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Abstract
Feature Selection (FS) is an important preprocessing step that is involved in machine learning and data mining tasks for

preparing data (especially high-dimensional data) by eliminating irrelevant and redundant features, thus reducing the potential

curse of dimensionality of a given large dataset. Consequently, FS is arguably a combinatorial NP-hard problem in which the

computational time increases exponentially with an increase in problem complexity. To tackle such a problem type, meta-

heuristic techniques have been opted by an increasing number of scholars. Herein, a novel meta-heuristic algorithm, called

Sparrow Search Algorithm (SSA), is presented. The SSA still performs poorly on exploratory behavior and exploration-

exploitation trade-off because it does not duly stimulate the search within feasible regions, and the exploitation process suffers

noticeable stagnation. Therefore, we improve SSA by adopting: i) a strategy for Random Re-positioning of Roaming Agents

(3RA); and ii) a novel Local Search Algorithm (LSA), which are algorithmically incorporated into the original SSA structure.

To the FS problem, SSA is improved and cloned as a binary variant, namely, the improved Binary SSA (iBSSA), which would

strive to select the optimal or near-optimal features from a given dataset while keeping the classification accuracymaximized.

For binary conversion, the iBSSA was primarily validated against nine common S-shaped and V-shaped Transfer Func-

tions (TFs), thus producing nine iBSSA variants. To verify the robustness of these variants, three well-known classification

techniques, including k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest (RF) were adopted

as fitness evaluators with the proposed iBSSA approach and many other competing algorithms, on 18 multifaceted, multi-

scale benchmark datasets from the University of California Irvine (UCI) data repository. Then, the overall best-performing

iBSSA variant for each of the three classifiers was compared with binary variants of 12 different well-known meta-heuristic

algorithms, including the original SSA (BSSA), Artificial Bee Colony (BABC), Particle Swarm Optimization (BPSO), Bat

Algorithm (BBA), GreyWolf Optimization (BGWO),Whale Optimization Algorithm (BWOA), Grasshopper Optimization

Algorithm (BGOA) SailFish Optimizer (BSFO), Harris Hawks Optimization (BHHO), Bird Swarm Algorithm (BBSA),

Atom Search Optimization (BASO), and Henry Gas Solubility Optimization (BHGSO). Based on a Wilcoxon’s non-para-

metric statistical test (a ¼ 0:05), the superiority of iBSSA with the three classifiers was very evident against counterparts

across the vast majority of the selected datasets, achieving a feature size reduction of up to 92% along with up to 100%

classification accuracy on some of those datasets.
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1 Introduction

Data mining is a rapidly growing paradigm in data science,

due to the massive data gathered daily as well as the

excessive demand to turn this data into useful knowledge

[46]. Data mining includes multiple preprocessing steps

(i.e., integration, filtering, transformation, reduction, etc.),

knowledge presentation, and pattern evaluation [69].

Amongst them, Feature Selection (FS), also known

as variable (feature) subset selection, is one of such pre-

requisites, which is reliable to strive to reduce the high

computational costs required by heavy mining tasks by
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discarding potential noisy, redundant, and irrelevant fea-

tures that may degrade the classification accuracy. Basi-

cally, the major objective of an FS procedure is to

optimally carry out the classification task by first finding a

subset of variables. A given set of features are usually

initially given and then an optimal subset of features is

thought, pursuing high classification performance.

The term FS resembles an algorithm using an input

feature set to output a subset of it. In supervised learning, a

set of instances of the same attributes exists along with

another attribute representing the corresponding class. Via

those instances, a rule or set of rules can be created and

generalized, enabling the classification of the instance set

highly possible precision. Research on FS has been since

the early 1960s (see [27] or [103] for an overview and

biographical notes).

Raw datasets by themselves are well-known for not

providing much information. So, to extract useful knowl-

edge or patterns, raw data must first be processed. To this

end, deriving informative knowledge from these data calls

for the development of new effective and efficient methods.

This is becoming increasingly substantial [37]. Typically,

many as deemed necessary as are features are involved to

compose a real-world dataset. This is closely related to: i)

knowledge and, in turn, essential features capturing this

knowledge concerning the domain of interest; ii) the

availability of these features; iii) the resources available for

collecting these available features; and (iv) the resources

available for storing, maintaining, and retrieving these

features. Thus, it is obvious the unnecessity or insufficiency

of the all features stored in the resulting dataset to learn the

concerned concept. Assuming the presence of the relevant

features in this data, FS is the art of electing a small feature

subset ideally necessary and sufficient to describe the

concept of interest [61].

FS is a recommended data-preprocessing phase in most

machine learning tasks due to its potential to alleviate the

curse of high dimensionality in large and complex datasets.

This helps in reducing the data processing workload and

decreasing the computational cost of classification, thus

saving resources while enhancing the algorithm overall

performance. There are a large number of applications that

depend on high-dimensional datasets with a large number

of features. Many of these features may be redundant or

obsolete. Additionally, the database at hand may be

inspected by a high noise level, which may result in

degrading the overall classification performance and

increasing computational cost [69]. Hence, proposing an

efficient FS method is crucial to find the best subset of

highly relevant and informative features while maintaining

the representation of the original dataset with high classi-

fication accuracy as well. Ultimately, FS has three main

advantages [46]: i) enhancing the predictor’s performance;

ii) gaining a better understanding of the underlying process

leading to faster data processing; and iii) giving more cost-

effective prediction models.

1.1 Motivation

It is an NP-hard problem searching for a variable subset

[19, 22, 36, 64]. For this reason, it cannot be guaranteed to

acquire the optimal solution except when conducting an

exhaustive search which is quite unfeasible for this situa-

tion. Meta-heuristic techniques, being not having to do a

comprehensive search for the whole solution space, permits

obtaining reasonably good solutions. The quality of each

‘‘heuristic’’ solution obtained is tightly based on the

method adopted. In other optimization problems, meta-

heuristic methodologies have been found so superior

[23, 52, 56, 84, 110, 117]. In this field, we mention the

Differential Evolution (DE) [11], Ant Colony Optimization

(ACO) [58], Particle Swarm Optimization (PSO) [77],

Genetic Algorithm (GA) [29], and most recently, Harris

Hawks Optimization (HHO) [132], Whale Optimization

Algorithm (WOA) [74], and Salp Swarm Algorithm (SSA)

[35]. In real-world applications, people favor a timely

obtaining of good solution rather than being obsessed with

optimal solutions. Therefore, we have opted the meta-

heuristic techniques due to their practicality in real-world

applications.

Among various meta-heuristics, swarm-based opti-

mization algorithms have been used to shatter the obstacle

to choosing the best solution (optimal feature subset) to the

FS problem [78]. The Sparrow Search Algorithm (SSA) is

a novel swarm-based optimization algorithm recently

introduced by Xue et al. [119] for solving continuous

optimization problems. An improved binary version called

iBSSA is implemented and introduced based on SSA for

solving the problem of wrapper-based FS. In this study, the

SSA algorithm was chosen for solving the FS problem,

driven by a number of motivations. First, based on the

rigorous discussion through Sect. 2, meta-heuristic algo-

rithms have proven superior in solving the FS problem.

Therefore, the performance of the new SSA algorithm,

being a novel member of this toolbox, is tested. Second,

SSA is a recently proposed meta-heuristic algorithm with

the capabilities of fast convergence speed, stability,

searching precision, and escaping from local optima [119],

which is yet to be systematically applied to solving the

problem of FS. Last, when the proposed iBSSA algorithm

was compared with some high-performance optimization

algorithms as well as other latest well-developed ones, it

highly supoorted the above claim by providing higher

efficiency (i.e., fewer number of iterations or less calcu-

lation time) and providing an optimal or near-optimal

solution to most of the datasets involved. In order for the

Neural Computing and Applications

123



FS problem to be dealt more effectively, this work pro-

poses a novel improved binary SSA algorithm by mapping

the continuous SSA into discrete values using a set of

common S-shaped and V-shaped TFs, along with incor-

porating the two promising improvements, roaming agents’

(sparrows’) resetting strategy and the local search method.

On the other hand, k-Nearest Neighbor (k-NN), Support

Vector Machine (SVM), and Random Forest (RF) are

prevalent learning techniques in the machine learning

paradigm. In this study, while iBSSA is adopted as a search

optimization approach for finding out the most relevant

features, the diverse classifiers adopted herein (i.e., k-NN,

SVM, and RF) are used as fitness evaluation functions (or

evaluators), in order to, at the last, compose a new wrapper

FS method. This research will only address supervised FS

methods. As mentioned, meta-heuristics have achieved

great success in the FS domain. However, most of the

proposed methods typically only considered the k-NN

classifier and omitted SVM in many cases, while RF has

been almost completely ignored, although SVM and RF

typically provide better results than k-NN in diverse clas-

sification tasks [7, 25, 80]. Therefore, in this study, the

presented iBSSA method is tested with the three referred

classifiers which are used for estimating the performance of

the proposed approach in terms of the fitness value inferred

from the classification error rate.

A last motive, many researchers have turned a blind eye

to further addressing the roaming behavior of individuals

as well as the premature convergence problem in meta-

heuristic optimization while solving the FS problem

[1, 71, 82]. For this reason, the present work accounts for

both re-positioning of roaming individuals to promote the

search within feasible regions to amend the best solution

randomly faster, combined with a local search algorithm

for enhancing the exploitation capability.

1.2 Contribution

To improve the exploration of SSA as well as to promote

its exploratory power within feasible regions, a Random

Re-positioning of Roaming Agents (3RA) strategy was

proposed. Further, a novel Local Search Algorithm (LSA)

was also incorporated into the standard SSA algorithm to

boost the exploitation process by enhancing the optimum

solution obtained at the end of each main loop or iteration

in the algorithm. First of all, iBSSA was tested over nine

common S-shaped and V-shaped TFs, in order to determine

the most effective one that allows iBSSA to exhibit the best

convergence speed as well as the best averages of fitness,

accuracy, and number of selected features. Then, in pursuit

of a fair comparison, the best-performing TF was intro-

duced into the proposed iBSSA as well as into the binary

versions of other competitor algorithms. To demonstrate

the potential of the proposed approach to significantly

select the most relevant features, such popular expert sys-

tems as k-NN, SVM, and RF were used to estimate the

average fitness value based on the classification error rate

averaged on 30 independent runs of the algorithm, over 18

multi-scale benchmark datasets carefully selected from the

University of California Irvine (UCI) machine learning

repository [38]. To sum up, the main contributions of this

paper are outlined as follows:

1. An improved binary version of SSA (iBSSA), which is

enhanced through the 3RA strategy and the LSA

method, is proposed for the first time based on a feature

transformation method for wrapper feature selection in

classification tasks.

2. iBSSA was evaluated based on nine different TFs,

including S-shaped and V-shaped functions, over 18

benchmark multifaceted, multi-scale UCI datasets.

3. For a fair comparison, the TF most effective with SSA

was also integrated into other well-known meta-

heuristics, including SSA, ABC, PSO, BA, GWO,

WOA, GOA, SFO, HHO, BSA, ASO, and HGSO, for

binary conversion, which revealed the supremacy of

the proposed iBSSA method for feature selection in

classification when compared to other competitor

algorithms, over all three classifiers adopted in this

study (i.e., k-NN, SVM, and RF), for the majority of

the datasets used.

4. The final results were validated based on different

performance metrics, including mean classification

accuracy, mean fitness, mean number of selected

features, along with the respective standard deviation

values.

5. The supremacy of the proposed iBSSA method with

the three classifiers was affirmed compared to com-

petitors, based on a Wilcoxon’s non-parametric statis-

tical test at a significance level a ¼ 0:05.

1.3 Structure

The rest of the paper is organized as follows: Section 2

reviews the existing FS techniques; Section 3 presents a

simplified formulation of the FS problem, a description of

the original SSA, a brief discussion on the nine TFs, a

discussion on the two improvements embedded into the
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SSA, as well as a debate on the three classifiers adopted in

this study: k-NN, SVM, and RF; Section 4, elaborates for

and investigates the proposed iBSSA algorithm; Section 5

introduces the computational results and comparisons with

a few prominent rival algorithms, and the conclusions as

well as some suggested prospective works follows in Sect.

6.

2 An overview of feature selection methods

Dimensionality reduction is so crucial especially when

experiencing a high-dimensional feature space, therefore it

is commonly used in machine learning where a new space

of reduced dimensions is produced by mapping the original

feature space onto it. It is extremely important to Identify

relevant features in classification tasks (reducing compu-

tational costs while maintaining the highest possible

accuracy), as well as to recognize the features’ relative

significance. Two different paths are usually taken for

dimensionality reduction, constructing new dimensions or

picking a subset of the original dimensions. Research lit-

erature has often distinguished feature selection from fea-

ture extraction. In feature selection, the aim is to

individually—from among a large set of features—find the

best features that can effectively boost the classification

capability. More general methods, termed feature extrac-

tion algorithms, adopt transformation or combination

techniques to create new features form the original feature

set. Different weighting schemes have been traditionally

used in feature extraction to generate a smaller number of

ideally uncorrelated features either by linearly combining

features (as in Linear Discriminant Analysis (LDA), and

Principal Component Analysis (PCA)) or combining them

non-linearly (as in neural networks).

To use feature selection or feature extraction is the first

critical issue. Each has its own limitations, and no clear-cut

evidence exists for the superiority of one to the other for

diverse tasks. Feature extraction methods, including PCA

[39]—which linearly combine all the available features to

produce an, ideally uncorrelated, group of features—may

struggle if some of the features are not heterogeneous at all,

and there is no correlation between data assumptions.

Similarly, it is unfeasible to use sequential search methods

or do exhaustive search for high-dimensional datasets in

FS. It is simple to examine features individually; however,

poor feature subsets can be then yielded. On the other hand,

it is too much time consumed, as well as running out of

computer memory to try different feature combinations.

Finally, it is not necessarily that important features on

training data exhibit the same importance level on test data.

As mentioned, the FS problem is the only focus in this

work.

Much research on applications have concerned with

feature selection (so-called variable selection) for which

tens or hundreds of thousands of features are available in

datasets. Machine learning tasks, such as time-series pre-

diction, regression, classification, etc. may involve FS

problems.

A resurgence of interest has been paid to applying FS

methods to treat the large numbers of features encountered

in different types of problems, for example:

• Information fusion of multiple sensors’ data. For

instance, both color and shape features have been

merged in a trademark image database to provide a

higher retrieval accuracy [54].

• Pooling the parameters from different mathematical

models for classification purpose, as the integration of

multiple models in [97].

• Discovering the hidden relationships correlating a

plethora of features, as the data mining application in

[89].

The effectiveness of an inference model can be enhanced

using an appropriate feature selection. Feature selection

can grant such significant merits as follows [69]: i)

improving the overall performance (simplicity of rules,

predictive accuracy, or speed of learning); ii) model

selection via data visualization; and iii) dimensionality

reduction and noise removal. Although many advantages

are offered by feature selection, the risk of over-fitting or

decreasing accuracy may be encountered. Thus, it should

be well managed how to avoid these risks to get the desired

classification performance.

2.1 Typical Feature Selection techniques

There are two typical procedures in FS techniques:

exploring the feature space using an underlying search or

ranking algorithm; and guiding the underlying algorithm

by, for example, measuring the classification error rate in

the form of a cost function. On how to evaluate this cost

function, proposed approaches most important are descri-

bed below. The universal algorithms of FS often belong to

one of three modalities: filters, wrappers, and embedded

[43, 63]. The filter-based approach [61, 65] does not refer

to or learn from the target classifier while determining the

fitness of an examined feature subset. The cost function is
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evaluated independently of the target classifier in the fol-

lowing classification of independent datasets using the pre-

selected subset of features. Rather, the cost function value

can be computed based on a generic error estimation

function guides the search for an optimal subset or the

ranking of the individual features in the feature search

space. This procedure is flawed by ignoring the potential

effect of the feature subset on the learning algorithm. In

contrast, in the wrapper-based approach [27, 120] the fit-

ness of an examined feature subset is determined by

underlying the subset to the design of the target classifier

(used as a black box) to get an estimated classification error

rate through ranking features in the subset based on their

predictive power. Usually, wrappers approach can select

more relevant subsets of features than filters approach and

thus give better classification accuracy. However, each

examined subset’s fitness needs a more computationally

intensiveness for fitness assessment than the filter-based

methods in terms of the classification error estimation.

Consequently, since the wrapper-based methods must

evaluate many subsets, they are often criticized by ‘‘brute

force’’ and an additional computational overhead may

emerge as a result of the target classifier-based evaluations.

Obviously, in the case of the not-too large variables’

number, exhaustive search can be adopted and performed

under these two approaches. However, it is well-known

that the problem is NP-hard [19, 22, 36, 64] and the

computational intractability quickly results from the

search. When it is too large the number of variables, high

computational costs may be incurred by the approaches. In

contrast to wrapper approaches, embedded methods

determine the feature subset given the classifier design.

To solve the FS problem more pragmatically, other

techniques have been adopted to find a good approximate

solution, hopefully closest possible to the optimal subset.

Some of the potential subsets of features are intelligently

sequentially examined based on ‘‘forward’’ selection or

‘‘backward’’ elimination criteria to select the optimal

subset amongst all the examined subsets based on the best

cost function evaluation. In the following, the most com-

monly used methods—under these techniques—for per-

forming FS are discussed. Sequential Forward/Backward

Selection (SFS/SBS) [5] typically performs according to

simple greedy deterministic heuristics. SFS [115] starts by

an empty subset and new features are sequentially incor-

porated into this subset, whereas in SBS [75], the selection

process is reversed, SBS begins with the original subset of

all features and sequentially removes the least promising

ones until satisfying a certain termination criterion. Both

methods suffer from what is called the ‘‘nesting effect’’;

that is, features once selected in the SFS method cannot be

discarded later, whereas the features discarded in the SBS

method cannot be re-selected. The result is the permanent

suboptimality of these methods. In addition, high compu-

tation time is required by forward selection and backward

elimination when the dimensionality is very high [63].

The nesting effect can be definitely avoided by fusing

SFS and SBS. To prevent the ‘‘nesting’’ impact, a method

called ‘‘plus-l-take-away-r’’ has been suggested. This

method [104] does by applying SFS followed by SBS l and

r times, respectively. This forward and backward selection

fixed cycle is iterated until reaching a predefined number of

features. Thus, the nesting effect can be avoided by

removing (in posterior steps) some of the features that have

been priorly added. This method enables ‘‘fixed back-

tracking’’ based on top-down or bottom-up search and this

is defined by l’s or r’s values. Although this procedure can

partially overcome the problem of nested features, another

problem arises: it is not theoretically easy to appropriately

determine the land r’s value so that good enough solutions

can—with a moderate amount of computational resour-

ces—be obtained. The plus-l-take-away-r method basically

aims to counteract the nesting effect, and its implementa-

tion can be improved more efficiently by conditionally

including and excluding features, guided by the value of

the fitness itself.

In 1994, the concept of ‘‘floating feature search’’ was

introduced by Pudil et al. [87]. In addition, Sequential

Forward Floating Selection (SFFS) and Sequential Back-

ward Floating Selection (SBFS) were introduced as two

‘‘floating’’ search methods. Floating selection methods are

related to the plus-l-takeaway-r. Unlike the latter, the

number of forward and backward steps is not beforehand

fixed but controlled dynamically. In the methods of SFFS

and SBFS, number of features included or excluded is

changing at the different stages of the procedure. These

two methods are probably the most effective FS techniques

[53]. Mainly, in a forward search, a null feature set is

initialized and, for each step, the current feature set con-

tains the best feature that satisfies some fitness function

(i.e., one SFS step is performed). At the same time, it is

verified by the algorithm if it is possible to improve the

fitness by excluding some feature. if so, the set is then

refined by eliminating the worst feature, controlled by the
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fitness value (i.e., one SBS step is performed). Therefore,

the SFFS proceeds by dramatically tuning the number of

features in subset (increasingly and decreasingly) until

reaching the desired number. Similarly, SFBS initiates with

the full feature set and uses SBS and SFS steps to perform

the search until reaching the desired dimension. Even

though these two methods cannot always get the best fea-

ture subset, they perform very well in comparison with

other search methods.

Compared to the plus-l-take-away-r methods, floating

search methods are particularly characterized by the

potential to achieve good performance by making more

than one sweep while pursuing the best subset of features.

In practice, dynamic backtracking search performs very

robustly and, among different feature set search methods,

the first choice for many scholars would be the floating

search procedures [86]. Plus, floating methods behave just

as efficiently as the best sequential methods.

Despite the significant intelligence exhibited by the

floating methods, they still suffer suboptimality. These

sequential floating methods are criticized by being highly

elected to fall into the local optimal solutions’ trap, even if

the problem scale is quite small and the fitness function is

monotonic.

Other literature methods or algorithms adopted for the

FS problem include the following:

• The Branch-and-Bound (BB) FS algorithm has been

invented by Narendra and Fukunaga [81] to find the

optimal feature subset. This method has one drawback:

it requires the monotonousness of the FS criterion

function. Thus, adding new features to a feature subset

cannot enable to reduce the fitness function value.

Unfortunately, it is seldom to satisfy the monotonic

condition. Nevertheless, in large feature spaces, the

computational cost is prohibitive: in the worst scenario,

an exhaustive search is performed and the time

exponentially becomes more complex in accordance

with the expansion in feature space dimensionality. As

pointed out in [53], it is still impractical to apply the BB

method to very-large-scale problems.

• The Max–Min (MM) FS method has been invented by

Backer and Shipper [10]. It is a computationally

efficient method in which only individual and pairwise

merits of features are evaluated. This method invariably

achieves unsatisfactory results [53, 62].

• The use of GA for FS has been firstly introduced by

Siedlecki and Sklansky in 1989 [103]. In a GA

approach, a binary string (a ‘‘chromosome’’) is used

to represent a given feature subset of total length D,

with a value of one or zero in the j-th position to denote

the presence or absence of feature j in the set. The

algorithm maintains a population of chromosomes and

the ‘‘fitness’’ of each chromosome is evaluated in terms

of how likely is the survival and breed of the

chromosome into the next generation. Old chromo-

somes are used to create new ones by the following

processes: i) crossover, where offspring is created by

mixing parts (genes) of two different parent chromo-

somes; and ii) mutation, where a child is created by

randomly disturbing the bits of a single parent. Other

works that apply GA to the FS problem include those of

Emary et al. [32], Jiang et al. [55], Raman et al. [90],

Dong et al. [29], Bouktif et al. [14], and Das et al. [21].

• The Tabu Search (TS) method has been developed for

feature subset selection by Zhang and Sun [128]. An

adaptive memory (the tabu list) is used by TS to keep

track of solutions that have been visited and should–—

for a number of iterations—be avoided. The ‘‘tabu

tenure’’ determines how long the tabu list should

reserve a solution. In [128], a comparative analysis of

the TS-based technique and other FS techniques (SFS,

SBS, plus-l-take-away-r, SFFS, SFBS, and GA) has

been conducted and the performance analysis shows TS

as a promising search ‘‘heuristic’’ for the FS problem.

Despite some progress, it is not yet completely satisfactory

the FS techniques available now for large feature sets.

They are either enriched with computational feasibility but

far from optimality, or they are enriched with optimality

(or near-optimality) but cannot cope with the computa-

tional complexity of real-world FS problems. More pow-

erful methods for FS are required to be developed, to

provide very good results with more efficient computa-

tions. Therefore, in the present work, a novel improved

meta-heuristic strategy, called iBSSA, is proposed to solve

the FS problem.

Several challenges usually arise when getting up to find

an optimal subset of features using the aforementioned

traditional techniques. Multiple search methods, such as

breadth search, random search, depth search, or

hybridization of them have been additionally tried to

determine the optimal subset of features. Further tech-

niques have been proposed in [2, 3]. However, exhaustive

search technique typically adopted there has been found

time-consuming and unfavorable, especially with high-di-

Neural Computing and Applications

123



mensional datasets [106]. Feature selection is arguably

formulated as a combinatorial NP-hard optimization

problem [19, 22, 36, 64]. For example, if we suppose that

the number of features in a given dataset is D, it will be

computationally expensive to find the optimal subset of

features among 2D different candidate combinations (so-

lutions), given the fact that 2D different evaluations are

required for conducting a full search, methods of forward

selection or backward elimination are recursively used in

SFS and SBS. In addition, local optima can be more effi-

ciently avoided by using stochastic methods. Therefore,

those methods, especially meta-heuristics (discussed

below), have been increasingly attempted by researchers as

wrapper-based approaches to find out the best feature

subset based on their global search process that is signifi-

cantly effective with large feature spaces [4, 101, 124].

2.2 Meta-heuristics-based feature selection
techniques

In recent years, meta-heuristic optimization algorithms,

which are very close to stochastic methods in generating

and using random variables, have been incorporated into

different application areas, including building construction,

health-care, agriculture, computer engineering, and many

more [117]. This may be due to the obvious merits of these

algorithms, including gradient-free nature, flexibility,

simplicity, and independency of the problem of interest

[51, 79]. Moreover, these algorithms can potentially

approximately find the best (optimal) solution in small,

comparable amounts of time, even for very large-scale

problems. There is therefore still an appeal of solving

complex optimization problems, such as the FS problem,

using different advanced meta-heuristic algorithms [28].

Among many others, swarm intelligence and physics-based

methods are two major categories of meta-heuristic algo-

rithms [50, 130, 131]. Swarm intelligence mimics the

collective social behavior of various species (i.e., animals

or insects) in swarms for hunting or foraging, in which all

individuals cooperate and share information during the

optimization process. Representative algorithms include

Artificial Bee Colony (ABC) [57], PSO [30], Bat Algo-

rithm (BA) [122], Grey Wolf Optimizer (GWO) [79],

Firefly Algorithm (FA) [121], and Cuckoo search (CS)

[123]. This latest algorithms in this category include the

WOA [78], Bird Swarm Algorithm (BSA) [76], HHO [49],

Sailfish Optimizer (SFO) [98], Grasshopper Optimization

Algorithm (GOA) [93], and Butterfly Optimization Algo-

rithm (BOA) [9]. Moreover, the laws of physics in nature

were utilized to come up with physics-based optimization

methods, including Simulated Annealing (SA) [112],

Gravitational Search Algorithm (GSA) [91], Atom Search

Optimization (ASO) [133], and Henry Gas Solubility

Optimization (HGSO) [47]. To learn more about meta-

heuristic algorithms, the reader is referred to [28].

In an attempt to tackle the FS problem, meta-heuristics

methods have been, due to their simplicity and flexibility,

tried by many researchers, and some of them are investi-

gated here. Sharawi et al. [99] introduced a new variant of

the WOA algorithm that employed the wrapper-based

technique to select the optimal feature number to yield the

best mean classification accuracy. Subsequently, Eid [31]

suggested the S-shaped function with WOA for tackling FS

problems. Two versions of WOA were introduced by

Mafarja and Mirjalili [70]. In the first, instead of a random

operator, the roulette wheel and tournament selection were

applied. The mutation and crossover operators were used in

the second version to boost the performance of the pro-

posed algorithm. Furthermore, Sayed et al. [94] hybridized

WOA with the chaotic search to solve the slow conver-

gence speed and stagnation to local optima issues poten-

tially encountered while solving FS problems. Mafarja

et al. [73] introduced two binary versions of the GOA

algorithm. The first method used the S-shaped and

V-shaped functions as Transfer Functions (TFs), while the

second version employed the mutation operator to improve

the exploratory ability of the proposed algorithm. Mafarja

et al. [72] employed evolutionary population dynamics and

selection operators to enhance the performance of the

conventional GOA. Zakeri and Hokmabadi [125] hybri-

dized the GOA with some statistical metrics for replacing

the duplicated features with the most favorable one. In a

related context, Emary et al. [32, 33] introduced the GWO

algorithm and two binary versions of the Lion Optimiza-

tion Algorithm (LOA), based on S-shaped and V-shaped

TFs. Additionally, Arora and Anand [8] proposed a novel

binary variant of the BOA based on some of the above-

mentioned TFs. Chen et al. [17] introduced a discrete PSO

algorithm based on a logistic map sequence to improve the

swarm diversity. De Souza et al. [24] suggested a new

variant of Crow Search Optimization (CSO) algorithm

using a V-shaped TF. Sayed et al. [96] hybridized the

Flower Pollination Optimization Algorithm (FPOA) with

the clonal selection search, in which the optimum path

forest accuracy was applied to evaluate the solution per-

formance. Zawbaa et al. [127] managed to integrate the

rough theory into FPOA to solve FS. Sayed et al. [95]

validated the performance of 10 chaos maps incorporated

into both the CSO and SSA algorithms. Hegazy et al. [48]

introduced a new control parameter which was involved to

refine the best solution obtained so far, using the k-Nearest

Neighbor as an expert system for the evaluation of the

relevance of the selected features. Moreover, Zhang et al.

[129] hybridized the FA and SA algorithms with the aim to

escape from the local optima while increasing the accuracy
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of the final solutions. Several enhancements, such as

return-cost attractiveness, Pareto dominance-based selec-

tion, and binary movement with adaptive jump, were

employed in [129] in order to solve the underlying FS

problems more effectively. Faris et al. [34] introduced a

multi-verse optimization algorithm, adopting the Support

Vector Machine (SVM) classifier as a fitness evaluator. Gu

et al. [41] suggested a new version of the PSO algorithm to

solve a high-dimensional FS problem. Many other meta-

heuristic based approaches were proposed for FS by, for

example, Hafez et al. [44], Kashef and Nezamabadi-pour

[58], Li et al. [67], Tabakhi et al. [105], Wang et al. [114],

and many others. In fact, the introduction of meta-heuristic

algorithms to solve FS problems is a trend for some years

now. To learn more about meta-heuristic algorithms for FS,

please refer to the review paper [100]. As discussed earlier,

there are various advantages of meta-heuristics, so will the

FS problem be solved using existing methods sufficiently?

The No Free Lunch theorem (NFL) [116] is the appropriate

answer to this question. This theorem indicates that a single

algorithm cannot optimally solve all optimization prob-

lems. For FS on a dataset, while an algorithm performs

very well for one kind of dataset, another one may perform

poorly. Thence, the search for an advanced meta-heuristic

approach for solving almost all possible FS dataset types is

still an open research question.

3 Preliminaries

3.1 The Feature Selection (FS) problem

The problem of selecting a feature subset can be formu-

lated as a combinatorial optimization problem with the

major aim of obtaining superior classificatory performance

as follows: Let an initial feature set, f, with cardinality D.

Let the number of feature to be pursued be represented by d

in the selected subset s. Let the fitness function of the

selected subset s be represented by f ðsÞ. Let the misclas-

sification error rate, cðsÞ, of a given classifier to be mini-

mized when presented with the feature subset s. Formally,

the FS problem is to find a subset s � f such that jsj ¼ d

and

f ðsÞ ¼ min
s�f;jsj¼d;d\D

cðsÞ:

So, a lower value of cðsÞ indicate a highly feasible feature

subset. In this case, the ‘‘goodness’’ of a selected subset of

features is assessed and computed in the form of a fitness

function as follows: Let C be a set of cases (i.e., the whole

instances or samples in a given dataset). We know the class

to which each case relates (here binary classifications, with

only two classes, is considered). A certain partition is made

in C, C ¼ C1 [ C2, where C1 (training data) and C2 (test

data) are in the vicinity of the same cases’ number and the

same representation ratio for each class. The Euclidean

distance is calculated from each case in C2 to every case in

C1 and the class corresponding to nearest case is assigned.

f ðsÞ’s value is the proportion of mishits in the assigned

classes. That is, how much times the assigned class was

NOT the real (true) class.

If we adopted an exhaustive approach that is applied to

this problem, this would require investigating all
D
d

� �

possible d subsets (which can be derived from the feature

set f). But the exponential growth of possibilities makes

exhaustive search impractical even with reasonable D’s

values. As mentioned, FS is an NP-hard problem

[19, 22, 36, 64] and heuristic and meta-heuristic techniques

are therefore the most appropriate choice.

3.2 Sparrow Search Algorithm (SSA)

Sparrow Search Algorithm (SSA) [119] is a meta-heuristic

optimization algorithm under the umbrella of swarm

intelligence, meta-heuristics and computational intelli-

gence. SSA is a natural extension of the BSA algorithm

[76] extracted from the social behavior and interactions of

bird swarms. Sparrows are gregarious birds of several

species distributed across the globe and prefer to live in

areas where people live. Besides, it belongs to the family of

omnivorous birds that usually feed on weed or grain seeds.

The sparrow is intelligent in comparison with other small

birds and has a strong memory inspired by behaviors of

anti-predation and foraging. In fact, captive house sparrows

are divided into two main types based on their foraging

behaviors: scrounger and producer [12]. The producers

energetically pursue potential sources of food, while the

scroungers grab food via those producers. In addition, it

has been evidenced that birds usually switch between

producing and scrounging by utilizing behavioral strategies

flexibly [13]. With that being said, sparrows usually use the

same strategies which are adopted by producers and

scroungers to find their food [68].

Literature studies have shown that each individual in

SSA keeps monitoring the behavior of its neighbors.

Meanwhile, attackers against the bird flock are competing

for foraging high intakes of food for the companions,

thereby increasing their own predation probability [66].
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Though, when different foraging strategies are adopted by

the sparrows, the energy retained by the individuals may be

then well utilized in the pursuit of food, so that the scrawny

sparrows can scrounge even more [66]. It should be noted

that birds within the search space are more vulnerable to

attack by predators and therefore are required to seek a

better (safer) location [15]. While the birds at the centre

can minimize their domain of danger by moving closer to

the neighbors [45]. It is well known that the bird family,

especially sparrows, shows a natural instinct of curiosity

along with constant vigilance. For example, when a

predator is detected by a bird, a chirp is given by one or

more individuals so that the entire group flies away from

the source of danger [88]. According to the previous

description of sparrows, a mathematical model can be

formulated to construct the SSA algorithm. In simulation

experiments, the food source is pursued by using virtual

sparrows with a position vector expressed as:

x ¼

x1;1 x1;2 . . . x1;D

x2;1 x2;2 . . . x2;D

..

. ..
.

. . . ..
.

xN;1 xN;2 . . . xN;D

2
66664

3
77775; ð1Þ

where the number of sparrows are represented by N, and

the number of dimensions to be optimized are represented

by D. Then, the following vector can represent the fitness

value of all sparrows:

fðxÞ ¼

f ð½x1;1 x1;2 . . . x1;D�Þ
f ð½x2;1 x2;2 . . . x2;D�Þ

..

. ..
.

. . . ..
.

f ½ðxN;1 xN;2 . . . xN;D�Þ

2
66664

3
77775; ð2Þ

where the value of each row in fðxÞ represents each indi-

vidual’s objective function. In SSA, the producers with the

best fitness for getting food during the search process are

given a higher priority. Besides, because producers are

primarily responsible for foraging, in addition to managing

the movement of the entire swarm, they have the ability to

forage for food in a wider range than the scroungers do. At

each iteration t, the position of each producer i is adjusted

per every dimension j as:

xtþ1
i;j ¼

xti;j � exp
�i

a � T

� �
if R2\ST;

xti;j þ Q � Li;j if R2 � ST;

8><
>: ð3Þ

where j 2 f1; 2; . . .;Dg, and T represents the maximum

number of iterations. R2 2 ½0; 1� represents a warning

(alarm) value, while ST 2 ½0:5; 1:0� denotes the safety

threshold. a 2 ð0; 1� and the normally distributed Q are two

independent random numbers. L is a matrix of 1� D,

inside which each element is 1. R2\ST means no predators

around, allowing producers to search wider. On the con-

trary, R2 � ST implies the existence of predators discov-

ered by some sparrows, and because of this, all sparrows

are needed to quickly move to more secure regions.

As mentioned above, some scroungers continue to track

down producers until those producers find a good food

source, so that they can then leave their current position to

pursue the target source of food. If they could win, they

would automatically have a chance to get food from the

producers; otherwise, they continue to execute their main

task of vigilance. The scroungers update their position

according to Eq. (4):

xtþ1
i;j ¼

Q � exp
xtworst;j � xti;j

i2

� �
if i[N=2;

xtþ1
p;j þ xti;j � xtþ1

p;j

��� ��� � Aþ
0;j � L if i�N=2;

8>><
>>:

ð4Þ

where xp;j is the personal best position obtained so far by

the producers at the j-th dimension, and xworst;j denotes the

current global worst location at the j-th dimension. A shows

a matrix of 1� D with the randomly assigned value 1 or

�1 for each of its elements, while Aþ ¼ ATðAATÞ�1
. L

represents a matrix of 1� D, all of whose entries are 1.

When i[N=2, this implies the starvation of the i-th

scrounger whose fitness value is among the worst.

In the simulation experiments, those sparrows who are

aware of the danger (i.e., expectant sparrows) typically

account for 10% to 20% of the whole swarm. These

sparrows’ positions are initially randomly generated

through the swarm as:

xtþ1
i;j ¼

xtworst;j þ b � xti;j þ xtbest;j

��� ��� if fi [ fg;

xti;j þ K �
xti;j þ xtworst;j

��� ���
ðfi � fwÞ þ e

0
@

1
A if fi ¼ fg;

xti;j if fi\fg:

8>>>>>><
>>>>>>:

ð5Þ

The algorithmic structure of the standard SSA is

exhibited in Algorithm 1.
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3.3 Transfer Functions (TFs)

Since the final solution obtained by SSA is composed of

continuous values, SSA cannot directly be used to solve a

FS problem. Therefore, it is necessary to use a mapping

(transfer) function to transform the continuous values into

binary 0 or 1. Transfer Functions (TFs) [77] determine the

rate of changing in the values of the decision variables

from 0 to 1 and back. On selecting a TF to transform the

values from continuous to binary, some concepts should be

taken into consideration—from an SSA perspective—as

follows:

• The range of values obtained from a TF should be

within the interval [0, 1], representing the probability

whether a sparrow will change its current location.

• If the alarm value R2 is lower than the safety threshold

ST , then the TF should present a higher probability of

changing the current location at the next iteration as

sparrows having R2 larger than ST are probably going

so far from the best solution.

• When R2 is small, the TF should provide a small

probability of changing the current location.

• In summary, the probability returned by the TF should

increase as R2 approaches ST , so that sparrows that are

moving away from the best solution can have a higher

probability of changing their location vector, which

enables them to return to their previous best personal

location as soon as possible throughout the next

iterations.

• Also, the probability obtained from a TF should

decrease as R2 value keeps away from ST value.

These concepts judge the high capability of TFs to map the

process of continuous search into binary for each individ-

ual x, using Eq. (6):

xtþ1
i;j

� �
bin

¼

0 if rand\TF xtþ1
i;j

� �
;

1 if rand� TF xtþ1
i;j

� �
;

8><
>: if TF is S-shaped;

: xti;j

� �
bin

if rand\TF xtþ1
i;j

� �
;

xti;j

� �
bin

if rand� TF xtþ1
i;j

� �
;

8><
>: if TF is V-shaped;

8>>>>>>>>><
>>>>>>>>>:

ð6Þ
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where xtþ1
i;j

� �
bin

represents the j-th dimension of the i-th

individual at the current iteration t þ 1, rand is a number

selected randomly from within the range [0, 1], and

TF xtþ1
i;j

� �
is the probability value obtained when applying

a given TF to every j-th component’s continuous value of

agent i. It is clear from Eq. (6) that we have two cases: i) if

the TF is S-shaped, then if rand is less than the probability

returned by the involved TF, the j-th dimension of the

original individual is set to 0; otherwise, it is set 1; and ii) if

the TF is V-shaped, then if rand is less than the probability

returned by the involved TF, the j-th dimension is negated;

otherwise, it remains unchanged. Thus, by using the

S-shaped and V-shaped TFs and Eq. (6), continuous vari-

ables are successfully mapped into binary.

Table 1 reports two families of TFs while Fig. 1 exhibits

visually their behavior, divided into S-shaped and V-shaped

transfer functions. Here, it should be pointed out that the

proposed iBSSA method was evaluated based on those nine

TFs whose mathematical expressions are shown in Table 1.

3.4 Learning algorithms adopted in this study

k-NN, SVM, and RF are widespread learning algorithms

from different families in the machine learning paradigm.

In this article, while iBSSA is used as a search optimization

strategy, those classifiers are used to design a new wrapper

FS model to assess the goodness of each feature subset.

Thence, these classifiers (or expert systems) are described

as follows:

3.4.1 k-Nearest Neighbor (k-NN)

k-Nearest Neighbor (k-NN) [18] is a largely popular pattern

recognition and machine learning algorithm. It is com-

monly used due to its advantage of simplicity in imple-

mentation over other complicated supervised machine

learning algorithms [118]. In pattern classification tech-

niques, k-NN is applied in diverse fields, such as health-

care, forestry, image and video recognition, finance, and

many more. The k-NN algorithm can be considered as a

wrapper method in which the rules of classification are

produced by training instances. After k-NN learns from the

training process, the unknown instances in the test set are

approximated based on their vicinity to the instances of the

training set, so that an unlabeled instance can be subse-

quently classified according to the largest probability of

category. Though, the selection of k in k-NN is crucial and

it is therefore chosen after various trial and error experi-

ments. In this study’s empirical experiments, the selected

feature subsets are validated by using the k-NN classifier

(k ¼ 5 [70, 71, 108]) with the Euclidean distance metric.

3.4.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) [113] is a widely used

wrapper-based classifier, in which hyper-planes are applied

for separating multiple classes. SVM is widespread in the

data science community as it has the potential to classify

with reliable accuracy and less computational resources as

well. This is achieved by mapping the primary data from

the original input space – using the non-linear function /—
into a higher dimensional space wherein linear separation

of the data can take place by finding a hyper plane with the

maximal margin in this higher dimensional space [ 0 for

discovering the boundaries between the input classes.

However, this particular approach faces two main critical

challenges: acceptable basic function selection as well as

the adjustment of its parameters [109]. Logically, selecting

the best decision plane is mainly treated in the form of an

optimization task that helps a kernel function find out the

most optimal space wherein categories are often divided

linearly through one non-linear transformation.

In SVM models, given that kðxi; xjÞ ¼ /ðxiÞT/ðxjÞ
denotes the kernel functions, there are a number of com-

mon kernel functions, including:

• Linear kernel, where / ¼ xi 	 xj,

Table 1 S-shaped and V-shaped families of TFs

S-shaped family V-shaped family

Name Transfer function Name Transfer function

Sv1 TFðxÞ ¼ 1
1þexp�x [60] Vv1 TFðxÞ ¼ tanh ðxÞj j [92]

Sv1c TFðxÞ ¼ 1
1þexpx

Vv2 TFðxÞ ¼ erf
ffiffi
p

p

2
x

� ���� ���
Sv2 TFðxÞ ¼ 1

1þexpð�x=2Þ Vv3 TFðxÞ ¼ ðxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p�� ��
Sv3 TFðxÞ ¼ 1 1þ expð�x=3Þ Vv4 TFðxÞ ¼ 2

p

�� arctan p
2
x

� 	
j

Sv4 TFðxÞ ¼ 1
1þexp�2x

(a) (b)

Fig. 1 Families of transfer functions
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• Polynomial kernel of degree d, where

/ ¼ ðxi � xj þ 1Þd,
• RBF kernel, where / ¼ expð� xi � xj



 

2=2r2Þ, and
• Sigmoid kernel, where / ¼ tanhðxi � xj þ 1Þ.
Typically, the polynomial and RBF (Radial Basis Func-

tion) kernels are more applicable and suitable for non-lin-

ear problems in diverse areas, including intrusion

detection, classification, and image processing as they have

proven efficient in delivering a better performance. Poly-

nomial kernel provides a high performance—especially on

high dimensional databases—by consuming less compu-

tational time. According to the works [83] and [102] pen-

etrating the fields of satellite data analysis and intrusion

detection, the results exhibit a slight advantage for the

polynomial kernel in comparison with the RBF kernel.

Additionally, multiple works judge that the optimum value

to be assigned to the polynomial degree d should be 2,

which would exclude an extensive seeking process

regarding this parameter, generating however higher

accuracy. On the other hand, the sigma value r in the RBF

kernel makes a greater impact both on the mapping trans-

formation of data space and the ultimately obtained aver-

age classification accuracy. Also, the mandatory tuning

process of RBF’s controlled parameters complicates the

situation because of the much time required. Based on the

explained reasons, the polynomial kernel with d ¼ 2 was

chosen as the most adequate kernel type for SVM. How-

ever, to optimally solve the above-mentioned dilemma, a

hyper-heuristic mechanism can be incorporated for the

automatic selection of kernel types as well as the tuning of

controlled parameters.

3.4.3 Random Forest (RF)

Random Forest (RF) [126] is a well-known machine learning

algorithm which typically gets involved in heavy-duty tasks,

including image classification, action recognition and detec-

tion, visual tracking, facial expression recognition, label dis-

tribution learning, time-series forecasting, and so on. RF is

formally defined as an ensemble of decision trees featuring

characteristics, such as robustness to label noise, inherent

multi-class handling capacity, enabled FS, parallel process-

ing, fewer tunable parameters, and efficiency in handling

numerical and categorical data. Although RF has been pro-

posed two decades ago, it is still employed in various appli-

cations [16], thanks to its simplicity in interpretability and

implementation as well as the significant computational per-

formance [59]. Decision trees in RF employ recursive parti-

tioning of the training data into small sets, which greatly

assists in the classification task by optimizing an impurity

criterion, such as information gain or ‘‘gini’’ index [20].

Frankly, the large number of trees (estimators) in the

forest increases the execution time of this algorithm,

making it ineffective for real-time applications where the

run time is an important factor. Moreover, the maximum

depth of the tree (height of the tree) is a critical parameter.

Once again, we can overcome this dilemma by adopting a

hyper-heuristic approach for automatic selection of the

split strategy and tuning of the algorithm’s parameters. In

our experiments, in order to achieve a relatively high

performance in terms of higher classification accuracy, the

RF algorithm was implemented and executed extensively

with a number of estimators (n ¼ 10) and maximum depth

(d ¼ 5).

4 Proposed improved Binary SSA (iBSSA)
for feature selection

Due to the high performance derived from the extensive

design of the canonical SSA algorithm in balancing

exploration and exploitation capabilities and the absence of

this algorithm to solve FS problems, this article adopts SSA

as a search strategy for a wrapper-based FS. In the suc-

cessive versions of SSA, any point in the search space can

be the optimum position within the swarm. While FS is a

discrete optimization problem, and only binary values (0 or

1) can be used to represent the components of the sparrow

position in the binary SSA variant based on TFs. The

underlying motivation is the appeal of the simplicity of

those binary operators over continuous ones. An improved

binary SSA variant is presented in this study to solve the

feature selection problem. The method for binary conver-

sion of continuous SSA mainly depends on the TFs. It is

worth mentioning that two improvements were also intro-

duced to straighten the roaming behavior of the algorithm

as well as to enhance its exploitation capability.

The two improvements embedded into the standard SSA

algorithm are described through in this section. The first is

the 3RA method that is proposed in order to amend the

optimum solution randomly faster to become within the

feature space. The use of LSA algorithm is the second

improvement which enhances the exploitation phase of

SSA to avoid becoming stuck in local optima. As shown in

Algorithm 4, the proposed iBSSA algorithm works by

initially generating a swarm of N sparrows. Then, the main

loop is iterating through these N sparrows to adjust their

own locations according to Eqs. (3), (4), or (5). Eventually,

LSA is applied to the current xbest at the end of the iBSSA

main loop, hoping to obtain a better solution than the

current best one obtained so far. At the end, iBSSA will

return the best optimum solution composed of xbest and fg.
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4.1 Improvements embedded into the standard
SSA

To improve the exploration of iBSSA as well as to rectify

the roaming behavior usually exhibited by individuals in

the swarm, the 3RA strategy was proposed. Further, a

novel LSA method was incorporated into the standard SSA

algorithm to boost the exploitation process by enhancing

the optimum solution obtained so far at the end of each

main loop or iteration of the algorithm. These two arguably

promising improvements are discussed in detail in the

subsection to come.

4.1.1 Improving the exploration by Random Re-positioning
of Roaming Agents (3RA)

While refreshing the area of sparrows, they may abuse the

feature space limit, especially with the high dimensionality

of the FS problem at hand. In this way, an appropriate

clipping technique is expected to be significant to inhibit

roaming individuals (sparrows) which go beyond the

search space. In general, numerous past investigations have

added this upgrade step in their works [111]. Notwith-

standing, which technique has been utilized to re-position

roaming agents to the search space (i.e., re-positioning to

the hunt space by cutting the detachable situation to stretch

edges, irregular re-positioning to the pursuit area, or any

others) is not clearly stated. Irrespective of that, we think

that random re-positioning of roaming agents to an arbi-

trary area of the hunt space would provide improved out-

comes, inspired by the stochastic nature of meta-heuristics.

Therefore, we have adopted it as an upgrade step that is

supposed to combat the misuse cycling of sparrows and

correct the haphazardness potentially caused by the

original SSA. The pseudo-code for the 3RA strategy is

presented in Algorithm 2.

4.1.2 Improving the exploitation by Local Search Algorithm
(LSA)

A new LSA algorithm is developed and presented as shown

in Algorithm 3. In the original SSA, in the tail of each

current iteration t þ 1, LSA is called to enhance the cur-

rently obtained best solution xtþ1
best by further omitting

potentially irrelevant features still there. At first, LSA

stores, in a variable Temp, the value of xtþ1
best produced at the

end of each iBSSA iteration. To improve Temp, LSA runs

iteratively LT times. At each iteration Lt of LSA, four

features rand feat are randomly selected from Temp. LSA

flips the value of each variable in rand feat. Then, the

fitness value f(Temp) of the new solution (the new Temp) is

evaluated; if it is better than f xtþ1
best

� 	
, then xtþ1

best is set to

Temp; otherwise, xtþ1
best and fg are kept unchanged.

Furthermore, the classification techniques k-NN, SVM,

and RF, were adopted to work with the proposed iBSSA

algorithm in wrapper mode for solving FS problems. At

each iteration, each classifier is individually applied to train
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and test the data with the best subset of features selected by

iBSSA. To represent the selected and deselected features in

FS problem, binary values were used, such that each ‘‘1’’

value in the solution means this index is a selected feature,

while ‘‘0’’ value means this index is an deselected feature.

The proposed iBSSA algorithm operates as follows:

4.2 Initialization

The initialization phase is the first step in a population-

based algorithm or approach, wherein a swarm of N spar-

rows (search agents) is generated randomly. In this study,

each candidate solution i is limited by lower and upper

bounds in the range ½�1; 1�, in order to allow individuals to

relatively search more broadly, yet restrictively within the

continuous search space domain. Each search agent rep-

resents a potential solution with a dimension D which, in

the paradigm of feature selection, equalizes the original

number of features in any of the datasets used. The prob-

lem of FS for classification purposes can, in brief, be

described as selecting a minimal relevant feature subset

that can help maximize (or even maintain) the mean clas-

sification accuracy. Therefore, in this study, we manage to

identify the salient features (‘‘one’’ values) and reject the

other ones (‘‘zero’’ values). Initial position of each sparrow

in the swarm is firstly converted to random binary values

(among 0s and 1s) by discretizing the position at each

dimension which takes either 0 (not selected) or 1 (se-

lected) according to Eq. (6) and as shown in Fig. 2, prior to

initiating the fitness evaluation process.

4.3 Fitness evaluation

When it is required to optimize more than one objective

simultaneously, the underlying optimization problem is

then described as many- or multi-objective, and all objec-

tives must be satisfied to obtain the target optimum solu-

tion. Accordingly, the FS problem can be considered multi-

objective as it must achieve two conflicting targets: mini-

mizing the number of selected features and maximizing (or

even maintaining) the classification accuracy, given a

wrapper classifier [1, 85]. The FS method mainly aims at

achieving high classification accuracy with as minimal

feature subset as possible. The aforementioned two con-

flicting objectives are formulated in this work by adopting

an objective function to evaluate the optimality of the

solution obtained at the end of each iteration:

Fiti ¼ a� Erri þ b� d	j j
jDj ; ð7Þ

where Erri is the classification error rate produced by

wrongly predicting instances in a test set, and is computed

based on the classifiers adopted herein; i.e., k-NN, SVM,

and RF. While |D| represents the number of all features in

the original dataset, d	j j denotes the length of the selected

feature subset. As for a and b, they respectively weigh the

importance of both the classification accuracy and the

selected feature subset’s size, where a 2 ½0; 1� and

b ¼ 1� a. Based on extensive experiments in previous

studies [40, 71], it has been prescribed that a ¼ 0:99 and

b ¼ 0:01 is an adequate adjustment. The large impact and

weight should highly be given to the classification accuracy

rather than the number of selected features. Intuitively, if

only the classification accuracy is considered in the eval-

uation function, the result may then disregard the solutions

having the same accuracy but with less number of selected

features that contribute greatly to alleviating the dimen-

sionality curse problem. In this study, we utilize the clas-

sification methods k-NN, SVM, and RF as expert systems

(or evaluators) to assess the process of feature selection

based on the classification error rate.

4.4 Position updating

Inclusively, the positions of sparrows in iBSSA are updated

according to Eqs. (3), (4), or (5). If the current sparrow is a

producer, then Eq. (3) is applied to update its position;

otherwise, Eq. (5) is applied to update the scrounger’s

position. Meanwhile, Eq. (4) will be used to update the rest

of the swarm (i.e., the whole swarm apart from producers).

Note that, after the position is updated at each iteration, the

continuous values of the position vector are preserved for

future use in the continuous position update throughout the

successive iterations. These values are also discretized

using Eq. (6), so as to evaluate the fitness value of the

produced binary solution based on the classification error

rate obtained by the classifier involved using the features

selected by iBSSA. Next, this process iterates until meeting

a stopping criterion which is, in this study, the maximum

number of iterations (which has proved sufficient to

quantify the quality of the iBSSA algorithm). Finally, the

overall pseudo-code of iBSSA can be found in Algorithm

4.

Fig. 2 Binary solution representation
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5 Experiments and discussion

This section highlights the computational experiments for

the iBSSA algorithm against different competing meta-

heuristic algorithms. Parameter settings, benchmark data-

sets, and performance measures adopted to validate the

proposed approaches are articulated in this section as well.

5.1 Description of datasets

In order to extensively evaluate and validate the perfor-

mance of the techniques proposed in this manuscript, 18

multifaceted, multi-scale benchmark datasets from the UCI

data repository [38] in different fields (e.g., biology, poli-

tics, electromagnetic, game, physics, chemistry, and arti-

ficial) are used in all experiments. These datasets are very

beneficial to better verify the methods proposed herein,

based on the different number of instances and features

involved. Table 2 shows the details of these datasets.

5.2 Environment and parameter settings

The proposed iBSSA algorithm was compared against a

binary variant of the standard SSA algorithm (BSSA) as

well as binary variants of other 11 state-of-the-art meta-

heuristic algorithms, including BABC, BPSO, BBA,

BGWO, BWOA, BGOA, BSFO, BHHO, BBSA, BASO,

and BHGSO, which are all implemented in this study.

Concerning the classifiers adopted in this study, for k-NN,

the Euclidean distance metric k ¼ 5, while SVM builds on

a polynomial kernel with degree d ¼ 2. In RF, the number

of estimators n ¼ 10, and the maximum depth d ¼ 5. Due

to the stochastic nature of meta-heuristics, for each method,

30 independent runs were performed. Then, the average

values of the performance metrics were recorded over the

30 experiments. In order for the comparison to be fair, the

maximum number of iterations and the swarm size were

respectively set to 100 and 10 for all algorithms. Besides,

the number of features in the datasets adopted herein rep-

resents the problem size, while the continuous search

domain is set to ½�1; 1� in order to allow individuals to

relatively search more broadly, yet restrictively within the

continuous search space. Lastly, the number of local iter-

ations in the proposed LSA algorithm was set to 20.

In the proposed approach, the optimality of the results

was validated by using the hold-out strategy, where the

training and test sets are realized by randomly dividing

each dataset into two parts, where the training phase is

done on 80% of the dataset while the remaining 20% is for

testing purposes[70]. The results in the following

tables represent the average values over 30 runs in terms of

the mean fitness value, the mean classification accuracy,

and the mean number of selected features. The remaining

parameters of each algorithm are set according to the

standard versions and the information provided in their first

publications. The common settings of all algorithms, along
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with parameter settings for each algorithm, are described in

Table 3. To run all experiments in this study, Python was

used on a computing environment with a Dual Intel�

Xeon� Gold 5115 2.4 GHz CPU and 128 GB of RAM on

the operating system Microsoft Windows Server 2019.

5.3 Performance metrics

In this study, to validate the performance of the proposed

iBSSA against competitors, each optimization algorithm is

evaluated independently 30 times for each dataset, in order

to make the empirical results statistically more significant.

To this end, some key performance measures in the FS

problem were adopted as follows:

• Mean accuracy lAccð Þ: This metric estimates the rate

at which the data is classified correctly. The mean

classification accuracy lAccð Þ, which is obtained by

executing the algorithm 30 independent times, is

expressed as Eq. (8):

lAcc ¼
1

30

1

m

X30
k¼1

Xm
r¼1

match PLr;ALrð Þ; ð8Þ

where m represents the size of samples in the test

dataset, PLr and ALr respectively denote the output

label of the predicted class and the reference class label

for sample r, while match PLr;ALrð Þ denotes a dis-

criminant comparison function. If PLr ¼¼ ALr, then

match PLr;ALrð Þ ¼ 1; otherwise, match PLr;ALrð Þ ¼ 0.

• Mean fitness value lFitð Þ: This metric measures the

average fitness value obtained by executing the

algorithm 30 independent time, which defines the

relationship between reducing the classification error

rate and minimizing the selected features’ number as

per Eq. (7). The lower value implies the more optimal

solution and is determined using Eq. (9):

lFit ¼
1

30

X30
k¼1

f k	 ; ð9Þ

where f k	 represents the optimal fitness value obtained

from k-th run.

• Mean size of selected features lFeatð Þ: This represents
the average number of selected features (or the feature

selection ratio) by executing the algorithm 30 indepen-

dent times, and is estimated as:

lFeat ¼
1

30

X30
k¼1

dk	
D
; ð10Þ

where dk	 is the number of selected features for k-th run,

and D is the dimensionality or the number of all fea-

tures in the original dataset.

• Standard deviation (rY ): Corresponding to the afore-

mentioned measures, the final results achieved over the

30 independent runs for each algorithm on every dataset

are evaluated and analyzed in terms of stability as:

rY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

29

X30

k¼1
Yk
	 � lY

� 	2r
; ð11Þ

where Y denotes the metric to be measured, Yk
	 is the

value of the metric Y in the k-th run, and lY is the

average of the metric over the 30 independent runs.

Table 2 Description of the

datasets used in this study
# Dataset No. of features No. of instances Domain

1 Breastcancer 9 699 Biology

2 BreastEW 30 569 Biology

3 CongressEW 16 435 Politics

4 Exactly 13 1000 Biology

5 Exactly2 13 1000 Biology

6 HeartEW 13 270 Biology

7 IonosphereEW 34 351 Electromagnetic

8 KrvskpEW 36 3196 Game

9 Lymphography 18 148 Biology

10 M-of-n 13 1000 Biology

11 PenglungEW 325 73 Biology

12 SonarEW 60 208 Biology

13 SpectEW 22 267 Biology

14 Tic-tac-toe 9 958 Game

15 Vote 16 300 Politics

16 WaveformEW 40 5000 Physics

17 WineEW 13 178 Chemistry

18 Zoo 16 101 Artificial
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• Wilcoxon’s rank-sum test: For a better understanding

of the significance of the underlying technique, its

impact should be statistically proved. Thus, the quality

of the final results obtained from the involved

approaches is often verified using Wilcoxon’s rank-

sum non-parametric test. This test, among many other

statistical tests, is widely used to statistically differen-

tiate the significance and reliability of many approaches

in competition [26]. Using this test, the present study

signifies the proposed iBSSA approach against the

competitor algorithms, where a null hypothesis states

that the iBSSA algorithm does not significantly differ –

in terms of performance – from other methods in pair-

wise comparison; otherwise, the iBSSA performs

significantly better than others. The Wilcoxon’s rank-

sum test calculates a so-called p-value, based on which

the difference between paired groups is analyzed in

terms of the results obtained from 30 independent runs

of the proposed iBSSA and the other algorithms in the

comparison.

Table 3 Parameter setup for all

algorithms
Algorithm Parameter

All algorithms Population size N ¼ 10

Number of runs for each method ¼ 30

Maximum number of iterations T ¼ 100

Dimensionality D = number of features in the datasets

In Eq. (7), a ¼ 0:99 and b ¼ 0:01

BSSA & iBSSA Number of producers PD ¼ 0:2	N

Number of scroungers SD ¼ 0:1	N

Safety threshold ST ¼ 0:8

iBSSA Maximum number of iterations in LSA ¼ 20

BABC Number of employed bees ¼ 16

Number of onlooker bees ¼ 4

Number of scout bees ¼ 3

BPSO Acceleration coefficients c1 ¼ c2 ¼ 1:2ð Þ
Inertia weight xmin ¼ 0:4;xmax ¼ 0:9ð Þ

BBA Loudness A ¼ 0:8

Pulse emission rate r ¼ 0:95

Lower and upper pulse frequencies ¼ f0; 10g
BGWO a is linearly decreased from 2 to 0

BWOA a is linearly decreased from 2 to 0

p ¼ 0:5

b ¼ 1:0

BGOA Cmin ¼ 0:00004 and Cmax ¼ 1

BSFO Ratio between sailfish and sardines pp ¼ 0:1

A ¼ 1

e ¼ 0:0001

BHHO Energy of rabbit E 2 ½�1; 1�
BBSA Flight frequency ff ¼ 10

Probability of foraging for food p ¼ 0:8

Acceleration coefficients c1 ¼ c2 ¼ 1:5ð Þ
Effect on birds’ vigilance behaviors a1 ¼ a2 ¼ 1:0ð Þ
Followed coefficient fl = 0.5

BASO Depth weight a ¼ 50

Multiplier weight b ¼ 0:2

BHGSO Number of clusters ¼ 2

a ¼ b ¼ 0:1 and K ¼ 1:0

l1 ¼ 5E � 03, l2 ¼ 1E þ 02, and l3 ¼ 1E � 02
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The experimental results are closely analyzed in the sub-

sequent subsections, in which boldface numbers indicate

the best results.

5.4 Assessment of the impact of the nine TFs
on the fitness values

SSA was originally proposed for continuous optimization

problems; therefore, a proper transformation function

should be identified to turn the algorithm mechanism to

efficiently search in discrete (or binary) space. To this end,

iBSSA performance was evaluated based on nine different

TFs, including S-shaped and V-shaped functions across the

selected 18 UCI benchmark datasets to solve the wrapper

FS problem, pursuing the best-performing approach. The

different TFs were tested with iBSSA based on the k-NN

classifier in terms of the mean fitness value lFitð Þ and the

results are reported in Table 4, along with the respective

Table 4 Assessment of the impact of the nine TFs on iBSSA based on k-NN in terms of the mean fitness value lFitð Þ

Benchmark Metric Sv1 Sv1c Sv2 Sv3 Sv4 Vv1 Vv2 Vv3 Vv4

BreastCancer lFit 0.0206 0.0202 0.0203 0.0203 0.0202 0.0201 0.0201 0.0201 0.0201

rFit 0.0010 0.0004 0.0006 0.0006 0.0005 0.0000 0.0000 0.0000 0.0000

BreastEW lFit 0.0367 0.0365 0.0369 0.0369 0.0363 0.0366 0.0364 0.0364 0.0363

rFit 0.0004 0.0016 0.0005 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004

CongressEW lFit 0.0268 0.0262 0.0266 0.0265 0.0262 0.0261 0.0265 0.0261 0.0261

rFit 0.0019 0.0006 0.0007 0.0007 0.0007 0.0005 0.0016 0.0007 0.0005

Exactly lFit 0.0357 0.0289 0.0307 0.0290 0.0340 0.0074 0.0077 0.0083 0.0074

rFit 0.0332 0.0278 0.0276 0.0277 0.0332 0.0072 0.0073 0.0066 0.0072

Exactly2 lFit 0.2308 0.2292 0.2302 0.2310 0.2294 0.2298 0.2290 0.2289 0.2290

rFit 0.0032 0.0023 0.0028 0.0028 0.0018 0.0023 0.0020 0.0017 0.0019

HeartEW lFit 0.0958 0.0959 0.0965 0.0958 0.0957 0.0954 0.0955 0.0955 0.0953

rFit 0.0009 0.0010 0.0034 0.0009 0.0011 0.0005 0.0007 0.0007 0.0006

IonosphereEW lFit 0.0665 0.0646 0.0734 0.0729 0.0512 0.0652 0.0675 0.0647 0.0640

rFit 0.0085 0.0093 0.0078 0.0103 0.0099 0.0102 0.0098 0.0080 0.0085

KrVsKpEW lFit 0.0226 0.0219 0.0226 0.0228 0.0230 0.0211 0.0199 0.0205 0.0208

rFit 0.0026 0.0023 0.0026 0.0031 0.0026 0.0030 0.0030 0.0030 0.0027

Lymphography lFit 0.1703 0.1681 0.1692 0.1694 0.1694 0.1602 0.1601 0.1622 0.1644

rFit 0.0058 0.0058 0.0083 0.0008 0.0008 0.0139 0.0141 0.0152 0.0108

M-of-n lFit 0.0098 0.0097 0.0100 0.0103 0.0127 0.0051 0.0054 0.0047 0.0047

rFit 0.0073 0.0069 0.0089 0.0084 0.0097 0.0021 0.0038 0.0002 0.0002

PenglungEW lFit 0.3394 0.3371 0.3508 0.3553 0.3097 0.3553 0.3421 0.3465 0.3486

rFit 0.0260 0.0290 0.0336 0.0308 0.0310 0.0352 0.0327 0.0312 0.0325

SonarEW lFit 0.0185 0.0208 0.0162 0.0193 0.0187 0.0140 0.0132 0.0155 0.0124

rFit 0.0109 0.0101 0.0115 0.0109 0.0108 0.0113 0.0113 0.0116 0.0112

SpectEW lFit 0.1129 0.1147 0.1176 0.1162 0.1148 0.1104 0.1121 0.1114 0.1131

rFit 0.0056 0.0089 0.0078 0.0078 0.0076 0.0061 0.0063 0.0051 0.0047

Tic-tac-toe lFit 0.1544 0.1544 0.1547 0.1547 0.1544 0.1547 0.1544 0.1544 0.1544

rFit 0.0000 0.0000 0.0018 0.0018 0.0000 0.0018 0.0000 0.0000 0.0000

Vote lFit 0.0024 0.0022 0.0024 0.0026 0.0023 0.0021 0.0021 0.0021 0.0021

rFit 0.0005 0.0004 0.0006 0.0005 0.0005 0.0003 0.0003 0.0003 0.0004

WaveformEW lFit 0.1607 0.1597 0.1608 0.1590 0.1598 0.1567 0.1564 0.1544 0.1557

rFit 0.0049 0.0042 0.0044 0.0044 0.0042 0.0036 0.0040 0.0057 0.0051

WineEW lFit 0.0033 0.0033 0.0035 0.0034 0.0034 0.0031 0.0031 0.0031 0.0031

rFit 0.0003 0.0004 0.0005 0.0005 0.0004 0.0002 0.0001 0.0002 0.0002

Zoo lFit 0.0035 0.0035 0.0036 0.0036 0.0035 0.0033 0.0034 0.0033 0.0033

rFit 0.0004 0.0003 0.0004 0.0003 0.0004 0.0003 0.0004 0.0003 0.0003

Ranking WjTjL 0|1|17 0|1|17 0|0|18 0|0|18 2|2|14 1|6|11 2|4|12 2|7|9 2j9j7
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standard deviations. The same observation is highlighted

for the SVM and the RF classifier as per Tables 5 and 6,

respectively. In the FS optimization problem, the objective

function (see Eq. (7)) is formulated based on both the mean

classification error rate and the mean feature selection

ratio; therefore, the mean fitness value was mainly con-

sidered in solving such a problem. The approaches were

built based upon nine TFs called Sv1, Sv1c, Sv2, Sv3, and Sv4
for the S-shaped TFs, and Vv1, Vv2, Vv3, and Vv4 for the V-

shaped TFs. Consequently, throughout the following dis-

cussion, the proposed methods are termed as ‘‘iBSSA-TF’’,

where TF is any of the nine TFs. WjTjL at the bottom of

the tables represent how many times each competitive

method wins/ties/loses compared to others. By analyzing

and comparing the above experimental results, the optimal

iBSSA variant corresponding to each classifier is to be

obtained based on the best-performing TF for that

classifier.

Table 5 Assessment of the impact of the nine TFs on iBSSA based on SVM in terms of the mean fitness value lFitð Þ

Benchmark Metric Sv1 Sv1c Sv2 Sv3 Sv4 Vv1 Vv2 Vv3 Vv4

BreastCancer lFit 0.0265 0.0264 0.0265 0.0264 0.0265 0.0263 0.0262 0.0262 0.0263

rFit 0.0004 0.0004 0.0004 0.0004 0.0005 0.0003 0.0000 0.0002 0.0002

BreastEW lFit 0.0546 0.0546 0.0552 0.0555 0.0530 0.0544 0.0545 0.0542 0.0544

rFit 0.0008 0.0007 0.0016 0.0022 0.0034 0.0007 0.0007 0.0006 0.0007

CongressEW lFit 0.0254 0.0255 0.0256 0.0255 0.0254 0.0249 0.0249 0.0250 0.0249

rFit 0.0005 0.0004 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004

Exactly lFit 0.2612 0.2617 0.2617 0.2637 0.2693 0.2609 0.2572 0.2593 0.2592

rFit 0.0134 0.0150 0.0153 0.0183 0.0233 0.0137 0.0003 0.0109 0.0102

Exactly2 lFit 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483 0.2483

rFit 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

HeartEW lFit 0.0970 0.0976 0.0954 0.0971 0.0978 0.0951 0.0950 0.0951 0.0950

rFit 0.0055 0.0061 0.0005 0.0053 0.0060 0.0005 0.0004 0.0005 0.0005

IonosphereEW lFit 0.0381 0.0398 0.0380 0.0390 0.0392 0.0357 0.0352 0.0329 0.0354

rFit 0.0085 0.0068 0.0077 0.0078 0.0082 0.0061 0.0080 0.0074 0.0068

KrVsKpEW lFit 0.0233 0.0224 0.0251 0.0259 0.0211 0.0227 0.0207 0.0212 0.0209

rFit 0.0033 0.0033 0.0035 0.0034 0.0021 0.0037 0.0028 0.0027 0.0028

Lymphography lFit 0.1563 0.1584 0.1562 0.1586 0.1583 0.1549 0.1527 0.1476 0.1505

rFit 0.0158 0.0175 0.0162 0.0155 0.0155 0.0160 0.0163 0.0155 0.0163

M-of-n lFit 0.0054 0.0054 0.0052 0.0053 0.0054 0.0047 0.0048 0.0047 0.0048

rFit 0.0005 0.0005 0.0004 0.0005 0.0005 0.0003 0.0003 0.0003 0.0004

PenglungEW lFit 0.1369 0.1369 0.1658 0.1659 0.1008 0.1615 0.1746 0.1855 0.1768

rFit 0.0118 0.0207 0.0328 0.0328 0.0329 0.0321 0.0321 0.0278 0.0316

SonarEW lFit 0.0620 0.0573 0.0613 0.0612 0.0579 0.0563 0.0556 0.0563 0.0573

rFit 0.0132 0.0134 0.0144 0.0156 0.0164 0.0167 0.0142 0.0156 0.0118

SpectEW lFit 0.1680 0.1703 0.1705 0.1720 0.1731 0.1669 0.1658 0.1650 0.1671

rFit 0.0066 0.0062 0.0092 0.0103 0.0100 0.0088 0.0104 0.0128 0.0072

Tic-tac-toe lFit 0.1017 0.1017 0.1018 0.1018 0.1017 0.1017 0.1017 0.1017 0.1017

rFit 0.0000 0.0000 0.0004 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

Vote lFit 0.0024 0.0024 0.0026 0.0027 0.0023 0.0022 0.0023 0.0021 0.0021

rFit 0.0006 0.0006 0.0007 0.0005 0.0006 0.0005 0.0005 0.0004 0.0004

WaveformEW lFit 0.1273 0.1282 0.1273 0.1267 0.1276 0.1253 0.1256 0.1254 0.1255

rFit 0.0032 0.0028 0.0028 0.0028 0.0031 0.0029 0.0027 0.0023 0.0026

WineEW lFit 0.0020 0.0022 0.0020 0.0022 0.0017 0.0017 0.0017 0.0017 0.0018

rFit 0.0005 0.0005 0.0005 0.0005 0.0003 0.0003 0.0004 0.0003 0.0004

Zoo lFit 0.0036 0.0036 0.0036 0.0036 0.0035 0.0033 0.0032 0.0034 0.0033

rFit 0.0004 0.0005 0.0004 0.0004 0.0004 0.0003 0.0002 0.0004 0.0003

Ranking WjTjL 0|2|16 0|2|16 0|1|17 0|1|17 2|3|13 1|5|12 4j5j9 3|6|9 0|5|13
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5.4.1 Assessment using the k-NN classifier

Table 4 shows the mean fitness values lFitð Þ and standard

deviations rFitð Þ of iBSSA based on the nine TFs, using the

k-NN classifier. It is observed that iBSSA-Vv4 shows a

significant performance in 11 out of the 18 datasets, fol-

lowed by iBSSA-Vv3, iBSSA-Vv1, iBSSA-Vv2, and

iBSSA-Sv4 with 9, 7, 6, and 4 datasets, respectively.

Table 6 Assessment of the impact of the nine TFs on iBSSA based on the RF classifier in terms of the mean fitness value lFitð Þ

Benchmark Metric Sv1 Sv1c Sv2 Sv3 Sv4 Vv1 Vv2 Vv3 Vv4

BreastCancer lFit 0.0195 0.0194 0.0195 0.0195 0.0197 0.0193 0.0193 0.0196 0.0195

rFit 0.0005 0.0004 0.0005 0.0005 0.0005 0.0004 0.0004 0.0005 0.0005

BreastEW lFit 0.0106 0.0098 0.0114 0.0106 0.0122 0.0097 0.0097 0.0125 0.0100

rFit 0.0038 0.0043 0.0038 0.0048 0.0044 0.0046 0.0048 0.0027 0.0043

CongressEW lFit 0.0238 0.0237 0.0232 0.0236 0.0241 0.0235 0.0220 0.0232 0.0226

rFit 0.0036 0.0036 0.0041 0.0039 0.0033 0.0035 0.0045 0.0037 0.0041

Exactly lFit 0.2718 0.2676 0.2765 0.2716 0.2634 0.2240 0.2384 0.2310 0.2039

rFit 0.0365 0.0412 0.0307 0.0364 0.0450 0.0611 0.0574 0.0595 0.0579

Exactly2 lFit 0.2378 0.2372 0.2380 0.2383 0.2375 0.2372 0.2384 0.2377 0.2387

rFit 0.0025 0.0017 0.0030 0.0033 0.0024 0.0017 0.0036 0.0028 0.0039

HeartEW lFit 0.0772 0.0771 0.0754 0.0776 0.0739 0.0732 0.0746 0.0744 0.0771

rFit 0.0123 0.0123 0.0105 0.0117 0.0123 0.0124 0.0147 0.0136 0.0129

IonosphereEW lFit 0.0346 0.0357 0.0360 0.0370 0.0374 0.0350 0.0345 0.0339 0.0336

rFit 0.0052 0.0057 0.0056 0.0062 0.0063 0.0056 0.0064 0.0056 0.0040

KrVsKpEW lFit 0.0582 0.0569 0.0588 0.0587 0.0578 0.0558 0.0556 0.0543 0.0550

rFit 0.0053 0.0051 0.0054 0.0051 0.0067 0.0067 0.0048 0.0050 0.0051

Lymphography lFit 0.1291 0.1339 0.1280 0.1358 0.1342 0.1246 0.1239 0.1267 0.1278

rFit 0.0180 0.0239 0.0203 0.0177 0.0154 0.0176 0.0213 0.0144 0.0233

M-of-n lFit 0.0280 0.0305 0.0254 0.0251 0.0256 0.0072 0.0053 0.0057 0.0064

rFit 0.0207 0.0215 0.0195 0.0211 0.0217 0.0075 0.0027 0.0032 0.0047

PenglungEW lFit 0.2529 0.2548 0.2488 0.2553 0.2430 0.2533 0.2532 0.2578 0.2556

rFit 0.0280 0.0264 0.0454 0.0357 0.0356 0.0406 0.0405 0.0299 0.0314

SonarEW lFit 0.0894 0.0885 0.0918 0.0894 0.0815 0.0839 0.0831 0.0842 0.0853

rFit 0.0214 0.0155 0.0194 0.0143 0.0180 0.0166 0.0151 0.0167 0.0156

SpectEW lFit 0.1248 0.1285 0.1261 0.1236 0.1266 0.1204 0.1203 0.1197 0.1196

rFit 0.0100 0.0094 0.0117 0.0102 0.0082 0.0103 0.0092 0.0089 0.0089

Tic-tac-toe lFit 0.1367 0.1367 0.1370 0.1367 0.1367 0.1367 0.1367 0.1367 0.1367

rFit 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Vote lFit 0.0019 0.0019 0.0021 0.0022 0.0016 0.0017 0.0017 0.0018 0.0017

rFit 0.0005 0.0004 0.0005 0.0004 0.0005 0.0004 0.0005 0.0005 0.0004

WaveformEW lFit 0.1872 0.1856 0.1879 0.1866 0.1868 0.1836 0.1829 0.1838 0.1845

rFit 0.0042 0.0072 0.0060 0.0056 0.0047 0.0050 0.0053 0.0056 0.0053

WineEW lFit 0.0024 0.0026 0.0026 0.0027 0.0024 0.0025 0.0024 0.0024 0.0025

rFit 0.0003 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0002 0.0003

Zoo lFit 0.0030 0.0031 0.0031 0.0031 0.0030 0.0028 0.0027 0.0028 0.0028

rFit 0.0004 0.0004 0.0003 0.0005 0.0004 0.0003 0.0003 0.0004 0.0004

Ranking WjTjL 0|2|16 0|2|16 0|0|16 0|1|17 3|2|13 1|5|12 5j4j9 1|2|15 3|1|14

Table 7 The three classifiers along with corresponding best-per-

forming binary variants in the proposed iBSSA algorithm

Classifier Best-performing variant

k-NN iBSSA-Vv4

SVM iBSSA-Vv2

RF iBSSA-Vv2
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Therefore, in terms of the mean fitness values, iBSSA-Sv4
ranks first among all methods.

5.4.2 Assessment using the SVM classifier

Table 5 represents the mean fitness values lFitð Þ based on

the proposed iBSSA with the SVM classifier across the

nine TFs. In terms of the mean fitness value in Table 5,

although iBSSA-Vv2 and iBSSA-Vv3 seemingly share the

first place on 50% of the datasets based on the number of

wins and ties, iBSSA-Vv2 experienced the best overall

performance in comparison with iBSSA-Vv3 based on the

number of wins. In addition, iBSSA-Vv1, iBSSA-Sv4, and

iBSSA-Vv4 ranked first on 6, 5, and 5 datasets, respec-

tively, but they were all less than iBSSA-Vv2. Thus, it can

be concluded that the iBSSA-Vv2 method is generally

performing the best with SVM based on the mean fitness

values.

5.4.3 Assessment using the RF classifier

When testing the iBSSA algorithm with nine TFs for FS in

classification using RF, iBSSA-Vv2 had strong

competitiveness against peers. In Table 6, among the 18

datasets, 9 datasets of iBSSA-Vv2 are marked as winner

and tied, which ranks the method as the first over the other

nine methods in terms of the mean fitness value. Inspecting

the above comparison, it is well shown that iBSSA-Vv2 is

the best-performing binary variant with the RF classifier in

the proposed iBSSA algorithm.

All in all, Table 7 shows the best combinations of

iBSSA variant and the three classifiers with the nine TFs,

based on which the upcoming experiments in this section

were conducted. Now, the finally selected, most effective

models can be termed as iBSSA-Vv4–k-NN, iBSSA-Vv2–

SVM, and iBSSA-Vv2–RF. In this regard, it should be

noted that, for simplicity, these models are abbreviated

based on the three classifiers respectively as iBSSA–k-NN,

iBSSA–SVM, and iBSSA–RF, and used consistently

hereafter without including the respective TF’s name.

5.4.4 Overall assessment

In Table 8, iBSSA–k-NN is compared with iBSSA–SVM

and iBSSA–RF. In terms of the mean fitness value, it can

be seen that the iBSSA–RF ranks first among 8 of the 18

Table 8 Performance comparisons of iBSSA–k-NN, iBSSA–SVM, and iBSSA–RF in terms of the mean fitness value lFitð Þ, mean classification

accuracy lAccð Þ, and mean number of selected features lFeatð Þ

Benchmark Fitness lFitð Þ Accuracy lAccð Þ Feature lFeatð Þ

iBSSA–k-
NN

iBSSA–

SVM

iBSSA–

RF

iBSSA–k-
NN

iBSSA–

SVM

iBSSA–

RF

iBSSA–k-
NN

iBSSA–

SVM

iBSSA–

RF

BreastCancer 0.0201 0.0262 0.0193 0.9857 0.9786 0.9857 006.00 005.00 005.17

BreastEW 0.0363 0.0545 0.0097 0.9649 0.9474 0.9944 004.60 007.13 012.67

CongressEW 0.0261 0.0249 0.0220 0.9770 0.9770 0.9808 005.40 003.50 004.93

Exactly 0.0074 0.2572 0.2384 0.9973 0.7450 0.7633 006.13 006.20 005.37

Exactly2 0.2290 0.2483 0.2384 0.7737 0.7500 0.7632 006.47 001.00 005.07

HeartEW 0.0953 0.0950 0.0746 0.9074 0.9074 0.9302 004.77 004.33 007.23

IonosphereEW 0.0640 0.0352 0.0345 0.9385 0.9681 0.9690 010.63 012.23 013.10

KrVsKpEW 0.0208 0.0207 0.0556 0.9852 0.9854 0.9487 021.97 022.60 017.17

Lymphography 0.1644 0.1527 0.1239 0.8378 0.8500 0.8800 006.90 007.53 009.20

M-of-n 0.0047 0.0048 0.0053 1.0000 1.0000 0.9993 006.07 006.27 006.07

PenglungEW 0.3486 0.1746 0.2532 0.6511 0.8267 0.7489 103.57 096.90 150.33

SonarEW 0.0124 0.0556 0.0831 0.9913 0.9476 0.9206 022.43 022.27 027.33

SpectEW 0.1131 0.1658 0.1203 0.8889 0.8364 0.8815 006.77 008.43 006.57

Tic-tac-toe 0.1544 0.1017 0.1367 0.8542 0.9062 0.8698 009.00 008.00 007.00

Vote 0.0021 0.0023 0.0017 1.0000 1.0000 1.0000 003.37 003.60 002.73

WaveformEW 0.1557 0.1256 0.1829 0.8484 0.8791 0.8201 022.43 023.47 019.33

WineEW 0.0031 0.0017 0.0024 1.0000 1.0000 1.0000 004.07 002.27 003.13

Zoo 0.0033 0.0032 0.0027 1.0000 1.0000 1.0000 005.33 005.17 004.33

Ranking

(ðWjTjLÞ)
5|0|13 5|0|13 8j0j10 4|5|9 4|4|10 5j4j9 4|1|13 7j0j11 6|1|11
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datasets. For the other methods, iBSSA–k-NN and iBSSA–

SVM both have 5 datasets ranking first. In the final sta-

tistical ranking, iBSSA–RF ranked first, followed by

iBSSA–SVM and iBSSA–k-NN, for the value of mean

fitness. In comparison of mean classification accuracy,

iBSSA–RF won over 5 while tied over 4 of the 18 datasets

in the combativeness of classification. Other methods only

have 4 winning datasets, which are all less than iBSSA–

RF. Especially on the datasets M-of-n, Vote, WineEW, and

Zoo, the mean accuracy of iBSSA–k-NN and iBSSA–SVM

has reached 100%, while iBSSA–RF reached that mean

accuracy on the late 3 datasets only. iBSSA–RF also ranks

first in the final statistics, followed by iBSSA–k-NN and

iBSSA–SVM. The experimental results on the mean

number of selected features for all methods are also shown

in Table 8. As can be seen, iBSSA–SVM ranks first on 7

out of the 18 datasets. Especially from the numerical per-

spective, iBSSA–SVM can relatively find a smaller feature

subset, for example, on the high-dimensional dataset Pen-

glungEW, where the selected feature’s mean number is

nearly 30% of the original number of features. Similarly, in

the final ranking, iBSSA–SVM ranked first, followed by

iBSSA–RF and iBSSA–k-NN in terms of the mean number

of features selected. From the experimental results ana-

lyzed above, it is asserted that both SVM and RF are

strongly competitive in compassion with k-NN in terms of

mean fitness, mean classification accuracy, and mean

number of selected features by the proposed iBSSA algo-

rithm. The harmony between the mean fitness values and

mean classification implies a slight advantage of iBSSA–

RF among the three methods.

These findings can be justified by the nature of the

classifiers themselves. k-NN can be described as a lazy

classifier in which the learning step is not even required as

the classification task is done by simply calculating the

distance between the test and training sets. On the other

hand, SVM is more complex by using the learning phase to

update the bias and weights used in the testing step, in

order to create the model. RF is also considered as a

complex learning method which is based on training mul-

tiple deep decision trees on different parts of the same

training set and averaging the results in order to reduce the

variance. This comes at the expense of some loss of

interpretability and a slight increase in the bias. Although

not quite similar, forests act like a K-fold cross-validation.

The aforementioned characteristics provide a greater

capacity to SVM and RF than k-NN in determining the

pertinent features with high discrimination.

Thus, in order to fully verify the effectiveness of the

algorithm proposed in this study in feature selection and

Table 9 Performance comparisons of classification using the original k-NN classifier on all the features (before FS) and classification using the

proposed iBSSA–k-NN (after FS) in terms of the mean classification accuracy lAccð Þ and the mean number of selected features lFeatð Þ

Benchmark Accuracy Feature

k-NN iBSSA–k-NN lAccð Þ Improvement (%) k-NN iBSSA–k-NN lFeatð Þ Reduction (%)

BreastCancer 0.6214 0.9857 58.63% 009.00 006.00 33.33%

BreastEW 0.9211 0.9649 04.76% 030.00 004.60 84.67%

CongressEW 0.9310 0.9770 04.94% 016.00 005.40 66.25%

Exactly 0.7350 0.9973 35.69% 013.00 006.13 52.85%

Exactly2 0.7400 0.7737 04.55% 013.00 006.47 50.23%

HeartEW 0.6296 0.9074 44.12% 013.00 004.77 63.31%

IonosphereEW 0.8451 0.9385 11.05% 034.00 010.63 68.74%

KrVsKpEW 0.9656 0.9852 02.03% 036.00 021.97 38.97%

Lymphography 0.7000 0.8378 19.69% 018.00 006.90 61.67%

M-of-n 0.8800 1.0000 13.64% 013.00 006.07 53.31%

PenglungEW 0.5333 0.6511 22.09% 325.00 103.57 68.13%

SonarEW 0.8571 0.9913 15.66% 060.00 022.43 62.62%

SpectEW 0.7778 0.8889 14.28% 022.00 006.77 69.23%

Tic-tac-toe 0.8542 0.8542 00.00% 009.00 009.00 00.00%

Vote 0.9333 1.0000 07.15% 016.00 003.37 78.94%

WaveformEW 0.8040 0.8484 05.52% 040.00 022.43 43.93%

WineEW 0.5833 1.0000 71.44% 013.00 004.07 68.69%

Zoo 0.9048 1.0000 10.52% 016.00 005.33 66.69%

Ranking ðWjTjLÞ 0|1|17 17j1j0 * 0|1|17 17j1j0 *
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due to their differential yet helpful nature, the three clas-

sifiers, k-NN, SVM, and RF, were considered inclusively

independently in all other experiments in this section.

5.5 Performance comparison of classification
using the original classifier with all features
(before FS), and the iBSSA–classifier method
(after FS)

In this experiment, to determine the breadth of influence on

it, the number of selected features on average based on the

proposed iBSSA algorithm was compared with the original

number of features in each dataset. In addition, the mag-

nitude of increase in the level of classification accuracy

over the three classifiers was quantified.

5.5.1 Comparisons of k-NN and iBSSA–k-NN

On one side, Table 9 shows the classification accuracy

based on the original k-NN classifier (before FS) along

with the original number of features in each dataset, for

each of the 18 datasets. On the other hand, the table shows

the mean classification accuracy lAccð Þ and the mean

number of selected features lFeatð Þ based on the proposed

iBSSA–k-NN method (after FS). It is remarkable that lAcc

based on the iBSSA–k-NN method increased by more than

10% in 10 out of the 18 datasets with a significant increase

of up to 25% on 4 of them, while the mean accuracy itself

reached up to more than 90% in 12 out of the 18 datasets,

achieving 100% mean accuracy for 4 datasets. It is also

most notable that lFeat based on the iBSSA–k-NN method

was reduced by more than 50% on 15 out of the 18 data-

sets. Unfortunately, iBSSA–k-NN was unable to enhance

both lAcc and lFeat on the dataset Tic-tac-toe. It may be the

dataset’s particular nature and data characteristics which

have hindered iBSSA from improving the feature subset

selection. Irrespective, in general, the iBSSA–k-NN

method significantly excelled the original k-NN over 17

datasets in terms of the two metrics. Thus, it is very clear

how iBSSA–k-NN has provided a really promising solution

to the FS problem compared to only k-NN, across the

selected datasets.

5.5.2 Comparisons of SVM and iBSSA–SVM

For the SVM classifier, Table 10 shows that iBSSA–SVM

outperformed the original SVM in terms of lAcc and lFeat
because iBSSA generally selected fewer features over the

18 datasets with a reduction in feature size by more than

50% in 14 out of the 18 datasets, improving at the same

Table 10 Performance comparisons of classification using the original SVM classifier on all the features (before FS) and classification using the

proposed iBSSA–SVM (after FS) in terms of the mean classification accuracy lAccð Þ and the mean number of selected features lFeatð Þ

Benchmark Accuracy Feature

SVM iBSSA–SVM lAccð Þ Improvement (%) SVM iBSSA–SVM lFeatð Þ Reduction (%)

BreastCancer 0.6786 0.9786 44.21% 009.00 005.00 44.44%

BreastEW 0.8947 0.9474 05.89% 030.00 007.13 76.23%

CongressEW 0.9655 0.9770 01.19% 016.00 003.50 78.13%

Exactly 0.6600 0.7450 12.88% 013.00 006.20 52.31%

Exactly2 0.7500 0.7500 00.00% 013.00 001.00 92.31%

HeartEW 0.7963 0.9074 13.95% 013.00 004.33 66.69%

IonosphereEW 0.8873 0.9681 09.11% 034.00 012.23 64.03%

KrVsKpEW 0.9766 0.9854 00.90% 036.00 022.60 37.22%

Lymphography 0.7667 0.8500 10.86% 018.00 007.53 58.17%

M-of-n 1.0000 1.0000 00.00% 013.00 006.27 51.77%

PenglungEW 0.7333 0.8267 12.74% 325.00 096.90 70.18%

SonarEW 0.8333 0.9476 13.72% 060.00 022.27 62.88%

SpectEW 0.7407 0.8364 12.92% 022.00 008.43 61.68%

Tic-tac-toe 0.9062 0.9062 00.00% 009.00 008.00 11.11%

Vote 0.9333 1.0000 07.15% 016.00 003.60 77.50%

WaveformEW 0.8650 0.8791 01.63% 040.00 023.47 41.33%

WineEW 0.6667 1.0000 49.99% 013.00 002.27 82.54%

Zoo 0.8571 1.0000 16.67% 016.00 005.17 67.69%

Ranking

ðWjTjLÞ
0|3|15 15j3j0 * 0|0|18 18j0j0 *
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time the lAcc in 15 out of 18 datasets with 100% accuracy

for 3 datasets while preserving the lAcc in the remaining 3

datasets. It is also observed that while the lAcc in the

datasets Exactly2, M-of-n, and Tic-tac-toe did not increase,

the respective number of selected features was reduced on

average, over the 3 datasets. From the analysis, the iBSSA–

SVM method proposed herein was superior to the original

SVM alone, in most datasets.

5.5.3 Comparisons of RF and iBSSA–RF

As shown in Table 11, iBSSA–RF outperformed the orig-

inal RF classifier in terms of the accuracy and the number

of selected features, respectively, in 17 and 18 out of all 18

datasets. Among the 18 datasets, the lAcc in 10 datasets

increased by up to 10%, including 3 datasets attaining

100% classification accuracy. On the other hand, the lFeat
in 15 datasets was reduced by 50%, thereby showing highly

significant improvements in the two FS main metrics (lAcc
and lFeat). This shows that iBSSA–RF has much better

performance.

5.6 Performance comparison of BSSA and iBSSA

In this experiment, to quantify the extent of improvement

in it, iBSSA was compared to the original BSSA based on

the three classifiers, k-NN, SVM, and RF, in terms of three

metrics: lFit, lAcc, and lFeat.

5.6.1 Comparisons based on the k-NN classifier

As shown in Table 12, which presents the mean metrics

based on iBSSA and BSSA both with k-NN, iBSSA out-

performs the original BSSA algorithm over the 18 datasets

in terms of the mean fitness values. Thus, iBSSA achieved

much higher performance than the original BSSA algo-

rithm based on the fitness. Moreover, iBSSA outperformed

BSSA in terms of mean classification accuracy on 12 of the

18 datasets, accounting for 67% of all datasets, with 100%

classification accuracies on 4 datasets (M-of-n, Vote,

WineEW, and Zoo). Furthermore, in terms of the mean

number of selected features, iBSSA outperformed BSSA

because a smaller number of features was selected by

iBSSA over 15 (83%) of all datasets. In addition, given the

standard deviations, iBSSA was more stable on the vast

majority of datasets, for the three metrics. From these

results, it is clearly shown that iBSSA with k-NN has

Table 11 Performance comparisons of classification using the original RF classifier on all the features (before FS) and classification using the

proposed iBSSA–RF (after FS) in terms of the mean classification accuracy lAccð Þ and the mean number of selected features lFeatð Þ

Benchmark Accuracy Feature

RF iBSSA–RF lAccð Þ Improvement (%) RF iBSSA–RF lFeatð Þ Reduction (%)

BreastCancer 0.9643 0.9857 02.22% 009.00 005.17 42.56%

BreastEW 0.9298 0.9944 06.95% 030.00 012.67 57.77%

CongressEW 0.9195 0.9808 06.67% 016.00 004.93 69.19%

Exactly 0.6650 0.7633 14.78% 013.00 005.37 58.69%

Exactly2 0.7500 0.7632 01.76% 013.00 005.07 61.00%

HeartEW 0.7963 0.9302 16.82% 013.00 007.23 44.38%

IonosphereEW 0.9014 0.9690 07.50% 034.00 013.10 61.47%

KrVsKpEW 0.7953 0.9487 19.29% 036.00 017.17 52.31%

Lymphography 0.7333 0.8800 20.01% 018.00 009.20 48.89%

M-of-n 0.8000 0.9993 24.91% 013.00 006.07 53.31%

PenglungEW 0.3333 0.7489 124.69% 325.00 150.33 53.74%

SonarEW 0.7857 0.9206 17.17% 060.00 027.33 54.45%

SpectEW 0.7407 0.8815 19.01% 022.00 006.57 70.14%

Tic-tac-toe 0.7500 0.8698 15.97% 009.00 007.00 22.22%

Vote 0.9000 1.0000 11.11% 016.00 002.73 82.94%

WaveformEW 0.7690 0.8201 06.64% 040.00 019.33 51.68%

WineEW 1.0000 1.0000 00.00% 013.00 003.13 75.92%

Zoo 0.9524 1.0000 05.00% 016.00 004.33 72.94%

Ranking ðWjTjLÞ 0|1|17 17j1j0 * 0|0|18 18j0j0 *

Neural Computing and Applications

123



significantly improved both the FS and classification tasks

compared to the original BSSA algorithm.

5.6.2 Comparisons based on the SVM classifier

Table 13 shows the experimental results by using both

BSSA and iBSSA with SVM for FS in the classification

task. iBSSA had 16 (89%), 12 (67%), and 16 (89%) out of

18 datasets ranked first on the mean fitness, mean classi-

fication accuracy, and mean number of selected features,

which confirms a highly considerable overall performance

of the proposed iBSSA algorithm over BSSA. It is also

worth mentioning that the mean classification accuracy

reached 100% on 4 datasets (M-of-n, Vote, WineEW, and

Zoo) with less number of features selected by iBSSA.

Generally, by comparing the two methods in terms of

Table 12 Performance

comparisons of BSSA and

iBSSA in the FS problem based

on k-NN in terms of the mean

fitness value lFitð Þ, the mean

classification accuracy lAccð Þ,
and the mean number of

selected features lFeatð Þ

Benchmark Metric Fitness Accuracy Feature

BSSA iBSSA BSSA iBSSA BSSA iBSSA

BreastCancer l 0.0208 0.0201 0.9857 0.9857 006.70 006.00

r 0.0010 0.0000 0.0000 0.0000 001.01 000.00

BreastEW l 0.0372 0.0363 0.9649 0.9649 007.53 004.60

r 0.0007 0.0004 0.0000 0.0000 002.09 001.23

CongressEW l 0.0281 0.0261 0.9747 0.9770 004.90 005.40

r 0.0036 0.0005 0.0046 0.0000 001.85 000.88

Exactly l 0.0177 0.0074 0.9872 0.9973 006.47 006.13

r 0.0213 0.0072 0.0211 0.0070 000.56 000.34

Exactly2 l 0.2331 0.2290 0.7697 0.7737 006.57 006.47

r 0.0044 0.0019 0.0046 0.0022 001.23 001.06

HeartEW l 0.0960 0.0953 0.9074 0.9074 005.67 004.77

r 0.0009 0.0006 0.0000 0.0000 001.11 000.84

IonosphereEW l 0.0792 0.0640 0.9235 0.9385 011.80 010.63

r 0.0112 0.0085 0.0113 0.0085 003.05 002.86

KrVsKpEW l 0.0249 0.0208 0.9808 0.9852 021.23 021.97

r 0.0045 0.0027 0.0045 0.0027 002.25 002.58

Lymphography l 0.1662 0.1644 0.8367 0.8378 008.03 006.90

r 0.0154 0.0108 0.0158 0.0113 001.64 001.27

M-of-n l 0.0060 0.0047 0.9988 1.0000 006.30 006.07

r 0.0041 0.0002 0.0040 0.0000 000.46 000.25

PenglungEW l 0.3760 0.3486 0.6244 0.6511 136.53 103.57

r 0.0314 0.0325 0.0321 0.0330 018.08 012.64

SonarEW l 0.0236 0.0124 0.9802 0.9913 023.63 022.43

r 0.0088 0.0112 0.0089 0.0115 004.16 003.77

SpectEW l 0.1172 0.1131 0.8852 0.8889 007.77 006.77

r 0.0108 0.0047 0.0111 0.0048 002.25 001.84

Tic-tac-toe l 0.1554 0.1544 0.8526 0.8542 008.50 009.00

r 0.0030 0.0000 0.0047 0.0000 001.50 000.00

Vote l 0.0024 0.0021 1.0000 1.0000 003.87 003.37

r 0.0006 0.0004 0.0000 0.0000 000.99 000.60

WaveformEW l 0.1629 0.1557 0.8414 0.8484 023.60 022.43

r 0.0051 0.0051 0.0051 0.0053 002.63 002.40

WineEW l 0.0032 0.0031 1.0000 1.0000 004.17 004.07

r 0.0003 0.0002 0.0000 0.0000 000.37 000.25

Zoo l 0.0036 0.0033 1.0000 1.0000 005.83 005.33

r 0.0005 0.0003 0.0000 0.0000 000.78 000.47

Ranking WjTjL 0|0|18 18j0j0 0|6|12 12j6j0 3|0|15 15j0j3
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standard deviation, iBSSA relatively has a higher stability.

Thus, iBSSA with SVM outperformed significantly BSSA

in solving the FS problem.

5.6.3 Comparisons based on the RF classifier

From Table 14, it is most notable that iBSSA with RF had

the potential to find a smaller feature subset over 13 out of

the 18 datasets, yet achieving a higher (or maintaining the

same) level of mean accuracy over those datasets. Fur-

thermore, the mean fitness values obtained by iBSSA over

the 18 datasets approved its substantial superiority com-

pared to the original BSSA. Additionally, iBSSA–RF sta-

bility was very apparent in terms of the three metrics.

Notably, iBSSA based on RF classifier showed a higher

quality than BSSA alone.

Table 13 Performance

comparisons of BSSA and

iBSSA in the FS problem based

on SVM in terms of the mean

fitness value lFitð Þ, the mean

classification accuracy lAccð Þ,
and the mean number of

selected features lFeatð Þ

Benchmark Metric Fitness Accuracy Feature

BSSA iBSSA BSSA iBSSA BSSA iBSSA

BreastCancer l 0.0272 0.0262 0.9776 0.9786 005.07 005.00

r 0.0020 0.0000 0.0024 0.0000 000.57 000.00

BreastEW l 0.0574 0.0545 0.9447 0.9474 007.97 007.13

r 0.0041 0.0007 0.0040 0.0000 001.82 002.05

CongressEW l 0.0256 0.0249 0.9770 0.9770 004.57 003.50

r 0.0006 0.0004 0.0000 0.0000 000.96 000.72

Exactly l 0.2940 0.2572 0.7085 0.7450 007.07 006.20

r 0.0303 0.0003 0.0304 0.0000 001.59 000.40

Exactly2 l 0.2483 0.2483 0.7500 0.7500 001.03 001.00

r 0.0001 0.0000 0.0000 0.0000 000.18 000.00

HeartEW l 0.0970 0.0950 0.9056 0.9074 004.50 004.33

r 0.0055 0.0004 0.0056 0.0000 000.76 000.47

IonosphereEW l 0.0438 0.0352 0.9596 0.9681 012.87 012.23

r 0.0078 0.0080 0.0079 0.0081 002.29 002.54

KrVsKpEW l 0.0270 0.0207 0.9791 0.9854 022.43 022.60

r 0.0042 0.0028 0.0045 0.0027 003.07 002.59

Lymphography l 0.1607 0.1527 0.8422 0.8500 008.13 007.53

r 0.0190 0.0163 0.0191 0.0167 001.89 001.28

M-of-n l 0.0050 0.0048 1.0000 1.0000 006.50 006.27

r 0.0005 0.0003 0.0000 0.0000 000.62 000.44

PenglungEW l 0.1953 0.1746 0.8067 0.8267 126.87 096.90

r 0.0197 0.0321 0.0200 0.0327 007.51 010.21

SonarEW l 0.0718 0.0556 0.9317 0.9476 025.10 022.27

r 0.0131 0.0142 0.0134 0.0143 003.56 003.02

SpectEW l 0.1985 0.1658 0.8037 0.8364 009.20 008.43

r 0.0247 0.0104 0.0251 0.0108 002.06 001.78

Tic-tac-toe l 0.1017 0.1017 0.9062 0.9062 008.00 008.00

r 0.0000 0.0000 0.0000 0.0000 000.00 000.00

Vote l 0.0025 0.0023 1.0000 1.0000 004.00 003.60

r 0.0007 0.0005 0.0000 0.0000 001.13 000.80

WaveformEW l 0.1295 0.1256 0.8753 0.8791 024.17 023.47

r 0.0041 0.0027 0.0041 0.0027 002.96 001.61

WineEW l 0.0022 0.0017 1.0000 1.0000 002.90 002.27

r 0.0009 0.0004 0.0000 0.0000 001.16 000.51

Zoo l 0.0036 0.0032 1.0000 1.0000 005.80 005.17

r 0.0007 0.0002 0.0000 0.0000 001.17 000.37

Ranking WjTjL 0|2|16 16j2j0 6|0|12 12j0j6 1|1|16 16j1j1
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5.7 Performance comparison with some other
promising meta-heuristic algorithms

Previous experiments compared iBSSA with BSSA origi-

nated from the original SSA. iBSSA performed superiorly

over the original BSSA approach. In fact, these improve-

ments in performance are subjected to the iBSSA capa-

bility to balance exploration and exploitation over

iterations, as well as its ability to escape from local optima.

In this section, in order to further confirm the superiority of

iBSSA to other peers in literature, the best-performing

iBSSA method with the three classifiers, k-NN, SVM, and

RF, is compared with other advanced meta-heuristics

implemented in the same conditions. Comparison with

iBSSA includes binary variants of some promising opti-

mization algorithms, such as BSSA, BABC, BPSO, BBA,

Table 14 Performance

comparisons of BSSA and

iBSSA in the FS problem based

on the RF classifier in terms of

the mean fitness value lFitð Þ, the
mean classification accuracy

lAccð Þ, and the mean number of

selected features lFeatð Þ

Benchmark Metric Fitness Accuracy Feature

BSSA iBSSA BSSA iBSSA BSSA iBSSA

BreastCancer l 0.0197 0.0193 0.9857 0.9857 005.57 005.17

r 0.0006 0.0004 0.0000 0.0000 000.56 000.37

BreastEW l 0.0150 0.0097 0.9895 0.9944 013.83 012.67

r 0.0051 0.0048 0.0053 0.0048 003.31 002.41

CongressEW l 0.0246 0.0220 0.9782 0.9808 004.77 004.93

r 0.0030 0.0045 0.0034 0.0054 001.23 001.53

Exactly l 0.2515 0.2384 0.7502 0.7633 005.40 005.37

r 0.0582 0.0574 0.0591 0.0584 000.66 000.48

Exactly2 l 0.2451 0.2384 0.7563 0.7632 005.07 005.07

r 0.0035 0.0036 0.0036 0.0035 001.24 000.25

HeartEW l 0.0887 0.0746 0.9160 0.9302 007.23 007.23

r 0.0120 0.0147 0.0124 0.0156 001.59 001.17

IonosphereEW l 0.0399 0.0345 0.9638 0.9690 013.97 013.10

r 0.0064 0.0064 0.0070 0.0067 002.86 002.43

KrVsKpEW l 0.0642 0.0556 0.9396 0.9487 016.00 017.17

r 0.0053 0.0048 0.0054 0.0049 003.26 002.82

Lymphography l 0.1484 0.1239 0.8544 0.8800 007.80 009.20

r 0.0213 0.0213 0.0219 0.0221 002.14 002.06

M-of-n l 0.0108 0.0053 0.9940 0.9993 006.30 006.07

r 0.0134 0.0027 0.0131 0.0025 000.53 000.25

PenglungEW l 0.2887 0.2532 0.7133 0.7489 159.40 150.33

r 0.0346 0.0405 0.0351 0.0410 007.97 012.81

SonarEW l 0.1117 0.0831 0.8921 0.9206 029.13 027.33

r 0.0167 0.0151 0.0171 0.0155 004.43 003.82

SpectEW l 0.1285 0.1203 0.8735 0.8815 007.10 006.57

r 0.0118 0.0092 0.0118 0.0091 001.25 001.20

Tic-tac-toe l 0.1379 0.1367 0.8684 0.8698 006.83 007.00

r 0.0040 0.0000 0.0044 0.0000 000.52 000.00

Vote l 0.0023 0.0017 1.0000 1.0000 003.60 002.73

r 0.0008 0.0005 0.0000 0.0000 001.25 000.73

WaveformEW l 0.1890 0.1829 0.8139 0.8201 019.07 019.33

r 0.0063 0.0053 0.0061 0.0051 003.15 003.27

WineEW l 0.0026 0.0024 1.0000 1.0000 003.43 003.13

r 0.0004 0.0003 0.0000 0.0000 000.50 000.34

Zoo l 0.0031 0.0027 1.0000 1.0000 005.03 004.33

r 0.0005 0.0003 0.0000 0.0000 000.88 000.47

Ranking WjTjL 0|0|18 18j0j0 0|4|14 14j4j0 5|0|13 13j0j5
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BGWO, BWOA, BGOA, BSFO, BHHO, BBSA, BASO,

and BHGSO. In the same way, the comparison and analysis

of performance is according to the mean fitness value, the

mean classification accuracy, and the mean number of

selected features.

5.7.1 Comparisons based on the k-NN classifier

Table 15 reports the results of the mean fitness values for

iBSSA and other advanced meta-heuristics in the FS

problem based on k-NN. As can be seen in Table 15,

iBSSA won over 10 and tied over 3 datasets in the FS task,

thereby having a relatively good impact in 13 out of 18

datasets, accounting for 72% of all datasets. Additionally,

there are large and small size datasets in the benchmark

Table 15 Comparisons of iBSSA against a few promising algorithms based on k-NN in terms of the mean fitness value lFitð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lFit 0.0201 0.0203 0.0227 0.0246 0.0206 0.0210 0.0211 0.0201 0.0215 0.0208 0.0304 0.0232

rFit 0.0000 0.0005 0.0025 0.0037 0.0009 0.0016 0.0016 0.0000 0.0021 0.0015 0.0050 0.0022

BreastEW lFit 0.0363 0.0379 0.0394 0.0428 0.0375 0.0388 0.0381 0.0374 0.0388 0.0389 0.0473 0.0462

rFit 0.0004 0.0006 0.0027 0.0045 0.0005 0.0021 0.0007 0.0003 0.0029 0.0026 0.0066 0.0038

CongressEW lFit 0.0261 0.0274 0.0345 0.0350 0.0281 0.0313 0.0298 0.0260 0.0315 0.0280 0.0382 0.0380

rFit 0.0005 0.0024 0.0041 0.0041 0.0038 0.0047 0.0043 0.0005 0.0045 0.0033 0.0038 0.0007

Exactly lFit 0.0074 0.0132 0.1232 0.1546 0.0260 0.0472 0.0390 0.0147 0.0302 0.0439 0.2710 0.1476

rFit 0.0072 0.0097 0.0764 0.0915 0.0354 0.0518 0.0342 0.0178 0.0374 0.0480 0.0535 0.0796

Exactly2 lFit 0.2290 0.2294 0.2332 0.2418 0.2324 0.2331 0.2324 0.2274 0.2369 0.2328 0.2450 0.2438

rFit 0.0019 0.0023 0.0049 0.0054 0.0041 0.0049 0.0037 0.0000 0.0053 0.0038 0.0063 0.0063

HeartEW lFit 0.0953 0.0958 0.1098 0.1178 0.0964 0.1022 0.0989 0.0951 0.0981 0.0986 0.1576 0.1179

rFit 0.0006 0.0008 0.0151 0.0176 0.0033 0.0104 0.0062 0.0005 0.0052 0.0062 0.0405 0.0144

IonosphereEW lFit 0.0640 0.0832 0.0970 0.1086 0.0806 0.0879 0.0878 0.0767 0.0788 0.0838 0.1100 0.1136

rFit 0.0085 0.0078 0.0109 0.0131 0.0141 0.0092 0.0099 0.0081 0.0102 0.0099 0.0083 0.0074

KrVsKpEW lFit 0.0208 0.0254 0.0407 0.0397 0.0265 0.0309 0.0307 0.0279 0.0265 0.0316 0.0611 0.0364

rFit 0.0027 0.0022 0.0085 0.0095 0.0044 0.0053 0.0050 0.0028 0.0057 0.0040 0.0185 0.0066

Lymphography lFit 0.1644 0.1681 0.1926 0.2249 0.1683 0.1806 0.1741 0.1656 0.1771 0.1756 0.2331 0.2156

rFit 0.0108 0.0059 0.0172 0.0225 0.0197 0.0176 0.0162 0.0096 0.0233 0.0129 0.0192 0.0196

M-of-n lFit 0.0047 0.0070 0.0484 0.0491 0.0049 0.0135 0.0124 0.0054 0.0080 0.0097 0.1338 0.0515

rFit 0.0002 0.0048 0.0334 0.0508 0.0010 0.0140 0.0127 0.0021 0.0066 0.0082 0.0408 0.0242

PenglungEW lFit 0.3486 0.3721 0.3962 0.3985 0.3763 0.3983 0.3830 0.3477 0.3803 0.3873 0.4048 0.4011

rFit 0.0325 0.0324 0.0162 0.0116 0.0315 0.0115 0.0288 0.0260 0.0299 0.0261 0.0163 0.0002

SonarEW lFit 0.0124 0.0243 0.0409 0.0571 0.0225 0.0342 0.0275 0.0167 0.0251 0.0274 0.0605 0.0534

rFit 0.0112 0.0084 0.0114 0.0166 0.0098 0.0118 0.0075 0.0114 0.0093 0.0113 0.0167 0.0111

SpectEW lFit 0.1131 0.1192 0.1369 0.1548 0.1153 0.1268 0.1297 0.1116 0.1217 0.1215 0.1611 0.1514

rFit 0.0047 0.0103 0.0122 0.0152 0.0072 0.0126 0.0116 0.0060 0.0113 0.0121 0.0129 0.0118

Tic-tac-toe lFit 0.1544 0.1544 0.1576 0.1611 0.1547 0.1547 0.1551 0.1544 0.1610 0.1554 0.1908 0.1613

rFit 0.0000 0.0000 0.0050 0.0099 0.0018 0.0018 0.0026 0.0000 0.0112 0.0031 0.0166 0.0103

Vote lFit 0.0021 0.0029 0.0108 0.0178 0.0024 0.0038 0.0039 0.0023 0.0060 0.0039 0.0220 0.0188

rFit 0.0004 0.0006 0.0079 0.0067 0.0005 0.0042 0.0040 0.0003 0.0062 0.0042 0.0100 0.0048

WaveformEW lFit 0.1557 0.1624 0.1762 0.1794 0.1636 0.1671 0.1672 0.1618 0.1622 0.1653 0.1932 0.1787

rFit 0.0051 0.0040 0.0053 0.0067 0.0057 0.0059 0.0048 0.0028 0.0066 0.0067 0.0077 0.0045

WineEW lFit 0.0031 0.0033 0.0075 0.0144 0.0034 0.0046 0.0035 0.0031 0.0037 0.0036 0.0325 0.0087

rFit 0.0002 0.0004 0.0091 0.0133 0.0004 0.0049 0.0004 0.0000 0.0008 0.0005 0.0153 0.0075

Zoo lFit 0.0033 0.0036 0.0042 0.0095 0.0036 0.0039 0.0039 0.0034 0.0040 0.0039 0.0112 0.0068

rFit 0.0003 0.0004 0.0006 0.0138 0.0004 0.0005 0.0005 0.0003 0.0006 0.0004 0.0154 0.0080

Ranking WjTjL 10j3j5 0|1|17 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 5|3|10 0|0|18 0|0|18 0|0|18 0|0|18
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used, which proves iBSSA ability to consistently perform

on all datasets regardless of the dataset size. For the 5

datasets lost by iBSSA, comparing the mean fitness values

reveals that these values by iBSSA are very close to other

algorithms. The same observation is highlighted for the 5

datasets won by BSFO in the FS problem, where their

mean fitness values are very close to those in the case of

iBSSA. This shows that the best performance is by iBSSA.

Except BSFO, none of the other methods in comparison

with iBSSA ranked first in the 18 datasets, which confirms

the remarkability of the proposed method with k-NN.

Furthermore, the stability of iBSSA with k-NN is relatively

strong, based on the standard deviations of the various

methods. Now, it can be concluded that iBSSA is highly

advantageous, with a proven capability of balancing

between exploration and exploitation in the search space

over iterations and avoiding local optima. Whereas, other

algorithms may become trapped into local optima.

Table 16 Comparisons of iBSSA against a few promising algorithms based on k-NN in terms of the lAcc classification accuracy lAccð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lAcc 0.9857 0.9857 0.9836 0.9817 0.9857 0.9852 0.9852 0.9857 0.9848 0.9855 0.9757 0.9843

rAcc 0.0000 0.0000 0.0033 0.0044 0.0000 0.0018 0.0018 0.0000 0.0024 0.0013 0.0057 0.0029

BreastEW lAcc 0.9649 0.9649 0.9640 0.9608 0.9649 0.9643 0.9649 0.9649 0.9637 0.9640 0.9567 0.9585

rAcc 0.0000 0.0000 0.0026 0.0044 0.0000 0.0022 0.0000 0.0000 0.0030 0.0026 0.0064 0.0039

CongressEW lAcc 0.9770 0.9762 0.9682 0.9678 0.9747 0.9713 0.9732 0.9770 0.9705 0.9755 0.9651 0.9655

rAcc 0.0000 0.0029 0.0049 0.0046 0.0046 0.0057 0.0054 0.0000 0.0057 0.0039 0.0036 0.0000

Exactly lAcc 0.9973 0.9917 0.8818 0.8502 0.9788 0.9577 0.9660 0.9902 0.9747 0.9610 0.7333 0.8575

rAcc 0.0070 0.0094 0.0764 0.0919 0.0353 0.0518 0.0341 0.0176 0.0373 0.0480 0.0541 0.0795

Exactly2 lAcc 0.7737 0.7737 0.7695 0.7607 0.7703 0.7698 0.7707 0.7750 0.7658 0.7695 0.7572 0.7590

rAcc 0.0022 0.0022 0.0049 0.0057 0.0045 0.0051 0.0038 0.0000 0.0058 0.0039 0.0073 0.0066

HeartEW lAcc 0.9074 0.9074 0.8938 0.8858 0.9068 0.9019 0.9049 0.9074 0.9056 0.9049 0.8457 0.8864

rAcc 0.0000 0.0000 0.0158 0.0186 0.0033 0.0109 0.0063 0.0000 0.0056 0.0063 0.0415 0.0149

IonosphereEW lAcc 0.9385 0.9197 0.9061 0.8944 0.9221 0.9150 0.9150 0.9258 0.9239 0.9192 0.8930 0.8901

rAcc 0.0085 0.0083 0.0111 0.0135 0.0144 0.0093 0.0099 0.0081 0.0100 0.0102 0.0086 0.0076

KrVsKpEW lAcc 0.9852 0.9808 0.9649 0.9660 0.9794 0.9751 0.9753 0.9781 0.9794 0.9742 0.9448 0.9701

rAcc 0.0027 0.0022 0.0088 0.0101 0.0046 0.0055 0.0051 0.0029 0.0057 0.0042 0.0191 0.0067

Lymphography lAcc 0.8378 0.8344 0.8100 0.7778 0.8344 0.8222 0.8289 0.8367 0.8256 0.8267 0.7700 0.7878

rAcc 0.0113 0.0060 0.0175 0.0233 0.0202 0.0179 0.0166 0.0100 0.0239 0.0133 0.0199 0.0202

M-of-n lAcc 1.0000 0.9978 0.9577 0.9563 0.9998 0.9917 0.9928 0.9995 0.9970 0.9955 0.8717 0.9545

rAcc 0.0000 0.0046 0.0330 0.0508 0.0009 0.0136 0.0124 0.0020 0.0064 0.0079 0.0419 0.0239

PenglungEW lAcc 0.6511 0.6289 0.6044 0.6022 0.6244 0.6022 0.6178 0.6533 0.6200 0.6133 0.5956 0.6000

rAcc 0.0330 0.0330 0.0166 0.0120 0.0321 0.0120 0.0295 0.0267 0.0306 0.0267 0.0166 0.0000

SonarEW lAcc 0.9913 0.9802 0.9635 0.9468 0.9817 0.9698 0.9770 0.9873 0.9786 0.9770 0.9437 0.9516

rAcc 0.0115 0.0089 0.0119 0.0170 0.0101 0.0122 0.0075 0.0119 0.0094 0.0115 0.0168 0.0115

SpectEW lAcc 0.8889 0.8840 0.8660 0.8481 0.8870 0.8759 0.8735 0.8914 0.8809 0.8815 0.8420 0.8525

rAcc 0.0048 0.0106 0.0124 0.0154 0.0073 0.0128 0.0118 0.0063 0.0114 0.0123 0.0133 0.0122

Tic-tac-toe lAcc 0.8542 0.8542 0.8493 0.8453 0.8536 0.8536 0.8531 0.8542 0.8460 0.8526 0.8135 0.8453

rAcc 0.0000 0.0000 0.0075 0.0119 0.0028 0.0028 0.0039 0.0000 0.0128 0.0047 0.0167 0.0121

Vote lAcc 1.0000 1.0000 0.9922 0.9850 1.0000 0.9989 0.9989 1.0000 0.9967 0.9989 0.9811 0.9850

rAcc 0.0000 0.0000 0.0083 0.0066 0.0000 0.0042 0.0042 0.0000 0.0067 0.0042 0.0103 0.0050

WaveformEW lAcc 0.8484 0.8424 0.8277 0.8249 0.8405 0.8369 0.8370 0.8426 0.8422 0.8390 0.8112 0.8258

rAcc 0.0053 0.0040 0.0054 0.0071 0.0057 0.0061 0.0048 0.0029 0.0067 0.0067 0.0079 0.0046

WineEW lAcc 1.0000 1.0000 0.9963 0.9898 1.0000 0.9991 1.0000 1.0000 1.0000 1.0000 0.9722 0.9972

rAcc 0.0000 0.0000 0.0094 0.0134 0.0000 0.0050 0.0000 0.0000 0.0000 0.0000 0.0160 0.0083

Zoo lAcc 1.0000 1.0000 1.0000 0.9952 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9937 0.9984

rAcc 0.0000 0.0000 0.0000 0.0143 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0162 0.0085

Ranking WjTjL 7j8j3 0|7|11 0|1|17 0|0|18 0|5|13 0|1|17 0|3|15 3|8|7 0|2|16 0|2|16 0|0|18 0|0|18
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Table 16 shows the mean classification accuracy results

of k-NN with iBSSA compared to other methods. From

Table 16, it is observed that iBSSA excelled all other

algorithms in terms of mean classification accuracy over 7

while tied with other algorithms over 8 datasets, achieving

overall high accuracy in 15 out of the 18 datasets. Addi-

tionally, note that the second ranked optimizer (BSFO)

acquired a slight advantage over 3 datasets only: Exactly2,

PenglungEW, and SpectEW, with a margin of 0.0013%,

0.0022%, and 0.25%, respectively.

In addition, as shown in Table 17, iBSSA has a better

exploration ability than other methods based on the mean

number of selected features by iBSSA, which was asserted

by selecting less number of features over 12 (11 wins and

one tie) out of the 18 datasets, rather than BSFO, BHHO,

BBSA, and BASO which have selected a lower yet non-

significant number of features than iBSSA and other

Table 17 Comparisons of iBSSA against a few promising algorithms based on k-NN in terms of the mean number of selected features lFeatð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lFeat 006.00 006.13 006.40 006.43 006.43 006.43 006.53 006.00 006.43 006.43 006.40 007.60

rFeat 000.00 000.50 001.60 001.36 000.88 001.12 000.99 000.00 001.12 000.88 001.33 001.43

BreastEW lFeat 004.60 009.43 011.27 012.00 008.43 010.57 010.23 007.97 008.73 009.87 013.43 015.23

rFeat 001.23 001.73 001.75 002.03 001.56 001.98 002.06 001.05 002.06 001.63 002.91 001.45

CongressEW lFeat 005.40 006.27 004.90 005.10 004.90 004.50 005.27 005.20 003.67 006.03 005.97 006.17

rFeat 000.88 001.53 001.90 001.56 001.76 001.84 002.16 000.75 002.10 001.60 001.58 001.10

Exactly lFeat 006.13 006.47 008.10 008.20 006.57 006.90 007.00 006.43 006.67 006.93 009.13 008.50

rFeat 000.34 000.50 001.04 001.28 000.67 000.79 000.63 000.56 000.70 000.73 001.82 001.18

Exactly2 lFeat 006.47 006.97 006.47 006.37 006.53 006.77 007.00 006.00 006.53 006.00 005.97 006.83

rFeat 001.06 001.02 001.02 001.74 001.09 001.23 001.39 000.00 001.61 001.15 002.23 001.85

HeartEW lFeat 004.77 005.43 006.03 006.17 005.37 006.53 006.23 004.40 005.97 005.83 006.27 007.03

rFeat 000.84 001.09 001.38 001.53 001.35 001.26 001.17 000.71 001.17 001.49 001.34 001.14

IonosphereEW lFeat 010.63 012.57 013.70 013.80 011.57 012.97 012.57 011.13 011.93 013.07 013.73 016.53

rFeat 002.86 002.63 002.95 002.93 002.54 001.87 002.93 002.81 002.41 002.89 003.44 003.11

KrVsKpEW lFeat 021.97 023.13 021.77 021.87 021.77 022.47 022.60 022.40 021.90 021.73 023.23 024.33

rFeat 002.58 002.35 002.65 003.52 002.50 002.28 002.65 001.89 002.74 002.45 004.34 003.01

Lymphography lFeat 006.90 007.57 008.07 008.73 007.97 008.20 008.40 007.10 007.90 007.27 009.77 009.87

rFeat 001.27 001.54 001.84 001.88 001.47 001.19 001.28 001.16 001.54 001.55 001.89 001.67

M-of-n lFeat 006.07 006.37 008.50 007.67 006.20 006.83 006.90 006.37 006.50 006.77 008.73 008.40

rFeat 000.25 000.55 001.48 001.27 000.40 000.86 000.75 000.48 000.56 000.72 002.02 000.99

PenglungEW lFeat 103.57 152.07 148.27 152.00 146.20 145.17 148.60 147.20 134.10 146.73 143.63 165.53

rFeat 012.64 015.28 011.73 019.21 015.03 012.77 014.88 016.38 013.30 014.05 022.31 007.81

SonarEW lFeat 022.43 027.67 028.33 026.83 026.30 026.20 028.13 024.87 023.57 027.77 028.27 033.10

rFeat 003.77 004.21 003.52 004.57 003.36 003.30 004.09 004.13 003.72 003.48 005.64 003.99

SpectEW lFeat 006.77 009.40 009.43 009.83 007.57 008.70 009.70 008.93 008.27 009.20 010.33 011.83

rFeat 001.84 001.62 001.80 002.10 001.71 002.02 001.77 002.61 001.84 001.96 002.33 002.33

Tic-tac-toe lFeat 009.00 009.00 007.53 007.13 008.83 008.83 008.70 009.00 007.70 008.53 005.60 007.33

rFeat 000.00 000.00 002.25 002.16 000.90 000.90 001.13 000.00 001.93 001.41 001.28 002.12

Vote lFeat 003.37 004.67 005.03 004.70 003.80 004.33 004.53 003.70 004.33 004.53 005.33 006.30

rFeat 000.60 000.94 001.25 001.46 000.83 001.08 000.96 000.46 001.35 000.96 001.37 001.07

WaveformEW lFeat 022.43 025.30 022.60 024.20 022.83 022.53 023.40 023.70 023.93 023.57 025.10 025.03

rFeat 002.40 003.84 002.68 003.95 003.01 003.04 002.63 002.44 002.74 002.60 004.46 002.54

WineEW lFeat 004.07 004.33 005.03 005.67 004.37 004.73 004.53 004.00 004.80 004.63 006.47 007.73

rFeat 000.25 000.47 001.02 001.27 000.55 001.03 000.56 000.00 000.98 000.71 001.69 001.77

Zoo lFeat 005.33 005.77 006.73 007.67 005.80 006.30 006.30 005.37 006.33 006.17 007.87 008.43

rFeat 000.47 000.62 001.00 001.45 000.65 000.86 000.74 000.48 000.91 000.64 002.05 001.33

Ranking WjTjL 11j1j6 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 2|1|15 1|0|17 1|0|17 2|0|16 0|0|18
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algorithms over only 2, 1, 1, and 2 datasets, respectively.

This proves the ability of iBSSA with k-NN to explore the

most feasible regions and avoid searching irrelevant search

space areas. Thus, iBSSA based on k-NN can reduce the

feature search space through the identification of the most

informative features while maintaining high classification

accuracy.

5.7.2 Comparisons based on the SVM classifier

By inspecting Table 18, iBSSA with SVM outperformed

other optimizers assessed in the same experimental envi-

ronment, in 14 out of 18 datasets because it has the mini-

mal classification error compared to other methods, while

BSFO provides the highest yet slight advantage over one

dataset only. Additionally, the standard deviation values

are close to the mean fitness, which implies a good balance

Table 18 Comparisons of iBSSA against a few promising algorithms based on SVM in terms of the mean fitness value lFitð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lFit 0.0262 0.0263 0.0314 0.0339 0.0271 0.0287 0.0274 0.0262 0.0291 0.0281 0.0382 0.0320

rFit 0.0000 0.0003 0.0032 0.0061 0.0020 0.0029 0.0020 0.0000 0.0030 0.0029 0.0037 0.0031

BreastEW lFit 0.0545 0.0606 0.0639 0.0711 0.0581 0.0624 0.0633 0.0561 0.0592 0.0607 0.0708 0.0654

rFit 0.0007 0.0041 0.0027 0.0092 0.0040 0.0034 0.0046 0.0020 0.0050 0.0043 0.0081 0.0007

CongressEW lFit 0.0249 0.0261 0.0284 0.0318 0.0256 0.0270 0.0266 0.0254 0.0259 0.0262 0.0359 0.0301

rFit 0.0004 0.0006 0.0029 0.0046 0.0006 0.0021 0.0020 0.0004 0.0007 0.0022 0.0046 0.0037

Exactly lFit 0.2572 0.2612 0.3006 0.3248 0.2835 0.2969 0.2892 0.2589 0.3044 0.3012 0.3321 0.3160

rFit 0.0003 0.0137 0.0311 0.0135 0.0301 0.0305 0.0318 0.0084 0.0310 0.0289 0.0040 0.0236

Exactly2 lFit 0.2483 0.2486 0.2492 0.2494 0.2483 0.2487 0.2485 0.2483 0.2483 0.2487 0.2499 0.2497

rFit 0.0000 0.0004 0.0005 0.0006 0.0001 0.0005 0.0004 0.0000 0.0000 0.0004 0.0006 0.0006

HeartEW lFit 0.0950 0.0980 0.1187 0.1405 0.1053 0.1115 0.1108 0.0953 0.1078 0.1100 0.1669 0.1465

rFit 0.0004 0.0061 0.0169 0.0240 0.0123 0.0131 0.0138 0.0004 0.0129 0.0168 0.0340 0.0224

IonosphereEW lFit 0.0352 0.0451 0.0589 0.0671 0.0441 0.0504 0.0525 0.0412 0.0457 0.0533 0.0783 0.0641

rFit 0.0080 0.0074 0.0082 0.0121 0.0067 0.0080 0.0075 0.0064 0.0094 0.0067 0.0098 0.0076

KrVsKpEW lFit 0.0207 0.0266 0.0395 0.0402 0.0256 0.0315 0.0324 0.0284 0.0278 0.0304 0.0539 0.0362

rFit 0.0028 0.0031 0.0083 0.0083 0.0040 0.0048 0.0037 0.0023 0.0050 0.0031 0.0166 0.0037

Lymphography lFit 0.1527 0.1633 0.1852 0.1975 0.1654 0.1773 0.1726 0.1518 0.1740 0.1699 0.2188 0.1924

rFit 0.0163 0.0131 0.0178 0.0202 0.0140 0.0182 0.0141 0.0162 0.0182 0.0118 0.0218 0.0151

M-of-n lFit 0.0048 0.0053 0.0266 0.0419 0.0050 0.0102 0.0056 0.0051 0.0052 0.0056 0.1149 0.0116

rFit 0.0003 0.0004 0.0511 0.0642 0.0005 0.0251 0.0004 0.0004 0.0006 0.0006 0.0701 0.0269

PenglungEW lFit 0.1746 0.2004 0.2027 0.2027 0.1933 0.1980 0.1980 0.1889 0.1887 0.2002 0.2138 0.2032

rFit 0.0321 0.0118 0.0002 0.0170 0.0224 0.0164 0.0164 0.0260 0.0263 0.0118 0.0243 0.0001

SonarEW lFit 0.0556 0.0828 0.1132 0.1291 0.0784 0.0925 0.0951 0.0737 0.0781 0.0887 0.1362 0.1216

rFit 0.0142 0.0150 0.0198 0.0207 0.0132 0.0173 0.0160 0.0102 0.0158 0.0168 0.0218 0.0177

SpectEW lFit 0.1658 0.1854 0.2233 0.2320 0.1977 0.2072 0.1981 0.1754 0.2009 0.1962 0.2499 0.2382

rFit 0.0104 0.0186 0.0244 0.0259 0.0267 0.0281 0.0230 0.0097 0.0300 0.0232 0.0075 0.0173

Tic-tac-toe lFit 0.1017 0.1017 0.1206 0.1197 0.1017 0.1051 0.1018 0.1017 0.1018 0.1017 0.1602 0.1129

rFit 0.0000 0.0000 0.0191 0.0251 0.0000 0.0090 0.0004 0.0000 0.0004 0.0002 0.0320 0.0120

Vote lFit 0.0023 0.0033 0.0090 0.0136 0.0030 0.0042 0.0043 0.0026 0.0032 0.0033 0.0243 0.0107

rFit 0.0005 0.0008 0.0072 0.0101 0.0008 0.0032 0.0029 0.0006 0.0008 0.0010 0.0115 0.0076

WaveformEW lFit 0.1256 0.1315 0.1468 0.1435 0.1328 0.1357 0.1380 0.1333 0.1320 0.1352 0.1536 0.1412

rFit 0.0027 0.0029 0.0051 0.0076 0.0033 0.0045 0.0050 0.0028 0.0044 0.0046 0.0070 0.0048

WineEW lFit 0.0017 0.0027 0.0174 0.0205 0.0033 0.0075 0.0060 0.0019 0.0026 0.0038 0.0356 0.0189

rFit 0.0004 0.0007 0.0138 0.0135 0.0050 0.0104 0.0081 0.0004 0.0009 0.0051 0.0201 0.0131

Zoo lFit 0.0032 0.0038 0.0064 0.0170 0.0038 0.0055 0.0043 0.0034 0.0052 0.0039 0.0361 0.0129

rFit 0.0002 0.0005 0.0082 0.0201 0.0006 0.0083 0.0008 0.0003 0.0083 0.0008 0.0212 0.0167

Ranking WjTjL 14j3j1 0|1|17 0|0|18 0|0|18 0|2|16 0|0|18 0|0|18 1|2|15 0|1|17 0|1|17 0|0|18 0|0|18
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between exploration and exploitation of the SVM-based

iBSSA method.

In Table 19, iBSSA is compared with other algorithms

in terms of mean classification accuracy. By analyzing the

results, iBSSA based on SVM had a perfect recognition in

terms of 100% classification accuracy on the datasets M-

of-n, Vote, WineEW, and Zoo; whereas, it achieved an

accuracy varying from 94.76% to 98.54% on the datasets

SonarEW, BreastEW, IonosphereEW, CongressEW,

BreastCancer, and KrVsKpEW. The results also revealed

that iBSSA based on SVM obtained the best mean accu-

racy on 8 out of the 18 datasets, while the second ranked

optimizer (BSFO) scored the best results over one dataset

only.

In terms of the mean number of selected features, the

results of iBSSA and other competitors based on SVM are

depicted in Table 20. By analyzing the results, appealing

observations are remarked for iBSSA with SVM, which

Table 19 Comparisons of iBSSA against a few promising algorithms based on SVM in terms of the mean classification accuracy lAccð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lAcc 0.9786 0.9786 0.9733 0.9707 0.9776 0.9760 0.9776 0.9786 0.9755 0.9767 0.9664 0.9729

rAcc 0.0000 0.0000 0.0037 0.0065 0.0024 0.0034 0.0024 0.0000 0.0035 0.0032 0.0042 0.0034

BreastEW lAcc 0.9474 0.9424 0.9395 0.9325 0.9444 0.9404 0.9395 0.9468 0.9433 0.9421 0.9330 0.9386

rAcc 0.0000 0.0043 0.0026 0.0096 0.0041 0.0035 0.0047 0.0022 0.0049 0.0043 0.0083 0.0000

CongressEW lAcc 0.9770 0.9770 0.9759 0.9724 0.9770 0.9766 0.9766 0.9770 0.9770 0.9766 0.9682 0.9747

rAcc 0.0000 0.0000 0.0034 0.0056 0.0000 0.0021 0.0021 0.0000 0.0000 0.0021 0.0049 0.0046

Exactly lAcc 0.7450 0.7415 0.7022 0.6777 0.7187 0.7060 0.7135 0.7435 0.6973 0.7013 0.6683 0.6870

rAcc 0.0000 0.0132 0.0311 0.0139 0.0305 0.0304 0.0318 0.0081 0.0316 0.0292 0.0051 0.0234

Exactly2 lAcc 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500

rAcc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HeartEW lAcc 0.9074 0.9049 0.8840 0.8617 0.8975 0.8914 0.8920 0.9074 0.8951 0.8926 0.8358 0.8562

rAcc 0.0000 0.0063 0.0172 0.0247 0.0124 0.0133 0.0144 0.0000 0.0129 0.0168 0.0347 0.0228

IonosphereEW lAcc 0.9681 0.9592 0.9451 0.9371 0.9596 0.9535 0.9516 0.9624 0.9577 0.9502 0.9258 0.9404

rAcc 0.0081 0.0076 0.0084 0.0125 0.0070 0.0083 0.0079 0.0066 0.0096 0.0070 0.0102 0.0079

KrVsKpEW lAcc 0.9854 0.9799 0.9661 0.9657 0.9807 0.9742 0.9738 0.9773 0.9781 0.9757 0.9518 0.9700

rAcc 0.0027 0.0033 0.0087 0.0089 0.0043 0.0052 0.0038 0.0025 0.0053 0.0031 0.0173 0.0038

Lymphography lAcc 0.8500 0.8400 0.8178 0.8056 0.8378 0.8256 0.8311 0.8511 0.8289 0.8333 0.7844 0.8111

rAcc 0.0167 0.0133 0.0187 0.0212 0.0142 0.0186 0.0147 0.0166 0.0187 0.0122 0.0223 0.0157

M-of-n lAcc 1.0000 1.0000 0.9795 0.9642 1.0000 0.9953 1.0000 1.0000 1.0000 1.0000 0.8905 0.9950

rAcc 0.0000 0.0000 0.0523 0.0650 0.0000 0.0251 0.0000 0.0000 0.0000 0.0000 0.0718 0.0269

PenglungEW lAcc 0.8267 0.8022 0.8000 0.8000 0.8089 0.8044 0.8044 0.8133 0.8133 0.8022 0.7889 0.8000

rAcc 0.0327 0.0120 0.0000 0.0172 0.0227 0.0166 0.0166 0.0267 0.0267 0.0120 0.0248 0.0000

SonarEW lAcc 0.9476 0.9214 0.8905 0.8746 0.9254 0.9111 0.9087 0.9302 0.9254 0.9151 0.8675 0.8825

rAcc 0.0143 0.0152 0.0200 0.0212 0.0134 0.0173 0.0164 0.0105 0.0160 0.0170 0.0219 0.0184

SpectEW lAcc 0.8364 0.8173 0.7790 0.7710 0.8043 0.7951 0.8043 0.8272 0.8006 0.8062 0.7525 0.7648

rAcc 0.0108 0.0190 0.0243 0.0260 0.0273 0.0283 0.0233 0.0100 0.0305 0.0238 0.0089 0.0173

Tic-tac-toe lAcc 0.9062 0.9062 0.8868 0.8875 0.9062 0.9028 0.9062 0.9062 0.9062 0.9062 0.8457 0.8948

rAcc 0.0000 0.0000 0.0199 0.0261 0.0000 0.0094 0.0000 0.0000 0.0000 0.0000 0.0332 0.0128

Vote lAcc 1.0000 1.0000 0.9950 0.9906 1.0000 0.9994 0.9994 1.0000 1.0000 1.0000 0.9800 0.9933

rAcc 0.0000 0.0000 0.0076 0.0103 0.0000 0.0030 0.0030 0.0000 0.0000 0.0000 0.0117 0.0082

WaveformEW lAcc 0.8791 0.8738 0.8579 0.8611 0.8722 0.8694 0.8669 0.8718 0.8728 0.8696 0.8512 0.8639

rAcc 0.0027 0.0028 0.0052 0.0079 0.0037 0.0045 0.0049 0.0028 0.0045 0.0047 0.0075 0.0051

WineEW lAcc 1.0000 1.0000 0.9861 0.9833 0.9991 0.9954 0.9972 1.0000 1.0000 0.9991 0.9685 0.9852

rAcc 0.0000 0.0000 0.0139 0.0136 0.0050 0.0104 0.0083 0.0000 0.0000 0.0050 0.0199 0.0139

Zoo lAcc 1.0000 1.0000 0.9984 0.9873 1.0000 0.9984 1.0000 1.0000 0.9984 1.0000 0.9683 0.9921

rAcc 0.0000 0.0000 0.0085 0.0211 0.0000 0.0085 0.0000 0.0000 0.0085 0.0000 0.0224 0.0177

Ranking WjTjL 8j9j1 0|8|10 0|1|17 1|0|17 0|6|12 0|1|17 0|4|14 1|9|8 0|6|12 0|5|13 0|1|17 0|1|17
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achieved better results than other optimizers over 12 out of

the 18 datasets adopted in this study. It is also observed that

the second ranked method (BHHO) outperforms over two

datasets only. The superiority of iBSSA with SVM in this

regard was demonstrated thanks to the proposed 3RA and

LSA methods, which implies that the proposed iBSSA

would select fewer number of features, affirming its

potential to explore the most important areas of the search

space, avoiding searching through non feasible spaces

areas.

5.7.3 Comparisons based on the RF classifier

Table 21 compares the mean fitness and standard deviation

values of iBSSA with other competitors based on RF,

under the same implementation conditions. Notably,

iBSSA based on RF shows a higher quality than other

Table 20 Comparisons of iBSSA against a few promising algorithms based on SVM in terms of the mean number of selected features lFeatð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lFeat 005.00 005.10 004.97 004.93 004.97 004.93 005.20 005.00 004.83 005.00 004.97 005.10

rFeat 000.00 000.30 000.91 000.89 000.48 000.68 000.65 000.00 000.69 000.52 001.40 000.75

BreastEW lFeat 007.13 010.70 011.87 012.80 009.33 010.10 010.03 010.20 009.13 010.23 013.53 013.93

rFeat 002.05 001.27 001.50 002.66 001.49 001.94 001.25 001.49 001.78 001.43 002.81 002.22

CongressEW lFeat 003.50 005.33 007.13 007.20 004.47 006.10 005.57 004.20 004.97 004.87 007.00 008.03

rFeat 000.72 001.01 002.06 002.34 000.92 001.70 001.50 000.65 001.14 001.06 001.57 002.37

Exactly lFeat 006.20 006.87 007.53 007.40 006.53 007.60 007.27 006.43 006.23 007.17 004.83 008.03

rFeat 000.40 000.85 001.67 002.32 001.54 001.58 001.59 000.67 002.69 001.49 002.65 001.62

Exactly2 lFeat 001.00 001.43 002.27 002.47 001.03 001.50 001.30 001.00 001.00 001.53 003.13 002.80

rFeat 000.00 000.50 000.63 000.76 000.18 000.62 000.46 000.00 000.00 000.50 000.81 000.79

HeartEW lFeat 004.33 005.00 005.00 004.67 005.07 005.10 005.00 004.67 005.03 004.77 005.60 005.33

rFeat 000.47 001.00 001.18 001.49 001.03 001.01 001.00 000.54 001.11 000.96 001.56 001.16

IonosphereEW lFeat 012.23 015.87 015.47 016.27 014.13 014.93 015.67 013.63 013.30 013.87 016.60 017.37

rFeat 002.54 002.49 003.04 003.03 003.29 002.73 002.65 002.29 002.73 003.14 003.08 003.23

KrVsKpEW lFeat 022.60 024.03 021.47 022.73 023.47 021.40 023.20 021.57 021.87 022.70 022.13 023.37

rFeat 002.59 002.59 003.69 003.55 003.61 003.53 003.13 002.87 003.15 002.79 002.77 002.74

Lymphography lFeat 007.53 008.83 008.57 009.07 008.70 008.33 009.67 007.93 008.37 008.87 009.80 009.73

rFeat 001.28 001.07 002.04 002.71 001.37 002.01 002.34 001.31 001.30 001.65 002.06 001.97

M-of-n lFeat 006.27 006.83 008.13 008.40 006.53 007.23 007.27 006.57 006.73 007.30 008.43 008.67

rFeat 000.44 000.58 001.41 001.62 000.62 000.88 000.57 000.50 000.73 000.82 001.76 000.98

PenglungEW lFeat 096.90 150.67 152.37 151.20 134.33 142.80 143.90 133.17 126.37 142.73 155.13 167.57

rFeat 010.21 008.10 007.89 014.75 006.86 007.01 005.78 013.22 006.28 006.14 014.26 003.94

SonarEW lFeat 022.27 030.20 028.90 029.53 026.97 026.83 028.30 027.63 025.67 027.83 030.00 031.67

rFeat 003.02 004.00 004.32 004.38 003.34 003.53 003.26 003.72 004.22 002.85 004.11 004.68

SpectEW lFeat 008.43 010.03 009.97 011.57 008.83 009.40 009.70 009.43 007.70 009.40 010.63 011.70

rFeat 001.78 001.14 002.09 002.11 001.86 002.23 001.55 001.50 002.45 001.47 003.65 001.53

Tic-tac-toe lFeat 008.00 008.00 007.67 007.53 008.00 008.00 008.13 008.00 008.13 008.03 006.63 007.87

rFeat 000.00 000.00 000.83 000.92 000.00 000.45 000.34 000.00 000.34 000.18 001.14 000.85

Vote lFeat 003.60 005.20 006.47 006.73 004.73 005.83 005.93 004.17 005.07 005.33 007.27 006.63

rFeat 000.80 001.28 001.73 001.93 001.24 001.66 001.12 000.93 001.29 001.60 001.69 001.66

WaveformEW lFeat 023.47 026.30 024.37 024.10 024.80 025.53 024.93 025.57 024.20 024.50 025.27 025.53

rFeat 001.61 002.35 002.76 003.17 002.98 002.23 002.62 002.72 002.29 002.55 003.47 003.01

WineEW lFeat 002.27 003.53 004.77 005.17 003.13 003.77 004.20 002.47 003.40 003.70 005.70 005.50

rFeat 000.51 000.92 001.23 001.42 000.96 001.05 001.19 000.50 001.14 001.22 001.24 001.50

Zoo lFeat 005.17 006.03 007.77 007.07 006.07 006.30 006.93 005.40 005.80 006.30 007.53 008.03

rFeat 000.37 000.88 001.65 001.95 000.93 001.07 001.24 000.55 000.91 001.22 001.82 001.76

Ranking WjTjL 12j1j5 0|0|18 0|0|18 0|0|18 0|0|18 1|0|17 0|0|18 0|1|17 2|1|15 0|0|18 2|0|16 0|0|18
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approaches. By analyzing Table 21, evidence shows that

RF-based iBSSA obtained the lowest fitness values along

with competitive standard deviations over 12 out of the 18

datasets. In addition, the second ranked optimizer (BSFO)

acquired a slight advantage over 4 datasets only: Breast-

Cancer, Exactly, Exactly2, and WineEW with a margin of

0.02%, 0.35%, 0.06%, and 0.01%, respectively.

Table 22 shows the comparison of iBSSA and other

algorithms with RF classifier in terms of accuracy results

which are assessed fairly in the same environment. The

experimental results reveal that RF-based iBSSA classifier

is superior on 8 out of 18 datasets, where BSFO, which

ranks second, gave the best results on two datasets only. It

should also be pointed out that BSFO produced the same

results on 6 datasets as iBSSA based on RF.

Table 23 presents the mean number of features selected

by each algorithm. It is evident that iBSSA excelled other

algorithms over 7 out of 18 datasets in feature reduction.

Table 21 Comparisons of iBSSA against a few promising algorithms based on RF in terms of the mean fitness value lFitð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lFit 0.0193 0.0192 0.0206 0.0222 0.0194 0.0196 0.0196 0.0191 0.0201 0.0197 0.0248 0.0211

rFit 0.0004 0.0003 0.0020 0.0028 0.0004 0.0005 0.0006 0.0000 0.0012 0.0005 0.0035 0.0022

BreastEW lFit 0.0097 0.0119 0.0245 0.0305 0.0147 0.0186 0.0167 0.0114 0.0188 0.0154 0.0271 0.0277

rFit 0.0048 0.0049 0.0055 0.0096 0.0056 0.0044 0.0048 0.0032 0.0066 0.0057 0.0087 0.0070

CongressEW lFit 0.0220 0.0247 0.0267 0.0308 0.0245 0.0263 0.0252 0.0232 0.0261 0.0253 0.0361 0.0292

rFit 0.0045 0.0035 0.0028 0.0054 0.0030 0.0008 0.0032 0.0041 0.0009 0.0026 0.0056 0.0042

Exactly lFit 0.2384 0.2511 0.3038 0.3081 0.2787 0.2882 0.2839 0.2349 0.2758 0.2639 0.3179 0.3041

rFit 0.0574 0.0579 0.0088 0.0105 0.0391 0.0250 0.0331 0.0588 0.0510 0.0509 0.0126 0.0275

Exactly2 lFit 0.2384 0.2416 0.2466 0.2479 0.2430 0.2449 0.2433 0.2378 0.2459 0.2431 0.2496 0.2475

rFit 0.0036 0.0044 0.0028 0.0021 0.0048 0.0037 0.0047 0.0022 0.0037 0.0042 0.0011 0.0039

HeartEW lFit 0.0746 0.0746 0.0984 0.1070 0.0880 0.0919 0.0839 0.0779 0.0951 0.0881 0.1192 0.1031

rFit 0.0147 0.0104 0.0109 0.0158 0.0107 0.0094 0.0138 0.0089 0.0111 0.0109 0.0136 0.0114

IonosphereEW lFit 0.0345 0.0351 0.0450 0.0513 0.0417 0.0442 0.0431 0.0353 0.0450 0.0415 0.0516 0.0519

rFit 0.0064 0.0047 0.0041 0.0089 0.0060 0.0056 0.0054 0.0053 0.0050 0.0062 0.0065 0.0062

KrVsKpEW lFit 0.0556 0.0617 0.0800 0.0886 0.0599 0.0685 0.0674 0.0596 0.0660 0.0662 0.1147 0.0830

rFit 0.0048 0.0045 0.0100 0.0210 0.0059 0.0077 0.0069 0.0041 0.0064 0.0075 0.0235 0.0087

Lymphography lFit 0.1239 0.1310 0.1729 0.1864 0.1445 0.1608 0.1485 0.1280 0.1556 0.1477 0.2119 0.1868

rFit 0.0213 0.0134 0.0254 0.0278 0.0235 0.0234 0.0224 0.0200 0.0311 0.0244 0.0289 0.0202

M-of-n lFit 0.0053 0.0249 0.1012 0.1016 0.0195 0.0577 0.0520 0.0153 0.0242 0.0348 0.1632 0.0951

rFit 0.0027 0.0183 0.0411 0.0468 0.0241 0.0383 0.0305 0.0129 0.0247 0.0291 0.0280 0.0312

PenglungEW lFit 0.2532 0.2695 0.2931 0.3348 0.2843 0.2953 0.2931 0.2532 0.3061 0.3019 0.2997 0.3507

rFit 0.0405 0.0294 0.0358 0.0339 0.0368 0.0401 0.0432 0.0277 0.0404 0.0370 0.0406 0.0324

SonarEW lFit 0.0831 0.0947 0.1225 0.1362 0.1077 0.1141 0.1108 0.0917 0.1208 0.1071 0.1545 0.1469

rFit 0.0151 0.0164 0.0228 0.0247 0.0196 0.0176 0.0224 0.0148 0.0208 0.0153 0.0222 0.0191

SpectEW lFit 0.1203 0.1406 0.1490 0.1594 0.1386 0.1393 0.1420 0.1288 0.1383 0.1442 0.1693 0.1565

rFit 0.0092 0.0090 0.0101 0.0131 0.0120 0.0155 0.0102 0.0093 0.0122 0.0120 0.0138 0.0104

Tic-tac-toe lFit 0.1367 0.1367 0.1487 0.1546 0.1370 0.1396 0.1385 0.1367 0.1420 0.1393 0.1731 0.1514

rFit 0.0000 0.0000 0.0123 0.0163 0.0015 0.0068 0.0044 0.0000 0.0079 0.0048 0.0134 0.0094

Vote lFit 0.0017 0.0028 0.0067 0.0124 0.0023 0.0028 0.0030 0.0020 0.0026 0.0028 0.0208 0.0119

rFit 0.0005 0.0005 0.0060 0.0078 0.0007 0.0006 0.0006 0.0004 0.0008 0.0006 0.0076 0.0078

WaveformEW lFit 0.1829 0.1920 0.2050 0.2117 0.1925 0.1970 0.1977 0.1891 0.1961 0.1930 0.2236 0.2064

rFit 0.0053 0.0048 0.0069 0.0078 0.0055 0.0058 0.0046 0.0055 0.0058 0.0064 0.0092 0.0074

WineEW lFit 0.0024 0.0028 0.0030 0.0037 0.0027 0.0030 0.0027 0.0023 0.0030 0.0026 0.0044 0.0042

rFit 0.0003 0.0005 0.0006 0.0009 0.0005 0.0006 0.0004 0.0001 0.0006 0.0005 0.0009 0.0006

Zoo lFit 0.0027 0.0033 0.0038 0.0044 0.0034 0.0034 0.0035 0.0030 0.0034 0.0035 0.0064 0.0046

rFit 0.0003 0.0004 0.0005 0.0006 0.0005 0.0004 0.0004 0.0003 0.0005 0.0004 0.0083 0.0006

Ranking WjTjL 12j2j4 0|2|16 0|0|18 0|0|18 0|0|18 0|0|18 0|0|18 4|2|12 0|0|18 0|0|18 0|0|18 0|0|18
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Furthermore, BASO excelled other algorithms over only 4

datasets, BSFO excelled other algorithms over only 3

datasets, and BGWO excelled other algorithms over only 2

datasets; whereas, BWOA and BBSA excelled other

algorithms for only one dataset. The iBSSA ability to select

fewer number of features is believed to be attributed to the

superiority of the proposed 3RA and LSA methods in

selecting the most informative features through searching

within feasible areas while at the same time considering

improved classification accuracy.

5.8 Convergence analysis

This subsection presents an asymptotic analysis of the

proposed iBSSA with the three classifiers, k-NN, SVM, and

RF, in FS on different datasets. These analyses reveal the

convergence capacity of the proposed iBSSA in the form of

Table 22 Comparisons of iBSSA against a few promising algorithms based on RF in terms of the mean classification accuracy lAccð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lAcc 0.9857 0.9857 0.9848 0.9833 0.9857 0.9857 0.9857 0.9857 0.9855 0.9857 0.9807 0.9845

rAcc 0.0000 0.0000 0.0024 0.0034 0.0000 0.0000 0.0000 0.0000 0.0013 0.0000 0.0038 0.0027

BreastEW lAcc 0.9944 0.9930 0.9801 0.9737 0.9895 0.9860 0.9880 0.9930 0.9857 0.9892 0.9775 0.9772

rAcc 0.0048 0.0053 0.0060 0.0099 0.0057 0.0043 0.0053 0.0035 0.0070 0.0059 0.0090 0.0070

CongressEW lAcc 0.9808 0.9785 0.9770 0.9728 0.9782 0.9770 0.9782 0.9797 0.9770 0.9778 0.9682 0.9747

rAcc 0.0054 0.0039 0.0030 0.0055 0.0034 0.0000 0.0034 0.0049 0.0000 0.0029 0.0057 0.0046

Exactly lAcc 0.7633 0.7508 0.6975 0.6932 0.7227 0.7133 0.7175 0.7670 0.7257 0.7375 0.6837 0.6975

rAcc 0.0584 0.0587 0.0088 0.0104 0.0397 0.0252 0.0335 0.0596 0.0517 0.0517 0.0123 0.0278

Exactly2 lAcc 0.7632 0.7598 0.7550 0.7527 0.7585 0.7565 0.7583 0.7637 0.7547 0.7583 0.7505 0.7528

rAcc 0.0035 0.0044 0.0032 0.0031 0.0049 0.0039 0.0045 0.0022 0.0046 0.0043 0.0015 0.0046

HeartEW lAcc 0.9302 0.9309 0.9062 0.8975 0.9167 0.9130 0.9210 0.9272 0.9099 0.9167 0.8852 0.9019

rAcc 0.0156 0.0106 0.0116 0.0164 0.0115 0.0097 0.0143 0.0095 0.0114 0.0115 0.0139 0.0119

IonosphereEW lAcc 0.9690 0.9695 0.9592 0.9526 0.9620 0.9596 0.9606 0.9685 0.9587 0.9624 0.9526 0.9526

rAcc 0.0067 0.0052 0.0042 0.0093 0.0065 0.0060 0.0056 0.0060 0.0051 0.0066 0.0068 0.0068

KrVsKpEW lAcc 0.9487 0.9431 0.9244 0.9157 0.9443 0.9361 0.9369 0.9446 0.9384 0.9382 0.8893 0.9217

rAcc 0.0049 0.0048 0.0103 0.0212 0.0061 0.0077 0.0069 0.0042 0.0065 0.0076 0.0234 0.0089

Lymphography lAcc 0.8800 0.8733 0.8300 0.8167 0.8589 0.8422 0.8556 0.8756 0.8478 0.8556 0.7911 0.8167

rAcc 0.0221 0.0133 0.0263 0.0282 0.0239 0.0242 0.0233 0.0210 0.0318 0.0248 0.0297 0.0206

M-of-n lAcc 0.9993 0.9802 0.9042 0.9035 0.9853 0.9477 0.9533 0.9897 0.9807 0.9702 0.8413 0.9110

rAcc 0.0025 0.0182 0.0413 0.0475 0.0238 0.0382 0.0303 0.0128 0.0245 0.0288 0.0287 0.0309

PenglungEW lAcc 0.7489 0.7333 0.7089 0.6667 0.7178 0.7067 0.7089 0.7489 0.6956 0.7000 0.7022 0.6511

rAcc 0.0410 0.0298 0.0364 0.0344 0.0373 0.0407 0.0438 0.0282 0.0410 0.0375 0.0412 0.0330

SonarEW lAcc 0.9206 0.9095 0.8810 0.8675 0.8960 0.8897 0.8929 0.9119 0.8825 0.8968 0.8484 0.8571

rAcc 0.0155 0.0167 0.0230 0.0251 0.0199 0.0179 0.0228 0.0152 0.0212 0.0155 0.0226 0.0194

SpectEW lAcc 0.8815 0.8617 0.8537 0.8432 0.8636 0.8630 0.8605 0.8735 0.8636 0.8580 0.8340 0.8469

rAcc 0.0091 0.0092 0.0100 0.0133 0.0122 0.0156 0.0104 0.0097 0.0122 0.0120 0.0139 0.0106

Tic-tac-toe lAcc 0.8698 0.8698 0.8569 0.8510 0.8694 0.8667 0.8677 0.8698 0.8639 0.8667 0.8312 0.8540

rAcc 0.0000 0.0000 0.0127 0.0169 0.0019 0.0072 0.0050 0.0000 0.0084 0.0055 0.0142 0.0096

Vote lAcc 1.0000 1.0000 0.9972 0.9911 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9833 0.9917

rAcc 0.0000 0.0000 0.0062 0.0083 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0075 0.0083

WaveformEW lAcc 0.8201 0.8118 0.7980 0.7915 0.8107 0.8063 0.8054 0.8140 0.8070 0.8102 0.7796 0.7971

rAcc 0.0051 0.0046 0.0069 0.0082 0.0054 0.0058 0.0047 0.0053 0.0058 0.0067 0.0092 0.0073

WineEW lAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

rAcc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Zoo lAcc 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 1.0000

rAcc 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0085 0.0000

Ranking WjTjL 8j6j4 2|5|11 0|2|16 0|2|16 0|4|14 0|4|14 0|4|14 2|6|10 0|3|15 0|4|14 0|1|17 0|2|16
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a convergence graph. Since the mean classification accu-

racy can be adopted to quantify the performance of iBSSA

in FS problems, yet the algorithm convergence behavior

strongly determines its efficiency. Figures 3, 4, and 5 depict

the relation between the number of iterations and the

optimal fitness value obtained so far with k-NN, SVM, and

RF, respectively, for iBSSA against binary variants of other

optimizers, including BSSA, BABC, BPSO, BBA, BGWO,

BWOA, BGOA, BSFO, BHHO, BBSA, BASO, and

BHGSO, which are executed in the same experimental

settings, including the number of agents and number of

iterations.

Based on Figs. 3, 4, and 5, iBSSA with k-NN excelled

other algorithms in terms of fast convergence over the 18

datasets. Thus, the superior performance of iBSSA with k-

NN is revealed through its speedy convergent behavior in

comparison with other methods, especially for large data-

sets like, for example, PenglungEW where convergent

Table 23 Comparisons of iBSSA against a few promising algorithms based on RF in terms of the mean number of selected features lFeatð Þ

Benchmark Metric iBSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer lFeat 005.17 005.10 005.47 005.73 005.23 005.47 005.50 005.00 005.77 005.57 005.70 005.73

rFeat 000.37 000.30 000.76 000.96 000.42 000.50 000.56 000.00 000.84 000.50 000.90 000.77

BreastEW lFeat 012.67 014.90 014.37 013.37 012.90 014.20 014.40 013.33 013.77 014.03 014.43 015.30

rFeat 002.41 002.71 003.05 002.63 002.44 002.59 003.12 003.06 002.50 002.94 003.03 002.90

CongressEW lFeat 004.93 005.47 006.33 006.13 004.63 005.60 005.67 004.90 005.30 005.33 007.40 006.73

rFeat 001.53 000.85 000.94 001.38 001.05 001.28 000.98 001.27 001.37 001.08 001.94 001.36

Exactly lFeat 005.37 005.70 005.67 005.67 005.40 005.70 005.43 005.53 005.53 005.27 006.13 006.00

rFeat 000.48 000.82 000.83 001.11 000.84 000.97 000.76 000.62 000.85 000.73 001.23 001.00

Exactly2 lFeat 005.07 005.03 005.23 004.00 005.10 005.03 005.30 005.00 003.93 005.00 003.37 003.63

rFeat 000.25 000.18 001.63 001.77 000.94 001.08 000.46 000.00 002.34 000.63 001.08 001.62

HeartEW lFeat 007.23 008.03 007.20 007.23 007.20 007.40 007.40 007.53 007.63 007.23 007.13 007.70

rFeat 001.17 000.98 001.68 001.67 001.60 001.20 000.95 001.02 001.43 001.17 001.36 001.35

IonosphereEW lFeat 013.10 016.70 015.57 014.87 013.73 014.40 013.80 014.23 014.00 014.83 015.80 016.87

rFeat 002.43 002.77 002.63 002.57 002.91 002.30 001.87 003.30 002.31 002.50 003.50 002.45

KrVsKpEW lFeat 017.17 019.23 018.40 018.43 016.90 018.97 017.90 017.07 017.87 018.23 018.53 019.90

rFeat 002.82 003.13 003.14 002.82 002.89 002.59 002.84 002.19 002.74 002.59 003.25 002.72

Lymphography lFeat 009.20 010.07 008.33 008.83 008.63 008.27 009.90 008.57 008.73 008.47 009.10 009.57

rFeat 002.06 001.95 002.09 002.44 001.76 002.21 002.37 002.14 001.86 002.08 002.23 001.86

M-of-n lFeat 006.07 006.80 008.20 007.93 006.50 007.60 007.57 006.53 006.63 006.90 008.00 009.07

rFeat 000.25 000.48 001.25 001.29 000.67 001.05 000.76 000.50 000.66 000.87 001.79 001.26

PenglungEW lFeat 150.33 178.63 159.10 155.03 158.57 159.07 157.77 149.40 151.33 158.63 158.60 173.83

rFeat 012.81 015.84 014.04 016.78 008.94 010.31 012.53 011.79 010.41 011.92 011.57 012.64

SonarEW lFeat 027.33 030.73 027.80 029.90 028.87 029.47 028.40 027.07 027.10 030.03 026.63 032.80

rFeat 003.82 004.34 003.31 005.11 003.99 004.23 003.49 003.64 003.88 003.85 004.47 003.30

SpectEW lFeat 006.57 008.17 009.23 009.27 007.87 007.97 008.63 007.73 007.13 008.07 010.87 010.80

rFeat 001.20 001.39 002.81 001.41 000.92 000.88 001.92 001.34 001.45 001.73 002.67 002.50

Tic-tac-toe lFeat 007.00 007.00 006.33 006.43 006.93 006.83 006.73 007.00 006.53 006.53 005.43 006.17

rFeat 000.00 000.00 000.87 001.02 000.36 000.45 000.68 000.00 000.76 000.85 001.09 000.78

Vote lFeat 002.73 004.47 006.37 005.77 003.67 004.53 004.83 003.27 004.23 004.53 006.90 005.80

rFeat 000.73 000.81 001.87 001.94 001.11 000.88 001.04 000.63 001.33 000.99 001.51 001.58

WaveformEW lFeat 019.33 022.57 019.93 021.27 020.57 020.90 020.10 020.10 020.03 020.40 021.63 022.07

rFeat 003.27 003.27 001.91 003.49 002.45 003.28 002.70 003.49 002.97 003.29 003.30 002.02

WineEW lFeat 003.13 003.60 003.93 004.87 003.57 003.93 003.53 003.03 003.93 003.43 005.77 005.43

rFeat 000.34 000.61 000.73 001.18 000.67 000.73 000.56 000.18 000.73 000.62 001.17 000.72

Zoo lFeat 004.33 005.33 006.07 007.10 005.40 005.50 005.57 004.80 005.37 005.67 007.73 007.30

rFeat 000.47 000.70 000.73 000.98 000.76 000.72 000.67 000.40 000.88 000.65 001.48 000.90

Ranking WjTjL 7j0j11 0|0|18 0|0|18 0|0|18 2|0|16 1|0|17 0|0|18 3|0|15 0|0|18 1|0|17 4|0|14 0|0|18
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behavior was exhibited after only 25 iterations. This is

comparable to both: the iBSSA with SVM, which indicates

speedy convergent behavior over 16 datasets except

BreastEW and SonarEW, and the iBSSA with RF which

indicates divergent behavior over only the dataset

SonarEW. Moreover, the convergence behavior shows that

the proposed iBSSA effectively balances between

exploitation and exploration, that is well demonstrated by

the perfect coincidence between the optimal mean fitness

values and the optimal mean accuracy values. This really

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 3 Convergence curves of the proposed iBSSA and other algorithms over all datasets with the k-NN classifier
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contributed a lot to solving the problem of premature

convergence compared to other optimization algorithms.

Notably, this stability in iBSSA performance is reflected by

incorporating two improvements, 3RA and LSA, into the

original BSSA algorithm. It is worth mentioning that

iBSSA based on the three classifiers: k-NN, SVM, and RF,

exhibited convergent behavior, in most cases, throughout

the 100 iterations, which were thus sufficient for

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 4 Convergence curves of the proposed iBSSA and other algorithms over all datasets with the SVM classifier
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convergence. In addition, the fastest convergence was rel-

atively exhibited by iBSSA with the three classifiers on the

vast majority of datasets.

5.9 Statistical analysis (Wilcoxon’s rank-sum
test)

Based on Tables 15, 18, and 21, it is obvious that the

iBSSA with k-NN, SVM, and RF, respectively, shows a

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 5 Convergence curves of the proposed iBSSA and other algorithms over all datasets with the RF classifier
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clear superiority over other competing algorithms in 13, 14,

and 12 out of the 18 datasets. Therefore, in this section, the

Wilcoxon’s rank-sum test is assessed for iBSSA with the

three classifiers, k-NN, SVM, and RF, compared to BSSA,

BABC, BPSO, BBA, BGWO, BWOA, BGOA, BSFO,

BHHO, BBSA, BASO, and BHGSO. In order to statisti-

cally detect the significant difference between the means of

two samples, the Wilcoxon’s rank-sum test [26] is used.

Therefore, for assessing the significance of the proposed

iBSSA against counterparts, Wilcoxon’s rank-sum statis-

tical analysis is conducted at a 0.05 significance level under

which a statistically significant difference of the proposed

algorithm is exhibited compared to other algorithms (val-

ues with p\0:05 are bold). The results shown in

Tables 24, 25, and 26 reveal that the suggested iBSSA

approach is arguably the best compared to other optimizers

over the three classifiers, k-NN, SVM, and RF, based on the

fitness value results.

By inspecting Table 24’s results, iBSSA with k-NN is

significantly different from BHHO and BASSO over the 18

datasets since p-value is less than 0.05. Additionally,

compared to BPSO, BBA, and BHGSO, iBSSA with k-NN

Table 24 p-values of the Wilcoxon’s rank-sum test for the mean fitness values lFitð Þ of the iBSSA vs. other approaches based on k-NN (a\0:05
are bold)

Benchmark BSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer 6.99E-
03

9.54E-

02

1.43E-
04

1.59E-
05

2.80E-
02

2.63E-
02

1.48E-
02

N/A 9.81E-
03

5.87E-

02

4.44E-
10

1.37E-
06

BreastEW 5.59E-
05

7.06E-
11

4.38E-
05

9.41E-
07

4.10E-
09

2.87E-
05

6.04E-
11

8.76E-
11

1.31E-
03

2.69E-
04

5.50E-
08

1.19E-
12

CongressEW 2.94E-
02

3.49E-
02

6.06E-
10

1.47E-
10

3.75E-
02

6.83E-
05

1.30E-
03

3.29E-

01

2.14E-
05

2.48E-
02

4.34E-
15

2.66E-
36

Exactly 6.27E-

02

5.28E-

02

3.86E-
07

1.16E-
07

3.98E-
02

3.67E-
03

7.32E-
04

1.09E-

01

1.89E-
02

4.05E-
03

5.59E-
21

1.78E-
08

Exactly2 1.29E-
03

3.36E-

01

2.42E-
03

5.81E-
11

4.03E-
03

2.99E-
03

1.98E-
03

1.50E-
03

1.48E-
06

8.20E-
04

6.59E-
12

5.00E-
11

HeartEW 1.19E-
02

4.50E-
02

3.80E-
04

7.31E-
06

1.50E-

01

1.02E-
02

2.29E-
02

2.18E-

01

3.36E-
02

3.51E-
02

2.67E-
07

1.83E-
07

IonosphereEW 8.65E-
05

5.45E-
08

1.07E-
11

7.88E-
14

2.11E-
04

2.72E-
09

7.55E-
09

8.59E-
05

5.70E-
05

3.47E-
07

8.95E-
18

1.58E-
19

KrVsKpEW 2.95E-
03

4.23E-
06

6.13E-
11

2.54E-
09

6.50E-
05

3.58E-
08

2.07E-
08

7.43E-
09

7.36E-
04

5.68E-
11

1.46E-
10

1.01E-
10

Lymphography 3.64E-

01

1.75E-

01

1.78E-
06

7.14E-
12

3.00E-

01

2.85E-
03

4.56E-
02

3.72E-

01

4.70E-
02

9.91E-
03

6.22E-
15

3.23E-
11

M-of-n 1.60E-

01

5.34E-

02

4.95E-
06

1.04E-
03

2.78E-

01

1.43E-
02

1.76E-
02

1.47E-

01

4.51E-
02

1.71E-
02

4.06E-
15

1.99E-
09

PenglungEW 1.76E-
02

4.07E-
02

4.80E-
06

8.58E-
07

1.67E-
02

9.07E-
07

2.62E-
03

3.94E-

01

5.81E-
03

5.50E-
04

2.42E-
07

1.01E-
07

SonarEW 2.79E-
03

1.37E-
03

1.24E-
08

6.06E-
11

8.70E-
03

3.31E-
06

5.32E-
05

2.05E-

01

1.06E-
03

4.64E-
04

1.01E-
11

1.08E-
12

SpectEW 1.33E-

01

3.24E-
02

7.89E-
09

8.69E-
13

2.18E-

01

1.86E-
04

3.94E-
06

2.78E-

01

6.80E-
03

1.19E-
02

2.06E-
16

1.66E-
14

Tic-tac-toe 1.46E-

01

N/A 1.28E-
02

8.86E-
03

3.07E-

01

3.07E-

01

2.05E-

01

N/A 2.07E-
02

1.55E-

01

9.51E-
11

9.50E-
03

Vote 8.54E-

02

6.09E-
05

6.85E-
05

1.82E-
11

5.78E-

02

9.35E-

02

6.78E-

02

9.54E-

02

1.44E-
02

7.92E-

02

1.04E-
09

2.65E-
16

WaveformEW 2.39E-
04

1.55E-
04

1.57E-
13

1.19E-
13

1.57E-
04

7.02E-
07

7.21E-
08

1.29E-
04

3.01E-
03

4.15E-
05

2.03E-
18

5.62E-
16

WineEW 1.97E-

01

6.80E-

02

5.14E-

02

1.38E-
03

9.41E-
03

1.70E-

01

8.20E-
04

3.96E-

01

5.25E-
03

5.50E-
04

2.31E-
09

4.30E-
03

Zoo 3.99E-
02

1.87E-
02

3.24E-
06

6.71E-

02

1.87E-
02

1.64E-
04

1.64E-
04

2.38E-

01

1.37E-
04

1.95E-
05

4.04E-
02

7.33E-

02

Ranking

ðWjTjLÞ
11|0|7 11|1|7 17|0|1 17|0|1 12|0|6 15|0|3 16|0|2 5|1|13 18|0|0 15|0|3 18|0|0 17|0|1
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remains statistically significant on 17 datasets. While

iBSSA is significantly different from BGOA, BWOA,

BBSA, BGWO, BABC, BSSA, and BSFO with k-NN over

16, 15, 15, 12, 11, 11, and 5 datasets, respectively. On the

other hand, iBSSA and BSFO exhibit the same perfor-

mance with k-NN for the dataset BreastCancer because the

mean fitness value is 0.0201 and the standard deviation is

zero. The same observation can be made for iBSSA,

BABC, and BSFO, where the same performance is also

exhibited with k-NN for the dataset Tic-tac-toe as the mean

fitness value is 0.1544 and the standard deviation is zero.

Furthermore, IBSSA with k-NN does not perform signifi-

cantly for the datasets Lymphography and M-of-n com-

pared to BSSA, BABC, BGWO, and BSFO. In addition,

iBSSA with k-NN are not significantly different from the

results of BSSA, BGWO, BWOA, BGOA, BSFP, and

BBSA on the datasets Tic-tac-toe and Vote. Lastly, iBSSA

with k-NN does not also differ significantly from BSSA,

BABC, BPSO, BWOA, and BSFO on the dataset WineEW.

In general, it is clear from the table that iBSSA has sta-

tistically significant differences on most of the datasets

compared to other algorithms.

Table 25 p-values of the Wilcoxon’s rank-sum test for the mean fitness values lFitð Þ of the iBSSA vs. other approaches based on SVM (a\0:05
are bold)

Benchmark BSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer 4.50E-
02

1.46E-

01

8.92E-
08

8.89E-
06

6.66E-

02

1.19E-
03

1.87E-
02

N/A 3.49E-
04

1.10E-
02

1.96E-
15

4.26E-
09

BreastEW 7.20E-
03

6.61E-
07

6.23E-
16

1.02E-
08

8.99E-
04

3.70E-
11

3.33E-
09

3.92E-
03

5.34E-
04

1.15E-
06

8.52E-
10

7.09E-
33

CongressEW 3.33E-
04

5.47E-
08

2.07E-
05

4.64E-
07

3.33E-
04

2.89E-
04

1.65E-
03

9.27E-
04

1.17E-
05

2.22E-
02

1.13E-
11

1.60E-
06

Exactly 1.63E-
05

1.83E-

01

1.63E-
06

2.49E-
21

1.04E-
03

5.40E-
06

2.17E-
04

2.72E-

01

3.25E-
07

3.25E-
07

7.91E-
41

3.44E-
12

Exactly2 3.96E-

01

4.14E-
03

1.01E-
08

6.74E-
09

3.96E-

01

2.40E-
03

4.50E-
02

N/A N/A 2.34E-
04

5.40E-
13

1.94E-
11

HeartEW 1.22E-

01

4.85E-
02

1.50E-
06

3.16E-
09

1.59E-
03

9.27E-
06

3.93E-
05

3.49E-
02

2.58E-
04

8.38E-
04

2.35E-
10

2.86E-
11

IonosphereEW 3.34E-
03

6.96E-
04

4.01E-
10

8.84E-
11

1.32E-
03

3.16E-
06

1.62E-
07

2.14E-
02

1.36E-
03

2.27E-
08

4.49E-
16

8.86E-
13

KrVsKpEW 1.06E-
05

1.32E-
06

1.63E-
10

6.50E-
11

2.24E-
04

1.77E-
09

2.49E-
12

2.08E-
10

1.19E-
05

2.20E-
11

1.26E-
09

8.12E-
16

Lymphography 1.58E-

01

4.25E-
02

3.04E-
06

2.53E-
08

2.03E-
02

2.15E-
04

5.84E-
04

3.90E-

01

1.07E-
03

1.30E-
03

6.82E-
12

1.19E-
08

M-of-n 1.38E-

01

2.34E-
04

7.92E-

02

2.29E-
02

1.38E-

01

2.59E-

01

1.22E-
07

1.87E-
02

1.94E-
02

2.15E-
05

1.77E-
07

2.21E-

01

PenglungEW 2.95E-
02

3.95E-
03

1.02E-
03

3.21E-
03

5.38E-

02

1.17E-
02

1.17E-
02

1.35E-

01

1.40E-

01

4.20E-
03

3.21E-
04

8.54E-
04

SonarEW 1.56E-
03

4.44E-
06

1.38E-
11

3.87E-
14

2.64E-
05

6.63E-
08

5.74E-
09

1.52E-
04

1.13E-
04

4.07E-
07

7.55E-
15

4.69E-
14

SpectEW 1.52E-
05

6.10E-
04

1.27E-
10

1.27E-
11

5.80E-
05

1.95E-
06

7.13E-
06

9.02E-
03

6.39E-
05

2.06E-
05

3.28E-
25

9.45E-
17

Tic-tac-toe N/A N/A 2.65E-
04

5.86E-
03

N/A 1.11E-

01

2.24E-

01

N/A 2.24E-

01

3.96E-

01

7.18E-
09

5.19E-
04

Vote 2.42E-

01

1.12E-
04

5.51E-
04

5.51E-
05

4.51E-
03

2.12E-
02

8.61E-
03

1.06E-

01

4.06E-
04

8.20E-
04

2.62E-
09

6.60E-
05

WaveformEW 2.55E-
03

4.97E-
07

4.54E-
17

7.02E-
11

4.02E-
08

2.23E-
09

1.07E-
10

1.15E-
09

1.18E-
05

1.02E-
08

2.80E-
17

9.95E-
14

WineEW 4.22E-
02

1.17E-
05

4.30E-
05

1.71E-
06

1.58E-

01

2.76E-
02

3.49E-
02

1.29E-

01

6.54E-
04

8.88E-

02

4.15E-
08

4.70E-
06

Zoo 2.96E-
02

5.74E-
05

1.02E-

01

8.03E-
03

4.33E-
04

1.97E-

01

3.57E-
06

2.82E-
02

2.33E-

01

1.39E-
03

2.24E-
07

2.23E-
02

Ranking

(WjTjL)
12|1|6 15|1|3 16|0|2 18|0|0 12|1|6 15|0|3 17|0|1 10|3|8 14|1|4 16|0|2 18|0|0 17|0|1
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From the p-values in Table 25, it can be seen that based

on the mean fitness values, iBSSA with SVM have a sta-

tistically significant difference compared to BBA and

BASO over the 18 datasets. In addition, the iBSSA with

SVM is still more significant than BGOA, BHGSO, BPSO,

BBSA, BABC, BWOA, BHHO, BSSA, and BGWO

respectively over 17, 17, 16, 16, 15, 15, 14, 12, and 12 out

of the 18 datasets. On the other hand, iBSSA, BSFO, and

BHHO exhibit the same performance with SVM for the

dataset Exactly2 as the mean fitness value is 0.2483 and the

standard deviation is zero. The same observation is for

iBSSA, BABC, BGWO, and BSFO, where the same per-

formance is also exhibited with SVM for the dataset Tic-

tac-toe as the mean fitness value is 0.1017 and the standard

deviation is zero. Moreover, it is very notable that iBSSA

with SVM do not have a statistically significant difference

from BSSA, BPSO, BGWO, BWOA, and BHGSO on the

dataset M-of-n. Furthermore, iBSSA with SVM does not

have a statistically significant difference from BWOA,

BGOA, BHHO, and BBSA on the dataset Tic-tac-toe.

Table 26 shows the p-values of iBSSA with RF com-

pared to other algorithms. It is remarkable that iBSSA has

Table 26 p-values of the Wilcoxon’s rank-sum test for the mean fitness values lFitð Þ of the iBSSA vs. other approaches based on RF (a\0:05 are
bold)

Benchmark BSSA BABC BPSO BBA BGWO BWOA BGOA BSFO BHHO BBSA BASO BHGSO

BreastCancer 2.82E-
02

2.74E-

01

1.31E-
02

1.72E-
04

2.97E-

01

5.78E-

02

8.54E-

02

4.50E-
02

1.37E-
02

1.48E-
02

1.99E-
07

2.27E-
03

BreastEW 3.85E-
03

1.57E-

01

6.53E-
10

1.90E-
09

8.76E-
03

2.35E-
06

1.60E-
04

1.80E-

01

5.67E-
05

3.52E-
03

1.85E-
08

2.18E-
10

CongressEW 5.25E-

02

5.56E-

02

8.96E-
04

1.01E-
05

6.07E-

02

4.75E-
04

2.26E-
02

2.77E-

01

8.30E-
04

1.34E-
02

1.41E-
09

2.86E-
05

Exactly 3.13E-

01

3.17E-

01

4.94E-
05

2.10E-
05

2.24E-
02

2.52E-
03

8.02E-
03

3.89E-

01

4.99E-
02

1.46E-

01

2.81E-
06

1.58E-
04

Exactly2 3.55E-
06

2.63E-
02

1.04E-
08

3.55E-
11

3.46E-
03

9.25E-
06

1.76E-
03

3.29E-

01

7.87E-
07

1.37E-
03

2.44E-
14

2.91E-
08

HeartEW 4.46E-
03

3.96E-

01

5.47E-
06

4.25E-
07

4.75E-
03

2.59E-
04

6.12E-

02

2.82E-

01

5.83E-
05

4.72E-
03

6.43E-
11

2.88E-
07

IonosphereEW 1.93E-
02

3.76E-

01

1.95E-
06

2.86E-
07

1.90E-
03

4.12E-
05

1.68E-
04

3.64E-

01

6.03E-
06

2.81E-
03

4.08E-
09

1.59E-
09

KrVsKpEW 1.89E-
05

5.59E-
04

8.78E-
11

2.89E-
07

2.57E-
02

1.17E-
06

1.47E-
06

1.36E-
02

5.50E-
06

2.21E-
05

4.62E-
12

2.12E-
13

Lymphography 2.07E-
03

1.92E-

01

5.70E-
07

1.23E-
08

1.16E-
02

2.99E-
05

2.51E-
03

3.30E-

01

1.52E-
03

4.86E-
03

5.32E-
12

1.69E-
10

M-of-n 9.39E-

02

1.13E-
04

2.06E-
11

4.75E-
10

2.14E-
02

2.41E-
06

3.14E-
07

3.77E-
03

3.69E-
03

2.08E-
04

5.84E-
23

7.03E-
14

PenglungEW 9.83E-
03

1.52E-

01

4.69E-
03

2.45E-
07

2.50E-
02

4.67E-
03

9.13E-
03

3.96E-

01

5.75E-
04

8.86E-
04

2.13E-
03

3.82E-
09

SonarEW 8.03E-
06

3.80E-
02

9.18E-
07

6.67E-
09

2.50E-
04

3.45E-
06

1.72E-
04

9.11E-

02

6.59E-
07

5.58E-
05

5.82E-
13

8.74E-
13

SpectEW 2.99E-
02

1.63E-
07

2.76E-
10

5.84E-
12

1.72E-
05

1.21E-
04

1.58E-
07

1.16E-
02

2.58E-
05

1.56E-
07

2.99E-
14

1.01E-
12

Tic-tac-toe 1.75E-

01

N/A 3.14E-
04

7.00E-
05

2.74E-

01

7.93E-

02

8.96E-

02

N/A 9.41E-
03

3.16E-
02

3.23E-
13

1.93E-
07

Vote 1.33E-
02

2.14E-
07

1.71E-
03

2.29E-
06

7.18E-
03

1.39E-
06

5.44E-
08

5.78E-

02

4.06E-
04

1.39E-
06

2.89E-
12

5.16E-
06

WaveformEW 4.56E-
03

7.79E-
06

2.04E-
12

1.15E-
14

9.52E-
06

1.08E-
08

2.51E-
10

2.11E-
03

4.48E-
08

1.61E-
05

1.22E-
17

1.31E-
12

WineEW 9.54E-

02

8.07E-
03

8.20E-
04

2.25E-
06

3.99E-
02

8.20E-
04

1.87E-
02

1.61E-

01

8.20E-
04

1.38E-

01

2.53E-
10

4.54E-
13

Zoo 8.07E-
03

1.95E-
05

3.53E-
09

2.17E-
12

1.94E-
05

1.54E-
06

1.22E-
07

6.50E-
03

1.94E-
05

1.22E-
07

6.89E-

02

9.98E-
14

Ranking

(WjTjL)
13|0|5 9|1|9 18|0|0 18|0|0 15|0|3 16|0|2 15|0|3 6|1|12 18|0|0 16|0|2 17|0|1 18|0|0
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statistically significant differences from other algorithms

over the vast majority of datasets, especially in the cases of

BPSO, BBA, BHHO, and BHGSO, where a statistically

outstanding difference is exhibited over the 18 datasets.

5.10 Comparison with various FS methods
from the literature

This subsection compares the mean classification accuracy

results for the three models proposed in this article (i.e.,

iBSSA–k-NN, iBSSA–SVM, and iBSSA–RF) versus vari-

ous algorithms from the literature, including

BGOA_EPD_Tour [72], TCSSA3 [6], HGSA [107],

BSSA_S3_CP [35], GA [32], SA [42], and WOASAT-2

[74], which were conducted under the same experimental

settings. Table 27 reports the experimental data of the

mean classification accuracy of iBSSA–k-NN, iBSSA–

SVM, iBSSA–RF, and various methods in the literature.

By inspecting Table 27, it can be seen that in 18 data-

sets, iBSSA–RF proposed in this article dominated all

approaches in terms of the mean classification accuracy on

4 datasets. Moreover, iBSSA–SVM and iBSSA–k-NN take

the second and third places with, respectively, 3 and 1

datasets, followed by HGSA, BGOA_EPD_Tour, WOA-

SAT-2, BSSA_S3_CP, GA, and TCSSA3. In addition, by

comparing specific data, it is important to highlight that the

mean classification accuracy of iBSSA–k-NN, iBSSA–

SVM, and iBSSA–RF have great advantages over com-

petitors. Specifically, on the datasets M-of-n, Vote,

WineEW, and Zoo, it reaches up to 100%, and those

datasets are of low dimensionality, demonstrating the high

performance of iBSSA–k-NN, iBSSA–SVM, and iBSSA–

RF with low-dimensional datasets. Although HGSA out-

performed iBSSA–k-NN, iBSSA–SVM, and iBSSA–RF on

4 datasets, the numerical margin was relatively small.

Therefore, the iBSSA–k-NN, iBSSA–SVM, and iBSSA–

RF proposed in this work performed better in solving the

FS problem than other FS methods in the literature, ulti-

mately taking the top three in the competition.

5.11 Discussions

This study fused an improved binary version of the SSA

algorithm and three well-known classifiers into three

models (i.e., iBSSA–k-NN, iBSSA–SVM, and iBSSA–RF)

for FS in the classification task. Based on the empirical

analytics performed above in this section, it can be seen

that the proposed iBSSA algorithm with the three classi-

fiers typically performs better than other state-of-the-art

and well-known algorithms. Specifically, iBSSA with RF

Table 27 Comparison of iBSSA and other algorithms from the specialized literature in terms of the mean classification accuracy lAccð Þ

Benchmark iBSSA–k-
NN

iBSSA–

SVM

iBSSA–

RF

BGOA-EPD

[72]

TCSSA3

[6]

HGSA

[107]

BSSA-CP

[35]

GA

[32]

SA

[42]

WOASAT-2

[74]

BreastCancer 0.9857 0.9786 0.9857 0.9800 N/A 0.9740 0.9768 0.9680 0.9699 0.9700

BreastEW 0.9649 0.9474 0.9944 0.9470 N/A 0.9710 0.9484 0.9390 N/A 0.9800

CongressEW 0.9770 0.9770 0.9808 0.9640 0.9705 0.9660 0.9628 0.9320 N/A 0.9800

Exactly 0.9973 0.7450 0.7633 0.9990 0.9969 1.0000 0.9803 0.6740 N/A 1.0000

Exactly2 0.7737 0.7500 0.7632 0.7800 0.7672 0.7700 0.7582 0.7460 N/A 0.7500

HeartEW 0.9074 0.9074 0.9302 0.8330 0.8331 0.8560 0.8605 0.7800 N/A 0.8500

IonosphereEW 0.9385 0.9681 0.9690 0.8990 0.9377 0.9340 0.9182 0.8140 0.9205 0.9600

KrVsKpEW 0.9852 0.9854 0.9487 0.9680 0.9692 0.9780 0.9644 0.9200 N/A 0.9800

Lymphography 0.8378 0.8500 0.8800 0.8680 0.8444 0.8920 0.8900 0.6960 N/A 0.8900

M-of-n 1.0000 1.0000 0.9993 1.0000 0.9992 1.0000 0.9918 0.8610 N/A 1.0000

PenglungEW 0.6511 0.8267 0.7489 0.9270 0.9072 0.9560 0.8775 0.5840 N/A 0.9400

SonarEW 0.9913 0.9476 0.9206 0.9120 0.9481 0.9580 0.9372 0.7540 0.4925 0.9700

SpectEW 0.8889 0.8364 0.8815 0.8260 0.8333 0.9190 0.8361 0.7930 N/A 0.8800

Tic-tac-toe 0.8542 0.9062 0.8698 0.8080 0.7975 0.7880 0.8205 0.7190 N/A 0.7900

Vote 1.0000 1.0000 1.0000 0.9660 0.9549 0.9730 0.9511 0.9040 N/A 0.9700

WaveformEW 0.8484 0.8791 0.8201 0.7370 0.7364 0.8150 0.7335 0.7730 N/A 0.7600

WineEW 1.0000 1.0000 1.0000 0.9890 0.9978 0.9890 0.9933 0.9370 0.9787 0.9900

Zoo 1.0000 1.0000 1.0000 0.9930 0.9928 0.9320 1.0000 0.8550 0.6829 0.9700

Ranking

(WjTjL)
1|5|12 3|4|11 4j4j10 1|1|16 0|0|16 4|1|13 0|1|17 0|0|18 0|0|5 0|2|16
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efficiently achieved higher mean accuracy over the

majority of datasets, followed by iBSSA with SVM and

iBSSA with k-NN. Moreover, the iBSSA algorithm per-

formed the search more stably in comparison with peers,

based on the small standard deviation values in the results.

This subsection analyzes the underlying reasons.

First, in an attempt to resolve the feature selection

problem more effectively, the original SSA algorithm in its

continuous version was first mapped into binary using a

transfer function. In order to make this approach as much

fruitful as possible, the present study compared nine

S-shaped and V-shaped transfer functions. A probability is

obtained using the transfer function to map the real value

into a binary one. Moreover, three well-known classifiers:

k-Nearest Neighbor (k-NN), Support Vector Machine

(SVM), and Random Forest (RF) are utilized as fitness

evaluators both with the proposed iBSSA and many other

competitor algorithms, using 18 multifaceted, multi-scale

benchmark datasets from UCI repository. Through exper-

imental comparisons, iBSSA-Vv2–RF performed the best in

iBSSA with the transfer function Vv2 and the RF classifier.

In this work, nine transfer functions were compared

because different transfer functions have different curve

slopes. When the transfer function generates the probabil-

ity, the probability of numerical mapping is made more

reasonable through the better slope, so that the algorithm

can perform better.

Second, based on the above introduction, the SSA

algorithm can be understood as a novel swarm-based meta-

heuristic algorithm. It has strong exploration and

exploitation capabilities which were further boosted via the

proposed iBSSA method by incorporating a strategy for

random re-positioning of roaming agents as well as a novel

local search algorithm. Moreover, the variable parameters

and many mechanisms in the algorithm balance its explo-

ration and development. Herein, the iBSSA only maps real

values into binary ones as well as has two improvements

(3RA and LSA) introduced into its original structure. Thus,

the proposed iBSSA algorithm still has a superior

performance.

Moreover, apart from the minimized feature subset and

the better mean accuracy, iBSSA with k-NN has exhibited

better convergence behavior than other optimizers on most

of the datasets. Although iBSSA has, in general, achieved

better performance compared to other methods, including

the original BSSA algorithm, the convergence graphs

reveal that iBSSA still has a problem with high-dimen-

sional datasets, specifically trapping into local optima.

Additionally, the mean accuracy of iBSSA with k-NN is

inferior to other approaches on high-dimensional datasets.

In the future, these shortcomings will be deeply examined.

Apart from iBSSA, k-NN was used in this study as a

classification algorithm due to its ease of implementation.

However, k-NN performance is often degraded when

compared to SVM and RF in terms of mean accuracy and

mean number of selected features. This can be justified by

the adopted wrapper-based feature selection approach,

wherein iBSSA works with k-NN as a lazy classifier and

with SVM and RF as complex classifiers. Lastly, it should

be noted that, because of the non-exact repeatability of the

optimization results, different executions of the algorithm

can give a different subset of features, which may confuse

the user. Hence, on different applications or occasions,

iBSSA or other meta-heuristic algorithms applied herein

may find a different subset of features.

Summarizing, a three fine-tuned classification algo-

rithms are presented in this study with respect to their

algorithmic design perspective, as well as the general

framework. First, we briefly discussed the conventional

SSA algorithm, different binary conversion techniques, and

proposed learning algorithms. Then, proposed iBSSA was

duly presented and a theoretical study was conducted on FS

approaches. We also presented an adequate analysis of

some of the state-of-the-art FS approaches in a comparative

manner. Furthermore, a comparison of existing FS algo-

rithms was conducted based on standard performance

evaluation metrics. Finally, based on the FS problem for-

mulation, research challenges were discussed with some

future directions. This study could be a good starting point

for researchers new to the FS community by providing

them with a better understanding of recent developments

on the FS problem. The current experimental study on FS

identifies several research possibilities in data classifica-

tion. However, several pieces had been done in FS, but still

many more things to be uncovered. Future works in FS

should boost increasing in efficiency, robustness, scalabil-

ity, and effectiveness in large-scale datasets. Along with

scalability, one of the more challenging issues is the con-

text in FS, which must assert in the future.

6 Conclusions and future directions

A novel approach was proposed in this study for solving

the FS problem using an improved binary version of the

SSA algorithm (iBSSA). First, a suitable method for binary

transformation of continuous SSA to the binary version

was determined through the form of probability using

common S-shaped and V-shaped transfer functions. In

addition, a strategy for Random Re-positioning of Roaming

Agents (3RA) along with a novel Local Search Algorithm

(LSA) were embedded into the proposed iBSSA algorithm,

in order to increase the algorithm capability to search

within feasible regions as well as to prevent it from

becoming trapped into local optima, respectively. Then, the

resulting methods were tested on 18 multifaceted, multi-
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scale benchmark UCI datasets with three well-known

classifiers: k-NN, SVM, and RF. The experimental results

showed that iBSSA-Vv4–k-NN, iBSSA-Vv2–SVM, and

iBSSA-Vv2–RF were the best-performing methods in the

proposed algorithms. Then, each of these methods was

compared with the better performing and most popular

methods in the literature, independently based on every

classifier. Comparisons were driven by a number of mea-

sures, including mean classification accuracy, mean fitness,

and mean number of selected features. By analyzing the

experimental results, the three models proposed in this

article (i.e., iBSSA–k-NN, iBSSA–SVM, and iBSSA–RF)

relatively had the highest performance among the com-

peting algorithms for solving FS problems. Specifically,

iBSSA with RF (iBSSA–RF) performed better than other

methods. Therefore, iBSSA–RF can be considered more

highly when solving FS problems.

Moreover, the proposed iBSSA wrapper feature selec-

tion model has an important practical implication. Based

on the various types of datasets used over the conducted

experiments, iBSSA can be introduced into other domains,

including medical applications, engineering applications,

data mining, data science, and many more. However, the

proposed iBSSA has one limitation: selecting more fea-

tures than those selected by competitors over 6, 5, and 11

out of the 18 datasets based on iBSSA–k-NN, iBSSA–

SVM, and iBSSA–RF, respectively. Therefore, the pro-

posed algorithm can be reinforced by using a new selection

strategy to select fewer features, especially on high-di-

mensional small instance datasets, which calls for further

potential future research.

For future work, different conversion forms of iBSSA

can be attempted for classification purposes. In addition, a

binary version was successfully yielded from the continu-

ous SSA, which can help tackle other discrete optimization

problems; e.g., task scheduling, Travelling Salesman

Problem (TSP) problem, Knapsack Problem (KP), etc., as

well as investigate real-world problems, including Intru-

sion Detection System (IDS), cancer detection, and senti-

ment analysis. On the other hand, a sensitivity analysis of

the main parameters of the proposed algorithm can be

explored as a future extension of this work. Moreover, the

embedding of the proposed LSA algorithm with other

optimization algorithms could also be investigated. Lastly,

other classifiers (e.g., Artificial Neural Networks (ANNs),

Decision Tree (DT), etc.) could be employed to further

investigate the performance of iBSSA in feature selection

for classification.
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