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Abstract: While price responsiveness of residential demand for natural gas has important implica-
tions on resource planning and energy modelling, its estimates from prior studies are very diverse.
Applying panel data analysis and five parametric specifications to monthly data for the lower 48 states
in 1990–2019, we estimate own-price elasticities of residential demand for natural gas in the United
States (US). Using results from cross-section dependence (CD) test, panel unit root tests, panel
time-series estimators, and rolling-window analysis, we document: (1) the statistically significant
(p-value ≤ 0.05) static own-price elasticity estimates are −0.271 to −0.486, short-run −0.238 to −0.555
and long-run −0.323 to −0.796; (2) these estimates vary by elasticity type, sample period, paramet-
ric specification, treatment of CD and assumption of partial adjustment; (3) erroneously ignoring
the highly significant (p-value < 0.01) CD shrinks the size of these estimates that vary seasonally,
regionally, and nonlinearly over time; and (4) residential natural gas shortage costs decline with the
size of own-price elasticity estimates. These findings suggest that achieving deep decarbonization
may require strategies that do not rely solely on prices, such as energy efficiency standards and
demand-side-management programs. Demand response programs may prove useful for managing
natural gas shortages.

Keywords: residential natural gas demand; price elasticity; cross-section dependence; panel data
analysis

1. Introduction

Natural gas plays a critical role in the low-carbon future of the United States (US), the
world’s second largest country behind China in energy consumption and CO2 emissions [1].
Specifically, it is often seen as a bridge fuel for displacing coal and oil [2,3] in the US path of
deep decarbonization [4,5]. Further, an electric grid’s reliable integration of emissions-free
but intermittent solar and wind resources may benefit from natural gas-fired generation’s
flexible capacity with quick start and fast ramping capability [6] (The EIA’s Annual Energy
Outlook 2021 press release provides a graphical depiction of renewable capacity expansion.
See: https://www.eia.gov/pressroom/presentations/AEO2021_Release_Presentation.pdf
(accessed on 22 April 2022)).

Figure 1 shows that residential consumption of natural gas in the US is stagnant in
1990–2019. The residential customer class’s consumption share is ~30% in 2019, between
the commercial customer class’s ~20% and the industrial customer class’s ~50%. (While one
may expect the residential class’s total natural gas consumption to grow in tandem with the
US population increase of ~0.94% per year, this expectation overlooks (1) improvements in
the energy efficiency of durable goods; (2) substitution natural gas with electricity for such
end-uses as cooking (e.g., microwave and coffee/tea maker) and space heating (e.g., electric
room heater and heat pump); (3) behavioral change of households (e.g., lower thermostat
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setting for space and water heaters fueled with natural gas); and (4) reduction in space
heating requirements due to improved insulation and weather stripping.). Hence, residen-
tial conservation of natural gas aids the US decarbonization commitment reaffirmed in the
G-20 Rome Summit held in October 2021 to tackle the urgent threat of climate change (https:
//www.governo.it/sites/governo.it/files/G20ROMELEADERSDECLARATION.pdf (ac-
cessed on 22 April 2022)). If residential natural gas consumption is found to be price
insensitive, its price induced reduction is likely de minimis, implying the usefulness of
non-price-based programs like energy efficiency standards and demand-side management
in the US path of deep decarbonization ([5]).
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Figure 1. US annual natural gas consumption by end-use customer class in 1991–2019, recognizing
that annual industrial consumption data are unavailable for years prior to 1997 (Data source: US
Energy Information Agency).

Motivated by the preceding discussion, we estimate price responsiveness of residential
demand for natural gas in the US. Informed by the thirteen selected studies reviewed below,
our panel data analysis uses five parametric specifications: double-log, linear, constant
elasticity of substitution (CES), Generalized Leontief (GL), and Transcendental logarithmic
(TL) [7]. These models yield vastly different formulae for calculating residential natural gas
demand’s own-price elasticity, which may be responsible for the diverse elasticity estimates
reported in Tables 1 and A1. (As our intent is to investigate how these specifications affect
the own-price elasticity’s calculation, we do not perform statistical tests for determining
which specification can yield empirical findings that best comply with the theoretical
properties of an energy cost function [8].)

Table 1. Selected surveys on own-price elasticity estimates of residential natural gas demand.

Study Short Run Long Run

Gillingham et al. (2009) [9] −0.14 to −0.44 −0.32 to −1.89
Al-Sahlawi (1989) [10] −0.05 to −0.68 −1.06 to −3.42

Bohi and Zimmerman (1984) [11] −0.05 to −0.60 −0.26 to −3.17

Our paper is academically interesting and policy important because accurate price elas-
ticity estimates are necessary for energy policy modelling [12,13], resource planning [14–17],
and demand projection [18–20]. They are also useful in analyzing the demand reduction
effects due to carbon taxes [21], the size of price-induced demand reduction [22], an energy
system’s responses to price shocks [23], optimal pricing [24], and welfare assessment of mar-
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ket liberalization [25]. Further, natural gas shortage adversely affects an economy [26,27].
As will be shown below, high price responsiveness implies low natural gas shortage cost.
Hence, accurate price elasticity estimates aid efficient management of a natural gas shortage
(e.g., New England’s shortage due to insufficient capacity to serve the region’s winter peak
demand) (For an account of New England’s winter natural gas shortage, see [28]. Recent
information on New England’s natural gas woes is available at https://www.cmu.edu/
tepper/news/stories/2021/june/new-england-natural-gas-constraints.html (accessed on
22 April 2022)).

To provide our paper’s contextual background, we review 13 selected studies of the
US residential natural gas demand (Unintended to be exhaustive, the selected studies are
found via a two-step process: (1) use scholar.google.com to find an initial list with the
keywords “price elasticity”, “residential natural gas demand” and “United States”; and
(2) shorten the list by considering each study’s relevance to this analysis). Our literature
review is intentionally brief, thanks to antecedent surveys of natural gas demand [10] and
energy demands [11,29–35].

Table A1 summarizes own-price elasticity estimates from various studies, yielding the
following remarks. First, these studies have geographic coverage from a single state to the
entire nation. Second, ten studies use annual data, with the remainder using monthly data
to better model the impacts of prices and weather on residential natural gas consumption.
Third, inter-fuel substitution by residential customers is captured by fuel oil and electricity
prices as additional regressors in 12 studies (While a residential customer may use natural
gas as the primary fuel for cooking, space heating and water heating, inter-fuel substitution
can still occur. Good examples include natural gas oven vs. microwave oven, central gas
space heater vs. portable electric room heater, and central gas water heater vs. electric
kettle). Fourth, the double-log specification is the most popular and used in 11 studies.
The remaining two studies use linear and GL specifications. None use the CES and TL
specifications, despite their popularity in energy demand analyses as noted by [7]. Fifth,
a wide range of econometric estimation methods are used. Sixth, all studies rely upon
average price data. Finally, the elasticity estimates in the last three columns indicate highly
diverse price responsiveness.

Our literature review suggests the following knowledge gaps (KG):

• KG1: None of the studies considers how price responsiveness has changed over time.
• KG2: None of the studies investigates how price responsiveness differs by season.
• KG3: Little is known about how the parametric specification employed in the study

may yield different results. While the critical issue of parametric specification is
decades old [36], all 13 studies presume a particular specification (e.g., the double-log
or GL) sans consideration of known alternatives like the linear, CES, and TL.

• KG4: None of the studies estimates the impact of cross-section dependence (CD) on
the resulting price elasticity estimates.

• KG5: Regional variations in the responsiveness of natural gas to price changes has not
been updated recently, as the study by [37] is already 35 years old.

• KG6: None of the studies uses own-price elasticity estimates to quantify natural
gas shortage costs, thus overlooking demand response (DR) programs for efficient
shortage management.

Our paper has salient features not found in the extant US studies listed in
Table A1. First, it uses a large and recent sample of 17,280 monthly observations
(=48 states × 30 years × 12 months per year) for estimating the US residential natural gas
demand’s static, short-run and long-run own-price elasticities. Second, it documents the
highly significant presence of CD possibly caused by common shocks due to factors such as
federal government policies and regional weather patterns, and interdependence of regres-
sion error terms among states [38]. Third, it reports that erroneously ignoring CD presence
tends to shrink the size of own-price elasticity estimates. Fourth, its monthly own-price
elasticity estimates help determine seasonality in price responsiveness. Fifth, its regional
own-price elasticity estimates update those found 35 years ago. Sixth, its rolling-window

https://www.cmu.edu/tepper/news/stories/2021/june/new-england-natural-gas-constraints.html
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approach documents the nonlinear time trend of the US residential natural gas demand’s
modest price responsiveness. This lends support to the continuation of energy efficiency
standards, and demand-side-management programs as price-induced conservation via car-
bon taxes and other means may alone be insufficient to induce deep decarbonization [4,5].
Seventh, it applies own-price elasticity estimates to calculate natural gas shortage costs,
underscoring the usefulness of residential demand response programs enabled by smart
metering for efficient management of natural gas shortage.

Our paper’s newly found empirics provide useful input to energy modelers, demand
forecasters and energy policy makers. They represent six contributions to the literature of
residential natural gas demand:

(1) The US residential demand for natural gas is price inelastic, with statistically signifi-
cant (p-value ≤ 0.05) estimates of −0.271 to −0.486 for the static own price elasticity,
−0.238 to −0.555 for the short run own price elasticity, and −0.323 to −0.796 for the
long-run own price elasticity, matching the mid-range estimates of the studies listed
in Table A1.

(2) Parametric specification, CD presence, and partial adjustment have statistically sig-
nificant effects on the own-price elasticity estimates of the US residential natural gas
demand.

(3) Erroneously ignoring the highly significant presence of CD tends to shrink the size of
the own-price elasticity estimates of the US residential natural gas demand.

(4) The US residential natural gas demand’s own-price elasticity estimates vary seasonally
and regionally.

(5) The US residential natural gas demand’s price responsiveness exhibits a nonlinear
time trend.

(6) A hypothetical one-day natural gas shortage that triggers curtailment of 10% of
residential demand increases residential energy cost by less than 1%.

The rest of our paper proceeds as follows. Section 2 discusses nonlinear pricing of
residential natural gas consumption and our empirical methodology. Section 3 presents
our empirical findings. Section 4 contains conclusions, policy implications, and caveats.

2. Materials and Methods
2.1. Nonlinear Pricing of Residential Natural Gas Consumption

A residential customer typically faces a two-part tariff with a fixed customer charge
($/customer-month) and a volumetric charge ($/Mcf) that may follow an inclining block
design [39]. If the volumetric charge is linear, the monthly average price (which is obtained
by dividing the monthly bill by monthly usage) declines as usage increases because of the
fixed customer charge. When the volumetric charge has an inclining block structure, the
observed relationship between average price data and usage data is positive, even if the
customer has a downward sloping demand curve.

The EIA’s monthly average price data are used in our panel data analysis because
absent disaggregate consumption data and tariff information at customer level, accurate
marginal prices such as those used by [39] are impossible to obtain. Further, should the
average price data be found to cause estimation bias, instrumental variables (IV) estimation
could be used to obtain the demand curve’s consistent coefficient estimates [40].

2.2. Five Parametric Specifications

Residential natural gas demand is a derived input determined from a household’s two-
stage cost minimization in connection to the theory of home production [41,42]. Conditional
on an installed stock of energy using durables in Stage 1, the household consumes natural
gas Y1 (Mcf) at price P1 ($/Mcf), along with fuel oil Y2 (gallon) at P2 ($/gallon) (We do
not consider propane for two reasons. First, none of the studies uses propane price as a
regressor. Second, residential propane consumption is relatively minor in the US), and
electricity Y3 (kWh) at price P3 ($/kWh) to minimize its monthly energy cost for producing
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an intermediate output Z = increasing function of end-use requirements for space heating,
water heating, cooking, etc.:

C = P1 Y1 + P2 Y2 + P3 Y3. (1)

The resulting natural gas demand is determined by energy price ratios as opposed
to the levels of prices, based on the theory of cost duality [42,43] (As part of our final
checks, we document that using price level data fails to materially change the double-log
specification‘s own-price elasticity estimates). In Stage 2, the household selects an optimal
mix of Z to maximize its utility while satisfying the monthly budget constraint.

For clarity and completeness, we reproduce the five specifications recently used to
analyze the US industrial natural gas demand [7]. Should the estimated elasticities by
specification be numerically close, they would be deemed robust for applications listed in
Section 1.

The double-log demand equation is:

lnY1 = β0 + β1 ln(P1/P3) + β2 ln(P2/P3) + βZ lnZ. (2)

The own-price elasticity, ε = β1, does not vary by consumption level or across time
and states. Since the data for Z are unobservable, we assume that lnZ is a linear function of
employment X, cooling degree days CDD and heating degree days HDD. This assumption
makes sense because rising employment implies less time at home but higher income in
turn affects end-use requirements. Further, space and water heating requirements are lower
in warm weather than cold weather.

The linear demand equation is:

Y1 = α0 + α1 (P1/P3) + α2 (P2/P3) + αZ Z. (3)

It is assumed that the unobservable Z is a linear function of the variables X, CDD, and
HDD. The own price elasticity is:

ε = α1 (P1/P3)/Y1. (4)

As ε nonlinearly depends on (P1/P3) and Y1, it varies by consumption level, price
ratios, and across states and time. Thus, the estimated ε value for the entire US is the
arithmetic mean of state- and month-specific estimates of the panel.

Under the CES specification, the natural gas—electricity consumption ratio equation is:

ln(Y1/Y3) = ϕ0 + ϕ1 ln(P1/P3), (5)

We assume that ϕ0 is a linear function of the variables X, CDD, and HDD to account
for possible dependence of ln(Y1/Y3) on non-price factors. The own-price elasticity is:

ε = ϕ1 (1 − S), (6)

where S = P1 Y1/C is the cost share for natural gas ([3]). Since ε varies across states and
time, the overall national value is the arithmetic mean of the state- and month-specific
estimates of the panel.

When calculating ε based on Equation (6), we encounter a data mismatch problem.
Specifically, Equation (6) requires state-level monthly data for residential fuel oil prices
and consumption. However, the EIA does not publish data by customer class at monthly
periodicity. We follow the procedures detailed in [7] to overcome this data mismatch.

The GL demand equation is:

Y1 = b11 + b12 (P2/P1)1/2 + b13 (P3/P1)1/2 + b1Z Z. (7)
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Estimating Equation (7) assumes that Z is a simple linear function of the variables X,
CDD, and HDD. The own-price elasticity is calculated as:

ε = −1/2 [b12 (P2/P1)1/2 + b13 (P3/P1)1/2]/Y1. (8)

As ε varies by the level of consumption, price ratios, and across states and time, its
estimated value for the US is the arithmetic mean of state- and month-specific estimates of
the panel.

The natural gas cost share equation used to estimate the TL model is:

S = a1 + a11 ln(P1/P3) + a12 ln(P2/P3) + a1Z lnZ, (9)

where S = P1 Y1/C = natural gas cost share. Equation (9) assumes that lnZ is a simple linear
function of the variables X, CDD, and HDD. The own-price elasticity is:

ε = (a11 + S2 − S)/S. (10)

The estimated value for the nation is again the arithmetic mean of state- and month-
specific estimates of the panel.

2.3. Long-Run Elasticity

A household’s current consumption likely depends on past consumption since a
household’s stock of equipment using natural gas may change slowly over time. Hence,
we include a lagged dependent variable as additional regressor to characterize the partial
adjustment process, as similarly done by some studies in Table A1.

Let ϕ denote the lagged dependent variable’s coefficient. As will be seen in Section 3
below, the estimate for ϕ is between 0.263 and 0.344 (p-values ≤ 0.05). After using the
own-price elasticity formula to compute the short-run elasticity (ε-sr) for each of the five
parametric specifications that we use in this paper, we calculate the long-run elasticity (ε-lr)
as follows: ε-lr = ε-sr/(1−ϕ).

2.4. Estimation of Residential Shortage Cost

Consider a hypothetical natural gas shortage with advance notice that enables a
household to adjust its domestic activities. The natural gas shortage cost may be estimated
as a percentage increase in residential energy cost using the following steps:

(1) Consider a one-day shortage of natural gas that triggers curtailment of D% of the
residential customer class’s total demand. The size of D is the same for all customer
classes if the shortage triggers proportional rationing. However, D may vary by
customer class, depending on the established curtailment protocol. For safety and
health reasons, the protocol may curtail residential demand relatively less than non-
residential demand.

(2) Find the virtual price VP1 ≡ (1 + ∆lnP1) that renders D unnecessary, where
∆lnP1 = −(D/ε) [44].

(3) Estimate the cost of a one-day shortage of natural gas as a percentage of C:

SC = (∆C/C) ÷ 30 days, (11)

where ∆C = [∂C/∂P1] ∆P1 = Y1 ∆P1 using Shephard’s Lemma [45]. Since (∆P1/P1) = ∆lnP1,
we find:

SC = (P1 Y1/C) (∆P1/P1) ÷ 30 days = −S (D/ε) ÷ 30 days. (12)

As an example, S = 20%, D = 10%, and ε = −0.1 implies SC = 20% ÷ 30 days per
month = 0.67% of monthly energy cost.

The SC estimates based on Equation (12) assume that households do not incur such
costs as lost production, idle labor, and material damage that are more related to non-
residential customers [46]. This assumption makes sense because (a) the natural gas
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shortage implies partial curtailment rather than complete interruption of natural gas
service; and (b) residential end-use requirements of space heating, water heating, and
cooking can be partially met by electricity using durables (e.g., portable electric heater,
electric kettle, and microwave oven).

To illustrate the dependence of SC on parametric specification and elasticity type, we
use the 2019 cost share of natural gas and the three types of own-price elasticity estimates
by specification. As SC increases with the cost share of natural gas (S), the extent of shortage
(D), and the size of ε, a particular specification that yields relatively large elasticity estimates
will lead to relatively small SC estimates.

2.5. Data Description

Descriptive statistics for our panel data are presented in Table 2. All variables have
wide ranges in their values. The weather variables are more volatile than the other variables
according to the coefficient of variation (=standard deviation/mean). The last column
of Table 2 reports the pairwise correlations between Y1 and the other variables. Y1 is
negatively correlated with P1 (r = −0.247) as well as the price ratio (P1/P3) (r = −0.144) but
uncorrelated with (P2/P3) (r = 0.002). Y1 is also positively correlated with X (r = 0.115) and
HDD (r = 0.824) but not with CDD (r = −0.458). These correlation coefficients are largely
consistent with our expectations, though they fail to measure the marginal impacts of price
ratios, employment, and weather on the US residential natural gas demand. Thus, we
undertake the estimation strategy described below.

Table 2. Descriptive statistics for monthly data from Jan-1990 to Dec-2019 for the lower 48 states;
number of observations = 17,280.

Variable (Source) Definition Mean Standard
Deviation Minimum Maximum Correlation

with Y1

Y1 (EIA and BLS) Per capita consumption of
natural gas (Mcf) 1.77 1.69 0.02 11.61 1.0

Y3 (EIA and BLS) Per capita consumption of
electricity (kWh) 618.40 956.64 21.47 11,598.17 −0.044

P1 (EIA) Natural gas price ($/Mcf) 11.10 4.89 2.42 41.56 −0.247

P2 (EIA) Fuel oil price ($/gallon) 1.56 0.96 0.34 4.34 −0.057

P3 (EIA) Electricity price ($/kWh) 0.010 0.003 0.00 0.02 −0.122

P1/P3
Natural gas—electricity

price ratio 1138.66 431.51 364.46 4664.42 −0.144

P2/P3
Fuel oil—electricity

price ratio 154.44 84.37 27.57 574.36 0.002

X (BLS) Per capita industrial
employment 0.59 0.05 0.43 0.83 0.115

CDD (NOAA) Cooling degree days 91.01 144.01 0 761 −0.458

HDD (NOAA) Heating degree days 435.19 422.63 0 2111 0.824

Notes: (1) Data sources are from the US Energy Information Administration (EIA), the US Bureau of Labor
Statistics (BLS), and the US National Oceanic and Atmospheric Administration (NOAA). (2) This table excludes
the fuel oil consumption by the residential customer class due to the absence of monthly data from the EIA.

2.6. Estimation Strategy
As our data and regressions are susceptible to cross-section dependence, we adopt the

dynamic common correlated effects (DCCE) panel estimator [47] to estimate the demand
equations. The DCCE estimator includes current and lagged cross-section averages of all
variables in the model as extra regressors. The DCCE estimator is consistent when the
estimation includes enough lags of cross-section averages. Illustrating with the double-log
model with partial adjustment, the estimable equation is:
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ln Y1it = ηi + β1 ln(P1it/P3it) + β2 ln(P2it/P3it) + β3Xit + β4CDDit + β5HDDit

+ϕ ln Y1it−1 + ∑M
m=0 θ1m ln ( P1it−m

P3it−m
) + ∑M

m=0 θ2m ln ( P2it−m
P3it−m

)

+∑M
m=0 θ3mXit−m + ∑M

m=0 θ4mCDDit−m + ∑M
m=0 θ5m HDDit−m + ∑M

m=0 θ6mY1it−1−m + µit,

(13)

where ηi represents the state-specific fixed effect, µit represents the random error, i = 1 to
48 denotes the state, t = 2 to 360 denotes the time period and cross-section averages are
indicated by a bar on top of the variable. When the estimate of ϕ is positive and statistically
significant, short- and long-run elasticities may be estimated using the formulas presented
in Section 2.3.

Equation (13) encompasses several panel data models as special cases. We impose the
restriction of ϕ = 0 to obtain the static elasticity estimates. As only current cross-section
averages are required in this case (M = 0), the equation will be estimated with the more
parsimonious [48] common correlated effects estimator. For comparison, we also estimate
the demand models without accounting for cross-section dependence (i.e., CD absence).
In such cases, all θ coefficients are restricted to zero and the models will be estimated by
the [49] mean group estimator.

Stated below is our multistep estimation strategy:

(1) Test for CD in the variables using the test developed by [50].
(2) Determine whether the variables are non-stationarity using the [51] panel unit root

test that accounts for CD.
(3) For each parametric specification, estimate the coefficients of Equation (13) with IV

and non-IV estimation for the four cases formed by (a) ϕ = 0 vs. ϕ > 0; and (b) CD
presence vs. CD absence. The instruments for the current month’s price-ratio are the
lagged price ratios in the prior three months (The lagged price ratios in month t are
pre-determined variables as they use average prices based on billing data in the prior
three months. As the lagged price ratios are suitable instruments as they are highly
correlated with the current price ratio (r ≥ 0.8)).

(4) For each parametric specification, use the Durbin-Wu-Hausman test [52] to determine
if current price ratios are endogenous and whether IV estimation is necessary.

3. Results
3.1. Tests of Cross-Section Independence and Non-Stationary Variables

Table 3 provides the results of tests which decisively reject (p-value < 0.01) the null
hypotheses of cross-section independence and variable non-stationarity. Hence, our panel
data analysis accounts for CD presence and without a concern regarding spurious regres-
sions [53].

Table 3. Test statistics for cross-section independence and non-stationarity; p-values in ( ).

Variable H0: Cross-Section Independence H0: Non-Stationarity

Y1 584.87 (0.000) −6.120 (0.000)
P1/P3 459.84 (0.000) −5.132 (0.000)
P2/P3 614.44 (0.000) −4.643 (0.000)

X 401.97 (0.000) −3.403 (0.000)
CDD 569.56 (0.000) −6.190 (0.000)
HDD 605.90 (0.000) −6.190 (0.000)

3.2. General Observations

The regression results provided in Table 4 support three general observations. First,
with one exception, all specifications have adjusted R2 values ≥ 0.95 that indicate remark-
able goodness of fit. Second, the hypothesis of cross-section independence is decisively
rejected (p-value < 0.01) for each of the specifications. Third, our application of the Durbin-
Wu-Hausman test suggests that the current price ratio data do not cause estimation bias
under the empirically valid assumption of CD presence. These observations lead to our



Energies 2022, 15, 4231 9 of 22

preferred regression results by specification, which are shaded in light green in the panels
of Table 4. All preferred regressions are based on CD presence and non-IV estimation.

Table 4. Regression results by specification; coefficient and elasticity estimates which are statistically
significant (p-value ≤ 0.10) are in bold; coefficient and elasticity estimates with an unexpected sign
are in italic; and each specification’s preferred results shaded in light green .

CD Presence CD Absence
Variable IV Estimation:

No
IV Estimation:

Yes
IV Estimation:

No
IV Estimation:

Yes

Panel A.1: Double-log specification without partial adjustment

RMSE 0.12 0.12 0.23 0.23

Adjusted R2 0.98 0.99 0.92 0.92

ln(P1/P3) = ln(natural gas price/electricity price) −0.396 −0.334 −0.326 −0.507

ln(P2/P3) = ln(fuel oil price/electricity price) 0.309 0.262 −0.013 0.046

X = per capita employment −0.419 −0.326 1.203 2.068

CDD = cooling degree days 0.000 0.000 −0.001 −0.001

HDD = heating degree days 0.001 0.001 0.002 0.002

Static own-price elasticity −0.396 −0.334 −0.326 −0.507

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.995 0.017

Panel A.2: Double-log specification with partial adjustment

RMSE 0.09 0.09 0.15 0.15

Adjusted R2 0.99 0.99 0.97 0.97

ln(P1/P3) = ln(natural gas price/electricity price) −0.336 −0.013 −0.167 0.019

ln(P2/P3) = ln(fuel oil price/electricity price) 0.186 0.029 −0.017 −0.076

X = per capita employment 0.171 0.045 1.446 0.641

CDD = cooling degree days 0.000 0.000 −0.001 −0.001

HDD = heating degree days 0.001 0.001 0.002 0.002

Lagged lnY1 0.271 0.296 0.308 0.316

Short-run own-price elasticity −0.336 −0.013 −0.167 0.019

Long-run own-price elasticity −0.460 −0.018 −0.242 0.028

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.352 0.000

Panel B.1: Linear specification without partial adjustment

RMSE 0.00 0.00 0.00 0.00

Adjusted R2 0.98 0.98 0.93 0.93

(P1/P3) = (natural gas price/electricity price) −0.0002 −0.0003 0.0000 −0.0003

(P2/P3) = (fuel oil price/electricity price) 0.0013 0.0017 −0.0011 −0.0005

X = per capita employment 0.0000 0.0001 −0.0016 −0.0001

CDD = cooling degree days 0.0000 0.0000 0.0000 0.0000

HDD = heating degree days 0.0000 0.0000 0.0000 0.0000

Static own-price elasticity −0.486 −0.684 0.018 −0.651

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.617 0.042

Panel B.2: Linear specification with partial adjustment

RMSE 0.00 0.00 0.00 0.00

Adjusted R2 0.99 0.99 0.97 0.97

(P1/P3) = (natural gas price/electricity price) −0.0002 −0.0001 0.0001 0.0001

(P2/P3) = (fuel oil price/electricity price) 0.0012 0.0009 −0.0009 −0.0010

X = per capita employment −0.0002 −0.0004 0.0001 0.0000

CDD = cooling degree days 0.0000 0.0000 0.0000 0.0000

HDD = heating degree days 0.0000 0.0000 0.0000 0.0000

Lagged Y1 0.303 0.304 0.299 0.301

Short-run own-price elasticity −0.555 −0.337 0.177 0.262

Long-run own-price elasticity −0.796 −0.485 0.253 0.375

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.437 0.591
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Table 4. Cont.

CD Presence CD Absence
Variable IV Estimation:

No
IV Estimation:

Yes
IV Estimation:

No
IV Estimation:

Yes

Panel C.1: CES specification without partial adjustment

RMSE 0.13 0.13 0.26 0.26

Adjusted R2 0.98 0.98 0.91 0.91

ln(P1/P3) = ln(natural gas price/electricity price) −0.354 −0.277 −0.518 −0.627

X = per capita employment −0.765 −0.756 1.182 1.564

CDD = cooling degree days −0.001 −0.001 −0.003 −0.003

HDD = heating degree days 0.001 0.001 0.001 0.001

Static own-price elasticity −0.271 −0.212 −0.396 −0.480

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.672 0.186

Panel C.2: CES specification with partial adjustment

RMSE 0.10 0.10 0.18 0.18

Adjusted R2 0.99 0.99 0.96 0.96

ln(P1/P3) = ln(natural gas price/electricity price) −0.311 −0.016 −0.284 −0.132

X = per capita employment 0.014 −0.218 1.135 0.713

CDD = cooling degree days −0.001 −0.001 −0.003 −0.003

HDD = heating degree days 0.001 0.001 0.001 0.001

Lagged lnY1 0.263 0.290 0.327 0.340

Short-run own-price elasticity −0.238 −0.012 −0.217 −0.101

Long-run own-price elasticity −0.323 −0.017 −0.323 −0.153

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.100 0.769

Panel D.1: GL specification without partial adjustment

RMSE 0.00 0.00 0.00 0.00

Adjusted R2 0.98 0.98 0.93 0.93

(P2/P1)1/2 = (fuel oil price/natural gas price) 1/2 0.0001 0.0002 0.0004 0.0008

(P3/P1)1/2 = (electricity price/natural gas price) 1/2 0.0010 0.0008 −0.0010 −0.0010

X = per capita employment −0.0003 0.0004 −0.0015 −0.0005

CDD = cooling degree days 0.0000 0.0000 0.0000 0.0000

HDD = heating degree days 0.0000 0.0000 0.0000 0.0000

Static own-price elasticity −0.453 −0.427 −0.041 −0.408

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.117 0.065

Panel D.2: GL specification with partial adjustment

RMSE 0.00 0.00 0.00 0.00

Adjusted R2 0.99 0.99 0.97 0.97

(P2/P1)1/2 = (fuel oil price/natural gas price) 1/2 0.0003 −0.0008 0.0001 0.0001

(P3/P1)1/2 = (electricity price/natural gas price) 1/2 0.0007 0.0029 −0.0008 −0.0008

X = per capita employment −0.0001 −0.0012 0.0000 −0.0001

CDD = cooling degree days 0.0000 0.0000 0.0000 0.0000

HDD = heating degree days 0.0000 0.0000 0.0000 0.0000

Lagged Y1 0.305 0.297 0.295 0.297

Short-run own-price elasticity −0.453 −0.237 0.138 0.206

Long-run own-price elasticity −0.651 −0.336 0.197 0.293

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.763 0.234
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Table 4. Cont.

CD Presence CD Absence
Variable IV Estimation:

No
IV Estimation:

Yes
IV Estimation:

No
IV Estimation:

Yes

Panel E.1: TL specification without partial adjustment

RMSE 0.02 0.02 0.04 0.04

Adjusted R2 0.97 0.98 0.87 0.87

ln(P1/P3) = ln(natural gas price/electricity price) 0.087 0.093 0.101 0.074

ln(P2/P3) = ln(fuel oil price/electricity price) 0.010 0.008 −0.021 −0.012

X = per capita employment −0.134 −0.134 0.118 0.252

CDD = cooling degree days −0.0001 −0.0001 −0.0003 −0.0003

HDD = heating degree days 0.0001 0.0001 0.0002 0.0002

Static own-price elasticity 0.377 0.459 0.562 0.207

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.684 0.393

Panel E.2: TL specification with partial adjustment

RMSE 0.02 0.02 0.03 0.03

Adjusted R2 0.98 0.98 0.95 0.95

ln(P1/P3) = ln(natural gas price/electricity price) 0.075 0.061 0.080 0.094

ln(P2/P3) = ln(fuel oil price/electricity price) 0.007 0.015 −0.016 −0.020

X = per capita employment 0.021 0.034 0.099 0.039

CDD = cooling degree days −0.0001 −0.0001 −0.0002 −0.0002

HDD = heating degree days 0.0001 0.0001 0.0002 0.0002

Lagged lnY1 0.344 0.361 0.396 0.390

Short-run own-price elasticity 0.223 0.043 0.294 0.480

Long-run own-price elasticity 0.340 0.068 0.487 0.788

p-value for testing H0: CD is absent − − 0.000 0.000

p-value for testing H0: natural gas price ratio data are exogeneous 0.766 0.005

Panel F. Seasonal pattern of elasticity estimates based on CD presence and non-IV estimation

Specification j Static Own−Price Elasticity Estimate Short−Run Own−Price
Elasticity Estimate

Long−Run Own−Price
Elasticity Estimate

Results for all 12 months

(1) Double-log −0.396 −0.336 −0.460

(2) Linear −0.486 −0.555 −0.796

(3) CES −0.271 −0.238 −0.323

(4) GL −0.453 −0.453 −0.651

(5) TL 0.377 0.223 0.340

Results for the spring months of March, April and May

(1) Double-log −0.396 −0.336 −0.460

(2) Linear −0.292 −0.334 −0.478

(3) CES −0.259 −0.227 −0.308

(4) GL −0.328 −0.327 −0.470

(5) TL 0.005 −0.095 −0.144

Results for the summer months of June, July and August

(1) Double-log −0.396 −0.336 −0.460

(2) Linear −0.951 −1.086 −1.557

(3) CES −0.314 −0.276 −0.374

(4) GL −0.799 −0.799 −1.149

(5) TL 1.219 0.935 1.425
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Table 4. Cont.

Specification j Static Own−Price Elasticity Estimate Short−Run Own−Price
Elasticity Estimate

Long−Run Own−Price
Elasticity Estimate

Results for the fall months of September, October and November

(1) Double-log −0.396 −0.336 −0.460

(2) Linear −0.577 −0.659 −0.945

(3) CES −0.281 −0.247 −0.335

(4) GL −0.532 −0.529 −0.761

(5) TL 0.413 0.250 0.381

Results for the winter months of December, January and February

(1) Double-log −0.396 −0.336 −0.460

(2) Linear −0.124 −0.141 −0.202

(3) CES −0.229 −0.201 −0.272

(4) GL −0.155 −0.155 −0.223

(5) TL −0.127 −0.197 −0.301

3.3. Regression Details

Using our preferred regression results, the double-log specification (Panel A.1 of
Table 4) shows that the US residential natural gas demand has a static own-price elasticity
estimate of −0.396. Natural gas demand increases with HDD, while the marginal effects of
employment and CDD are insignificant. Panel A.2 provides a short-run own-price elasticity
estimate of −0.336. The short-run estimate is smaller in absolute value than the long-run
estimate of −0.460 due to the coefficient estimate of 0.271 for lagged lnY1.

Panels B.1 and B.2 show de minimis coefficient estimates for employment, CDD and
HDD for the linear specification. The estimated static own-price elasticity of −0.486 is
comparable to the estimate derived from the double-log specification. Short- and long-run
estimates are −0.555 and −0.796, respectively, which are noticeably larger (in absolute
values) than those obtained under the double-log specification.

Panel C.1 shows that ln(Y1/Y3) declines with ln(P1/P3) for the CES specification. The
estimated coefficients on CDD and HDD suggest that weather has a small but statistically
significant impact on the natural gas-electricity consumption ratio, while the estimated
coefficient for employment is not statistically significant. The static own-price elasticity
estimate is −0.271, and the short- and long-run estimates are −0.238 and −0.323. Hence, the
CES specification generates estimates which are smaller than those based on the double-log
and linear specifications.

Panel D.1 and D.2 show that the estimated coefficients for employment, CDD, and
HDD are nearly zero under the GL specification. The static own-price elasticity estimate is
−0.453, while the short- and long-run estimates are −0.453 and −0.651, in between those
based on the linear and CES specifications.

For the TL specification, Panel E.1 and E.2 report anomalously positive own-price
elasticity estimates. Consequently, we question the empirical appropriateness of the TL
specification for characterizing the residential demand for natural gas in the US.

In summary, the own-price elasticity estimates in Table 4’s Panels A.1 to D.2 are
moderately diverse, corroborating the mid-range estimates in Table A1.

3.4. Seasonal Pattern of Own-Price Elasticity Estimates

To explore KG2, Panel F of Table 4 presents seasonal own-price elasticity estimates for
each model. The winter elasticity estimates are smaller in size than non-winter estimates,
due chiefly to a household’s winter space heating requirement.
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3.5. Factors Affecting the US Residential Demand’s Empirical Price Responsiveness

Motivated by KG3 and KG4, a simple OLS dummy variable regression is used to
delineate factors which affect our estimates of the price responsiveness of residential natural
gas demand in the US. The results in Table 5 lead to the following inferences. First, the
statistically insignificant coefficient estimates for Fj for j = 1 to 3 indicate that the double-log
specification’s elasticity estimates resemble those of the linear, CES, and GL specifications.
The large and significant estimate for F4 reflects TL specification’s potential of yielding
oddly positive price elasticity estimates. While the use of IV estimation does not seem to
matter, ignoring CD presence can lead to smaller elasticity estimates due to the bias that
CD absence introduces to the regression [47].

Table 5. OLS dummy variable regression; the regressand is the own-price elasticity estimate for
US residential natural gas demand; sample size = 60 observations = 5 specifications × 2 estimation
methods × 3 elasticity types × 2 CD assumptions.

Estimate Standard Error p−Value

Adjusted R2 0.571
RMSE 0.235

Intercept −0.249 0.076 0.002
F1 = 1 if linear specification, 0 otherwise −0.013 0.106 0.903
F2 = 1 if CES specification, 0 otherwise 0.001 0.080 0.992
F3 = 1 if GL specification, 0 otherwise 0.048 0.079 0.541
F4 = 1 if TL specification, 0 otherwise 0.590 0.083 0.000
IV = 1 if IV estimation, 0 otherwise 0.063 0.061 0.306

SR = 1 if short−run, 0 otherwise 0.181 0.070 0.012
LR = 1 if long−run, 0 otherwise 0.174 0.081 0.036

CD = 1 if CD present, 0 otherwise −0.260 0.061 0.000

3.6. Time Trend of Own-Price Elasticity Estimates

A 10-year rolling-window approach is adopted to estimate own-price elasticity under
the double-log specification with cross-section dependence and non-IV estimation to ad-
dress KG1. The first rolling-window period is Jan-1990 to Dec-2009, while the last period
is Jan-2010 to Dec-2019. Figure 2 depicts a non-linear trend in the own-price elasticity of
residential natural gas demand in the US, as confirmed by the results of OLS regressions
appearing in Table 6. Nonetheless, the static and short-run estimates are between −0.4 and
−0.5 and the long-run estimates are between −0.5 and −0.6, revealing the price-inelastic
nature of US residential natural gas demand.

3.7. Residential Shortage Costs

Motivated by KG6, Table 7 reports shortage costs (SC) estimates for various parametric
specifications and types of elasticities under the assumption of a one-day shortage that
triggers curtailment of D = 10% of the residential demand for natural gas. We use the
elasticity estimates from the preferred regressions shaded in light green in Table 4. For
comparison, we also calculate SC using elasticity estimates from the regressions with CD
absence and non-IV estimation. After dismissing the TL specification’s anomalous results,
Panel A of Table 7 shows that residential shortage cost for a 10% demand curtailment is less
than 1% of residential energy cost. Some of Panel B’s SC estimates are counter-intuitive,
due chiefly to the empirically erroneous assumption of CD absence.
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3.8. Final Checks

We use the double-log specification with CD presence and non-IV estimation to
perform several final checks on our analysis. Our choice of the double-log model reflects
its popularity, as evidenced by Table A1 and empirical plausibility portrayed by Table 4.

We first repeat the panel data analysis after excluding the regressor representing the
ratio of the price of fuel oil to the price of electricity. The static, short-run, and long-run
elasticity estimates are −0.293, −0.281, and −0.390, respectively. Therefore, excluding fuel
oil does not affect the own-price elasticity estimates in a material manner.

The second check uses aggregate, rather than per capita, energy usage and employ-
ment data when estimating the double-log regression model. Using aggregate data, we
obtain price elasticity estimates that resemble those reported in Panels A.1 and A.2 of
Table 4.

The third check uses price level data instead of price ratio data. We obtain an estimate
for static price elasticity of −0.432, an estimate for the short-run own-price elasticity of
−0.383, and an estimate for the long-run own-price elasticity of −0.518. Thus, the use of
price level data does not materially alter the size of price elasticity estimates.

Motivated by KG5, the last check investigates regional price responsiveness. Table 8
shows that the Midwest and Northeast regions in Figure 3 have smaller (in absolute value)
own-price elasticity estimates than the South and West regions. This makes sense because
households residing in the Midwest and Northeast regions have higher space heating
requirements caused by more severe winter weather than the South and West regions.
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Table 6. OLS time trend regression: Own-price elasticity estimate = intercept + b1 ID + b2 ID2 + error;
sample size = 241 observations for each elasticity type.

Variable Estimate Standard Error p−Value

Panel A: Static elasticity

Regressand’s mean −0.452
Adjusted R2 0.715

RMSE 0.024
Intercept −0.473 0.004 0.000

ID 0.0012 0.0001 0.000
ID2 −6.63 × 10−6 3.38 × 10−7 0.000

Panel B: Short−run elasticity

Regressand’s mean −0.407
Adjusted R2 0.734

RMSE 0.014
Intercept −0.469 0.003 0.000

ID 0.001 0.00005 0.000
ID2 −2.95 × 10−6 2.05 × 10−7 0.000

Panel C: Long−run elasticity

Regressand’s mean −0.504
Adjusted R2 0.829

RMSE 0.019
Intercept −0.593 0.005 0.000

ID 0.001 0.0001 0.000
ID2 −1.98 × 10−6 3.07 × 10−7 0.000

Note: The first observation (ID = 1) corresponds to the first 10-year period of 1990–1999, while the final observation
(ID = 241) uses the last 10-year period of 2010–2019.

Table 7. Natural gas shortage cost for 2019 for various types of elasticities and specifications.

Parametric Specification
Static Short−Run Long−Run

e1 SC e1 SC e1 SC

Panel A. CD presence and non−IV estimation

Double−log −0.396 0.2% −0.336 0.2% −0.46 0.1%
Linear −0.486 0.1% −0.555 0.1% −0.796 0.1%

CES −0.271 0.2% −0.238 0.3% −0.323 0.2%
GL −0.453 0.1% −0.453 0.1% −0.651 0.1%
TL 0.377 −0.2% 0.223 −0.3% 0.340 −0.2%

Panel B. CD absence and non−IV estimation

Double−log −0.326 0.2% −0.167 0.4% −0.242 0.3%
Linear 0.018 −3.7% 0.177 −0.4% 0.253 −0.3%

CES −0.396 0.2% −0.217 0.3% −0.323 0.2%
GL −0.041 1.6% 0.138 −0.5% 0.197 −0.3%
TL 0.562 −0.1% 0.294 −0.2% 0.487 −0.1%

Notes: (1) The SC presented are the simple averages of all disaggregate SC numbers for each 2019 observation
in the panel. (2) The SC estimates in Panel B are suspect because they erroneously ignore the highly significant
CD presence.

Table 8. Regional own-price elasticity estimates.

Region Definition Static Elasticity Short−Run Elasticity Long−Run Elasticity

Midwest −0.380 −0.317 −0.376
Northeast −0.148 −0.166 −0.300

South −0.439 −0.357 −0.492
West −0.508 −0.400 −0.605
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4. Conclusions and Policy Implications
4.1. Conclusions

Our paper’s main conclusions are as follows. First, accurate price elasticity estimates
are necessary for the important applications discussed in Section 1. Because of the highly
diverse price elasticity estimates reported in extant surveys, such assumptions should
come from a natural gas demand analysis of a large and recent sample of data. Second,
employing monthly state-level data covering a long period is useful for estimating price
responsiveness of residential natural gas demand. However, the analysis should recognize
the effects of sample period, parametric specification, use of partial adjustment, treatment
of CD, time trend, and region on the price elasticity estimates. Third, the US residential
natural gas demand is price inelastic, with own-price elasticity estimates that match the
mid-range of estimates reported by extant studies. Finally, the shortage cost estimates
are less than 1% of residential energy cost for a 10% curtailment of residential natural
gas demand.

4.2. Policy Implications

Our findings suggest that price-induced conservation’s projected demand-reduction
is likely to be modest. Hence, achieving deep decarbonization may require strategies
that do not rely on price induced changes on demand through carbon taxes and other
means. Such a goal might require the continuation of energy efficiency standards and
utility demand-side management programs.

Moreover, our empirics document that natural gas shortage costs vary by price re-
sponsiveness. As residential customers are heterogeneous (e.g., small homes with aging
appliances vs. large homes with relatively new appliances) with diverse disaggregate price
responsiveness [41,54], the US aggregate shortage cost could be reduced through demand
response programs [55].
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4.3. Limitations and Future Research

While the average price data used by this paper are in line with the practice of
many prior studies in the literature, they lack details for a more granular analysis of price
responsiveness (e.g., [39]). Further, while the effects of different parametric specifications
on price elasticity estimates are explored in this paper, future research may consider using
statistical tests for selecting the most appropriate specification (e.g., [8]). Finally, alternative
dynamic specifications of the demand equations such as the Autoregressive Distributed Lag
modelling (e.g., [38]) can be used to further explore the price responsiveness of residential
demand for natural gas demand in the US.
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Appendix A

Table A1. Own-price elasticity estimates from thirteen selected studies of residential demand for natural gas (NG) in the US.

Study Sample Period Regional
Coverage Data Type Data Frequency Non−NG Energy

Prices
Parametric

Specification
Estimation

Method Static Short Run Long Run

Beierlein et al.
(1981) [56] 1967–1977 Nine Northeast

states Panel Annual Electricity, fuel oil Double-log with
partial adjustment

Error
components—

seemingly
unrelated

regressions

−0.353 −3.440

Barnes et al.
(1982) [57]

1972–1973
Consumer

expenditure
survey

The US Cross section Annual None Double-log
Instrumental

variable
estimation

−0.68

Blattenberger et al.
(1983) [58] 1960–1974 The US Panel Annual Electricity Double-log with

partial adjustment

Cross-
section/time-

series
regressions

−0.049 to −0.32 −0.264 to −0.393

Liu (1983) [59] 1967–1978 The US Time series Annual Electricity, fuel oil Double-log OLS −0.318 to −0.490

Lin et al.
(1987) [37] 1967–1983 Nine regions of

the US Panel Annual Electricity, fuel oil Double-log with
partial adjustment

Error components-
seemingly
unrelated

regressions

−0.154 −1.215

Garcia−Cerruti
(2000) [60] 1983–1997 44 counties of

California Panel Annual Electricity Double-log with
partial adjustment

Dynamic random
variables models −0.041 to −0.071 −0.53 to −0.193

Bernstein and
Griffin (2005) [61] 1997–2003 Lower 48 states Panel Annual Electricity Double-log with

partial adjustment

Panel data
analysis with fixed

effects
−0.12 −0.36

Payne et al.
(2011) [62] 1970–2007 Illinois Time series Annual Electricity Linear

Error correction
model with

autoregressive
distributed lag

−0.185 −0.264

Lavin et al.
(2011) [54]

Residential Energy
Consumption

Survey for 1993
The US Cross section Annual Electricity Double-log and

linear −0.007 to −0.72

Charles (2016) [28] 2001–2014 Lower 48 states Panel Monthly Electricity
Double-log with

and without
partial adjustment

OLS with fixed
effects −0.297 −0.211 −0.360

Auffhammer and
Rubin (2018) [39] 2003–2014 California Panel Monthly None Double-log

Instrumental
variable

estimation
−0.17 to −0.23
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Table A1. Cont.

Study Sample Period Regional
Coverage Data Type Data Frequency Non−NG Energy

Prices
Parametric

Specification
Estimation

Method Static Short Run Long Run

Gautam and
Paudel (2018) [63] 1997–2011 Nine Northeast

states Panel Annual Electricity, fuel oil
Double-log with
autoregressive
distributed lag

Pooled Mean
Group (PMG) and

Dynamic Fixed
Effects (DFE)

−0.061 −0.200

Woo et al.
(2018b) [3] 2001–2016 Lower 48 states Panel Monthly Electricity, fuel oil

Generalized
Leontief (GL)

system of energy
intensities with

and without
partial adjustment

Iterated seemingly
unrelated

regressions
−0.455 −0.271 −0.684

Burns (2021) [64] 1970–2016 The US Time series Annual None
Double-log with

time-varying
elasticities

Maximum
likelihood with
Kalman filter

−0.08 to −0.18

Notes: (1) This table reinforces Table 1’s main message that own-price elasticity estimates of residential natural gas demand are highly diverse. (2) Price elasticity estimates from non-US
studies do not alter the above message. A partial list of these studies by country includes Australia [65], Bangladesh [66], Canada [67], China [68–71], Ghana [72], Greece [73], Japan [74],
Korea [75,76], Pakistan [77], Turkey [78], Ukraine [79], Europe [80,81], OECD countries [82], and 44 countries [83]. (3) The between estimator used by [83] yields relatively large long-run
price elasticity estimates between −0.90 and −1.13, motivating our use of this estimator for a final check of our regression results. (4) The studies appearing here have sample periods
ending by 2016 and mostly use annual data, hinting the potential insights to be gained from a large and recent panel of monthly data by state. (5) Prices for energy inputs other than
natural gas are included in regression models for residential natural gas demand to represent inter-fuel substitution in household production of end-use services for space heating, water
heating and cooking. (6) Panel data yield a large sample with sufficient data variation for credible and precise estimation of price responsiveness. (7) The commonly used specification is
the double-log because its natural gas price coefficient measures own-price elasticity. (8) None of the panel data studies considers the impact of cross-section dependence (CD) on the US
residential natural gas demand’s empirical price responsiveness. (9) We classify an elasticity estimate reported by a given study as static when (a) the estimate is based on a regression
that does not use the lagged dependent variable as a regressor; or (b) the study does not explicitly state whether the estimate is short- or long-run.
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