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a b s t r a c t 

We introduce a discrete-time search game, in which two players compete to find an invisible object first. 

The object moves according to a time-varying Markov chain on finitely many states. The players are active 

in turns. At each period, the active player chooses a state. If the object is there then he finds the object 

and wins. Otherwise the object moves and the game enters the next period. We show that this game 

admits a value, and for any error-term ε > 0 , each player has a pure (subgame-perfect) ε-optimal strategy. 

Interestingly, a 0-optimal strategy does not always exist. We derive results on the analytic and structural 

properties of the value and the ε-optimal strategies. We devote special attention to the important time- 

homogeneous case, where we show that (subgame-perfect) optimal strategies exist if the Markov chain 

is irreducible and aperiodic. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The field of search problems is one of the original disciplines 

f Operations Research. In the basic settings, the searcher’s goal is 

o find a hidden object, also called the target, either with maximal 

robability or as soon as possible. By now, the field of search prob- 

ems has produced a wide range of models. The models in the liter- 

ture differ from each other by the characteristics of the searchers 

nd of the objects. Concerning objects, there might be one or sev- 

ral objects, mobile or not, and they might have no aim or their 

im is to not be found. Concerning the searchers, there might be 

ne or more. When there is only one searcher, the searcher faces 

n optimization problem. When there is more than one searcher, 

hey might be cooperative or not. If the searchers cooperate, their 

im is similar to the settings with one player: they might want 

o minimize the expected time of search, the worst case time, or 
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heory seminars in Paris and at the London School of Economics for their precious 

omments and referring us to related literature. We also thank the Associate Editor 
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ome search cost function. If the searchers do not cooperate, the 

roblem becomes a search game with at least two strategic non- 

ooperative players, and hence game theoretic solution concepts 

nd arguments will play an important role. 

In almost all existing search games with more than one 

earcher, the searchers are assumed to cooperate in order to 

chieve a common goal. In real life it is often the case that the 

ifferent searchers involved do not cooperate, for various reasons. 

or instance in nature, when several predators are looking for the 

ame prey. Another relevant situation is when several companies 

ave to dig to find a resource on a given surface (gold, coal, oil, 

ithium). The different com panies do not have incentives to cooper- 

te, and base their search on the choices that the companies have 

one before. It is clear in those examples that each searcher in- 

olved has to take into account the possible change of the object 

a moving prey, new technologies to locate resources). 

We introduce a competitive search game, played at discrete pe- 

iods in N . An object is moving according to a time-varying Markov 

hain on finitely many states. Two players compete to find the ob- 

ect first. They both know the Markov chain and the initial prob- 

bility distribution of the object, but do not observe the current 

tate of the object. Player 1 is active at odd periods, and player 

 is active at even periods. The active player chooses a state, and 

his choice is observed by the other player. If the object is in the 

hosen state, this player wins and the game ends. Otherwise, the 

bject moves according to the Markov chain and the game contin- 

es at the next period. If the object is never found, the game lasts 

ndefinitely. In that case, neither player wins. 

https://doi.org/10.1016/j.ejor.2022.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.03.004&domain=pdf
mailto:benoit.duvocelle@hotmail.fr
mailto:benoit.duvocelle@ut-capitole.fr
mailto:j.flesch@maastrichtuniversity.nl
mailto:staudigl@maastrichtuniversity.nl
mailto:d.vermeulen@maastrichtuniversity.nl
https://doi.org/10.1016/j.ejor.2022.03.004
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When the active player chooses a state, he needs to take two 

pposing effects into account. First, if the object is at the chosen 

tate, then he wins immediately. This aspect makes choosing states 

avorable where the object is located with a high probability. Sec- 

nd, if the object is not at the chosen state, then knowing this, the 

pponent gains information: the opponent can calculate the con- 

itional probability distribution of the location of the object at the 

ext period. This aspect makes choosing states favorable where, on 

ondition that the object not being there, the induced conditional 

istribution at the next period disfavors the opponent. In partic- 

lar, this conditional distribution should not be too informative, 

nd for example it should not place too high a probability on a 

tate. Clearly, in some cases there is no state that would be op- 

imal for both scenarios at the same time, and hence the active 

layer somehow needs to aggregate the two scenarios in order to 

ake a choice. 

Each player’s goal is to maximize the probability to win the 

ame, that is, to find the object first. In our model, we do not 

ssume that the players take into account the period when the 

bject is found. Of course, in most cases, maximizing the proba- 

ility to win will entail at least partially that each player would 

refer to find the object at earlier periods, thereby preventing the 

ther player from finding the object. We refer to Duvocelle, Flesch, 

taudigl, & Vermeulen (2020) for the finite horizon and on the dis- 

ounted versions of the search game, where the period when the 

bject is found also matters. 

The two players have opposite interests, up to the event when 

he object is never found. More precisely, each player’s preferred 

utcome is that he finds the object, but he is indifferent between 

he outcome that the other player finds the object and the out- 

ome that the object is never found. As we will see, the possibil- 

ty that neither player finds the object will only have minor role, 

nd hence the two players have essentially opposite interests in 

he search game. 

Main results. Our main results can be summarized as follows. 

[1] We study the existence of (subgame-perfect) ε-equilibria. 

 strategy profile is called an ε-equilibrium, where ε ≥ 0 , if nei- 

her player can increase his winning probability by more than ε
ith a unilateral deviation. A subgame-perfect ε-equilibrium is a 

trategy profile that induces an ε-equilibrium in each subgame. 

e prove that each competitive search game admits a subgame- 

erfect ε-equilibrium in pure strategies, for all error-terms ε > 0 

cf. Theorem 3 ). The proof is based on topological properties of 

he game (cf. Appendix Appendix A ). Interestingly, a 0-equilibrium 

oes not always exist, not even in mixed strategies. This is demon- 

trated with an example (cf. Example 2 ). In the special case of 

ime-homogeneous processes, if the Markov chain is irreducible 

nd aperiodic, then there exists a subgame-perfect 0-equilibrium 

n pure strategies (cf. Theorem 4 ). 

[2] We examine the properties of (subgame-perfect) ε- 

quilibria. We show that in each subgame-perfect ε-equilibrium 

here ε > 0 is small enough, the object is found with probabil- 

ty 1 (cf. Proposition 15 ), and that the set of ε-equilibrium payoffs 

onverge to a singleton (v 1 , 1 − v 1 ) , with v 1 ∈ (0 , 1] as ε vanishes

cf. Proposition 9 and Proposition 11 ). This implies that the two 

layers have essentially opposite interests, and we may consider 

 1 to be the value of the game (cf. Definition 10 ) and the strate-

ies of ε-equilibria as ε-optimal strategies (cf. Definition 10 and 

roposition 11 ). 

[3] We investigate the properties of the value and the ε-optimal 

trategies. We show that the payoff functions have linear proper- 

ies (cf. Proposition 6 ), which implies that the value is a Lipschitz 

ontinuous function with respect to the initial probability distribu- 

ion of the location of the object (cf. Theorem 8 ). We also provide

nequality properties of the value (cf. Propositions 6 and 12 , and 

orollary 13 ). 
946 
[4] We present geometric properties of optimal actions in com- 

etitive search games. An action is said to be optimal if after 

hoosing this action in period 1, player 1 can still guarantee the 

alue, up to an arbitrary error-term. An optimal region of an ac- 

ion is the set of probability distributions for the initial location of 

he object where this action is optimal. We show that optimal re- 

ions are star-convex centered at the vertices of the unit simplex, 

nd that the intersection of all the optimal regions is non-empty 

cf. Theorem 16 ). 

Related literature 

In the literature, search games have been studied under many 

ifferent assumptions. The models differ in various characteristics. 

or example, the number of searchers, the number of objects, the 

im of the objects, and the search space. A discrete version of 

he model where the search space is a matrix is studied by von 

eumann (1953) . Several variations of this game were studied by 

euts (1963) , Efron (1964) , Gittins & Roberts (1979) , Roberts & Git- 

ins (1978) , Sakaguchi (1977) , Subelman (1981) , Berry & Mensch 

1986) , and Baston, Bostock, & Ruckle (1990) , among others. 

The search game with an immobile hider was introduced by 

saacs (1965) . Beck & Newman (1970) considered a search game 

ith a hider hiding on a line according to some distribution and a 

earcher, starting from an origin and moving at fixed speed, who 

ries to find the hider as soon as possible. The continuous model 

as then generalized by Gal (1972) , Gal (1974) and Gal & Chazan 

1976) who extended the state space from a line to a surface. 

There is a large literature on search games on graphs with 

n immobile hider. Among them, Cao (1995) and Lidbetter 

2020) have studied a search games on trees. Gal (1979) , Reijnierse 

 Potters (1993) , Dagan & Gal (2008) and Alpern, Baston, & Gal 

2008) examined search games on Eulerian networks. Pavlovi ́c 

1995) , Gal (2010) , Kikuta (2004) , Alpern et al. (2008) , and Alpern,

aston, & Gal (2009) extended the analysis to more general net- 

orks. Jotshi & Batta (2008) proposed an algorithm to find a hider 

idden uniformly at random on a network. More recently Garrec 

 Scarsini (2020) proposed a search game in a stochastic net- 

ork. They proved that the value of such games always exists, and 

ound upper and lower bounds of the value, and optimal strate- 

ies for certain types of games. Finally, von Stengel & Werchner 

1997) proved that a particular search game played on a graph is 

P-hard. 

More relevantly to our paper, some authors dealt with discrete 

earch problems with a moving object. Pollock (1970) , Schweitzer 

1971) , Dobbie (1974) and Kan (1974) study the two-state problem. 

ssuming perfect detection, Nakai (1973) investigates the three- 

tate problem. Brown (1980) considers the search for a target with 

arkov motion in discrete time and space using an exponential 

etection function. He provides a necessary and sufficient condi- 

ion for an optimal search plan and an efficient iterative algo- 

ithm for generating optimal plans. Washburn (1983) studies a 

iscrete effort analogue of Brown (1980) , in which searchers de- 

ide the effort they want to invest in order to find the object at 

ach location they visit. General necessary and sufficient condi- 

ions which extend Brown’s results to an arbitrary stochastic pro- 

ess for any mixture of discrete and continuous time and space 

re given in Stone (1976) . Hohzaki & Iida (2001) investigates a 

earch problem for a moving target in which a searcher can an- 

icipate the probabilities of routes selected by the targets but does 

ot have any time information about when the target transits the 

oute. Zoroa, Fernández-Sáez, & Zoroa (2011) study a pray-predator 

odel in which the prey can move. They find optimal strate- 

ies for both the prey and the predator and compute the value 

f the game. Abramovskaya, Fomin, Golovach, & Pilipczuk (2016) , 

ngelopoulos & Lidbetter (2020) and Delavernhe, Jaillet, Rossi, & 

evaux (2020) are recent papers which study search games with a 

obile object. We should also mention the very recent PhD thesis 
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1 A strategy (for either player) could also be defined as a function ρ : �(S) → 
f Clarkson (2020) , which contributes to the study of both search 

ames with a mobile hider and to search games with an immobile 

bject. 

Most of the search games focus on the case of one searcher, or 

everal cooperative searchers. Some problems with several cooper- 

tive searchers and one or several moving targets are mentioned 

n the book of Stone, Royset, & Washburn (2016) . 

To the best of our knowledge, only four models consider several 

on-cooperative searchers. Nakai (1986) investigates a non-zero- 

um game in which two searchers compete with each other for 

uicker detection of an object hidden in one of n boxes, with ex- 

onential detection functions. Each player wishes to maximize the 

robability that he detects the object before the opponent detects 

t. The author shows the existence of an equilibrium point of the 

orm of a solution of simultaneous differential equations, and gets 

xplicit solution results showing that both players have the same 

quilibrium strategy even though the detection rates are different. 

n Nakai (1990) , two searchers compete to find different objects 

efore the other. Flesch, Karagözo ̌glu, & Perea (2009) investigate 

he problem in which an agent has to find an object that moves 

etween two locations according to a discrete Markov process, 

ith the additional costless option to wait instead of searching. 

hey find a unique optimal strategy characterized by two thresh- 

lds and show that, in a clear contrast with our model, it can 

ever be optimal to search the location with the lower probabil- 

ty of containing the object. They also analyze the case of multi- 

le agents, where the agents not only compete against time but 

lso against each other in finding the object. They find differ- 

nt kinds of subgame-perfect equilibria. Finally, in Alpern & Zeng 

2021) , the authors study several models of search games. Among 

hem, one model considers a game played on three states with 

hree players: two adversarial searchers and one hider. A searcher 

ets payoff 1 if he is the unique player to find the hider; 1/2 if 

oth searchers find the hider at the same time and 0 if the other 

earcher finds the hider alone. If none of them found the hider, 

he game enters a new period. The payoff of the hider is the pe- 

iod at which he is found. The authors show that there exists a 

nique searcher-symmetric Nash equilibrium. Another related pa- 

er is Alpern (2021) , where two competitive searchers wish to 

each a target, with a known location, but with directions sug- 

ested by an unreliable GPS system (this game is a so-called Trea- 

ure Hunt game). 

As in Nakai (1973) , we investigate functional and structural 

roperties of the objective function. Nakai proved that the func- 

ion that allocates to a probability distribution the average num- 

er of looks before finding the object is continuous, concave and 

njoy some linear properties. They also show that the optimal re- 

ions (see Section 5 ) are star-convex sets. These properties have 

lso been studied in MacPhee & Jordan (1995) and in the PhD the- 

is of Jordan (1997) . 

For an introduction to search games, we recommend the 

ooks of Alpern & Gal (2006) , Gal (1979) , Gal (2010) and 

arnaev (2012) . We also refer to Gal (2013) , and to the 

ecent surveys Benkoski, Monticino, & Weisinger (1991) and 

ohzaki (2016) . 

Structure of the paper. In Section 2 , we present the model. 

n Section 3 , we examine the existence of (subgame-perfect) ε- 

quilibrium, for ε ≥ 0 . In Section 4 , we argue that the two play-

rs have essentially opposite interests, we define the value and 

he notion of ε-optimal strategies, we present some properties 

f the value of the game and we show the existence of ε- 

ptimal strategies for both players, for all ε > 0 . In Section 5 ,

e define optimal actions and optimal regions of the game, and 

e give geometric properties of these sets. The conclusion is in 

ection 6 . 
�

t

947 
. The Model 

The Game. We study a competitive search game G played by 

wo players. Let N = { 1 , 2 , 3 , . . . } . An object is moving according to

 discrete-time Markov chain (X t ) t∈ N on a finite state space S. The 

et of probability distributions on S is denoted by �(S) . The ini- 

ial probability distribution of the object over the set S is given by 

p ∈ �(S) , and the transition probabilities in period t are given by 

n S × S transition matrix P t = [ P t (i, j)] (i, j) ∈ S 2 , where P t (i, j) is the

robability for the object to move from state i to state j in period 

. 

At each period t ∈ N , one of the players is active: At odd pe-

iods player 1 is the active player, and at even periods player 2 is 

he active player. The active player chooses a state s t ∈ S, which we 

all the action in period t . If the object is at state X t = s t , then the

ctive player finds the object and wins the game. Otherwise, the 

bject moves according to the transition matrix P t and the game 

nters period t + 1 . We assume that each player observes the ac- 

ions chosen by his opponent, and recalls perfectly all the actions 

hosen by both players from the beginning. The transition matrices 

P t ) t∈ N and the initial distribution p are known to the players. 

The aim of each player is to maximize the probability that he 

nds the object first. 

Histories. A history in period t ∈ N is a sequence h t = 

s 1 , . . . , s t−1 ) ∈ S t−1 of past actions with the property that it has

 positive probability that the object is not found before period 

if the players choose their actions according to h t . By H t ⊆ S t−1 

e denote the set of all histories in period t . Note that H 1 con-

ists of the empty sequence. Let N 

odd = { 1 , 3 , 5 , . . . } and N 

even =
 2 , 4 , 6 , . . . } . We denote by H 

odd = ∪ t∈ N odd H t the set of histories at

dd periods, and by H 

even = ∪ t∈ N even H t the set of histories at even

eriods. 

For a distribution q ∈ �(S) for the location of the object and 

 state s ∈ S for which q (s ) < 1 , let q ¬ s ∈ �(S) denote the distri-

ution q conditioned on the object not being in state s . That is, 

 

¬ s (s ) = 0 and q ¬ s (s ′ ) = 

q (s ′ ) 
1 −q (s ) 

for each state s ′ � = s . With the help

f these conditional distributions, the players can update the dis- 

ribution for the current location of the object. Indeed, the initial 

istribution for the location of the object is p. If player 1 chooses 

tate s 1 but he does not find the object there, then the players can 

pdate the distribution of the object in period 1 to p ¬ s 1 . This im-

lies that the distribution of the object in period 2 is p 2 = p ¬ s 1 P 1 ,
s the object moves once according to the transition matrix P 1 . The 

pdate procedure continues in a similar fashion and the distribu- 

ion p t for the location of the object in period t is calculated simi- 

arly, depending on the actions chosen in the earlier periods. 

Strategies. The action sets for both players are A 1 = A 2 = S. 

 strategy σ = (σt ) t∈ N odd for player 1 is a sequence of functions 

t : H t → �(S) . The interpretation is that, at each period t ∈ N 

odd ,

iven the history h t , the strategy σt chooses to search state s ∈ S

ith probability σt (h t )(s ) . Similarly, a strategy τ = (τt ) t∈ N even for 

layer 2 is a sequence of functions τt : H t → �(S) . 1 We denote

y � and T the set of strategies for players 1 and 2, respectively. 

ote that � = 

∏ 

h ∈ H odd �(S) and T = 

∏ 

h ∈ H even �(S) . We say that a 

trategy σ for player 1 is pure if it uses no randomization: for each 

istory h ∈ H t with t odd, σ (h ) places probability 1 on some action 

 h ∈ S. Pure strategies are defined similarly for player 2. 

We endow the strategy spaces � and T with the topology of 

ointwise convergence. This is identical with the product topol- 

gy on � and the product topology on T . Under this topology, the 
(S) , with the interpretation that for each distribution p ∈ �(S) for the location of 

he object, the player should choose a state according to ρ(p) . 
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Fig. 1. A game without 0-equilibrium. 
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paces � and T are compact, and as H 

odd and H 

even are countable, 

and T are also metrizable. 

Winning probabilities. We define the stopping time 2 of the 

ame by � = min { t ∈ N | s t = X t } . Consider a strategy profile (σ, τ ) .

he probability under (σ, τ ) that player 1 wins is denoted by 

 1 (σ, τ ) = P σ,τ

(
� ∈ N 

odd 
)
, and that player 2 wins is denoted 

y u 2 (σ, τ ) = P σ,τ ( � ∈ N 

even ) . Note that u 1 (σ, τ ) + u 2 (σ, τ ) = 1 −
 σ,τ (� = ∞ ) . 

When we wish to emphasize the distribution p ∈ �(S) for 

he initial location of the object, we will write u 1 (σ, τ )(p) and 

 2 (σ, τ )(p) for the winning probabilities of the players. 

If the current history is h , we will use the notations u 1 (σ, τ )(h )

nd u 2 (σ, τ )(h ) for the winning probabilities of the players condi- 

ioned on h being the current history. 

Subgame-perfect ε-equilibrium. Let ε ≥ 0 be an error-term. A 

trategy σ for player 1 is an ε-best response against strategy τ
or player 2 if u 1 (σ, τ ) ≥ u 1 (σ

′ , τ ) − ε for every strategy σ ′ of

layer 1. Similarly, a strategy τ for player 2 is an ε-best response 

gainst strategy σ for player 1 if u 2 (σ, τ ) ≥ u 2 (σ, τ ′ ) − ε for ev-

ry strategy τ ′ of player 2. A strategy profile (σ, τ ) is called an ε-

quilibrium if σ is an ε-best response against τ and τ is an ε-best 

esponse against σ . A subgame-perfect ε-equilibrium is a strategy 

rofile (σ, τ ) which is an ε-equilibrium in each subgame. That is, 

or each history h , for each σ ′ ∈ �, for each τ ′ ∈ T , u 1 (σ, τ )(h ) ≥
 1 (σ

′ , τ )(h ) − ε and u 2 (σ, τ )(h ) ≥ u 2 (σ, τ ′ )(h ) − ε. 

An alternative interpretation of the game. We call the previ- 

us game Model [1]. Note that model [1] is a game in extensive 

orm, where information is communicated to players over time. 

ow we present an alternative model of this game, which we call 

odel [2]. We stress that we only use Model [2] as an auxiliary 

odel in our paper. We do this in order to apply existence results 

n the literature that are formulated for this type of models (cf. 

heorem 3 ), namely models with perfect information. 

Model [2]: Another way to describe our game is as follows. 

ne could imagine that the game consists of two phases. In the 

rst phase the players choose actions sequentially. More precisely, 

n the first phase, player 1 chooses an action at odd periods and 

layer 2 chooses an action at even periods sequentially, just as be- 

ore. This results in an infinite sequence of states (s 1 , s 2 , . . . ) . The

et of infinite histories is S ∞ . Every pure strategy profile (σ, τ ) in-

uces a unique infinite history h ∞ 

σ,τ ∈ S ∞ . In a second phase, play-

rs receive a payoff. Now, for i = 1 , 2 , consider the payoff func-

ion f i : S 
∞ → [0 , 1] defined as follows. Consider an infinite his-

ory (s 1 , s 2 , . . . ) . Take any pure strategy profile (σ, τ ) such that

 

∞ 

σ,τ = (s 1 , s 2 , . . . ) and define f i (s 1 , s 2 , . . . ) = u i (σ, τ ) ; note that this

efinition only depends on the realized history. The goal of each 

layer is to maximize his payoff. Note that this is a game without 

n object. 

We briefly argue that the above descriptions are equivalent. In- 

eed, for each pure strategy profile (σ, τ ) , for each player i = 1 , 2 ,

e have u i (σ, τ ) = f i (h ∞ 

σ,τ ) . Hence, (σ, τ ) leads to the same payoff

n both models. 

. Existence of equilibrium 

In this section, we examine equilibria in competitive search 

ames. In the first subsection, we show that there are search 

ames for which there exist no 0-equilibrium, not even in mixed 

trategies. From a technical point of view, this is caused by discon- 

inuity in the payoff functions of the players. In the second sub- 

ection, we focus on the notion of subgame-perfect ε-equilibrium, 

here ε > 0 is an error-term, and prove that each search game 

dmits a subgame-perfect ε-equilibrium in pure strategies, for all 
2 With the convention that min {∅} = + ∞ . 

t

3

a
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 > 0 . In the third subsection, we present sufficient conditions for 

he existence of a subgame-perfect 0-equilibrium in pure strate- 

ies. 

.1. Search games with no 0-equilibrium 

heorem 1. There exist time-homogeneous competitive search games 

hich admit no 0-equilibrium, not even in mixed strategies. 

We provide an example below of a time-homogeneous com- 

etitive search game which admits no 0-equilibrium, not even in 

ixed strategies (for another example, we refer to Duvocelle et al. 

2020) ). The main idea of this example is that during the game 

he active player is incentivised to choose a transient state of the 

arkov chain, as these are the only states where searching gives 

n advantage. However, if the players always choose a transient 

tate, then they do not find the object with probability 1, and 

ence this cannot constitute a 0-equilibrium. 

xample 2. Consider the game in Fig. 1 . In this game, η ∈ (0 , 1 4 )

nd the initial probability distribution is p = (q, q, 1 2 − q, 1 2 − q ) ,

here q ∈ (0 , 1 4 ) . Notice that states 1 and 2 have the same tran-

ition probabilities, and so do states 3 and 4. States 1 and 2 are 

ransient, whereas states 3 and 4 are absorbing. 

We show that this game admits no 0-equilibrium. The intuition 

or this claim is as follows. Consider period 1. Player 1 has a choice 

etween a transient state (i.e., states 1 and 2) and an absorbing 

tate (i.e., states 3 and 4). 

Suppose first that player 1 chooses an absorbing state, say state 

. We will show (see Claim 1 below) that this, with optimal follow- 

p play, induces a winning probability of exactly 1 
2 . Intuitively, if 

layer 1 does not find the object in period 1, then it is very likely

hat the object is in state 4, and player 2 should respond by choos- 

ng state 4 in period 2. If player 2 does not find the object, then

ue to the transition probabilities, the object is very likely to be 

n state 3 in period 3. Indeed, we know that the object was not 

n state 3 in period 1 and not in state 4 in period 2, so the object

as one more period to move from state 1 or state 2 to state 3

ompared to state 4. Continuing this argument shows that the op- 

imal continuation play consists of player 1 always choosing state 

 and player 2 always choosing state 4. As we will show, this gives 

 winning chance of exactly 1 to each player. 
2 
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Now suppose that player 1 chooses a transient state, say state 

. In addition, suppose that if period 3 is reached, then player 1 

ill choose a state with the highest probability of containing the 

bject: state 3, unless player 2 chose state 3 in period 2, in which

ase player 1 chooses state 4. We show that this strategy guaran- 

ees a winning probability of strictly more than 

1 
2 for player 1 (see 

laim 2 below). Indeed, player 1 wins immediately with probabil- 

ty q , and as we show, the probability of winning in period 3 is

trictly larger than 

1 
2 − q , so that the total probability that player 1 

ins is strictly larger than 

1 
2 . 

Based on the above discussion, player 1 should choose a tran- 

ient state in period 1. If player 1 does not find the object, by an

nductive argument, player 2 should also choose a transient state 

n period 2. Continuing this way, the players should choose tran- 

ient states in all periods. Then, however, they do not find the 

bject with probability 1, and hence this cannot constitute a 0- 

quilibrium (see Claim 3 below). 

Claim 1: Let �3 , 4 denote the set of strategies for player 1 that 

ooks at state 3 or state 4 in period 1. Then, 

sup 

∈ �3 , 4 

inf 
τ∈T 

u 1 (σ, τ ) = 

1 

2 

. 

Proof of Claim 1: Let ˜ τ = ( ̃  τt ) t∈ N even be a pure strategy of 

layer 2 such that, for all t ∈ N 

even , for all h t ∈ H t , 

 t (h t ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

state 3 if h t (t − 1) = 4 , 

or if t ≥ 4 and h t (t − 1) ∈ { 1 , 2 } 
and h t (t − 2) = 4 , 

state 4 otherwise , 

here h t (t − 2) and h t (t − 1) are the second-to-last and the last

ctions chosen under history h t , respectively. Intuitively, ˜ τ always 

hooses a state that is most likely to contain the object, which is 

ither state 3 or state 4. 

Let σ 3 be the strategy of player 1 that always chooses state 3. 

hen, against σ 3 , the strategy ˜ τ always chooses state 4. It follows 

hat u 1 (σ
3 , ̃  τ ) = 

1 
2 , as due to symmetry, the object will end up in

tate 3 with probability 1 
2 and in state 4 with probability 1 

2 . 

Now we show that the strategy σ 3 is a best response in �3 , 4 

gainst ˜ τ , i.e., u 1 (σ, ̃  τ ) ≤ 1 
2 for each σ ∈ �3 , 4 . Assume that player 

 chooses state 3 in period 1; the argument is similar if player 1 

hooses state 4 in period 1. Assume also that player 1 does not 

nd the object in period 1. Then, by definition, ˜ τ looks at state 4 

n period 2. If player 2 does not find the object in period 2, then

he probability that the object is in state 3 is strictly more than 

1 
2 . Thus, if period 3 is reached, player 1 should look at state 3. 

hen, by definition, ˜ τ looks at state 4 in period 4. By repeating 

his argument, player 1 should always look at state 3 against ˜ τ . 

One can similarly check that ˜ τ minimizes player 2’s winning 

hance against σ 3 , as after player 1 chooses state 3 it is best for

layer 2 to choose state 4. That is, 1 
2 ≤ u 1 (σ

3 , τ ) for each strategy 

for player 1. 

Hence, 

sup 

∈ �3 , 4 

inf 
τ∈T 

u 1 (σ, τ ) ≥ inf 
τ∈T 

u 1 (σ
3 , τ ) = u 1 (σ

3 , ̃  τ ) = 

1 

2 

nd 

sup 

∈ �3 , 4 

inf 
τ∈T 

u 1 (σ, τ ) ≤ sup 

σ∈ �3 , 4 

u 1 (σ, ̃  τ ) = u 1 (σ
3 , ̃  τ ) = 

1 

2 

, 

hich completes the proof of Claim 1. �
Let σ = (σt ) t∈ N odd be any strategy of player 1 with the follow- 

ng properties: σ chooses state 1 in period 1, and in period 3 it 

hooses state 3 if player 2 did not chose state 3 in period 2, and it

hooses state 4 otherwise. Intuitively, σ chooses one of the most 

ikely states in period 3, which is either state 3 or state 4. 

Claim 2: When player 1 uses σ he guarantees himself strictly 

ore than 

1 : u 1 (σ, τ ) > 

1 for every τ . 
2 2 

949 
Proof of Claim 2: It is sufficient to show that u 1 (σ, τ ) > 

1 
2 for

n arbitrary pure strategy τ of player 2. Under σ , player 1 looks at 

tate 1 in period 1 and finds the object with probability q in period 

. We only need to show that the probability under (σ, τ ) that 

layer 1 finds the object in period 3 is strictly more than 

1 
2 − q . 

Suppose first that τ would choose state 1 or state 2 if period 2 

s reached. A straightforward calculation shows that player 1 finds 

he object in period 3 with probability 

 σ,τ (� = 3) = 

1 

2 

− q + 

q · (1 − η) 

2 

+ 

q · η · (1 − η) 

4 

, 

hich is strictly more than 

1 
2 − q . 

Suppose now that τ would choose state 3 or state 4 if period 

 is reached. In this case, a straightforward calculation shows that 

layer 1 finds the object in period 3 with probability 

 σ,τ (� = 3) = 

1 

2 

− q + 

q · (1 − η) 

2 

+ 

q · η · (1 − η) 

2 

, 

hich is also strictly more than 

1 
2 − q . �

Claim 3: There is no 0-equilibrium. 

Proof of Claim 3: Assume by way of contradiction that there is 

 0-equilibrium (σ ′ , τ ′ ) . By Claim 1 and Claim 2, σ ′ chooses state 

 or state 2 with probability 1 in period 1. In both cases, in period

 the current probability distribution for the location of the ob- 

ect is ( q ·η
2(1 −q ) 

, 
q ·η

2(1 −q ) 
, 1 2 − q ·η

2(1 −q ) 
, 1 2 − q ·η

2(1 −q ) 
) . Then, in period 2, the 

ame is similar to the original one, with a parameter q ′ = 

q ·η
2(1 −q ) 

nstead of q , which still satisfies q ′ ∈ (0 , 1 4 ) , and where the roles

f the players are exchanged. Then, similarly, τ ′ chooses state 1 or 

tate 2 with probability 1 in period 2. By following this process re- 

ursively, the players will choose states 1 and 2 with probability 1 

orever. This leads to the payoff 4 ·q 
4 −η2 for player 1. Then, player 1 

as an incentive to deviate from σ ′ and to choose state 3 in period 

 to get a payoff of at least 1 
2 − q > 

4 ·q 
4 −η2 , a contradiction. �

.2. Existence of pure subgame-perfect ε-equilibrium 

In this subsection we are interested in the existence of 

ubgame-perfect ε-equilibrium, where ε > 0 . In the next theorem, 

e show that all competitive search games admit a subgame- 

erfect ε-equilibrium in pure strategies, for each ε > 0 . The proof 

elies on existence results for subgame-perfect ε-equilibria in 

ames with bounded and lower semi-continuous payoff functions 

see Flesch et al. (2010) or Flesch & Predtetchinski (2016) ). 

heorem 3. Every competitive search game admits a pure subgame- 

erfect ε-equilibrium, for each ε > 0 . 

roof. Consider Model [2] of a competitive search game, as de- 

cribed in Section 2 . The payoffs are bounded and lower semi- 

ontinuous, in view of Proposition 18 . Thus, by applying Theo- 

em 2.3 of Flesch et al. (2010) (or by Theorem 4.1 of Flesch & 

redtetchinski (2016) ), the game admits a pure subgame-perfect ε- 

quilibrium for each ε > 0 . �

Revisiting Example 2 . In view of Theorem 3 , the game in 

xample 2 has a subgame-perfect ε-equilibrium in pure strategies, 

or each ε > 0 . Let ε > 0 be arbitrary. Now we describe a subgame-

erfect ε-equilibrium. The idea of the construction is that the play- 

rs should choose state 1 or state 2 until the probability that the 

bject is in one of these states is very low in comparison with ε, 

nd after that they should choose the absorbing states. For the pre- 

ise calculations we refer to Duvocelle et al. (2020) . Let n be a large

tage, i.e. n ≥
ln 

(
q 
ηε 

)
ln 

(
2 
η

) . Also, let (σ, τ ) be a strategy profile that al- 

ays chooses the most likely between state 3 or state 4. We de- 

ne a strategy profile (σ ∗, τ ∗) as follows: The players choose state 
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3 The claim of Step 4 follows from Fudenberg & Levine (1983) , but for complete- 

ness, we give a proof based on Theorem 3 . 
 until period n , and then they switch to (σ, τ ) for the remaining

ame. If a player deviates to an absorbing state before period n , 

hen they immediately switch to (σ, τ ) . As one can show, under 

σ ∗, τ ∗) , neither player can gain more than 

q 
2 ·

(
η
2 

)n −1 ≤ ε in any 

ubgame by a unilateral deviation. Hence, (σ ∗, τ ∗) is a subgame- 

erfect ε-equilibrium. 

.3. Sufficient conditions for existence of pure subgame-perfect 

-equilibrium 

In this subsection, we present sufficient conditions for the ex- 

stence of a pure subgame-perfect 0-equilibrium. Consider a time- 

omogeneous competitive search game. In this case the transition 

atrix at each period is the same matrix P . A probability distribu- 

ion π ∈ �(S) over the set S is called a stationary distribution for 

he transition matrix P if πP = π . It is known (see Levin & Peres

2017) , Corollary 1.17 page 13 and Theorem 4.9 page 52) that if P 

s irreducible and aperiodic, i.e. for some r ∈ N all entries of the 

atrix P r are strictly positive, then (i) there exists a unique sta- 

ionary distribution π ∈ �(S) , (ii) π(s ) > 0 for all s ∈ S, and (iii)

here exist constants β ∈ (0 , 1) and c > 0 such that for all distribu-

ions p ∈ �(S) for the initial location of the object and all periods

 ∈ N , 

| pP t − π || T V ≤ c · βt , 

here || p − q || T V = max 
A ⊂S 

∑ 

s ∈ A (p(s ) − q (s )) is the total variation

istance between p, q ∈ �(S) . Note that for each p, q ∈ �(S) , it

olds that || p − q || T V = 

1 
2 ·

∑ 

s ∈ S | p(s ) − q (s ) | (see Levin & Peres

2017) , pages 47–48). 

heorem 4. Consider a time-homogeneous competitive search game. 

ssume that the transition matrix P is irreducible and aperiodic. Then, 

o matter the initial probability distribution p, the object is found 

ith probability 1 under every strategy profile (σ, τ ) , i.e., P σ,τ (� < 

 ) = 1 . Hence, the payoff functions are continuous in this game, and 

here exists a subgame-perfect 0-equilibrium in pure strategies. 

roof. As mentioned above, the transition matrix P has a unique 

tationary distribution π ∈ �(S) and π(s ) > 0 for all s ∈ S. More-

ver, there exist constants c > 0 and β ∈ (0 , 1) such that | pP t (s ) −
(s ) | ≤ c · βt for all p ∈ �(S) , for all s ∈ S and for all t ∈ N . Hence,

here exists t ∗ ∈ N with the following property: for all p ∈ �(S) ,

or all s ∈ S, for all t ≥ t ∗, we have (pP t−1 )(s ) > 

δ
2 , where δ =

in s ∈ S π(s ) . Without loss of generality we can assume that t ∗ ≥
 . �

Let α = 

δ
4(t ∗−1) 

. The proof is divided into four steps. 

Step 1: Let (σ, τ ) be a pure strategy profile, and let (s t ) t∈ N de-

ote the induced sequence of actions. We show that the object is 

ound during the first t ∗ periods with probability at least α. 

roof. Recall that p t = (p t (s )) s ∈ S ∈ �(S) denotes the probability 

istribution of the location of the object in period t , for each t ∈ N ,

onditional on it not being found through the history (s 1 , . . . , s t−1 ) .

If there is a period t ≤ t ∗ such that p t (s t ) ≥ α, then under

σ, τ ) , the object is found in period t with probability at least α,

f it has not been found before. Hence, the claim of step 1 is true. 

Therefore, it suffices to show that if at each period t ≤ t ∗ − 1 we

ave p t (s t ) < α, then p t ∗ (s t ∗ ) ≥ α. So assume that at each period

 ≤ t ∗ − 1 we have p t (s t ) < α. The idea of the calculation below is

hat, since the object is found with low probabilities at the first 

 

∗ − 1 periods, the probability distribution for the object in period 

 

∗ conditioned on it not being found during the first t ∗ − 1 periods 

s almost the same as the unconditioned probability distribution. 

hat is, p t ∗ is close to pP t 
∗−1 , which is in turn close to the station-

ry distribution π . 
950 
Note that, if the players do not condition on the past, the prob- 

bility distribution of the location of the object in period t ∗ is sim- 

ly pP t 
∗−1 . Recall that, if p(s ) < 1 , then p ¬ s denotes the probability

istribution p conditioned on the object not being in state s . We 

ave 

| p t ∗ − pP t 
∗−1 || T V ≤ || p t ∗ − p t ∗−1 P || T V + || p t ∗−1 P − pP t 

∗−1 || T V 
= || p ¬ s t ∗−1 

t ∗−1 
P − p t ∗−1 P || T V + || p t ∗−1 P − pP t 

∗−1 || T V 
≤ || p ¬ s t ∗−1 

t ∗−1 
− p t ∗−1 || T V + || p t ∗−1 − pP t 

∗−2 || T V 
= p t ∗−1 (s t ∗−1 ) + || p t ∗−1 − pP t 

∗−2 || T V 
< α + || p t ∗−1 − pP t 

∗−2 || T V 
< α · (t ∗ − 1) + || p 1 − pP 0 || T V 
= α · (t ∗ − 1) 

= 

δ

4 

. 

Here, in the first inequality we used the triangle inequality. In 

he first equality we used p t ∗ = p 
¬ s t ∗−1 

t ∗−1 
P , as p t ∗ is the location of

he object in period t ∗ conditioned on it not being found up to 

eriod t ∗ − 1 and p 
¬ s t ∗−1 

t ∗−1 
P expresses the distribution that arises 

hen object moves once according to P after not being found up 

o period t ∗ − 1 . The second inequality is true as || qP − q ′ P || T V ≤
| q − q ′ || T V for all q, q ′ ∈ �(S) . The second equality follows from

he above interpretation of p 
¬ s t ∗−1 

t ∗−1 
and the definition of the total 

ariation norm. The third inequality is due to the assumption that 

t each period t ≤ t ∗ − 1 we have p t (s t ) < α. The fourth inequality

hen follows by induction. The last two equalities are due to p 1 = p

nd the choice of α. �

Therefore, 

p t ∗ (s t ∗ ) ≥ (pP t 
∗−1 )(s t ∗ ) − || p t ∗ − pP t 

∗−1 || T V ≥ δ

2 

− δ

4 

= 

δ

4 

≥ α. 

his completes the proof of Step 1. 

Step 2: Consider any strategy profile (σ, τ ) . We show that the 

bject is found during the first t ∗ periods with probability at least 

. 

roof. On the finite horizon t ∗, each strategy can be equivalently 

epresented as a mixed strategy, i.e. a probability distribution on 

he finite set of pure strategies on horizon t ∗ (see for example 

aschler, Solan, & Zamir (2013) ). Hence, Step 2 follows from Step 

. �

Step 3: Consider any strategy profile (σ, τ ) . We show that the 

bject is found with probability 1 under (σ, τ ) . By Proposition 18 ,

his will imply that the payoff functions are continuous in this 

ame. 

roof. By Step 2, the object is found during the first t ∗ periods 

ith probability at least α. Since t ∗ and therefore α do not depend 

n the initial distribution of the object, if the object is not found 

n the first t ∗ periods, then it will be found between periods t ∗ + 1

nd 2 t ∗ with probability at least α. By repeating this argument, the 

bject is found with probability 1 under (σ, τ ) . �

Step 4: We show that there exists a subgame-perfect 0- 

quilibrium in pure strategies. 

roof. 3 In view of Theorem 3 , for each n ∈ N , there exists a

ubgame-perfect 1 
n -equilibrium (σ n , τ n ) in pure strategies. Since 

he spaces of strategies � and T are compact and metrizable, by 
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aking a subsequence if necessary, we can assume that the se- 

uence (σ n , τ n ) n ∈ N converges to a strategy profile (σ, τ ) in pure 

trategies as n → ∞ . �

For each n ∈ N , each history h , each strategy σ ′ for player

 and each strategy τ ′ for player 2, we have u 1 (σ
n , τ n )(h ) ≥

 1 (σ
′ , τ n )(h ) − 1 

n and u 2 (σ
n , τ n )(h ) ≥ u 2 (σ

n , τ ′ )(h ) − 1 
n . Since by

tep 3 the payoff functions u 1 and u 2 are continuous, by taking the 

imits as n → ∞ , we obtain for each h , each σ ′ and each τ ′ that

 1 (σ, τ )(h ) ≥ u 1 (σ
′ , τ )(h ) and u 2 (σ, τ )(h ) ≥ u 2 (σ, τ ′ )(h ) . Hence,

σ, τ ) is a subgame-perfect 0-equilibrium in pure strategies. �

. Existence and properties of the value and ε -optimal 

trategies 

In competitive search games, the winning probabilities do not 

lways add up to 1, as under certain strategy profiles it may have 

 positive probability that the object is never found. For instance, 

his is the case in the game in Example 2 , if the players always

hoose state 1. However, neither player is interested in the out- 

ome when the object is never found. Therefore, as we argue in 

his section, in essence the players have opposite interest and the 

alue is a natural solution concept for competitive search games. 

We denote v 1 = sup σ∈ � inf τ∈T u 1 (σ, τ ) and v 2 = 

up τ∈T inf σ∈ � u 2 (σ, τ ) . Intuitively, a strategy σ guarantees for 

layer 1 a winning probability of inf τ∈T u 1 (σ, τ ) , and therefore v 1 
an be interpreted as the largest winning probability that player 1 

an guarantee in the game. The interpretation of v 2 is similar. 

More generally, when we wish to emphasize the initial dis- 

ribution p of the object as a parameter, we will write v 1 (p) = 

up σ∈ � inf τ∈T u 1 (σ, τ )(p) and v 2 (p) = sup τ∈T inf σ∈ � u 2 (σ, τ )(p) . 

Let �s denote the set of those strategies for player 1 

hat choose state s in period 1. We define v 1 (p, s ) = σ∈ �s 

nf τ∈T u 1 (σ, τ )(p) . Note that v 1 (p) = max s ∈ S v 1 (p, s ) . 

As discussed in Section 2 , each history h induces a conditional 

robability distribution for the location of the object, say p h . We 

ill use the notation v 1 (h ) = v 1 (p h ) and v 2 (h ) = v 2 (p h ) . 

roposition 5. We have 

 1 = inf 
τ∈T 

sup 

σ∈ �
u 1 (σ, τ ) and v 2 = inf 

σ∈ �
sup 

τ∈T 
u 2 (σ, τ ) . 

imilar equalities hold for v 1 (p) and v 2 (p) for all p ∈ �(S) . 

roof. We refer to the Appendix Appendix B . �

The next theorem discusses properties of the payoff functions 

nd the functions v 1 (p) and v 2 (p) along line segments in �(S) . For

ach state s ∈ S, let e s ∈ �(S) denote the probability distribution 

hat allocates probability 1 to state s and probability 0 to all other 

tates. 

roposition 6. [1] Let (σ, τ ) be a strategy profile. Then, the payoff

unctions are linear in the initial probability distribution of the object: 

or every p, q ∈ �(S) , for every λ ∈ [0 , 1] , and for every player i =
 , 2 : 

 i (σ, τ )(λ · p + (1 −λ) · q ) = λ · u i (σ, τ )(p) + (1 −λ) · u i (σ, τ )(q )

(1) 

[2] For every s ∈ S, the map p �→ v 1 (p, s ) is linear over every line

assing through e s : for every p ∈ �(S) and for every λ ∈ [0 , 1] : 

 1 (λ · e s + (1 − λ) · p, s ) = λ + (1 − λ) · v 1 (p, s ) . 

[3] For every p, q ∈ �(S) , for every λ ∈ [0 , 1] , and for every player

 = 1 , 2 : 

 i (λ · p + (1 − λ) · q ) ≥ λ · v i (p) . 

roof. We refer to the Appendix Appendix B . �
951 
emark 7. In part [2] of Proposition 6 , the linearity of p �→ v 1 (p, s )

elies on the following fact: Let p ∈ �(S) \ { e s } , and let � denote

he line going through p and e s . If by choosing state s player 1 does

ot find the object, then the conditional distribution of the location 

f the object, p ¬ s , stays on the line � . Note, however, that the func-

ion p �→ v 1 (p, s ) is generally non-linear. Indeed, consider a game 

hat has 4 states, each of which is absorbing. For p = ( 1 3 , 
1 
3 , 

1 
3 , 0)

nd q = ( 1 3 , 
1 
3 , 0 , 

1 
3 ) , we have v 1 (p, 1) = 

2 
3 and v 1 (q, 1) = 

2 
3 , but

 1 ( 
1 
2 · p + 

1 
2 · q, 1) = 

1 
2 . ♦

We recall the definition of the total variation distance: for p, q ∈ 

(S) , the total variation distance between p and q is the non- 

egative number || p − q || T V = max A ⊂S 

∑ 

s ∈ A (p(s ) − q (s )) . 

heorem 8. For each player i = 1 , 2 , each strategy profile (σ, τ ) ,

ach state s ∈ S, the functions p �→ u i (σ, τ )(p) , p �→ v i (p) , and p �→
 1 (p, s ) are 1-Lipschitz continuous with respect to the total variation 

istance. 

roof. We only prove it for player 1. By part [1] of Proposition 6 ,

e have 

 1 (σ, τ )(p) = 

∑ 

s ∈ S 
p(s ) · u 1 (σ, τ )(e s ) , 

 1 (σ, τ )(q ) = 

∑ 

s ∈ S 
q (s ) · u 1 (σ, τ )(e s ) . 

ence, 

 1 (σ, τ )(p) − u 1 (σ, τ )(q ) = 

∑ 

s ∈ S 
[ p(s ) − q (s )] · u 1 (σ, τ )(e s ) 

≤
∑ 

s ∈ S, 
p(s ) >q (s ) 

[ p(s ) − q (s )] = || p − q || T V , 

nd similarly 

 1 (σ, τ )(q ) − u 1 (σ, τ )(p) ≤ || p − q || T V . 
ence, p �→ u 1 (σ, τ )(p) is 1-Lipschitz-continuous. 

Taking the infimum over τ and the supremum over σ on both 

ides of the inequality u 1 (σ, τ )(p) ≤ u 1 (σ, τ )(q ) + || p − q || T V gives

 1 (p) ≤ v 1 (q ) + || p − q || T V , which can be written v 1 (p) − v 1 (q ) ≤
| p − q || T V . Similarly, v 1 (q ) − v 1 (p) ≤ || p − q || T V . Hence, p �→ v 1 (p)

s 1-Lipschitz-continuous too. 

The proof for p �→ v 1 (p, s ) is similar, but the supremum has to

e taken over σ ∈ �s . �

roposition 9. We have v 1 + v 2 = 1 , and in general, v 1 (p) + v 2 (p) =
 for all p ∈ �(S) . 

roof. We refer to the Appendix Appendix B . �

Based on the Proposition 9 , in essence the players have oppo- 

ite interests in competitive search games. This leads us to defining 

he value of competitive search games. 

efinition 10. Consider a competitive search game. We call v 1 the 

alue of the game. For each ε ≥ 0 , a strategy σ for player 1 is

alled ε-optimal, if u 1 (σ, τ ) ≥ v 1 − ε for all strategies τ ∈ T . Sim-

larly, a strategy τ for player 2 is called ε-optimal, if u 2 (σ, τ ) ≥
 2 − ε for all strategies σ ∈ �. 

The following proposition relates the notions of profiles of 

-optimal strategies and ε-equilibrium, and shows that all ε- 

quilibria give almost the same payoffs for small ε. 

roposition 11. Consider a competitive search game. Let ε ≥ 0 . 

[1] If (σ, τ ) is an ε-equilibrium, then σ and τ are ε-optimal 

trategies. Consequently, when ε > 0 , each player has a pure ε- 

ptimal strategy. 



B. Duvocelle, J. Flesch, M. Staudigl et al. European Journal of Operational Research 303 (2022) 945–957 

e

τ
 

f

ε

P

P

p

s

P

p  

a  

p  

�

e  

(

f

ṽ
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[2] If σ and τ are ε-optimal strategies, then (σ, τ ) is a 2 ε- 

quilibrium. 

[3] A strategy profile (σ, τ ) is a 0-equilibrium if and only if σ and 

are 0-optimal strategies. 

[4] If (σ, τ ) is an ε-equilibrium then, under (σ, τ ) , the object is

ound with probability at least 1 − ε · | S| . Moreover, | u 1 (σ, τ ) − v 1 | ≤
and | u 2 (σ, τ ) − v 2 | ≤ ε. 

roof. We refere to the Appendix Appendix B . �

roposition 12. Looking at a state in which the object is with zero 

robability is never better than looking anywhere else. That is, for all 

tates s, s ′ ∈ S, for all p ∈ �(S) , if p(s ′ ) = 0 then v 1 (p, s ′ ) ≤ v 1 (p, s ) . 

roof. Let ˜ G denote the game such that (i) the game is played at 

eriods 2 , 3 , . . . ; (ii) the transition matrices of the Markov chain

re P 2 , P 3 , . . . ; (iii) Player 2 is the active player in even periods, and

layer 1 is the active player in odd periods. For the game ˜ G , let˜ and 

˜ T denote the sets of strategies, and 

˜ u i (σ, τ )(p) denote the 

xpected winning chance of player i = 1 , 2 under each strategy pair

σ, τ ) and each initial distribution p ∈ �(S) for the object. Define 

or each player i = 1 , 2 

 

 i (p) = sup 

σ∈ ̃  �

inf 
τ∈ ̃  T ̃

 u i (σ, τ )(p) . 

Suppose that p(s ′ ) = 0 and let s ∈ S. We have 

 1 (p, s ) = p(s ) + (1 − p(s )) ·˜ v 1 (p ¬ s P 1 ) , 

nd because p(s ′ ) = 0 , we have 

 1 (p, s ′ ) = 

˜ v 1 (pP 1 ) . 

Note that pP 1 = p(s ) · e s P 1 + (1 − p(s )) · p ¬ s P 1 . By part [3] of

roposition 6 (applied to ˜ G ), 

 

 2 (pP 1 ) ≥ (1 − p(s )) ·˜ v 2 (p ¬ s P 1 ) . 

ince by Proposition 9 (applied to ˜ G ) we have ̃  v 1 (q ) + ̃

 v 2 (q ) = 1 for

ach q ∈ �(S) , we derive 

 −˜ v 1 (pP 1 ) ≥ (1 − p(s )) · (1 −˜ v 1 (p ¬ s P 1 )) . 

earranging gives 

 

 1 (pP 1 ) ≤ p(s ) + (1 − p(s )) ·˜ v 1 (p ¬ s P 1 ) . 

his implies that v 1 (p, s ) ≥ v 1 (p, s ′ ) , as claimed. �

orollary 13. Consider a time-homogenenous competitive search 

ame. If p is a stationary distribution of P , then v 1 (p) ≥ 1 
2 . 

roof. We refer to the Appendix Appendix B . �

Remark. We conjecture that if P is irreducible and aperiodic, 

hen v 1 (p) > 

1 
2 . The value v 1 (p) can be smaller than 

1 
2 if p is not

he stationary distribution. Indeed, the value is 1 
3 if the game has 

hree states, initial probability distribution p = ( 1 3 , 
1 
3 , 

1 
3 ) and tran- 

ition matrix P such that at the second period the object is in state 

 with probability 1. ♦
An ε-optimal strategy is a relevant solution concept, but it has 

he drawback that if the opponent makes a mistake, the continua- 

ion strategy does not have to be ε-optimal. A strategy σ for player 

 is called subgame ε-optimal if, in each subgame, the continu- 

tion strategy of σ is ε-optimal. More precisely, for each history 

 ∈ H 

odd and strategy τ ∈ T for player 2 

 1 (σ, τ )(h ) ≥ v 1 (h ) − ε. 

he definition of a subgame ε-optimal strategy for player 2 is sim- 

lar. Note that each subgame ε-optimal strategy is ε-optimal. 

xample 14. In this example, we show that there are ε-optimal 

trategies that are not subgame ε-optimal. The set of states is 
952 
 = { 1 , 2 } , with each state being absorbing, and the initial proba-

ility distribution is p = (1 , 0) . The value is v 1 = 1 and any opti-

al strategy of player 1 looks at state 1 in period 1. Hence, v 2 = 0

nd all the strategies of player 2 are 0-optimal. In particular, it is 

ptimal for player 2 to always choose state 2. Let τ denote this 

trategy. 

Now suppose that player 1 makes a mistake and chooses state 

 in period 1. Then, the continuation strategy of τ from period 2 

s not optimal. In fact, it would be the best for player 2 to choose

tate 1 in period 2 and win the game. �

roposition 15. Consider a competitive search game. 

1. For every ε > 0 , each player has a pure strategy which is subgame

ε-optimal. 

2. Let ε ∈ (0 , 1 
| S| ) . If σ is a subgame ε-optimal strategy for player

1, then for every strategy τ of player 2, the object is found with 

probability 1 under the strategy profile (σ, τ ) . A similar statement 

holds for player 2. 

.. Let ε > 0 . By Theorem 3 , there exists a subgame perfect ε-

quilibrium (σ, τ ) in pure strategies. Now consider a subgame at a 

istory h . Since the continuation strategies of σ and τ at h form an 

-equilibrium, it follows similarly to part [1] of Proposition 11 that 

he continuation strategy of σ at h is ε-optimal in the subgame, 

nd similarly the continuation strategy of τ at h is ε-optimal in 

he subgame. Hence, σ and τ are subgame ε-optimal. 

[2] Let ε ∈ (0 , 1 
| S| ) and let σ be a subgame ε-optimal strategy. 

onsider a history h at an odd period. The strategy for player 1 

hich looks at a state with the highest probability guarantees 1 / | S| 
n the subgame at h . So, v 1 (h ) ≥ 1 / | S| . 

Now consider a strategy τ for player 2. Then, we have 

 1 (σ, τ )(h ) ≥ 1 / | S| − ε > 0 . In particular, in the subgame at h ,

he object is found with probability at least 1 / | S| − ε > 0 under

σ, τ ) . Since this holds for every history h at an odd period, by

évy’s zero-one law, the object is found with probability 1 under 

σ, τ ) . �

. Optimal actions 

For the initial distribution p ∈ �(S) , we call an action s ∈ S op-

imal if it is optimal for player 1 to look at state s in period

: v 1 (p, s ) = v 1 (p) . For a given action s ∈ S, we denote by A s the

et of the initial distributions for which s is optimal: A s = { p ∈
(S) | v 1 (p, s ) = v 1 (p) } . We call A s the optimality region of action

 . Note that ∪ s ∈ S A s = �(S) . 

heorem 16. The optimality regions A s have the following properties. 

[1] If the initial probability distribution p is sufficiently close to e s , 

or some state s , then choosing state s is the only optimal action. That

s, the set A s \ ∪ j � = s A j is a neighborhood of e s in �(S) . 

[2] For each subset N ⊆ S, the convex hull of the vertices e s with 

 ∈ N is included in the set ∪ s ∈ N A s . 

[3] There is an initial distribution at which choosing any state is 

ptimal. That is, ∩ s ∈ S A s � = ∅ . 
[4] For all s ∈ S, the region A s is star convex centered in e s . That

s, if p ∈ A s then the whole line segment between p and e s is included

n A s . 

roof. [1] The statement follows from the facts that each v 1 (p, s ) 

s continuous (cf. Theorem 8 ) in p and that v 1 (e s , s ) = 1 and

 1 (e s , j) < 1 for all j � = s . 

[2] Let p ∈ con v ({ e s | s ∈ N} ) . Then p(s ) = 0 for all s / ∈ N. By

roposition 12 , there is an optimal action j ∈ N, and hence p ∈
 A s . 
s ∈ N 
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Fig. 2. Optimal regions when P = I 3 . 
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[3] We will use the Knaster-Kuratowski-Mazurkiewicz (KKM) 

heorem 

4 , see Knaster, Kuratowski, & Mazurkiewicz (1929) . By 

heorem 8 , the function p �→ v 1 (p, s ) is continuous for all s ∈ S.

hus, each region A s is closed. From this fact and from [2], we can

pply the KKM Theorem, and thus we can conclude that ∩ s ∈ S A s � = ∅ .
[4] Let s ∈ S, let p ∈ A s and let λ ∈ [0 , 1] . We want to show that

· e s + (1 − λ) · p ∈ A s . By part [1] of Proposition 6 , for every strat-

gy τ of player 2 

up 

∈ �
u 1 (σ, τ )(λ · e s + (1 − λ) · p) 

= sup 

σ∈ �
[ λ · u 1 (σ, τ )(e s ) + (1 − λ) · u 1 (σ, τ )(p) ] 

≤ λ ·
[

sup 

σ∈ �
u 1 (σ, τ )(e s ) 

]
+ (1 − λ) ·

[
sup 

σ∈ �
u 1 (σ, τ )(p) 

]
= λ + (1 − λ) ·

[
sup 

σ∈ �
u 1 (σ, τ )(p) 

]
, 

here we used that u 1 (σ, τ )(e s ) = 1 for any strategy σ that looks

t state s in period 1. Hence, by Proposition 5 

 1 (λ · e s + (1 − λ) · p) = inf 
τ∈T 

sup 

σ∈ �
u 1 (σ, τ )(λ · e s + (1 − λ) · p) 

≤ λ + (1 − λ) ·
[

inf 
τ∈T 

sup 

σ∈ �
u 1 (σ, τ )(p) 

]
= λ + (1 − λ) · v 1 (p) 

= λ + (1 − λ) · v 1 (p, s ) . 
4 The KKM theorem states: Let n ∈ N be the cardinality of the set of states S, in 

ther words | S| = n . Let �n be the unit simplex in R n . A KKM covering is defined as 

 collection C 1 , . . . , C n of closed sets such that for any N ⊆ { 1 , . . . , n } , the convex hull 

f the vertices corresponding to N is covered by ∪ s ∈ N C s . Then any KKM covering has 

 non-empty intersection, i.e.: ∩ s ∈ S C s � = ∅ . 

u

w

G  

t

953 
n the other hand, by part [2] of Proposition 6 , v 1 (λ · e s + (1 −
) · p, s ) = λ + (1 − λ) · v 1 (p, s ) . Therefore, v 1 (λ · e s + (1 − λ) · p) =
 1 (λ · e s + (1 − λ) · p, s ) . �

xample 17. Consider the case in which the set of states is S = 

 1 , 2 , 3 } . Let Q = 

[ 

1 0 0 

0 1 0 
1 
2 

1 
2 0 

] 

. The sets A 1 , A 2 and A 3 are repre-

ented in the time-homogeneous case where the transition matrix 

s the identity matrix in Fig. 2 , and the matrix Q in Fig. 3 . 

Example 17 illustrates the statements of Theorem 16 . In partic- 

lar here are some remarks. 

(i) It makes intuitive sense that if the object is in a certain state 

ith probability close to 1, then it is optimal to look at this state. 

eometrically, this means that for all states s ∈ S, the set A s con-

ains a neighborhood of e s in �(S) . 
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(ii) Looking at a state s ′ such that p(s ′ ) = 0 can still be (weakly)

ptimal. For example, in Fig. 2 and Fig. 3 with initial probability 

istribution p = ( 1 2 , 
1 
2 , 0) , looking at state 3 is just as good as look-

ng at either state 1 or state 2. Fig. 3 shows that in general, if N ⊂ S,

hen ∪ s ∈ N A s does not necessarily include an open neighborhood of 

on v { e s | s ∈ N} in �(S) . 

(iii) Fig. 2 illustrates that the intersection of the regions ∩ s ∈ S A s 

an be more than a single point. 

(iv) Fig. 2 illustrates the fact that the sets A s are not always 

onvex. We conjecture that their relative interior is convex. 

. Concluding remarks and future work 

We introduced an infinite horizon search game, in which two 

layers compete to find an object that moves according to a time- 

arying Markov chain. We proved that these games always admit 

 subgame-perfect ε-equilibrium in pure strategies, for all error- 

erms ε > 0 , but not necessarily a 0-equilibrium. We showed that 

he ε-equilibrium payoffs converge to a vector (v 1 , 1 − v 1 ) as ε
anishes, and therefore we defined v 1 as the value of the game. 

e examined the analytical and structural properties of the solu- 

ions, and devoted attention to the important special case when 

he Markov chain is time-homogeneous, where stronger results 

old. 

We remark that, in these search games, the ε-optimal strategies 

re robust in the following sense: they are 2 ε-optimal if the hori- 

on of the game is finite but sufficiently long, and they are also 

 ε-optimal in the discounted version of the game, provided that 

he discount factor is close to 1. For the precise statements and 

heir proofs we refer to Duvocelle et al. (2020) . 

It would be interesting to generalize the results when the active 

layer is chosen according to an arbitrary stochastic process. In the 

ompanion paper Duvocelle, Flesch, Shi, & Vermeulen (2021) , we 

xamine the variation in which the active player is chosen accord- 

ng to a fixed probability distribution at each period. 

Another direction of research could be to investigate the link 

ith influence games. Diffusion of opinions in a DeGroot-opinion 

odel can be associated with a reverse Markov chain with par- 

icles moving in a network. In order to study influence games, 

andel & Venel (2020) introduced an auxiliary game based on 

his reverse Markov chain and where players try to catch more 

articles than their opponent making the problematic similar to 

 search game but with the introduction of several objects across 

ime. 

Also, one could introduce overlook probabilities to the model. In 

hat case, even if the active player chooses the state that currently 

ontains the object, there is a positive probability that the player 

ails to find it. 

eclaration of Competing Interest 

none 

ppendix A. Topological properties of search games 

Let X be a topological space. A function f : X → R is called

ower semi-continuous at x ∈ X if, for every sequence x n → x , we

ave lim inf n →∞ 

f (x n ) ≥ f (x ) . A function f : X → R is called upper

emi-continuous at x ∈ X if, for every sequence x n → x , we have

im sup n →∞ 

f (x n ) ≤ f (x ) . A function f : X → R is called continu-

us at x ∈ X if it is lower semi-continuous at x and upper semi-

ontinuous at x . 

A function f : X → R is called lower semi-continuous (resp. up- 

er semi-continuous , resp. continuous ) if f is lower semi-continuous 

t all x ∈ X (resp. upper semi-continuous at all x ∈ X , resp. contin- 

ous at all x ∈ X). 
954 
roposition 18. Take a player i ∈ { 1 , 2 } . 
[1] The payoff function u i : � × T → R is lower semi-continuous. 

[2] Assume that (σ, τ ) is a strategy profile under which the object 

s found with probability 1, i.e., P σ,τ (� < ∞ ) = 1 . Then, u i is contin-

ous at (σ, τ ) . 

roof. [1] For each strategy profile (σ, τ ) ∈ � × T , for each pe- 

iod n ∈ N , we denote by u ≤n 
i 

(σ, τ ) the probability that player i

nds the object during the first n periods under the strategy profile 

σ, τ ) . Note that u ≤n 
i 

(σ, τ ) is non-decreasing in n and converges to

 i (σ, τ ) as n → ∞ . 

Let (σ k , τ k ) k ∈ N be a sequence in � × T converging to a strategy 

rofile (σ, τ ) . We have for each n ∈ N 

 

≤n 
i 

(σ, τ ) = lim 

k →∞ 

u 

≤n 
i 

(σ k , τ k ) = lim inf 
k →∞ 

u 

≤n 
i 

(σ k , τ k ) 

≤ lim inf 
k →∞ 

u i (σ
k , τ k ) . 

ince u ≤n 
i 

(σ, τ ) converges to u i (σ, τ ) as n → ∞ , we obtain 

 i (σ, τ ) ≤ lim inf 
k →∞ 

u i (σ
k , τ k ) , 

hich proves that u i is lower semi-continuous. 

[2] Assume that under the strategy profile (σ, τ ) the object is 

ound with probability 1. Thus, u 1 (σ, τ ) + u 2 (σ, τ ) = 1 . Due to part

, we only need to show that u 1 and u 2 are upper semi-continuous 

t (σ, τ ) . We will prove it for u 1 ; the proof for u 2 is similar. 

Let (σ k , τ k ) k ∈ N be a sequence in � × T converging to (σ, τ ) . 

hen 

im sup 

k →∞ 

u 1 (σ
k , τ k ) = 1 − lim inf 

k →∞ 

(1 − u 1 (σ
k , τ k )) 

≤ 1 − lim inf 
k →∞ 

u 2 (σ
k , τ k ) ≤ 1 − u 2 (σ, τ ) = u 1 (σ, τ ) , 

here the first equality is a classic supinf equality applied to a 

imit, the first inequality comes from u 1 + u 2 ≤ 1 , the second in-

quality follows from part 1, and the second equality comes from 

he assumption we made on (σ, τ ) . Hence, u 1 is upper semi- 

ontinuous at (σ, τ ) , as desired. �

ppendix B. Technical proofs 

Proof of Proposition 5 . In the expression inf τ∈T sup σ∈ � u 1 (σ, τ ) , 

layer 1 is maximizing u 1 (σ, τ ) and player 2 is minimizing the 

ame expression. Note that (σ, τ ) �→ u 1 (σ, τ ) is bounded, and 

y Proposition 18 , it is lower semi-continuous, and hence Borel 

easurable. Thus, the equality v 1 = inf τ∈T sup σ∈ � u 1 (σ, τ ) follows 

rom Martin (1975) . The equality v 2 = inf σ∈ � sup τ∈T u 2 (σ, τ ) fol- 

ows similarly. �
Proof of Proposition 6 . First we prove part [1]. Let (σ, τ ) be a

trategy profile, p, q ∈ �(S) , λ ∈ [0 , 1] and i ∈ { 1 , 2 } . The probability

istribution λ · p + (1 − λ) · q can be interpreted as follows: with 

robability λ the initial probability distribution is p and induces 

he expected payoff u i (σ, τ )(p) for player i , and with probability 

 − λ the probability distribution is q and induces the expected 

ayoff u i (σ, τ )(q ) for player i . Hence, the equality (1) holds. 

Now we prove part [2]. Let s ∈ S, p ∈ �(S) and λ ∈ [0 , 1] . Then,

y part [1], we have for every σ ∈ �s and every τ ∈ T that 

 1 (σ, τ )(λ · e s + (1 − λ) · p) = λ · u 1 (σ, τ )(e s ) 

+ (1 − λ) · u 1 (σ, τ )(p) = λ + (1 − λ) · u 1 (σ, τ )(p) . 

ence, by taking the supremum over σ ∈ �s and the infimum over 

∈ T 

 1 (λ · e s + (1 − λ) · p, s ) = λ + (1 − λ) · v 1 (p, s ) . 

Finally, we prove part [3]. Let p, q ∈ �(S) , λ ∈ [0 , 1] and i ∈
 1 , 2 } . By part [1], for every strategy profile (σ, τ ) 
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 i (σ, τ )(λ · p + (1 − λ) · q ) = λ · u i (σ, τ )(p) 

+ (1 − λ) · u i (σ, τ )(q ) ≥ λ · u i (σ, τ )(p) 

ence, by taking the supremum over σ ∈ � and the infimum over 

∈ T , we obtain v i (λ · p + (1 − λ) · q ) ≥ λ · v i (p) . �
Proof of Proposition 9 . We prove that v 1 + v 2 = 1 . 

Step 1. Let ˜ � denote the set of strategies σ for player 1 such 

hat for every strategy τ for player 2, the object is found with 

robability 1 under the strategy profile (σ, τ ) , i.e. P σ,τ (� < ∞ ) = 

 . Note that ˜ � is nonempty; for example, ˜ � contains the strategy 

or player 1 that always chooses a state according to the uniform 

istribution on S. We claim that 

 1 = sup 

σ∈ ̃  �

inf 
τ∈T 

u 1 (σ, τ ) . 

Proof of Step 1. Since ˜ � ⊆ �, we have v 1 = 

up σ∈ � inf τ∈T u 1 (σ, τ ) ≥ sup σ∈ ̃  �
inf τ∈T u 1 (σ, τ ) . 

Now we prove the opposite inequality: 

up 

∈ ̃  �

inf 
τ∈T 

u 1 (σ, τ ) ≥ v 1 . (2) 

et ε ∈ (0 , 1 
| S| ) . By Mashiah-Yaakovi (2015) (or alternatively, by the

roof of Mertens and Neyman in Mertens (1990) , or by Flesch, 

erings, Maes, & Predtetchinski (2021) ), there is a strategy σ for 

layer 1 such that for every history h 

inf 
∈T 

u 1 (σ, τ )(h ) ≥ v 1 (h ) − ε. (3) 

e argue that σ ∈ 

˜ �. So, take a strategy τ for player 2. Assume 

hat h is a history at an odd period. In the subgame starting at h ,

layer 1 can immediately win with probability 1 
| S| if he chooses a 

tate uniformly. So, v 1 (h ) ≥ 1 
| S| , and hence u 1 (σ, τ )(h ) ≥ 1 

| S| − ε >

 . In particular, in the subgame at h , the object is found with prob-

bility at least 1 
| S| − ε > 0 under (σ, τ ) . Since this holds for every

istory h at an odd period, by Lévy’s zero-one law, the object is 

ound with probability 1 under (σ, τ ) . This proves that σ ∈ 

˜ �, as

esired. 

Since σ ∈ 

˜ �, by applying (3) to the empty history in period 1, 

e find inf τ∈T u 1 (σ, τ ) ≥ v 1 − ε. Since ε > 0 is arbitrary, (2) fol-

ows. 

Step 2. Define for each state s ∈ S

 2 (p, s ) = inf 
σ∈ �s 

sup 

τ∈T 
u 2 (σ, τ )(p) ;

ecall that �s denotes the set of those strategies for player 1 that 

hoose state s in period 1. We claim that for every δ > 0 there is

 (δ) > 0 such that if p ∈ �(S) satisfies p(s ′ ) ≤ w (δ) for some state

 

′ ∈ S, then for all states s ∈ S we have 

 2 (p, s ′ ) + δ ≥ v 2 (p, s ) . (4) 

ntuitively, if player 1 wishes to minimize player 2’s winning 

hances, then choosing a state s ′ with a very low probability of 

ontaining the object cannot be much better than choosing any 

tate s . 

Proof of Step 2. Let ˜ G denote the game such that (i) the game is

layed at periods 2 , 3 , . . . ; (ii) the transition matrices of the Markov

hain are P 2 , P 3 , . . . ; (iii) player 2 is the active player in even peri-

ds, and player 1 is the active player in odd periods. For the game˜ 

 , let ˜ � and 

˜ T denote the sets of strategies, and ̃

 u i (σ, τ )(p) denote 

he expected winning chance of player i = 1 , 2 under each strategy 

air (σ, τ ) and each initial distribution p ∈ �(S) for the object. De- 

ne for each player i = 1 , 2 

 

 i (p) = sup 

σ∈ ̃  �

inf 
τ∈ ̃  T ̃

 u i (σ, τ )(p) . 

Note that pP 1 = p(s ) · e s P 1 + (1 − p(s )) · p ¬ s P 1 . By part [3] of

roposition 6 (applied to ˜ G ), 

 

 2 (pP 1 ) ≥ (1 − p(s )) ·˜ v 2 (p ¬ s P 1 ) . (5) 
955 
ote that if player 1 chooses a state s ∈ S then with probability 

p(s ) he finds the object immediately, and with probability 1 − p(s ) 

e does not find it and then the distribution of the location of 

he object becomes p ¬ s P 1 in period 2, where player 2 is the ac- 

ive player. Therefore, v 2 (p, s ) = (1 − p(s )) ·˜ v 2 (p ¬ s P 1 ) . Thus, for all

tates s, s ′ ∈ S we find 

 2 (p, s ) − v 2 (p, s ′ ) 
= (1 − p(s )) ·˜ v 2 (p ¬ s P 1 ) − (1 − p(s ′ )) ·˜ v 2 (p ¬ s 

′ 
P 1 )) 

= (1 − p(s )) ·˜ v 2 (p ¬ s P 1 ) −˜ v 2 (p ¬ s 
′ 
P 1 ) + p(s ′ ) ·˜ v 2 (p ¬ s 

′ 
P 1 ) 

≤ ˜ v 2 (pP 1 ) −˜ v 2 (p ¬ s 
′ 
P 1 ) + p(s ′ ) 

≤ || (p − p ¬ s 
′ 
) · P 1 || T V + p(s ′ ) 

≤ || p − p ¬ s 
′ || T V + p(s ′ ) 

= 2 · p(s ′ ) , 
here in the first inequality we used (5) and v 2 (p ¬ s ′ P 1 ) ≤ 1 , and

n the second inequality we used Theorem 8 (applied to the game ˜ 

 ). Now the claim of Step 2 follows immediately. 

Step 3. We claim that 

 2 = inf 
σ∈ ̃  �

sup 

τ∈T 
u 2 (σ, τ ) . 

Proof of Step 3. Since ˜ � ⊆ �, we have v 2 = 

nf σ∈ � sup τ∈T u 2 (σ, τ ) ≤ inf σ∈ ̃  �
sup τ∈T u 2 (σ, τ ) . 

Now we prove the opposite inequality: v 2 ≥
nf σ∈ ̃  �

sup τ∈T u 2 (σ, τ ) . Let ε > 0 . By Mashiah-Yaakovi (2015) (or 

lternatively, by the proof of Mertens and Neyman in Mertens 

1990) , or by Flesch et al. (2021) ), there is a pure strategy σ for

layer 1 such that for every history h 

up 

τ∈T 
u 2 (σ, τ )(h ) ≤ v 2 (h ) + ε. 

ince σ is pure, σ (h ) places probability 1 on a state s h ∈ S for each

istory h . 

For each n ∈ N , let w n = w 

(
ε 

2 n 

)
where w 

(
ε 

2 n 

)
is as in Step 3.

ote that w n > 0 for each n . 

For each n ∈ N , we define a strategy σ ∗
n for player 1 as follows:

tart using σ , until a history h 1 occurs (if it occurs at all) such that

 h 1 
contains the object with probability at most w 1 . Then, at h 1 ,

hoose a state which contains the object with the highest proba- 

ility (which is at least 1 / | S| ). Then, follow σ again, until a history

 2 occurs (if it occurs at all) such that s h 2 contains the object with

robability at most w 2 . Then, at h 2 , choose a state which contains

he object with the highest probability (which is at least 1 / | S| ).
hen, follow σ again, and so on, until a history h n occurs (if it 

ccurs at all) such that s h n contains the object with probability at 

ost w n . Then, at h n , choose a state which contains the object with

he highest probability (which is at least 1 / | S| ), and then follow σ
n the remaining game. Note that, along the play of the game, σ ∗

n 

eviates from σ at most n times. 

We define σ ∗ as the limit of the strategies σ ∗
n when n → ∞ . 

his means that, along the play of the game, σ ∗ may deviate from 

at infinitely many histories. We argue that σ ∗ ∈ 

˜ � and 

up 

τ∈T 
u 2 (σ

∗, τ ) ≤ v 2 + 4 ε, (6) 

hich will then complete the proof of Step 3. 

We show first that σ ∗ ∈ 

˜ �. Take any strategy τ for player 2, 

nd consider the play according to (σ ∗, τ ) . By construction of σ ∗: 

i) whenever σ ∗ deviates from σ , the object is found immediately 

ith probability at least 1 / | S| , (ii) if after a period t , σ ∗ never devi-

tes from σ , then at every period t ′ ≥ t , σ finds the object imme- 

iately with probability at least w n for some fixed value of n . This 

mplies that, under (σ ∗, τ ) , the object is found with probability 1. 

hat is, σ ∗ ∈ 

˜ �. 

Now we show (6) . Take any strategy τ for player 2. By the pre-

ious argument, for sufficiently large n ∈ N , under (σ ∗, τ ) , the ob-

ect is found with probability close to 1 within n periods. This 
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mplies that σ ∗ deviates from σ at most n times, and hence, 

 2 (σ
∗, τ ) is close to u 2 (σ

∗
n , τ ) . Choose n so large that u 2 (σ

∗, τ ) −
 ≤ u 2 (σ

∗
n , τ ) . By iteratively applying Step 3, we find that 

 2 (σ
∗, τ ) − ε ≤ u 2 (σ

∗
n , τ ) ≤ u 2 (σ, τ ) + ε 

+ 

ε 

2 

+ · · · + 

ε 

2 

n 
< u 2 (σ, τ ) + 2 ε ≤ v 2 + 3 ε. 

ence, (6) follows. 

Step 4. We prove that v 1 + v 2 = 1 . We have 

 1 = sup 

σ∈ ̃  �

inf 
τ∈T 

u 1 (σ, τ ) = sup 

σ∈ ̃  �

inf 
τ∈T 

[
1 − u 2 (σ, τ ) 

]
= 1 − inf 

σ∈ ̃  �
sup 

τ∈T 
u 2 (σ, τ ) = 1 − v 2 . 

ere, the first equality follows from Step 1, the second equality fol- 

ows from the fact that if σ belongs to ˜ � then the object is found 

ith probability 1, and the last equality follows from Step 3. Hence, 

 1 + v 2 = 1 as desired. �
Proof of Proposition 11 . Let ε ≥ 0 . 

[1] Let (σ, τ ) be an ε-equilibrium. Since u 1 (σ, τ ) ≥ u 1 (σ
′ , τ ) −

for all σ ′ ∈ �, we have u 1 (σ, τ ) ≥ v 1 − ε, which means that σ is

-optimal. It follows similarly that τ is ε-optimal as well. 

When ε > 0 , by Theorem 3 , there is an ε-equilibrium (σ, τ ) in

ure strategies. Hence, σ and τ are ε-optimal strategies for the 

layers. 

[2] Assume now that σ and τ are ε-optimal strategies for 

layer 1 and player 2. Let σ ′ ∈ �. Then, u 2 (σ
′ , τ ) ≥ v 2 − ε. By

roposition 9 , we get that 

 1 (σ
′ , τ ) ≤ 1 − u 2 (σ

′ , τ ) ≤ 1 − (v 2 − ε) = v 1 + ε. 

his implies that u 1 (σ, τ ) ≥ v 1 − ε ≥ u 1 (σ
′ , τ ) − 2 ε. Similarly, we

btain u 2 (σ, τ ) ≥ u 2 (σ, τ ′ ) − 2 ε for every τ ′ ∈ T . So, (σ, τ ) is a

 ε-equilibrium. 

[3] This is a direct consequence of [1] and [2]. 

[4] Let (σ, τ ) be an ε-equilibrium. 

First we prove that under (σ, τ ) , the object is found with prob-

bility at least 1 − ε · | S| . Suppose the opposite: it is found with

robability z := P σ,τ (θ < ∞ ) < 1 − ε · | S| . Let ˜ H denote those his-

ories after which the object is found with probability at most 

:= 

1 
2 ( 

1 
| S| − ε 

1 −z ) : ˜ 

 = { h ∈ H : P σ,τ (θ < ∞| h ) ≤ γ };
ote that γ > 0 . By Lévy’s zero-one law, under (σ, τ ) , it has prob-

bility at least 1 − z that a history in 

˜ H arises during the play. 

ow consider the strategy σ ′ for player 1 that follows σ as long 

s no history arises in 

˜ H , but as soon as this happens, σ ′ chooses 

ach state with equal probability and plays arbitrarily afterwards. 

hen, 

 1 (σ
′ , τ ) − u 1 (σ, τ ) ≥ (1 − z) ·

(
1 

| S| − γ
)

> ε. 

his contradicts the fact that (σ, τ ) is an ε-equilibrium. 

Now prove the inequalities | u 1 (σ, τ ) − v 1 | ≤ ε and | u 2 (σ, τ ) −
 2 | ≤ ε. By part [1], u 1 (σ, τ ) ≥ v 1 − ε and similarly, u 2 (σ, τ ) ≥ v 2 −
. Thus, by Proposition 9 

 1 (σ, τ ) ≤ 1 − u 2 (σ, τ ) ≤ 1 − (v 2 − ε) = v 1 + ε. 

imilarly, u 2 (σ, τ ) ≤ v 2 + ε. These inequalities give | u 1 (σ, τ ) −
 1 | ≤ ε and | u 2 (σ, τ ) − v 2 | ≤ ε. �

Proof of Corollary 13 . Assume first that there is a state s ∈
for which p(s ) = 0 . Then p ¬ s P = pP = p and hence v 1 (p, s ) =

 − v 1 (p) . As v 1 (p) ≥ v 1 (p, s ) , we obtain v 1 (p) ≥ 1 − v 1 (p) . Hence,

 1 (p) ≥ 1 
2 . 

Assume now that there is no state s ∈ S for which p(s ) = 0 . The

dea is that we add a new state that cannot be reached from the 

ther states and where the object starts with probability 0. There- 

ore, adding this state does not change the value of the game. Also, 
956 
f player 1 chooses this state in period 1, then as p is a stationary 

istribution, the distribution of the object in period 2 will be also 

p. This allows us to use the previous case of the proof. 

More precisely, consider the game G 

′ that arises by adding a 

tate w to G . More precisely, G 

′ is the game with set of states S ′ =
 ∪ { w } , initial probability distribution p ′ such that p ′ (s ) = p(s ) for

ach state s ∈ S and p ′ (w ) = 0 , and transition matrix P ′ that has

he same transition probabilities between states in S and makes 

 absorbing. Then, with probability 1, the object will never be in 

 . By Proposition 12 , the players may ignore state w during the 

ame. Then, p ′ is a stationary distribution of P ′ , and hence by the 

rst part we find v 1 (p) = v ′ (p ′ ) ≥ 1 
2 . �
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