfG has finiteLp−gain then it is automaticallyLp−stable [2].
Taking T →∞ and restricting u ∈ Lmp ⊂ Lmpe we have

‖(G(u))‖Lp ≤ γp‖u‖Lp + bp , ∀ u ∈ Lmp . (11)

G is said to have finite Lp−gain with zero bias if bp in (11)
can be taken equal to zero. If G has finite Lp−gain, then the
Lp−gain of G is defined as

γp(G) , inf
{
γp | ∃ bp such that (11) holds

}
.

For the input-output maps Gx0 obtained from system (1) the
previous definitions also apply [2], where for each Gx0 the
constant bp(x0) depends on the initial state x0, but not on γp.

D. ON THE LIMITATION OF Lp−STABILITY AND FINITE
Lp−GAIN FOR HOMOGENEOUS SYSTEMS
Consider a scalar (SISO) homogeneous input-output map
G : Lpe → Lpe, of homogeneous degree d = −rt and
weights ru > 0 and ry > 0, for the input and output
respectively. Select an input signal u ∈ Lp and suppose that
y = G(u) ∈ Lp. According to (3), applying the scaled input
ũ(·) = ν

ru
κ (u(κ−rt ·)) for any κ > 0, one obtains the scaled

output ỹ(·) = ν
ry
κ (y(κ−rt ·)). The Lp−norms of the scaled

input and output are given by

‖ũ‖Lp =

(∫
∞

0
|ũ(t)|pdt

) 1
p

=

(∫
∞

0
|κruu(κ−rt t)|pdt

) 1
p

= κ
ru+

rt
p

(∫
∞

0
|u(s)|pds

) 1
p

= κ
ru+

rt
p ‖u‖Lp ,

‖ỹ‖Lp = κ
ry+

rt
p ‖y‖Lp .

If ru 6= ry, it follows that an inequality such as (11) cannot
be satisfied globally. Suppose u ∈ Lp. Then ũ ∈ Lp since
‖ũ‖Lp = κ

ru+
rt
p ‖u‖Lp < ∞ for any finite κ > 0. Thus

also (11) is satisifed with the dilated input ũ and output ỹ

‖ỹ‖Lp ≤ γp‖ũ‖Lp + bp ,

implying

κ
ry+

rt
p ‖y‖Lp ≤ κ

ru+
rt
p γp‖u‖Lp + bp ,

which gives

‖y‖Lp ≤ κ
ru−ryγp‖u‖Lp + κ

−ry−
rt
p bp .

Compared with the original inequality (11), the effective gain
and bias are both multiplied with κ−related terms. Now let
bp = 0 or pry = d > 0. Then when ry > ru , κ → ∞
(large signal) or when ry < ru , κ → 0 (small signal),
quantity γp in the above inequality must be infinite such that
the original inequality (11) stands. Consequently, no finite γp
can satisfy (11) globally. On the other hand, when bp 6= 0 and
pry 6= d , for similar reasons there does not exist a global
constant bp, such that (11) holds.
In order to show that the classical Lp−gain is not suitable

for homogeneous systems, we inspect a simple homogeneous
scalar system as an example.
Example 1: Consider the homogeneous scalar system

ẋ = −kdxc
1
z + bu, y = cx (12)

with z ∈ R+. The weight vectors are rx = z, ru = 1, ry = z,
and the homogeneous degree is d = −rt = 1 − z. When the
system evolves from the origin, an input ue(·) not identical to
zero will result in an output ye(·), recording the ratio

0e =
‖ye‖Lp

‖ue‖Lp

.

As shown above, from homogeneity the output of system (12)
will be dilated to ỹe(t̃) with the dilated input ũe(t̃) together
with scaled time. Then the above ratio for this dilated input
and output is

0κe =
‖ỹe‖Lp

‖ũe‖Lp

= κz−1γe

when
z < 1 Corresponding to d > 0, if the input is scaled

smaller, i.e. κ < 1, the ratio 0κe will grow larger.
And as κ → 0, the ratio 0κe will grow unbounded.

z > 1 Corresponding to d < 0, the ratio 0κe behaves
conversely, namely being smaller with smaller input
and vice versa.

z = 1 The linear case corresponds to d = 0. The ratio0κe
is constant under linear scaling.

The ratio 0κe can simply be reflected as the gain constant
in (11), since

γp ≥ sup
u∈Lp

(
‖y‖Lp

‖u‖Lp

−
bp(0)
‖u‖Lp

)
.

Thus the classical Lp−gain can be finite only if ry = ru
(z = 1 for system (12)). Note that for LTI systems and initial
state at the origin (x0 = 0), the bias becomes bp(0) = 0 [2].
Previous works, i.e. [17], [25], in the context of the

H∞−control problem have considered the finite L2−gain
for the restricted class of homogeneous systems, for which
ru = `1m, ry = `1o, for ` = d +min rx > 0.
In view of a proper formulation and solution of, for exam-

ple, the H∞−control problem for homogeneous systems,
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the objective of the present paper is to show that it is
possible to define an appropriate concept of finite Lp−gain
for every internally stable homogeneous system. Although
this is possible for LTI systems, as it is well-known, it is not
true for arbitrary non-linear systems. Moreover, we provide a
characterization in terms of homogeneous storage functions,
which also allow the calculation of the finite Lp−gain.

III. HOMOGENEOUS Lp−STABILITY FOR
HOMOGENEOUS SYSTEMS
Similar to the situation in finite dimensional vector spaces,
where homogeneity leads naturally to the introduction
of homogeneous norms (see Section II-B), we introduce
homogeneous norms for spaces of signals, which lead directly
to the desired concept of finite gain of homogeneous systems.

A. SPACES OF SIGNALS WITH HOMOGENEOUS NORM
For multivariable signals f : R+ → Rn consider the signal
space Lnrf ,p consisting of all measurable signals such that∫

∞

0
‖f (t) ‖prf ,qdt <∞ ,

where ‖ · ‖rf ,q is a homogeneous norm (4) in Rn with weight
vector rf , assuming p ≥ 1, q ≥ 1.
Lemma 3 Lnr,p−space is a linear signal space, i.e. if

f (·), g(·) ∈ Lnr,p then af (·)+ bg(·) ∈ Lnr,p for any a, b ∈ R.
Proof: For the proof we will make use of the

generalization of the weak triangle inequality [33], i.e. for all
x, y ∈ [0,∞)

α(x + y) ≤ max {α(2x), α(2y)} ≤ α(2x)+ α(2y) , (13)

where α is a class K function defined in [0,∞). Consider∫
∞

0
‖af (t) + bg(t) ‖pr,qdt

=

∫
∞

0

(
n∑
i=1

|afi(t) + bgi(t) |
q
ri

) p
q

dt

≤

∫
∞

0

(
n∑
i=1

(|afi(t) | + |bgi(t) |)
q
ri

) p
q

dt

≤

∫
∞

0

(
n∑
i=1

|2a|
q
ri |fi(t) |

q
ri +

n∑
i=1

|2b|
q
ri |gi(t) |

q
ri

) p
q

dt

≤

∫
∞

0

(
A

n∑
i=1

|fi(t) |
q
ri + B

n∑
i=1

|gi(t) |
q
ri

) p
q

dt

≤ (2A)
p
q

∫
∞

0

(
n∑
i=1

|fi(t) |
q
ri

) p
q

dt

+(2B)
p
q

∫
∞

0

(
n∑
i=1

|gi(t) |
q
ri

) p
q

dt

= (2A)
p
q

∫
∞

0
‖f (t) ‖pr,qdt + (2B)

p
q

∫
∞

0
‖g(t) ‖pr,qdt

is finite, where A = maxi
{
|2a|

q
ri

}
and B = maxi

{
|2b|

q
ri

}
.

Note that several times we have applied inequality (13) to the
power function |x|r , r > 0. This concludes the proof for finite
p. For p = ∞ we have similarly

sup
t≥0
‖af (t) + bg(t) ‖τ,q

= sup
t≥0

(
n∑
i=1

|afi(t) + bgi(t) |
q
τi

) 1
q

≤ sup
t≥0

(
n∑
i=1

(|afi(t) | + |bgi(t) |)
q
τi

) 1
q

≤

(
sup
t≥0

[
n∑
i=1

|2a|
q
τi |fi(t) |

q
τi

]

+ sup
t≥0

[
n∑
i=1

|2b|
q
τi |gi(t) |

q
τi

]) 1
q

≤

(
A sup
t≥0

[
n∑
i=1

|fi(t) |
q
τi

]
+ B sup

t≥0

[
n∑
i=1

|gi(t) |
q
τi

]) 1
q

= (2A)
1
q sup
t≥0
‖f (t) ‖τ,q + (2B)

1
q sup
t≥0
‖g(t) ‖τ,q <∞ .

�
Note that the signal space Lnrf ,∞ = Ln∞. In this (linear)

signal space we define a homogeneous signal norm
Definition 4 (r−Homogeneous Lp−norm): An rf−

homogeneous Lp−norm (Lph−norm for short) for the signal
f (·) ∈ Lnrf ,p, with q ≥ 1, and 1 ≤ p <∞, is given by

‖f (·)‖rf ,Lp =

(∫
∞

0
‖f (t) ‖prf ,qdt

) 1
p

=

∫ ∞
0

(
n∑
i=1

|fi(t) |
q
rfi

) p
q

dt


1
p

. (14)

For p = ∞

‖f (·)‖rf ,L∞ = sup
t≥0
‖f (t) ‖rf ,q . (15)

Note that ‖·‖r,Lp is r−homogeneous of degree 1 with weight

vector r , i.e.
∥∥∥νrfκ (f (·))∥∥∥

rf ,Lp
= κ‖f (·)‖rf ,Lp . Yet in general

it is not a norm in the usual sense and the signal space
Lnrf ,p is not a Banach space for rf 6= c1n, c > 0. The
extended space Lnrf ,pe is defined similarly. Note that q in (14)
does not need to be equal to p. This is also the case in the
definition of a classicalLp norm [2]. Since finite dimensional
r−homogeneous q−norms are equivalent for different q (see
Remark 3), different choice of q does not alter the signal
space Lnrf ,p.
Remark 5 (Effect of Weight Scaling on Lph−Norms):

Similar to Remark 1, scaling the homogeneous degree d =
−rt and the weight vectors rx , ru, ry by a positive constant λ ≤
min{p, q}, affects the value of the homogeneous Lp−norm
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(14) of the involved signals, i.e.

‖f ‖λrf ,Lp =

(∫
∞

0
‖f (t) ‖pλrf ,qdt

) 1
p

=

(∫
∞

0
‖f (t) ‖

p/λ
rf ,q/λdt

) 1/λ
p/λ

= ‖f ‖
1/λ

rf ,Lp/λ
.

It implies that for any λ ≤ min{p, q} the spacesLnλrf ,p, L
n
rf ,p/λ

are identical, i.e. Lnλrf ,p = Lnrf ,p/λ. Although the two
spaces are identical, the power 1/λ indicates that the
λrf−homogeneous Lp−norm for signal is not equivalent to
the rf−homogeneous Lp/λ−norm.
Remark 6 (Companion Signal and Relationship Between

r−HomogeneousLp−Norm andLp−Norm): Classically, the
case with p = q = 2 is special [2], since the norm ‖f ‖L2

given by (10) is associated with the inner product of signals

〈f , g〉s =
∫
∞

0
〈f (t), g(t) 〉dt, f , g ∈ Ln2

‖f ‖L2 = 〈f , f 〉
1
2
s , f ∈ Ln2 ,

and Ln2 is a Hilbert space. Similar to Remark 2, for a
multivariable signal f , define the companion signal

f
1
rf (t) ,

[
df1(t) c

1
rf1 , . . . , dfn(t) c

1
rfn

]>
.

For homogeneous norms it is possible to associate the
Lph−norm (14) of f (·) with the classical Lph−norm of its
companion signal

‖f ‖rf ,Lp =

∥∥∥∥f 1
rf

∥∥∥∥
Lp

, f
1
rf ∈ Lnp .

Analogous to Remark 2, this can be related to the ideas
introduced in [31].

The triangle inequality is valid for r−homogeneous
Lp−norm when r = 1n, i.e. for two signals x, y ∈ Lnp,
‖x + y‖1n,Lp ≤ ‖x‖1n,Lp + ‖y‖1n,Lp . For other cases, the
following more general additive inequality is valid.
Lemma 4 (Additive Inequality for r−Homogeneous

Lp−Norm): The r−homogeneous Lp−norm satisfies the
following inequality for two signals x, y ∈ Lnr,p, with q ≥ 1,
for all p ≥ 1 (including the case p = ∞)

‖x + y‖r,Lp ≤ max
{
1, 2

1
min r−

1
q

} (
‖x‖r,Lp + ‖y‖r,Lp

)
.

(16)

Proof: First of all, the signal x+y ∈ Lr,p fromLemma 3.
Then similar to the classical proof of the triangle inequality
for Lp−norm, we have

‖x + y‖pr,Lp

=

∫
∞

0
‖x(t) +y(t) ‖r,q ‖x(t) +y(t) ‖

p−1
r,q dt

≤ max
{
1, 2

1
min r−

1
q

}
×

∫
∞

0

(
‖x(t) ‖r,q + ‖y(t) ‖r,q

)
‖x(t) +y(t) ‖p−1r,q dt

≤ max
{
1, 2

1
min r−

1
q

}(∫ ∞
0
‖x(t) +y(t) ‖pr,q dt

) p−1
p

×

[(∫
∞

0
‖x(t) ‖pr,q dt

) 1
p

+

(∫
∞

0
‖y(t) ‖pr,q dt

) 1
p
]

= max
{
1, 2

1
min r−

1
q

} (
‖x‖r,Lp + ‖y‖r,Lp

)
‖x + y‖p−1r,Lp

From here (16) follows immediately. The first inequality
derives from Lemma 2, the second inequality comes Hölder’s
inequality (73). From (9) as well as from definition of
homogeneous L∞−norm (15), it is also easy to derive that

‖x+y‖r,L∞
= sup

t≥0
‖x(t) +y(t) ‖r,q

≤ max
{
1, 2

1
min r−

1
q

}(
sup
t≥0
‖x(t) ‖r,q+sup

t≥0
‖y(t) ‖r,q

)
≤ max

{
1, 2

1
min r−

1
q

} (
‖x‖r,L∞+‖y‖r,L∞

)
.

Or simply (16) is also valid when p = ∞. �
Remark 7 (Additive Inequality and Triangle Inequality for

Lph−Norm): From Remark 4, by λ−scaling on the weight
vector r, there always exists some q ∈ [1,min r], s.t. (16)
appears in the form of triangle inequality, i.e. ‖x + y‖r,Lp ≤

‖x‖r,Lp + ‖y‖r,Lp for all p ≥ 1, q ∈ [1,min r], x, y ∈ Lnr,p.
Note that with the λ−scaling on the weight vector r the value
of the Lph−norm is also changed as shown in Remark 5.
Remark 8 (Relationship Between Lph−Spaces): It is well-

known [1], [2] that classical Lp−norms are not equivalent
for different values of p, and this is also not the case for
r−homogeneous Lp−norms for different values of p.
However, if a signal f ∈ Ln1 ∩ Ln∞, then f ∈ Lnp for

p ∈ [1,∞] [1, Fact 7]. This can be similarly derived for
homogeneous Lp−norms, i.e. if a signal f ∈ Lnrf ,1 ∩ Lnrf ,∞,
then f ∈ Lnrf ,p for p ∈ [1,∞] by simply using its companion
signal in Remark 6.
Further, in extended Lp−space with finite T , we have

Ln∞e ⊂ Lnpe ⊂ Ln1e. [1, Exercise 4 in Page 17]. It is also
true for extended Lph−norms by simply using (7).

B. HOMOGENEOUS Lp−STABILITY AND FINITE
HOMOGENEOUS Lp−GAIN OF SYSTEMS
Definition 5 (homogeneous Lp−stability): Consider an

input-output map G : Lmru,pe → Lory,pe. We say that it is
homogeneous Lp−stable (Lph−stable) [2] if

u ∈ Lmru,p ⇒ y ∈ Lory,p .

The map G is said to have finite homogeneous Lp−gain
(finiteLph−gain), if there exist non-negative constants γp and
bq such that for all T ≥ 0, u ∈ Lmru,pe

‖G(u)T ‖ry,Lp ≤ γp‖uT ‖ru,Lp + bp . (17)

G is said to have finite Lph−gain with zero bias if bp in (17)
can be taken equal to zero. If G has finite Lph−gain, then the
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Lph−gain of G is defined as

γph(G) , inf
{
γp | ∃ bp such that (17) holds

}
. (18)

For the input-output maps Gx0 obtained from system (1)
the previous definitions also apply (cfr. [2]), where for each
Gx0 the constant bp(x0) depends on the initial condition x0,
but not on γp.
Similar to the classical situation [2], if G has finite

Lph−gain then it is automatically Lph−stable. Indeed, taking
u ∈ Lmru,p ⊂ Lmru,pe and letting T →∞ in (17), we obtain

‖G(u)‖ry,Lp ≤ γp‖u‖ru,Lp + bp , ∀ u ∈ Lmru,p , (19)

implying that G(u) ∈ Lrry,p for all u ∈ Lmru,p. Moreover, for
causal maps (19) implies (17).

Finally, we extend a well-known fact of linear input-output
maps [2] to homogeneous input-output maps.
Proposition 1: Homogeneous input-output maps G with

finite Lph−gain have zero bias.
Proof: Given (3) and (17), then for any κ > 0

κ
∥∥(y (κ−rt ·))T∥∥ry,Lp

=

∥∥∥νryκ (y (κ−rt ·)T )∥∥∥ry,Lp

=
∥∥(G (νruκ (u (κ−rt ·))))T∥∥ry,Lp

≤ γp
∥∥νruκ (uT (κ−rt ·))∥∥ru,Lp

+ bp

= κγp
∥∥uT (κ−rt ·)∥∥ru,Lp

+ bp ,

and the arbitrariness of κ implies bp = 0. �
For a homogeneous input-output map G with finite

Lph−gain, dilating the input u ∈ Lmru,p as in (3), i.e. ũ(·) =
ν
ru
κ (u(κ−rt ·)), leads to the dilated output ỹ(·) = ν

ry
κ (y(κ−rt ·)).

Their corresponding Lph−norms are

‖ũ‖ru,Lp = κ
∥∥u (κ−rt ·)∥∥ru,Lp

= κ

(∫
∞

0

∥∥u (κ−rt t)∥∥pru,q dt
) 1

p

= κ
1+ rt

p

(∫
∞

0
‖u(s)‖pru,q ds

) 1
p

= κ
1+ rt

p ‖u‖ru,Lp

‖ỹ‖ry,Lp = κ
1+ rt

p ‖y‖ry,Lp . (20)

Since bp = 0, we see that the previous definition of
finite Lph−gain (17) is compatible with the dilation of the
input/output signals, in contrast to the situation presented in
Section II-D.
Remark 9 (Restriction on Homogeneous Weights Such

That Classical Lp−Stability is Possible): The relations (20),
together with (19), show that our definition of G having finite
Lph−gain coincides with the classical one only if ru = 1m
and ry = 1o. If a system has ru = c1m and ry = c1o, for
some c > 0, then scaling with λ = 1/c the weights and
the degree of the input-output maps, one gets λru = 1m,
λry = 1o, and the homogeneous norms ‖u‖λru,Lp = ‖u‖Lp

and ‖G(u)‖λry,Lp = ‖G(u)‖Lp become standard norms. The

restrictions imposed in [9], [17], [25] for the homogeneity
weights imply that ru = c1m and ry = c1o. In this case it is
possible to use the classical Lp−stability (see Section II-D).
Note that in general, for arbitrary values of ru and ry, the
inequality (19) cannot be converted into a linear inequality
using classical norms.
Remark 10 (Homogeneous Degree of bp(x0)): For the

input-output maps Gx0 obtained from the state space
system (1) the previous derivations show that the function
bp(x0) is rx−homogeneous of degree 1+

rt
p , i.e. bp(ν

rx
κ (x0)) =

κ
1+ rt

p bp(x0). We also conclude that bp(0) = 0, and so the
input-output maps Gx0 is homogeneous for x0 = 0. If bp(·) is
continuous on Rn

\ {0}, and 1+ rt
p > 0, then it is continuous

on Rn (see [14, Theorem 4.1]).
For homogeneous and causal input-output maps, Proposi-

tion 1 allows us to characterize the Lph−gain of G defined
by (18) as

γph(G) , sup
‖u‖ru,Lp 6=0

‖G(u)‖ry,Lp

‖u‖ru,Lp

, u ∈ Lmru,p . (21)

Note that (21) makes apparent that γph(G) is constant for
homogeneous systems. Since the numerator and denominator
are homogeneous of the same degree from (20), the ratio is
homogeneous of degree zero. It is surprising that a non-linear
system has a constant gain, valid for all inputs and outputs.
This is a particularity not only due to the homogeneity of
the system but also to the special way of measuring the size
of input and output, provided by the homogeneous (signal)
norms, introduced in this paper. Note that for LTI systems,
whose degree rt = 0, by choosing ru = 1m and ry = 1o,
the homogeneousLp−gain (21) corresponds to the traditional
Lp−gain. Recall also that for different values of p the value
of Lp−gains are not related.

IV. CHARACTERIZATION OF HOMOGENEOUS
Lp−STABILITY FOR HOMOGENEOUS STATE SPACE
SYSTEMS
A. HOMOGENEOUS Lp−STABILITY AND FINITE
HOMOGENEOUS Lp−GAIN FOR STATE SPACE SYSTEMS
For systems with a state-space representation (1) there exists
a classical characterization of having a finite L2−gain by
means of a dissipation inequality [2], which extends the
input-output definition (11). In this section we extend this
characterization to check finite homogeneousLp−gain for an
arbitrary homogeneous system and some p ≥ 1.
Definition 6 (Finite Lph−gain for 6): The homogeneous

state-space system 6 in (1) has finite Lph−gain ≤ γ if
there exists an rx−homogeneous, positive definite and contin-
uously differentiable storage function V (x) of homogeneous
degree p − d > 0, such that the following inequality is
satisfied for some ε ≥ 0 and all (x, u) ∈ Rn+m

∂V (x)
∂x

f (x, u)+ ‖y‖pry,q − γ
p
‖u‖pru,q ≤ −ε‖x‖

p
rx ,q . (22)
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The Lph−gain of 6 is defined as

γph(6) , inf
{
γ | 6 has Lph − gain ≤ γ

}
.

Defining the function J (Vx , x, u) via Vx =
∂V (x)
∂x as

J (Vx , x, u) ,
∂V (x)
∂x

f (x, u)+ ‖h(x, u)‖pry,q

−γ p‖u‖pru,q + ε‖x‖
p
rx ,q , (23)

inequality (22) corresponds to J (Vx , x, u) ≤ 0, for all
(x, u) ∈ Rn+m.
Since all three homogeneous q−norms ‖ · ‖r,q are

of homogeneous degree one and Vx is homogeneous of
degree p, it follows that J is homogeneous of degree p,
i.e. J (Vx(ν

rx
κ (x)), νrxκ (x), νruκ (u)) = κpJ (Vx , x, u) for all κ ≥

0 and (x, u) ∈ Rn+m. Building J homogeneous of degree p
imposes a restriction on the homogeneity degree of V to be
p− d > 0.
An inequality of the type of (22) with p = q = 2 is

classically used to charaterize the L2−gain of a non-linear
system [2], [6]–[8]. In the linear case this reduces to the
well-known Riccati inequality, when choosing a quadratic
V (x). In [17] a particular case of (22), with p = q = 2,
is used to characterize the L2−gain of a particular class of
homogeneous systems. Here it is extended to characterize the
Lph−norm for any p > d and p ≥ 1.
Definition 6 extends Definition 5, as shown in the

following Theorem. It also gives conditions to assure internal
stability of system6 in (1) for zero input. Recall that, system
6 from (1) is said to be zero-state detectable, if u(t) =
0, y(t) = 0,∀ t ≥ 0 implies limt→∞ x(t) = 0 [2].
Theorem 1: If system 6 in (1) satisfies the conditions of

Definition 6 for some d < p < ∞ and p ≥ 1, then the
associated input-output map Gx0 has finite Lph − gain ≤ γ
according to Definition 5. If ε = 0 and system 6 in (1) is
further zero-state detectable, then the unperturbed system (1)
with u ≡ 0 is globally asymptotically stable at the origin.
If ε > 0, the unperturbed system (1) with u ≡ 0 is globally
asymptotically stable at the origin, without requiring the
detectability condition.

Proof: From Definition 6, ensuring (22) for all time
leads to∫

∞

0
J (Vx(x(t)), x(t), u(t))dt

= V (x(t))|t→∞−V (x0)+ ‖y(·)‖
p
ry,Lp

−γ p‖u(·)‖pru,Lp
+ ε‖x(·)‖prx ,Lp

≤ 0 . (24)

Therefore for any input u ∈ Lmru,p and its corresponding
output y we have (since ε ≥ 0)

‖y(·)‖pry,Lp
≤ V (x(t))|t→∞ + ‖y(·)‖

p
ry,Lp

≤ γ p‖u(·)‖pru,Lp
+ V (x0)− ε‖x(·)‖

p
rx ,Lp

≤ γ p‖u(·)‖pru,Lp
+ V (x0) .

The first inequality comes from the positive definiteness
of V (x), the second inequality results from (24), the

third originates from the positive definiteness of Lp−norm
‖x(·)‖rx ,Lp and constant ε ≥ 0. Since (71) assures that for

p ≥ 1, (|x|p + |y|p)
1
p ≤ |x| + |y| for any x, y ∈ R, we obtain

‖y(·)‖ry,Lp ≤

(
γ p‖u(·)‖pru,Lp

+ V (x0)
) 1
p

≤ γ ‖u(·)‖ru,Lp + V
1
p (x0) .

Therefore, the input-output map Gx0 associated to system (1)
has finite Lph−gain ≤ γ according to Definition 5, for every
x0 ∈ Rn. The function bp(x0) in (17) can be given by bp(x0) =

V
1
p (x0), which has homogeneity degree 1− d

p = 1+ rt
p > 0

(this follows from the assumption p > d in Definition 6).
Further, inequality (22) with u ≡ 0 reads for all x ∈ Rn

∂V (x)
∂x

f (x, 0) ≤ −‖h(x, 0)‖pry,q − ε‖x‖
p
rx ,q , (25)

such that for ε = 0, V (x) is a weak Lyapunov function,
and because of homogeneity it is radially unbounded.
Thus, LaSalle’s Invariance principle, together with zero-state
detectability, imply that the origin is a globally asymptotically
stable equilibrium for the unperturbed system (1) [6], [34].
If instead ε > 0, V (x) is a strict Lyapunov function and
Lyapunov’s theorem implies global asymptotic stability of the
origin x = 0 for the unperturbed system, without assuming
detectability. �
Note that the value of γ obtained from (22) corresponds to

an upper bound of the Lph−gain of 6, that is

γph(6) ≤ γ .

When p = q = 2, Theorem 1 is well-known for LTI
systems, which are homogeneous of degree d = 0, and with
weights rx = 1n, ry = 1o, ru = 1m. Inequality (22) reduces
to a Riccati inequality if a quadratic V (x) is chosen, which
can be converted to an LMI. It constitutes one of the main
numerical tools to calculate the L2−gain of an LTI system.

For LTI systems a partial converse of Theorem 1 is
also true, namely if the unperturbed LTI system is asymp-
totically stable at the origin then the system has finite
Lp−gain for any 1 ≤ p ≤ ∞ [7, Theorem 4.18]
[8, Theorem 10.9.1]. This is in general not true for non-linear
systems (see e.g. the discussion in Chapter 5 of [6]).
In particular, for (SISO) homogeneous systems Section II-D
above shows that if ry 6= ru finite Lp−gain is in general
not well-defined. The following Theorem shows that for
homogeneous systems 6 (1) such a converse result to
Theorem 1 is true with Lph−norm.
Theorem 2: Consider the homogeneous system6 from (1).

Assume that

p > d +max rx (26)

and p ≥ 1. If the unperturbed system, with u = 0, is locally
asymptotically stable at the origin, then inequality (22) is
satisfied for some γ > 0 and some ε > 0. Thus, system (1)
has a finite Lph − gain ≤ γ .
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Note that (26) implies p > d , since min rx > 0.
For the proof of Theorem 2 we will also use the fol-
lowing well-known properties of continuous homogeneous
functions.
Lemma 5 ([35], [36]): Let ψ : Rn

→ R and ω : Rn
→

R, and ω(x) ≥ 0, ∀ x ∈ Rn, be two continuous homogeneous
functions with the same weight vector r = (r1, . . . , rn) and
homogeneity degree s, such that

{x ∈ Rn
\{0} : ω(x) = 0} ⊆ {x ∈ Rn

\{0} : ψ(x) < 0} .

Then there exist real numbers γ ? and c > 0 such that for all
γ ≥ γ ? and all x ∈ Rn

\{0} it holds

ψ(x)− γω(x) < −c‖x‖sr,p .

Lemma 6 ([14], [35]): Suppose φ : Rn
→ R and χ :

Rn
→ R are continuous real-valued functions on Rn,

homogeneous with the same weight vector r = (r1, . . . , rn)
and degrees dφ > 0 and dχ > 0, respectively, and φ is
positive definite. Then for every x ∈ Rn(

min
S
χ (x)

)
φ

dχ
dφ (x) ≤ χ (x) ≤

(
max
S
χ (x)

)
φ

dχ
dφ (x) ,

where S = {x ∈ Rn
: φ(x) = 1}.

Proof: By assumption, the homogeneous system ẋ =
f (x, 0) has x = 0 as an asymptotically stable equilibrium
and d < p − max rx . The converse Lyapunov theorem [15],
[22, Theorem 5.8] assures the existence of a homogeneous
and continuously differentiable strict Lyapunov function
Vl(x) of homogeneity degree p− d > max rx , satisfying

V̇l(x) =
∂Vl(x)
∂x

f (x, 0) ≤ −c‖x‖prx ,q

for some constant c > 0. Recall that V̇l(x) is homogeneous
of degree p. Since for u = 0, ‖y‖pry,q = ‖h(x, 0)‖

p
ry,q is

homogeneous of degree p, Lemma 6 assures the existence of
a constant α > 0 such that the following inequality is valid
globally

‖y‖pry,q = ‖h(x, 0)‖
p
ry,q ≤ α‖x‖

p
rx ,q .

Now consider the homogeneous function

a
∂Vl(x)
∂x

f (x, 0)+ ‖h(x, 0)‖pry,q + ε‖x‖
p
rx ,q

≤ −(ac− α − ε)‖x‖prx ,q , (27)

with the strict Lyapunov function Vl obtained from the
converse Lyapunov theorem, a > 0 a positive constant to be
selected and ε > 0 some constant. Choosing a > a , α+ε

c ,
it follows that the last expression in (27) is negative definite.
Define the functions

ω(x, u) , ‖u‖pru,q,

ψ(x, u) ,
∂V (x)
∂x

f (x, u)+ ‖h(x, u)‖pry,q + ε‖x‖
p
rx ,q,

where V (x) = aVl(x) for a > a , α+ε
c . Both

functions are continuous and homogeneous in (x, u) ∈
Rn+m of homogeneous degee p. Clearly ω(x, u) ≥ 0 and

ω(x, u) = 0 ↔ u = 0. Moreover, from (27) and by the
selection of a > a, ψ(x, 0) < 0 for all x 6= 0. Lemma 5
assures the existence of a value γ ? > 0 such that for any
γ ≥ γ ? > 0 the function ψ(x, u) − γ pω(x, u) < 0 for all
(x, u) 6= 0. We conclude the proof noticing that V and γ
satisfy the inequality (22) with pre-chosen ε > 0. Note that
such value of ε is reflected in a. �
Remark 11 (Effect of Weight Scaling on Dissipation

Inequality): Recall that, as already observed in Remark 1 and
Remark 5, scaling the homogeneity degree and weight vectors
by a positive constant λ > 0 changes the values of the
homogeneous vector norms as well as the homogeneous
signal norms involved. Yet, we still have the identity between
the λr−homogeneousLp space and the r−homogeneousLp/λ

space (Remark 5). Performing the scaling, we can also relate
the λr−homogeneous Lp−gain with the r−homogeneous
Lp/λ−gain.
For example, from Theorem 2, there exists a finite γ for

p > λ(d + max rx) and p ≥ 1 if the unperturbed continuous
homogeneous system 6 in (1) is asymptotically stable (now
with λ−scaled weight vector and degree). The dissipation
inequality (22) is now for all (x, u) ∈ Rn+m

∂V (x)
∂x

f (x, u)+ ‖y‖pλry,q − γ
p
‖u‖pλru,q ≤ −ε‖x‖

p
λrx ,q .

From (5) in Remark 1, the previous inequality can be
re-written as that for all (x, u) ∈ Rn+m

∂V (x)
∂x

f (x, u)+ ‖y‖
p/λ
ry,q/λ − γ̃

p/λ
‖u‖

p/λ
ru,q/λ ≤ −ε‖x‖

p/λ
rx ,q/λ

with γ̃ = γ λ. With arguments as in Theorem 2 the
r−homogeneous Lp/λ−gain equals the λr−homogeneous
Lp−gain to the power of λ. However, we must be aware
that the r−homogeneous Lp1−gain is not related to the
r−homogeneous Lp2−gain for p1 6= p2 with such scaling
on weight vector and degree. The previous analysis only says
that the r−homogeneous Lp2−gain can be derived from the
λr−homogeneous Lp1−gain, with λ = p1/p2. Yet the latter
has nothing to do with the r−homogeneous Lp1−gain.
Remark 12 (Construction of a Storage Function for

the Dissipation Inequality): The dissipation inequality in
Definition 6 depends on the construction of storage function.
Although there is no general method to obtain storage
functions, for certain classes of homogeneous systems the
recent work [37] provides a methodology to construct them,
using generalized homogeneous forms and the sums of
squares technique.
For a smooth V (x) of homogeneity degree p− d satisfying

inequality (22) it is possible to build another smooth storage

function V
p′−d
p−d (x) of homogeneous degree p′ − d for p′ >

p. On the contrary, for p′ < p differentiability of function

V
p′−d
p−d (x) at x = 0 might be lost.

B. SYSTEMS AFFINE IN THE INPUT
Theorems 1 and 2 show that homogeneous Lp−stability
can be characterized by the dissipation inequality (22). This
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inequality (22) depends on two independent variables, x and
u, and it has also two unknowns: the function V (x) and
the (positive) real constant γ . Since (22) contains the partial
derivative of V (x), it is a Partial Differential Inequality. It is
in general very hard to solve this kind of problems (for an
overview see Chapter 11 of [2]).

It is therefore worthwhile to simplify (22), e.g. by
eliminating the variable u. The idea is to find, for each value
of x and Vx = ∂V

∂x , the value of u that maximizes J (Vx , x, u),
i.e. a function u?(x,Vx) such that

J (Vx , x, u) ≤ J (Vx , x, u?(x,Vx)) , ∀ (x, u) ∈ Rn+m .

In this case the inequality (22) for all x ∈ Rn is equivalent to

∂V (x)
∂x

f (x, u?(x,Vx))+ ‖h(x, u?(x,Vx))‖pry,q

−γ p‖u?(x,Vx)‖pry,q ≤ −ε‖x‖
p
rx ,q .

This inequality is a Hamilton-Jacobi Inequality (HJI)
(see [2, Chapter 11]). Compared to (22) it is simpler to solve,
since it does not depend on u.
Finding u?(x,Vx) is simplified if system (1) is affine in u,

and the output function h does not depend on u, i.e.

ẋ = f (x)+ g(x)u, y = h(x) , (28)

where g(x) = [g1(x), . . . , gm(x)] ∈ Rn×m is a matrix-valued
function with columns gi(x) ∈ Rn. Homogeneity (see
Definition 1) requires f and gi to be rx−homogeneous vector
fields of degrees d and di = d−rui , respectively, and hj to be
rx−homogeneous functions of degree ryi , i.e.

f (νrxκ (x)) = κdνrxκ (f (x)) ,

gi(νrxκ (x)) = κd−rui νrxκ (gi(x)) , i = 1, . . . ,m ,

hj(νrxκ (x)) = κryj hj(x) , j = 1, . . . , o .

Note that from assumption of continuity of the vector
fields, we have d > max ru, and from the assumption p > d
in Definition 6, we have p > max ru. This shall be used in the
next Lemma.
Lemma 7: For system (28), by selecting q = p the

dissipation inequality (22) in Definition 6 is equivalent to the
homogeneous HJI for all x ∈ Rn

∂V (x)
∂x

f (x)+ ‖h(x)‖pry,p

+

m∑
i=1

αi(γ )

∣∣∣∣∂V (x)∂x
gi(x)

∣∣∣∣
p

p−rui
≤ −ε‖x‖prx ,p ,

αi(γ ) ,
(
rui
pγ p

) rui
p−rui

(
1−

rui
p

)
. (29)

Proof: In view of system (28), J (Vx , x, u) expands into

J (Vx , x, u) =
∂V (x)
∂x

f (x)+ ‖h(x)‖pry,p + ε‖x‖
p
rx ,p

+
∂V (x)
∂x

g(x)u− γ p‖u‖pru,p .

Since function J is continuous (and differentiable in u due
to p > max ru) and for each x ∈ Rn (by homogeneity)

lim‖u‖→∞ J (Vx , x, u) = −∞, it follows by Weierstrass’
theorem that there exists at least a global maximum (as a
function of u). Taking the partial derivative

∂J (Vx , x, u)
∂ui

=
∂V (x)
∂x

gi(x)−
pγ p

rui
duic

p−rui
rui ,

where

∂‖u‖pru,p
∂ui

=
p
rui
duic

p−rui
rui

and setting ∂J (Vx ,x,u)
∂ui

= 0, we arrive at a unique critical point
for all i = 1, . . . ,m

u?i (x,Vx) =
(
rui
pγ p

) rui
p−rui
dVxgi(x)c

rui
p−rui

=

(
rui
pγ p

) rui
p−rui

⌈
∂V (x)
∂x

gi(x)
⌋ rui
p−rui

. (30)

Replacing (30) into J we obtain inequality (29). Since p >
max ru the terms

(
1−

rui
p

)
> 0, therefore, the last term on the

left-hand side of (29) is non-negative. Clearly, inequality (29),
which is a Hamilton-Jacobi Inequality, is equivalent to (22).

Also note that from (30), u?i (x,Vx) is rx−homogeneous
of degree ru and the HJI (29) is a rx−homogeneous HJI of
degree p. �

For other cases of either q 6= p, system (1) not affine in
u or the output function h depends on u, it is still possible to
find u?(x,Vx). In such case, u?(x,Vx) will not have the simple
form of (30), thus finding u?(x,Vx) might be difficult in the
sense of reducing computational effort.

C. EXAMPLE: THE LINEAR TIME INVARIANT CASE
For illustrating the previous procedure to reduce the dissipa-
tion inequality to the HJI, consider the case of an asymptot-
ically stable LTI system (which is also homogeneous), given
by its state space realization

ẋ = Ax + Bu ,

y = Cx + Du

where A, B, C, D are constant matrices of appropriate
dimensions. Select rx = 1n, ru = 1m, ry = 1o, d = 0 and
p = 2 for Theorem 2. Choose the storage function V (x) of
homogeneity degree p−d = 2 as in Definition 6, a quadratic
functionV = x>Px serves as one option, withP = P> > 0 to
be determined. Let ε = 0 since A Hurwitz by assumption
of asymptotical stability, then for all (x, u) ∈ Rn+m the
dissipation inequality (22) becomes [4]

x>(PA+ A>P)x + 2x>PBu

+(Cx + Du)>(Cx + Du)− γ 2u>u ≤ 0 .

Definining Rγ , γ 2I − D>D, the latter inequality can be
rewritten such that for all (x, u) ∈ Rn+m

J (P, x, u) = x>(PA+ A>P+ C>C)x
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+2x>(PB+ C>D)u− u>Rγ u ≤ 0 . (31)

For γ > σ (D), Rγ is positive definite and invertible. Function
J is concave in the input u. For given P and fixed x, the value
of u = u?(P, x) that maximizes the value of J can be obtained
by setting ∂J

∂u = 0, i.e.

∂J (P, x, u)
∂u

= 2(PB+ C>D)>x − 2Rγ u = 0 .

Solving this equation we obtain

u?(P, x) = R−1γ (PB+ C>D)>x .

Inserting u?(P, x) in (31) for all x ∈ Rn we arrive at

x>
[
P(A+ BR−1γ D>C)+ (A+ BR−1γ D>C)>P

+PBR−1γ B>P+ C>(I + DR−1γ D>)C
]
x ≤ 0 ,

which is a HJI, devoid of variable u. This inequality is
equivalent to the Algebraic Riccati Inequality (ARI) [2], [4],

P(A+ BR−1γ D>C)+ (A+ BR−1γ D>C)>P

+PBR−1γ B>P+ C>(I + DR−1γ D>)C ≤ 0 , (32)

where the unknowns are matrix P and the parameter γ ,
contained in matrix Rγ . In particular, a solution of the
ARI (32) can be found by solving the Algebraic Riccati
Equation (ARE), obtained from (32) by replacing inequality
by equality. Solutions of the ARE (and also of the ARI) can
be characterized in terms of theHamiltonian matrix, given by

Hγ ,
[

A+ BR−1γ D>C BR−1γ B>

−C>(I + DR−1γ D>)C −(A+ BR−1γ D>C)>

]
.

Whenever for a fixed γ > σ (D) matrix Hγ has no
eigenvalues on the imaginary axis, the ARE has a positive
semidefinite solution P. This matrix P can be calculated from
the eigenvalues and their corresponding eigenvectors of Hγ
[4]. Thus, to find appropriate values of γ , it is only necessary
to check the eigenvalues of the the Hamiltonian matrix Hγ .

D. HOMOGENEOUS Lp−STABILITY OF A
NON-HOMOGENEOUS SYSTEM AND ITS HOMOGENEOUS
APPROXIMATION
For smooth non-linear systems it is usual to consider its
linearization to establish its (local) Lp−stability and to
calculate the (local) Lp−gain [2], [8], [17]. This can be
generalized to non-homogeneous systems which can be
locally approximated by a homogeneous one.

Consider a continuous non-linear system (1) where f and
h can be written as

f (x, u) = f0(x, u)+ f̃ (x, u) ,

h(x, u) = h0(x, u)+ h̃(x, u) .

We assume that the nominal system

60 :

{
ẋ(t) = f0(x(t), u(t))

y(t) = h0(x(t), u(t))
(33)

is continuous and homogeneous as per Definition 1 and f̃ ,
h̃ are (possibly) non-homogeneous higher order terms. This
means that near (x, u) = 0 the nominal functions f0, h0
dominate f̃ , h̃. It is well-known, see e.g. [11]–[13], [15], [17],
[22], [26], that this is the case if

lim
κ→0

f̃i(ν
rx
κ (x), νruκ (u))

κrxi+d
= 0 , i = 1, . . . , n ,

lim
κ→0

h̃i(ν
rx
κ (x), νruκ (u))
κryi

= 0 , i = 1, . . . , o , (34)

for any (x, u) 6= 0.
We will require the following small-signal definition of

homogeneous Lp−stability [2], [6], [8].
Definition 7: An input-output map G : Lmru,pe → Lrry,pe

is said to have small-signal finite homogeneous Lp−gain if
there exists a positive constant U such that inequality (17) is
satisfied for all u(·) ∈ Lmru,pe with sup0≤t≤T ‖u(t)‖ ≤ U.
Theorem 3: Consider a system 6 as in (1) with a

continuous homogeneous approximation 60 (33). Assume
furthermore that f̃ , h̃ are higher order terms, i.e. they
satisfy (34). Suppose that

p > d +max rx

and p ≥ 1. If the unperturbed system60 with u = 0 is locally
asymptotically stable at the origin, then system (1) is small-
signal Lph−stable and has small-signal finite homogeneous
Lp−gain for all input-output maps Gx0 with ‖x0‖ ≤ ε

sufficiently small.
The proof follows standard arguments and Theorem 2.

V. HOMOGENEOUS L∞−STABILITY AND
INPUT-TO-STATE STABILITY OF HOMOGENEOUS
SYSTEMS
We have not considered explicitly the case p = ∞ in
Theorems 1 and 2. If for system 6 in (1) the output y = x
is selected, then L∞h−stability is intimately related to ISS
(Input-to-State Stability). In fact, note that if inequality (22)
is satisfied for some p ≥ 1, p > d and ε ≥ 0, then the storage
function V qualifies as an ISS Lyapunov function [2], [6], [8],
and therefore the system is ISS.Moreover, Theorem 2 assures
that if the unperturbed system 6 in (1) has the origin as
asymptotically stable equilibrium, then the perturbed system
is ISS. This result is well-known, see [13], [26], [27]. It gen-
eralizes partial results obtained in [9] for classical homoge-
neous systems (explained in Section VII), and in [17] for a
particular class of weighted homogeneous systems affine in
the input. Our results make it explicit that the ISS Lyapunov
function should satisfy inequality (22) in the homogeneous
case, in contrast to the general form presented in [26], [27].
Moreover, the ISS inequality is given explicitly and an esti-
mation of the linear ISS gain is provided using homogeneous
norms, which are more appropriate in this context.

Furthermore, for homogeneous systems we provide a
particular definition of homogeneous ISS, tailored to homo-
geneous systems, which is an extension of the homogeneous
L∞−stability with finite gain given in Definition 5.

81666 VOLUME 10, 2022



D. Zhang et al.: Homogeneous Lp−Stability for Homogeneous Systems

Definition 8: The homogeneous system 6 in (1), with
homogeneity degree d, is said to be homogeneous input-to-
state stable (ISS) if there exist positive constants M, κ , γiss
such that for any input u(·) ∈ Lm

∞h = Lm∞ and any x0 ∈ Rn,
the state trajectory of (1) for all t ≥ 0 satisfies

‖x(t)‖rx ,q ≤ β(‖x0‖rx ,q, t)+ γiss‖u(·)‖ru,L∞ (35)

with q ≥ 1 and β the following KL function

β(v, t)

=



{
M
(
v−d − κt

)− 1
d when t ≤ 1

κ
v−d

0 when t ≥ 1
κ
v−d

if d < 0 ,

M exp(−κt)v if d = 0 ,

M
(
v−d + κt

)− 1
d if d > 0 .

(36)
Note that the homogeneous ISS gain function is linear

in ‖u(·)‖ru,L∞ (cfr. (35)). This linearity follows from
homogeneity and the use of homogeneous norms. In the
classical norms, the relationship is non-linear (see e.g. [26]).
This underscores the convenience of adopting homogeneous
L∞−norms for homogeneous systems.

It is possible to write an ISS inequality similar to (35) using
classical norms. From the relationship between homogeneous
norms given in Lemma 1 we obtain

‖x(t)‖q ≤ β̃(‖x0‖q, t)+ γ̃iss(‖u(·)‖L∞ ) ,

but with γ̃iss(·) a non–linear function, and β̃ different
from (36). This is the form of the result presented in [26].

Theorem 4: Consider a homogeneous system 6 from (1).
If the unperturbed system with u = 0 is locally asymptotically
stable at the origin, then system (1) is homogeneous ISS with
a linear gain and also has a finite L∞h−gain.

Proof: In the proof of Theorem 2 it is shown that for any
p > d +max rx , p ≥ 1, and considering y = x, there exists a
homogeneous storage function V (x) such that inequality (22)
is satisfied for some ε > 0, i.e. for all (x, u) ∈ Rn+m

∂V (x)
∂x

f (x, u) ≤ −(ε + 1)‖x‖prx ,q + γ
p
‖u‖pru,q .

Then, for ‖x‖rx ,q ≥
γ k

1
p

(ε+1)
1
p
‖u‖ru,q with k > 1 inequality

∂V (x)
∂x

f (x, u) ≤ −
k − 1
k

(ε + 1)‖x‖prx ,q (37)

is satisfied. Note that, since V (x) when u = 0 is a strict
Lyapunov function, there are constants with 0 < α1 ≤ α2
s.t.

α1‖x‖p−drx ,q ≤ V (x) ≤ α2‖x‖
p−d
rx ,q , ∀ x ∈ Rn . (38)

Define b = γ k
1
p

(ε+1)
1
p
and c = α2(b‖u(·)‖ru,L∞ )

p−d where

‖u(·)‖ru,L∞ = supt≥0 ‖u(t)‖ru,q is used. Then the set

�c = {x ∈ Rn
: V (x) ≤ c}

is such that

Bb = {x ∈ Rn
: ‖x‖rx ,q < b‖u(·)‖ru,L∞} ⊂ �c .

As a consequence, for each x on the boundary of �c we
have ‖x‖rx ,q ≥ b‖u(·)‖ru,L∞ . Therefore, at any t ≥ 0 such
that x(t) is on the boundary of �c we have ‖x(t)‖rx ,q ≥

b‖u(·)‖ru,L∞ ≥
γ k

1
p

(ε+1)
1
p
‖u(t)‖ru,q. Then from (37) it follows

that
∂V (x(t))
∂x

f (x(t), u(t)) < 0

at any t ≥ 0 for x(t) on the boundary of �c. It can be
concluded that for any initial condition x̃(0) in the interior
of �c, the solution x = x̃(t) w.r.t. ˙̃x = f (x̃, u) is defined for
all t ≥ 0 and x̃(t) ∈ �c for all t ≥ 0.
Two cases need to be studied separately. First of all, when

x(0) ∈ �c then x(t) for all t ≥ 0 satisfies

‖x(t)‖p−drx ,q ≤
1
α1
V (x(t))≤

c
α1
=
α2

α1
(b‖u(·)‖ru,L∞)

p−d ,

that is,

‖x(t)‖rx ,q ≤
(
α2

α1

) 1
p−d

b‖u(·)‖ru,L∞ , (39)

implying the solution x = x̃(t) w.r.t. ẋ = f (x, u) satisfies

‖x̃(·)‖rx ,L∞= sup
t≥0
‖x̃(t)‖rx ,q≤

(
α2

α1

) 1
p−d

b‖u(·)‖ru,L∞ .

Secondly, when x(0) ∈ �c then since Bb ⊂ �c, x(0) ∈ Bb,
i.e. ‖x(0)‖rx ,q ≥ b‖u(·)‖ru,L∞ and so long as ‖x(t)‖rx ,q ≥

b‖u(·)‖ru,L∞ ≥
γ k

1
p

(ε+1)
1
p
‖u(t)‖ru,q we have

dV (x(t))
dt

=
∂V (x(t))
∂x

f (x(t), u(t))

≤ −
k − 1
k

(ε + 1)‖x(t)‖prx ,q < 0 .

In view of (38) this inequality implies

dV (x(t))
dt

≤ −
k − 1
k

(ε + 1)

α

p
p−d
2

V
p

p−d (x(t)) .

Depending on v ∈ R≥0 and t ∈ R≥0 define the function

8(v, t; l, k)

=



{(
v−l + lkt

)− 1
l when t ≤ − 1

lk v
−l

0 when t ≥ − 1
lk v
−l

if l < 0 ,

exp(−kt)v if l = 0 ,(
v−l + lkt

)− 1
l if l > 0 .

(40)

which is a KL function. Indeed, 8(0, t; l, k) = 0 and
8 is monotonically increasing in v, decreasing in t , and
limt→∞8(v, t; l, k) = 0. Since the solution to the
differential equation v̇ = −κv` for ` ∈ R>0 is given by
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v(t) = 8(v(0), t; ` − 1, κ) with 8 from (40), by using the
comparison lemma [6] we conclude that V (x(t)) satisfies

V (x(t)) ≤ 8

V (x0), t; d
p− d

,
k − 1
k

(ε + 1)

α

p
p−d
2

 .

Moreover,

‖x(t)‖p−drx ,q ≤
1
α1
V (x(t))

≤
1
α1
8

V (x0), t; d
p− d

,
k − 1
k

(ε + 1)

α

p
p−d
2


≤

1
α1
8

α2‖x0‖p−drx ,q , t;
d

p− d
,
k − 1
k

(ε + 1)

α

p
p−d
2

 ,
and therefore

‖x(t)‖rx ,q ≤ β(‖x0‖rx ,q, t) , (41)

where

β(‖x0‖rx ,q, t)

=

 1
α1
8

α2‖x0‖p−drx ,q , t;
d

p− d
,
k − 1
k

(ε + 1)

α

p
p−d
2

 1
p−d

.

It can be shown that β coincides with (36) where

M =
(
α2

α1

) 1
p−d

,

κ =
k − 1
k

(ε + 1)
α2

×


−d
p−d if d < 0 ,
1
p if d = 0 ,
d

p−d if d > 0 .

(42)

Thus, as long as V (x(t)) > c, function V (x(t)) is
decreasing. This in particular shows that x(t) is bounded and

‖x(t)‖p−drx ,q ≤
1
α1
V (x(t)) ≤

1
α1
V (x(0)) .

Furthermore, there is some finite time T such that
V (x(T )) = c. For t ≥ T , x(t) obeys (39).
From the previous analysis we conclude that there exist a

finite T > 0 s.t. (41) is satisfied for t ∈ [0,T ] and for t ≥ T
(39) is observed. When x(0) ∈ �c, then T = 0. Combining
both cases, we have for any k > 1 that the ISS inequality (35)
is satisfied with the following constant linear gain

γiss = Mb =
(
α2

α1

) 1
p−d k

1
p

(ε + 1)
1
p

γ . (43)

To show that the system is L∞h−stable with finite
gain, recall that h(x, u) is homogeneous and continuous,
and therefore using Lemma 6 there is a positive constant
cq > 0 s.t.

‖h(x, u)‖ry,q ≤ cq‖(x, u)‖(rx ,ru),q .

From Jensen’s inequality for q ≥ 1, for any positive real
numbers a, b, we have (aq + bq)1/q ≤ a+ b. Thus we obtain

‖(x, u)‖(rx ,ru),q =

 n∑
i=1

|xi|
q
rxi +

m∑
j=1

|uj|
q
ruj

 1
q

≤

(
n∑
i=1

|xi|
q
rxi

) 1
q

+

 m∑
j=1

|uj|
q
ruj

 1
q

= ‖x(t)‖rx ,q + ‖u(t)‖ru,q .

Using the above expressions and the ISS inequality (35), for
all t ≥ 0 we arrive at

‖y(t)‖ry,q = ‖h(x(t), u(t))‖ry,q
≤ cq‖x(t)‖rx ,q + cq‖u(t)‖ru,q
≤ cq

(
β(‖x0‖rx ,q, t)+γiss‖u(·)‖ru,L∞

)
+cq‖u(·)‖ru,L∞

≤ cqβ(‖x0‖rx ,q, t)+ cq
(
γiss + 1

)
‖u(·)‖ru,L∞ .

(44)

From the previous expression,L∞h−stability with finite gain
follows immediately. �
Note that given V (x) of homogeneity degree p − d

satisfying inequality (22) with some γ , γiss can be estimated
via (43), while the parameters of function β in (36) are given
by (42).

Further note that in (43) the value of γ corresponds to the
value that satisfies (22) for some p ≥ 1 taking y = x. Given V
satisfying (22) the best (smallest) value of γ can be calculated
using the results of Section VIII below. Then we can obtain an
upper bound of the homogeneous ISS-gain from γiss in (43).
The L∞h−gain is also upper bounded by cq

(
γiss + 1

)
as

in (44).
Remark 13: In this paper, the upper bound of the homo-

geneous ISS-gain can be found with the Lph−gain together
with its storage function as shown in (43).
If the unperturbed homogeneous system 6 from (1) with

u = 0 is locally asymptotically stable at the origin, then from
Theorem 2 it has finite Lph−gain (for p > d + max rx and
p ≥ 1). From the proof of Theorem 4, system6 in (1) also has
a finite linear homogeneous ISS-gain and a finiteL∞h−gain.
On the other hand, if system 6 from (1) is homogeneous

ISS, then an ISS Lyapunov function [2], [6], [8] may be found
which can guarantee the existence of Lph−stability for some
p, sufficiently larger. This will not further be discussed in this
paper.

VI. HOMOGENEOUS Lp−STABILITY FOR
INTERCONNECTED SYSTEMS
One of the most important applications of the classical
Lp−stability concept lies in the study of Lp−stability
for interconnected systems. A central result, with many
consequences in robust control, is the small-gain theorem.
It provides a sufficient condition for finite-gain Lp−stability
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of the negative feedback interconnection of two finite-gain
Lp−stable systems, in terms of their Lp−gains [1], [2], [6].
Moreover, it is well-known that two finite-gain Lp−stable
systems connected in cascade or in parallel leads to a
finite-gain Lp−stable system. Note that, since the classical
Lp−norms are not equivalent, there is a small-gain theorem
for each p.
In this section we obtain the corresponding small-gain

theorems for each p and the result for cascade systems derived
from the homogeneous Lp−stability concepts introduced
in the previous sections for general homogeneous systems.
Although there are already some small-gain theorems for
homogeneous systems [13], [27], they are derived from the
ISS stability, and thus correspond to p = ∞. Further [27]
does consider neither an external input nor output maps.

A. HOMOGENEOUS SMALL-GAIN THEOREM FOR
FEEDBACK INTERCONNECTED SYSTEMS
Since the additive inequality (16) is (slightly) different from
the traditional triangle inequality for traditional Lp−norms,
the homogeneous small-gain theorem for negative feedback
interconnected system also receives a different form.

FIGURE 1. Homogeneous small-gain theorem.

Theorem 5: [Homogeneous Small-Gain Theorem]
Consider the negative feedback interconnection of two
homogeneous systems P1, P2 given in Figure 1. Suppose
that ry1 = ru2 and ry2 = ru1 and that P1 and P2 have
r−homogeneous Lp−gains γph(P1) and γph(P2) for some
p ∈ [1,∞], respectively. Then the closed-loop system has
finite homogeneous Lp−gain if

γph(P1)γph(P2) <
1

c1c2
(45)

where

c1 = max
{
1, 2

1
min ru1

−
1
q

}
, c2 = max

{
1, 2

1
min ru2

−
1
q

}
.

Proof: As shown in Figure 1, the interconnected system
has two inputs u1(t) ∈ Rn1 and u2(t) ∈ Rn2 whose weight
vectors we may denote as r1 = ru1 and r2 = ru2 . We have

e1 = u1 − y2, y1 = P1(e1) ,

e2 = u2 + y1, y2 = P2(e2) .

From the additive inequality (16) in Lemma 4 and P1,P2
being Lph−stable, when assuming u1 ∈ Ln1r1,p, u2 ∈ Ln2r2,p
the homogeneous Lp−norm of e1 is

‖e1‖r1,Lph = ‖u1 − y2‖r1,Lph

≤ max
{
1, 2

1
min r1

−
1
q

}(
‖u1‖r1,Lph + ‖y2‖r1,Lph

)
≤ c1

(
‖u1‖r1,Lph + γ2‖e2‖r2,Lph + b2

)
with γ2 = γph(P2). Similarly, with γ1 = γph(P1), then

‖e2‖r2,Lph ≤ c2
(
‖u2‖r2,Lph + γ1‖e1‖r1,Lph + b1

)
.

Combining both inequalities, we obtain

‖e1‖r1,Lph ≤ c1
[
‖u1‖r1,Lph + b2

+ γ2c2
(
‖u2‖r2,Lph + γ1‖e1‖r1,Lph + b1

)]
= c1‖u1‖r1,Lph + γ2c1c2‖u2‖r2,Lph

+γ1γ2c1c2‖e1‖r1,Lph + γ2c1c2b1 + c1b2 .

If condition (45) is satisfied, this leads to

‖e1‖r1,Lph

≤
1

1− γ1γ2c1c2

×

(
c1‖u1‖r1,Lph+γ2c1c2‖u2‖r2,Lph+γ2c1c2b1 + c1b2

)
.

Similarly, the homogeneous L2−norm of e2 is bounded by

‖e2‖r2,Lph

≤
1

1− γ1γ2c1c2

×

(
c2‖u2‖r2,Lph+γ1c1c2‖u1‖r1,Lph+γ1c1c2b2 + c2b1

)
.

This implies that the closed-loop system in Figure 1 has finite
homogeneous Lp−gain.
Further, from (35) as well as (9), the proof with homoge-

neous ISS-gain is similar. �
A classical use of the small-gain theorem leads to a

robustness interpretation: If P1 is the nominal system and
P2 an uncertainty, the stability of P1 is preserved for any
P2 with sufficiently small gain satisfying (45). It is important
to note that no restriction on the homogeneity degrees of P1
and P2 is imposed, i.e. they can be different.
Remark 14: Due to the scaling property of the weight

vectors and the degree of homogeneity, it is always possible
to achieve min{ru1 , ru2} > 1 as noted in Remark 4. Then
choosing q ∈

[
1,min{ru1 , ru2}

]
we recover the well-known

small-gain condition γph(P1)γph(P2) < 1 in (45). Note that
in this case the value of p that satisfies the conditions of
Theorem 2 also has to be scaled.

B. HOMOGENEOUS Lp−GAIN OF A CASCADE OF TWO
HOMOGENEOUS SYSTEMS
Similar to the classical case, the series interconnection of two
homogeneous systems with finite Lph−gain, see Figure 2,
again is a system with finite Lph−gain.
Theorem 6 (Homogeneous Lp−Gain of Cascaded Homo-

geneous System): Consider the cascade interconnection
of two homogeneous systems G1, G2 given in Figure 2.
Suppose that ry1 = `ru2 for some ` > 0 and that
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FIGURE 2. Cascade interconnection of homogeneous systems.

G1 has r−homogeneous Lp−gain γph(G1) and G2 has
`r−homogeneous Lp−gain γph(G2) for some p ∈ [1,∞].
Then the cascade system G2G1 has homogeneous Lp−gain
γph(G2G1) = γph(G1)γph(G2).
Note that the weight vectors of input and output of system

G2G1 are ru1 and `ry2 , respectively.
Proof: Suppose the r−homogeneous Lp−gain of G1 is

γ1 with bias b1 and the `r−homogeneous Lp−gain of G2 is
γ2 with bias b2, then we have for u1 ∈ Lmru1 ,p that

‖y2‖`ry2 ,Lp ≤ γ2‖u2‖`ru2 ,Lp + b2 = γ2‖y1‖ry1 ,Lp + b2

≤ γ2

(
γ1‖u1‖ru1 ,Lp + b1

)
+ b2

= γ1γ2‖u1‖ru1 ,Lp + γ2b1 + b2. (46)

Thus theLph−gain of the cascaded systemG2G1 is γ1γ2 with
input weight vector ru1 and output weight vector `ry2 .
The proof for the case of homogeneous ISS-gain is similar,

using (35) in (46). �
Note that for both interconnection results, the common

signals have to have compatible weights. For the system in
Figure 1 this means that ry2 = re1 = r2 and ry1 = re2 = r1.
For the cascaded system in Figure 2 this is relaxed to ry1 =
`ru2 , ` > 0.
Remark 15: Note that for both Theorem 5 and Theorem 6,

the homogeneous degree for subsystems can be different.
This results from the fact that the Lph−gain is an input-
output relationship, the behavior within each homogeneous
subsystem does not matter from the input-output perspective.
When P1,P2 have different homogeneous degrees (even of
different sign), the closed loop system in Figure 1 does not
behave homogeneously any longer. Yet the conclusions of
Theorem 5 and Theorem 6 remain true. Such behavior is also
observed in [27] where the homogeneous small gain theorem
does not consider an input and allows different degrees for
each sub-system.
Remark 16: Suppose the subsystems satisfy the condition

of Theorem 5 or Theorem 6 for some p = p1. Further if they
have state space realization (1) and meet the condition from
Theorem 2, then the conclusion in Theorem 5 and Theorem
6 is also true for all p ∈ [p1,∞].

VII. COMPARISON TO PREVIOUS WORKS
In this section, differences to previously published works will
be described in more detail.
Paper [9] considers a special class of system (1) which is

homogeneous in the classical sense, i.e. rx = 1n, ru = 1m,
with output y = x, and with non-negative homogeneity
degree d ≥ 0. The author shows that if the origin is
asymptotically stable for the unforced system, then for p ≥
1 + d the system (with output y = x) is Lp−stable and

has finite Lp−gain with classical norms, i.e. relation (11)
is satisfied. Our Theorem 2 generalizes these results to an
arbitrary homogeneous system, but it shows that to obtain
finite Lp−gain it is necessary to consider homogeneous
norms. Only in particular cases this is valid for classical signal
norms, namely when ry = `1o and ru = `1m , ` > 0. Note
that Theorem 2 requires p > 1 + d which is stricter than
the condition in [9]. This is a consequence of the converse
Lyapunov theorem for homogeneous systems that assures a
smooth Lyapunov function only if p > 1 + d . However,
if p = 1+d a Lyapunov function which is not differentiable at
x = 0 can be constructed. Our Theorem 2 can be extended to
cover also the case p = 1+d , but at the expense of a technical
issue with non-differentiability at x = 0, as is done in [9].
We have not presented the details here of this extension.
Also in [9] ISS of the system is established (included in

the case of p = ∞, y = x), with a linear gain and using
classical norms, so inequality (35) is satisfied. Our Theorem 4
extends this result to arbitrary homogeneous systems and
shows that the linear gain is valid only if homogeneous
norms are considered. In some cases, the homogeneous
Lp−norms are equivalent to the usual Lp−norms. Moreover,
Theorem 4 considers also the case of L∞h−stability for an
arbitrary (homogeneous) output y = h(x, u), which is not
considered in [9].
Paper [25] deals with the special class of systems (1), ẋ =

f (x)+ Bu with B a constant matrix, which are homogeneous
in the classical sense, i.e. rx = 1n, ru = (d + 1)1m, with
output y = h(x), ry = (d + 1)1o, and with non-negative
homogeneity degree d ≥ 0. The main result of [25, Theorem
1] states that if the origin is asymptotically stable for the
unforced system, then the system is L2−stable and has finite
L2−gain with classical norms, i.e. relation (11) is satisfied
for p = 2. This is characterized using a Hamilton-Jacobi
Inequality. Our Theorem 2 generalizes these results to an
arbitrary homogeneous system, but it shows that to obtain
finite Lp−gain it is necessary to consider homogeneous
norms. Only in particular cases this is valid for classical signal
norms, namely when ry = `1o and ru = `1m , ` > 0. In [25],
ru = (d+1)1m, ry = (d+1)1o are used, but actually ry = `1o
and ru = `1m could also be considered. Neither Lp−stabilty
nor ISS stability is considered in [25]. We characterize all
properties in a unified way using inequality (22), which is
more general than the Hamilton-Jacobi inequality since the
analytical form of u?(x,Vx), as in (30), is not always easily
attainable.
The author of [17] generalizes the results of [25] to

the special class of weighted homogeneous systems that
are affine in the input, i.e. ẋ = f (x) + G(x)u, y =
h(x), with f (x) a rx−homogeneous vector field of degree
d > −r0 , −min rx , G(x) a matrix with columns being
rx−homogeneous vector fields of degree s ≥ −r0, and
homogeneous weight of input and output being ru = (d −
s)1m , ry = (d − s)1o. Since [17] deals with the H∞ control
problem, the following results on L2−stability are contained
implicitely in the paper. In the particular case when s = −r0,
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that strongly restricts matrix G(x), [17] shows that if the
origin x = 0 is asymptotically stable for the unforced system,
then the system is L2−stable and has finite L2−gain with
classical norms, i.e. relation (11) is satisfied for p = 2.
This is characterized using a homogeneous Hamilton-Jacobi
Inequality. For the relaxed condition on G(x) that s ≥ −r0,
it is shown that if the origin x = 0 is asymptotically stable
for the unforced system, then the system is Lp−stable and
has finite Lp−gain with classical norms, i.e. relation (11) is
satisfied for p when p ≥ (d+max rx )/(d−s) (including p = ∞).
Note that in the proof of [17, Theorem 6.1], the author
quotes the converse Lyapunov Theorem, but wrongly sets
the homogeneous degree of V (x) to p−d ≥ r0 instead
of p−d ≥ max rx . [17] does actually not consider ISS
stability for weighted homogeneous systems. It rather deals
with L∞−stability, which is different. Moreover, due to
the restrictions imposed on the homogeneity of the output
function y = h(x), the particular case y = h(x) = x
cannot be considered, because then ry = (d − s)1n ≤
(d + r0) 6= rx , unless rx = r01n = (d − s)1n.
In such case, the homogeneous weight of states, input and
output are all equal to r0, which reduces the conclusion of
ISS stability to classical homogeneous systems. In contrast
to L2−stability, Lp−stability is not characterized using
a Hamilton-Jacobi Inequality, despite the fact that the
system is affine in the input, and in that case this is still
feasible.
Our Theorem 2 generalizes these results to an arbitrary

homogeneous system, without the restrictions imposed in
paper [17]: We propose a system not affine in the input, and
the homogeneity weights and degree are strongly relaxed.
We show that to obtain finite Lp−gain it is necessary to
consider homogeneous norms. Only in particular cases this
is valid for classical signal norms, namely when ry =
`1o and ru = `1m. But even for the case with classical
norms, our results are more general than those proposed
in [17]. We characterize all properties in a unified way
using the inequality (22), which is more general than the
Hamilton-Jacobi inequality that is not always attainable in the
non-affine input case. In fact, we have generalized the result
ofH∞ norm from [17], [25] to be applicable to all continuous
homogeneous systems with different homogeneous weights
for input and output, as well as not necessarily being input
affine. The conclusion of Lp−stability from [17] is also
included in our Theorem 2 for the λ−scaled weight and
degree, with λ = 1/(d−s). In this case the weights are λru =
1m, λry = 1o, and the Lp−stability is valid for p − λd ≥
λmax rx .
In [26] and [13], ISS and other related properties are

studied for general weighted homogeneous systems (1), and
they generalize the results of [9], [17] relating the internal
stability of the unforced system and ISS stability. Our results
on ISS reproduce those of [13] and [26], although we
emphasize the linear relationship between the input and the
state (35) when using homogeneous norms, which is not
clear in [13] and [26]. This linearity issue is clarified in [27]

for the more general version of geometric homogeneity by
using solely homogeneous norms in contrast to the mixed
use of homogeneous norms and Euclidean norms in [26].
However, [13], [26], [27] do not consider Lp−stability for
any value of p. In contrast to [13], [26], [27], we clar-
ify the situation about Lp−stability for general weighted
homogeneous systems for arbitrary values of p and the
linear homogeneous ISS gain is related to such homogeneous
Lp−gain in the proof of Theorem 4. Furthermore, the
homogeneous small-gain theorem is considered in both [13],
[27]. In [13], using the classical norms, the nonlinear ISS-gain
is a K function. In [27] no external inputs are considered.
The small-gain theorems derived in both [13], [27] use the
(linear or nonlinear) ISS-gain to assure the closed loop
stability, and thus are related to p = ∞. In contrast,
the homogeneous small-gain theorem obtained in this paper
adopts any homogeneous Lp−gain (when it exists, including
L∞h−gain and also homogeneous ISS-gain) to verify closed
loop stability.
In [30] the authors have introduced and studied

the L2h−gain for the special case of the Continuous
Super-Twisting Like algorithm (CSTLA), and it was used
to optimize the parameter selection of the algorithm. That
case is included in Theorem 2 for p = 2. A brief review and
extension of the results for the CSTLA will be presented in
Section IX-C.
In [31], the authors adopted a homeomorphic coordinate

transformation that can be related to our paper. This is
done using the companion signals introduced in Remark
6: A homogeneous Lp−stable system, according to our
Definition 5, is also Lp−stable, using the traditional signal

norms, from the transformed input S(u) = u
1
τu to transformed

output T (y) = y
1
τy since (17) can also be written as∥∥∥∥y 1

τy

∥∥∥∥
Lp

≤ γp

∥∥∥u 1
τu

∥∥∥
Lp
+ bp , ∀ u ∈ Lmp .

In this sense, in the context of homogeneous systems,
we generalize this idea to arbitrary Lp−norms and not only
to the L2−norm considered in [31].

However, beyond this connection with [31], the objectives
and scope of both papers are rather different. [31] is
concerned with the relationship between L2−stability and
ISS or iISS for general nonlinear systems. Also they show
the existence of appropriate input S(·) and output T (·)
homeomorphisms, but without providing away to obtain such
functions.

Our paper is concerned specifically with general weighted
homogeneous systems. It is shown that the homogeneous
vector and signal norms are a natural setting for studying
input-output and input-to-state stability. One obtains linear
finite-gains in all cases, a clear relationship with the internal
stability is derived and a method to calculate the gains is
provided by means of a dissipation inequality. Moreover,
arbitrary values of p are allowed, instead of only p = 2 as
in [31].
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VIII. ESTIMATION OF THE HOMOGENEOUS Lp−GAIN
FOR A STATE SPACE SYSTEM
Theorem 1 shows that Lph−stability can be characterized by
the dissipation inequality (22) and that the Lph−gain can
be estimated using (22). This inequality, in the unknown
function V (x) and the (positive) real constant γ , is a
linear partial differential inequality in ∂V

∂x and in γ p, but it
depends on two variables (x, u) ∈ Rn+m. As described in
Section IV-B, for systems affine in the input it is possible
to transform the dissipation inequality (22) into the HJI (29)
which only depends on x ∈ Rn. However, (29) is a highly
non-linear partial differential inequality in ∂V

∂x and in γ p.
In any case, both kinds of partial differential inequalities are
hard to solve (see for example [2, Chapter 11]).

For smooth dynamical systems there is a very complete
theory [2], [6]–[8]. A geometric interpretation allows the use
of the Hamiltonian dynamics that involves the linearization
of the system. Also, using the linearization and quadratic
storage function the HJI (29) becomes an Algebraic Riccati
Inequality (refer to Section IV-C) and leads to approximate
solutions in the non-linear case. However, in general (in
particular for degrees different from zero), the linearization
of homogeneous systems are not useful because they either
do not exist or vanish. This failure of the linearization
for continuous homogeneous systems has been already
illustrated in Section II-D. Therefore, usual methods for
non-linear systems are not appropriate for solving the
homogeneous inequalities (22) and (29). Apparently, there
are very few published results providing detailed methods
to derive such solution for homogeneous systems. The
previous works [9], [17], [25], dealing with Lp−stability of
homogeneous systems, do not provide methods to estimate
the value of Lp−gains, even for the special classes of
homogeneous systems considered. [30] is a forerunner of the
method to be proposed here, applied only to a second order
system.

A simple (but important) observation about (22) is that
for a solution V (x) to exist it is necessary that (22) is
fulfilled for u = 0, i.e. (25) is valid. This means that
V (x) is (for ε = 0) at least a weak Lyapunov function
for system ẋ = f (x, 0). In fact, Theorem 2 reveals the
nice and particular property of homogeneous systems that
every strict (homogeneous) Lyapunov function of ẋ =
f (x, 0) is indeed a global solution to the inequality (22) and,
if appropriate, the HJI (29), for some semi interval of values
γ ∈ [γ ?,∞).
This observation leads to a useful estimation method for

a given non-linear homogeneous system with values of γ
satisfying inequality (22) or (29). The method consists of two
steps:

1) Determine a strict, homogeneous, and continuously
differentiable Lyapunov function Vl(x) of homogeneity
degree p − d for system ẋ = f (x, 0). The converse
Lyapunov Theorem for homogeneous systems [15],
[22, Theorem 5.8] assures the existence of such a
function if p > d +max rx .

2) Using this function Vl(x) find the minimal value of
γ that satisfies (22) or (29). As shown in the proof
of Theorem 2 this is always feasible by selecting an
appropriate a > 0 and setting V (x) = aVl(x).

The optimal value of γ corresponding to the given V will be
termed γ ?(V ) = min{γ | (22) or (29) is satisfied with V (x)}.
γ ?(V ) provides an upper bound of the gain γph(6),
i.e. γph(6) ≤ γ ?(V ).

The first step requires the construction of a smooth
homogeneous Lyapunov function, which is not a simple
task. Recently, there have been some advances in obtaining
Lyapunov functions for homogeneous systems (see e.g. [37]
and the references therein).

For the rest of this section the second step of the procedure
will be presented, i.e. given V (x) how to find the best estimate
of γ . We provide two strategies for the calculation, based
either on the dissipation inequality (22) or on the HJI (29).
Clearly, the second path is only valid for some classes of
systems, e.g. systems affine in the input and whose output
y = h(x) is devoid of u.

A. CALCULATION OF γ FROM THE DISSIPATION
INEQUALITY
In this case we use the dissipation inequality (22) directly
to calculate the smallest value of γ w.r.t. the given V ,
i.e. γ ?(V ) = min{γ | (22) is satisfied with V }.
Proposition 2: Assume the condition of Definition 6 is met,

the smallest value of γ w.r.t. V that satisfies (22) is

γ ?p(V ) = max
‖(x,u)‖=1,‖u‖6=0

{ζ (x, u)} (47)

where ζ (x, u) for ‖u‖ 6= 0 is the function

ζ (x, u) ,
∂V (x)
∂x f (x, u)+ ‖h(x, u)‖pry,q + ε‖x‖

p
rx ,q

‖u‖pru,q
.

Recall that from the proof of Theorem 2, the required
function V (x) for the proposition can be obtained as V (x) =
aVl(x), for a > a , α+ε

c . Vl(x) is any strict, homogeneous,
and continuously differentiable Lyapunov function of degree
p − d > max rx , whose existence is assured by the converse
Lyapunov Theorem for the continuous asymptotically stable
system ẋ = f (x, u) when u = 0.

Proof: In the proof of Theorem 2 the existence of γ ?(V )
is assured, such that for any γ ≥ γ ?(V ), J (x, u) ≤ 0. Clearly,
such γ has to satisfy γ p ≥ ζ (x, u) for all (x, u) ∈ Rn+m, and
therefore γ ?p(V ) = max(x,u)∈Rn+m{ζ (x, u)}. (47) states that
this maximum is attained on the unit sphere {‖(x, u)‖ = 1}.
This follows from the observation that the function ζ (x, u)
is homogeneous of degree zero, i.e. ζ (νrxκ (x), νruκ (u)) =
κ0ζ (x, u) = ζ (x, u), and all values of a degree zero function
can be attained on any unit sphere w.r.t. some norm. Finally,
ζ has degree zero since its numerator and denominator are
both homogeneous of degree p, because V is homogeneous
of degree p− d as demanded in Definition 6. �
The search procedure for max‖(x,u)‖=1{ζ (x, u)} is

described in Algorithm 1. We use the ‖(x, u)‖2−norm as
example.
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Algorithm 1 Procedure of Search for max‖(x,u)‖=1 ζ (x, u) in
Proposition 2

ζc = −10300

for j1 = 1, . . . , υ do F Rough search
x1 = −1+

2j1
υ+2

for j2 = 1, . . . , υ do
x2 =

√
|1− |x1|2|

(
−1+ 2j2

υ+2

)
· · ·

for jn+1 = 1, . . . , υ do
u1 =

√∣∣1− ‖x‖22∣∣ (−1+ 2 jn+1−1
υ−1

)
· · ·

for jn+m−1 = 1, . . . , υ do

um−1 =

√∣∣∣1− ‖x‖22 −∑m−2
i=1 |ui|

2
∣∣∣

×

(
−1+ 2 jn+m−1−1

υ−1

)
um = ±

√
1−

∑m−1
i=1 |ui|

2 − ‖x‖22
Evaluate ζ (x, u) in (47)
if ζ (x, u) > ζc then F Record the maximal

ζ (x, u) in rough search
ζc = ζ (x, u)
(xr , ur ) = (x, u) F Record the point for

refined search
end if

end for
· · ·

end for
· · ·

end for
end for
repeat F Several rounds of refined search

ζp = ζc F Record ζp as the previous maximal ζ
for Divide the neighborhood of (xr , ur ) similarly as

Rough search do
Evaluate ζ (x, u)
if ζ (x, u) > ζc then

ζc = ζ (x, u)
(xr , ur ) = (x, u) F Record for next round

end if
end for

until (ζc − ζp)/ζp ≤ 10−7 F maximal value of two rounds
are close enough
γc =

√
ζc

After the rough search shown in Algorithm 1, several
rounds of refined search around the point of (x, u) recorded
in the last round should be carried out. The maximal value
of ζ (x, u) on unit sphere should happen in a neighborhood of
such point of (x, u), since the function ζ (x, u) is continuous
on the surface of the unit sphere w.r.t. (x, u). Note that in
practice, several local maxima might occur. In such case,
refined searches around each local maximum need to be
carried out.

Therefore, with each fixed V the rough search for
max‖(x,u)‖=1{ζ (x, u)} ≤ 0 takes υn+m−1 steps evaluating the
value of ζ (x, u). The refined search of step 6 around several
local maximal points collected in the rough search usually
takes less steps. Thus the computational complexity is of
O(υn+m−1).

B. CALCULATION OF γ FROM THE HAMILTON-JACOBI
INEQUALITY
For a homogeneous system affine in the input, given by (28),
instead of the dissipation inequality (22) we can consider the
simpler HJI (29). These are equivalent as shown in Lemma 7.
Proposition 3: Consider a continuous homogeneous sys-

tem affine in the input (28). Assume the condition of
Definition 6 is met and select q = p. The smallest value of
γ w.r.t. V that satisfies (29) can be obtained by solving the
optimization problem

γ ?(V ) = argmin
γ≥0

{
max
‖x‖=1

J (x; γ ) ≤ 0
}

(48)

where

J (x; γ ) =
∂V (x)
∂x

f (x)+ ‖h(x)‖pry,p

+ε‖x‖prx ,p +Q(x; γ ) (49)

and

Q(x; γ ),
m∑
i=1

(
rui
pγ p

) rui
p−rui

(
1−

rui
p

) ∣∣∣∣∂V (x)∂x
gi(x)

∣∣∣∣
p

p−rui
.

Proof: Note that the HJI (29) can be written as

J (x; γ ) ≤ 0

where

J (x; γ ) , J (Vx(x), x, u?(x))

and Vx(x) =
∂V (x)
∂x for the given function V (x). Function

J (x; γ ) is continuous and homogeneous in x of degree p.
Moreover, by the hypothesis on V , limγ→∞ J (x; γ ) < 0,

since p > max ru and the terms
(
1−

rui
p

)
> 0 and

Q(x; γ ) ≥ 0 shown in Lemma 7. In the proof of Theorem
2 the existence of γ ?(V ) is assured, such that for any γ ≥
γ ?(V ), J (Vx , x, u) ≤ 0, or equivalently, J (x; γ ) ≤ 0. The
value γ ?(V ) satisfies

max
x∈Rn

J (x; γ ?(V )) = 0 .

Due to the homogeneity of J (x; γ ) it suffices to restrict the
maximization to the unit sphere, i.e. (48). �
The result of Proposition 3 suggests the Algorithm 2 to find

an estimate of γ ?(V ): max‖x‖=1 J (x; γi).
Note that this procedure is analogous to the search

performed to estimate the L2−gain using the Hamiltonian
matrix (see the end of Section IV-C). For the Hamiltonian
matrix we need to check whether its eigenvalues stay on the
imaginary axis with each γ . Here we need to check the sign
of max‖x‖=1 J (x; γ ) for each V that satisfies (22).
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Algorithm 2 Search Procedure for Proposition 3

γu = 10300 F Initialize the upper limit of γ
γl = 10−300 F Initialize the lower limit of γ
repeat

Choose one γ ∈ (γl, γu), e.g. γ = (γu + γl)/2
Evaluate max‖x‖=1 J (x; γ ) in (48)
if max‖x‖=1 J (x; γ ) ≤ 0 then

γu = γ

else
γl = γ

end if
until (γu − γl)/γl ≤ 10−7

γ ? = γu

Remark 17: The search of max‖x‖=1 J (x; γi) is similar to
that described in Section VIII-A. The difference is that we only
need to search on ‖x‖ = 1 instead of ‖(x, u)‖ = 1. Besides
that, a further iteration on γ is necessary. Thus by using the
search of (48) we can reduce the computational complexity
from O(υn+m−1) in (47) to O(υn). When ru = `1m, the
computational complexity can be further reduced to O(υn−1),
with a similar method in Proposition 2, i.e.

γ ?(V ) =

max
‖x‖=1

(
`
p

) `
p−̀
(
1− `

p

)∑m
i=1

∣∣∣ ∂V (x)∂x gi(x)
∣∣∣ p
p−̀

−
∂V (x)
∂x f (x)−‖h(x)‖pry,p


p−̀
p`

=

max
‖x‖=1

(
`
p

) `
p−̀
(
1− `

p

)∑m
i=1

∣∣∣ ∂V (x)∂x gi(x)
∣∣∣ p
p−̀

−J (Vx , x, 0)


p−̀
p`

.

(50)

Refer to the example of CSTLA in [30].
Note that different Lyapunov functions lead to different

gain estimated of the system, so that we can eventually
improve the quality of the estimation. A further strategy to
improve the estimate of γph(6) is to use a parametrized family
of Lyapunov functions Vl(x, λ), λ ∈ 3, with 3 a set of
values of λ, and such that Vl satisfies (25). In that case we
can solve an optimization problem to find the minimal value
of γ ? in this family of Lyapunov functions. This is basically
what can be done in the LTI case, where the Lyapunov
functions are quadratic and parametrized by the symmetric
and positive definite matrix P. In any case, this procedure
does not guarantee that the actual value of γph(6) can be
calculated. Only an upper bound will be obtained.

Both methods proposed in Propositions 2 and 3 also apply
to LTI systems, for which we can fix rx = 1n, ry = 1o, ru =
1m, and d = 0. For p = 2, the results are recalled in
Section IV-C. The HJI (29) reduces to the ARI (32) (for
D = 0), which is even independent of x. For p 6= 2, function
J (x; γ ), given by (49) and appearing in the HJI (29), is not
anymore a quadratic form sinceJ (x; γ ) is 1n−homogeneous

of degree p 6= 2. Furthermore, the HJI does not lead to a
matrix inequality and thus is much harder to solve. However,
the HJI provides a method to estimate an upper bound of
the Lp−gain of the LTI system. In fact, there are not many
methods to calculate such a gain for LTI systems. Note that
for p 6= 2 the required Lyapunov function for the HJI is
required to be 1n−homogeneous of degree p. It is not easy
to construct such Lyapunov functions, even for LTI systems.
One possibility is to calculate a quadratic one and then
construct V (x) =

(
xTPx

) p
2 , which satisfies the homogeneity

condition for the HJI. Such Lyapunov function is smooth only
if p ≥ 2.
Therefore, by using Proposition 2 or 3, we have contributed

a method to calculate the Lph−gain defined by (21). This is
an extension from [30] where it is applied only to a special
continuous homogeneous system, the CSTLA, for p = 2, and
it is also an extension from [17], [25], where it applies only
to the case ru = `Im, ry = `Io and vector field being affine in
the input. For LTI systems, the proposed method provides an
upper bound of the Lp−gain for any p > 1 (rx = 1n, d = 0).

C. UPPER BOUND OF HOMOGENEOUS ISS GAIN AND
L∞h−GAIN
In contrast to the Lph−gain, which can be derived through
dissipation inequality or HJI by using the Proposition 2 or 3,
in Section V the upper bound of the homgoeneous ISS gain
depends on the value of some Lph−gain in (43). Further, the
upper bound of L∞h−gain depends again on γiss in (44).

In order to calculate an upper bound of γiss, constants
α1 and α2 in (43) need to be derived first. From Lemma 6,
since both ‖x‖p−drx ,q and V (x) are positive definite continuous
rx−homogeneous functions of degree p − d , we have
from (38) for any q ≥ 1 that

α1 = min
‖x‖rx ,q=1

V (x) = min
‖x‖=1

V (x)
‖x‖rx ,q

,

α2 = max
‖x‖rx ,q=1

V (x) = max
‖x‖=1

V (x)
‖x‖rx ,q

.

Then combined with any Lp−gain, relation (43) provides an
upper bound of the ISS gain.

Finally, an upper bound for the L∞h−gain can be derived
similarly. The constant cq in (44) can be calculated as

cq = max
‖(x,u)‖(rx ,ru),q=1

‖h(x, u)‖ry,q

= max
‖(x,u)‖=1

‖h(x, u)‖ry,q
‖(x, u)‖(rx ,ru),q

.

Thus cq(γiss+1) serves as an upper bound of the L∞h−gain
from (44). All three constants can be derived from the method
shown in Section VIII-A, among which cq is independent of
the choice of storage function V (x).

IX. EXAMPLES
In this section we show how the homogeneous Lp−gain can
be derived analytically referring to two examples, namely a
continuous memoryless input-output map and a continuous
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scalar homogeneous system. In both examples, the input
whose ratio of the Lp−norm of output over input (denoted
as 0) being equal to the analytical homogeneous Lp−gain,
can be found in closed terms. Thus, the analytical result is
the homogeneous Lp−gain.
In the third example of continuous super-twisting like

algorithm, we can only find some upper bound of the homo-
geneous Lp−gain under different parameters. Fortunately,
some inputs, whose 0 is equal to the collected homogeneous
L2−gain, can also be found under some parameter ranges.
Thus these collected upper bounds are also tight bounds,
where the analytical form of the homogeneous L2−gain can
be found.

As analyzed in Section VII, our approach coincides with
previous works under some particular assumption on weight
vectors. However, breaking such assumptions is not allowed
in the previous works. Thus in this section, no comparisons
to previous works are provided.

A. CONTINUOUS MEMORYLESS INPUT-OUTPUT MAPS
A function g : Rm

→ Ro can be viewed as an operator G
that assigns to every input signal u(·) the output signal y(·) =
G(u(·)) given by y(t) = g(u(t)), i.e. the output y(t) depends
only on the present value of the input u(t), and not on its past
or future, and thus it is called memoryless. It is homogeneous
if g(νruκ u) = ν

ry
κ (g(u)) for every u ∈ Rm and κ > 0.

This means that each component function gi : Rm
→ R,

i = 1, . . . , o, is ru−homogeneous of degree ryi . According
to Definition 2 the operator G is of arbitrary homogeneous
degree d . We assume that the function g is continuous w.r.t. u.
Theorem 7: A continuous memoryless Input-Output Map

y = g(u) is finite-gain Lph−stable with zero bias, for every
1 ≤ p ≤ ∞. Its Lph−gain is the same for all values of 1 ≤
p ≤ ∞, i.e. γph = γ , and it can be calculated as

γ = max
‖u‖ru,q=1

‖g(u)‖ry,q . (51)

Proof: Since g is continuous w.r.t. u, by setting χ (u) =
‖g(u)‖ry,q and φ(u) = ‖u‖ru,q, whose homogeneous degrees
are both 1 and both being continuous w.r.t. u, it follows from
Lemma 6 that

‖y‖ry,q = ‖g(u)‖ry,q ≤
(

max
‖u‖ru,q=1

‖g(u)‖ry,q

)
‖u‖ru,q .

(52)

Thus, the operator G has finite L∞h−gain γ∞h = γ as
in (51). Furthermore, it follows from (52) that for every p ≥
1 and u ∈ Lmru,p

‖y(·)‖ry,Lp =

(∫
∞

0
‖y(t)‖pry,qdt

) 1
p

≤ γ

(∫
∞

0
‖u(t)‖pru,qdt

) 1
p

= γ ‖u(·)‖ru,Lp .

And therefore the operator G is Lph−stable with Lph−gain
given by γph = γ with zero bias. Such Lph−gain can
be achieved by the particular u? that maximizes the value

max‖u‖ru,q=1 ‖g(u)‖ry,q. Thus the Lph−gain equals γ for all
1 ≤ p < ∞. For the case p = ∞, (52) suffices since the
operator G is memoryless. �

Take a simple example of a continuous memoryless
homogeneous Input-Output Map given by

y(t) = g(u(t)) =
⌈
c1du1(t)c3 + c2du2(t)c2

⌋ 1
3

with m = 2, r = 1, and weight vectors ru = (2, 3), ry = 2,
and c1, c2 some constants.

First note that, if we set (for simplicity) u1 ≡ 0, then
the function becomes y = g(u2) = dc2c

1
3 du2c

2
3 . Since

dg(u2)
du2
=

2
3
dc2c

1
3

|u2|
1
3
, the ‘‘linearization’’ at u2 = 0 is not well-

defined because the derivative is unbounced at this point. This
illustrates the fact that linearization for homogeneous systems
is usually not well-defined. Thus, the function g(u2) cannot
be well approximated by a linear function, consequently, the
classical ‘‘gain’’ fails.

From Theorem 7, it is finite-gain Lph−stable for all p ≥
1 and its Lph−gain is given by

γ = max
‖u‖ru,q=1

|g(u)|
1
2

= max{
|u1|

q
2+|u2|

q
3=1

} ∣∣∣c1du1c3 + c2du2c2∣∣∣ 16 (53)

To solve this maximization problem with constraints we
can use the method of Lagrange multipliers, to find
the (restricted) extremal points of the function c1du1c3 +
c2du2c2, i.e. we can solve the condition

∂

∂u

[
c1du1c3 + c2du2c2 + λ

(
|u1|

q
2 + |u2|

q
3 − 1

)]
=

[
3c1|u1|2 + λ

q
2
du1c

q−2
2 , 2c2|u2| + λ

q
3
du2c

q−3
3

]
= 0 .

(54)

This equation has three non-trivial solutions (we assume
q > 6)

ū(1) = −


⌈
6c1
qλ

⌋ 2
q−6⌈

6c2
qλ

⌋ 3
q−6

 ,

ū(2) = −

 0⌈
6c2
qλ

⌋ 3
q−6

 ,

ū(3) = −

⌈ 6c1
qλ

⌋ 2
q−6

0

 .

Each one of these solutions satisfies the restriction |u1|
q
2 +

|u2|
q
3 = 1, if the Lagrange parameter is selected as

λ(1) = ±

(∣∣∣∣6c1q
∣∣∣∣

q
q−6

+

∣∣∣∣6c2q
∣∣∣∣

q
q−6
) q−6

q

,
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λ(2) = ±

∣∣∣∣6c2q
∣∣∣∣ ,

λ(3) = ±

∣∣∣∣6c1q
∣∣∣∣ ,

respectively. Replacing the two possible values of λ(i) into
the corresponding solution ū(i), for i = 1, 2, 3, we obtain six
extremal points

ū(1) = ±



⌈
6c1
q

⌋ 2
q−6

(∣∣∣ 6c1q ∣∣∣ q
q−6
+

∣∣∣ 6c2q ∣∣∣ q
q−6

) 2
q

⌈
6c2
q

⌋ 3
q−6

(∣∣∣ 6c1q ∣∣∣ q
q−6
+

∣∣∣ 6c2q ∣∣∣ q
q−6

) 3
q


,

ū(2) = ±
[
0
1

]
,

ū(3) = ±
[
1
0

]
.

Evaluating
∣∣c1du1c3 + c2du2c2∣∣ at these (six) points,

we obtain three values, from which we have to choose

max{
|u1|

q
2+|u2|

q
3=1

} ∣∣∣c1du1c3 + c2du2c2∣∣∣
=

{(
|c1|

q
q−6 + |c2|

q
q−6
) q−6

q
, |c2|, |c1|

}
and thus the gain is given by

γ = max

{(
|c1|

q
q−6 + |c2|

q
q−6
) q−6

6q
, |c2|

1
6 , |c1|

1
6

}
.

Note that the Lph−gain does not depend on p, but it depends
on the selection of the qh−norm (which affects the value
of Lph−norm). Fig. 3 shows the value of the following
homogeneous function

0(u) =

∣∣c1du1c3 + c2du2c2∣∣ 16∣∣∣|u1| q2 + |u2| q3 ∣∣∣ 1q
of degree zero along the unit circle ‖u‖2 = 1 in the
coordination of u1 = sin θ, u2 = cos θ, θ ∈ [0, 2π ] with
c1 = 1, c2 = 2 (only θ ∈ [0, π] is shown in Fig. 3 since
0(−u) = 0(u)). Note that γ = maxu 0(u) = maxθ 0(θ ).

For q = 2, γ = c
1
6
2 = 1.1225. For q = 20, γ =(

|c1|
q

q−6 + |c2|
q

q−6
) q−6

6q
= 1.1646.

Besides Theorem 7, a discontinuous memoryless homoge-
neous Input-OutputMapG could also have a finiteLph−gain.
Take another example of memoryless homogeneous Input-
Output Map, y(t) = u1(t)2sign (u2(t)), with homogeneous
weight of ru = (1, 1), ry = 2. Note that y is discontinuous
along u1 6= 0, u2 = 0. Yet, with an approach similar to shown
above, it is easily verified that γ = 1.

FIGURE 3. 0 for (53) along unit sphere, with c1 = 1, c2 = 2.

B. SCALAR HOMOGENEOUS SYSTEM
We would like to show how to derive the Lph−gain
analytically for SISO scalar homogeneous dynamics by using
the methods in Theorem 2, i.e. for

ẋ = −kdxc
1
z3 + bduc

1
z1 , y = cdxc

z2
z3 , (55)

where z1, z2, z3, k ∈ R+, b, c ∈ R \ {0}, with homogeneous
weight as rx = λz3, ru = λz1, d = λ(1 − z3), ry = λz2,
for any λ > 0. We leave the free parameter λ > 0 in order
to illustrate the effect of scaling on the homogeneous weight
and the degree of the system.

Function J from (23) is now

J (Vx , x, u) = Vx

(
−kdxc

1
z3 + bduc

1
z1

)
+ |c|

p
λz2 |x|

p
λz3

−γ p|u|
p
λz1 + ε|x|

p
λz3 .

Since (55) is a scalar SISO system, ‖ · ‖q = | · | here,
and J (Vx , x, u) is independent of q. For general continuous
homogeneous dynamics, J (Vx , x, u) will be dependent on
both p and q. To render this function homogeneous we can
select

Vx =
∂V (x)
∂x
= αdxc

p−λ
λz3 , α > 0,

which indicate the storage function is now

V (x) = α
λz3

p− λ+ λz3
|x|

p−λ+λz3
λz3 .

V is differentiable if
p− λ+ λz3

λz3
> 1⇔ p > λ .

This actually comes from p > d + max rx = λ. So it is
possible to select a smooth function V for any p ≥ 1 by
choosing λ < 1. With this, replacing the variable Vx by

αdxc
p−λ
λz3 , and abusing the notation to keep the name J , we get

J (x, u) = −
(
kα − |c|

p
λz2 − ε

)
|x|

p
λz3 + bαdxc

p−λ
λz3 duc

1
z1

−γ p|u|
p
λz1 .

Inequality (22) corresponds to J (x, u) ≤ 0. Since this
requires that for u = 0 the inequality J (x, 0) ≤ 0 is satisfied,
we need

α ≥
|c|

p
λz2 + ε

k
.
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Although the system is not affine in the input, it is still
possible to calculate the value u?(x) that maximizes J (x, u) ≤
J (x, u?(x)). If we select p > ru = λz1, then the latter term
|u|

p
λz1 in J (x, u) is differentiable. Hence, calculating

∂J (x, u)
∂u

= bα
1
z1
dxc

p−λ
λz3 |u|

1
z1
−1
−

p
λz1

γ pduc
p
λz1
−1
=0

m

u?(x) =
(
αλz1
pz1γ p

) λz1
p−λ

dbc
λz1
p−λ dxc

z1
z3 (56)

and therefore when p > λmax{1, z1} we have

J (x, u?(x)) =

{
−αk + |c|

p
λz2 + ε + α

(
αλ

pγ p

) λ
p−λ

|b|
p

p−λ

−γ p
(
αλ

pγ p

) p
p−λ

|b|
p

p−λ

}
|x|

p
λz3 .

Inequality (22) is fulfilled for γ ≥ γ ?(α), given by

γ ?(α) =
α

1
λ |b|

1
λ

(
λ
p

) 1
p
(
1− λ

p

) p−λ
pλ

(
αk − |c|

p
λz2 − ε

) p−λ
pλ

.

Since α is a parameter that we can select, we choose it such
that γ ?(α) attains its minimal value. Since the difference
between the power on α in numerator and denominator, 1

λ
−

p−λ
pλ =

1
p > 0, it is clear that function γ ?(α) has a minimal

value in the interval α ∈

[
|c|

p
λz2 +ε
k ,∞

)
, obtained by solving

dγ ?(ᾱ)
dα = 0,

ᾱ =
p
kλ

(
|c|

p
λz2 + ε

)
.

Function V is differentiable when p > λmax{1, z1} ≥ λ and

J (x, 0) ≤ 0 from ᾱ ≥
|c|

p
λz2 +ε
k . Therefore

γ̃ = γ ?(ᾱ) =
(
|b|
k

) 1
λ (
|c|

p
λz2 + ε

) 1
p
.

Selecting ε = 0 we obtain the minimal value

γph =

 |b||c| 1z2
k

 1
λ

, (57)

for p > λmax{1, z1} and p ≥ 1. Note that this value
depends on the selected (scaling) λ, as discussed in Remark
11. Remarkably, it is independent of p.
If we use control law (56) with ᾱ plugged back, with the

minimal value of γph, in the system (55) then we get

ẋ = 0,

y = cdxc
z2
z3 ,

u?(x) =
⌈
k
b

⌋z1
dxc

z1
z3 .

FIGURE 4. Bode plot of system (55) with z1 = z2 = z3 = 1 (linear case)
and k = 3,b = 2, c = 1.

The state trajectory for initial state x0, the input and the output
are constant, given by

x(·) = x0

u?(·) =
⌈
k
b

⌋z1
dx0c

z1
z3

y(·) = cdx0c
z2
z3

for all t ∈ [0,∞). We calculate For this particular input and
output we calculate the ratio of Lph−norm of output over
input

‖(y(·))T ‖ry,Lp

‖(u?(·))T ‖ru,Lp

=

(∫ T
0 ‖y(t)‖

p
ry,q

) 1
p

(∫ T
0 ‖u

?(t)‖pru,q
) 1
p

=

T
1
p

∥∥∥∥cdx0c z2z3 ∥∥∥∥
ry,q

T
1
p

∥∥∥∥⌈ kb⌋z1 dx0c z1z3 ∥∥∥∥
ru,q

=

 |b||c| 1z2
k

 1
λ

where (u(·))T is the truncated input signal. This value
coincides with the estimated value of the gain (57). Therefore,
since for all 1 ≤ p ≤ ∞ and p > λmax{1, z1} the gain γph is
upper and lower bounded by the same number, we conclude

that γph(6) =

(
|b||c|

1
z2

k

) 1
λ

, and the bound is tight in this case.

Consequently, we obtain

γph(6) =

 |b||c| 1z2
k

 1
λ

.

This agrees with Remark 11, that is, the λr−homogeneous
gain equals the r−homogeneous gain to the power λ.
Interestingly, the Lph−gain is independent of p, z1 and z3.
However, the worst input u?(·) depends on z1 and z3, but not
on p. When z1 = z2 = z3 = 1, the system is linear and
V (x) = α λp |x|

p
λ is the quadratic storage function if we select

p
λ
= 2. The Bode plot, showing the gain between harmonic

signals of different frequencies, e.g. u(t) = sin(ωt), is plotted
in Fig. 4. TheL2−gain is the maximum of all these gains, and
it is clear that for this LTI system the maximum is achieved
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for ω = 0, that is, for a constant input. This agrees with the
calculated worst input signal u?(·).

C. CONTINUOUS SUPER-TWISTING LIKE ALGORITHM
In [30], a detailed analysis of theL2h−gain for the continuous
super-twisting-like algorithm (CSTLA) is provided. We shall
only briefly introduce the system and extend it to include the
analysis of the Lph−gain.
The CSTLA has the (closed loop) form [30], [38]

ẋ1 = −k1dx1c
1

1−d + x2

ẋ2 = −k2dx1c
1+d
1−d + b u

y =
(
E1x1 E2x2

)> (58)

with homogeneous degree d ∈ (−1, 1), where k1, k2 > 0 are
tunable parameters. The homogeneous weights are ry = rx =
(1−d, 1), ru = 1+d . If d = 0 then (58) is a linear system and
if d = −1 then it is the super-twisting algorithm (STA) [39].
Yet, since the STA has a discontinuous vector field and ru =
0 when d = −1, it will not be considered for the Lph−gain
analysis.

From Theorem 2, we must have p > max rx + d . When
d > 0, it is p > 1+ d , and when d < 0, it is p > 1. Similar
to [30], [37], [40], we construct the following homogeneous
storage function of degree p− d

V (x) = α1Vl(x) = α1

(
1− d
p− d

|x1|
p−d
1−d

−α12x1dx2cp−1 +
α2

p− d
|x2|p−d

)
(59)

with α1, α12, α2 > 0. It is continuously differentiable for p ≥
2 and it is positive definite if

α12 <

(
α2

p− 1

) p−1
p−d

which is obtained by Young’s inequality. Since its gradient is

V>x = α1

[
dx1c

p−1
1−d − α12dx2cp−1

−(p− 1)α12x1|x2|p−2 + α2dx2cp−d−1

]
,

its derivative along the trajectories of (58) is

V̇ = α1
(
−k1|x1|

p
1−d −α12|x2|p+k1α12dx1c

1
1−d dx2cp−1

+dx1c
p−1
1−d x2−k2α2dx1c

1+d
1−d dx2cp−d−1

+k2(p−1)α12|x1|
2

1−d |x2|p−2+bα2dx2cp−d−1u

−b(p−1)α12x1|x2|p−2u
)
.

Clearly, with p ≥ 2 the condition of Theorem 2 is met (ehen
d ∈ (0, 1), p > 1 + d , and when d(−1, 0], p > 1). For
negative definiteness of V̇ it is necessary that k1, α12 > 0,
which is satisfied by the assumption. If p = 2 it is further
required that α12 < k1/k2, since the sixth term is combined
into the first term. The homogeneous dissipation inequality
for this storage function is

J (Vx , x, u) = V̇ + ‖y‖pry,p − γ
p
‖u‖pru,p − ε‖x‖

p
rx ,p ≤ 0 .

For J (Vx , x, 0) < 0 when x ∈ R2
\{0}, we need at least for

p > 2 that

α1 >
|E1|

p
1−d − ε

k1
, α12 >

|E2|p − ε
α1

,

and for p = 2 that

α1 >
|E1|

2
1−d − ε

k1 − k2α12
, α12 >

|E2|2 − ε
α1

.

For the LTI system, obtained when d = 0, we have
ry = ru = 1, and thus γ is the classical Lp−gain. With the
choice of p = 2 it provides an upper bound for the traditional
L2−gain. When p = 3 or p = 4 it provides an upper
bound for the L3−gain or L4−gain, respectively. If p = 2,
the storage function (59) is in a quadratic form and we can
compare our approach with the traditional ARE solution for
linear systems, presented in Section IV-C. For the LTI case
we will also include the results for L3 − gain and L4−gain.
System (58) is affine in u, so using the proposedV equation

(30) in Lemma 7 becomes

u?(x,Vx)

=

∣∣∣∣ (1+ d)pγ p

∣∣∣∣ 1+d
p−1−d

×

⌈
bα1

(
−(p− 1)α12x1|x2|p−2 + α2dx2cp−d−1

)⌋ 1+d
p−1−d

.

Since there is only one input, instead of (50) we can use

γ ?

=

∣∣∣∣1+ dp
∣∣∣∣ 1p (max

‖x‖=1

(
1−

1+ d
p

)

×

∣∣bα1 (−(p−1)α12x1|x2|p−2+α2dx2cp−d−1)∣∣ p
p−1−d

−J (Vx , x, 0)


p−1−d
p(1+d)

.

(60)

The choice of E1,E2 depends on the use of the algorithm.
For controller design we shall pick E1 = 1,E2 = 0 and for
observer design E1 = 0,E2 = 1, see [28].

1) LINEAR CASE
For d = 0 (linear case) the storage function in (59) is
the quadratic form V (x) = x>Px,P = P> > 0 used in
traditional L2−gain analysis [5]. Therefore, we can verify
our approach of the homogeneous search by comparing with
the ARI in (32). For d = 0 and p = 2, a simple mapping
from (59) to P is

P11 =
α1

2
, P12 = −

α1α12

2
, P22 =

α1α2

2
.

We find that, the numerical search (not shown here) in
Proposition 2 or 3 and the calculation of the optimal storage
function using ARI (32) lead to the same γ ? and to the same
storage function that ensure (22) or (32) when γ = γ ?.
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With weight matrix E = diag{E1,E2}, quantity γ †

designed in [28], i.e.

γ † = sup
u6=0

‖Ex‖rx ,L2

‖u‖L2

has homogeneous degree 0 in the linear case (d = 0), which
is equivalent to (21) since rx = (1, 1), ru = 1 for d = 0.
After carrying out similar derivations as in [28] the

analytical expression for γ † for k1 < kc results in

γ †
2
(k1, k2)

=
b2
(
k21 |E2|+2k2|E2|+2|E1|

)
k21 (4k2 − k

2
1 )

+
b2
√(

k21 |E2|+2k2|E2|+2|E1|
)2
+k21 (4k2 − k

2
1 )|E2|

2

k21 (4k2 − k
2
1 )

and for k1 ≥ kc in

γ †
2
(k1, k2) =

b2

k22

(
k21 |E2| + |E1|

)
where

kc = 2k2

+

√
(|E1| + 2k2|E2|)2 + 4k22 |E2|

2 − (|E1| + 2k2|E2|)

2|E2|
.

As expected, the L2−gain γ † is a function of k1, k2.
Considering system (58) as the closed loop form for an
observer or a controller design, adjusting the gains k1 and k2
can help us achieve a smaller L2−gain for the closed loop
system (58). For each fixed k2, the L2−gain γ †(k1, k2) is
convex in k1, with a global minimum w.r.t. k1 given by

k†1 (k2) =

√
2k2 −

k22 |E2|

2k2|E2| + |E1|
, (61)

γ †(k†1 , k2) =
b
k2

√
2k2|E2| + |E1| . (62)

Apparently, when k1 = k†1 (k2) and k2 → ∞, γ †(k†1 , k2) →
0. So there is no global minimum w.r.t. the pair of (k1, k2)
for the L2−gain. Since k1, k2 cannot be selected infinitely
large, we are left with a conditioned optimization option for
the L2−gain: fix k2 first and then choose k1 = k†1 (k2).
By taking the extremals of |E1/E2|, we obtain theL2−gain

optimal range as

k†1 ,

√
3
2
k2, k

†
1 ,

√
2k2.

Fig. 5 shows γ † as a function of k1. The upper sub-figure
shows γ † from u to x1, while the lower sub-figure to x2.
Fig. 5 shows that in the linear case, with a fixed k2, the
H∞ norm γ † to x1 will remain constant for k1 > k

†
1 (cross

in upper sub-figure), and γ † to x2 is convex for k1 = k†1
(cross in lower sub-figure). Since system (58) has a single
input u, the Bode plot’s maximum gain also shows the H∞

FIGURE 5. L2−gain (derived solving ARI) and upper bound of L3−gain
and L4−gain (from (60)) for system (58) when d = 0 (linear case) and
k2 = b = 3.

FIGURE 6. Bode plot for y = x1 (upper) and y = x2 (lower) (L2−gain for
sinusoidal input) of system (58) with d = 0 (linear case) and k2 = b = 3.

norm to x1 and x2, reflecting Fig. 5 in the frequency domain.
The upper sub-figure in Fig. 6 shows that with k1 < k

†
1 the

gain has a peak above 0 dB at mid-frequency. With k1 ≥ k
†
1

the gain is reduced for higher frequency, yet the DC gain is
not improved. The lower sub-figure in Fig. 6 shows that the
maximum gain gets to a minimum at k1 = k†1, where larger k1
leads to a larger DC gain, and smaller k1 at higher frequency.

Also in Fig. 5, the upper bounds of the L3−gain and
L4−gain are plotted. Note that such value is derived from the
storage function (59). For d = 0, p = 3, it is

V (x) = α1

(
1
3
|x1|3 − α12x1dx2c2 +

α2

3
|x2|3

)
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and for d = 0, p = 4, it is

V (x) = α1

(
1
4
|x1|4 − α12x1dx2c3 +

α2

4
|x2|4

)
.

There are apparently more possible candidates than the
above two constructions of storage function, especially the
cross term can be designed differently. This has highlighted
the importance of the choice of storage function, which
will affect how good may be the upper bound of the
Lp−gain, collected from dissipation inequality or HJI using
Proposition 2 or 3.

2) NON-LINEAR CASE
For negative d , the upper bound of L2h−gain γ ? collected
from using Proposition 2 or 3 for the CSTLA is displayed in
Fig. 7, as presented in [30] with k?1 ,

√
1.5(1− d)k2 and

k
?

1 ,
√
2(1− d)k2. It shows the behavior of the L2−gains

to x1 and x2, respectively, as k1 varies, for 4 negative values
of d = {−0.5, −0.75, −0.9, −0.99} (in different colors),
and for each d three values of k2 were used, given by k2 =
{0.99b, b, 1.01b}. There is a clear similarity to Fig. 5. Amore
detailed analysis can be found in [30].

FIGURE 7. γ ? for y = x1 (upper) and y = x2 (lower) of system (58) with
negative d = {−0.5, −0.75, −0.9, −0.99} and k2 = {0.99b, b, 1.01b},
p = 2.

After analyzing the collected γ ? for k1 ≥ k
?

1, the analytical
expressions of γ ? can be summarized as

γx1 =

(
b
k2

) 1
1+d

, γx2 = k1

(
b
k2

) 1
1+d

(63)

which is achievable from a constant input [30]. By means of
simulations we have also found an input signal that attains
such L2−gains, given by

u(t) = W (D sign (sin(ωt))+ (1− D) sin(ωt)) (64)

where W is the amplitude of u, ω is the frequency in rad/s
of the sine component, and D is the ratio between the signum

function and sine function. The resulting number

0 =
‖ExT ‖rx ,L2

‖uT ‖ru,L2

, T =
4π
ω
, foru from (64) (65)

are listed in Table 2. When E1 = 1,E2 = 0, 0 in (65) is
denoted as 0x1 , and when E1 = 0,E2 = 1 as 0x2 . This
number records the actual ratio of L2h−norm of output over
input for the period of t ∈ [0,T ] with the u from (64).
They agree with all γ ? collected for all k1 ≥ k

?

1 [30],
whose expression is (63). Therefore, we can say that when the
parameter satisfies k1 ≥ k

?

1(k2), k2 > 0, we have γ ? = 02h.

TABLE 2. Achieved L2h gain for k2 = b = 3, T = 10−5s with u as (64).

The upper and lower plots of Fig. 8 for d = −0.5 and
k1 = 3, k2 = b = 3 present the ratio of the amplitude of the
outputs y = x1 and y = x2, respectively, and the amplitude of
the input signal u = κ sin(ωt), for κ = {0.5, 1, 2, 3} and ω
from 0.001 rad/s to 100 rad/s. From Fig. 7 we obtain that the
value of γ ? to x1 is 1, and to x2 is 3. From Fig. 8, the following
function

0(ω) =
‖ExT ‖rx ,L2

‖(κ sin(ωt))T ‖ru,L2

, T =
4π
ω

(66)

is plotted, it is apparent that these gains are attained at a low
frequency of the input signal.

Fig. 8 illustrates another interesting phenomenon. Recall
that for homogeneous systems a dilated input signal (2)
causes a dilated output not only in amplitude, but also in
time. Thus, with negative d , if the amplitude of the input u
is increased, and if the same value of 0 from (66) is to be
resulted, then the frequency of the increased-magnitude input
u has to be diminished, as is observed in Fig. 8. Note that
when the amplitudes of input are increased, the frequency
plot is shifted to the left, i.e. an input with lower frequency
and larger amplitude achieve the same 0 in (66) with
negative d .
On the other hand, this is reversed with positive d , since

rt = −d < 0. Namely, when the amplitudes of input are
increased, the frequency plot is shifted to the right, i.e. an
input with higher frequency and larger amplitude achieve the
same 0 in (66) with positive d .

The simulations were carried out with forward Euler
method and sampling period of 10−5s.

At last, the behavior of γ ? for positive values of d =
{0.25, 0.5, 0.75} , k2 = b, which is not studied in [30],
are plotted in Fig. 9, the cases of k2 = {0.99b, 1.01b} are
omitted, since the difference are too small and thus negligible.
All three γ ? converge also to (63), yet with a larger k1 as d
grows larger.
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FIGURE 8. 0(ω) in (66) for y = x1 (upper) and y = x2 (lower) in response
to harmonic input u = κ sin(ωt), for different amplitudes and range of
frequencies. The system parameters are d = −0.5 and k1 = 3,k2 = b = 3.

FIGURE 9. γ ? for y = x1 (upper) and y = x2 (lower) of system (58) with
positive d = {0.25, 0.5, 0.75} and k2 = b, p = 2.

X. CONCLUSION
In this paper, motivated by the fact that the traditional
concept of Lp−stability is not well-defined for arbitrary
homogeneous systems, a novel definition of homogeneous
Lp−stability and Lp−gain has been introduced which is
applicable to arbitrary homogeneous systems. This requires
the definition of homogeneous signal Lp−norms that allow
to arrive at a globally defined homogeneous Lp−gain
for any homogeneous system. It is shown that previous
results, using classical signal norms, are only possible under
severe restrictions of the homogeneous system class. The
novel concept of homogeneous Lp−stability is applicable
to p = ∞, and its related concept of ISS. Homogeneous
Lp−stability is characterized by a homogeneous dissipation

inequality, which, for system affine in control input, can
be reduced to a homogeneous Hamilton-Jacobi inequality.
This allows to show that any homogeneous system, having
an asymptotically stable equilibrium point for zero input,
is homogeneous Lp−stable and has a finite homogeneous
Lp−gain, for every p sufficiently large. Moreover, using
either the dissipation inequality or the Hamilton-Jacobi
inequality, and finding a homogeneous Lyapunov function,
an upper bound of the homogeneous Lp−gain can be
estimated. Remarkable is that this upper bound is not only
possible for p = 2, as it is well-known, but for an arbitrary
p. With the tool of finite-gain homogeneous Lp−stability the
closed loop stability can be studied with the homogeneous
small gain theorem for interconnected homogeneous systems.
The results of the paper are illustrated by some examples.
A natural consequence of the present work is the use of
homogeneous Lp−stability and gain to assure the stability
of feedback interconnected systems. Further, homogeneous
control or observer design can be performed to optimize the
homogeneous Lp−gain, as e.g. the H∞−norm. This will be
reported in the future.

APPENDIX
A. JENSEN’s INEQUALITY
Lemma 8 (Jensen’s inequality [41]): If I is an interval in

R on which f (x) is convex, if n ≥ 2, w is a positive n-tuple
with

∑n
i=1 wi = 1, x an n-tuple elements in I , then

f

(
n∑
i=1

wixi

)
≤

n∑
i=1

wif (xi)

If f is strictly convex, the inequality is strict unless x = `1n.
First, choose f (·) = | · |p, p ≥ 1, which is a convex function,
and choose w = (0.5, 0.5)>, x = (2 a, 2 b)> where a, b non-
negative. Then we have

(a+ b)p ≤ 2p−1(ap + bp) . (67)

Furthermore, from [42, Theorem 5.26] in the section of
Jensen-Petrović’ Inequality, we extract
Lemma 9 ([42]): Let w, x be two non-negative n-tuples,

suppose xi ∈ [0, a], i = 1, . . . , n and
n∑
i=1

wixi ≥ xj

for all j = 1, . . . , n, as well as
n∑
i=1

wixi ∈ [0, a] .

If f (x)/x is a decreasing function, then

f

(
n∑
i=1

wixi

)
≤

n∑
i=1

wif (xi) . (68)

If f (x)/x is an increasing function, then the reverse of
inequality (68) holds.
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Let p1 > p2 > 0 and f (·) = | · |
p1
p2 , then the function

f (x)
x
= dxc

p1−p2
p2

is increasing w.r.t. x ∈ Rn (since p1 > p2). Using Lemma 9
with choice of w = 1n (the two conditions are met with a =
∞), we have(

n∑
i=1

|xi|p2
) p1

p2

= f

(
n∑
i=1

|xi|p2
)
≥

n∑
i=1

f (|xi|p2 )

=

n∑
i=1

(|xi|p2 )
p1
p2 =

n∑
i=1

|xi|p1 ,

i.e. (
n∑
i=1

|xi|p2
) 1

p2

≥

(
n∑
i=1

|xi|p1
) 1

p1

. (69)

This implies that for a vector x ∈ Rn, p1 > p2 > 0, the
classical p−norm satisfies ‖x‖p2 ≥ ‖x‖p1 . In other words,
for p ≥ 1 and positive a, b we have

(ap + bp)
1
p ≤ a+ b . (70)

Combined with (67), we obtain

ap + bp ≤ (a+ b)p ≤ 2p−1(ap + bp) .

On the other hand, for 0 < p < 1 and positive a, b, we have

(ap + bp)
1
p ≥ a+ b

which is

(a+ b)p ≤ (ap + bp) . (71)

Thus combining the case of 0 < p < 1 and p ≥ 1, that is
p > 0, we have for positive a, b that

(a+ b)p ≤ max
{
1, 2p−1

}
(ap + bp) . (72)

B. HÖLDER’s INEQUALITY
A special form of [42, Theorem 4.12] is given by
Lemma 10 (Hölder’s inequality [42]): If f , g are measur-

able real functions, then the following inequality holds∫
∞

0
|f (t)g(t)|dt ≤

(∫
∞

0
|f (t)|pdt

) 1
p
(∫
∞

0
|f (t)|qdt

) 1
q

(73)

for positive real numbers p, q satisfying p−1 + q−1 = 1.

REFERENCES
[1] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output

Properties. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 1975.

[2] A. van der Schaft,L2-Gain and Passivity Techniques in Nonlinear Control,
3rd ed. Springer, 2017.

[3] G. Zames, ‘‘Feedback and optimal sensitivity: Model reference trans-
formations, multiplicative seminorms, and approximate inverses,’’ IEEE
Trans. Autom. Control, vol. AC-26, no. 2, pp. 301–320, Apr. 1981.

[4] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control.
New York, NY, USA: Prentice-Hall, 1996.

[5] T. Basar and P. Bernhard, H∞-Optimal Control and Related Minimax
Design Problems: A Dynamic Game Approach. Boston, MA, USA:
Birkhäuser, 2008.

[6] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ, USA:
Prentice-Hall, 2003.

[7] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland,Dissipative Systems
Analysis and Control: Theory and Applications. London, U.K.: Springer,
2007.

[8] A. Isidori, Nonlinear Control Systems II. London, U.K.: Springer, 1999.
[9] E. P. Ryan, ‘‘Universal stabilization of a class of nonlinear systems

with homogeneous vector fields,’’ Syst. Control Lett., vol. 26, no. 3,
pp. 177–184, Oct. 1995.

[10] E. D. Sontag, ‘‘Input-to-state stability,’’ in Encyclopedia of Systems and
Control, J. Baillieul and T. Samad, Eds. Berlin, Germany: Springer-Verlag,
2020, pp. 1–9.

[11] H. Hermes, ‘‘Nilpotent and high-order approximations of vector field
systems,’’ SIAM J. Control Optim., vol. 33, no. 2, pp. 238–264, 1991.

[12] M. Kawski, ‘‘Geometric homogeneity and stabilization,’’ IFAC Proc.
Volumes, vol. 28, no. 14, pp. 147–152, Jun. 1995.

[13] V. Andrieu, L. Praly, and A. Astolfi, ‘‘Homogeneous approximation,
recursive observer design, and output feedback,’’ SIAM J. Control Optim.,
vol. 47, no. 4, pp. 1814–1850, 2009.

[14] S. P. Bhat and D. S. Bernstein, ‘‘Geometric homogeneity with applications
to finite-time stability,’’ Math. Control, Signals, Syst., vol. 17, no. 2,
pp. 101–127, Jun. 2005.

[15] A. Bacciotti and L. Rosier, Liapunov Functions and Stability in Control
Theory. Berlin, Germany: Springer-Verlag, 2005.

[16] L. Grüne, ‘‘Homogeneous state feedback stabilization of homogenous
systems,’’ SIAM J. Control Optim., vol. 38, no. 4, pp. 1288–1308, 2000.

[17] Y. Hong, ‘‘H∞ control, stabilization, and input–output stability of
nonlinear systems with homogeneous properties,’’ Automatica, vol. 37,
no. 6, pp. 819–829, Jun. 2001.

[18] A. Levant, ‘‘Homogeneity approach to high-order sliding mode design,’’
Automatica, vol. 41, no. 5, pp. 823–830, May 2005.

[19] A. Levant and L. Alelishvili,Discontinuous Homogeneous Control. Berlin,
Germany: Springer, 2008, pp. 71–95.

[20] N. Nakamura, H. Nakamura, Y. Yamashita, and H. Nishitani, ‘‘Homoge-
neous stabilization for input affine homogeneous systems,’’ IEEE Trans.
Autom. Control, vol. 54, no. 9, pp. 2271–2275, Sep. 2009.

[21] C. Qian and W. Lin, ‘‘Recursive observer design, homogeneous approx-
imation, and nonsmooth output feedback stabilization of nonlinear
systems,’’ IEEE Trans. Autom. Control, vol. 51, no. 9, pp. 1457–1471,
Sep. 2006.

[22] L. Rosier, ‘‘Homogeneous Lyapunov function for homogeneous continu-
ous vector field,’’ Syst. Control Lett., vol. 19, no. 6, pp. 467–473, 1992.

[23] E. Bernuau, D. Efimov, W. Perruquetti, and A. Polyakov, ‘‘On homogene-
ity and its application in sliding mode control,’’ J. Franklin Inst., vol. 351,
no. 4, pp. 1866–1901, 2014.

[24] A. Levant, ‘‘Universal single-input-single-output (SISO) sliding-mode
controllers with finite-time convergence,’’ IEEE Trans. Autom. Control,
vol. 46, no. 9, pp. 1447–1451, Sep. 2001.

[25] Y. Hong and H. Li, ‘‘Nonlinear H∞ control and related problems of
homogeneous systems,’’ Int. J. Control, vol. 71, no. 1, pp. 79–92, 1998.

[26] E. Bernuau, A. Polyakov, D. Efimov, and W. Perruquetti, ‘‘Verification
of ISS, iISS and IOSS properties applying weighted homogeneity,’’ Syst.
Control Lett., vol. 62, no. 12, pp. 1159–1167, Dec. 2013.

[27] E. Bernuau, D. Efimov, and W. Perruquetti, ‘‘On the robustness of
homogeneous systems and a homogeneous small gain theorem,’’ in Proc.
IEEE Conf. Control Appl. (CCA), Oct. 2014, pp. 929–934.

[28] D. Zhang and J. Reger, ‘‘H∞ optimal parameters for the super-twisting
algorithm with intermediate disturbance bound mismatch,’’ in Proc. 15th
Int. Workshop Variable Struct. Syst., 2018, pp. 303–308.

[29] D. Zhang and J. Reger, ‘‘H∞ norm optimal parameters for the super-
twisting controller with state dependent disturbance,’’ in Proc. 18th Eur.
Control Conf., 2019, pp. 3583–3588.

[30] D. Zhang, J. A. Moreno, and J. Reger, ‘‘Parameter preference for the
continuous super-twisting-like algorithm based on H∞ norm analysis,’’
IFAC-PapersOnLine, vol. 53, no. 2, pp. 5141–5146, 2020.

[31] C. M. Kellett and P. M. Dower, ‘‘Input-to-state stability, integral input-
to-state stability, and L2−gain properties: Qualitative equivalences and
interconnected systems,’’ IEEE Trans. Autom. Control, vol. 61, no. 1,
pp. 3–17, Jan. 2016.

81682 VOLUME 10, 2022



D. Zhang et al.: Homogeneous Lp−Stability for Homogeneous Systems

[32] A. Levant andM. Livne, ‘‘Weighted homogeneity and robustness of sliding
mode control,’’ Automatica, vol. 72, no. 10, pp. 186–193, Oct. 2016.

[33] E. D. Sontag, ‘‘Smooth stabilization implies coprime factorization,’’ IEEE
Trans. Autom. Control, vol. 34, no. 4, pp. 435–443, Apr. 1989.

[34] J. L. Salle and S. Lefschetz, Eds., Stability by Liapunov’s Direct Method
With Applications (Mathematics in Science and Engineering). Amsterdam,
The Netherlands: Elsevier, 1961.

[35] E. Cruz-Zavala and J. A. Moreno, ‘‘Lyapunov functions for continuous
and discontinuous differentiators,’’ IFAC-PapersOnLine, vol. 49, no. 18,
pp. 660–665, 2016.

[36] M. R. Hestenes, Calculus of Variations and Optimal Control Theory.
Hoboken, NJ, USA: Wiley, 1966.

[37] T. Sánchez and J. A. Moreno, ‘‘Design of Lyapunov functions for a class
of homogeneous systems: Generalized forms approach,’’ Int. J. Robust
Nonlinear Control, vol. 29, no. 3, pp. 661–681, Feb. 2019.

[38] T. Sánchez, E. Cruz-Zavala, and J. A. Moreno, ‘‘An SOS method for the
design of continuous and discontinuous differentiators,’’ Int. J. Control,
vol. 91, no. 11, pp. 2597–2614, Nov. 2018.

[39] A. Levant, ‘‘Robust exact differentiation via sliding mode technique,’’
Automatica, vol. 34, no. 3, pp. 379–384, Mar. 1998.

[40] T. Sánchez and J. A. Moreno, ‘‘A constructive Lyapunov function design
method for a class of homogeneous systems,’’ in Proc. 53rd IEEE Conf.
Decis. Control, Dec. 2014, pp. 5500–5505.

[41] P. Bullen, Handbook of Means and Their Inequalities. Dordrecht,
The Netherlands: Springer, 2003.

[42] J. Pecaric, F. Proschan, and Y. Tong, Convex Functions, Partial Orderings,
and Statistical Applications. New York, NY, USA: Academic, 1992.

DAIPENG ZHANG was born in Anshan,
Liaoning, China, in 1986. He received the B.S.
degree in automation and electrical engineering
from Zhejiang University, Hangzhou, China,
in 2008, and the M.S. degree in control theory
and electrical engineering from the University
of Southern California, Los Angeles, USA,
in 2010. He is currently pursuing the Ph.D. degree
with the Control Engineering Group, Technische
Universität Ilmenau, Ilmenau, Germany. His

research interest includes the revision and application of finite-gain
Lp−stability on continuous homogeneous systems.

JAIME A. MORENO (Member, IEEE) was born
in Colombia. He received the Licentiate degree
(Hons.) in electronic engineering from the Univer-
sidad Pontificia Bolivariana, Medellín, Colombia,
in 1987, the Diplom degree in electrical engi-
neering (automatic control) from the Universität
zu Karlsruhe, Karlsruhe, Germany, in 1990, and
the Ph.D. degree (summa cum laude) in electrical
engineering (automatic control) from the Helmut-
Schmidt University, Hamburg, Germany, in 1995.

He is currently a Full Professor of automatic control and the Head of the
Electrical and Computing Department, Institute of Engineering, National
Autonomous University of Mexico (UNAM), Mexico City. He is the author
and an editor of eight books, 12 book chapters, one patent, and authored or
coauthored of more than 450 articles in refereed journals and conference
proceedings. His current research interests include robust and nonlinear
control, in particular, with emphasis on Lyapunov methods for higher order
slidingmode control, with applications to biochemical (wastewater treatment
processes) and electromechanical processes, and the design of nonlinear
observers. He is a member of the IFAC Council.

JOHANN REGER (Senior Member, IEEE)
received the Diploma degree (Dipl.-Ing.) in
mechanical engineering and the Dr.-Ing. degree
in control engineering from the University of
Erlangen-Nuremberg, Germany, in 1999 and 2004,
respectively. He has held several postdoctoral
positions, among others, with the Mechatronics
Department, CINVESTAV-IPN, Mexico City;
the EECS Control Laboratory, University of
Michigan, Ann Arbor; and the Control Systems

Group, TU Berlin. Since 2008, he has been a Full Professor and the Head
of the Control Engineering Group, Computer Science and Automation
Faculty, TU Ilmenau, Germany. There, he also serves as the Vice-Dean
and the Director of the Institute for Automation and Systems Engineering.
His current research interests include adaptive and robust control, variable
structure, and sliding mode control, state, and parameter estimation. His
application areas include robotics, mechatronics, automotive, and water
systems.

VOLUME 10, 2022 81683


