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Abstract— The ongoing and unprecedented transformation of
power systems leads to a reduction in the number of conven-
tional power plants, which are the classical actuators of the grid.
In addition, this development results in a decreasing system
inertia, which is expected to yield faster frequency dynamics.
Therefore power-electronics-interfaced units have to take over
system control tasks and, in particular, frequency control. For
this purpose, accurate and fast estimation algorithms for time-
varying frequency signals are needed. Motivated by this fact,
we propose a time-varying parameter estimator and a tuning
criterion, which for sufficiently small initial estimation errors
allows to reconstruct the time-varying frequency signal of a
symmetric three-phase waveform in finite time. The proposed
estimator is derived by using a time-varying version of the
super twisting algorithm and its performance is illustrated via
numerical examples.

I. INTRODUCTION

A. Motivation

The steady uprise of renewable energy sources in power
systems worldwide is expected to drastically impact the
dynamics and, consequently, the control of future power sys-
tems [1], [2]. A main reason for this is that most renewable
generation units are interfaced to the network via power
electronics, instead of via synchronous generators (SGs) as
employed in conventional power plants. Hence, the current
developments result in a decreasing amount of rotational
inertia. This in turn is expected to yield faster and more
volatile system dynamics [2].

In addition, for decades SGs have been the main actuators
used to ensure power system performance by providing
the necessary system services. Yet, as conventional SG-
interfaced units are being faded out, inverter-interfaced units
need to take over system control tasks [2]. Amongst these,
frequency regulation is one of the most important operational
objectives in any AC power system [3].

Clearly, a fundamental prerequisite for a fast and efficient
deployment of frequency control action via power converters
is the availability of an accurate measurement of the (local)
electrical frequency. Unlike in SGs, in power inverters there
are no rotational elements allowing to measure the angular
speed. Therefore, the frequency needs to be estimated from
the available AC measurements at the inverter terminals.
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The standard estimation algorithms used for this purpose
are called phase-locked-loops (PLLs) [4], [5]. There exist
several PLL schemes and most of them share the property
that a linear control is used to track the frequency signal,
such as the popular PI-based synchronous reference frame
PLL (SRF-PLL) [4], [5]. Yet, it has been widely recognized
that this approach exhibits severe limitations in the presence
of fast frequency variations [6] and high deviations from
the nominal frequency [7]. Furthermore, it has been shown
in several studies [8], [9], [10] that the PLL dynamics
have a significant impact on the closed-loop performance
of inverter-based frequency control strategies. These prob-
lematics in turn have motivated the development of new
techniques. Amongst these are methods based on series
expansion [11], [12], least squares [13], adaptive filtering
[14], [15], gradient methods [16], and sliding mode control
[17], [18].

In conventional power systems formed by bulk SGs the
assumption of having a stiff grid (i.e., a voltage waveform
with a constant frequency) at the inverter’s point of connec-
tion was acceptable. Yet, as outlined above, future power
systems are expected to exhibit larger and faster frequency
variations. Hence, in order to provide a swift and reliable
frequency estimate in such a setting, an estimation algorithm
capable of tracking time-varying signals and exhibiting fast
recovery capabilities is required. This motivates the present
work.

B. Contributions

In light of the above discussion, the main contributions in
this paper are:

1) To provide a frequency estimator, which is capable of
exactly tracking a time-varying frequency signal of a
symmetric three-phase AC waveform. This is achieved
by interpreting the frequency as a time-varying param-
eter and, inspired by ideas from [19] and [20], deriving
a time-varying version of the super twisting algorithm
in vector form for the estimator design. The present
approach avoids the typical over-parameterization per-
tinent to methods based on series expansion [21], [22],
[23] and does, hence, not increase the dimension of the
frequency estimator.

2) To provide a set of sufficient conditions for the esti-
mator gains, the feasibility of which guarantees exact
convergence of the estimated frequency signal in finite
time.

3) To demonstrate the improved performance of the pro-
posed algorithm with respect to the standard SRF-PLL



[4], [5] via several numerical examples.
Notation: Let R denote the set of real numbers. For a ∈ R,

R≥a denotes the open interval [a,∞). Rn denotes the set
of n-dimensional real-valued vectors and Rn×m denotes the
set of real-valued n×m matrices. Let In denote the identity
matrix of dimension n. For A ∈ Rn×m, A> denotes the
transpose of A. For A ∈ Rn×n with A = A>, λmin(A)
and λmax(A) denote the smallest and the largest eigenvalues
of A, respectively. For a vector ν ∈ Rn, ‖ν‖ =

√
ν>ν

represents its Euclidean norm and its 1-norm is given by
‖ν‖1 =

∑n
i=1 |νi|. For A = A>, A > 0 means that it

is a positive definite matrix, whereas A ≥ 0 means that
A is positive semi-definite. Consider a block-defined matrix
A ∈ R(n+m)×(n+m) described by

A =

[
A11 A12

A21 A22

]
,

A11 ∈ Rn×n, A12 ∈ Rn×m,
A21 ∈ Rm×n, A22 ∈ Rm×m.

Then the Schur complements of A are denoted by A/A11 =
A22 −A21A

−1
11 A12 and A/A22 = A11 −A12A

−1
22 A21.

II. PROBLEM STATEMENT

We consider a symmetric three-phase AC signal v :
R≥0 → R3 with constant amplitude A > 0 described by

v(t) = A
[
cos
(
φ(t)

)
, cos

(
φ(t)− 2/3π

)
, cos

(
φ(t) + 2/3π

)]>
, (1)

where φ : R≥0 → R≥0 represents the instantaneous phase of
the signal. In applications, the signal v(t) corresponds to the
three-phase voltage waveform at the generation unit’s point
of connection to the grid, see [4].

It is assumed that φ(t) is a smooth monotonically in-
creasing function of the time t. Its time derivative φ̇(t) =
ω(t) (i.e., the instantaneous frequency) is assumed to be a
Lipschitz function of time with Lipschitz constant ∆? > 0.
This means that the following inequality holds:

|ω(t1)− ω(t2)| ≤ ∆?|t2 − t1|, ∀ t1 ∈ R≥0, ∀ t2 ∈ R≥0. (2)

Given that φ(t) is assumed to be monotonically increasing,
we have that ω(t) ≥ 0 for all t ∈ R≥0.

It is well-known that symmetric three-phase signals can
be equivalently represented by two quantities [4], [24]. We
use this fact and consider the αβ-transformation [4] with
transformation matrix T ∈ R2×3,

T =

[
2/3 −1/3 −1/3

0 1/
√

3 −1/
√

3

]
.

By applying T to v(t) defined in (1), a reduced set of signals
can be obtained, i.e.,

y(t) =

[
y1(t)
y2(t)

]
= T v(t) = A

[
cos
(
φ(t)

)
sin
(
φ(t)

) ] .
The behavior of y(t) over time can then be described by

the following nonlinear dynamical model:

ẏ(t) = ω(t)

[
0 −1
1 0

]
y(t) = ω(t)

[
−y2(t)
y1(t)

]
. (3)

The main purpose of this note is to design a frequency
estimator, which is capable of exactly estimating the instanta-
neous time-varying frequency ω(t) in finite time. To this end,
the assumptions below are employed in the present work:

Assumption 1. The signals φ(t) and ω(t) have the following
properties:

1) The constant amplitude A > 0 is known.

2) The signal φ(t) is monotonically increasing.
3) The inequality (2) holds and a constant ∆ ≥ ∆? is

known.
4) The variable v(t) is available as a measurement.
5) The frequency ω(t) has an upper bound such that the

time period between sign changes of both y1(t) and
y2(t) is lower bounded by some constant h > 0.

Remark 1. Given that (y21(t) + y22(t))
1
2 = A, Assumption

1.1 is not restrictive. Assumption 1.2 implies that there is no
negative frequency, which is reasonable given the underlying
physical setting of the considered problem. Assumption 1.3
is a technical assumption that allows to give a dynamical
representation for ω(t) as is shown in the next section.
Assumption 1.4 implies that y(t) is known and follows
the dynamics in (3). Finally, Assumption 1.5 is a technical
condition that originates from the proof.

III. PRELIMINARIES

The problem of estimating ω(t) from (3) closely resembles
the classical problem of estimating constant parameters [25],
[26] from the dynamics

ż(t) = b>(t)θ, (4)

where z : R≥0 → Rn, is a measured signal, b : R≥0 →
Rn×m, represents the regressor and θ ∈ Rm is the vector
of unknown constant parameters. In the classical problem
statement [25], [26] the number of measurements z(t) is,
usually, less than the number of parameters, i.e., n < m.
The estimation is then possible when the parameters are
constant and if the regressor b(t) satisfies a certain persistent
of excitation condition [26, Eq. 3.5]. The main difference
between the classical problem and the problem posed in this
note is that the frequency ω(t), i.e., the unknown quantity of
interest, is not constant. Therefore, the classical estimation
methods are not applicable.

As a consequence, a natural step in the present case is
to interpret ω(t) as a time-varying parameter. In the case
of time-varying parameters, an important fact is that the
standard persistent of excitation is not sufficient for the
parameter reconstruction [19], [27]. The main reason for this
is briefly sketched below.

Consider again (4), but assume that the parameters θ
are time-varying. Also assume that one has ż(t) at hand.
Then (4) can be seen as an algebraic relation between
known signals and the time-varying parameters. Under these
circumstances, the necessary and sufficient condition for
reconstructing the parameters is that the regressor is uni-
formly injective [27, Theo. 4.1]. This means that at least the
same number of measurements as parameters are needed.
Fortunately, this condition is satisfied in the problem posed
in Section II. To see this, recall that in (3) the regressor can
be taken as

b>(t) = [b1(t), b2(t)] = [−y2(t), y1(t)]. (5)

Since b>(t)b(t) = A2 > 0, the regressor is uniformly
injective. Hence, it is, in principle, possible to reconstruct
the frequency ω(t).



After having established that it is possible to reconstruct
ω(t), we seek to impose a dynamical model for its behavior.
This is an essential prerequisite to be able to derive a
dynamical system (observer) for its reconstruction. Since by
Assumption 1.3, ω(t) is a Lipschitz function of time, it is
also absolutely continuous, which implies the existence of a
function ξ : R≥0 → R, such that ω(t) = ω(t0) +

∫ t

t0
ξ(s)ds,

or, equivalently, ω̇(t) = ξ(t) almost everywhere. Further-
more, the Lipschitz condition also means that ξ(t), where
defined, is bounded by ∆, i.e., |ξ(t)| ≤ ∆. By defining the
regressor as b>(t) = [−y2(t), y1(t)] and using the regressor
together with the model introduced for ω(t), we can extend
the dynamics (3) to

ẏ(t) = b(t)ω(t),

ω̇(t) = ξ(t),
(6)

where ξ(t) is treated as an unknown, bounded disturbance.
The model (6) will be at the core of the estimation strategy
proposed in the next section.

IV. MAIN RESULT

A time-varying version of the super twisting algorithm,
capable of estimating a time-varying parameter, has been
proposed in [19]. The algorithm in [19] exploits a similar
structure to the model (6) with an important difference,
namely the number of available measurements. Thanks to
the additional measurement available in the present case, the
restriction that appears on the disturbance in [19, Asm. 1] can
be relaxed. However, unfortunately, this extra measurement
makes a direct application of the algorithm in [19] impos-
sible. To circumvent this obstacle, we propose to combine
a vector form of the super twisting algorithm, introduced in
[20], with the time-varying approach of [19]. This results in
the following time-varying parameter estimator:

˙̂y(t) = −k1
ŷ(t)− y(t)

‖ŷ(t)− y(t)‖ 1
2

+ b(t)ω̂(t),

˙̂ω(t) = −k2b>(t)
ŷ(t)− y(t)

‖ŷ(t)− y(t)‖ ,
(7)

where ŷ(t) and ω̂(t) represent the estimates of y(t) and
ω(t), respectively, and the constants k1 > 0 and k2 > 0
are the gains of the algorithm. The nonlinear terms in the
algorithm (7) consist of

ψ1(ν) :=
ν

‖ν‖ 1
2

and ψ2(ν) :=
ν

‖ν‖ , ν ∈ R2.

These functions correspond to the vector form of the scalar
functions | · | 12 sign(·) and sign(·). For this reason, ψ1 is
defined as zero when its argument is zero, whereas ψ2 has
a bounded discontinuity in this point.

For the frequency estimator described in (7), we have the
following result:

Theorem 1. Consider (7) together with Assumption 1. Let
c > 0 and set the estimator gains as

k1 =

(
1

4
+
√

2

)
A+ c,

k2 =
9(5 +

√
2)A

8 c
+

9 + 40
√

2

8
+

5 c

2A
+

√
2∆

c
+

(1 +
√

2)∆2

√
2Ac

.

(8)

Define the positive real parameters

η := 1 +
2 + 2

(
2 k2 − k1/A− 1

) 1
2

2 k2 − k1/A− 1
, (9)

λ± :=
A(1 + 2 k2)− k1

2A

±
(
k21 + 2Ak1(1− 2 k2) +A2(9 + 4 k2(k2 − 1))

) 1
2

2A
, (10)

and let e0 = ŷ(t0)−y(t0), x0 = ω̂(t0)−ω(t0) be the initial
errors. Then, if the frequency estimator (7) is initialized such
that

1

8
Ah ≥

(
λ+

λ−

(
‖e0‖+ x20

)) 1
2

(
1− 1

η
1
2

)
, (11)

ω̂(t) converges exactly to ω(t) in finite time.

Remark 2. For the given definitions of k1 and k2 and since
c > 0, it can be shown in a straightforward manner that η
in (9) is well defined.

Theorem 1 provides a set of sufficient conditions to ensure
the convergence of the estimation error. These conditions (8)
represent lower bounds on the estimator gains k1 and k2. In
addition, these bounds depend on the signal amplitude A and
the Lipschitz constant for the time derivative of the frequency
∆. Furthermore, condition (11) imposes a restriction on the
initial conditions and the minimum time h between sign
switches. For a small enough initial error, or equivalently, for
large enough h, the finite-time convergence can be ensured.
The parameters λ−, λ+ and η, which all depend on k1 and
k2, provide some degree of freedom to ensure (11).

It is evident that (11) can not be satisfied for any arbitrary
set of initial errors e0, x0 and any h. Therefore, the result
of Theorem 1 is a local convergence result. However, we
emphasize that the condition (11) appears because in the
proof of Theorem 1 a switched Lyapunov function is used.
Each switch induces a growth in the value of the Lyapunov
function, and this growth, at the same time, requires to
impose (11) in order to ensure that in average the Lyapunov
function decreases. For this reason, it is the belief of the
authors that condition (11) is not essential for the actual
estimator convergence, but rather a consequence of the
employed technique of proof. In addition, for the considered
application in this paper, i.e., frequency estimation in power
systems, the condition (11) can be expected to hold in most
practical scenarios. This is also demonstrated via numerical
examples in Section VI.

In the next section, we present the convergence analysis
and the proof of Theorem 1. As outlined previously, the anal-
ysis is performed by using a switched Lyapunov function.
This strategy corresponds to the one used in [19], and with
it, we recover the main properties of the algorithm introduced
in the aforementioned reference.

V. CONVERGENCE ANALYSIS AND PROOF OF THEOREM 1

The study of the algorithm convergence is equivalent to the
study of the stability of its error dynamics. With the purpose
of finding the error dynamics, define e(t) = ŷ(t)− y(t) and



i 1 2 3 4
sign(b1(t)) -1 1 1 -1
sign(b2(t)) 1 1 -1 -1

pi1 1 -1 -1 1
pi2 -1 -1 1 1

TABLE I
DEFINITION OF pi IN TERMS OF THE SIGN OF b(t).

x(t) = ω̂(t)−ω(t) as error variables. The time derivative of
them yields the error dynamics

ė(t) = −k1ψ1

(
e(t)

)
+ b(t)x(t),

ẋ(t) = −k2b>(t)ψ2

(
e(t)

)
− ξ(t).

(12)

Since the dynamics of x(t) has a discontinuity in the set
e = 0, the solutions of (12) have to be understood in the
sense of Filippov [28]. To analyze the stability of the solution
{e(t) = 0, x(t) = 0}, we follow [19] and use multiple
Lyapunov function candidates depending on the sign of b(t).
Such approach is totally analogous to standard methods used
to study the stability of switched systems [29]. The structure
of the employed Lyapunov function candidates is as follows:

Vi

(
e, ω̃
)

= ζ>Piζ, ζ :=

[
ψ1(e)
x(t)

]
, Pi =

[
p1I2 pi

p>i p2

]
,

for i = {1, 2, 3, 4}, and positive design parameters p1 and
p2. Let p>i = [pi1,pi2] and b>(t) = [b1(t), b2(t)]. The value
of pi depends on the sign of b(t) as it is shown in Table I.
Hence, Pi is positive definite iff p1p2 > 2. By choosing p1 >
0, this can be easily verified from the Schur complement p2−
2p−11 > 0. Each Vi is a valid Lyapunov function candidate
because each is a quadratic form of ζ and ‖ζ‖ → ∞ when
‖{e, x}‖ → ∞.

The idea of the proof is to show that the time derivative
of each Vi is negative definite during the period of time
where the sign of b(t) corresponds to the i-th interval, see
Table I, and thus the estimation error decrease during that
time. However, since each Vi defines different level sets, it
is also necessary to analyze how these level sets intersect
each other in each change of Lyapunov function. For these
reasons, the proof is split into two steps: the decrease analysis
of the Lyapunov functions Vi and the effect of the change
of the Lyapunov function.

A. Decrease of the error between sign changes
The time derivative of each Vi can be computed as

V̇i(t) = ζ>(t)Piζ̇(t) + ζ̇>(t)Piζ(t). The time derivative
of ζ(t) (where it exists) can be expressed in the following
manner:

ζ̇(t) =
1

2 ‖e(t)‖ 1
2

A(e, t)ζ(t) + Ξ(t),

A(e, t) =

[
−k1G(e) G(e)b(t)

−2k2b
>(t)G(e) 0

]
,

where G(e) = 2I2 − e e>/‖e‖2, and Ξ>(t) = [0, −ξ(t)].
Then, the derivative of each Vi results in

V̇i(t) =
1

‖e(t)‖ 1
2

ζ>(t)
(
PiA(e, t) +A>(e, t)Pi

)
ζ(t)

+ 2 ζ>(t)PiΞ(t).

(13)

By noting that G(e) = G>(e) as well as G(e)ψ1(t) =
ψ1(e), and defining the matrix Q(e, t)

Q(e, t) =

[
Q11(e, t) Q12(e, t)
Q>12(e, t) q22(e, t)

]
,

where

Q11(t) = 2 k1p1I2 + 2 k2
(
pib
>(t) + b(t)p>i

)
,

Q12(t) = k1pi +
(
2 k2p2 − p1

)
b(t),

q22(e, t) = −p>i G(e)b(t)− b>(t)G(e)pi,

we can rewrite (13) as

V̇i(t) = −
ζ>(t)Q(e, t)ζ(t)

2 ‖e(t)‖
1
2

− 2 ξ(t)(ψ>1 (e(t))pi + p2x(t)). (14)

Now we proceed to bound the disturbance term. Given the
assumed bound on ξ(t), we have

4 ∆

2 ‖e(t)‖ 1
2

(√
2ψ>1 (e(t))ψ1(e(t)) + p2‖e(t)‖

1
2 |x(t)|

)
≥

2 |ξ(t)|
∣∣ψ>1 (e(t))pi+p2x(t)

∣∣,
where we have used the fact that ‖ψ1(e(t))‖2 = ‖e(t)‖. Let
ε1 > 0. By Young’s inequality we have

2 p2∆‖e(t)‖
1
2 |x(t)| ≤ 2

p22∆2

ε1
‖e(t)‖+

ε1
2
x2(t).

Hence, the disturbance term can be bounded as

1

2 ‖e(t)‖ 1
2

ζ>(t)Rζ(t) ≥ 2 ξ(t)(ψ>1 (e(t))pi + p2x(t)), (15)

with R = diag{4(
√

2∆ + p22∆2/ε1)I2, ε1}. Now, by
combining (14) and (15) we obtain the following bound
for the time derivative of Vi: V̇i(t) ≤ −ζ>(t)

(
Q(e, t) −

R
)
ζ(t)/(2 ‖e(t)‖1/2). Additionally, we are interested in find-

ing γ > 0 such that Q(e, t)−R ≤ γ Pi. This will imply that

V̇i(t) ≤ −
γ

2 ‖e(t)‖ 1
2

Vi(t). (16)

Hence, we need to find positive constant values of p1, p2,
k1, k2, ε1 and γ such that the matrix Q(e, t)− R − γ Pi is
positive definite.

Define the matrix Γ(t) = −pib
>(t) − b(t)p>i . Recall

the regressor b(t) defined in (5) and the definition of pi
in Table I. Then, computing the eigenvalues of Γ(t) yields
λ1,2

(
Γ(t)

)
= ‖y(t)‖1 ±A

√
2. Furthermore, q22(e, t) can be

written as

q22(e, t) = 4 ‖y(t)‖1 −
1

‖e(t)‖2 e
>(t)Γ(t)e(t) ≥

(
3−
√

2
)
A.

Thus, we have q22(e, t)−R22− γ p22 ≥ (3−
√

2)A− ε1−
γ p2. Set ε1 = (2 −

√
2)A, then q22(e, t) − R22 − γ p22 ≥

A − γ p2. Now, the Schur complement of (Q(e, t) − R −
γ Pi)/(q22(e, t)−R22 − γ p22) can be bounded as:

Q11(t)−R11 − γ p1I2 −
∥∥Q12(t)− γ pi

∥∥2
A− γ p2

I2.

By noting that pi = −sign(b(t)) in each interval we have

Q12(t) =

[
sign(y2(t))

(
k1 − (2 k2p2 − p1)|y2(t)|

)
−sign(y1(t))

(
k1 − (2 k2p2 − p1)|y1(t)|

) ] .



By choosing p1 = 2 k2p2 − k1/A, Q12(t) becomes

Q12(t) =

[
sign(y2(t))k1

(
1− |y2(t)|/A

)
−sign(y1(t))k1

(
1− |y1(t)|/A

) ] ,
with ‖Q12(t)‖2 ≤ 2 k21 . Note that ‖Q12(t)−γpi‖2 ≤ 4(k21+
γ2). By using these inequalities, the Schur complement of
Q(t) can be bounded from below by

2 k1

(
2 k2p2 −

k1
A

)
I2 − γ

(
2 k2p2 −

k1
A

)
I2 − 4

√
2Ak2I2

− 4

(√
2∆ +

∆2p22√
2A(
√

2− 1)

)
I2 − 4

k21 + γ2

A− γ p2
I2.

The above expression can be made non-negative if

γ p2 ≤ A, k1 ≥
√

2
A

p2
+
γ

2
, k2 ≥

n(k1, γ,∆, A, p2)

d(k1, γ, A, p2)
, (17)

where

n(k1, γ,∆, A, p2) = 4A(
√

2− 1)
(
k21 + γ2

)
+
(
A− γ p2

)
×

×
(

2
√

2∆
(
∆ p22 + 2(

√
2− 1)A

)
+ (
√

2− 1)(2 k1 − γ)k1
)
,

d(k1, γ, A, p2)=2A
(√

2−1
)(
A−γp2

)(
p2(2k1−γ)−2

√
2A
)
.

If k1, k2, p2 and γ are chosen such that the previous inequal-
ities are satisfied, we otbtain inequality (16). Furthermore, by
noting that ‖e(t)‖1/2 ≤ ‖ζ(t)‖ ≤ V 1/2

i (t)/λ
1/2
min(Pi), we can

write (16) as a differential inequality of Vi:

V̇i(t) ≤ −αV
1
2

i (t); α :=
1

2
γ λ

1
2
min(Pi). (18)

By the Comparison Lemma [30] and using separation of
variables, we have

V
1
2

i (t) ≤ max

{
V

1
2

i (t0)−
α

2

(
t− t0

)
, 0

}
. (19)

This allows to estimate the decrease of Vi(t) in any time
interval t ∈ [t0, T ], T ≥ h, between switches.

B. Effect of the sign change
In the previous section we have proven that in between

sign changes each of the Lyapunov functions Vi decreases.
However, given the differences between each Pi, the level
sets of the Lyapunov functions do not necessarily contain
each other. Thus, after a switch, we can not initialize the
next Lyapunov function with the same value as the previous
one. To address this issue, we have to analyse when ci ≥
Vi implies that cj ≥ Vj for some ci, cj > 0, i 6= j,
i, j = {1, 2, 3, 4}. This can be done using the S-Procedure
[31, pp. 655] (see also [19, Lemma 1]). Following the S-
Procedure, we need to find η > 0 such that

η

[
Pi 0
0 −ci

]
−
[
Pj 0
0 −cj

]
≥ 0.

This automatically means that cj ≥ η ci. Given the structure
of each Pi, η has to be greater than 1. Now, we can focus
our analysis in the first block of the resulting matrix:[

(η − 1)p1I2 ηpi − pj

? (η − 1)p2

]
.

To find conditions over η that renders this matrix positive
semidefinite, we can use again the Schur complement, which
in this case is:

(η − 1)p1I2−
1

(η − 1)p2

(
η pi − pj

)(
η pi − pj

)> ≥
(η − 1)p1I2 −

‖ηpi − pj‖2

(η − 1)p2
I2 ≥ 0.

Additionally, from Assumption 1.2 and the structure of y(t),
we know in which order we have to switch the Lyapunov
functions: V1 → V2 → V3 → V4 → V1. Then, we only need
to compute the difference between contiguous pi, which
yields in all cases ‖ηpi − pj‖2 = 2(1 + η2). Using these
bounds, we found the following condition that ensure the
level set inclusion:

η ≥
p1p2 + 2

√
p1p2 − 1

p1p2 − 2
= 1 +

2 + 2
√
p1p2 − 1

p1p2 − 1
. (20)

Note that when p1p2 → ∞, η → 1. Then, η is always
greater than one.

If we take the equality in (20), the level sets are not proper
contained, but rather they are tangent. Taking this value for
η, we can initialize the Lyapunov function as Vj = η Vi,
where j follows i in the order discussed above.

After the n-th switch, the Lyapunov function in turn can
be bounded in terms of the initial value of the first Lyapunov
function as:

Vi(t0 + nh) ≤
(
η

n−1
2 V

1
2

1 (t0)−
αh

2

n∑
i=1

η
i−1
2

)2

.

Then, to have convergence, the sum term has to grow faster
than η

n−1
2 . Consider the term inside the brackets. If we

divide it by the square root of the initial condition and we
simplify the sum, we get η

n−1
2 − c(η n

2 −1)/(η
1
2 −1), where

c = αh/(2V
1
2
1 (t0)). Then, if there exists an integer n > 0

such that η
n−1
2

(
1 − (1 − c)η

1
2

)
≥ c, there is finite-time

convergence. This happens iff c ≥ 1−1/η
1
2 or, equivalently,

1

4
γ hλ

1
2
min(Pi) ≥ V

1
2

1 (t0)

(
1−

1

η
1
2

)
. (21)

Notice that this conditions tie the convergence to the initial
error. However, for any positive γ and h, the uniform finite-
time convergence can be ensured for a sufficiently small
initial error.

C. Convergence conditions
To guarantee the uniform finite-time stability of {e(t) =

0, x(t) = 0} we have to chose positive p2, γ, k1 and k2 that
satisfy (17). Then, using these values we have to compute η
as in (20) together with the smallest eigenvalue of each Pi
and check if (21) is met for a given h and Vi(t0). Up to this
point, we have as degree of freedom the constants mentioned
above. With the purpose of giving a precise set of gains, we
start by setting p2 = 1 and γ = A/2. This simplifies (17)
and by the introduction of c > 0 allows to choose k1 and k2
as in (8). With the use of these gains, one has to verify (21)
which reduces to

1

8
Ahλ

1
2
min(Pi) ≥ V

1
2

1 (t0)

(
1−

1

η
1
2

)
, (22)

where η can be computed as in (9). Note that for all i =
{1, 2, 3, 4} we have

λmin(Pi) =
1

2

(
p1 + p2 −

(
8 + p21 − 2 p1p2 + p22

) 1
2

)
,

λmax(Pi) =
1

2

(
p1 + p2 +

(
8 + p21 − 2 p1p2 + p22

) 1
2

)
,

and by substituting p1 = 2 k2−k1/A and p2 = 1, the above
expressions are equivalent to λ− and λ+ defined in (10).
Since λmax(Pi)‖ζ(t0)‖2 ≥ Vi(t0), then Ahλ

1/2
min(Pi)/8 ≥

λ
1/2
max(Pi)‖ζ(t0)‖(1 − 1/η1/2) implies that (22) is satisfied.

This condition is the one used in Theorem 1, which hence
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Fig. 1. Frequency tracking exhibited by the proposed estimator (7) and
the SRF-PLL.
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Fig. 2. Logarithmic plot of the frequency estimation error with the proposed
algorithm (7).

summarizes all findings of the derivations detailed in this
section.

VI. SIMULATION EXAMPLE

We test the proposed frequency estimator (7) by using an
AC signal of unitary amplitude, i.e., A = 1. We assume that
initially its frequency is constant for t ∈ [0, 1), i.e., ω(t) =
2π 50. This corresponds to a nominal, stationary power
system operation. Then, at t = 1 [s] a disturbance occurs
and, as a consequence, the frequency starts to vary. We
assume that this variation can be described by the following
signal ω(t) = 2π(50 − 4 exp(−0.13(t − 1)) sin(0.15(t −
1)) + 0.2 sin(0.8(t − 1))) for t ≥ 1. This frequency signal
follows the under-frequency profile proposed in [32] plus
an oscillating term. A direct calculation shows that the
derivative of ω(t) is bounded by ∆ = 3 ≥ |ω̇(t)|.

For the given signal amplitude A = 1, ∆ = 3, and for
c = 16.05, we obtain the gains k1 = 17.7 and k2 = 50
from Theorem 1 for the proposed estimator (7). Its initial
conditions are set to ŷ1(0) = 1, ŷ2(0) = 0, and ω̂(0) =
2π 48.

We compare the performance of our proposed approach
with the standard SRF-PLL [4]. The PI filter of the SRF-
PLL is configured with a proportional gain of kp = 13×103

and an integral gain of ki = 60 × 103. The result of the
estimation process is shown in Figure 1. It can be seen
that the proposed time-varying super-twisting algorithm (TV-
STA) tracks the frequency exactly, whereas the SRF-PLL
introduces a “phase shift”. In Figure 2 the absolute value
of the frequency estimation error for the TV-STA is shown
on a logarithmic scale. The high slope at the beginning
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Fig. 3. Absolute value of the frequency tracking error corresponding to
the proposed algorithm (7) and the SRF-PLL.
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Fig. 4. Absolute value of the frequency tracking error in the presence of
noise corresponding to the proposed algorithm (7) and the SRF-PLL.

is an indicator of the finite-time convergence. In Figure 3
the absolute values of the errors produced by the different
estimators are presented. Whereas the TV-STA provides the
exact value, the SRF-PLL commits an error as high as 60
[mHz].

The algorithms are also tested in the presence of noise. For
this purpose, a Gaussian noise of zero mean and 7 × 10−6

variance was added to the measured signal (around 1%
of the signal amplitude). The estimation results are shown
in Figure 4. It can be seen that the performance of the
TV-STA is more affected by the noise than that of the
SRF-PLL. However, the effect of the time variation of the
frequency still has a very significant impact on the SRF-
PLL performance. In Figure 5, it can also be seen that
despite the presence of noise the proposed TV-STA does
not introduce a “phase shift” in the estimate, while the SRF-
PLL does, hence making the TV-STA more competitive even
in this noisy scenario. We note that the integral gain ki of
the SRF-PLL was chosen fairly large to compensate for the
time variation of the frequency. However, enlarging it even
more will mainly increase the effect of the noise rather than
mitigate the effect of the frequency variation.

VII. CONCLUSIONS

In this work, a time-varying version of the super twisting
algorithm is proposed to estimate the instantaneous fre-
quency of a symmetric three phase AC signal. In contrast
to existing approaches, the algorithm is capable of exactly
tracking a time-varying frequency signal. An expression for
the algorithm’s gains is provided in terms of the signal
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Fig. 5. Zoomed-in snapshot of the frequency tracking in the presence of
noise exhibited by the proposed estimator (7) and the SRF-PLL.

amplitude and its maximum rate of change. These gains
ensure the algorithm’s convergence when the initial error
is sufficiently small, i.e., it is a local convergence result.
However, it is the authors believe that this restriction is
imposed by the method of proof and that it is not an inherent
property of the algorithm.

The performance of the algorithm is illustrated in simu-
lation examples under nominal and disturbed circumstances.
This performance is compared with a standard SRF-PLL. As
established in the analysis, the proposed method is capable
of exactly tracking a time-varying frequency under nominal
conditions, whereas the SRF-PLL exhibits a significant error
due to the time variation of the frequency. In the presence of
noise, the exact convergence property is lost, but the estimate
can closely track the frequency profile without dephasing,
contrary to what happens with the SRF-PLL.

Future work aims to establish a global result, a broader
set of admissible gains and to extend the applicability of the
proposed algorithm to the case of measurements corrupted
by harmonics.
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