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ABSTRACT Rich feature extraction is essential to train a good machine learning (ML) framework. These
features are generally extracted separately from each modality. We hypothesize that richer features can
be learned when modalities are jointly explored. These joint modality features can perform better than
those extracted from individual modalities. We study two modalities, physiological signals–Electrodermal
activity (EDA) and electrocardiogram (ECG) to investigate this hypothesis. We investigate our hypothesis
to achieve three objectives for subject-independent stress detection. For the first time in the literature,
we apply our proposed framework in the frequency domain. The frequency-domain decomposition of the
signal effectively separates it into periodic and aperiodic components. We can correlate their behaviour by
focusing on each band of the signal spectrum. Second, we show that our framework outperforms late fusion,
early fusion and other notable works in the field. Finally, we validate our approach on four benchmark
datasets to show its generalization ability.

INDEX TERMS Stress detection, ECG, EDA, frequency band, auto-encoder, CRNN, SE module.

I. INTRODUCTION
Stress is defined as the nervous system’s reaction to a danger
or an instruction [1]. Stress has been taken seriously in recent
years as it affects many people. This tendency could be due
to changing work styles, cultural demands, varying lifestyles,
etc. [2]. In some circumstances, stress can be beneficial up to
a point in high-pressure situations such as at work, exams,
and so kind. Stress is no longer beneficial once it crosses a
certain level; it also harms an individual’s emotional state,
health, quality of life, and productivity [3]. If certain events
occur frequently and a person becomes highly concerned,
the body will be stressed for the rest of the time, leading
to severe health issues [4]. As a result, the importance of
stress detection systems has grown compared to the situation
that existed a decade ago. Protecting individuals from the
growing effects of stress is critical, mainly because stress is
unavoidable. As a result, timely stress diagnosis and control
are crucial for improving an individual’s mental health and
overall well-being [5].
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Automatic stress detection mainly uses three modali-
ties: psychological, physiological, and behavioral [6]. The
Hypothalamic Pituitary Adrenal (HPA) axis and the Auto-
nomic Nervous System (ANS) are the two key components
that respond to stress by attempting to restore physiological
balance [7]. This is caused by changes in heart activity,
sweat gland activity, skin temperature, etc. As effective stress
markers, physiological signals can thus provide information
onANS activity. In addition, among the physiological signals,
ECG and EDA provide a realistic view of an individual’s
stress level [8].

The frequency-domain analysis of physiological signals
has received less attention than the time-domain analy-
sis. The signal’s transitory properties can be used to com-
prehend the signal’s frequency-domain interpretation [9].
Frequency-domain analysis for stress detection has received
little attention. When looking for periodic behavior in a sig-
nal, frequency-domain analysis comes most in handy. [10].
This paper describes a joint modality feature learning method
for stress detection in the frequency domain. The proposed
method uses a deep neural network to learn joint-modal map-
ping. The ECG and EDA frequency bands are identified, and
features are extracted from the PSD. These features are used
for joint modality feature learning.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 57201

https://orcid.org/0000-0001-6133-0749
https://orcid.org/0000-0001-9441-7074
https://orcid.org/0000-0002-9616-7942
https://orcid.org/0000-0002-0671-822X


K. Radhika et al.: Joint Modality Features in Frequency Domain for Stress Detection

This study differs from earlier works in the following
aspects. Most physiological signal-based stress detection
studies used time-domain and time-frequency-domain fea-
tures. Frequency-domain analysis, despite its importance,
receives less attention than time-domain analysis. As a result,
we incorporate joint modality feature learning in the fre-
quency domain for stress detection in this study. We use
autoencoders to learn joint representation from different
modality features. ECG and EDA’s frequency bands, which
contribute the highest to stress detection, are also evaluated.

The main contributions of this work are summarized as
follows:

1) Frequency domain analysis is performed on ECG and
EDA signals. The frequency bands of the ECG and
EDA have been identified.We analyze the performance
of each frequency band of ECG and EDA separately to
identify the band that performs best for stress detection.

2) The ECG and EDA signals are divided into fixed dura-
tion segments of varying lengths. The above-developed
frequency analysis framework is investigated for each
segment duration separately to study the influence of
segment duration on overall performance.

3) We propose an Auto-encoder-based framework to learn
joint modality feature representation from ECG and
EDA signals. Results obtained by using all the bands
(whole signal) and individually performing the best
bands (band-level) are analyzed.

4) We build an optimal CRNN-SE model consisting of
convolutional and Long Short Term Memory (LSTM)
layers and Squeeze-Excitation modules for use as a
classifier in all of our experiments.

5) Finally, we evaluate the developed framework on
four benchmark datasets to study the generalization
capability.

The remaining paper is structured as follows. Section II
reviews recent works on joint modality feature learning and
frequency domain analysis of physiological signals. The
research gap has been identified, and the objectives of the
current proposal have been established. Section III contains
details of our proposed frameworks. Section IV presents the
results obtained and analysis performed on four benchmark
datasets. Section IV-E compares the performance of the pro-
posedmethod with other appropriate methods from the recent
literature, and Section V concludes the paper.

II. RELATED WORKS
This section reviews prior works in joint modality feature
learning and frequency domain analysis on physiological
signals.

A. JOINT MODALITY FOR NON PHYSIOLOGICAL
SIGNAL APPLICATIONS
Zhen et al. [11] proposed a CNN based cross-modal learning
framework text-image matching.The modalities used were
images and text. Two sub-networks (an image CNN and a text

CNN) with weight sharing constraints at the fully connected
layer were developed to learn the cross-modal correlation
between the modalities. Discrimination loss was used for
cross-modal learning. A linear classifier was trained using the
features obtained from the cross-modal representation space.
For text-image matching, a modality invariant framework
was proposed by Liu et al. [12]. The proposed framework
fine-tunes a pre-trained CNN image network and text RNN
network with an auxiliary adversarial loss to improve the dis-
tribution consistency of the two groups of embeddings (image
and text). The distributions of images and text were more
similar after adversarial learning, which improved retrieval
accuracy.

A cross-modal representation for audio-video retrieval was
proposed by Surís et al. [13]. Visual audio embeddings were
obtained by projecting them into a common feature space
with deep neural networks. The joint features were used for
a retrieval task that generated a query from either of the two
modalities. Cross-entropy was employed as the classification
loss function. This loss is optimized with the cosine similarity
loss to provide the best results.

A modality-invariant (MI) representations for multimodal
sentiment analysis was proposed by Hazarika et al. [14].
Text, image and video were used for multiclass classification
using Transformer. Joint modality features were obtained by
training encoder with text, image and video. In MI learning,
all modalities for the task are mapped to a common subspace
for distributional alignment. Although multimodal data come
from a variety of sources, they are all used to achieve the same
goal. Individual modalities are projected into a common sub-
space and aligned by minimising the loss of Central Moment
Discrepancy (CMD). The learned representations are used as
joint modality feature representations.

B. AUTOENCODER BASED WORKS IN
FREQUENCY DOMAIN
A Frequential Stacked Sparse Auto-Encoder (FSSAE) was
proposed by Feng et al. [15] for detecting Sleep Apnea (SA)
using ECG features. The RR intervals are the input to
the FSSAE module. This module transforms time-domain
RR intervals into frequency-domain RR intervals. Mean
Square Error (MSE) was used to calculate the reconstruc-
tion loss. Features retrieved from the hidden layer were
used to train a separate Time-dependent, cost-sensitive
(TDCS) model. An auto-encoder-based system for detect-
ing epilepsy using electroencephalogram (EEG) data was
proposed by Sharathappriyaa et al. [16]. Harmonic Wavelet
Packet Transform (HWPT) and the Katz approach (yield-
ing Fractal Dimension (FD)) are applied to the source EEG
signal. The FD and HWPT outcome was supplied into
an auto-encoder to map a high-dimensional vector into a
lower-dimensional embedding. This lower-embedded fea-
ture vector was found to yield higher classification rates.
The cost function used to train the autoencoder was MSE.
An approach for classifying emotional states in the plane of
valence-arousal using a stacked autoencoder was proposed
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FIGURE 1. An overview of the proposed framework: divided signals into respective frequency bands and extracted features from the bands.
Joint feature learning is performed by passing concatenated ECG and EDA features as input to the JMAE module. The joint features from the
JMAE module is given as input to the classifier for stress detection.

by Bagherzadeh et al. [17]. Physiological signals from the
DEAP database, including electromyogram (EMG), elec-
troencephalogram (EEG), and other peripheral signals, were
used. Time and spectral features were extracted from these
source signals. These features were used to train multiple
stacked autoencoders. MSE was used as the reconstruction
loss. The majority voting method was used to make the final
classification decision. A Supervised Denoising Autoen-
coder (SDAE) to learn a low-dimensional representation of
ECG dynamics to detect false arrhythmia alarms was pro-
posed by Lehman et al. [18]. MSE and binary cross-entropy
were used to calculate the reconstruction and classification
losses.

However, the use of autoencoders for joint modal fea-
ture learning in physiological signals, particularly in the fre-
quency domain, has received relatively little attention. Hence,
we propose a framework for subject-independent stress detec-
tion using features extracted from the ECG and EDA signals.

III. METHODOLOGY
An outline of the proposed framework is given in Figure 1.
Frequency bands of EDA and ECG signals are identified.
Features are extracted from the PSD. These features are used
to learn a joint modality feature representation using an Auto-
encoder. The obtained joint modality features are used to
train a CRNN-SEmodel to differentiate between stressed and
unstressed subjects. Each of themodules is explained in detail
below.

A. DATASET DETAILS
The following four benchmark datasets are used in this study.

1) ASCERTAIN
The electroencephalogram (EEG), EDA, ECG physiologi-
cal signals, and facial activity recordings of 58 subjects are
included in this dataset. The average age of the partici-
pants was 30. The physiological signals produced by sub-
jects watching the emotional video were recorded. 36 video
clips from [19] were used. The length of the videos was
58 to 128 seconds. The sampling rate of EDA and ECG

FIGURE 2. Stress is mapped to the upper left quadrant in 2-D circumplex
model of valence-arousal proposed by [22], i.e. High Arousal Low Valence
(HALV).

was 128HZ, and ECGwas 256HZ, respectively. The subjects
were asked to give valence arousal ratings on a 7-point scale,
expressing their emotional perception after seeing each video
clip. Valence rating ranges from −3 to 3, and arousal rating
ranges from 0 to 6 [20]. Based on the Valence and Arousal
ratings [21], we assigned stress labels as 1 and unstressed as
0 respectively. In the 2-D valence arousal plane, as shown in
the Figure 2, HALV is considered as stressed. As a result,
those with high arousal and low valence were labeled as
stressed, and others as unstressed. The mean value of the
ratings is used to determine whether arousal or valence is high
or low.

2) CLAS
The Plethysmography (PPG), EDA, and ECG physiologi-
cal data were collected from 62 subjects with a mean age
of 20. The sampling rate was 256 Hz. Most of the sub-
jects were students. The subjects are involved in five dif-
ferent activities, including three problem-solving tasks and
two perceptive tasks. Image and video-clip stimuli were
used for provoking the emotional reactions of subjects in
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perceptive tasks. 16 emotionally classified 30-second clips
from the DEAP database [23] were used as video-clip
stimuli. We had 59 subjects after eliminating subjects who
didn’t have complete information. Stress labels were assigned
using pre-defined stimulus tags, which are provided in the
dataset [24].

3) MAUS
The dataset captured simple physiological signals under
various mental load situations. The N-back task was
used to create a mental workload in 22 subjects, 20 of
whom were male, and 2 of whom were female. GSR,
Wrist-PPG, Fingertip-PPG, and ECG signals were recorded
for 35 minutes with a sampling rate of 100 Hz for Wrist-PPG
and 256 Hz for others. There was a five-minute rest period
at the start of the trial. The N-back task of six trials was
performed after a rest interval. The subject had to remember
the last N one-digit value in a succession of quickly showing
digits in the N-back task. The participant was instructed to
reply by pressing the space bar on the keyboard when a
stimulus was identical to the N-th number before the stimuli
number. The intricacy of the tasks served as ground truth.
As the more significant level of N generates a greater level
of mental effort, 2 and 3-back tasks were labeled as ‘‘high’’
mental workload states, and 0-back tasks were labeled as
‘‘low’’ [25].

4) WAUC
The study involved 48 participants who performed the NASA
Revised Multi-Attribute Task Battery II under three different
activity level conditions. The speed of a stationary bike or
a treadmill was changed to manipulate physical activity. Six
neural and physiological modalities were recorded during the
activity: ECG, EDA, breathing rate, electroencephalography,
skin temperature, blood volume pulse, and 3-axis accelerom-
eter. After each experimental section, subjects were asked
to complete the NASA Task Load Index questionnaire. The
NASA Task Load Index questionnaire rating was converted
to a binary value and subjects were labeled (low mental
workload or high mental workload) using the average rating
as a threshold, which is given in the dataset [26]. We had
45 subjects after removing those subjects who lacked the
necessary information.

For subject independence, we fixed training and testing
subject IDs. The first 42, 43, 18 and 36 subject samples of
ASCERTAIN, CLAS, MUAS and the WAUC dataset respec-
tively are used for training. The remaining 16 subject samples
of ASCERTAIN, CLAS, 4 subject samples of MUAS and
9 subject samples of WAUC dataset are used for testing.
We addressed the class imbalance problem by applying the
Synthetic Minority Oversampling Technique (SMOTE) [27]
to training data.

B. FREQUENCY BAND AND FEATURE EXTRACTION
Based on prior works in the literature by Kwon et al. [28],
Rakshit et al. [29] and Hsu et al. [30] to find the acceptable

FIGURE 3. An overview of the proposed Auto-encoder to learn the joint
modality representation. ECG and EDA features are concatenated
(UECG_EDA) and given as input to the encoder. The embedded layer
outcome h2(.) is taken as joint modality feature representation and used
to train a CRNN-SE model.

sampling frequency range of ECG, we observed three
major bands in the frequency spectrum – Very Low Fre-
quency (VLF) band 0.0-0.04 Hz, Low Frequency (LF) band
0.04–0.15 Hz, and High Frequency (HF) band 0.15–0.40 Hz.
Based on prior works in the literature by Shukla et al. [9]
and Ghaderyan et al. [31], we observed five major bands
in the frequency spectrum – a band 0.05-0.15 Hz, b band
0.15-0.25 Hz, c band 0.25-0.35 Hz, d band 0.35-0.45 Hz and
e band 0.45-0.50 Hz.

Power spectral density (using Welch’s approach) of the
Heart Rate Variability (HRV) extracted from each band of
ECG is computed. The python library’s frequency module
pyHRV [32] is used for this purpose. From these PSDs com-
puted, we extracted a total of 51 frequency-domain measures
including Peak, relative powers, logarithmic powers, abso-
lute powers, and so on. Complete list of the 51 measures
are available in [32]. Power spectral density (using Welch’s
approach) of each band of EDA is computed. From these
PSDs, we extracted a total of 40 (5 bandswith 8 features each)
statistical features such as mean, median, min, max, variance,
standard deviation, kurtosis and skewness.

C. AUTO-ENCODER BASED JOINT MODALITY
LEARNING MODULE
ECG and EDA modalities are simultaneously mapped to a
single subspace, and we use adversarial learning to learn
this subspace, termed as joint modality. Different from the
other works in the literature, we investigate this joint (also
referred as shared, cross, common subspace in the literature)
modality subspace in the frequency domain for the first time.
We propose an auto-encoder based framework to achieve this
objective. The architecture of the proposed Joint Modality
Auto-encoder (JMAE) is shown in Figure 3.
Firstly, we concatenate the ECG features, UECG and

EDA features UEDA into one single vector input, UECG_EDA.
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The first, second and third fully connected layers are h1(.),
h2(.) and h3(.) respectively. The last layer is an output layer,
Yjoint of the length same as the input vector UECG_EDA. The
first, second and third hidden layers constitute the parameter
vector θ (.) to be learnt by minimizing a cost (reconstruction)
function. The cost function is selected such that the distribu-
tions of ECG and EDA are aligned in the joint subspace.

Algorithm 1 Pseudo-Code for JMAE
1: procedure INPUT: UECG_EDA(concatenated ECG and

EDA features)
2: PARAMETERW :Weights of the hidden layers h1(.),
h2(.) and h3(.)

3: Wh1 ,Wh2 ,Wh3 ← random // Hidden layer
initialization

4: YECG_EDA← null // Reconstructed input UECG_EDA
5: l ← batch No
6: i← 0
7: while i <= l do
8: // The encoder function converts input UECG_EDA

into a hidden representation hn(.):
9: Yh1 = fh1(UECG_EDA,Wh1 )

10: Yh2 = fh2(UECG_EDA,Wh2 )
11: Yh3 = fh1(UECG_EDA,Wh3 )
12: /* The decoder function returns a Yn from a hid-

den representation hn(.) */
13: YECG_EDA = fY (Yh3,WY )
14: Loss = L(UECG_EDA, Yjoint )
15: minθ (Loss)
16: i← i+ 1
17: end while
18: return θ
19: θ ← Parameters
20: Loss←MSE, Cosine similarity and KL divergence
21: end procedure

Based on different works in frequency domain, we inves-
tigated the following three cost functions – MSE, cosine
similarity, and Kullback-Leibler (KL) divergence. The cost
function will represent the differences between the input
UECG_EDA and the reconstructed Yjoint . The proposed model
was trained with the Adam optimizer using the default learn-
ing rate and 64 as the mini-batch size. The pseudo-code for
training the JMAE is summarized in Algorithm 1.

1) MSE
MSE is calculated, as shown in Eqn. 1, where ai is the target
value - UECG_EDA. and pi is the predicted value - Yjoint . The
cost function value ranges from 0 to ∞. The reconstructed
Yjoint is more similar to input UECG_EDA if the MSE value is
near to 0 else they are dissimilar.

MSE(a, p) =
1
n

n∑
i=1

(ai − pi)2 (1)

2) COSINE SIMILARITY
The cosine similarity is computed between the ai, the target
value -UECG_EDA and pi, the predicted value -Yjoint , as shown
in Eqn.2. The cost function has a value between 0 and 1. The
value near 0 implies that the Yjoint is similar to theUECG_EDA,
while the value near 1 indicates that they are dissimilar.

Cos(a, p) = 1−

∑n−1
i=0 ai · pi√∑n−1

i=0 a
2
i

√∑n−1
i=0 p

2
i

(2)

3) KL DIVERGENCE
The KL divergence is the distance metric that computes the
similarity between the ai, the target value - UECG_EDA and
pi, the predicted value -Yjoint , as shown in Eqn.3. The cost
function value ranges from 0 to ∞. The two distributions
(UECG_EDA and Yjoint ) are similar if the value is close to 0,
else the distributions are dissimilar.

KL(a, p) =
∑
i

ailog
ai
pi

(3)

The results of each loss are compared in the result’s section
Table 3.

D. CLASSIFIER
We selected a CRNN-SE model having 2 convolutional lay-
ers, one LSTM layer and two SE modules as our classifier
in all our experiments. Details for this choice are given in
Appendix A. For frequency domain analysis, each signal is
broken into segments of duration 5 sec each. Details for this
choice are given in Appendix B.

All the models are trained with the Adam optimizer using
the default learning rate and 64 as the mini-batch size. Binary
Cross-Entropy (BCE) given by Eqn. 4 is taken as the loss
function. Here, yi is the actual label and p(yi) is the predicted
label for all the N samples.

BCE(yi, p(yi)) =
1
N

N∑
i=1

yi · log(p(yi))

+ (1− yi) · log(1− p(yi)) (4)

An early-stopping strategy controls the training duration if
the loss does not decrease for 30 epochs in succession. The
accuracy and F1-score is used to evaluate the performance of
various models.

IV. RESULTS AND DISCUSSION
This sections presents the results obtained by applying our
proposed framework on the four benchmark datasets.

A. SELECTION OF FREQUENCY BAND
To study the performance of each of ECG and EDA frequency
band, the features obtained from each band used to train
separate CRNN-SE classifier. Table 1 shows the frequency
band analysis of the ECG dataset, and Table 2 shows the
frequency band analysis of the EDA dataset. The results show
that the HF band (0.15-0.40 Hz) of the ECG and b band
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TABLE 1. Performance of each ECG frequency band.

TABLE 2. Performance of each EDA frequency band.

(0.15-0.25 Hz) of EDA achieved the highest accuracy and
F1 score for all the four datasets. It means frequencies from
0.15-0.25 Hz, both ECG and EDA have features with higher
discriminative capacity for identifying stress. For a hardware
implementation, low pass filter can be used to extract these
richer features from the frequency transform on the ECG,
EDA signals. It will be interesting to pursue if this band range
is valid for other physiological signals e.g. EEG.

TABLE 3. Performance of features obtained from the entire signals and
the features obtained from the highest performing frequency bands.

B. BAND LEVEL VS WHOLE SIGNAL
We investigated the proposed framework on the whole signal
(using all the ECG and EDA frequency bands) as well as
on a band level (using the bands with the highest perfor-
mance, as obtained in Section IV-A). For the whole signal’s
performance, 51 frequency-domain features from the ECG
signal and 40 frequency-domain features from the EDA sig-
nal are used to train a JMAEwhole module. The first hid-
den layer h1(.), second hidden layer h2(.) and third hidden
layer h3(.) are of length 95, 100 and 95. The joint modality
features obtained from the JMAEwhole are used to report
the results in third and fourth columns of the Table 3. For
the band-level performance, 15 frequency-domain features
from the ECG signal i.e., HF band (0.15-0.40Hz) features
and 8 frequency-domain features from the EDA signal i.e.,
b band (0.15-0.25Hz) features are used to train a JMAEband
module. The first hidden layer h1(.), second hidden layer
h2(.) and third hidden layer h3(.) are of length 25, 30 and
25. The joint modality features obtained from the JMAEband
are used to report the results in fifth and sixth columns of the
Table 3. In all the situation, multi-level features outperformed
band-level features performance by 1.7-3.3% (absolute) for
MSE loss function, 1.8-4.0% (absolute) for cosine similarity
and 4.2-5.2% (absolute) for KL divergence.

We validated the proposed model by performing
K-fold cross-validation on the highest performed model
(Loss-MSE). The K value is chosen to be 5. The joint features
obtained from the JMAEmodel are split into 5 folds. Classifi-
cation accuracy and F1-score (mean ± standard deviation) is
given in Table 4. In all the datasets cross-validation results
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FIGURE 4. t-SNE visualization of ASCERTAIN, CLAS, MAUS and WAUC dataset. When compared to individual modalities (UECG_EDA) a close alignment
between two modalities (ECG and EDA) can be observed in the joint features learnt (h2).

TABLE 4. Performance of 5-fold cross-validation on highest performing
model (loss-MSE).

outperformed previous results (Table-3) by 2.7-4% (abso-
lute). We infer that this increase is due to subject dependence
during cross-validation.

C. T-SNE VISUALISATION
To further investigate the joint feature learning achieved
by our model, we plot t-distributed Stochastic Neighbour
Embedding (tSNE) before and after joint feature learning.
The t-SNE approach projects multi-dimensional points onto
two-dimensional or three-dimensional spaces such that if
two points have the same distribution, the resulting projec-
tion keeps them close. Similarly, in the t-SNE projections,
distant points remain far apart. With tSNE, we project the
joint features into a 2-D space. The feature visualization of
UECG_EDA (regular features) and h2(.) (joint features learnt)
using MSE cost function on whole signal of all the bench-
mark datasets are shown in Figure 4. The red dots represent
ECG features, and the green dots represent EDA features.
Joint feature learning aims to bring different modalities fea-
tures to a shared space. In the visualization, we observed
close overlapping among modalities (ECG and EDA) after
joint feature learning. This indicates that the modality

gap between the distribution of modalities is significantly
reduced.

D. GENERALIZATION CAPABILITIES
The proposed model is tested on four benchmark datasets
to assess the proposed framework’s generalization capabili-
ties. These tests ensure that our proposed framework is not
overfitting to a specific dataset collected in a given environ-
ment. We discovered that the performance on all four datasets
followed the same patterns. As a result, we ensured that the
four benchmark datasets we used were gathered in various
scenarios. The CLAS and ASCERTAIN were collected while
subjects watched emotional video clips, MAUS and WAUC
were collected when subjects undergone physical activity.

E. COMPARISON WITH OTHER WORKS
This section contrasts results obtained by our proposed JMAE
framework with recent works on the ASCERTAIN, CLAS,
MAUS and WAUC datasets. An overview of the metrics –
accuracy, F1-score and AUC are given in Table 5.

It is noted that the majority of the stress detection stud-
ies used time and frequency domain features, [24]–[26],
[33]–[36], [39]–[41]. Our proposed JMAE based features
are learned from the frequency domain measures. Hence,
they perform better than the time and frequency domain
feature-based frameworks of ASCERTAIN, MAUS and
WAUC datasets by 15-17%.

Most works [24], [25], [33]–[35], [38], [39] reported per-
formance on subject-dependent scenario. The performance of
these works are usually higher owing to prior knowledge of
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TABLE 5. Comparison with existing stress detection studies.

the testing subject during training process itself. However,
our proposed framework also outperforms those works in
ASCERTAIN and MAUS datasets by 15-27%. Our JMAE
based framework outperformed the subject-independent
stress detection works [26], [36] and [37] by 8-22%.
Few works utilized traditional handcrafted features in

conjunction with Machine Learning (ML) models, such as
Support Vector Machine and Naive Bayes and Random
Forest [24]–[26], [33]–[35], [38], [39]. Few more trained
end–to-end deep learning model such as CNN [36] and [37]
The proposed framework trains a DLmodels and uses the out-
come of DL models (intermediate layer) to train a DL model.
Our framework outperformed existing ML and DL works of
ASCERTAIN, MAUS and WAUC datasets by 8-17%

Using ECG biomarkers several stress related abnormaliti-
esties can be detected (Coronary Artery Disease (CAD [42],
myocardial ischemia [43], stroke, atrial fibrillation, cardiac
arrhythmias [44]). Using EDA/GSR biomarker some other set
of abnormalities caused by stress can also be detected (brain
and heart attack [45], Epilopsy [46], blood pressure [47],
Depression [48]). Traditional approaches built separate clas-
sifiers using these modalities (biomarkers) and then took the
final decision (late fusion techniques) of stressed or not. Our
approach concatenates the two biomarkers (feature fusion till
here) and then learns joint representation (our contribution)
to yield the best feature representation biomarkers for stress
detection. This is in line with the clinical practice of diagnos-
ing by simultaneous monitoring physiological signals to take
decision. Clinical decisions are rarely made by monitoring
only one physiological signal. Our results are performing bet-
ter than other works in the literature that are based on the sin-
gle, early, and late fusion ofmodalities. It is interesting to note
that the band-level features based framework (JMAEband )
performs better than all the other works on ASCERTAIN and

MAUS datasets by 11-15%. This reinforces the richer nature
of our proposed JMAE based features.

The results indicate that learning joint features of different
modalities from the shared space can enhance the perfor-
mance of the models. The proposed model is able to perform
better than other existingworks onASCERTAIN,MAUS, and
WAUS datasets. On the CLAS dataset, the accuracy of [39]
is higher due to the ensemble voting on subject dependent
model.

V. CONCLUSION
We proposed a joint modality features-based framework in
the frequency domain for stress detection. We validated our
framework using physiological signal modalities – EDA and
ECG. Frequency bands of ECG and EDA are identified. Fea-
tures extracted from the PSD are used to train CRNN models
with SE modules. The proposed framework was tested on
four benchmark datasets. The High Frequency (HF) band
(0.15-0.40 Hz) of ECG and b frequency band (0.15-0.25 Hz)
of EDA were found to have the most impact on the overall
performance. Our promising findings encourage us to con-
tinue further study into joint modality learningwithmore than
two modalities.

APPENDIX A
SELECTION OF CRNN ARCHITECTURE
The following sections provide information on selecting the
number and location of different Convolutional layers, LSTM
layers, and SE modules.

A. SELECTION OF CONVOLUTIONAL AND LSTM LAYERS
Referring to Fig 5, we first investigate the CRNN archi-
tecture without any SE modules. Model 1 consists of Con-
volution layer 1, Convolution layer 2, LSTM layer 1, and
LSTM layer 2. Model 2 consists of Convolution layer 1,
Convolution layer 2, and LSTM layer 2. Model 3 consists
of Convolution layer 1, LSTM layer 1, and LSTM layer 2.
Model 4 consists of Convolution layer 1 and LSTM layer 1.
Each convolutional layer is always followed by Batch nor-
malization andmax pool layers. All themodels have two fully
connected layers (FC1 and FC2) and a sigmoid output layer.

Performance of individual modalities on two datasets for
different models is presented in Table 6. Model 2 yielded the
highest performance on ASCERTAIN ECG, EDA, and CLAS
ECG features. Model 4 yielded the highest performance on
the CLAS EDA features. As Model 2 performed best in most
cases, we selected Model 2 architecture consisting of two
Convolutional layers and one LSTM layer for the rest of the
experiments.

B. SELECTION OF SE MODULES
The SE module gained popularity in the ImageNet com-
petition by emphasizing relevant features and suppressing
undesirable ones by feature recalibration [49]. The SE mod-
ule proposed by Hu et al. [50] consists of two operations –
Squeeze and Excitation. The squeezing block employs global
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FIGURE 5. Proposed CRNN model by varying convolutional, LSTM layers and SE modules.

TABLE 6. Performance of CRNN model.

average pooling on the outputs from the previous convolu-
tional block yielding feature maps. To add nonlinearity, these
feature maps are passed through a fully connected layer with
the ReLU activation function. For smooth gating, the ReLu
outcome is passed to the second fully connected layer with a
sigmoid activation function. The output of the sigmoid func-
tion is weighted by the output of the Convolution layer (used
earlier as input to the Squeeze block). The entire process
of fully connected layers and weighing is referred to as an
excitation operation.

Referring to Fig 5, we now investigate Model 2 with differ-
ent numbers and location of SE modules. Model 5 consists of
Model 2 with SEModule 1 only. Model 6 consists of Model 2
with SE Module 2 only. Model 7 consists of SE Modules
1 and 2. Each convolutional layer is always followed by Batch
normalization and max pool layers. All the models have two
fully connected layers (FC1 and FC2) and a sigmoid output
layer. Performance of individual modalities on two datasets
for different models is presented in Table 7. Model 7 yielded
the highest performance in ASCERTAIN EDA, and CLAS
EDA features. Model 5 yielded the highest performance in
ASCERTAIN ECG and CLAS ECG features. We selected
Model 7 architecture for the rest of the experiments using
ECG features and EDA features.

APPENDIX B
SELECTION OF SEGMENT DURATION
Model 7 is used as framework for EDA features and ECG
features. Each signal (ECG/EDA) is divided into segments of
fixed duration. Four cases are considered – 2 sec, 5 sec, 10 sec
and 15sec duration each. In each case, Model 7 is trained, and

TABLE 7. Performance of CRNN model with SE modules.

TABLE 8. Performance on different segmentation time.

the performances obtained are reported in the Table 8. The
highest performance is observed for segment duration 5 sec.
The overall performance of 5 sec segmented signals (Table 8)
rows 2 and 6, for both ECG and EDA features) is higher than
the baseline performance of the full signal (Table 7 rows 1 and
5 for ECG features, rows 3 and 6 for EDA features).
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