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1  |  INTRODUC TION

Vector-borne diseases (VBDs) have been a major human health prob-
lem in recent decades. Indeed, more than 80% of the world popula-
tion lives in areas exposed to at least one vector-borne pathogen, 

and almost all VBDs occur in the tropics where access to medical 
care, safe drinking water, and sanitation systems is still not guaran-
teed (Golding et al.,  2015; WHO,  2014). In addition, an increased 
frequency of epidemic transmission and an expanding geographic 
distribution have been observed for many VBDs (Gubler,  2009; 
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Abstract
In recent decades, the emergence and resurgence of vector-borne diseases have been 
well documented worldwide, especially in tropical regions where protection and de-
fense tools for human populations are still very limited. In this context, the dynamics 
of pathogens are influenced by landscape anthropization (i.e., urbanization, deforesta-
tion, and agricultural development), and one of the mechanisms through which this 
occurs is a change in the abundance and/or diversity of the vectors. An increasing 
number of empirical studies have described heterogeneous effects of landscape an-
thropization on vector communities; therefore, it is difficult to have an overall picture 
of these effects on a global scale. Here, we performed a meta-analysis to quantify the 
impacts of landscape anthropization on a global scale on the presence/abundance 
and diversity of mosquitoes, the most important arthropods affecting human health. 
We obtained 338 effect sizes on 132 mosquito species, compiled from 107 studies 
in 52 countries that covered almost every part of the world. The results of the meta-
analysis showed an overall decline of mosquito presence/abundance and diversity in 
response to urbanization, deforestation, and agricultural development, except for a 
few mosquito species that have been able to exploit landscape anthropization well. 
Our results highlighted that these few favored mosquito species are those of global 
concern. They, thus, provide a better understanding of the overall effect of landscape 
anthropization on vector communities and, more importantly, suggest a greater risk of 
emergence and transmission of vector-borne diseases in human-modified landscapes.
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Müller et al., 2019). For instance, the incidence of dengue has grown 
dramatically around the world, with a 30-fold increase over the last 
50 years. Several major outbreaks of chikungunya have occurred in 
several places around the world in the last decade, and a resurgence 
of yellow fever has been documented after years of decline in both 
Africa and South America (Gardner & Ryman, 2010; WHO, 2014). 
Therefore, there is an urgent need to understand the global driv-
ers of vector-borne pathogen dynamics to better predict, diagnose, 
monitor, and control future pandemic outbreaks.

One of the main identified drivers of disease emergence is the 
anthropization of the landscape (Despommier et al.,  2007; Gibb 
et al., 2020; Morand & Lajaunie, 2018; Patz et al., 2000). Landscape 
anthropization can be defined through three main environmental 
components: urbanization, deforestation, and agricultural develop-
ment. Although these three components have implications for the 
emergence and proliferation of VBDs (Gubler,  1998; Vora,  2008), 
they are closely related; one can be the cause or the consequence 
of the others (DeFries et al., 2010; Nathaniel & Bekun, 2020; Tilman 
et al., 2001). Despite the complex and variable effects of landscape 
anthropization on pathogen dynamics, several systematic reviews 
have highlighted that an increase in pathogen transmission and 
prevalence was usually associated with urbanization, deforestation, 
and agricultural development (Brearley et al.,  2013; Gottdenker 
et al., 2014; White, 2015), but the mechanisms behind these land-
scape anthropization effects remain to be investigated.

There is a wide variety of mechanisms in action considering 
the inherent complexity of the spread of VBDs since it involves 
at least three organisms, namely, a parasite, a vector, and a host. 
Endoparasites are not directly exposed to landscape changes during 
their life cycle; these changes can therefore only act on these para-
sites indirectly through their effects on the vector and/or the host 
(Ferraguti et al., 2018). In this context, the expansion of the vector 
in human-modified landscapes has led to the emergence of several 
diseases caused by parasites in humans (Estrada-Peña et al., 2014; 
Morand & Lajaunie, 2018). This is, for example, the case for Chagas 
disease, transmitted by triatomine bugs; trypanosomiasis, trans-
mitted by tsetse flies (Glossina species); filariasis, transmitted by 
phlebotomine sandflies; bilharzia, transmitted by freshwater snails; 
onchocerciasis, transmitted by black flies; and malaria, dengue, 
Rift Valley fever, and West Nile fever transmitted by mosquitoes 
(Morand & Lajaunie, 2018).

During the past century, it has become established that mos-
quitoes are the most important arthropods affecting human health 
(Foster & Walker, 2019) and are the most widely studied taxa among 
invertebrates with medical importance, given their role as vectors 
of many pathogens (Chaves, 2017). Mosquitoes are found on every 
continent except Antarctica and hundreds of millions of dollars 
are spent annually to protect humans from mosquito bites all over 
the world (Diagne et al., 2020; Foster & Walker, 2019). Moreover, 
through a modification of mosquito abundance and diversity, land-
scape anthropization has led to a change in the prevalence of para-
sites responsible for avian malaria in Spain and Cameroon (Ferraguti 
et al.,  2016, 2018; Tchoumbou et al.,  2020). Numerous empirical 

studies have examined the effects of landscape anthropization on 
mosquito communities, and some authors have concluded that we 
can already draw general patterns. Overall, it has been suggested 
that mosquito abundance and diversity are higher in natural and 
rural areas than in urban areas (e.g., Ferraguti et al., 2020). However, 
no quantitative review on the subject exists in the literature except 
on a particular mosquito genus and/or a particular relationship [e.g., 
land cover and Aedes presence (Sallam et al.,  2017), deforestation 
and mosquito abundance (Burkett-Cadena & Vittor, 2018)].

Here, we conducted a comprehensive research review and a 
meta-analysis of the existing literature to highlight the overall im-
pact of landscape anthropization on mosquito presence/abundance 
and diversity as a step towards a better understanding of vector-
borne pathogen dynamics in human-modified landscapes. We con-
sidered all available studies, whether they used a spatial approach 
(e.g., data that compared several rural and urban sites at a specific 
time), a temporal approach (e.g., data that compared one rural site 
and one urban site across time), or both. We excluded studies that 
did not simultaneously sample disturbed and undisturbed sites since 
mosquito populations could vary significantly from year to year 
(Chase & Knight, 2003; Reisen et al., 2008; Wolda & Galindo, 1981). 
We pooled the effects of the three environmental components (i.e., 
urbanization, deforestation, and agricultural development) to ob-
tain the largest picture of the impacts of landscape anthropization 
and the greatest number of effect sizes. The specific objectives of 
this meta-analysis were (i) to quantitatively test the prediction of a 
decrease in mosquito abundance and diversity in human-modified 
landscapes on a global scale; (ii) to investigate how different mos-
quito species respond to the three environmental components; and 
(iii) to assess whether the response is linked to the ability to transmit 
human pathogens of mosquito species.

2  |  MATERIAL S AND METHODS

2.1  |  Literature search

Peer-reviewed publications were sourced from the following data-
bases: Web of Science Core Collection, KCI-Korean Journal Database, 
MEDLINE, Russian Science Citation Index and SciELO Citation Index 
(http://www.webof​knowl​edge.com) using a combination of key-
words including Culicidae, presence, abundance, richness, diversity, 
habitat loss, fragmentation, anthropogenic, landscape/land-use 
change, urban, agriculture and forest (Figure 1). The search gener-
ated 1648 studies published until June 2021.

We first eliminated the references that did not fit the purpose 
of our review based on their title and abstract. Then, we excluded 
studies whose objectives were not to test the effect of landscape 
anthropization on mosquito abundance and diversity after a full 
reading of the text. In addition, we excluded studies that did not ful-
fil the following eligibility criteria: the study (i) was written in English; 
(ii) identified mosquitoes to species, (iii) estimated mosquito pres-
ence/absence, abundance, or diversity; (iv) used a clear landscape 
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anthropization gradient; (v) used data sampled the same year in 
each environment; (vi) had at least two sampling points per habitat 
or more than three sampling points on a landscape anthropization 
gradient; (vii) was not a literature review; and (viii) had available raw 
data. This resulted in 107 studies from which data were extracted. 
The process and outcome of the literature search were summarized 
in the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram (Figure 1), as well as in the support-
ing information (Appendix S1).

2.2  |  Data extraction and effect size calculation

For each study, we recorded the response variable studied [mos-
quito presence/abundance or diversity (i.e., species richness, 
Simpson or Shannon index) depending on the study], the mosquito 
taxonomy (genus and species), and the stage (immature or adult). 
We extracted the correlation coefficient between the gradient of 
landscape anthropization (i.e., deforestation, agricultural develop-
ment, or urbanization) and the response variable from text, tables, 
or figures (with the “digitize” R package; Poisot, 2011) within publica-
tions, supplementary materials, or solicited authors. For studies that 
made comparisons of mosquito abundance or diversity between two 
habitat categories (e.g., urban vs. rural), we extracted the means and 
standard deviations. Finally, when proportions of individuals were 
given (i.e., presence/absence between two habitat categories), we 
used the odds ratio (Cooper et al., 2019).

As not all studies reported the same effect size metrics, their di-
rect comparison was not possible. We, thus, used conversions from 
Cooper et al. (2019) and Harrer et al. (2021) to obtain the correlation 
coefficient r, which is a common metric of effect size allowing com-
parison between studies. To comply with the application conditions 
of meta-analytical tests (e.g., the distribution normality of effect 
sizes), we then converted each r into Fisher's Zr (Cooper et al., 2019). 
The transformation from r to Zr is given by Zr = 0.5 × ln((1 + r)/(1 − r)). 
After the analyses, meta-analytic Zr means were back transformed 
into meta-analytic r means to facilitate interpretations.

2.3  |  Meta-analyses

We tested the overall effect of landscape anthropization on mos-
quito diversity (hereafter called meta-diversity analysis) using a 
random-effects model to estimate the mean of the distribution of 
effect sizes. Effect sizes (Zr) were used as the dependent variables, 
and their variance was calculated using the formula: 1/(n − 3) (Cooper 
et al., 2019), where n is the sample size associated with each effect 
size. Sample sizes were determined from the number of sampling 
sessions for studies that used a temporal approach and from the 
number of sampling sites for studies that used a spatial approach. 
For the overall effect of landscape anthropization on mosquito pres-
ence/abundance (hereafter called meta-abundance analysis), we 
ran a multilevel model to consider several types of nonindepend-
ence in the data arising from multiple effect sizes originating from 

F I G U R E  1  PRISMA flow diagram (Liberati et al., 2009) used for this meta-analysis on the effects of landscape anthropization on mosquito 
presence/abundance and diversity.
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the same study or the same species (Figure  2; Appendix S1). We, 
thus, accounted for species- and study-level nonindependence by 
including mosquito species and study ID as random factors in the 
model. Meta-analytic means and their confidence intervals were 
obtained for the meta-diversity and meta-abundance analyses by the 
intercept test of the random-effects model and the multilevel model, 
respectively.

We tested the random factor “species” with a model comparison 
and a likelihood ratio test (LRT). We also assessed the inconsistency 
in effect sizes among studies by computing I2, which quantifies the 
percentage of variability in the effect sizes that is not due to sampling 
error. In the case of multilevel models, we partitioned I2 between 
the two random factors (i.e., study and mosquito species factors). 
According to Higgins et al.  (2003), heterogeneity was considered 
low, moderate, and high when I2 = 0.25, 0.50, and 0.75, respectively.

2.4  |  Mixed-effects meta-regression analyses

After estimating the overall effect of landscape anthropization on 
mosquito presence/abundance, we ran a meta-regression to assess 
the contribution of one moderator to the heterogeneity of effect 
sizes. As in multilevel models, mosquito species and study ID were 
entered as random factors within all models. We identified the mos-
quito's ability to transmit human pathogens as a moderator that 
could explain the heterogeneity of the landscape anthropization 
effects on mosquito presence/abundance. Indeed, Burkett-Cadena 
and Vittor  (2018) systematically reviewed the literature focusing 
on mosquito abundance changes between forested and deforested 
areas and showed that vectors of human pathogens are more abun-
dant in deforested areas, while a reverse trend was observed for non-
vectors. We, thus, tested whether this pattern is still observed with 
a global view of the landscape anthropization effects on mosquitoes 
and with a much larger number of publications (Burkett-Cadena and 
Vittor (2018): N = 17 publications, and neither a meta-analytic ap-
proach was used nor were meta-analytic means provided).

According to Becker et al.  (2020) and Wilkerson et al.  (2021), 
we identified 14 of the most important VBDs for humans (i.e., ma-
laria, chikungunya, Ross River fever, equine encephalomyelitis, 

O'nyong-nyong, Sindbis fever, yellow fever, dengue, Zika virus dis-
ease, West Nile fever, Japanese encephalitis, Usutu virus disease, 
Rift Valley fever, and lymphatic filariasis) and identified the number 
of these 14 VBDs that were associated with each mosquito species. 
We considered that the number of VBDs associated with a mosquito 
species reflected its ability to transmit vector-borne pathogens. To 
reduce the number of categories in our models, we ranged mosquito 
species into five arbitrary classes of associated VBD numbers (0, 1 to 
3, 4 to 6, 7 to 9, and 10 or more associated VBDs).

As there is an advantage for mosquito species that feed on 
mammals and more specifically on humans in anthropized environ-
ments (due to higher human density) compared to other mosquito 
species, we planned to add a feeding pattern moderator in the 
meta-regression models. We hypothesized that mosquito species 
associated with mammals would be positively affected by landscape 
anthropization while mosquito species associated with birds, am-
phibians and more generally wildlife would be negatively affected. 
However, almost all mosquito species studied in this study feed on 
mammals and there was therefore not enough variability in the feed-
ing preference (Becker et al., 2020; Wilkerson et al., 2021) to test 
this hypothesis.

Finally, we did not test a moderator representing the type of 
disturbance (i.e., urbanization, deforestation, and agricultural devel-
opment) due to the strong correlations between these three envi-
ronmental components.

2.5  |  Publication bias

Publication bias occurs when the publication of studies depends on 
their results (Rothstein et al., 2005). This is especially true for small 
studies where only very large effects become significant. This publi-
cation bias can lead to overestimating or underestimating the overall 
effect size according to a theoretical expectation that could be in-
valid (Harrer et al., 2021). We quantified the publication bias across 
both meta-diversity and meta-abundance analyses using both Egger's 
regression (Egger et al.,  1997) and Duval & Tweedie trim-and-fill 
(Duval & Tweedie, 2000) methods (i.e., two publication bias analy-
ses per response variables for a total of four analyses). Following the 

F I G U R E  2  Geographic distribution of 
the 107 studies used in the meta-analysis 
(i.e., blue triangles) testing the effects of 
landscape anthropization on mosquito 
presence/abundance and diversity.
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recommendation of Nakagawa and Santos  (2012), we conducted 
Egger's regression and trim-and-fill methods on the residuals for the 
meta-abundance analysis because they account for nonindepend-
ence due to multiple effect sizes originating from the same study or 
the same species.

All calculations were performed with the metafor 
(Viechtbauer, 2010) and meta (Balduzzi et al., 2019) packages avail-
able in R software (version 4.1.1; R Core Team, 2021).

3  |  RESULTS

3.1  |  Summary of the literature review

The 107 studies were published between 1992 and 2021, covered 
52 countries distributed over five continents, with 16, 21, 10, 6, 
28, and 26 publications from Africa, Asia, Europe, Oceania, North 
America, and South America, respectively (Figure 2). The full data 
set comprises 338 effect sizes, including 132 mosquito species, 
with 29 effect sizes obtained from 29 studies for the meta-diversity 
analysis and 309 effect sizes obtained from 98 studies for the meta-
abundance analysis. The three main landscape anthropization gradi-
ents were studied in the literature (i.e., urbanization, deforestation, 
and agricultural development), but most studies were focused on 
urbanization effects (70% of studies; Appendix S1).

Seventy-one mosquito species studied were mammophilic or op-
portunistic, while only two species were ornithophilic and one spe-
cies was associated with amphibians. To our knowledge, the feeding 
preference of the remaining 58 species is unknown. In addition, the 
most studied mosquitoes in a landscape anthropization context were 
Aedes albopictus (36 studies), Aedes aegypti (25 studies), Culex pipiens 
(20 studies), Culex quinquefasciatus (15 studies), and Aedes vexans (11 
studies), all of which were opportunistic or had a feeding preference 
associated with mammals (Appendix S1).

3.2  |  Overall landscape anthropization effects on 
mosquito presence/abundance and diversity

From the global data set, there was a significant negative overall 
effect size of landscape anthropization on both mosquito diversity 
(r = −0.25, 95% CI: −0.45 to −0.02, p = .03; Figure 3) and mosquito 
presence/abundance (r = −0.13, 95% CI: −0.22 to −0.04, p =  .006; 
Figure  4). Overall, we found substantial heterogeneity not caused 
by sampling error in the meta-diversity analysis (I2 = 83%) and in the 
meta-abundance analysis (I2 = 96%). More precisely, based on Higgins 
and Thompson's “rule of thumb” (Higgins et al., 2003), within-study 
variations explained a high amount of heterogeneity (I2  =  53%), 
whereas between-study variations and mosquito species variations 
explained a low amount of heterogeneity (I2 = 16% and I2 = 27%, 
respectively) in effect sizes for the meta-abundance analysis.

The life stage (i.e., adult, immature or both) or type of response 
(i.e., presence or abundance) did not change the results when they 

were added to the models (F2,306 = 2.11, p = .12 and F1,307 = 0.30, 
p  =  .58, respectively), indicating that these moderators did not  
explain the observed heterogeneity. Therefore, they were not  
considered further.

3.3  |  Are landscape anthropization effects 
associated with mosquito species or the mosquito's 
ability to transit vector-borne pathogens?

Overall, we found a significant difference among mosquito spe-
cies regarding the landscape anthropization effects on mos-
quito presence/abundance (LRT  =  32.3, p < .0001; AICcfull  =  500, 
AICcreduced = 530). Eight mosquito species had an increased abun-
dance in response to landscape anthropization, while the others had 
a decreased abundance or were not affected by urbanization, de-
forestation, and agricultural development (Figure 4). Moreover, we 
found a significant association between the landscape anthropiza-
tion effects on mosquito presence/abundance and the mosquito's 
ability to transmit vector-borne pathogens (F4,304 = 4.27, p = .002). 
Landscape anthropization led to a decrease in the presence/abun-
dance of mosquito species associated with any or a few VBDs, while 
it led to an increase in the presence/abundance of mosquito species 
associated with many VBDs (Figure 4).

3.4  |  Publication bias

Based on Egger's regression (Egger et al., 1997), there was no sig-
nificant evidence for publication bias for either the meta-diversity or 
the meta-abundance analyses (intercept = −0.33, 95% CI: −1.59 to 
0.92, and intercept  =  −0.28, 95% CI: −0.88 to 0.33, respectively). 
The trim-and-fill analysis estimated a total of 4 and 27 effect sizes 
missing from the right side of the distribution for the meta-diversity 
and meta-abundance analyses, respectively. In addition, the correc-
tion suggested by this method reduced both the overall effect size 
for the meta-diversity and the meta-abundance analyses (r = −0.16, 
95% CI: −0.37 to 0.07 and r = −0.05, 95% CI: −0.14 to 0.04, respec-
tively). However, as the trim-and-fill method can underestimate the 
true overall effect size when there is no publication bias and signifi-
cant heterogeneity among effect sizes (Peters et al., 2007), all pub-
lication bias analyses did not suggest evidence of a large publication 
bias in our data.

4  |  DISCUSSION

The effects of urbanization, deforestation, and agricultural develop-
ment on mosquito abundance and diversity have been studied in al-
most every part of the world, with data mainly focused on mosquito 
species of importance to human health. Overall, the abundance and 
diversity of mosquitoes are lower in anthropized areas than in natu-
ral areas, although not all species responded similarly. While most 
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mosquito species had an abundance that decreased with urbaniza-
tion, deforestation and agricultural development, the abundance of 
mosquitoes that are of global concern increased in human-modified 
landscapes.

Several comprehensive reviews on the effect of land-use 
changes on mosquito ecology identified different trends (Brugueras 
et al., 2020; Burkett-Cadena & Vittor, 2018; Madzokere et al., 2020; 
Sallam et al.,  2017; Walsh et al.,  1993). First, different mosquito 
species were affected in different ways by deforestation (Sallam 
et al., 2017; Walsh et al., 1993), resulting in some cases a decrease 
but in most cases an increase in infection risk for humans. The un-
derlying mechanisms could be a change in mosquito behaviors such 
as mating, feeding, and oviposition in anthropized environments 
(Madzokere et al., 2020; Walsh et al., 1993). Second, the species fa-
vored by deforestation are mainly the medically important species, 
which, thus, leads to an increase in disease risk in deforested areas 
(Burkett-Cadena & Vittor, 2018; Madzokere et al., 2020). However, 
all these comprehensive reviews did not have a meta-analytical ap-
proach and it is difficult to conclude the overall impact of landscape 

anthropization on mosquito abundance and diversity. Our quan-
titative synthesis provides meta-analytic means of the impacts of 
landscape anthropization on mosquito communities, and our results 
showed that overall, mosquito abundance and diversity were more 
often reduced than increased in human-modified landscapes. These 
results are in line with other studies that showed that urbanization, 
deforestation, or agricultural development cause disturbances that 
affect ecological communities, often leading to an increase in the 
abundance of a small group of species and a general loss of biodi-
versity (Fahrig,  2003; McKinney,  2008; Miller & Kauffman,  1998; 
Newbold et al., 2016).

As suggested by many authors, these results could be explained 
by the reduction in the availability of breeding areas in urban en-
vironments, which led to a lower diversity and a lower surface of 
wetlands (e.g., lower number of tree holes, ditches, vernal pools, and 
leaf axils) for mosquitoes (Ferraguti et al., 2016; Gardner et al., 2014; 
Loaiza et al., 2019; Meyer Steiger et al., 2016a). In human-modified 
landscapes, natural environments (e.g., standing water or vegeta-
tion) are often replaced with artificial elements for human needs 
(e.g., housing, shopping centres, and industries). This reduces mos-
quito abundance and diversity, except for those species capable of 
growing in artificial and/or temporary ponds (i.e., buckets, ornamen-
tal bromeliads, or flowerpots), such as Ae. albopictus or Ae. aegypti 
(Wilke et al., 2019). Moreover, in human-modified landscapes, the 
blood and sugar sources for adult mosquitoes are lower and less di-
verse than in natural habitats, especially in forested areas (Gardner 
et al.,  2014). Indeed, the forest habitat has the highest levels of 
terrestrial species diversity, and almost all taxonomic groups are 
slightly more likely to occur with increasing forest cover (Newbold 
et al., 2014). In addition, Aronson et al.  (2014) showed that urban-
ization led to lower densities of both animal and plant species on 
a global scale. The preference of mosquitoes for different types of 
habitats could also contribute to the low mosquito abundance and 
diversity in human-modified landscapes because several studies 
showed mosquito species-specific preferences for understory veg-
etation or tree cavities more frequently found in natural environ-
ments (Burkett-Cadena et al.,  2008; Burkett-Cadena et al.,  2013). 
However, mosquito resting site preference and selection are not 
yet fully understood and the underlying mechanisms remain to be 
determined. Another potential driver of the decrease in mosquito 
abundance and diversity in human-modified landscapes is the im-
plementation of mosquito controls in some urban areas to protect 
human populations. For example, Ferraguti et al. (2016) mentioned 
that larvicide treatments with Bacillus thuringiensis were carried out 
in some of the studied urban areas and may have reduced the mos-
quito populations both in terms of density and diversity.

Despite this overall pattern of a decrease in mosquito abundance 
in response to landscape anthropization, not all mosquito species 
responded in the same way. First, we found a large heterogeneity 
among effect sizes, even within a genus or within the same study. 
These results are not surprising given the variety of mosquito eco-
logical characteristics, such as the difference in dispersal capacities 
(Verdonschot & Besse-Lototskaya, 2014), feeding behavior (Becker 

F I G U R E  3  Effect size of landscape anthropization on mosquito 
diversity for each study and meta-analytic mean (overall) based on 
the correlation coefficient (±95% CI).

Overall (n = 29)

Wilk−da−Silva et al. (2020)
Thongsripong et al. (2013)

Spence Beaulieu et al. (2019)
Petruff et al. (2020)

Overgaard et al. (2003)
Oduola et al. (2013)

Naranjo−Díaz et al. (2020)
Meyer Steiger et al. (2016b)
Meyer Steiger et al. (2016a)

Mayi et al. (2020)
Loaiza et al. (2019)

Kamaladhasan et al. (2016)
Johnston et al. (2014)
Johnson et al. (2020)
Johnson et al. (2008)

Jegal et al. (2020)
Hopkins et al. (2019)

Hernández−Valencia et al. (2020)
González et al. (2020)

Gardner et al. (2014)
Ferraguti et al. (2016)

Chaves et al. (2016)
Chaves et al. (2021)
Chaves et al. (2011)

Cansado−Utrilla et al. (2020)
Camp et al. (2019)

Câmara et al. (2020)
Brant et al. (2016)

Almeida et al. (2020)
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F I G U R E  4  Meta-analytic mean per mosquito species and class of associated VBD (Vector-borne disease) number as well as meta-analytic 
mean (overall) based on the correlation coefficient (±95% CI) for the landscape anthropization effects on mosquito presence/abundance. 
n refers to the number of effect sizes. The colours blue, red, or grey, respectively, showed whether mosquito species was positively, 
negatively, or not affected by landscape anthropization. Ad. = Aedeomyia, Ae. = Aedes, An. = Anopheles, Ar. = Armigeres, Cq. = Coquillettidia, 
Cx. = Culex, Cs. = Culiseta, De. = Deinocerites, Hg. = Haemagogus, Li. = Limatus, Lt. = Lutzia, Ma. = Mansonia, Ps. = Psorophora, Sa. = Sabethes, 
Tx. = Toxorhynchites, Tr. = Trichoprosopon, Ur. = Uranotaenia, Ve. = Verrallina, Wy. = Wyeomyia.

Cx. duttoni (n = 1)
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et al., 2020), larval habitat preference (Almeida et al., 2020), or devel-
opment time (Russell, 1999). In addition, the predation pressure on 
mosquitoes in urban areas is lower than that in rural areas (Carlson 
et al.,  2004), which reduces the mechanism of predator-mediated 
coexistence and allows mosquitoes that are adapted to human-
modified landscapes to proliferate at the expense of other species 
(Kesavaraju et al., 2008). Second, we also found an inconsistency in 
effect sizes within studies even when controlling for heterogeneity 
due to species identity, which could reflect that the abundance of a 
species partly depends on other species present in the community. 
As some species tolerate human-modified environments, they out-
weigh other less tolerant species that are then excluded by compet-
itive exclusion. This is in accordance with Johnson et al. (2008) and 
Lounibos and Juliano (2018) who suggested that competition among 
mosquito species can be an important factor in determining mos-
quito abundance, realized niche and future distribution.

The heterogeneity among the effects of landscape anthropiza-
tion on mosquito abundance is reduced when the ability of mos-
quitoes to be a vector of human diseases is considered. Indeed, the 
abundance of mosquitoes that are of global concern increased with 
urbanization, deforestation, and agricultural development, while the 
abundance of the others decreased. These results may be due to co-
variance between life-history traits and the human disturbance tol-
erance of species. Species with a large home range, fast growth, and 
early reproduction are less prone to elimination after a disturbance 
(Ewers & Didham, 2006; Joseph et al., 2013; Newbold et al., 2018; 
Purvis et al., 2000) but, at the same time, they are the most compe-
tent species for a pathogen (Johnson et al., 2012; Joseph et al., 2013; 
Lee et al., 2008). In other words, considering life-history trade-offs, 
tolerant species to landscape anthropization may have rapid growth 
and high reproductive output at the expense of effective pathogen 
defenses. As suggested by Burkett-Cadena and Vittor (2018), these 
results could also be the consequence of a spatial convergence of 
the pathogen, the host, and the vector through evolutionary pro-
cesses. Resilient species in human-modified landscapes may become 
efficient vectors of pathogens because natural selection may favor 
the evolution of pathogens infecting the most abundant vector, 
thus allowing efficient dispersion. Consequently, the most efficient 
vectors for dispersing human diseases seem to be the species that 
have a better fitness when humans are present in high density (i.e., 
in human-modified landscapes).

Our results have several ecological consequences. First, they 
suggest an overall loss of biodiversity and a biotic homogeniza-
tion in human-modified landscapes. This is in accordance with 
McKinney  (2006), who showed that landscape anthropization was 
responsible for the homogenization of the environment. In fact, the 
habitat diversity for flora and fauna in an urban area is much less diver-
sified than that in the same area in a natural environment. Likewise, 
the urban habitats of two distant cities (e.g., on two different conti-
nents) are very similar compared with two adjacent natural habitats 
in these two cities. This homogenization process in human-modified 
landscapes leads to a reduction in the species richness of several 
taxa, including mammals, birds, reptiles, amphibians, invertebrates, 

and plants (Chace & Walsh, 2006; Collinge, 2009; McKinney, 2008), 
and thus to the biological uniqueness of local ecosystems (McKinney 
& Lockwood, 1999). Second, the increase in abundance of the most 
efficient vectors for dispersing pathogens, as well as the proximity 
of humans and vectors in human-modified landscapes, increases the 
probability of an encounter between a pathogen and its vector and 
its transmission to the host. This ultimately makes human-pathogen 
interactions more likely in human-modified landscapes. Given the 
emergence and re-emergence of VBDs around the world, it is im-
portant to note that landscape anthropization is a factor that allows 
vectors that are of global concern to thrive.

This meta-analysis highlights several ways to guide future re-
search. First, the availability of raw data should be increased in 
empirical studies, giving clear observed effect sizes rather than 
statistical measures. This would avoid excluding many studies (e.g., 
83 in this meta-analysis) because the data that allow the calculation 
of effect sizes are not provided in the publication and are not or 
no longer available from the authors. Second, most studies have 
focused on mammophilic mosquito species. There are at least two 
reasons for this: (i) these species are important to human health 
and are, thus, of primary interest to the medical community and 
(ii) the mosquito sampling strategy often used in the literature is 
human landing catches, which is the most accurate and unbiased 
method to evaluate exposure to mosquito bites or VBDs in humans 
(Wotodjo et al., 2015). Extending the study of the effects of land-
scape anthropization to other mosquitoes would provide valuable 
information on the epidemiological risks to livestock and wildlife in 
human-modified landscapes. Third, most studies have been based 
on a one-dimensional comparison between disturbed and undis-
turbed sites without incorporating an explicit quantitative approach 
to landscape anthropization effects. Therefore, this did not allow us 
to study the nonlinearity of the relationship between mosquito vari-
ables and landscape anthropization or the presence of thresholds, 
which is important information for the management and conserva-
tion of natural environments.

Specific effects associated with each landscape anthropiza-
tion components on mosquito species have been documented in 
the literature and reviewed (e.g., Norris,  2004; Vora,  2008). First, 
deforestation favored mosquitoes with higher vectorial capacities. 
Hendy et al.  (2020) have shown that disease vector species such 
as Ae. albopictus and Ae. aegypti was only found within 100 m from 
the forest edge, while non-vector and forest specialist species were 
detected in low numbers within this area. Second, urbanization cre-
ated many breeding sites and refugia for species capable of using 
them, as well as a stable source of water during the dry season due 
to pipes underneath the streets. For instance, Cx. quinquefasciatus 
and Ae. aegypti breed most successfully in fresh water-filled man-
made containers and are therefore found primarily around houses 
in urban environments (Valentine et al.,  2020). Third, agricultural 
development led to ideal local environments (e.g., higher sedimenta-
tion, shallowest water depth) and climate (e.g., warmer temperature) 
for several mosquito species, including Ae. albopicus or Cx. quinque-
fasciatus (Buckner et al., 2011). Here, we were not able to separate 
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the effects of urbanization, deforestation, and agricultural devel-
opment, although it is essential information in landscape planning. 
There are two reasons for this: (i) most studies only focused on one 
gradient without taking into account the others and (ii) the strong 
correlation between landscape anthropization gradients makes it 
difficult to quantify their relative effects (e.g., the comparison of 
forest and urban environments corresponding to both deforestation 
and urbanization).

5  |  CONCLUSIONS

Our comprehensive review revealed that urbanization, deforesta-
tion, and agricultural development have negative impacts on mos-
quito abundance and diversity on a global scale. However, we found 
heterogeneity in these overall patterns, with a large difference in re-
sponse to landscape anthropization among mosquito species. From an 
ecological point of view, landscape anthropization leads to a general 
decline in mosquito diversity by reducing most mosquito abundance 
and by favoring a few species adapted to human-modified landscapes. 
These few mosquito species do not belong to the same genus, and a 
large variation in response is observed among several mosquito spe-
cies within a genus. This finding indicates that grouping species in 
genera may not be appropriate for studying the effects of landscape 
anthropization because the ability to develop and survive in human-
modified landscapes could be different even for two phylogenetically 
closely related mosquito species. Taking into consideration the ability 
of a mosquito species to disperse VBDs allowed us to partly explain 
the heterogeneity of effect sizes. The abundance of mosquitoes of 
global concern increased in human-modified landscapes, while the 
abundance of others decreased. This meta-analysis revealed a factor 
that allows vectors of human diseases to thrive, highlighting a positive 
correlation between the abundance of these vectors and landscape 
anthropization. This suggests a greater risk of pathogen spillover in 
human-modified landscapes and given the rapid land use changes for 
the benefit of humans, it is important to take this result into account in 
land-use planning to reduce the probability of VBD emergence.
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