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A B S T R A C T

For strongly non-linear and high-dimensional inverse problems, Markov chain Monte Carlo (MCMC) methods
may fail to properly explore the posterior probability density function (PDF) given a realistic computational
budget and are generally poorly amenable to parallelization. Particle methods approximate the posterior
PDF using the states and weights of a population of evolving particles and they are very well suited to
parallelization. We focus on adaptive sequential Monte Carlo (ASMC), an extension of annealed importance
sampling (AIS). In AIS and ASMC, importance sampling is performed over a sequence of intermediate
distributions, known as power posteriors, linking the prior to the posterior PDF. The AIS and ASMC algorithms
also provide estimates of the evidence (marginal likelihood) as needed for Bayesian model selection, at basically
no additional cost. ASMC performs better than AIS as it adaptively tunes the tempering schedule and performs
resampling of particles when the variance of the particle weights becomes too large. We consider a challenging
synthetic groundwater transport inverse problem with a categorical channelized 2D hydraulic conductivity
field defined such that the posterior facies distribution includes two distinct modes. The model proposals are
obtained by iteratively re-simulating a fraction of the current model using conditional multiple-point statistics
(MPS) simulations. We examine how ASMC explores the posterior PDF and compare with results obtained
with parallel tempering (PT), a state-of-the-art MCMC inversion approach that runs multiple interacting chains
targeting different power posteriors. For a similar computational budget, ASMC outperforms PT as the ASMC-
derived models fit the data better and recover the reference likelihood. Moreover, we show that ASMC partly
retrieves both posterior modes, while none of them is recovered by PT. Lastly, we demonstrate how the power
posteriors obtained by ASMC can be used to assess the influence of the assumed data errors on the posterior
means and variances, as well as on the evidence. We suggest that ASMC can advantageously replace MCMC
for solving many challenging inverse problems arising in the field of water resources.
1. Introduction

Markov chain Monte Carlo (MCMC) methods are widely used to
tackle probabilistic inverse problems arising in hydrology. As the di-
mensionality of the parameter space and the non-linearity of the for-
ward problem increases, standard MCMC methods often fail to explore
the posterior probability density function (PDF) given realistic com-
putational constraints. This happens as the Markov chains may be
trapped in local minima for long times or they may be unable to
move between modes of high posterior probability. To circumvent
such issues, methods exploring a series of so-called power posteriors
have been developed. In a power posterior, less weight is given to the
likelihood function as it is raised to the inverse of a temperature that
is larger than one, something that is typically referred to as tempering.
Tempering-based methods take advantage of the enhanced freedom of
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exploration at higher temperatures (sampling closer to the prior PDF) as
popularized by the widely-used simulated annealing method for global
optimization (Kirkpatrick et al., 1983).

Parallel tempering (Earl and Deem, 2005) is a MCMC method
in which many interacting chains target different power posteriors.
Through proposed swaps of the states between chains, states sampled at
higher temperatures can act as model proposals in the chains targeting
the posterior distribution, also called unit temperature chains. Analo-
gous to classical MCMC methods, PT approximates the posterior PDF by
the states of the unit temperature chains sampled after burn-in. In the
context of geophysical inversion, Sambridge (2014) demonstrated that
PT can drastically improve sampling efficiency leading to an expanded
exploration of the parameter space compared to standard MCMC. The
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PT method has lately been applied in a range of geoscientific problems
such as landscape evolution (Chandra et al., 2019), groundwater flow
and transport (Laloy et al., 2016; Reuschen et al., 2020) and earthquake
source inversion (Gallovič et al., 2019).

A highly parallelizable alternative to MCMC is offered by particle
methods such as Annealed Importance Sampling (AIS, Neal (2001)) and
Sequential Monte Carlo (SMC, Doucet and Johansen (2011)), where
the posterior distribution is approximated using a weighted sample
of particle states. In these methods, importance sampling steps are
performed sequentially along a sequence of power posteriors. What
differentiates these two methods from each other is that SMC per-
forms resampling of the particle population when the variance of
the importance weights becomes too high. One outstanding feature
of both methods is that the evidence, the normalizing constant in
Bayes’ theorem and the key quantity in Bayesian model selection, is
estimated as well. Compared with its extensive use in science and
engineering, SMC appears poorly explored in the Earth sciences (Linde
et al., 2017). Zhou et al. (2016) proposed an adaptive version of SMC
(ASMC) that automatically tunes the temperature reduction between
neighboring power posteriors. Recently, adaptive SMC algorithms were
introduced and successfully implemented in geophysical applications
for posterior PDF and evidence estimations (Amaya et al., 2021; Davies
et al., 2021).

Realistic geological priors can often not be expressed by two-point
geostatistical models (e.g., multivariate Gaussian), for example, when
connectivity patterns play an essential role in determining the system
response (Gómez-Hernández and Wen, 1998; Renard and Allard, 2013).
Multiple-point statistics (MPS) is a sub-field of geostatistics aiming
at generating conditional model realizations that honor higher-order
statistics found in a so-called training image, a gridded 2-D or 3-D
representation of the spatial field of interest that is built from generic or
previous geological knowledge of the site (Mariethoz and Caers, 2014).
To generate MPS-based candidate models within MCMC inversions, one
popular approach is sequential geostatistical resampling (SGR) (Ruggeri
et al., 2015), in which model proposals are generated by re-simulating
a random fraction of the current model conditioned to the remaining
grid values. The SGR framework embraces two end-member strategies:
either a randomly located boxed-shaped area is resimulated as in se-
quential Gibbs sampling by Hansen et al. (2012) and in blocking MCMC
by Fu and Gómez-Hernández (2009), or random points throughout
the model domain are resimulated as in iterative spatial resampling
by Mariethoz et al. (2010a). Recently, hybrid methods determining
an optimal combination of these end-members have been proposed
by Reuschen et al. (2021). Other approaches relying on much faster
model proposals are offered, for instance, by graph cuts (Zahner et al.,
2016) or by encoding the complex priors in a much lower-dimensional
space using deep generative networks, thereby, reducing the number
of inferred parameters from several thousands of unknowns to some
tenths of latent variables (Laloy et al., 2017, 2018).

In this paper, we consider the challenging groundwater transport
inverse problem introduced by Laloy et al. (2016). It consists of a 2-
D synthetic tracer experiment in which concentration is monitored at
pumping wells and the aim is to recover the hydraulic conductivity
field assuming a binary geological media (their case study 2). This test
case is particularly challenging for three reasons: (i) the underlying
non-linearity caused by long-range connectivity of high-conductivity
zones and a conductivity ratio of 100 between permeable channels
and less permeable matrix material, (ii) a large number of observations
with a high signal-to-noise ratio and (iii) a true field that is designed
such that the targeted posterior distribution is bimodal with the modes
being located far from each other. Laloy et al. (2016) demonstrated
how PT clearly outperforms standard MCMC when used within a SGR
framework. Nevertheless, even if PT offered important improvements
it did not sample any of the posterior modes and the simulated data
of the generated model realizations did not fit the true data to the
2

level of the added noise. Compared to PT, ASMC presents the following f
advantages: (i) adaptive determination of the temperature schedule,
(ii) the model proposal scale is tuned adaptively using the acceptance
rate at the previously considered temperature and, (iii) the evidence
is calculated along the run with updates being made every time the
temperature changes. In PT, the temperature schedule and the proposal
scale need to be pre-defined. The evidence estimation in PT is reduced
to a one-dimensional integral over the inverse temperatures, which can
imply large approximation errors if the temperatures are comparatively
few or poorly chosen. We assess the performance of ASMC for this
test case and compare the results with the PT results of Laloy et al.
(2016). We further discuss the insights offered by analyzing the results
at intermediate temperatures corresponding de facto to assumptions of
larger measurement noise. With respect to the geophysical ASMC study
by Amaya et al. (2021), the present work considers a hydrogeological
problem that is much more non-linear and the model parameterizations
and model proposal schemes are entirely different. In ASMC-SGR we
need to consider as many model parameters as there are pixels (7500 in
our example) while the deep generative network used by Amaya et al.
(2021) only considered a few tenths of unknown latent variables.

2. Method

2.1. Bayes’ theorem

It is often beneficial to pose inverse problems within a probabilistic
framework using Bayes’ theorem, in which the parameters to infer
are treated as random variables. If we consider a conceptual model
composed by parameters 𝜽, the posterior pdf 𝜋(𝜽|𝐲) is given by:

𝜋(𝜽|𝐲) = 𝜋(𝜽)𝑝(𝐲|𝜽)
𝜋(𝐲)

. (1)

The prior PDF 𝜋(𝜽) represents the a priori information concerning
the model parameters. This information is then weighted by the like-
lihood function 𝑝(𝐲|𝜽) that expresses, for a given noise model, how
probable it is that a particular set of parameter values have produced
the observations 𝐲. Assuming the noise on the data to be uncorrelated
and normally distributed with a constant variance 𝜎2, the likelihood is
expressed as:

𝑝(𝐲|𝜽) = (
√

2𝜋𝜎2)−𝑚𝑑 exp

[

− 1
2𝜎2

𝑚𝑑
∑

𝑖
(𝑦𝑖 − 𝐹𝑖(𝜽))2

]

, (2)

where 𝑚𝑑 is the number of data points and 𝐹 (𝜽) the simulated data
iven a set of model parameter values. It can be convenient to consider
he variable component of the natural logarithm of the likelihood:

(𝐲|𝜽) = − 1
2𝜎2

𝑚𝑑
∑

𝑖
(𝑦𝑖 − 𝐹𝑖(𝜃))2, (3)

hich we refer to as the reduced log-likelihood as it ignores the
onstant terms.

The evidence, also known as the marginal likelihood, is the nor-
alizing constant in Bayes’ theorem. This quantity can be used to

ank alternative conceptual models, defined by different prior models,
s it represents how consistent a conceptual model is with the set
f observations under consideration (Kass and Raftery, 1995). The
vidence is a multidimensional integral over the parameter space:

(𝐲) = ∫ 𝜋(𝜽)𝑝(𝐲|𝜽)𝑑𝜽, (4)

aking it very challenging to calculate for high-dimensional mod-
ls. Brunetti et al. (2019) focus particularly on how to compute the ev-
dence to compare different conceptual models within a MPS inversion
ramework.
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2.2. Sequential geostatistical resampling

Prior models are often represented by mathematical functions al-
lowing any prior model realization to be evaluated in terms of its
probability. Examples include uniform priors, multivariate Gaussian
priors and latent space distributions learned by deep generative neural
networks. However, such explicit prior model parameterizations are not
always suitable, or possible, when seeking to encode realistic geological
spatial heterogeneity (Linde et al., 2015). As an alternative, one can
instead consider realizations of MPS simulation tools (Strebelle, 2002)
as samples drawn from the prior model. These realizations honor the
higher-order statistics of training images that can be built based on
expected geological structures, outcrops, geophysical or borehole data.
The downside of such prior sampling-based approaches is that one
cannot calculate the prior probabilities of model realizations as needed
in most MCMC algorithms.

Sequential geostatistical resampling is a mechanism allowing MCMC
inference when model proposals are drawn using MPS algorithms that
sample proposals proportionally to the prior density. It builds on the
foundational paper by Mosegaard and Tarantola (1995) in geophysics.
However, it is noteworthy that the underlying philosophy of such
a prior sampling-based algorithm has more recently received strong
theoretical backing in the context of infinite-dimensional inversion
problems (e.g., Cotter et al. (2013)). At each MCMC iteration, a new
model proposal is generated by re-simulating a random fraction of
the current model realization using an MPS algorithm, conditioned
to the remaining pixel values. There are two end-member approaches
to determine the locations of the pixels that are to be resimulated:
either a randomly located box-shaped area (Alcolea and Renard, 2010;
Hansen et al., 2012) or randomly located points (Mariethoz et al.,
2010a). In this study, we use boxes as it provided the best results
in Laloy et al. (2016). We further rely on the DeeSse MPS algorithm
(http://www.randlab.org/research/deesse/) that is, in turn, based on
the direct sampling method by Mariethoz et al. (2010b). To re-simulate
the value of a certain uninformed pixel, the algorithm scans the training
image searching for patterns that agree with those found in the vicinity
of this pixel. If a similar-enough pattern is found, it assigns the value
of the pixel under consideration in the training image to the one in the
new proposed model. This procedure is repeated for all the pixels that
are to be re-simulated.

In MCMC algorithms, the Metropolis rule is used to accept or reject
model proposals obtained from symmetric proposal distributions. The
acceptance probability 𝛤 to move from a current state 𝜽𝑐 to a proposed
tate 𝜽𝑝 is:

(𝜃𝑝, 𝜃𝑐 ) = 𝑚𝑖𝑛
(

1,
𝜋(𝜽𝑝)𝑝(𝐲|𝜽𝒑)
𝜋(𝜽𝑐 )𝑝(𝐲|𝜽𝒄 )

)

. (5)

As mentioned above, this rule cannot be used with MPS algorithms
such as DeeSse as 𝜋(𝜽) is unknown. Instead, MPS-based inversions
often rely on the extended Metropolis (Mosegaard and Tarantola, 1995)
method that is applicable if the model proposal mechanism gener-
ates samples drawn proportionally to the prior PDF. The acceptance
probability is then reduced to:

𝛤 (𝜃𝑝, 𝜃𝑐 ) = 𝑚𝑖𝑛
(

1,
𝑝(𝐲|𝜽𝒑)
𝑝(𝐲|𝜽𝒄 )

)

, (6)

which involves only likelihood ratios.

2.3. Adaptive sequential Monte Carlo (ASMC)

2.3.1. Power posteriors
Tempering consists in introducing a temperature variable flattening

the likelihood function in Eq. (1). The corresponding tempered poste-
rior PDFs are called power posteriors and can, in their unnormalized
form, be expressed as:

𝛾 (𝜽 |𝐲) ≡ 𝜋(𝜽 )𝑝(𝐲|𝜽 )𝛼𝑡 , (7)
3

𝑡 𝑡 𝑡 𝑡
where the likelihood is raised to an inverse temperature 𝛼𝑡 ∈ [0, 1].
The effect of increasing the temperature (decreasing 𝛼𝑡) is that the
likelihood function becomes less peaky, that is, with less pronounced
modes. Targeting these power posteriors, instead of only targeting the
posterior PDF at unit temperature as in standard MCMC, increases
the exploration capacity because the tempering process decreases the
probability of getting trapped in local minima. A graphical explana-
tion regarding the advantages of tempered exploration can be found
in Sambridge (2014). Fig. 1 illustrates the main structural differences
between standard MCMC, and the methods of PT and AIS that both rely
on tempering.

2.3.2. Annealed importance sampling (AIS)
Importance sampling is a Monte Carlo method used to estimate

properties of a distribution that it is not possible to sample from (Ham-
mersley and Handscomb, 1964). It relies on an auxiliary distribution
𝑞(𝜃) for drawing the samples, that must include and should ideally
e slightly inflated with respect to the target distribution. For most
pplications, sampling from the prior distribution in order to estimate
roperties of the posterior PDF suffers from the curse of dimensionality,
eaning that the computational effort needed to draw enough samples
ith a significant likelihood, as needed to enable reliable estimates,

s unfeasible. In contrast, sampling from a well-chosen importance
istribution allows focusing the sampling in regions of high posterior
robability. The samples drawn are then used to compute the desired
roperty while correcting for the bias resulting from the chosen im-
ortance distribution. If the target distribution is the unnormalized
osterior PDF 𝜋(𝜽)𝑝(𝐲|𝜽), the importance weights are given by:

=
𝜋(𝜽)𝑝(𝐲|𝜽)

𝑞(𝜽)
. (8)

Neal (2001) combined tempering and importance sampling to pro-
uce the AIS method. It uses 𝑁 chains, each of them representing evolv-

ing particles that target sequentially a sequence of power posteriors
at different temperatures ranging from the prior to the unnormalized
posterior PDF of interest. The sequence is given by

{

𝛾𝑡(𝜽𝑡|𝐲)
}𝑇
𝑡=0, and

t contains unnormalized power posteriors given by Eq. (7) with 𝛼𝑡
anging from 𝛼𝑡=0 = 0 (the prior) to 𝛼𝑡=𝑇 = 1 (the unnormalized
osterior PDF). The normalized power posteriors are given by:

𝑡(𝜽𝑡|𝐲) =
𝛾𝑡(𝜽𝑡|𝐲)

𝑍𝑡
, (9)

where 𝑍𝑡 is the normalizing constant of the distribution.
In AIS, importance sampling steps are performed sequentially be-

tween each pair of consecutive power posteriors. A subsequent power
posterior 𝛾𝑡(𝜽𝑡|𝐲) is approximated by using the estimation of the previ-
us power posterior 𝛾𝑡−1(𝜽𝑡|𝐲) as the importance sampling distribution.
n contrast to standard importance sampling were the samples are
rawn directly from the importance distribution, in AIS the 𝛾𝑡−1(𝜽𝑡|𝐲)
amples are obtained by performing 𝐾 MCMC iterations targeting this
ower posterior starting from the approximation 𝛾𝑡−2(𝜽𝑡|𝐲). By perform-
ng multiple intermediate importance sampling steps between the prior
nd the posterior PDF, it is possible to ensure that each importance
istribution is of high quality (slightly inflated with respect to the
arget) leading to estimates with low uncertainty (variance). After the
mportance sampling step (represented by the longer arrows in between
ifferent colored circles in Fig. 2), again each of the 𝑁 chains perform

MCMC steps targeting now 𝛾𝑡(𝜽𝑡|𝐲). This process is repeated until
𝑡 = 1.

We refer to the importance weights (Eq. (8)) resulting from each
ntermediate importance sampling step as the incremental weights. For

particle 𝑖 at state 𝜽𝑖𝑡−1, the incremental weight 𝑤𝑖
𝑡 that result from

sing 𝛾𝑡−1(𝜽𝑡−1|𝐲) as an importance distribution for 𝛾𝑡(𝜽𝑡|𝐲) is:

𝑖
𝑡 =

𝛾𝑡(𝜽𝑖𝑡−1|𝐲)
𝑖 . (10)
𝛾𝑡−1(𝜽𝑡−1|𝐲)

http://www.randlab.org/research/deesse/
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Fig. 1. Diagram illustrating structural differences between probabilistic inversion methods with the circles representing the evolving states at each iteration and the colors denoting
the temperatures of the targeted power posteriors. In (a) standard MCMC, all the chains target the posterior PDF at unit temperature (shown in yellow). (b) Parallel tempering
uses a number of chains targeting different power posteriors while allowing eventual swaps between them (shown as purple dashed lines), whereas in (c) annealed importance
sampling, the targeted power posteriors change during the run in response to a gradually cooling sequence.
Fig. 2. Schematic representation of Sequential Monte Carlo (SMC) using 𝑁 = 5 particles evolving in parallel. After the initial sampling from the prior PDF (blue circles), 𝐾 = 4
Markov steps are performed to approximate power posteriors 𝛾𝑡. In these power posteriors, the likelihood is raised to an inverse temperature 𝛼𝑡 that increases gradually. At the end
of each approximation, an importance sampling step is performed to calculate an incremental weight 𝑤𝑡. Adaptive Sequential Monte Carlo (ASMC) incorporates two modifications
with respect to Annealed Importance Sampling (AIS): (i) adaptive determination of the 𝛼𝑡-sequence defining the sequence of power posteriors and (ii) resampling when the variance
of the particle weights becomes too large (indicated by red dashed lines).
To calculate the total weight of a particle, one needs to account
for all the intermediate importance sampling steps. To achieve this,
the incremental weight 𝑤𝑖

𝑡 is used to update the normalized weight of
particle 𝑖 by:

𝑊 𝑖
𝑡 =

𝑊 𝑖
𝑡−1𝑤

𝑖
𝑡

∑𝑁
𝑗=1 𝑊

𝑗
𝑡−1𝑤

𝑗
𝑡

, (11)

where 𝑊 𝑖
𝑡−1 is the normalized weight (that is, ∑𝑁

𝑖=1 𝑊
𝑖
𝑡−1 = 1) of

the previous importance sampling step. The posterior PDF is then
approximated through a particle approximation, in which the relative
probabilities of the last 𝑁 states of the particles are determined by
the final normalized weights 𝑊 𝑖

𝑇 . By saving intermediate normalized
weights and corresponding particle states, the method allows also to
approximate intermediate power posteriors that represent the solutions
to the equivalent tempered problems.

2.3.3. Resampling
The variance of the particle weights influences strongly the quality

of the importance sampling estimator (Neal, 2001). When using AIS,
this variance may grow exponentially, resulting in poor estimations of
the posterior PDF and the evidence. Sequential Monte Carlo (SMC) is
4

a family of particle approaches that, as AIS, rely on sequential impor-
tance sampling. However, SMC incorporates also resampling (Del Moral
et al., 2006; Doucet and Johansen, 2011). In a resampling step, the
states of the particles are replicated according to a probability that is
proportional to their current normalized weights, and all the weights
are re-set to 1∕𝑁 . The replacement of particles with lower weights
and increasing those with higher weights results in two advantages:
(i) it avoids the variance of the weights to grow indefinitely and (ii) it
orients the exploration towards regions of higher posterior probability.
Nevertheless, since the resampling process increases the variance of
the estimates (Douc and Cappe, 2005), it is often better to perform
resampling only when needed. The effective sample size (𝐸𝑆𝑆) (Kong
et al., 1994) is expressed as:

𝐸𝑆𝑆𝑡 =
(
∑𝑁

𝑖=1 𝑊
𝑖
𝑡−1𝑤

𝑖
𝑡)
2

∑𝑁
𝑗=1(𝑊

𝑗
𝑡−1)

2(𝑤𝑗
𝑡 )2

. (12)

It quantifies the number of effective samples in the particle ap-
proximation. The common approach is to monitor the 𝐸𝑆𝑆 along
the run, and perform resampling when it is lower than a specified
threshold. In this paper, we rely on systematic resampling due to its
good performance and easy implementation (Doucet and Johansen,
2011). Fig. 2 shows a graphical example of SMC with 𝑁 = 5 particles,
in which the resampling step is indicated with red dashed lines.
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2.3.4. Adaptive tempering schedule
One complication of the AIS and SMC methods is the difficulty to

pre-define a suitable tempering schedule (Fig. 2). Zhou et al. (2016)
propose an adaptive SMC method (ASMC) (their algorithm 4) in which
an appropriate 𝛼-step-size increment is determined before each im-
portance sampling step. To do so, they rely on the conditional effec-
tive sample size (𝐶𝐸𝑆𝑆) quantifying the quality of using the particle
approximation 𝛾𝑡−1(𝜽𝑡−1|𝐲) as an importance distribution to estimate
expectations for the 𝛾𝑡(𝜽𝑡−1|𝐲) arising for different choices of 𝛼𝑡. The
𝐶𝐸𝑆𝑆 is given by:

𝐶𝐸𝑆𝑆 = 𝑁
(
∑𝑁

𝑖=1 𝑊
𝑖
𝑡−1𝑤

𝑖
𝑡)
2

∑𝑁
𝑗=1 𝑊

𝑗
𝑡−1(𝑤

𝑗
𝑡 )2

. (13)

The 𝐸𝑆𝑆 and 𝐶𝐸𝑆𝑆 are both obtained by a sample approximation
of a Taylor expansion of the relative variance of the estimator (Kong
et al., 1994). The difference between them is that the 𝐸𝑆𝑆 embraces
the accumulated mismatch between the importance and target dis-
tributions, whereas the 𝐶𝐸𝑆𝑆 focuses on the quality of the current
importance sampling step. If resampling was to be performed at every
iteration, then the 𝐸𝑆𝑆 and 𝐶𝐸𝑆𝑆 quantities would be equal. A
detailed derivation of the 𝐶𝐸𝑆𝑆 can be found in the supplementary
material of Zhou et al. (2016).

The 𝐶𝐸𝑆𝑆 depends on the incremental weights 𝑤𝑡 that in turn
depend on 𝛼𝑡. The strategy consists in finding the 𝛼-increment between
consecutive power posteriors, that is, the 𝛥𝛼𝑡 such that 𝛼𝑡 = 𝛼𝑡−1 + 𝛥𝛼𝑡,
giving the 𝐶𝐸𝑆𝑆 that is the closest to a pre-defined quality expressed
by 𝐶𝐸𝑆𝑆𝑜𝑝. To find 𝛥𝛼𝑡, we rely on a binary search within a sequence
of possible 𝛥𝛼 values. First, the 𝐶𝐸𝑆𝑆 is computed using the middle
value of the 𝛥𝛼 sequence and it is compared with 𝐶𝐸𝑆𝑆𝑜𝑝. Depending
on if it is higher or lower, one of the two 𝛥𝛼 half-intervals is kept.
This procedure is repeated until the 𝛥𝛼 that gives the 𝐶𝐸𝑆𝑆 that is
the closest to 𝐶𝐸𝑆𝑆𝑜𝑝 is found.

If we increase 𝐶𝐸𝑆𝑆𝑜𝑝, we obtain higher-quality estimates as the
number 𝐿 of intermediate power posteriors increases, but at the ex-
pense of a longer ASMC run. The total number of iterations per particle
is 𝐿 × 𝐾, with 𝐾 the number of MCMC steps per intermediate power
posterior. In practice, the ratio 𝐶𝐸𝑆𝑆𝑜𝑝∕𝑁 is chosen close to 1 in order
to ensure high quality estimates. It has been suggested that it should
be at least 0.99 to build a smooth 𝛼-sequence (Amaya et al., 2021),
but the optimal value is highly problem-dependent. The impact of the
𝐶𝐸𝑆𝑆𝑜𝑝∕𝑁 value on the resulting 𝐿 is non-linear and not easy to
predict.

2.3.5. ASMC-based evidence estimation
Evidence estimation is essential for Bayesian model selection. Con-

sidering two neighboring distributions 𝛾𝑡−1(𝜽𝑡−1|𝐲) and 𝛾𝑡(𝜽𝑡|𝐲), we can
express the ratio of their normalizing constants as:

𝑍𝑡
𝑍𝑡−1

=
∫ 𝛾𝑡(𝜽𝑡|𝐲)𝑑𝜽𝑡

∫ 𝛾𝑡−1(𝜽𝑡−1|𝐲)𝑑𝜽𝑡−1
. (14)

Del Moral et al. (2006) propose an approximation of this ratio as:

𝑍𝑡
𝑍𝑡−1

≈
𝑁
∑

𝑖=1
𝑊 𝑖

𝑡−1𝑤
𝑖
𝑡. (15)

The evidence 𝜋(𝐲) is the normalizing constant 𝑍𝑇 of the unnormal-
ized posterior PDF, that is, the last distribution of the sequence when
𝛼𝑡=𝑇 = 1. Considering that the prior PDF integrates to one, 𝑍0 = 1, we
can express the evidence as the product of the normalizing constant
ratios:

𝜋(𝐲) = 𝑍𝑇 =
𝑍𝑇
𝑍0

=
𝑇
∏

𝑡=1

𝑍𝑡
𝑍𝑡−1

≈
𝑇
∏

𝑡=1

𝑁
∑

𝑖=1
𝑊 𝑖

𝑡−1𝑤𝑡
𝑖. (16)

Consequently, the evidence can be updated along the run by ac-
counting for the evolving particle weights.
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Fig. 3. Channelized binary training image from Strebelle (2002) with the spatial
dimensions used in the present study.

2.4. Full ASMC-SGR algorithm

Our algorithm combining the SGR method for model proposals with
ASMC for posterior PDF and evidence estimation is given in Algorithm
1. We denote this algorithm as ASMC-SGR (following the nomenclature
in Laloy et al. (2016)). In this study, the proposal scale 𝜙 indicates
half of the side-length in meters of the box that is being re-simulated
at each iteration. In addition to the previously mentioned advantages
of adaptive tempering and evidence estimation, the algorithm also has
the attractive feature that the proposal scale 𝜙 can be tuned on-the-go
without violating detailed balance conditions as would be the case for
MCMC or PT applications. This is simply achieved by keeping track
of the acceptance rate for the 𝐾 MCMC steps at the previous 𝛼𝑡−1 and
then to use this information to adapt the proposal scale for the next
number of 𝐾 MCMC steps, such that the acceptance rate remains within
a pre-defined range. This saves a lot of time compared with standard
MCMC and PT algorithms that often necessitate tuning using multiple
time-consuming trial runs.

3. Results

3.1. Test case

We consider the second test case from Laloy et al. (2016), in
which the concentration of an injected tracer is measured at regular
time intervals. The conceptual model is represented by a 250 × 250
categorical binary training image from Strebelle (2002) (Fig. 3). The
2-D reference model is located in the x-y plane and has a dimension of
75 m × 100 m with a discretization cell size of 1 m. The hydraulic
conductivity 𝐾 is 0.01 m/s for the channels and 0.0001 m/s for
the matrix. A conservative tracer with a concentration of 1 kg/m3 is
injected at 8 locations on the top and bottom of the model (Fig. 4).
The concentration is measured every 8 h during 10 days at 11 pumping
wells (a total of 330 observations) that extract 0.0005 m2/s of water,
and the facies at these points are assumed to be known. This test
exhibits symmetry with respect to the x-axis, such that any model and
its mirrored image produce the same simulated concentration data and,
therefore, the same likelihood. Consequently, the posterior PDF is bi-
modal with two distinct modes. Mode 1 of the reference model was
obtained as a random realization from the DeeSse algorithm (Fig. 4a)
and then mirrored to obtain the mode 2 reference model (Fig. 4b).

The simulations are performed using MaFloT, a finite-volume open-
source code for transport simulations in porous media (Künze and
Lunati, 2012). Fixed head boundaries of 0 m on the top and bottom
of the domain and no-flow boundaries on the sides are assumed to
simulate steady-state groundwater flow. For the tracer transport, we
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Algorithm 1: ASMC-SGR
The SGR section of the algorithm is adapted from Laloy et al. (2016) and the ASMC section from Zhou et al. (2016) (their algorithm 4)

Variables to pre-define:
Number of particles (𝑁), optimal CESS (𝐶𝐸𝑆𝑆𝑜𝑝), ESS threshold (𝐸𝑆𝑆∗), number of MCMC iterations at each intermediate distribution (𝐾),
minimal and maximal acceptance rate (𝐴𝑅𝑚𝑖𝑛, 𝐴𝑅𝑚𝑎𝑥), minimal (𝜙𝑚𝑖𝑛) and maximal (𝜙𝑚𝑎𝑥) proposal scale and its percentage of change (𝑓 )

Initialization: Set 𝑡 = 0
Set 𝛼 = 0
Sample 𝜽0 from the prior 𝜋(𝜽) 𝑁 times
Set the 𝑁-dimensional vector of normalized weights 𝐖0 = [ 1

𝑁
; 1
𝑁
; ...; 1

𝑁
]

Set evidence 𝜋(𝐲) = 1
Iteration : Set 𝑡 = 𝑡 + 1

Search for incremental distribution
Do binary search for the increment 𝛥𝛼 that gives the CESS (Eq. (13)) that is the closest to 𝐶𝐸𝑆𝑆𝑜𝑝
Update 𝛼 = 𝑚𝑖𝑛(1, 𝛼 + 𝛥𝛼) and define the following intermediate distribution 𝛾𝑡(𝜽𝑡|𝐲) = 𝜋(𝜽𝑡)𝑝(𝐲|𝜽𝑡)𝛼

Perform the importance sampling step: compute the weight increments 𝑤𝑖
𝑡 (Eq. (10)), update and save the normalized weights 𝑊 𝑖

𝑡 (Eq. (11))
and the evidence 𝜋(𝐲) = 𝜋(𝐲)

∑𝑁
𝑖=1 𝑊

𝑖
𝑡−1𝑤

𝑖
𝑡 (Eq. (16))

Resampling
Calculate ESS (Eq. (12)), if 𝐸𝑆𝑆 < 𝐸𝑆𝑆∗ do resampling: re-organize 𝜽𝑡 states and update 𝐖𝑡 = [ 1

𝑁
; 1
𝑁
; ...; 1

𝑁
]

Do 𝐾 MCMC iterations for each of the 𝑁 particles (chains):
Propose moves 𝜽𝑝: randomly select the location of a box with dimensions 2𝜙 ×2𝜙, and run the MPS simulation using the points outside the box as
conditioning points and accept or reject based on the extended Metropolis rule, with an acceptance probability given by: 𝛤 (𝑝, 𝑐) = 𝑚𝑖𝑛

(

1, 𝑝(𝐲|𝜽𝒑 )𝛼

𝑝(𝐲|𝜽𝒄 )𝛼

)

(Eq. (6))
Save the 𝑁 models 𝜽 and their likelihoods
Set last state as 𝜽𝑡+1

Tune proposal scale
If acceptance rate 𝐴𝑅 < 𝐴𝑅𝑚𝑖𝑛 then decrease proposal scale factor: 𝜙 = 𝜙 ∗ (1 − 𝑓

100
)

If acceptance rate 𝐴𝑅 > 𝐴𝑅𝑚𝑎𝑥 then increase proposal scale factor: 𝜙 = 𝜙 ∗ (1 + 𝑓
100

)
If 𝜙 < 𝜙𝑚𝑖𝑛 then 𝜙 = 𝜙𝑚𝑖𝑛, if 𝜙 > 𝜙𝑚𝑎𝑥 then 𝜙 = 𝜙𝑚𝑎𝑥

Repeat until 𝛼=1
Fig. 4. (a) Reference model [mode 1] and (b) mirrored reference model [mode 2], the red squares represent the points where the tracer is injected and the blue circles represent
the pumping wells where measurements are made. Both models result in the same (c) simulated concentration over time (shown before being contaminated with uncorrelated
Gaussian noise), where each color represents the observations at one pumping well.
assume open boundaries, an hydraulic dispersivity of 0.1 m and a
background concentration of 0.01 kg/m3. The simulated data were
corrupted with uncorrelated Gaussian noise with a standard deviation
of 𝜎 = 0.003 kg/m3, approximately 3% of the mean concentration.

3.1.1. ASMC-SGR settings
The proposal scale 𝜙 used to create candidate models is tuned along

the run (see Algorithm 1) by increasing or decreasing it by 𝑓 = 20% to
ensure that the acceptance rate stays within the range of 𝐴𝑅𝑚𝑖𝑛 = 15%
and 𝐴𝑅𝑚𝑎𝑥 = 35%. It is further constrained to be between 𝜙𝑚𝑎𝑥 = 50
m and 𝜙𝑚𝑖𝑛 = 5 m. For the DeeSse simulations, we follow Laloy et al.
(2016) and use 75 neighbors, which implies that the patterns that are
searched by the algorithm are composed of the 75 informed nodes
that are the closest to the one being re-simulated. The fraction of the
training image that is scanned is 0.9 and the distance threshold to
accept a pattern is 0.01 (Mariethoz et al., 2010b).

3.2. ASMC-SGR results

3.2.1. Test 1: ASMC-SGR with 24 particles
We first compare the ASMC-SGR results with those obtained by

Laloy et al. (2016) for a similar computational budget: 24 chains and
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25,000 iterations per chain. To achieve this, we chose 𝑁 = 24 particles
and 𝐶𝐸𝑆𝑆𝑜𝑝∕𝑁 = 0.9997 combined with 𝐾 = 18, which resulted in
25,956 iterations per particle. The resampling threshold 𝐸𝑆𝑆∗∕𝑁 was
set to 0.3 (Del Moral et al., 2006). The user-defined parameters and
length of the run are summarized in Table 1 (ASMC-SGR 24p).

We first consider the evolution of the tempered log-likelihood, that
is, the likelihood raised to the inverse temperature in the natural log-
scale (Fig. 5a). The tempered log-likelihood of each particle is seen
to evolve according to the reference tempered log-likelihood curve
(calculated using the assumed noise standard deviation 𝜎 = 0.003
kg/m3). If 𝐶𝐸𝑆𝑆𝑜𝑝∕𝑁 or 𝐾 would be too low, then the particles would
have considerably lower tempered likelihoods than the reference curve,
thereby, indicating that the sampled log-likelihoods are too low and
that the associated computational budget is insufficient for the problem
at hand. Consequently, this type of curve is a useful diagnostic plot
allowing the user to terminate an ASMC run at an early stage if the
tempered log-likelihoods fall below the reference curve.

The automatically tuned proposal scale 𝜙 (Fig. 5e) enables the
acceptance rate to stay within the pre-defined range (Fig. 5c). The
resulting 𝛼𝑡-sequence (Fig. 5b) demonstrates that roughly half of the
forward simulations are carried out with 𝛼𝑡-values less than 0.01, cor-
responding to temperatures above 100. The plot showing the evolution
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Fig. 5. ASMC-SGR results using 24 particles: (a) tempered log-likelihood vs. iterations per particle, the colors represent different particles and the black dashed line indicates the
reference tempered log-likelihood; (b) 𝛼-sequence vs. 𝛼 index; (c) acceptance rate vs. iterations per particle, the dashed line indicates the pre-defined minimum and maximum
range; (d) normalized weights vs. 𝛼 index, the colors represents different particles; the (e) proposal scale vs. iterations per particle; (f) 𝐸𝑆𝑆∕𝑁 vs. 𝛼 index, the black dashed line
indicates the 0.3 threshold below which resampling is made.
Table 1
User-defined parameters, resulting sequence length and data fitting for ASMC-SGR using
24 and 72 particles. The reduced reference log-likelihood 𝑙(𝐲|𝜽𝑟𝑒𝑓 ) (Eq. (3)) for this
test case is −165. Using PT-SGR, Laloy et al. (2016) obtained a 𝛥𝑙(𝐲|𝜽𝑡) = 9% for a
numerical demand of 600,000 forward simulations.

ASMC-SGR 24p ASMC-SGR 72p

Particles (𝑁) 24 72
𝐶𝐸𝑆𝑆𝑜𝑝∕𝑁 0.9997 0.9997
𝐸𝑆𝑆∗∕𝑁 0.3 0.3
𝐴𝑅𝑚𝑖𝑛 15% 15%
𝐴𝑅𝑚𝑎𝑥 35% 35%
𝐾 iterations 18 18
𝐿 power posteriors 1442 1533
Iterations per particle 25,956 27,594
Resampling times 6 6
Total number of forward simulations 622,944 1,986,768
𝛥𝑙(𝐲|𝜽𝑡) 3.76% 1.5%
𝑙(𝐲|𝜽𝑻 ) range [−196, −164] [−188, −160]

of the normalized weights (Fig. 5d) illustrates the divergence of the
weights between resampling steps and the re-alignment of the weights
when the normalized effective sample size 𝐸𝑆𝑆∕𝑁 (Fig. 5f) reaches
below the 0.3 threshold.

To compare these ASMC-SGR 24p results with those obtained by
Laloy et al. (2016), we first consider the measure used in their study as
an indicator of data fitting:

𝛥𝑙(𝐲|𝜽)[%] =
𝑙(𝐲|𝜽𝑇 ) − 𝑙(𝐲|𝜽𝑟𝑒𝑓 )

𝑙(𝐲|𝜽𝑟𝑒𝑓 )
× 100, (17)

where 𝑙(𝐲|𝜽𝑟𝑒𝑓 ) is the reduced reference log-likelihood (Eq. (3)) and
𝑙(𝐲|𝜽𝑇 ) is the mean sampled reduced log-likelihood. For MCMC and
PT, this mean is simply the arithmetic average of the reduced log-
likelihoods after burn-in (only considering unit temperature chains for
PT), whereas for ASMC it is the weighted average of the 𝑁 final reduced
log-likelihoods. Laloy et al. (2016) demonstrated a drastic improvement
when using PT-SGR compared with MCMC-SGR following Hansen et al.
(2012). The indicator 𝛥𝑙(𝐲|𝜽𝑡) was 9%; an important improvement of
70% on average compared with MCMC-SGR. Still, the reference re-
duced log-likelihood was actually not contained in the range of sampled
reduced log-likelihoods with PT-SGR, indicating that these samples are
not representative of the posterior PDF. For our ASMC-SGR 24p run,
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the indicator 𝛥𝑙(𝐲|𝜽𝑡) is 3.76% and the log-likelihood range contains
the reference value (Table 1).

Fig. 6a–d show exemplary PT-SGR posterior samples from Laloy
et al. (2016). These samples do not resemble either mode 1 or mode 2,
even if Fig. 6b has some structural similarities with mode 1 (Fig. 4a). In
contrast, the final states obtained by ASMC-SGR 24p (Fig. 6e–h) recover
models that resemble both reference modes: The realizations in Fig. 6e–
g resemble mode 2 (Fig. 4b) and the one in Fig. 6h resembles mode 1
(Fig. 4a).

The reference mean (Fig. 7a) is the mean of mode 1 (Fig. 4a) and
mode 2 (Fig. 4b) of the reference model. The true posterior mean is un-
known and it is likely to be slightly biased towards models resembling
one of the modes. The reason for this is that even if mode 1 and 2 have
the same likelihood, they do not have the same prior probability. This
is a consequence of using the training image in Fig. 3 that is likely to
favor certain orientations of structures when generating prior samples.
Nevertheless, Fig. 7a provides a sensible point of comparison.

The ASMC-SGR 24p weights (Fig. 6e–h) and the posterior mean
corresponding to the weighted arithmetic mean of the samples (Fig. 7b)
suggest that the total weights given to the two ‘‘modes’’ is unbalanced
with ‘‘mode 2’’ having a higher total weight than ‘‘mode 1’’. Still, these
results show that ASMC-SGR can sample the two modes of this very
challenging inverse problem and that the structures of the reference
mean are partly recovered (unlike for the PT-SGR mean, see Fig. 9b
in Laloy et al. (2016)).

3.2.2. Test 2: ASMC-SGR with 72 particles
ASMC provides an approximation not only of the posterior PDF but

also of every tempered intermediate power posterior. In this section,
we focus on the evolution of the (unnormalized) power posteriors as 𝛼
increases from the prior (𝛼 = 0) to the posterior PDF (𝛼 = 1). One way
of interpreting these power posteriors is to consider them as posterior
PDFs for different assumptions on the data error level. Indeed, decreas-
ing the 𝛼-exponent has the same impact on the likelihood variable
component as increasing the assumed standard deviation 𝜎 of the data
noise (𝛼 ∝ 1

𝜎2
in Eqs. (3) and (7)). Thus, the effect of tempering

with a given 𝛼 could also be achieved by considering an assumed
standard deviation of 𝜎𝛼 = 𝜎∕

√

𝛼, where 𝜎 is the original standard
deviation of 0.003 kg/m3 (for example, 𝛼 = 0.25 is analogous to
assuming a standard deviation that is twice as large 𝜎 = 0.006 kg/m3).
𝛼
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Fig. 6. Samples from the posterior PDF obtained with: (a)–(d) PT-SGR by Laloy et al. (2016); (e)–(f) ASMC-SGR using 24 particles and (i)–(l) ASMC-SGR using 72 particles (the
corresponding weights 𝑊 of the particles are shown). The root mean square error (RMSE) without units is indicated for each sample; the corresponding value for the true model
(modes 1 and 2) is 0.0030.
Fig. 7. (a) Mean of the reference model’s two modes; (b) ASMC-SGR 24p posterior mean and (c) ASMC-SGR 72p posterior mean obtained as a weighted mean of the final states
of the particles.
Since the objective in this section is no longer to compare the results
with Laloy et al. (2016) for a similar computational budget, we now
consider more particles. We increase the number of particles running
in parallel from 24 to 72, thereby, aiming for improved approximations
of the intermediate power posteriors, while keeping fixed the other
user-defined parameters (ASMC-SGR 72p in Table 1). The number of
power posteriors needed to honor the targeted 𝐶𝐸𝑆𝑆𝑜𝑝 are slightly
higher compared to the ASMC-SGR 24p test. The indicator 𝛥𝑙(𝐲|𝜽)[%]
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(Eq. (17)) for ASMC-SGR 72p is 1.5%, that is, 60% less than for the 24
particles test. Furthermore, the likelihood range of the final particles is
also reduced. The posterior mean for ASMC-SGR 72p (Fig. 7c) and four
samples from the posterior PDF (Fig. 6i–l) indicate that most of the
samples resemble mode 1 instead of mode 2 of the reference model,
that is, the opposite behavior compared with the ASMC-SGR 24p run.

The structural similarity index measure (SSIM) (Wang et al., 2004)
can be used to quantify the similarity between two images. It varies
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Fig. 8. Structural similarity index measure (SSIM) of the weighted mean models for a subset of the estimated power posteriors with respect to the reference mean model (Fig. 7a)
and reference models (modes 1 and 2) (Fig. 4a–b) vs. 𝛼. For modes 1 and 2, the range for all samples is indicated with shading. Results are shown for (a) ASMC-SGR 24p and
(b) ASMC-SGR 72p.
between −1 and 1, the higher the SSIM the more similar the two
compared images are (SSIM = 1 indicates identical images). The SSIM
of the power posterior mean models with respect to the reference mean
model (Fig. 7a) initially increases before stagnating when 𝛼 reaches
0.01 for both ASMC-SGR 24p (Fig. 8a) and ASMC-SGR 72p (Fig. 8b).
For ASMC-SGR 24p, the SSIM values with respect to mode 2 continue
to increase while the SSIM values with respect to mode 1 is even
decreasing at the end of the run (Fig. 8a). For ASMC-SGR 72p, the
situation is the opposite with the SSIM values with respect to mode
1 being those that continue to increase for larger 𝛼-values (Fig. 8b).
For ASMC-SGR 24p, the SSIM remains the highest for mode 2 for all 𝛼-
values above 0.001, while the SSIM values with respect to mode 2 for
ASMC-SGR 72p only start to dominate for 𝛼-values above 0.1. This is
a consequence of the larger number of particles and the corresponding
increased ability to approximate the power posterior. The range of SSIM
values between the particle realizations and the reference models are
shown to decrease as the run progresses.

Fig. 9 shows the posterior means and standard deviations at five
stages of the ASMC-SGR 72p run. The mean of the prior models (Fig. 9a)
is computed from the initial DeeSse simulations using the facies at the
pumping wells as conditioning data. At 𝛼 = 2.0𝑒−3 (Fig. 9b), 𝛼 = 1.7𝑒−2
(Fig. 9c) and 𝛼 = 8.8𝑒−2 (Fig. 9d), the power posterior mean models
already resembles patterns of the reference mean (Fig. 7a). When
𝛼 = 1, the posterior mean model is dominated by mode 1 (Fig. 9e).
The standard deviations are initially high except in the vicinity of
the conditioning points (Fig. 9f) and they decrease as expected with
increasing 𝛼-values (Fig. 9g–j) as the run evolves towards the posterior
PDF. Four samples from the power posteriors corresponding to 𝛼 =
2.0𝑒−3 (Fig. 10e–h), 𝛼 = 1.7𝑒−2 (Fig. 10i–l) and 𝛼 = 8.8𝑒−2 (Fig. 10m–
p) indicate that the variability among the realizations are high at the
beginning with large corresponding RMSE values. As 𝛼 increases, the
variability among the realizations and the corresponding RMSE values
decrease as the samples start resembling the modes and fit the data
better.
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3.2.3. Resampling and Eve indices
Resampling has the advantage of reducing the variance of the

particle weights and focusing the sampling in regions of high posterior
probability. However, the corresponding decrease in the variability of
the sample realizations has also an adverse impact on the ASMC esti-
mations. A conservative way of estimating the number of independent
particles remaining in a run is to trace back the origin of the particles
using the Eve indices. Before any resampling is performed, the Eve
indices of the particles are 1 ∶ 𝑁 . As resampling implies re-organization
and replication of particles, the Eve indices change along the run. At
time 𝑡, each particle 𝑖 has an Eve index 𝐸𝑖

𝑡 that denotes the original
index of the particle that moved there (see Lee and Whiteley (2018)
for a detailed and illustrative explanation).

The evolution of the Eve indices are shown for tests ASMC-SGR
24p (Fig. 11a) and ASMC-SGR 72p (Fig. 11b). The Eve indices are
modified after each resampling step: particles with higher weights are
more likely to be replicated, and as they bring their Eve indices (their
origin) with them, these Eve indices are replicated as well, while other
Eve indices corresponding to particle states with low weights are lost
on the way. Consequently, the number of distinct Eve indices is reduced
along the run due to resampling; the more resampling there is, the
fewer surviving Eve indices at the end of the run. In each of our two
example runs there is six resampling steps; this led to two surviving Eve
indices out of 24 for ASMC-SGR 24p and only one surviving Eve index
out of 72 for ASMC-SGR 72p. Of course, the particles with the same
Eve indices are generally not identical as they develop independently
after resampling in response to the MCMC proposal steps. Despite
inherent randomness, a larger number of Eve indices are expected when
reducing the number of resampling steps or increasing the number of
particles. For our two test cases, the few surviving Eve indices indicate
that a higher number of particles 𝑁 , intermediate power posteriors or
𝐾 steps would be beneficial.

3.2.4. Evidence estimation
The evidence 𝜋(𝐲) (Eq. (4)), which can be used for Bayesian model

selection and ranking, is obtained as a byproduct of the ASMC algo-
rithm (Eq. (16)). The log-evidence is shown to evolve similarly for the
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Fig. 9. Posterior (a–e) means and (f–j) standard deviations of five different power posteriors for the ASMC-SGR 72p run: (a), (f) 𝛼𝑡 = 0; (b), (g) 𝛼𝑡 = 0.002; (c), (h) 𝛼𝑡 = 0.017; (d),
(i) 𝛼𝑡 = 0.088 and (e), (j) 𝛼𝑡 = 1.
ASMC-SGR 24p and ASMC-SGR 72p (Fig. 12a) runs. Both evidence
curves have the same shape as 𝛼 increases, and the final evidence
estimates are close: 𝜋(𝐲) = 1374.14 for ASMC-SGR 72p and 𝜋(𝐲) =
1371.06 for ASMC-SGR 24p. For many model selection studies focused
on conceptual model comparison, the differences in the evidence be-
tween conceptual models are often much larger (Amaya et al., 2021;
Brunetti et al., 2017, 2019) than this discrepancy (Fig. 12b), thereby,
suggesting that only 24 particles would probably provide sufficiently
accurate results. Analogous to the power posteriors, it is also possible
to interpret the intermediate evidences as those corresponding to larger
assumed 𝜎-values. This necessitates a correction nevertheless, as the
multiplicative term ((

√

2𝜋𝜎2)−𝑚𝑑 in Eq. (2)) does not follow the pro-
portionality 𝛼 ∝ 1

𝜎2
. The intermediate log-evidences 𝑙𝑜𝑔[𝜋(𝐲, 𝛼)] can be

corrected to 𝑙𝑜𝑔[𝜋(𝐲, 𝛼)]𝑐𝑜𝑟𝑟 following:

𝑙𝑜𝑔[𝜋(𝐲), 𝛼]𝑐𝑜𝑟𝑟 = 𝑙𝑜𝑔[𝜋(𝐲, 𝛼)] + 𝛼 𝑚𝑑 𝑙𝑜𝑔(
√

2𝜋𝜎) − 𝑚𝑑 𝑙𝑜𝑔(
√

2𝜋𝜎𝛼), (18)

where 𝜎 is the originally assumed standard deviation of 0.003 kg/m3

and 𝜎𝛼 = 𝜎∕
√

𝛼 is the standard deviation corresponding to that
particular 𝛼. The results highlight that the estimated evidences depend
very strongly on the assumed error level (Fig. 12c).

4. Discussion

For a similar computational budget, ASMC-SGR has been shown
to outperform PT-SGR in terms of data fitting (Table 1). Moreover,
ASMC-SGR recovers particle states (Fig. 6e-h) that resemble both of the
reference modes (Fig. 4a–b), while none of them are recovered when
using PT-SGR (Fig. 6a–d). The ASMC algorithm adaptively tunes both
the proposal scale and the 𝛼-sequence (inverse temperatures) along the
run, which implies much less user effort compared to the tedious testing
needed to make PT-SGR perform well. If conceptual model comparison
is intended, ASMC becomes even more attractive as it provides evidence
estimations (Zhou et al., 2016) that are reliable and in agreement with
unbiased estimations obtained using brute force Monte Carlo (Amaya
et al., 2021).

The intermediate power posterior approximations offered by the
ASMC algorithm are highly instructive (Figs. 9–10). When the ASMC-
SGR algorithm starts considering 𝛼-values above a given threshold
(lower for 24 particles than for 72 particles), the sampling tends to
become unbalanced in our two example runs and there is one mode
that ends up having a higher posterior probability than the other. This
could be addressed by increasing the computational budget: either by
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considering a much larger number of particles (one could imagine
using hundreds or thousands of particles), or by increasing 𝐶𝐸𝑆𝑆𝑜𝑝
or 𝐾 that would reduce the number of resampling steps. Resampling
plays the important role in particle methods of focusing the sampling
towards high-probability regions by controlling the variance of the
particle weights. Unfortunately, this advantage comes at the expense
of losing the independence between the particles leading, in our case,
to over-prediction of one of the posterior modes. In our test example, it
would be straightforward to facilitate sampling of both modes simply
by allowing for model proposals that would mirror the present state.
However, this would not be possible in most realistic settings.

The test example was primarily designed to ensure that the posterior
had two posterior modes located far from each other, thereby, enabling
comparison of different probabilistic methods for a very challenging
inverse problem. In order to allow a fair comparison between the
previously published PT results and the new ASMC results, the train-
ing image and the DeeSse simulation parameters were the same as
in Laloy et al. (2016). However, this implies that the prior probability
of sampling modes 1 and 2 are different, and consequently that the
two posterior modes have unequal posterior probabilities despite that
the likelihoods are equivalent. To ensure that the true posterior has
two modes of equal posterior probability, one could use a training
image with two layers. The first layer would be the original training
image and the second layer would be obtained by mirroring the training
image similarly to how mode 2 was created. At each SGR step, the
MPS algorithm would scan from either layer 1 or 2. Nevertheless, the
fact that ASMC-SGR 24p primarily sampled mode 2 and ASMC-SGR
72p primarily sampled mode 1 suggests that the main limitation in
the presented runs are the limited computational budgets that prohibit
sampling the two posterior modes well during one ASMC run.

One option to reduce the computational time and, thereby, allow for
longer runs would be to use faster algorithms for generating the candi-
date models: either newer versions of DeeSse, quick sampling (Gravey
and Mariethoz, 2020), graph cuts (Zahner et al., 2016), or by replacing
MPS-based algorithms with deep learning-based generators as in the
study by Amaya et al. (2021). Also, a computational gain could be
achieved by replacing the expensive forward solver with a surrogate
(e.g., by polynomial chaos expansion (Laloy et al., 2013; Meles et al.,
2022)). This should not bias the results if the surrogate is only applied
in the intermediate 𝐾 Markov steps, while still using the expensive
forward solver for the importance sampling steps.



Advances in Water Resources 166 (2022) 104252

11

M. Amaya et al.

Fig. 10. Four samples from different power posteriors sampled with the ASMC-SGR 72p run: (a)–(d) 𝛼𝑡 = 0; (e)–(h) 𝛼𝑡 = 0.002; (i)–(l) 𝛼𝑡 = 0.017 and (m)–(p) 𝛼𝑡 = 0.088. The
corresponding weights 𝑊 are shown and the root mean square error (RMSE) without units is indicated for each sample with the corresponding value of the reference model
(modes 1 and 2) being 0.0030.

Fig. 11. Evolution of the Eve indices for the (a) ASMC-SGR 24p and (b) ASMC-SGR 72p in the range from 𝛼 = 10−4 until 𝛼 = 1. The opacity of the lines is proportional to the
number of particles that have the same Eve index (same origin) at a given 𝛼.
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Fig. 12. (a) Natural log-evidence evolution vs. 𝛼 for ASMC-SGR using 24 and 72 particles; (b) difference of the log-evidence estimates for the two test cases vs. 𝛼; (c) corrected
natural log-evidence (Eq. (18)) vs. different assumptions of 𝜎𝛼 .
The power posterior approximations can also be interpreted as
posterior PDF approximations for different assumed data error levels
(Fig. 9). By raising the likelihood function to an inverse temperature
𝛼 that is less that 1, the impact on the reduced log-likelihood is the
same as if increasing the assumed error level. That is, flattening the
likelihood and, thereby, enhancing the freedom of the exploration.
A similar effect is obtained by decreasing the number of data points
considered 𝑚𝑑 (𝛼 ∝ 𝑚𝑑 in Eq. (3)): keeping a subset of the original
observations will have a similar impact as reducing 𝛼 or increasing
𝜎2. Tempering, assuming artificially high data errors or reducing the
number of data are not uncommon in the literature when addressing
challenging Bayesian inversions (e.g., Juda and Renard (2021)). This
results in an easier to solve, but different, inverse problem that is
conservative in the sense that the posterior mean is less informative
and the posterior variance is larger than for the original problem. One
important advantage of ASMC is that it explores all these intermediate
problems, but also use the information gained to sample the original
posterior PDF that is unfeasible for many other methods. Similarly,
the evidence computations can be re-scaled to correspond to different
assumptions of data error levels (Fig. 12).

In field applications, the data error level is typically poorly known.
ASMC can then be very helpful, as one could assume a noise level
that is likely too low and then obtain approximations of several power
posterior corresponding to different (larger) error assumptions. One
could then consider choosing an optimal error level based on the ASMC
intermediate results using the relationship between 𝛼 and 𝜎. For in-
stance, one could perhaps choose the error level and the corresponding
posterior (and evidence) approximations by considering the divergence
between the reference target log-likelihood and the tempered log-
likelihoods with increasing 𝛼. In Fig. 2a there is no such divergence
as the true data error level is assumed. This would be much more
efficient than running multiple MCMC runs with different assumptions
concerning 𝜎.
12
An alternative and somewhat related method to solve inverse prob-
lems with SGR is Population Expansion (PoPEx) introduced by Jäggli
et al. (2017, 2018). This method is similar to ASMC in the sense that the
proposal distribution progressively evolves along the run towards the
posterior PDF. These evolving distributions provide information maps
built to efficiently select conditioning data for new SGR model propos-
als based on previously sampled high-likelihood models. The posterior
PDF is approximated by iteratively expanding the set of models along
the run. The corrected PoPEx algorithm by Jäggli et al. (2018) can
be interpreted as an adaptive importance sampling algorithm (Naylor
and Smith, 1988), in which the evolving proposal distribution is the
importance distribution and the posterior PDF is the target distribution.
This is different from ASMC where the importance sampling relies
on consecutive power posteriors. Compared with PoPEx, ASMC also
includes resampling steps, thereby, avoiding the degeneracy that often
seems to plague PoPEx. To address this problem, Jäggli et al. (2018)
artificially reweigh the weights in order to achieve a lower variance
and, hence, a richer representation of the approximated posterior.

5. Conclusions

Tempering of likelihood functions is used in a wide variety of
Bayesian methods to enhance posterior exploration and for evidence
computations, particularly when confronted with high-dimensional and
multimodal posterior PDFs that standard MCMC methods often struggle
with. We demonstrate that adaptive sequential Monte Carlo (ASMC)
outperforms parallel tempering (PT) when using sequential geostatisti-
cal resampling (a multiple-point statistics approach) as model proposal
scheme in the context of a challenging synthetic groundwater transport
inverse problem involving 7500 model parameters with a bimodal
posterior PDF. ASMC is found to be considerably more effective in
locating the two posterior modes and to sample states with likelihoods
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that are in agreement with the data noise. The algorithm has a simple
implementation and demands a minimal user effort in terms of tuning
due to its adaptive features. Furthermore, it also estimates the evidence
(marginal likelihood) at almost no additional computational cost. The
intermediate results of the algorithm can be used to determine the
posterior means, standard deviations and evidences corresponding to
different assumptions of data errors. This can be very helpful as it
avoids pre-defining one standard deviation on the noise (or doing many
MCMC runs with different assumed errors) and it allows assessing how
the posterior changes from the prior through a number of intermediate
power posteriors to the targeted posterior PDF. The method is versatile,
robust and very well suited for parallelization and could have wide
applicability to solve inverse problems arising in the field of water
resources using a wide range of model parameterizations, forward
solvers and model proposal schemes. In the future, we will seek speed-
ups through surrogate modeling to enable a larger number of particles
or longer runs and, thereby, improve the posterior estimations further
for a given computational cost. Indeed, our examples with 24 and
72 particles could locate the posterior modes, but the computational
budgets were insufficient to robustly sample the two posterior modes
during the same ASMC run.
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