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We introduce a discrete-time search game, in which two players compete to find an invisible object first.
The object moves according to a time-varying Markov chain on finitely many states. The players are active
in turns. At each period, the active player chooses a state. If the object is there then he finds the object
and wins. Otherwise the object moves and the game enters the next period. We show that this game
admits a value, and for any error-term ¢ > 0, each player has a pure (subgame-perfect) e-optimal strategy.
Interestingly, a 0-optimal strategy does not always exist. We derive results on the analytic and structural
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is irreducible and aperiodic.

Keywords:

Game Theory

Search game

Two-player zero-sum game
Optimal strategies

Discrete time-varying Markov process

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The field of search problems is one of the original disciplines
of Operations Research. In the basic settings, the searcher’s goal is
to find a hidden object, also called the target, either with maximal
probability or as soon as possible. By now, the field of search prob-
lems has produced a wide range of models. The models in the liter-
ature differ from each other by the characteristics of the searchers
and of the objects. Concerning objects, there might be one or sev-
eral objects, mobile or not, and they might have no aim or their
aim is to not be found. Concerning the searchers, there might be
one or more. When there is only one searcher, the searcher faces
an optimization problem. When there is more than one searcher,
they might be cooperative or not. If the searchers cooperate, their
aim is similar to the settings with one player: they might want
to minimize the expected time of search, the worst case time, or
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some search cost function. If the searchers do not cooperate, the
problem becomes a search game with at least two strategic non-
cooperative players, and hence game theoretic solution concepts
and arguments will play an important role.

In almost all existing search games with more than one
searcher, the searchers are assumed to cooperate in order to
achieve a common goal. In real life it is often the case that the
different searchers involved do not cooperate, for various reasons.
For instance in nature, when several predators are looking for the
same prey. Another relevant situation is when several companies
have to dig to find a resource on a given surface (gold, coal, oil,
lithium). The different companies do not have incentives to cooper-
ate, and base their search on the choices that the companies have
done before. It is clear in those examples that each searcher in-
volved has to take into account the possible change of the object
(a moving prey, new technologies to locate resources).

We introduce a competitive search game, played at discrete pe-
riods in N. An object is moving according to a time-varying Markov
chain on finitely many states. Two players compete to find the ob-
ject first. They both know the Markov chain and the initial prob-
ability distribution of the object, but do not observe the current
state of the object. Player 1 is active at odd periods, and player
2 is active at even periods. The active player chooses a state, and
this choice is observed by the other player. If the object is in the
chosen state, this player wins and the game ends. Otherwise, the
object moves according to the Markov chain and the game contin-
ues at the next period. If the object is never found, the game lasts
indefinitely. In that case, neither player wins.


https://doi.org/10.1016/j.ejor.2022.03.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.03.004&domain=pdf
mailto:benoit.duvocelle@hotmail.fr
mailto:benoit.duvocelle@ut-capitole.fr
mailto:j.flesch@maastrichtuniversity.nl
mailto:staudigl@maastrichtuniversity.nl
mailto:d.vermeulen@maastrichtuniversity.nl
https://doi.org/10.1016/j.ejor.2022.03.004

B. Duvocelle, J. Flesch, M. Staudigl et al.

When the active player chooses a state, he needs to take two
opposing effects into account. First, if the object is at the chosen
state, then he wins immediately. This aspect makes choosing states
favorable where the object is located with a high probability. Sec-
ond, if the object is not at the chosen state, then knowing this, the
opponent gains information: the opponent can calculate the con-
ditional probability distribution of the location of the object at the
next period. This aspect makes choosing states favorable where, on
condition that the object not being there, the induced conditional
distribution at the next period disfavors the opponent. In partic-
ular, this conditional distribution should not be too informative,
and for example it should not place too high a probability on a
state. Clearly, in some cases there is no state that would be op-
timal for both scenarios at the same time, and hence the active
player somehow needs to aggregate the two scenarios in order to
make a choice.

Each player’s goal is to maximize the probability to win the
game, that is, to find the object first. In our model, we do not
assume that the players take into account the period when the
object is found. Of course, in most cases, maximizing the proba-
bility to win will entail at least partially that each player would
prefer to find the object at earlier periods, thereby preventing the
other player from finding the object. We refer toDuvocelle, Flesch,
Staudigl, & Vermeulen (2020) for the finite horizon and on the dis-
counted versions of the search game, where the period when the
object is found also matters.

The two players have opposite interests, up to the event when
the object is never found. More precisely, each player’s preferred
outcome is that he finds the object, but he is indifferent between
the outcome that the other player finds the object and the out-
come that the object is never found. As we will see, the possibil-
ity that neither player finds the object will only have minor role,
and hence the two players have essentially opposite interests in
the search game.

Main results. Our main results can be summarized as follows.

[1] We study the existence of (subgame-perfect) e-equilibria.
A strategy profile is called an e-equilibrium, where & > 0, if nei-
ther player can increase his winning probability by more than &
with a unilateral deviation. A subgame-perfect ¢-equilibrium is a
strategy profile that induces an e-equilibrium in each subgame.
We prove that each competitive search game admits a subgame-
perfect e-equilibrium in pure strategies, for all error-terms & > 0
(cf. Theorem 3). The proof is based on topological properties of
the game (cf. Appendix Appendix A). Interestingly, a 0-equilibrium
does not always exist, not even in mixed strategies. This is demon-
strated with an example (cf. Example 2). In the special case of
time-homogeneous processes, if the Markov chain is irreducible
and aperiodic, then there exists a subgame-perfect 0-equilibrium
in pure strategies (cf. Theorem 4).

[2] We examine the properties of (subgame-perfect) e&-
equilibria. We show that in each subgame-perfect e-equilibrium
where ¢ > 0 is small enough, the object is found with probabil-
ity 1 (cf. Proposition 15), and that the set of e-equilibrium payoffs
converge to a singleton (v{,1—v;), with v; € (0, 1] as & vanishes
(cf. Proposition 9 and Proposition 11). This implies that the two
players have essentially opposite interests, and we may consider
v; to be the value of the game (cf. Definition 10) and the strate-
gies of g-equilibria as e-optimal strategies (cf. Definition 10 and
Proposition 11).

[3] We investigate the properties of the value and the e-optimal
strategies. We show that the payoff functions have linear proper-
ties (cf. Proposition 6), which implies that the value is a Lipschitz
continuous function with respect to the initial probability distribu-
tion of the location of the object (cf. Theorem 8). We also provide
inequality properties of the value (cf. Propositions 6 and 12, and
Corollary 13).
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[4] We present geometric properties of optimal actions in com-
petitive search games. An action is said to be optimal if after
choosing this action in period 1, player 1 can still guarantee the
value, up to an arbitrary error-term. An optimal region of an ac-
tion is the set of probability distributions for the initial location of
the object where this action is optimal. We show that optimal re-
gions are star-convex centered at the vertices of the unit simplex,
and that the intersection of all the optimal regions is non-empty
(cf. Theorem 16).

Related literature

In the literature, search games have been studied under many
different assumptions. The models differ in various characteristics.
For example, the number of searchers, the number of objects, the
aim of the objects, and the search space. A discrete version of
the model where the search space is a matrix is studied by von
Neumann (1953). Several variations of this game were studied by
Neuts (1963), Efron (1964), Gittins & Roberts (1979), Roberts & Git-
tins (1978), Sakaguchi (1977), Subelman (1981), Berry & Mensch
(1986), and Baston, Bostock, & Ruckle (1990), among others.

The search game with an immobile hider was introduced by
[saacs (1965). Beck & Newman (1970) considered a search game
with a hider hiding on a line according to some distribution and a
searcher, starting from an origin and moving at fixed speed, who
tries to find the hider as soon as possible. The continuous model
was then generalized by Gal (1972), Gal (1974) and Gal & Chazan
(1976) who extended the state space from a line to a surface.

There is a large literature on search games on graphs with
an immobile hider. Among them, Cao (1995) and Lidbetter
(2020) have studied a search games on trees. Gal (1979), Reijnierse
& Potters (1993), Dagan & Gal (2008) and Alpern, Baston, & Gal
(2008) examined search games on Eulerian networks. Pavlovic
(1995), Gal (2010), Kikuta (2004), Alpern et al. (2008), and Alpern,
Baston, & Gal (2009) extended the analysis to more general net-
works. Jotshi & Batta (2008) proposed an algorithm to find a hider
hidden uniformly at random on a network. More recently Garrec
& Scarsini (2020) proposed a search game in a stochastic net-
work. They proved that the value of such games always exists, and
found upper and lower bounds of the value, and optimal strate-
gies for certain types of games. Finally, von Stengel & Werchner
(1997) proved that a particular search game played on a graph is
NP-hard.

More relevantly to our paper, some authors dealt with discrete
search problems with a moving object. Pollock (1970), Schweitzer
(1971), Dobbie (1974) and Kan (1974) study the two-state problem.
Assuming perfect detection, Nakai (1973) investigates the three-
state problem. Brown (1980) considers the search for a target with
Markov motion in discrete time and space using an exponential
detection function. He provides a necessary and sufficient condi-
tion for an optimal search plan and an efficient iterative algo-
rithm for generating optimal plans. Washburn (1983) studies a
discrete effort analogue of Brown (1980), in which searchers de-
cide the effort they want to invest in order to find the object at
each location they visit. General necessary and sufficient condi-
tions which extend Brown'’s results to an arbitrary stochastic pro-
cess for any mixture of discrete and continuous time and space
are given in Stone (1976). Hohzaki & lida (2001) investigates a
search problem for a moving target in which a searcher can an-
ticipate the probabilities of routes selected by the targets but does
not have any time information about when the target transits the
route. Zoroa, Fernandez-Saez, & Zoroa (2011) study a pray-predator
model in which the prey can move. They find optimal strate-
gies for both the prey and the predator and compute the value
of the game. Abramovskaya, Fomin, Golovach, & Pilipczuk (2016),
Angelopoulos & Lidbetter (2020) and Delavernhe, Jaillet, Rossi, &
Sevaux (2020) are recent papers which study search games with a
mobile object. We should also mention the very recent PhD thesis
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of Clarkson (2020), which contributes to the study of both search
games with a mobile hider and to search games with an immobile
object.

Most of the search games focus on the case of one searcher, or
several cooperative searchers. Some problems with several cooper-
ative searchers and one or several moving targets are mentioned
in the book of Stone, Royset, & Washburn (2016).

To the best of our knowledge, only four models consider several
non-cooperative searchers. Nakai (1986) investigates a non-zero-
sum game in which two searchers compete with each other for
quicker detection of an object hidden in one of n boxes, with ex-
ponential detection functions. Each player wishes to maximize the
probability that he detects the object before the opponent detects
it. The author shows the existence of an equilibrium point of the
form of a solution of simultaneous differential equations, and gets
explicit solution results showing that both players have the same
equilibrium strategy even though the detection rates are different.
In Nakai (1990), two searchers compete to find different objects
before the other. Flesch, Karagdzoglu, & Perea (2009) investigate
the problem in which an agent has to find an object that moves
between two locations according to a discrete Markov process,
with the additional costless option to wait instead of searching.
They find a unique optimal strategy characterized by two thresh-
olds and show that, in a clear contrast with our model, it can
never be optimal to search the location with the lower probabil-
ity of containing the object. They also analyze the case of multi-
ple agents, where the agents not only compete against time but
also against each other in finding the object. They find differ-
ent kinds of subgame-perfect equilibria. Finally, in Alpern & Zeng
(2021), the authors study several models of search games. Among
them, one model considers a game played on three states with
three players: two adversarial searchers and one hider. A searcher
gets payoff 1 if he is the unique player to find the hider; 1/2 if
both searchers find the hider at the same time and 0 if the other
searcher finds the hider alone. If none of them found the hider,
the game enters a new period. The payoff of the hider is the pe-
riod at which he is found. The authors show that there exists a
unique searcher-symmetric Nash equilibrium. Another related pa-
per is Alpern (2021), where two competitive searchers wish to
reach a target, with a known location, but with directions sug-
gested by an unreliable GPS system (this game is a so-called Trea-
sure Hunt game).

As in Nakai (1973), we investigate functional and structural
properties of the objective function. Nakai proved that the func-
tion that allocates to a probability distribution the average num-
ber of looks before finding the object is continuous, concave and
enjoy some linear properties. They also show that the optimal re-
gions (see Section 5) are star-convex sets. These properties have
also been studied in MacPhee & Jordan (1995) and in the PhD the-
sis of Jordan (1997).

For an introduction to search games, we recommend the
books of Alpern & Gal (2006), Gal (1979), Gal (2010) and
Garnaev (2012). We also refer to Gal (2013), and to the
recent surveys Benkoski, Monticino, & Weisinger (1991) and
Hohzaki (2016).

Structure of the paper. In Section 2, we present the model.
In Section 3, we examine the existence of (subgame-perfect) &-
equilibrium, for & > 0. In Section 4, we argue that the two play-
ers have essentially opposite interests, we define the value and
the notion of e-optimal strategies, we present some properties
of the value of the game and we show the existence of &-
optimal strategies for both players, for all € > 0. In Section 5,
we define optimal actions and optimal regions of the game, and
we give geometric properties of these sets. The conclusion is in
Section 6.
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2. The Model

The Game. We study a competitive search game G played by
two players. Let N = {1,2,3,...}. An object is moving according to
a discrete-time Markov chain (X;);cy on a finite state space S. The
set of probability distributions on S is denoted by A(S). The ini-
tial probability distribution of the object over the set S is given by
p € A(S), and the transition probabilities in period t are given by
an S x S transition matrix P = [P (i, f)](i,j)esb where P (i, j) is the
probability for the object to move from state i to state j in period
t.

At each period t € N, one of the players is active: At odd pe-
riods player 1 is the active player, and at even periods player 2 is
the active player. The active player chooses a state s; € S, which we
call the action in period t. If the object is at state X; = s;, then the
active player finds the object and wins the game. Otherwise, the
object moves according to the transition matrix P and the game
enters period t + 1. We assume that each player observes the ac-
tions chosen by his opponent, and recalls perfectly all the actions
chosen by both players from the beginning. The transition matrices
(P )ten and the initial distribution p are known to the players.

The aim of each player is to maximize the probability that he
finds the object first.

Histories. A history in period teN is a sequence h; =
(S1,...,5t_1) € St=1 of past actions with the property that it has
a positive probability that the object is not found before period
t if the players choose their actions according to h;. By Hy < St~!
we denote the set of all histories in period t. Note that H; con-
sists of the empty sequence. Let N°dd = {1,3 5 ..} and Neven =
{2,4,6,...}. We denote by H°¥ = U, _aqH; the set of histories at
odd periods, and by H®V®" = U,.nevenH; the set of histories at even
periods.

For a distribution q € A(S) for the location of the object and
a state s € S for which q(s) < 1, let g5 € A(S) denote the distri-
bution g conditioned on the object not being in state s. That is,

q5(s) =0 and g5(s) = 1(1_(;,()5) for each state s’ #s. With the help
of these conditional distributions, the players can update the dis-
tribution for the current location of the object. Indeed, the initial
distribution for the location of the object is p. If player 1 chooses
state s; but he does not find the object there, then the players can
update the distribution of the object in period 1 to p~1. This im-
plies that the distribution of the object in period 2 is p, = p™1P,,
as the object moves once according to the transition matrix P;. The
update procedure continues in a similar fashion and the distribu-
tion p; for the location of the object in period t is calculated simi-
larly, depending on the actions chosen in the earlier periods.

Strategies. The action sets for both players are A; =A; =S.
A strategy o = (0t);noaa fOr player 1 is a sequence of functions
ot : H- — A(S). The interpretation is that, at each period t e N°dd,
given the history h;, the strategy o; chooses to search state se S
with probability ot (h:)(s). Similarly, a strategy T = (Tt );cyeven for
player 2 is a sequence of functions 7 : Hr — A(S). ' We denote
by ¥ and 7 the set of strategies for players 1 and 2, respectively.
Note that ¥ =[], cpoda A(S) and T = [hcpeven A(S). We say that a
strategy o for player 1 is pure if it uses no randomization: for each
history h € H; with t odd, o (h) places probability 1 on some action
sp € S. Pure strategies are defined similarly for player 2.

We endow the strategy spaces ¥ and 7 with the topology of
pointwise convergence. This is identical with the product topol-
ogy on X and the product topology on 7. Under this topology, the

T A strategy (for either player) could also be defined as a function p : A(S) —
A(S), with the interpretation that for each distribution p € A(S) for the location of
the object, the player should choose a state according to p(p).
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spaces ¥ and 7 are compact, and as H°dd and He¥e" are countable,
¥ and T are also metrizable.

Winning probabilities. We define the stopping time? of the
game by ® = min{t € N| s; = X;}. Consider a strategy profile (o, 7).
The probability under (o, t) that player 1 wins is denoted by
u(o, 1) = IP’(,,T(@ € NOdd), and that player 2 wins is denoted
by uy (0, T) = Py 1 (© € N®¢1), Note that uy (o, 7) +uy(o,7)=1-
Py (O = 00).

When we wish to emphasize the distribution p € A(S) for
the initial location of the object, we will write u; (o, t)(p) and
U, (0, 7)(p) for the winning probabilities of the players.

If the current history is h, we will use the notations u; (o, 7)(h)
and u, (o, 7)(h) for the winning probabilities of the players condi-
tioned on h being the current history.

Subgame-perfect c-equilibrium. Let £ > 0 be an error-term. A
strategy o for player 1 is an e-best response against strategy T
for player 2 if uy(o,7t) >uy(o’,7) —¢ for every strategy o’ of
player 1. Similarly, a strategy t for player 2 is an ¢-best response
against strategy o for player 1 if u;(o, 1) > uy(o, t’) — ¢ for ev-
ery strategy t’ of player 2. A strategy profile (o, 7) is called an &-
equilibrium if o is an e-best response against T and 7 is an e-best
response against o. A subgame-perfect ¢-equilibrium is a strategy
profile (o, t) which is an g-equilibrium in each subgame. That is,
for each history h, for each o’ € Z, for each 7/ € T, uq (o, t)(h) >
u;(o’,t)(h) —¢ and uy (o, t)(h) > uy(o, t’)(h) —e.

An alternative interpretation of the game. We call the previ-
ous game Model [1]. Note that model [1] is a game in extensive
form, where information is communicated to players over time.
Now we present an alternative model of this game, which we call
Model [2]. We stress that we only use Model [2] as an auxiliary
model in our paper. We do this in order to apply existence results
in the literature that are formulated for this type of models (cf.
Theorem 3), namely models with perfect information.

Model [2]: Another way to describe our game is as follows.
One could imagine that the game consists of two phases. In the
first phase the players choose actions sequentially. More precisely,
in the first phase, player 1 chooses an action at odd periods and
player 2 chooses an action at even periods sequentially, just as be-
fore. This results in an infinite sequence of states (si,s,...). The
set of infinite histories is S*°. Every pure strategy profile (o, 7) in-
duces a unique infinite history h3’; € 5. In a second phase, play-
ers receive a payoff. Now, for i = 1,2, consider the payoff func-
tion f;:S* — [0,1] defined as follows. Consider an infinite his-
tory (s1,Sy,...). Take any pure strategy profile (o, t) such that
he; = (s1,s2....) and define fi(s1,s,...) =u;(o, T); note that this
definition only depends on the realized history. The goal of each
player is to maximize his payoff. Note that this is a game without
an object.

We briefly argue that the above descriptions are equivalent. In-
deed, for each pure strategy profile (o, t), for each player i =1, 2,
we have u;(o, 7) = f;(hg,). Hence, (o, 7) leads to the same payoff
in both models. '

3. Existence of equilibrium

In this section, we examine equilibria in competitive search
games. In the first subsection, we show that there are search
games for which there exist no 0-equilibrium, not even in mixed
strategies. From a technical point of view, this is caused by discon-
tinuity in the payoff functions of the players. In the second sub-
section, we focus on the notion of subgame-perfect e-equilibrium,
where € > 0 is an error-term, and prove that each search game
admits a subgame-perfect e-equilibrium in pure strategies, for all

2 With the convention that min{#} = +o0.
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n
2
n n
2 2
1—n
2

1 1

Fig. 1. A game without 0-equilibrium.

& > 0. In the third subsection, we present sufficient conditions for
the existence of a subgame-perfect 0-equilibrium in pure strate-
gies.

3.1. Search games with no 0-equilibrium

Theorem 1. There exist time-homogeneous competitive search games
which admit no 0-equilibrium, not even in mixed strategies.

We provide an example below of a time-homogeneous com-
petitive search game which admits no 0-equilibrium, not even in
mixed strategies (for another example, we refer to Duvocelle et al.
(2020)). The main idea of this example is that during the game
the active player is incentivised to choose a transient state of the
Markov chain, as these are the only states where searching gives
an advantage. However, if the players always choose a transient
state, then they do not find the object with probability 1, and
hence this cannot constitute a 0-equilibrium.

Example 2. Consider the game in Fig. 1. In this game, n < (0, %)
and the initial probability distribution is p = (q,q, % -q, % -q),
where q € (0, %). Notice that states 1 and 2 have the same tran-
sition probabilities, and so do states 3 and 4. States 1 and 2 are
transient, whereas states 3 and 4 are absorbing.

We show that this game admits no 0-equilibrium. The intuition
for this claim is as follows. Consider period 1. Player 1 has a choice
between a transient state (i.e., states 1 and 2) and an absorbing
state (i.e., states 3 and 4).

Suppose first that player 1 chooses an absorbing state, say state
3. We will show (see Claim 1 below) that this, with optimal follow-
up play, induces a winning probability of exactly % Intuitively, if
player 1 does not find the object in period 1, then it is very likely
that the object is in state 4, and player 2 should respond by choos-
ing state 4 in period 2. If player 2 does not find the object, then
due to the transition probabilities, the object is very likely to be
in state 3 in period 3. Indeed, we know that the object was not
in state 3 in period 1 and not in state 4 in period 2, so the object
has one more period to move from state 1 or state 2 to state 3
compared to state 4. Continuing this argument shows that the op-
timal continuation play consists of player 1 always choosing state
3 and player 2 always choosing state 4. As we will show, this gives
a winning chance of exactly % to each player.
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Now suppose that player 1 chooses a transient state, say state
1. In addition, suppose that if period 3 is reached, then player 1
will choose a state with the highest probability of containing the
object: state 3, unless player 2 chose state 3 in period 2, in which
case player 1 chooses state 4. We show that this strategy guaran-
tees a winning probability of strictly more than % for player 1 (see
Claim 2 below). Indeed, player 1 wins immediately with probabil-
ity g, and as we show the probability of winning in period 3 is
strictly larger than -q, so that the total probability that player 1
wins is strictly larger than 1 3

Based on the above discussion, player 1 should choose a tran-
sient state in period 1. If player 1 does not find the object, by an
inductive argument, player 2 should also choose a transient state
in period 2. Continuing this way, the players should choose tran-
sient states in all periods. Then, however, they do not find the
object with probability 1, and hence this cannot constitute a 0-
equilibrium (see Claim 3 below).

CLAaM 1: Let %34 denote the set of strategies for player 1 that
looks at state 3 or state 4 in period 1. Then,

1
sup mfu](a T) ==
gex3a TeT 2

PROOF OF CLAIM 1: Let T = (T;)cneven be a pure strategy of
player 2 such that, for all t € N¢ve", for all h; € H;,

state 3 if he(t—1) =4,
% (h) = orift>4and h:(t —1) € {1,2}
s = and hi(t —-2) =4

state 4  otherwise,

where h;(t —2) and h;(t — 1) are the second-to-last and the last
actions chosen under history h, respectively. Intuitively, T always
chooses a state that is most likely to contain the object, which is
either state 3 or state 4.

Let o3 be the strategy of player 1 that always chooses state 3.
Then, against o3, the strategy 7 always chooses state 4. It follows
that u;(03,7) = % as due to symmetry, the object will end up in
state 3 with probability % and in state 4 with probability %

Now we show that the strategy o3 is a best response in X34
against 7, i.e, uy(0,7) < § for each o € £34. Assume that player
1 chooses state 3 in period 1; the argument is similar if player 1
chooses state 4 in period 1. Assume also that player 1 does not
find the object in period 1. Then, by definition, T looks at state 4
in period 2. If player 2 does not find the object in period 2, then
the probability that the object is in state 3 is strictly more than
%. Thus, if period 3 is reached, player 1 should look at state 3.
Then, by definition, T looks at state 4 in period 4. By repeating
this argument, player 1 should always look at state 3 against 7.

One can similarly check that T minimizes player 2’'s winning
chance against o3, as after player 1 chooses state 3 it is best for
player 2 to choose state 4. That is, % < uy (03, 1) for each strategy
T for player 1.

Hence,

sup infui(o, 1) > 1nfu1(o 7) = u(03,7) = 1
U€234‘L’€T 2
and

sup mfu](a 7) < sup u1(0,%) =u;(03,7) = 1
oex3aTeT oeXx34 2’
which completes the proof of Claim 1. O

Let 0 = (0t);poud b€ any strategy of player 1 with the follow-
ing properties: o chooses state 1 in period 1, and in period 3 it
chooses state 3 if player 2 did not chose state 3 in period 2, and it
chooses state 4 otherwise. Intuitively, o chooses one of the most
likely states in period 3, which is either state 3 or state 4.

CLamMm 2: When player 1 uses o he guarantees himself strictly
more than (0, T) > 5 L for every T.
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ProOF OF CLAIM 2: It is sufficient to show that u; (o, 7) > % for
an arbitrary pure strategy t of player 2. Under o, player 1 looks at
state 1 in period 1 and finds the object with probability g in period
1. We only need to show that the probability under (o, 1') that
player 1 finds the object in period 3 is strictly more than 1 5 —q.

Suppose first that T would choose state 1 or state 2 if period 2
is reached. A straightforward calculation shows that player 1 finds
the object in period 3 with probability
Py (©=3) = 1_q+q~(1—n) Lan-n

2 4
which is strictly more than 1 34

Suppose now that T would choose state 3 or state 4 if period
2 is reached. In this case, a straightforward calculation shows that
player 1 finds the object in period 3 with probability
l qg-1-n) gq-n-(1-n)

—q+ P + P )
which is also strictly more than % -q. O

CLaM 3: There is no 0-equilibrium.

ProoF of CLAIM 3: Assume by way of contradiction that there is
a 0-equilibrium (o”/, t/). By Claim 1 and Claim 2, o’ chooses state
1 or state 2 with probability 1 in period 1. In both cases, in period
2 the current probability distribution for the location of the ob-
ject is (Z(z'ﬁq), z(q‘fq), 1- Z(z'ﬁq), 1- z(q‘fq) ). Then, in period 2, the
game is similar to the original one, with a parameter ¢’ = 2(‘}f’q)
instead of g, which still satisfies ¢’ € (0, }l), and where the roles
of the players are exchanged. Then, similarly, T/ chooses state 1 or
state 2 with probability 1 in period 2. By following this process re-
cursively, the players will choose states 1 and 2 with probability 1

Prr(©=3) =

has an incentive to deviate from o’ and to choose state 3 in period
1 to get a payoff of at least 5—q> Z, a contradiction. O

3.2. Existence of pure subgame-perfect e-equilibrium

In this subsection we are interested in the existence of
subgame-perfect ¢-equilibrium, where ¢ > 0. In the next theorem,
we show that all competitive search games admit a subgame-
perfect e-equilibrium in pure strategies, for each ¢ > 0. The proof
relies on existence results for subgame-perfect e-equilibria in
games with bounded and lower semi-continuous payoff functions
(see Flesch et al. (2010) or Flesch & Predtetchinski (2016)).

Theorem 3. Every competitive search game admits a pure subgame-
perfect e-equilibrium, for each & > 0.

Proof. Consider Model [2] of a competitive search game, as de-
scribed in Section 2. The payoffs are bounded and lower semi-
continuous, in view of Proposition 18. Thus, by applying Theo-
rem 2.3 of Flesch et al. (2010) (or by Theorem 4.1 of Flesch &
Predtetchinski (2016)), the game admits a pure subgame-perfect ¢-
equilibrium for each € > 0. O

Revisiting Example 2. In view of Theorem 3, the game in
Example 2 has a subgame-perfect e-equilibrium in pure strategies,
for each € > 0. Let ¢ > 0 be arbitrary. Now we describe a subgame-
perfect e-equilibrium. The idea of the construction is that the play-
ers should choose state 1 or state 2 until the probability that the
object is in one of these states is very low in comparison with &,
and after that they should choose the absorbing states. For the pre-
cise calculations we refer to Duvocelle et al. (2020). Let n be a large
In (%)

2

n
ways chooses the most likely between state 3 or state 4. We de-
fine a strategy profile (o*, T*) as follows: The players choose state

stage, i.e. n > . Also, let (o, T) be a strategy profile that al-
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1 until period n, and then they switch to (o, 7) for the remaining
game. If a player deviates to an absorbing state before period n,
then they immediately switch to (o, 7). As one can show, under
(o*, %), neither player can gain more than § - (g)n*1 <e in any
subgame by a unilateral deviation. Hence, (o*, 7*) is a subgame-
perfect e-equilibrium.

3.3. Sufficient conditions for existence of pure subgame-perfect
0-equilibrium

In this subsection, we present sufficient conditions for the ex-
istence of a pure subgame-perfect 0-equilibrium. Consider a time-
homogeneous competitive search game. In this case the transition
matrix at each period is the same matrix P. A probability distribu-
tion w € A(S) over the set S is called a stationary distribution for
the transition matrix P if 7P = . It is known (see Levin & Peres
(2017), Corollary 1.17 page 13 and Theorem 4.9 page 52) that if P
is irreducible and aperiodic, i.e. for some r € N all entries of the
matrix P’ are strictly positive, then (i) there exists a unique sta-
tionary distribution 7w € A(S), (ii) m(s) > 0 for all s €S, and (iii)
there exist constants 8 € (0,1) and c > 0 such that for all distribu-
tions p € A(S) for the initial location of the object and all periods
teN,

||pP* — 7|ty <c- B,
where ||p—ql|ltv = rlglasx Y sea(p(s) —q(s)) is the total variation
C

distance between p,q < A(S). Note that for each p,qe A(S), it
holds that ||p—q|ltv = % Y ses |P(S) — q(s)| (see Levin & Peres
(2017), pages 47-48).

Theorem 4. Consider a time-homogeneous competitive search game.
Assume that the transition matrix P is irreducible and aperiodic. Then,
no matter the initial probability distribution p, the object is found
with probability 1 under every strategy profile (o, 1), ie., Ps (® <
oo) = 1. Hence, the payoff functions are continuous in this game, and
there exists a subgame-perfect 0-equilibrium in pure strategies.

Proof. As mentioned above, the transition matrix P has a unique
stationary distribution 7 € A(S) and 7 (s) > 0 for all s € S. More-
over, there exist constants ¢ > 0 and 8 € (0, 1) such that |pP!(s) —
(s)| <c- Bt for all pe A(S), for all s €S and for all t € N. Hence,
there exists t* € N with the following property: for all p € A(S),
for all seS, for all t>t*, we have (pPi=1)(s) > % where § =
mingcs 7 (§). Without loss of generality we can assume that t* >
2. O

Let o = ﬁ. The proof is divided into four steps.

STEP 1: Let (0, T) be a pure strategy profile, and let (s¢)tey de-
note the induced sequence of actions. We show that the object is
found during the first t* periods with probability at least o.

Proof. Recall that pr = (pr(s))ses € A(S) denotes the probability
distribution of the location of the object in period t, for each t € N,
conditional on it not being found through the history (s, ..., S;_1).

If there is a period t <t* such that p;(s;) > «, then under
(0, 1), the object is found in period t with probability at least «,
if it has not been found before. Hence, the claim of step 1 is true.

Therefore, it suffices to show that if at each period t < t* — 1 we
have p;(s¢) < &, then pg(Se+) > . So assume that at each period
t <t*—1 we have p;(s;) < «. The idea of the calculation below is
that, since the object is found with low probabilities at the first
t* — 1 periods, the probability distribution for the object in period
t* conditioned on it not being found during the first t* — 1 periods
is almost the same as the unconditioned probability distribution.
That is, py+ is close to pPt*~1, which is in turn close to the station-
ary distribution .
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Note that, if the players do not condition on the past, the prob-
ability distribution of the location of the object in period t* is sim-
ply pPt*~1. Recall that, if p(s) < 1, then p~s denotes the probability
distribution p conditioned on the object not being in state s. We
have

[1pes = pP"Hlrv < 1P — Pe—1Pllrv + |1pe—1P = pP* |7y
= p P = pe—1Pllrv + [[pe—1P — PP |1y
<P = el + 1pe—1 — PP 2|y
= Pe—1(Se—1) + [|Peec1 = PP 2|1y
<a+||pe-1— PP |1y
<a- (t"=1)+||p1 — pP°lrv
=a-(t"-1)
1)

v

Here, in the first inequality we used the triangle inequality. In
the first equality we used py = p;ff‘]“P, as py is the location of
the object in period t* conditioned on it not being found up to
period t* —1 and p;sf‘{]P expresses the distribution that arises
when object moves once according to P after not being found up
to period t* — 1. The second inequality is true as ||qP — ¢'P||ry <
llg —q'|Iry for all q,q" € A(S). The second equality follows from
the above interpretation of p:ff‘{l and the definition of the total
variation norm. The third inequality is due to the assumption that
at each period t < t* — 1 we have p;(st) < «. The fourth inequality
then follows by induction. The last two equalities are due to p; = p

and the choice of . O

Therefore,

(=2

)

pe(se) = (PP 1) (se) — |Ipe — pP" Mgy = o.

=

N
N
Bl

This completes the proof of Step 1.

STEP 2: Consider any strategy profile (o, t). We show that the
object is found during the first t* periods with probability at least
o.

Proof. On the finite horizon t*, each strategy can be equivalently
represented as a mixed strategy, i.e. a probability distribution on
the finite set of pure strategies on horizon t* (see for example
Maschler, Solan, & Zamir (2013)). Hence, Step 2 follows from Step
1. O

STEP 3: Consider any strategy profile (o, ). We show that the
object is found with probability 1 under (o, t). By Proposition 18,
this will imply that the payoff functions are continuous in this
game.

Proof. By Step 2, the object is found during the first t* periods
with probability at least «. Since t* and therefore o do not depend
on the initial distribution of the object, if the object is not found
in the first t* periods, then it will be found between periods t* + 1
and 2t* with probability at least . By repeating this argument, the
object is found with probability 1 under (o, 7). O

STEP 4: We show that there exists a subgame-perfect O-
equilibrium in pure strategies.

Proof. > In view of Theorem 3, for each neN, there exists a
subgame-perfect %—equilibrium (o™, ") in pure strategies. Since
the spaces of strategies ¥ and 7 are compact and metrizable, by

3 The claim of Step 4 follows from Fudenberg & Levine (1983), but for complete-
ness, we give a proof based on Theorem 3.



B. Duvocelle, J. Flesch, M. Staudigl et al.

taking a subsequence if necessary, we can assume that the se-
quence (0", t")pen converges to a strategy profile (o, T) in pure
strategies as n — oo. O

For each neN, each history h, each strategy o’ for player
1 and each strategy t’ for player 2, we have u;(o", t")(h) >
up(o’, T (h) — 1 and uy (o™, ") (h) = uy (o™, ') (h) — L. Since by
Step 3 the payoff functions u; and u, are continuous, by taking the
limits as n — oo, we obtain for each h, each ¢’ and each t’ that
ui(o, t)(h) > uy(o’, t)(h) and uy (o, t)(h) > uy(o, t/)(h). Hence,
(0, 1) is a subgame-perfect 0-equilibrium in pure strategies. [J

4. Existence and properties of the value and ¢-optimal
strategies

In competitive search games, the winning probabilities do not
always add up to 1, as under certain strategy profiles it may have
a positive probability that the object is never found. For instance,
this is the case in the game in Example 2, if the players always
choose state 1. However, neither player is interested in the out-
come when the object is never found. Therefore, as we argue in
this section, in essence the players have opposite interest and the
value is a natural solution concept for competitive search games.

We denote Vy = Sup,cy infreruq (o, 7) and vy =
sup,.rinfycx uy(o, 7). Intuitively, a strategy o guarantees for
player 1 a winning probability of inf;.7u; (o, T), and therefore 14
can be interpreted as the largest winning probability that player 1
can guarantee in the game. The interpretation of v, is similar.

More generally, when we wish to emphasize the initial dis-
tribution p of the object as a parameter, we will write v;(p) =
SUPy ey infrer g (0, T)(p) and v5(p) = sup,rinf, .5 Uz (0, T)(p).

Let X5 denote the set of those strategies for player 1
that choose state s in period 1. We define v{(p,s) =ycxs
inf;c7uq (0, 7)(p). Note that v;(p) = maxses V7 (D, S).

As discussed in Section 2, each history h induces a conditional
probability distribution for the location of the object, say p,. We
will use the notation v; (h) = v{(p,) and v, (h) = v5(pp)-

Proposition 5. We have

41 supuy (o, T).

TeT

infsupu;(o,t) and v, = inf
TeT 5y oeX

Similar equalities hold for v1(p) and v, (p) for all p € A(S).
Proof. We refer to the Appendix Appendix B. O

The next theorem discusses properties of the payoff functions
and the functions v (p) and v, (p) along line segments in A(S). For
each state se S, let e5 € A(S) denote the probability distribution
that allocates probability 1 to state s and probability 0 to all other
states.

Proposition 6. [1] Let (o, T) be a strategy profile. Then, the payoff
functions are linear in the initial probability distribution of the object:
for every p,q e A(S), for every A e[0,1], and for every player i =
1,2:

ui(o. T)(A-p+ (1-2)-q) =A-ui(0. T)(p)+(1-24) - uj(0. T)(q).

(1)

[2] For every s € S, the map p— v1(p,s) is linear over every line
passing through eS: for every p € A(S) and for every A €0, 1]:

rh-e€4+1=A)-ps)y =A+0-=1) -v1(p,Ss).

[3] For every p,q € A(S), for every A € [0, 1], and for every player
i=1,2:

viA-p+ (1 =2)-q) = A-vi(p).
Proof. We refer to the Appendix Appendix B. O
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Remark 7. In part [2] of Proposition 6, the linearity of p — v (p, s)
relies on the following fact: Let p € A(S) \ {e5}, and let ¢ denote
the line going through p and e’. If by choosing state s player 1 does
not find the object, then the conditional distribution of the location
of the object, p~5, stays on the line ¢. Note, however, that the func-
tion p— v1(p,s) is generally non-linear. Indeed, consider a game
that has 4 states, each of which is absorbing. For p= (1, 1,1.0)
and g=(,1.0,1), we have v1(p.1) =% and vi(q.1) = %, but
vi(3-p+3-¢1) =30

We recall the definition of the total variation distance: for p,q
A(S), the total variation distance between p and q is the non-

negative number |[p —q||ry = MaXacs 3 5ca(P(S) — q(5))-

Theorem 8. For each player i=1,2, each strategy profile (o, 1),
each state s € S, the functions p— u;(o, t)(p), p+ vi(p), and p —
v1(p,s) are 1-Lipschitz continuous with respect to the total variation
distance.

Proof. We only prove it for player 1. By part [1] of Proposition 6,
we have

ur(o, T)(p) =Y p(s) - us(o, T)(€),

seS
ui(o, T)(q@) =) q(s) -ui (o, T)(e").
seS

Hence,

ui (0, T)(p) =t (0, 7)(q) = Y _[p(s) —q(s)]- ur (0, T)(€°)

seS

> Ip6s)—a®)]=Ilp-qllv.
seS,
p(s)>q(s)

A

and similarly

ui (o, 7)(q) —u (o, T)(p) < IIp—qllrv.

Hence, p — uy(o, T)(p) is 1-Lipschitz-continuous.

Taking the infimum over t and the supremum over ¢ on both
sides of the inequality u; (o, t)(p) < u1(o,7)(Q) +||p — qll1v gives
v1(p) <v1(@) + ||p — qllrv, which can be written v1(p) —v1(q) <
[lp = qllrv. Similarly, v1(q) — v1(p) < ||p —ql|rv. Hence, p = v (p)
is 1-Lipschitz-continuous too.

The proof for p— v1(p,s) is similar, but the supremum has to
be taken over o € 5. O

Proposition 9. We have v; + v, = 1, and in general, v{(p) + v,(p) =
1 for all p e A(S).

Proof. We refer to the Appendix Appendix B. O

Based on the Proposition 9, in essence the players have oppo-
site interests in competitive search games. This leads us to defining
the value of competitive search games.

Definition 10. Consider a competitive search game. We call v; the
value of the game. For each & >0, a strategy o for player 1 is
called e-optimal, if uq (o, t) > v; — ¢ for all strategies 7 € 7. Sim-
ilarly, a strategy T for player 2 is called e-optimal, if u(o, 1) >
v, — ¢ for all strategies o € X.

The following proposition relates the notions of profiles of
g-optimal strategies and e-equilibrium, and shows that all e-
equilibria give almost the same payoffs for small ¢.

Proposition 11. Consider a competitive search game. Let ¢ > 0.

[1] If (o,7T) is an e-equilibrium, then o and t are e-optimal
strategies. Consequently, when ¢ > 0, each player has a pure &-
optimal strategy.
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[2] If o and t are e-optimal strategies, then (o,T) is a 2é&-
equilibrium.

[3] A strategy profile (o, T) is a 0-equilibrium if and only if o and
T are 0-optimal strategies.

[4] If (o, 71) is an e-equilibrium then, under (o, T), the object is
found with probability at least 1 — ¢ - |S|. Moreover, |u;(o, ) —vq| <
gand |uy(o,7) — 1| <e.

Proof. We refere to the Appendix Appendix B. O

Proposition 12. Looking at a state in which the object is with zero
probability is never better than looking anywhere else. That is, for all
states s, s’ € S, for all pe A(S), if p(s’) =0 then v{(p.s") < v1(p,s).

Proof. Let G denote the game such that (i) the game is played at
periods 2,3, ...; (ii) the transition matrices of the Markov chain
are P, Ps, .. .; (iii) Player 2 is the active player in even periods, and
player 1 is the active player in odd periods. For the game G, let
> and 7 denote the sets of strategies, and U;(o, 7)(p) denote the
expected winning chance of player i = 1, 2 under each strategy pair
(o, t) and each initial distribution p € A(S) for the object. Define
for each playeri=1,2

vi(p) = sup inf (o, T)(p).

oeXx T€

Suppose that p(s’) = 0 and let s € S. We have
vi(p,s) = p(s) + (1 = p(s)) -v1(p~°Py),

and because p(s’) = 0, we have

v1(p.s") = U1(pPy).

Note that pPy = p(s)-eP; + (1 —p(s)) - p7°P;. By part [3] of
Proposition 6 (applied to G),

Ua(pPr) = (1= p(s)) - U2(p™Pr).

Since by Proposition 9 (applied to G) we have ¥ (q) + 7,(q) = 1 for
each q € A(S), we derive

1-v1(pP) = (1= p(s)) - (A =1 (p~P)).
Rearranging gives

U1 (pPy) < p(s) + (1= p(s)) - Ty (p™°Py).
This implies that v{(p.s) > v;(p,s’), as claimed. O

Corollary 13. Consider a time-homogenenous competitive search
game. If p is a stationary distribution of P, then v, (p) > %

Proof. We refer to the Appendix Appendix B. O

Remark. We conjecture that if P is irreducible and aperiodic,
then v;(p) > 5. The value v;(p) can be smaller than } if p is not
the stationary distribution. Indeed, the value is % if the game has
three states, initial probability distribution p = (3. §, ) and tran-
sition matrix P such that at the second period the object is in state
1 with probability 1. ¢

An g-optimal strategy is a relevant solution concept, but it has
the drawback that if the opponent makes a mistake, the continua-
tion strategy does not have to be ¢-optimal. A strategy o for player
1 is called subgame e-optimal if, in each subgame, the continu-
ation strategy of o is e-optimal. More precisely, for each history
h € H°dd and strategy 7 € T for player 2

uy (o, 7)(h) = vy(h) —¢.

The definition of a subgame ¢-optimal strategy for player 2 is sim-
ilar. Note that each subgame e-optimal strategy is e-optimal.

Example 14. In this example, we show that there are e-optimal
strategies that are not subgame g-optimal. The set of states is
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S ={1, 2}, with each state being absorbing, and the initial proba-
bility distribution is p = (1,0). The value is v; =1 and any opti-
mal strategy of player 1 looks at state 1 in period 1. Hence, v, =0
and all the strategies of player 2 are 0-optimal. In particular, it is
optimal for player 2 to always choose state 2. Let T denote this
strategy.

Now suppose that player 1 makes a mistake and chooses state
2 in period 1. Then, the continuation strategy of t from period 2
is not optimal. In fact, it would be the best for player 2 to choose
state 1 in period 2 and win the game. O

Proposition 15. Consider a competitive search game.

1. For every € > 0, each player has a pure strategy which is subgame
g-optimal.

2. Let € € (0, ﬁ). If o is a subgame ¢-optimal strategy for player
1, then for every strategy t of player 2, the object is found with
probability 1 under the strategy profile (o, T). A similar statement
holds for player 2.

1.. Let ¢ > 0. By Theorem 3, there exists a subgame perfect &-
equilibrium (o, ) in pure strategies. Now consider a subgame at a
history h. Since the continuation strategies of o and t at h form an
g-equilibrium, it follows similarly to part [1] of Proposition 11 that
the continuation strategy of o at h is ¢-optimal in the subgame,
and similarly the continuation strategy of t at h is ¢-optimal in
the subgame. Hence, o and t are subgame &-optimal.

[2] Let ¢ € (O, %‘) and let o be a subgame ¢-optimal strategy.
Consider a history h at an odd period. The strategy for player 1
which looks at a state with the highest probability guarantees 1/|S|
in the subgame at h. So, v;(h) > 1/|S|.

Now consider a strategy t for player 2. Then, we have
ui(o,t)(h) >1/|S| —& > 0. In particular, in the subgame at h,
the object is found with probability at least 1/|S| —& > 0 under
(o, 1). Since this holds for every history h at an odd period, by
Lévy's zero-one law, the object is found with probability 1 under
(o,7). O

5. Optimal actions

For the initial distribution p € A(S), we call an action s € S op-
timal if it is optimal for player 1 to look at state s in period
1: v1(p,s) =v1(p). For a given action s € S, we denote by As the
set of the initial distributions for which s is optimal: A; ={p e
A(S) | v1(p.s) =v1(p)}. We call A the optimality region of action
s. Note that UgesAs = A(S).

Theorem 16. The optimality regions As have the following properties.

[1] If the initial probability distribution p is sufficiently close to e°,
for some state s, then choosing state s is the only optimal action. That
is, the set As\ Uj.sA; is a neighborhood of e* in A(S).

[2] For each subset N C S, the convex hull of the vertices e with
s € N is included in the set UgcnAs.

[3] There is an initial distribution at which choosing any state is
optimal. That is, NscsAs # 0.

[4] For all s €S, the region Ag is star convex centered in eS. That
is, if p € As then the whole line segment between p and e’ is included
in As.

Proof. [1] The statement follows from the facts that each v;(p,s)
is continuous (cf. Theorem 8) in p and that v;(e’,s) =1 and
v1(e5,j) <1 forall j+#s.

[2] Let pe conv({e’|s e N}). Then p(s) =0 for all s¢N. By
Proposition 12, there is an optimal action j e N, and hence p e
UsenAs.
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(0,0,1)

(1,0,0) (0,1,0)

(a) The three optimal regions

(0,0,1)

(¢) Optimal region As
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(3:0:3) 0,3,3)
(1’070) (%7%70)
(b) Optimal region A;.
(é:ové) (07%7%)
(%7%70) (07170)

(d) Optimal region A

Fig. 2. Optimal regions when P = 5.

[3] We will use the Knaster-Kuratowski-Mazurkiewicz (KKM)
theorem®, see Knaster, Kuratowski, & Mazurkiewicz (1929). By
Theorem 8, the function p+~ v;(p,s) is continuous for all seS.
Thus, each region A; is closed. From this fact and from [2], we can
apply the KKM Theorem, and thus we can conclude that NgcsAs # @.

[4] Let s € S, let p € As and let A € [0, 1]. We want to show that
A-eS+ (1 —A)-peAs. By part [1] of Proposition 6, for every strat-
egy t of player 2

supuy (o, T)(A-€+(1—=A) p)

oeX

= sug [A-ur(o, T)(E)+ (1 =2)-us(o, t)(p)]

<k [SUP uy (o, f)(es)} +(1=2)- [SUP uy (o, f)(p)}
) oex

=A+(1-1)- [sup u (o, T)(P)]s
oex

where we used that u; (o, 7)(e’) = 1 for any strategy o that looks
at state s in period 1. Hence, by Proposition 5

v(A-e€+(1-X1)-p) = in;supm(a,r)()\-es—i-(l —A)-p)
€l gex

<A+(1-2A)- |:infsupu1(a, r)(p):|
TeT ey

=A+(1-21)-v1(p)
=L+ (1-=21)-vi(p,s).

4 The KKM theorem states: Let n € N be the cardinality of the set of states S, in
other words [S| = n. Let A" be the unit simplex in R". A KKM covering is defined as
a collection Cy, ..., C, of closed sets such that for any N C {1, ..., n}, the convex hull
of the vertices corresponding to N is covered by UscnCs. Then any KKM covering has
a non-empty intersection, i.e.: NssCs # 0.
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(0,0,1)

(1,0,0)

(w5

0) (0,1,0)

Fig. 3. Optimal regions when P = Q.

On the other hand, by part [2] of Proposition 6, v{(A-e5+ (1 —
A)-p.S)=A+ (1-=2A)-v1(p,s). Therefore, v (A -5+ (1 —A)-p) =
vi(A-es+(1-1)-ps). O

Example 17. Consider the case in which the set of states is S =

1 0 O
{1,2,3}. Let Q = |:0 1 Oi|. The sets A;, A, and A3 are repre-
101
11 0
)

sented in the time-homogeneous case where the transition matrix
is the identity matrix in Fig. 2, and the matrix Q in Fig. 3.

Example 17 illustrates the statements of Theorem 16. In partic-
ular here are some remarks.

(i) It makes intuitive sense that if the object is in a certain state
with probability close to 1, then it is optimal to look at this state.
Geometrically, this means that for all states s € S, the set As; con-
tains a neighborhood of e5 in A(S).
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(ii) Looking at a state s’ such that p(s’) = 0 can still be (weakly)
optimal. For example, in Fig. 2 and Fig. 3 with initial probability
distribution p = (%, % 0), looking at state 3 is just as good as look-
ing at either state 1 or state 2. Fig. 3 shows that in general, if N C S,
then UscnAs does not necessarily include an open neighborhood of
conv{e|s € N} in A(S).

(iii) Fig. 2 illustrates that the intersection of the regions NgcsAs
can be more than a single point.

(iv) Fig. 2 illustrates the fact that the sets As; are not always
convex. We conjecture that their relative interior is convex.

6. Concluding remarks and future work

We introduced an infinite horizon search game, in which two
players compete to find an object that moves according to a time-
varying Markov chain. We proved that these games always admit
a subgame-perfect e-equilibrium in pure strategies, for all error-
terms ¢ > 0, but not necessarily a 0-equilibrium. We showed that
the e-equilibrium payoffs converge to a vector (v1,1-v¢) as &
vanishes, and therefore we defined v; as the value of the game.
We examined the analytical and structural properties of the solu-
tions, and devoted attention to the important special case when
the Markov chain is time-homogeneous, where stronger results
hold.

We remark that, in these search games, the ¢-optimal strategies
are robust in the following sense: they are 2¢-optimal if the hori-
zon of the game is finite but sufficiently long, and they are also
2¢-optimal in the discounted version of the game, provided that
the discount factor is close to 1. For the precise statements and
their proofs we refer to Duvocelle et al. (2020).

It would be interesting to generalize the results when the active
player is chosen according to an arbitrary stochastic process. In the
companion paper Duvocelle, Flesch, Shi, & Vermeulen (2021), we
examine the variation in which the active player is chosen accord-
ing to a fixed probability distribution at each period.

Another direction of research could be to investigate the link
with influence games. Diffusion of opinions in a DeGroot-opinion
model can be associated with a reverse Markov chain with par-
ticles moving in a network. In order to study influence games,
Mandel & Venel (2020) introduced an auxiliary game based on
this reverse Markov chain and where players try to catch more
particles than their opponent making the problematic similar to
a search game but with the introduction of several objects across
time.

Also, one could introduce overlook probabilities to the model. In
that case, even if the active player chooses the state that currently
contains the object, there is a positive probability that the player
fails to find it.

Declaration of Competing Interest
none
Appendix A. Topological properties of search games

Let X be a topological space. A function f:X — R is called
lower semi-continuous at x € X if, for every sequence x" — x, we
have liminf, .. f(x") > f(x). A function f: X — R is called upper
semi-continuous at x € X if, for every sequence x" — x, we have
limsup,_, ., f(x") < f(x). A function f:X — R is called continu-
ous at x € X if it is lower semi-continuous at x and upper semi-
continuous at x.

A function f: X — R is called lower semi-continuous (resp. up-
per semi-continuous, resp. continuous) if f is lower semi-continuous
at all x € X (resp. upper semi-continuous at all x € X, resp. contin-
uous at all x € X).
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Proposition 18. Take a player i € {1, 2}.
[1] The payoff function u; : ¥ x T — R is lower semi-continuous.
[2] Assume that (o, T) is a strategy profile under which the object
is found with probability 1, i.e., Py :(® < oco) = 1. Then, u; is contin-
uous at (o, T).

Proof. [1] For each strategy profile (o,7) € ¥ x 7, for each pe-
riod n e N, we denote by u="(c, 7) the probability that player i
finds the object during the first n periods under the strategy profile
(o, ). Note that uf”(o, T) is non-decreasing in n and converges to
ui(o,t) as n — oo.

Let (0%, T); .y be a sequence in X x 7 converging to a strategy
profile (o, 7). We have for each n e N

u="(o. 1) =

lim u7"(o*, %) = liminfu:" (c'*, 7¥)
k—o0 k—o0

IA

liminfu; (o*, 7%).
k— o0
Since uz" (o, ) converges to u;(c, ) as n — oc, we obtain
u;i(o, T) < liminfu;(o*, %),
k— o0

which proves that u; is lower semi-continuous.

[2] Assume that under the strategy profile (o, T) the object is
found with probability 1. Thus, u; (o, T) + uy (o, T) = 1. Due to part
1, we only need to show that u; and u, are upper semi-continuous
at (o, 7). We will prove it for uq; the proof for u, is similar.

Let (0%, t%),y be a sequence in ¥ x T converging to (o, ).
Then

limsupu; (%, %) =1 - li{n inf(1 — u; (o, T4))

k— o0

<1- lilgninfuz(a", ™) <1-uy(o, 1) =u(0, 7),

where the first equality is a classic supinf equality applied to a
limit, the first inequality comes from u; +u, < 1, the second in-
equality follows from part 1, and the second equality comes from
the assumption we made on (o, 7). Hence, u; is upper semi-
continuous at (o, t), as desired. O

Appendix B. Technical proofs

Proof of Proposition 5. In the expression inf;c7 sup, .5 U1 (0, 7),
player 1 is maximizing uq(o, t) and player 2 is minimizing the
same expression. Note that (o,t)+~ uy(o,7) is bounded, and
by Proposition 18, it is lower semi-continuous, and hence Borel
measurable. Thus, the equality vy = inf;c7 sup, 5, uq (o, v) follows
from Martin (1975). The equality v, = inf,.x sup,.ru(o, ) fol-
lows similarly. O

Proof of Proposition 6. First we prove part [1]. Let (o, t) be a
strategy profile, p,q € A(S), A € [0,1] and i € {1, 2}. The probability
distribution A - p+ (1 —A)-q can be interpreted as follows: with
probability A the initial probability distribution is p and induces
the expected payoff u;(o, 7)(p) for player i, and with probability
1 — XA the probability distribution is g and induces the expected
payoff u;(o, T)(q) for player i. Hence, the equality (1) holds.

Now we prove part [2]. Let s€ S, pe A(S) and A € [0, 1]. Then,
by part [1], we have for every o € X5 and every T € T that

u(@. )A€+ (1-21)-p) =i u(0.7)(€)
+(A=2) u(0.1)(p) = A+ (1 =2) -t (0. 7)(p).

Hence, by taking the supremum over o € X° and the infimum over
TeT

1A+ (1=21)-ps) =r+(1=2) vi(p,s).

Finally, we prove part [3]. Let p,qe A(S), A€[0,1] and ie
{1, 2}. By part [1], for every strategy profile (o, T)
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u(o,t)Y(A-p+ (A =21)-q) = A-u(o,t)(p)
+ (1 -A)-u(o.7)(q) = A-ui(o.7)(p)

Hence, by taking the supremum over o € ¥ and the infimum over
T eT7,weobtain v;(A-p+(1—-1)-q) > A-v;(p). O

Proof of Proposition 9. We prove that vy 4+ v, = 1.

Step 1. Let ¥ denote the set of strategies o for player 1 such
that for every strategy t for player 2, the object is found with
probability 1 under the strategy profile (o, 7), i.e. Py r(® < c0) =
1. Note that ¥ is nonempty; for example, S contains the strategy
for player 1 that always chooses a state according to the uniform
distribution on S. We claim that

vy = sup mful(cr 7).

oS T
Proof of Step 1.  Since $cx, we have v =
SUPgex infrer Uy (0, T) = sup, g infrer g (o, 7).
Now we prove the opposite inequality:
sup infuy (o, 7) > v4. (2)
g TeT
Let ¢ € (O, |1T|)' By Mashiah-Yaakovi (2015) (or alternatively, by the

proof of Mertens and Neyman in Mertens (1990), or by Flesch,
Herings, Maes, & Predtetchinski (2021)), there is a strategy o for
player 1 such that for every history h

infu;(o,t)(h) > vi(h) —¢. 3)
TeT

We argue that o € $. So, take a strategy t for player 2. Assume
that h is a history at an odd period. In the subgame starting at h,
player 1 can immediately win with probability I;T if he chooses a
state uniformly. So, v;(h) > ‘1?‘ and hence u; (o, 7)(h) > |1T| —&>
0. In particular, in the subgame at h, the object is found with prob-
ability at least |s| —¢& > 0 under (o, 7). Since this holds for every
history h at an odd period, by Lévy's zero-one law, the object is
found with probability 1 under (o, t). This proves that o € %, as
desired. _

Since o € %, by applying (3) to the empty history in period 1,
we find inf;cru (0, 7) > v —¢. Since ¢ > 0 is arbitrary, (2) fol-
lows.

Step 2. Define for each state s S

va(p.) = inf supua (o, 7)(p):
TEe

recall that X5 denotes the set of those strategies for player 1 that
choose state s in period 1. We claim that for every § > O there is
w(8) > 0 such that if p e A(S) satisfies p(s’) < w(§) for some state
s’ €S, then for all states s € S we have

12(p.s) +8 = 12(p. s). 4)
Intuitively, if player 1 wishes to minimize player 2’s winning
chances, then choosing a state s’ with a very low probability of
containing the object cannot be much better than choosing any
state s.

Proof of Step 2. Let G denote the game such that (i) the game is
played at periods 2, 3, .. .; (ii) the transition matrices of the Markov
chain are Py, P3, .. .; (iii) player 2 is the active player in even peri-
ods, and player 1 is the active player in odd perlods For the game
G, let ¥ and 7 denote the sets of strategies, and i;(o, ) (p) denote
the expected winning chance of player i = 1,2 under each strategy
pair (o, t) and each initial distribution p € A(S) for the object. De-
fine for each playeri=1,2

v;(p) = sup infu;(o, T)(p).

oexTE
Note that pPy = p(s) - e°P +
Proposition 6 (applied to G),

To(pP1) = (1= p(s)) - o (p~°Py).

(1=p(s)) - p~SP,. By part [3] of

(3)
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Note that if player 1 chooses a state s € S then with probability
p(s) he finds the object immediately, and with probability 1 — p(s)
he does not find it and then the distribution of the location of
the object becomes p™P; in period 2, where player 2 is the ac-
tive player. Therefore, v, (p,s) = (1 — p(s)) - U (p~P;). Thus, for all
states s, s’ € S we find

v2(p,s) — v2(p,s)
= (1= p(©) B P) — (1= () - T (5 Py))
(1= () - To(pP) B (5 P) + () - To(pP)

< Ta(pP) — T2 (p™S'Pr) + p(s')
< l(p—p)-Pillrv + p(s')
<|lp=p"Ilrv + ()

2. p(s),
where in the first inequality we used (5) and v, (p™'Py) < 1, and
in the second inequality we used Theorem 8 (applied to the game
G). Now the claim of Step 2 follows immediately.

Step 3. We claim that

v, = inf supuy (o, 7).
oeX teT
Proof of Step 3. Since $c¥, we have vy =
inf, 5 SUprcrUz(0,7) < inf g sup .y up(o, 7).
Now we prove the opposite inequality: vy >

inf__g sup;.ruy(o, 7). Let € > 0. By Mashiah-Yaakovi (2015) (or
alternatlvely, by the proof of Mertens and Neyman in Mertens
(1990), or by Flesch et al. (2021)), there is a pure strategy o for
player 1 such that for every history h

supuz (0, T)(h) = va2(h) +e&.
TeT

Since o is pure, o (h) places probability 1 on a state s, € S for each
history h.

For each n e N, let wy = w(4) where w(4) is as in Step 3.
Note that w,, > 0 for each n.

For each n € N, we define a strategy o;; for player 1 as follows:
start using o, until a history h; occurs (if it occurs at all) such that
sp, contains the object with probability at most wy. Then, at hy,
choose a state which contains the object with the highest proba-
bility (which is at least 1/|S|). Then, follow ¢ again, until a history
hy occurs (if it occurs at all) such that Sp, contains the object with
probability at most w,. Then, at h,, choose a state which contains
the object with the highest probability (which is at least 1/|S|).
Then, follow o again, and so on, until a history h, occurs (if it
occurs at all) such that s;, contains the object with probability at
most wy. Then, at hy, choose a state which contains the object with
the highest probability (which is at least 1/|S|), and then follow o
in the remaining game. Note that, along the play of the game, o
deviates from o at most n times.

We define o* as the limit of the strategies o when n — oo.
This means that, along the play of the game, o* may deviate from
o at infinitely many histories. We argue that o* € ¥ and
supuy(0*, t) < v +4e,

TeT
which will then complete the proof of Step 3.

We show first that o* € . Take any strategy T for player 2,
and consider the play according to (o*, 7). By construction of o*:
(i) whenever o* deviates from o, the object is found immediately
with probability at least 1/|S|, (ii) if after a period t, o* never devi-
ates from o, then at every period t’ > t, o finds the object imme-
diately with probability at least w;, for some fixed value of n. This
implies that, under (o*, 7), the object is found with probability 1.
That is, 0* € Z.

Now we show (6). Take any strategy t for player 2. By the pre-
vious argument, for sufficiently large n € N, under (c*, ), the ob-
ject is found with probability close to 1 within n periods. This

(6)
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implies that o* deviates from o at most n times, and hence,
uy(o*, 7) is close to uy (o, ). Choose n so large that uy(o*, ) —
& < uy(oy, 7). By iteratively applying Step 3, we find that
U (0", 1) —¢€ < uy(o), 1) < uy(o, 1) +¢
£ £
+ 3 +-+ on
Hence, (6) follows.
Step 4. We prove that v + v, = 1. We have

< Uy(o,T)+2€ < 1y +3¢.

vy = sup infuy (o, 7) = sup inf [1 - uy(0, 7)]
ges TeT ges TeT
=1-infsupuy(o,7) =1—15.
oeX teT

Here, the first equality follows from Step 1, the second equality fol-
lows from the fact that if o belongs to ¥ then the object is found
with probability 1, and the last equality follows from Step 3. Hence,
vy + v, =1 as desired. O

Proof of Proposition 11. Let ¢ > 0.

[1] Let (o, T) be an g-equilibrium. Since u; (o, 7) > u;(o’,7) —
¢ for all 0’ € &, we have uq (o, T) > v7 — &, which means that o is
g-optimal. It follows similarly that t is e-optimal as well.

When ¢ > 0, by Theorem 3, there is an ¢-equilibrium (o, 7) in
pure strategies. Hence, o and 7t are ¢-optimal strategies for the
players.

[2] Assume now that ¢ and t are &-optimal strategies for
player 1 and player 2. Let ¢’ € . Then, uy(c’,7) > v, — €. By
Proposition 9, we get that

u (0, 1) < 1-u(0',7) < 1-(ry—¢) =11 +e.

This implies that uy (0, 7) > 11 —& > uy(o’, t) — 2¢. Similarly, we
obtain uy (0, 1) > uy(o,1t’) —2¢ for every 7/ € 7. So, (0,7) is a
2¢-equilibrium.

[3] This is a direct consequence of [1] and [2].

[4] Let (o, ) be an g-equilibrium.

First we prove that under (o, T), the object is found with prob-
ability at least 1 — ¢ -|S|. Suppose the opposite: it is found with
probability z :=Ps (0 <o) <1—¢-|S|. Let H denote those his-
tories after which the object is found with probability at most

11l ey,
yi=2(g — 1)

H={heH:Py.(0 <ocolh) <y}

note that y > 0. By Lévy’s zero-one law, under (o, 7), it has prob-
ability at least 1 —z that a history in H arises during the play.
Now consider the strategy o’ for player 1 that follows o as long
as no history arises in H, but as soon as this happens, o’ chooses
each state with equal probability and plays arbitrarily afterwards.
Then,

ui(o’,t) —ui(o, 1) > (l—z)-(é—|—y) > €.

This contradicts the fact that (o, 7) is an e-equilibrium.

Now prove the inequalities |uq(o, ) —v1| <¢ and |uy(o,T) —
v,| < &. By part [1], uy (o, T) > v1 — € and similarly, u; (o, T) > V5 —
&. Thus, by Proposition 9

(o, 1)<l1-u(o, 1) <1 -y —€&)=v1 +¢.

Similarly, u,(o,t) <v,+¢€. These inequalities give |ui(o,T)—
vl <eand |uy(o,7) —1p] <e. O

Proof of Corollary 13. Assume first that there is a state s e
S for which p(s) =0. Then p™P=pP=p and hence v;(p,s) =
1 —v1(p). As v1(p) = v1(p,s), we obtain v;(p) > 1 —v;(p). Hence,
v1(p) = 3.

Assume now that there is no state s € S for which p(s) = 0. The
idea is that we add a new state that cannot be reached from the
other states and where the object starts with probability 0. There-
fore, adding this state does not change the value of the game. Also,
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if player 1 chooses this state in period 1, then as p is a stationary
distribution, the distribution of the object in period 2 will be also
p. This allows us to use the previous case of the proof.

More precisely, consider the game G’ that arises by adding a
state w to G. More precisely, G’ is the game with set of states S’ =
S U {w}, initial probability distribution p’ such that p/(s) = p(s) for
each state se S and p’(w) =0, and transition matrix P’ that has
the same transition probabilities between states in S and makes
w absorbing. Then, with probability 1, the object will never be in
w. By Proposition 12, the players may ignore state w during the
game. Then, p’ is a stationary distribution of P/, and hence by the
first part we find v{(p) = v/ (p') > % O
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