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Abstract

We develop a novel method for solving constrained optimization problems in random (or stochastic)

simulation; i.e., our method minimizes the goal output subject to one or more output constraints and

input constraints. Our method is indeed novel, as it combines the Karush-Kuhn-Tucker (KKT) conditions

with the popular algorithm called ”efficient global optimization” (EGO), which is also known as ”Bayesian

optimization” and is related to “active learning”. Originally, EGO solves non-constrained optimization

problems in deterministic simulation; EGO is a sequential algorithm that uses Kriging (or Gaussian

process) metamodeling of the underlying simulation model, treating the simulation as a black box.

Though there are many variants of EGO—for these non-constrained deterministic problems and for

variants of these problems—none of these EGO-variants use the KKT conditions—even though these

conditions are well-known (first-order necessary) optimality conditions in white-box problems. Because

the simulation is random, we apply stochastic Kriging. Furthermore, we allow for variance heterogeneity
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and apply a popular sample allocation rule to determine the number of replicated simulation outputs

for selected combinations of simulation inputs. Moreover, our algorithm can take advantage of parallel

computing. We numerically compare the performance of our algorithm and the popular proprietary

OptQuest algorithm, in two familiar examples (namely, a mathematical toy example and a practical

inventory system with a service-level constraint); we conclude that our algorithm is more efficient (requires

fewer expensive simulation runs) and effective (gives better estimates of the true global optimum).

Keywords: Simulation, design of experiments; simulation, statistical analysis; artificial intelligence; computational-

experiments; inventory-production

JEL: C0, C1, C9, C15, C44

1 Introduction

In this paper we solve constrained optimization problems in random or stochastic simulation, combining

efficient global optimization (EGO) and the Karush-Kuhn-Tucker (KKT or briefly KT) conditions; Kleijnen

et al. (2022) investigates a similar solution, in the simpler context of deterministic simulation. EGO is a

popular sequential statistical algorithm that uses Kriging—or Gaussian process (GP) metamodeling—and

was originally developed for non-constrained optimization in deterministic simulation; see Jones et al. (1998).

EGO is also known as Bayesian optimization (BO), and is related to active learning ; see the many references

in Frazier (2018). Though there are many variants of EGO (for non-constrained optimization problems and

for variants of these problems), none of these EGO-variants use the KKT conditions—even though these

conditions are well-known first-order necessary optimality conditions in white-box optimization; see Boyd

and Vandenberghe (2009).

To denote the multiple random simulation outputs, we use the symbol wh (h = 0, 1, ..., t−1) where E(w0)

is the goal output to be minimized and E(wh′) (h′ = 1, ..., t−1) are the (t−1) constrained outputs such that

the output constraints are E(wh′) ≤ ch′ with prespecified ch′ . For example, in inventory management, the

users may wish to minimize the expected cost such that the expected out-of-stock fraction does not exceed

10%. Like Kleijnen et al. (2022), we assume k continuous simulation inputs xj (j = 1, ..., k). Whereas

Kleijnen et al. (2022) assumes that these xj vary across a given rectangular experimental domain lj ≤ xj

≤ uj , we assume— like Kleijnen et al. (2010)—more general input constraints; namely, fg(x) ≤ cg (g = 1,

...v) such as x1 ≤ x2. Furthermore, we assume that k is relatively small (say) 1 ≤ k ≤ 20 (it is well-known

that Kriging requires small k: “curse of dimensionality”). For example, k = 2 in inventory management of

a single item (or stock keeping unit, SKU) through the popular (s, S) system (with S > s). We define the
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k-dimensional vector x = (x1, ..., xk)′.

Compared with deterministic simulation, our problem is more complicated because E[wh(x)] must be es-

timated. We estimate this E[wh(x)] from (say) m replications; by definition, replications give independently

and identically distributed (IID) wh;r and wh;r′ with r 6= r′ (r, r′ = 1, ..., m). So, replications use nonoverlap-

ping (independent) streams of pseudorandom numbers (PRN). L’Ecuyer (2015) reviews PRN generators—in

sequential and parallel computing—focussing on multiple independent streams and substreams, including

software libraries (Obviously, the t output types are statistically dependent or correlated instead of IID.)

In our analysis we allow for variance heterogeneity ; i.e., var[wh(x)] depends on x, and denotes the

so-called intrinsic variance caused by the PRN. Jalali et al. (2017) investigates variance heterogeneity in

unconstrained optimization solved through several variants of EGO. Ankenman et al. (2010) also inves-

tigates variance heterogeneity and derives stochastic Kriging (SK), but focuses on prediction (instead of

optimization) so the SK performance is measured through the mean squared prediction error (MSPE).

Moreover, we focus on random simulation with independent random numbers (IRN) and m(xi) replica-

tions where xi denotes x in the simulated input combination i where i = 1, ..., n. We use the popular sample

allocation rule m(xi)/m(xi′) = var[w(xi)]/var[w(xi′).

Note that common random numbers (CRN) with m(xi) = m is usually analyzed by SK requiring m > n.

We also derive ordinary Kriging (OK) with CRN requiring m > 1. CRN are meant to reduce the variance

of the estimated difference between two means. In constrained optimization, however, we need to estimate

the magnitude of the slacks ch′ − wh′(x); CRN may give a relatively bad estimator of these slacks.

The literature on Kriging for constrained optimization in random simulation is extremely limited. Wang

and Ierapetritou (2018) considers a single output constraint, whereas we consider the general case of t ≥ 1

constraints; moreover, that publication assumes IRN with mi = m and independent w0 (objective) and w1

(constraint), whereas our (s, S) inventory with a service-level (or fill-rate) constraint gives correlated outputs.

Whereas EGO originally used either the expected improvement (EI) or the probability of feasibility (PI) infill

criterion (or acquisition function), that publication proposes “feasibility-enhanced Expected Improvement”

that combines the well-known augmented expected improvement (AEI) and PI; we use neither AEI, nor PI.

A survey of optimization including random simulation is Mahévas et al. (2019). A recent publication using

PI is Guidetti et al. (2022).

Our algorithm can take advantage of parallel computing ; i.e., we implement our algorithm on a personal

computer (PC) with 16 cores, and use MATLAB’s default with 12 cores. Guidetti et al. (2022) develops a

parallel BO procedure for constrained optimization, which uses PI. Note that Qing et al. (2022) develops a

parallel procedure for constrained multi-objective optimization using a Pareto frontier and—instead of EI—

an entropy infill criterion; Luo et al. (2015) develops a parallel procedure for so-called ranking-and-selection
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(R&S); obviously, those problems are related to—yet different from—our type of problems.

We numerically investigate the performance of our algorithm, in a mathematical toy example inspired

by Gramacy et al. (2016, p. 2) (and also used in Pourmohamad and Lee (2020) and Pourmohamad and Lee

(2021)) and an (s, S) inventory system with a service-level constraint originally investigated in Bashyam and

Fu (1998).

We organize the rest of this paper as follows. Section 2 formalizes our constrained optimization problem

and the corresponding KT conditions; this section also interprets these conditions as a least squares (LS)

model. Section 3 summarizes SK, derives SK estimators of the output gradients ∇h, and discusses choosing

the number of simulation replications mi and input combinations n. Section 4 details a novel variant of EGO

for optimization in random simulation with output and input constraints; i.e., this algorithm minimizes the

well-known modified EI (or MEI) multiplied by a cosine that quantifies how well the KT conditions hold.

Section 5 designs a Monte Carlo (MC) experiment with the toy example that controls the degree of variance

heterogeneity; Subsection 5.1 compares the performance of our algorithm and OptQuest (which is a popular

proprietary simulation optimization algorithm that combines several algorithms). Section 6 investigates

an (s, S) inventory discrete-event simulation model with a service-level constraint (this constraint is used

because practitioners find it hard to quantify out-of-stock costs, including loss-of-goodwill; this model is

the major building block in practical inventory models with multiple SKUs); Subsection 6.1 compares the

performance of our algorithm and OptQuest. Section 7 presents conclusions.

2 Constrained optimization and Kuhn-Tucker conditions

In Section 1, we mentioned that we focus on

min
x
E[w0(x)] subject to

E[wh′(x)] ≤ ch′ with h′ = 1, . . . , t− 1,

fg(x) ≤ cg with g = 1, ..., v. (1)

Obviously, fg(x) ≤ cg includes the usual box constraints

l ≤ x ≤ u (l = (l1, ..., lk)′, u = (u1, ..., uk)′). (2)

Note that we assume that the problem uses expected values instead of probabilities such as PR[wh′(x) >

ch′ ] ≤ 0.10; classic Kriging also assumes expected values instead of probabilities (Kriging with probabilities
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is referenced in Kleijnen (2015, p. 222)). In practice, the analysts and their clients cannot observe the true

E[wh(x)]; they can observe the actual averages during a finite period (or short term); in the long term, “we

are all dead” (as the economist Keynes said) and the system and its environment will change so the analysts

should find a new solution. However, for the toy problem detailed in Section 5, we do know the true means

E[wh(x)]; i.e., we do know whether the estimated optimal solution is feasible. In practice, post-processing

may obtain so many replications of the (relatively expensive) simulation that the analysts are (say) 95%

certain that the expected values are estimated within 1%.

We denote the gradient of wh(x) (h = 0, 1, ..., t − 1) at x∗ by ∇h(x∗) = (∂wh/∂x1, ..., ∂wh/∂xk)′|x∗ .

A constraint is binding (or “active”) at a specific x∗ if this x∗ lies at the boundary between the feasible

area and the infeasible area; i.e.,. if this x∗ changes ≤ into = in (1), so the slack becomes exactly zero. Let

Aλ (x∗) denote the index set with the indices h′′ of the binding output constraints at x∗ (obviously, this set

is empty if there are no binding output constraints at this x∗).

Note that the box constraint in (2) implies the 2k input constraints xj ≤ uj and −xj ≤ −lj . For these

constraints we define g = 1, ..., v = 2k, so ∇g is a k-dimensional vector with 1 or -1 at position j, and 0 at

the k− 1 remaining positions. In our toy example, all input constraints are box constraints; however, in our

(s, S) inventory example there is the additional constraint s ≤ S or s−S ≤ 0, so the corresponding gradient

is (1,−1)′.

Analogous to Aλ (x∗), let Aµ (x∗) denote the index set with the indices g′ of the binding input constraints

at x∗. Denote the Lagrangian multiplier for binding output constraint h′′ by λh′′ , and for binding input

constraint g′ by µg′ . Altogether, the KT stationarity conditions are

−∇0(x∗) =
∑

h′′∈Aλ(x∗)

λh′′(x∗)∇h′′(x∗) +
∑

g′∈Aµ(x∗)

µg′(x∗)∇g′(x∗)

with λh′′(x∗) ≥ 0 and µg′(x∗) ≥ 0. (3)

Obviously, (3) is an orthogonal projection of −∇0 onto the linear space spanned by ∇h′′ and ∇g′ . Because

LS is also an orthogonal projection, we interpret (3) as a LS model with the estimates λ̃h′′ and µ̃g′ where we

use a tilde to denote LS (LS is a mathematical criterion; in the next sections, we shall use a hat to denote

an estimator that uses a statistical criterion such as likelihood or bias resulting in a maximum likelihood

estimator (MLE) or an unbiased estimator). We define the vectors λh′′ = (λh′′) and µg′ = (µg′) where

the number of elements of these vectors is #Aλ (x∗) and #Aµ (x∗). Next we define ν = (λ′h′′ ,µ
′
g′)
′, and

∆ = (∇h′′ ,∇g′). Using (3), we define the LS model with the explained (dependent) variable −∇0 and the
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explanatory (independent) variables ∆. This model gives the LS estimator ν̃ = (λ̃′h′′ , µ̃
′
g′)
′:

ν̃ = (∆′∆)−1∆′(−∇0). (4)

This ν̃ gives the LS model of the KT conditions defined in (3):

− ∇̃0(x∗) =
∑

h′′∈Aλ(x∗)

λ̃h′′(x∗)∇h′′(x∗) +
∑

g′∈Aµ(x∗)

µ̃g′(x∗)∇g′(x∗)

with λ̃h′′(x∗) ≥ 0 and µ̃g′(x∗) ≥ 0. (5)

To quantify the validity of this model, we use cos[−∇0(x∗), −∇̃0(x∗)], which we abbreviate to c̃os(x∗).

Ideally, −∇0(x∗) and −∇̃0(x∗) coincide so c̃os(x∗) = 1. However, in our search for the optimum, we require

only that these two vectors point into the “same” direction; i.e., x∗ lies “near” a stationary point. So, we

require that 0 ≤ c̃os(x∗) ≤ 1. Obviously, cos[−∇0(x∗), −∇̃0(x∗)] = cos[∇0(x∗), ∇̃0(x∗)]. Finally, we use

the following well-known formula (see, e.g., Kolman and Hill (2008, p. 350)) where • is the usual symbol for

the inner product of two vectors:

c̃os(x∗) =
∇0(x∗) • ∇̃0(x∗)

||∇0(x∗)|| × ||∇̃0(x∗)||
. (6)

Unfortunately, in simulation the functions wh(x) are unknown; simulation does give the input/output

(I/O) data (xi, wi;h;r). We can use these data to estimate metamodels that approximate the black-box

functions wh(x). Actually we use Kriging metamodels, as we explain next.

3 Kriging in random simulation

Subsection 3.1 summarizes SK. Subsection 3.2 derives Kriging estimators of the output gradients ∇h. Sub-

section 3.3 discusses choosing the number of simulation replications mi and input combinations n.

3.1 Stochastic Kriging

We start with the formulas for the SK predictor and its variance derived in Ankenman et al. (2010). We

let eh;r(xi) —or briefly ei;h;r—denote the intrinsic noise in replication r (r = 1, ..., mi) of simulation

output h (h = 0, 1, ..., t − 1) at simulated “old” input combination xi (i = 1, ..., n). Kriging (or GP)

assumes that ei;h;r has a Gaussian distribution with zero mean. Averaging the mi replications gives the

average simulation output wh(xi)—or briefly wi;h—and the average intrinsic noise eh(xi)—or ei;h. Let Σe;h
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denote the covariance matrix of ei;h. IRN imply that this matrix is a diagonal matrix. We ignore the

covariances between the t simulation outputs when fitting the t Kriging metamodels; i.e., we use univariate

Kriging instead of multivariate Kriging or co-Kriging (Ankenman et al. (2010) considers only univariate SK).

Actually, univariate Kriging drastically simplifies the analysis and may be superior, because multivariate

Kriging requires the specification of an appropriate covariance matrix and the estimation of the individual

covariances in that matrix; see Kleijnen and Mehdad (2014). Let Mh(x) denote the extrinsic noise in the

Kriging model for output h. Kriging assumes that e is independent of M . These assumptions give the

following SK predictor for the new point x∗ (input combination not yet simulated), which uses the n old

simulation I/O data (X,wh) where X = Xn×k and wh = wh;n:

ŷh(x∗) = µ̂h + σ̂M ;h(x∗)
′(Σ̂M ;h + Σ̂e;h)−1(wh−µ̂h1n), (7)

which plugs-in the MLE ψ̂h = ψ̂(X,wh) of ψh where ψh denotes the vector with the SK parameters including

the mean µh = E(yh) and the variance τ2h = V ar(yh) so the n× n correlation matrix Rh = (ρi;i′;h) equals

τ−2h ΣM ;h with the n× n covariance matrix ΣM ;h = (Cov(yh;i, yh;i′)) where yh;i = yh(xi) and i
′

= 1, ..., n,

and the n-dimensional correlation vector ρh(x∗) = τ−2h σM ;h(x∗) with the n-dimensional covariance vector

σM ;h(x∗) = (σh;∗) = (Cov(yh;∗, yh;i) with yh;∗ = yh(x∗); Σ̂e;h is the classic unbiased estimator (defined in

(9)); 1n denotes the n-dimensional vector with all elements equal to 1; M(x) denotes a zero-mean stationary

GP (see the subscript M of ΣM ;h).

The estimated MSPE of ŷh(x∗) is

s2[ŷh(x∗)] = τ̂2h − τ̂4hρ′h(x∗)[τ̂
2
hRh + Σ̂e;h]−1ρh(x∗)

+ δ̂2h[1′n(τ̂2hRh + Σ̂e;h)−11n]−1

with δ̂h = 1− 1′n(τ̂2hRh + Σ̂e;h)−1ρh(x∗)τ̂
2
h . (8)

Our equation (8) equals (27) in Ankenman et al. (2010)—apart from δ̂ in the latter equation, which is

actually a scalar δ̂. Our equation also resembles (9) in Jalali et al. (2017).

Assuming a constant intrinsic variance σ2
h is unrealistic, so we allow x to affect both the mean and the

variance of the distribution of wh(x); i.e., the intrinsic error has heterogeneous variances σ2
h(x) = var[wh(x)].
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Following Ankenman et al. (2010), we estimate var[wi;h] through

s2(wi;h) =
s2(wi;h)

mi
with s2(wi;h) =

∑mi
r=1(wi;h;r − wi;h)2

mi − 1

with wi;h =

∑mi
r=1 wi;h;r
mi

. (9)

SK with IRN uses these s2(wi;h) (i = 1, ..., n) on the diagonal of Σ̂e;h in (7) and (8). These s2(wi;h) require

only mi > 1 (s2(wi;h) uses the denominator mi−1, so it is unbiased, unlike the MLE with denominator mi).

In Appendix 1 we discuss CRN and its analysis through either SK or OK.

3.2 Kriging estimators of output gradients

Because the KT conditions use the (unknown) gradients ∇h(x∗), we may use ŷh(x∗) to estimate these

∇h(x∗). Inspired by the derivation of ∇[ŷOK;h(x∗)] in Kleijnen et al. (2022) (also see Erickson et al.

(2021)), we notice that in (7) all factors except σ̂M ;h(x∗) depend only on the old I/O simulation data

(X,wh;n), which also determine ψ̂h = ψ̂(X,wh;n). So, we may write

∇[ŷh(x∗)] = ∇[σ̂M ;h(x∗)
′ch]

with ch = (Σ̂M ;h + Σ̂e;h)−1(wh−µ̂h1n). (10)

Actually, we use the most popular type of correlation function in Kriging metamodels of simulation models;

namely, the anisotropic Gaussian correlation function with parameter vector θh = (θh;1, ..., θh;k)′ where

θh;j ≥ 0:

ρ(θh, x, x
′) =

k∏
j=1

exp [−θh;j(xj − x′j)2] = exp [−
k∑
j=1

θh;j(xj − x′j)2]. (11)

This correlation function implies ψh = (µh, τ2h , θh;1, ..., θh;k)′. This function and (10) give

∂[ŷh(x∗)]

∂x∗;j
= −2τ2hθh;j{Σni=1ch;i(x∗;j − xi:j ) exp[Σkj′=1 − θh;j′(x∗;j′ − xi:j′ )2]}, (12)

where ch;i is element i (i = 1, ..., n) of ch in (10) so (12) defines element j (j = 1, ..., k) of ∇[ŷh(x∗)].

3.3 Number of replications and input combinations

The number of replications mi does not need to be a constant m, as we assume that the intrinsic noise varies

with the simulation input xi (i = 1, ..., n). Intuitively, a good sample allocation rule stipulates that mi

increases as σ2
h(xi) increases. Because ŷh(x∗) uses the sample averages wh;i, our algorithm obtains so many
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replications that these averages have the same estimated intrinsic variance. Let mi;s denote the available

number of replications for input combination i in stage (or iteration) s. First we discuss mi;s for s = 1, 2, ...;

next we discuss the initial stage s = 0 (we assume that readers are not confused by s denoting the estimated

standard deviation in other contexts in our paper).

Let m̂b;s denote the estimated desired number of replications in stage s for input combination b—with b

= 1, ..., B and 1 ≤ B ≤ n—“near” the estimated boundary (17). (Adding replications only to combinations

near the boundary implies that our algorithm does not obtain expensive simulation replications for points

“far away” from this boundary; consequently, the simulation observations not close to this boundary get

small weights when predicting outputs near the boundary, as the extrinsic noise and the intrinsic noise are

high).

If B = 1, then one replication is added to combination b; next, our algorithm uses all available observations

mb;s to recompute wb;h;s and s2(wb;h;s), etc. If B > 1, then we let mmin;s denote the smallest number of

actually simulated replications among the B combinations near the boundary in stage s (obviously, all t

output types use the same input). Let bmin;s denote the input combination corresponding with mmin;s. We

then compute the maximum of m̂b;s over the t outputs, as follows:

m̂b;s = max
h
d s2(w̄b;h;s)

s2(w̄bmin;s;h;s)
mmin;se (13)

where d.e is the usual symbol for the ceiling function (the floor function b.c would imply that no replications

are added if the B values of s2(w̄b;h;s) differ only slightly, so our algorithm would get stuck). If (13) gives

m̂b;s > mb;s, then we add a single replication to combination b. This new observation on wb;h;s changes

s2(wb;h;s); therefore, we recompute m̂b;s through (13). If none of the B combinations requires adding an

observation at this stage, then our algorithm uses all available observations mb;s.

It is well known that the variance of a variance estimator (such as s2(wb;h;s)) may be relatively high.

Therefore we start with mmin;s = 10 in the toy example, but in the inventory example we start with mmin;s

= 2 because E[s2(wb;h;s)] is small

Next we discuss the preprocessing stage, testing whether the initial design gives acceptable Kriging models

for the t outputs. We start with a small initial number of replications mmin and input combinations nmin;

e.g., in the toy problem, we choose mi = mmin = 10 and n = nmin = 6. (Ankenman et al. (2010) gives

the rule-of-thumb mi ≥ 10, and Wang and Ierapetritou (2018) uses mi = m = 50 as default; Pearce et al.

(2022) starts with 5 replications). Kleijnen and Van Beers (2022) derives a leave-one-out cross-validation

(LOO-CV) test for deterministic simulation; now we derive a similar test for random simulation. So, we

delete input combination i (with i = 1, ..., n) and its mi replications for the t outputs wi;h;r (with h = 0,
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..., t− 1 and r = 1, ..., mi), and compute the Kriging estimators ŷ−i;h and s2(ŷ−i;h) from the remaining I/O

data (X−i,W−i); i.e., we use (X−i,W−i) instead of (X,W) in (7) and (8). Next, we restore the complete

I/O data set (X,W), and delete another I/O combination i′—until we have left out each combination once.

We construct two-sided CIs with “per comparison” error rates. Because these CIs should hold for all t

output types and all n points, we apply the “Bonferroni” inequality; i.e., we divide by n × t to obtain an

“experimentwise” error rate αE (e.g., αE = 0.20), and we use z1−[αE/(2nt)], which is the 1−αE/(2nt) quantile

of the standard normal variable z. Finally, if

maxi;h

[
|wi;h − ŷi;h|√

s2(wi;h) + s2(ŷi;h)

]
> z1−[αE/(2nt)]

with i = 1, ..., n and h = 0, ..., t− 1, (14)

then we reject the t Kriging metamodels, and apply the allocation rule including (13). (Our preprocessing

is inspired by Pedrielli et al. (2020), but differs in many details; e.g., that publication does not use (14).)

If x is subject to box constraints only (see, e.g., the toy problem), then—in this initial stage—we use

the most popular design type in Kriging—namely, Latin hypercube sampling (LHS). If x is subject to an

additional constraint such as s ≤ S in the (s, S) inventory simulation, then we still can use LHS—provided we

reparameterize the problem; i.e., we use LHS with x1 = s and x2 = Q = S - s (a similar reparameterization

is used in Law (2015, p. 636) for an (s, S) inventory simulation without a service-level constraint, analyzed

through a local second-order polynomial instead of a global Kriging metamodel). In LHS we use midpoints,

which is an option in MATLAB’s function lhsdesign. This option fixes the distances among the n projected

values of a specific input j (with j = 1, ..., k). We expect that this option gives better ψ̂h in the anisotropic

correlation function (11), because these projected values are not clustered; actually, these values lie apart

from each other at distances that are multiples of 1/n.

We start with n = (k + 1)(k + 2)/2 if k ≤ 6 and n = 5k if k > 6, following Tao et al. (2020)’s n for

sequential optimization in deterministic simulation.

Note that Loeppky et al. (2009) proposes n = 10k, as a rule-of-thumb for sensitivity analysis via Kriging.

This rule is also used in Wang and Ierapetritou (2018) for sequential optimization in random simulation.

For n = 5k,Tao et al. (2020) refers to Liu et al. (2017). Pandita et al. (2019) states that 5k to 10k is

used, and also refers to Sóbester et al. (2005) (the latter recommends n equal to 35% of the total computer

budget, which is assumed to be fixed). For sequential optimization in deterministic simulation with k = 2,

Pourmohamad and Lee (2021) uses n = 20 in the “modified Townsend” example, but uses n = 10 in their

toy example that we shall change into a random simulation.
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4 Efficient global optimization

Optimization should avoid convergence to a local optimum. Therefore, Jones et al. (1998)—the seminal

publication on EGO for unconstrained optimization in deterministic simulation—derives an estimator of

EI at x, and uses this ÊI(x) to select the next point to be simulated. For unconstrained optimization in

random simulation with heterogeneous noise, Jalali et al. (2017) evaluates six variations of EI; actually, we

define our estimator M̂EI in (16) below. For constrained optimization in deterministic simulation, Kleijnen

et al. (2022) uses an estimator of EI multiplied by an estimator of the cos defined in (6). Now we focus on

constrained optimization in random simulation.

The simulation estimators wi:h may be rather inaccurate, given σ(xi)/mi. Therefore our algorithm uses

the SK predictor ŷh (defined in (7)), which has a lower MSPE than wi:h has—assuming there are “enough”

old points “near” xi, and the bias of the Kriging predictor is “small”. However, our algorithm may give

estimated optimal solutions (say) x̂min that are actually infeasible; e.g., if ŷh has a symmetric distribution,

then PR[ŷh′(x̂min) > ch′ ] may be as high as 50%. Therefore, our algorithm accepts x̂min as the optimal

input combination only if

ŷ h′(x̂min) + z(1−α)s[ŷh′(x̂min)] ≤ ch′ with α = αinfe (15)

where αinfe is specified by the users to control the probability of an infeasible solution selected by our

algorithm (s(ŷh′) is the square root of s2(ŷh′) defined in (8)). For example, if αinfe is 50%, 10%, 1%, or 0.1%,

then the “safety factor” z(1−α) in (15) is 0.0000, 1.2816, 2.3263, or 3.0902.

Note that s2(ŷh′) underestimates the true MSPE, because it assumes known Kriging parameters ψh and

an unbiased predictor ŷh′ . Because (15) uses the Studentized slack {[ŷ h′(x̂min)−ch′ ]/s[ŷh′(x̂min)}, we would

like to use the Student t-statistic with (say) υ degrees of freedom tυ. However, we do not know the correct

value of υ, so we use z; of course, z(1−α) < tυ;(1−α).

So, our algorithm estimates the best feasible goal output by ŷ0; min = min1≤i≤n ŷ0(xi) if (15) holds (our

initial design and PS satisfy all input constraints); else ŷ0; min = ∞. This ŷ0; min gives

M̂EI(x) = (ŷ0; min − ŷ0(x)) Φ

(
ŷ0; min − ŷ0(x)

s[ŷ0(x)]

)
+

s[ŷ0(x)]φ

(
ŷ0; min − ŷ0(x)

s[ŷ0(x)]

)
. (16)

Obviously, M̂EI(x) is positive, but it may become so small that we stop our search; actually, our algorithm

stops as soon as M̂EI(x) < ε× |ŷ0; min| where ε is some small positive number; e.g., 0.01.
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To estimate how well the KT conditions hold at x, we need to estimate which output constraints are

binding at x. Therefore we use the following decision rule:

if
|ŷh′(x)− ch′ |
s[ŷh′(x)]

≤ z1−α/2, then h′ ∈ Aλ(x). (17)

Our algorithm searches for the solution (say) x̂o of

max
x

M̂EI(x)× cos{∇̂[ŷ0(x)],
˜̂∇[ŷ0(x)]}, (18)

while satisfying the #Aλ (x) binding output constraints in (17) and all v input constraints in (1); in (18)

cos{∇̂[ŷ0(x)],
˜̂∇[ŷ0(x)]} equals

˜̂cos[x] =
∇̂[ŷ0(x)] • ˜̂∇[ŷ0(x)]

||∇̂[ŷ0(x)]|| × || ˜̂∇[ŷ0(x)]||
(19)

where
˜̂∇[ŷ0(x)] is the LS estimator

− ˜̂∇[ŷ0(x)] =
∑

h′′∈Aλ(x)

˜̂
λh′′(x)∇̂[ŷh′′(x)] +

∑
g′∈Aµ(x)

µ̃g′(x)∇g′(x)

with
˜̂
λh′′(x) ≥ 0 and µ̃g′(x) ≥ 0. (20)

Note that deterministic simulation uses EI so EGO does not select old points xi (because ÊI(xi) = 0)

for the next simulation, whereas random simulation may give M̂EI(xi) > 0 so our algorithm may revisit old

points. More precisely, if x = xi, then the first term in (16) is not positive and (because ŷ0(xi) is not an

exact interpolator) the second term is positive.

To find the solution x̂o for the problem defined in (18) through (20), we use MATLAB’s pattern search

(PS). PS is detailed on

https://nl.mathworks.com/help/gads/patternsearch.html.

That website describes several types of optimization problems, including “Nonlinear Constraints” (we

quote text on the PS website so the readers can easily retrieve the relevant text). PS has several “Options”,

including “InitialMeshSize” and “Tolerance on the mesh size”. For both options we select values that depend

on the specific example; i.e., for the toy problem with 0 ≤ xj ≤ 1 (j = 1, 2), we select the “InitialMeshSize”

equal to 0.10 (or 10% of the input range), and for the inventory problem with 600 ≤ s ≤ 1,200 and 600 ≤ S

≤ 1,800 we select the value 20. During its search, PS decreases (or increases) this mesh size when the next

iterate is worse (or better) than the current iterate (i.e., PS uses an “adaptive mesh”). “Tolerance on the
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mesh size” stops the PS search as soon as the mesh size becomes smaller than this tolerance. For the toy

problem with 0 ≤ xj ≤ 1, we select a tolerance equal to 0.001, and for the inventory problem we select a

tolerance of 5. PS also has an “exitflag — Reason patternsearch stopped”; e.g., the flag value -2 means “No

feasible point found“. (We do not use the option “UseParallel” in PS; in our algorithm we do use parallel

computing.) PS requires an “Initial point”. To reduce the probability of PS getting trapped in a local

optimum, PS may be restarted several times. Actually, we use 10k starting points that satisfy the v input

constraints fg(x) ≤ cg (g = 1, ..., v) , but may violate the output constraints (MATLAB advises ten feasible

restart points). PS requires relatively little computer time in our algorithm, as PS uses ŷh instead of wh

(expensive simulation output). To select specific initial (so, s = 0) starting points, we use LHS. Obviously,

PS also ends with 10k points, but some of these endpoints may coincide. To select specific starting points

after the initial stage (so, s = 1, 2, ...), we also use the new points that were selected by our algorithm after

stage s = 0. However, in the first stages, there are not enough new points, so PS also uses LHS. (Wang and

Ierapetritou (2018) also uses 10k starting points selected by LHS, but uses MATLAB’s fmincon to find infill

points).

If PS cannot find a feasible solution (exitflag is -2), then we halve α and apply PS to the problem with this

new α-value (obviously, this new value implies a wider CI around the estimated binding output constraints).

We stop our algorithm as soon as the current α is lower than some small value (say) αmin; e.g., αmin = 0.01.

After PS has given x̂o, our algorithm must decide on mi. Our algorithm applies the sample allocation

rule (13); i.e., it may add (expensive) replications, at old or new points. Next, it uses all available simulated

I/O combinations, to re-estimate the SK parameters.

Whereas deterministic simulation gives the true outputs wi;h, random simulation gives only the estimates

wi:h;r (r = 1, ..., mi). Consequently, random simulation may require many more iterations, and still give

an estimated global optimum that lies far away from the true optimum. Therefore our algorithm restarts

with different initial designs (in general, restarting is popular in optimization). We use 12 restarts (actually,

at the start of our experimentation we used a non-parallel computer; we may then add a single restart at

a time—until we are satisfied with the result or we run out of time). Our algorithm uses PS with n = 10k

restarts, not in parallel. (In practice, the users may observe the development of the estimated optimum, and

decide whether they wish to continue the search for the true optimum.)

We use the following hardware: an HPE ProLiant DL380 Gen10 server with two Intel(R) Xeon(R) Silver

4110 CPUs (16 cores) with 2.10 GHz, and 59.1 GB of usable RAM out of 64 GB. We use MATLAB R2019b;

also see the Parallel Computing Toolbox on

https://www.mathworks.com/help/parallel-computing/parallel-preferences.html.

We use the PRN generator called mrg32k3a, which can create 263 independent PRN substreams of length
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2127; see

https://www.mathworks.com/help/matlab/ref/randstream.randstream.create.html.

This generator is also recommended in L’Ecuyer (2015). This generator enables us to control the PRN

seeds such that restarts and macroreplications use non-overlapping substreams.

Note that initially we used a non-parallel implementation without restarting (or 1 “restart” instead of 12

restarts). In the toy example, this implementation gave many final values for x̂min close to a local optimum

instead of the global optimum. More precisely, in this example 60 macroreplications without restarts gave

frequency diagrams for ŷ0; min with two “tops” (or modes), which we interpret as tops corresponding with

the global and local optima.

In Algorithm 1, we present a pseudo-code for a single restart.

Algorithm 1

1. Select the algorithm’s control variables αE, α, αinfe, αmin, ε, m, n.

Comment: The variable αE features in (14), α and αinfe in (15), αmin after (20), ε below (16), and m

and n in Section 3.3.

2. Sample an initial design matrix with n combinations of the k simulation inputs xj that satisfies the

input constraints fg(x) ≤ cg with g = 1, ..., v.

Comment: This Step gives the n× k matrix X with the k-dimensional vectors xi where i = 1, ..., n.

We select n = 6 if k = 2.

3. Use X as input for the given simulation model, to obtain m replications of the n × t matrix with

(t-variate) simulation outputs Wn×t;r.

Comment: Wn×t;r consists of the n-dimensional vectors wn;h;r with h = 0, ..., t− 1 and r = 1, .., m.

We select the initial value m = 10 in the toy example and m = 2 in the inventory example.

4. Apply LOO-CV to (X,Wn×t;r).

Comment: LOO-CV uses (14).

5. If LOO-CV rejects one or more SK models, then obtain a new replication for the combination with the

smallest estimated variance among the t output types, and apply the allocation rule to compute the

desired number of replications m̂i; if necessary, then obtain additional replications, and update mi;

return to Step 4.

Comment: To compute m̂i, use (13). To decide on additional replications, use the text below (13).

Steps 4 and 5 constitute the preprocessing stage.
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6. Use (X,Wn×t;r) to compute ψ̂h = ψ̂(X,wn;h;r), Σ̂e;h, ŷh(xi), s
2[ŷh(xi)].

Comment: Σ̂e;h is a diagonal matrix that uses (9).

7. Use ŷh(xi) to compute ŷ0; min = mini ŷ0(xi) if ŷh′(xi) + z(1−α)s[ŷh′(xi)] ≤ ch′ (with h′ = 1, ..., t− 1

and α = αinfe) and fg(x) ≤ cg (with g = 1, ..., v); else ŷ0; min = ∞.

Comment: This ŷ0; min is needed to compute M̂EI(x), in Step 9.

8. Use ŷh(xi) to compute ∇̂[ŷh(xi)].

Comment: To compute ∇̂[ŷh(xi)], use (12). This ∇̂[ŷh(xi)] is needed to compute ˜̂cos[x], in Step 9.

9. Apply PS to estimate x̂o, which maximizes M̂EI(x)× ˜̂cos[x] such that x satisfies the t− 1 CIs for the

constrained outputs h′ defined in (17) and the v input constraints defined in (1).

Comment: M̂EI(x) is defined in (16) using ŷ0 and s2(ŷ0); ˜̂cos[x] is defined in (19) using the estimated

gradients of the estimated binding output constraints ∇̂[ŷh′′(x)] and the LS model with the explained

variable
˜̂∇[ŷ0(x)] and the explanatory variables ∇̂[ŷh′′(x)] and ∇g′(x)—defined in (20).

10. If PS finds a feasible point x̂o, then apply the allocation rule, obtain the required observations, and

return to Step 6; else replace α by α/2 in (17). If α ≥ αmin, then return to Step 9; else if α < αmin

and M̂EI(x) < ε× |ŷ0; min|, then go to the final step (Step 11).

11. Present the estimated optimal goal output ŷ0; min.

After the multiple (namely, 12) restarts, our algorithm presents the minimum of the multiple estimated

optimal goal outputs. Let ŷ0; min;q denote ŷ0; min of Step 11 in Algorithm 1 (single restart) of restart q (our

PC with 12 cores implies q = 1, ..., 12). Then all restarts together give the overall estimated optimal goal

output; namely, ŷ0; min;qo with qo = argminq ŷ0; min;q. Moreover, the algorithm determines information

that corresponds with ŷ0; min;qo; namely, x̂o; qo, ŷh′; qo(x̂o; qo) (h′ = 1, ..., t−1), and the (say) 90% two-sided

CI for ŷh; qo(x̂o; qo) (h = 0, ..., t− 1). The confidence levels are supposed to apply per comparison; however,

they are not exact, as the algorithm has many steps that use CIs. Because of the KT conditions, the

estimated slacks ch′ - ŷh′ qo(x̂o; qo) should be virtually zero for at least one output constraint.

Our algorithm uses 12 restarts (cores), so we select the following measure of efficiency. By definition, the

elapsed time is the time between the starting time and the stopping time of our algorithm. That stopping

time is determined by the slowest restart among the 12 restarts, which requires the maximum number of

(expensive) simulation observations (the adapted EGO computations require negligible time). Restart q

(with q = 1, ..., 12) stops after Tq stages (so, s = 0, 1, ..., Tq). Stage s has its own number of simulated

points ns, and each of these points has its own number of replications mi;s. Let Nq denote the total number
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of simulation observations of restart q, and let N denote Nq of the slowest restart:

N = max
q
Nq with Nq =

Tq∑
s=0

ns∑
i=1

mi;s;q (21)

We use this N as a pseudo-measure for the elapsed time between the simultaneous start of the 12 restarts

and the end of the slowest restart.

Note that we may add replications to either the B points near the boundary or all n points. We conjecture

that both design options are equally effective, but that the former design option is more efficient. To test this

conjecture, we compare these two options in the toy example, using one macroreplication with 12 restarts.

Adding replications to all n points gives x̂min = (0.1938, 0.4187)′ with ŷ0; min = 0.6159, and N = 101,671.

Adding replications to B points gives x̂min = (0.1984, 0.4115)′ with ŷ0; min = 0.6122 (nearly 1% better) and

N = 47,707 (less than 50%).

Inspired by Tao et al. (2020, Table 1, line 32), we add an extra Step that finds the solution x̂min for

min
x
ŷ0(x) subject to

ŷh′(x) + z(1−α)s[ŷh′(x)] ≤ ch′ with α = αinfe

fg(x)≤cg g = 1, ..., v (22)

where ŷh (h = 0, ..., t− 1) uses the simulation I/O data of all 12 restarts. To find this x̂min, our algorithm

uses PS with 12 restarts in parallel. Unlike Tao et al., we check whether simulation with this input x̂min

gives a feasible solution and a smaller ŷ0(x̂min); else x̂min equals x̂o; qo (estimate resulting from multiple

restarts of our algorithm).

Note that these 12 restarts may give so many simulated combinations that a numerical problem arises

(DACE gives the error message “Multiple design sites are not allowed”). To solve this problem, we combine

I/O simulation data that lie “close together”; e.g., if the toy example (with 0 ≤ xi;j ≤ 1) gives |xi;j − x′i;j |

< 0.07, then we replace these inputs and outputs by their averages xi;j and wi.

5 Mathematical toy example

We display the deterministic toy example of Gramacy et al. (2016) (also used in several other publications

mentioned in Section 1) in Fig. 1, which includes the following special points: A is the global minimum; B

is a local minimum; C is a local minimum with a binding input constraint; D and E are local maxima; A
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Figure 1: Mathematical toy example with inputs x1 and x2, deterministic goal output w0 and constraints
w1 and w2, and special points A through F

through E satisfy the KT conditions, whereas F does not; A through F are investigated in Kleijnen et al.

(2022).

Now we modify this deterministic example such that it becomes relevant for random simulation; i.e.,

we introduce intrinsic noise eh(x) with h = 0, 1, 2, and replace the deterministic outputs wh(x) by their

expected values E[wh(x)]:

min
x
E[w0(x)] = E[x1 + x2 + e0(x)]

E[w1(x)] = E{3

2
− x1 − 2x2 −

1

2
sin[2π(x21 − 2x2)] + e1(x)} ≤ 0

E[w2(x)] = E[−3

2
+ x21 + x22 + e2(x)] ≤ 0

0 ≤ xj ≤ 1 j = 1, 2. (23)

We assume that eh has heterogeneous variances that are determined by x; so, we let σ2
e;h(x) denote these

variances. To select specific values for these σ2
e;h(x), we follow Jalali et al. (2017, p. 293) where the “best

case” means that the standard deviation σe;h(x) decreases as E[wh(x)] decreases, and the “worst” case

means that σe;h(x) increases as E[wh(x)] decreases; Jalali et al. (2017) defines these two cases, assuming

no constraints when minimizing E[w0(x)]. We, however, consider multiple outputs. For simplicity’s sake,

we apply Jalali et al.’s approach to each of these outputs. We limit our experiments to the best case (so, as
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wh(x) decreases, σe;h(x) decreases) with relatively small noise:

σe;0(x) = 0.30 + 0.45E[w0(x)]

σe;1(x) = 1.1507 + 0.45E[w1(x)]

σe;2(x) = 0.975 + 0.45E[w2(x)]. (24)

These experiments still require many simulation observations; e.g., macroreplication # 1 requires N = 47,707.

Appendix 2 details the derivation of formulas for small noise versus big noise in the best case versus the

worst case.

For simplicity’s sake, we assume zero cross-correlations between different types of output in the toy

example (the inventory example in Section 6 has two negatively correlated output types). To sample the

univariate eh(x), we use MATLAB’s normrnd where E[eh(x)] = 0 and σe;h(x) follows from (24). Given

these eh(x), we compute the corresponding wh (h = 0, 1, 2) using (23). Appendix 4 shows how our algorithm

proceeds through various stages.

Figure 2: Final estimated optimal input combinations x̂min in toy problem with 35 macroreplications, each
with 12 restarts, αinfe = 10%, mmin = 10, and 20 PS starting points

Fig. 2 presents x̂min, which denotes the estimated optimal input combinations after 12 restarts, in 35

macroreplications; each macroreplication uses αinfe = 10%, mmin = 10, and 20 PS starting points in each

iteration. We add that 5 of these 35 estimates result from the extra step at the end of our algorithm; see

(22). This Figure clearly shows that 3 of these 35 macroreplications are actually infeasible—which agrees

with αinfe = 10%. The other 32 macroreplications give estimates close to the true optimum.

The left-hand side of Fig. 3 presents the boxplot of the final estimated optimal goal outputs ŷ0(x̂min) in
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Figure 3: Boxplot of ŷSK;0(x̂min) (left-hand side) and E[w0(x̂min)] (right=hand side) in toy problem; 35
macroreplications, 12 restarts, αinfe = 10%, mmin = 10, and 20 PS starting points

35 macroreplications (12 restarts, αinfe = 10%, mmin = 10, 20 PS starting points). The three outliers below

the lowest quartile correspond with the three infeasible input combinations in Fig. 2. The sample median is

0.6225 (the true optimum is 0.5998, so the estimate is nearly 4% higher). The right-hand side presents the

boxplot of E[w0(x̂min)] (we know this mean, because this example is only a mathematical toy problem).

Fig. 4 presents the boxplot for N in 35 macroreplications. Its median is 14, 382; i.e., random simulation

with large response variances may require much computer time.

Note that SK combined with CRN requires the estimation of the elements of the n×n covariance matrix

Σe;h—which requires m > n (see Dykstra (1970)). In the toy example, we select n = 6 and m = 7 in the

preprocessing stage. Based on five macroreplications—where αinfe is either 0.10 or 0.01—we conclude that

SK with CRN performs worse than OK with CRN. We conjecture that the cause is the estimation of the

extra Kriging parameter Σ̂e;h. Therefore, we focus on SK without CRN.

5.1 Our algorithm versus OptQuest in toy example

In this subsection, we numerically compare the performance of OptQuest and our algorithm. OptQuest is a

black-box optimizer, as it is proprietary. Both OptQuest and our algorithm treat the simulation model as a

black box; i.e., in our experiment, OptQuest receives the input (xi, wi;h;r) (which is the simulation I/O with

i = 1, ..., n; h = 0, 1, 2; r = 1, ..., mi).

For OptQuest we select mi through the sequential procedure in Law (2015, p. 505) for estimating the
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Figure 4: Elapsed times N in toy problem; 35 macroreplications, 12 restarts, αinfe = 10%, mmin = 10, and
20 PS starting points

mean E(w) with a relative error of γ (with 0 < γ < 1) and confidence level 1−α. This procedure starts with

an initial number of replications m = m0 ≥ 10 (we use our own symbols). Next, it computes the half-length

of the two-sided 1− α CI:

l = tm−1;1−α/2
s(w)√
m
. (25)

If

l

|w̄|
<

γ

1 + γ
, (26)

then stop adding replications; else, add one replication, and update (25) and (26), etc.—until (26) holds.

(Alternative procedures are discussed in Kleijnen (2015, pp. 107–108).)

However, we point out that if (the denominator) |w̄| is “close” to zero, then this procedure gives a “high”

m̂ (desired number of replications). To solve this problem, we return to the original optimization problem

defined in (1), which includes the (t − 1) output constraints E[wh′(x)] ≤ ch′ . Our toy example defined in

(23), however, has the constraints E[w1(x)] = E{3/2−x1− ...} ≤ 0 and E[w2(x)] = E[−3/2 +x21 + ...] ≤ 0.

To derive m̂, we replace wh′(x) by wh′(x) + ch′ (which has the same variance as wh′(x) has); i.e., in the toy

problem we use w1(x)− 3/2 and w2(x) + 3/2 (we do not replace w0(x)). We still use wh′(x) when we use

OptQuest to search for the optimum.

Because we have t outputs, we wish that m ≥ m̂ holds for all t output; obviously, xi has its own E[wh(xi)]

and V ar[wh(xi)]. Altogether, we define the estimated desired number of replications for xi

m̂(xi) = max
t

[m̂t(xi)]. (27)
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We think that our procedure for determining m agrees with one of the OptQuest options that also uses γ

and α (this option is part of the OptQuest black box).

Note that our own algorithm uses the allocation rule (13), and allows the search to return to old points

and add replications. More precisely, our rule selects the relative number of replications for different input

combinations, whereas Law’s rule selects the absolute number of replications for a given input combination;

our rule uses the estimated variances of the simulation outputs, whereas Law’s rule uses the estimated

standard deviations (so it dampens the effect of variance heterogeneity).

Because (27) may require many replications if γ is small (e.g., 5%), we may select a relatively high γ

(e.g., 10%). The latter selection implies a relatively high V ar[wh(xi)], so we may then select a relatively

high safety factor z(1−α) in (15). (which defines the problem solved by OptQuest and our procedure).

We start OptQuest with the same initial stage as we use for our algorithm; i.e., we start OptQuest with

(xi, wi;h;r) with n = 6 input combinations selected through LHS (with midpoints), and mi (i = 1, ..., n)

replications where mi follows from (27). This start is quite general; i.e., n follows from Tao et al. (2020)

and these mi are based on Law (2015), which is the most popular textbook on simulation. Our algorithm

uses 12 cores (of our PC) and starts each core with its own initial n × k LHS design and initial mi, per

macroreplication. However, OptQuest does not use multiple cores (we do use our 12 cores to speed-up the

simulation of the toy example). Moreover, we start each macroreplication of OptQuest with the n × k =

6× 2 LHS design that gave the best results for our algorithm in the corresponding macroreplication (so we

give OptQuest a good start in each macroreplication). Of course, we select the mi in OptQuest using Law’s

procedure defined in (25) etc.

After these initial I/O simulation data, OptQuest asks for simulation I/O data for a specific new input

combination xn+1 (which is a point “near” one or more points selected by the space-filling LHS-design). So,

we provide (xn+1, wn+1;h;r) to OptQuest, using (27) to decide on mn+1.

We let OptQuest solve the analogue of (22), replacing ŷh(xi) by wh;r(xi). The three outputs (w0;r.(xi),

w1;r.(xi), w2;r.(xi)) are uncorrelated, in the toy example (in the inventory example the—possibly nonnormal—

simulation outputs are statistically dependent). By definition, replications are IID. Furthermore, the simu-

lation outputs of the n combinations are independent because the simulation does not use CRN). Each of

the 12 cores of our PC works in parallel (independently); i.e., restart g (g = 1, ..., 12) uses an initial n× k

= 6 × 2 LHS design. After this initial stage (or iteration) s = 0, the next stages s = 1, 2, ... , Tg use

independent simulation outputs with heterogeneous variances σ2
h(xi) = var[wh(xi)]. We can keep track of

N (defined in (21)) per macroreplication in our algorithm, so we can allow OptQuest to run the same N .

Fig. 5 and Fig. 6 show x̂min for OptQuest in 35 macroreplications. Fig. 5 shows x̂min when we

stop OptQuest manually as soon as the total number of simulation runs exceeds N of the corresponding
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Figure 5: OptQuest’s x̂min with the stopping criterion N ; 35 macroreplications with αinfe = 10% for the
toy problem

Figure 6: OptQuest’s x̂min with the stopping criterion n; 35 macroreplications with αinfe = 10% for the toy
problem
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Figure 7: OptQuest’s x̂min in 35 macroreplications with αinfe = 10% for the toy problem: limited N on the
left, and n = 58 on the right

macroreplication of our algorithm. Actually, several macroreplications give the same x̂min (e.g., x̂min =

(0.022, 0.9337)′ in seven macroreplications), as denoted by the numbers in this Figure. Whereas OptQuest

gives no infeasible x̂min-results, our algorithm gives 3 out-of 35 infeasible x̂min-results (remember that 3/35

is controlled by αinfe = 10% in our algorithm). Furthermore, this Figure shows that 11 (= 7 + 2+ 1

+1) of the 35 x̂min-results are close to the local minimum xC = (0, 0.7)′, and the remaining 24 (= 35 -

11) x̂min-results are close to the global minimum xA ≈ (0.1954, 0.4044)′. Our algorithm, however, gives

x̂min-results close to xA in all 35 macroreplications; see again Fig. 2. Fig. 6 shows x̂min-results when

we follow the recommendation in OptQuest and set the total number of input combinations n between 58

and 65. Actually, even the smaller n (namely, 58) causes OptQuest to run longer than N does; yet, 9

of the 35 macroreplications give x̂min-results near xC (and 26 x̂min-results closer to xA). We add that 2

macroreplications give the same x̂min; namely, x̂min = (0.2500, 0.4167)′ (the number 2 is not displayed in

Fig. 6, because this plot has too many triangles close together).

Figure 7 displays the boxplots for ŷ0; min, which correspond with x̂min in Fig. 5 and Fig. 6. The median

values of ŷ0; min are 0.8536 and 0.7401, so both values are far from the true global optimal value 0.5998.

Finally, we obtain boxplots (not displayed) for the total number of simulation observations required in

35 macroreplications for OptQuest and our algorithm. The median value for OptQuest is 58,527, which is

more than four times bigger than the median value 14,382 for our algorithm (see again Figure 4). The ranges

of the two boxplots do not overlap. We conclude that our algorithm is more efficient (requires less elapsed

time) than OptQuest, when applied to the toy example.
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6 An (s, S) inventory simulation with a service-level constraint

As we have already discussed in Section 1, inventory simulations with a service-level constraint are of major

practical relevance. Now we investigate an (s, S) inventory simulation with a service-level constraint that

was originally investigated in Bashyam and Fu (1998). In this simulation, a company places an order (with

its supplier) of size S − Ip as soon as the inventory position Ip drops below the reorder level s—where Ip

denotes the physical inventory plus outstanding orders minus “backorders”, which are customer orders that

cannot be delivered immediately because the physical inventory is too small (backordering implies that there

are no lost sales), and p denotes the review period p = 1, 2, ..., P , where P is the end of the simulation run.

Bashyam and Fu (1998) select P = 30,000, assuming this gives steady-state simulation outputs. (So, the

order size is not a constant Q = S - s.)

Furthermore, Bashyam and Fu (1998) allows random demand D and lead times L, so the orders that

the company places are not necessarily received in the order in which they are placed. This order crossing

complicates the mathematical analysis, so analysts use simulation. Estimating the optimal inventory-control

limits so and So is difficult, as the vast literature on inventory management shows.

Finally, Bashyam and Fu (1998) assumes that the goal variable—w0 in our symbols—is the average total

inventory costs excluding (the hard to quantify) cost of out-of-stock (causing back orders). The disservice

percentage w1 is the ratio of (i) total demand during P that is not satisfied from the physical stock, and (ii)

total demand during that period. We assume that this percentage should not exceed 10%, so E(w1) ≤ 0.10

(Bashyam and Fu (1998) also investigates 1% and 5%, and Kleijnen and Wan (2007) investigates only 10%).

Obviously, w0 and w1 are negatively correlated. (Our definition of w1 implies that the service percentage is

1− w1.)

Kleijnen and Wan (2007) assumes that D is exponentially distributed with mean 100, L is integer-valued

Poisson distributed with mean 6, holding cost h is 1, variable ordering cost is 1, and fixed ordering cost K

is 36 (we need the symbols h and K below; Bashyam and Fu (1998) investigates more cases.)

Table 1: Initial 6× 2 design and its estimated outputs, in macroreplication 1; * denotes w1 > 0.10

s S w0 w1

750.0 1166.7 486.7022 0.2932 *
1183.3 1766.7 928.6275 0.0426
616.7 1100.0 453.7042 0.3549 *
816.7 1366.7 603.4781 0.1883 *
783.3 833.3 327.8253 0.5096 *
1116.7 1500.0 761.0117 0.0691

We use the following input constraints for s and S. For s we select the lower bound E(D) × E(L) =
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100 × 6 = 600, which ignores the randomness of D and L, so it is too low to ensure proper service. For

the upper bound we (rather arbitrarily) select 2 × 600 = 1,200. For S we (rather arbitrarily) select the

same lower bound as for s (namely, 600), and for the upper bound we select 3 × 600 =1,800. So, initially,

we did not apply the reparametrization with x2 = Q = S − s (so, we did not apply LHS), but derived an

alternative procedure that gives the first two columns in Table 1. For the same initial design we compare

the performance of OptQuest and our algorithm. When we do parameterize this inventory problem, then

we may vary Q around the popular economic order quantity (EOQ), which is [2×K×E(D)/h]1/2 = 85; see

Bashyam and Fu (1998). (Obviously, this EOQ ignores the randomness of D and L.)

Note that we must avoid numerical problems—when computing the Gaussian correlation function (11)

and the corresponding gradient (12) (which contain exp[−θh;j′(x∗;j′ − xi:j′ )2})—so we normalize (or stan-

dardize) the simulation inputs s and S such that 0 ≤ xj ≤ 1. The input constraints in the (s, S) problem

are 2k = 4 box constraints plus the extra constraint s ≤ S (or x1 ≤ x2).

Next we determine the number of replications mi, using Law’s rule (26). It turns out that m0 = 10 does

not require any additional replications; i.e., the pilot sample is too big. Therefore we next select m0 = 2, and

find that mi is very small; namely, 2, 3 or 4. We conclude that P = 30,000 gives very accurate estimates.

Running the simulation with the n = 6 initial input combinations of Table 1 and the mi replications

gives the outputs w0 and w1 in macroreplication 1; see the last two columns of this Table. Qualitative

knowledge about (s, S) inventory systems implies that w1 (disservice fraction) decreases as s or S increases

(because higher s or S keeps the system farther away from the “danger zone” where out-of-stocks occur). In

this Table, we denote w1 > 0.10 by *; so, we estimate that only 2 of the 6 (s, S) combinations are feasible.

Furthermore, this Table shows that the combination in the last row is the best initial solution; i.e., this

combination gives an acceptable disservice and the lowest cost w0.

Kleijnen and Wan (2007) compares several algorithms for estimating so and So, including OptQuest. We

compare only our algorithm and the OptQuest algorithm (as we do for the toy example). For our comparison

we apply both algorithms to the same (s, S) simulation model (there are different interpretations of (s, S)

systems—e.g., not all interpretations use our definition of Ip—and programming codes—we follow the coding

in Law (2015, pp. 48–61)).

6.1 Our algorithm versus OptQuest in inventory example

Fig. 8 displays the estimated optimal input combinations (ŝo, Q̂o) with Q̂o = Ŝo - ŝo in our (s, S) inventory

simulation, in 22 macroreplications for our algorithm and OptQuest. We have 22 macroreplications because

our OptQuest licence expired after six weeks, which enabled us to obtain 22 macroreplications for OptQuest
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Figure 8: Estimated optimal input combination (ŝo, Q̂o) with Q̂o = Ŝo - ŝo in (s, S) inventory simulation,
in 22 macroreplications for our algorithm and OptQuest

applied to our inventory example (after 35 macroreplications for the toy example). This Figure also displays

the EOQ, which implies that all 22 (ŝo, Q̂o)-combinations—for our algorithm and OptQuest, respectively—

give Q̂o ≥ EOQ = 85. Moreover, our algorithm gives combinations with smaller ŝo and Q̂o than OptQuest

gives, which decreases the costs but might endanger the service. Therefore we next construct Fig. 9.

Figure 9: Scatterplot of estimated optimal disservice versus estimated optimal inventory cost, in 22
macroreplications; crosses denote 90% CIs

Fig. 9 displays a scatterplot of the estimated optimal disservice (w̄1(x̂min) in OptQuest, and ŷ1(x̂min) in

our algorithm) and the corresponding estimated optimal cost (w̄0;min and ŷ0;min) of our inventory simulation,

in the same 22 macroreplications as in Fig. 8; the Figure also displays 90% CIs for each of these disservice

and cost estimates. Projecting these 22 points for OptQuest and our algorithm onto the axes determines the

boxplots. The median cost and disservice for our algorithm are 650 and 0.0990, and for OptQuest 668 and

0.0911. So, the percentage decrease in cost is 3%, while still satisfying the service-level threshold of 90%. In
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practice, the cost saving is even higher when applying our algorithm instead of “experience” to optimize the

(s, S) inventory system.

Figure 10: Boxplots of N (total number of simulation observations) of our algorithm (left) versus OptQuest
(right) in 22 macroreplications of the inventory example

Fig. 10 displays boxplots of N (defined in (21) as a pseudo-measure for the elapsed times) of our algorithm

and OptQuest. This Figure shows that the median N is 810 for our algorithm, and 1,638 for OptQuest; i.e.,

our algorithm requires much less time to get better estimates of the optimum.

7 Conclusions and future research

In this paper, we investigated constrained optimization problems in random simulation; i.e., we derived a

novel algorithm, combining the KT conditions and EGO. More specifically, we account for both output

constraints and input constraints, allow variance heterogeneity, and apply SK with a sample allocation rule.

Our algorithm uses PS to estimate x that maximizes the current SK estimate of EGO’s M̂EI(x) multiplied

by ˜̂cos[x], which quantifies how well the KT conditions hold at x. Our algorithm uses multiple cores of our

PC. Our algorithm turns out to be more efficient and effective than OptQuest is, in experiments with a

mathematical example and an (s, S) inventory system.

Future research may investigate the following topics: (i)To improve the efficiency and effectiveness of our

algorithm, we may customize PS or replace PS by a better optimizer. (ii) We may consider problems with

k � 2 inputs. (iii) Besides continuous inputs we may investigate other types of input (e.g., integer inputs).

(iii) Whereas we assume that the problem uses expected values, we may investigate probabilities such as

PR[wh′(x) > ch′ ] ≤ 0.10; Kleijnen (2015, p. 222) gives references for Kriging with probabilities, and Chen

et al. (2022) gives a more recent method and references.
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Appendix 1: Common random numbers

In this appendix we investigate CRN with the usual assumption; namely, the number of replications per

input combination is constant so m(xi) = m. We investigate two analysis methods; namely, SK and OK.

CRN analyzed by SK requires the estimates s[wh(xi), wh(xi′)] with i, i′ = 1, ..., n. These s[wh(xi), wh(xi′)]

give the n×n matrix Σ̂e;h, which is nonsingular only if m > n, as Dykstra (1970) proves. Our initial design

uses n = (k + 1)(k + 2)/2 if k ≤ 6 and n = 5k if k > 6, following Tao et al. (2020)’s n for sequential

optimization in deterministic simulation. Whichever n is selected, a high m may be required to obtain a

non-singular Σ̂e;h.

The literature on SK with CRN is very limited. Chen et al. (2012) does investigate SK with CRN,

reporting a higher MSPE and a lower variance for the estimated gradient ∇̂(x). We focus on constrained

optimization, and try to explain why this optimization implies that CRN do not perform well. Obviously,

CRN with m(xi) = m conflicts with the popular allocation rules that require more replications for input

combinations with higher output variability (quantified by var[w(xi)] or var[w(xi)]
1/2).

Note that Pearce et al. (2022) allows CRN, introduces a novel GP metamodel, and uses the Knowledge

Gradient (KG)—in a Bayesian framework—to solve unconstrained optimization. We, however, use a GP

that is conceptually simpler and requires the estimation of fewer parameters; moreover, we use MEI (which

is simpler and therefore more popular than KG) in constrained (instead of unconstrained) optimization.

(Pearce et al. (2022) also reviews the literature on unconstrained optimization with or without CRN.)

CRN with mi = m gives m IID vectors wh:r, each with the n components wi;h:r with mean E(wi;h) and

variance σ2
i;h, while wi;h and wi′;h have covariance σi;i′;h. Like Chen et al. (2012), we estimate this σi;i′;h

through

s(wi;h, wi′;h) =

∑m
r=1(wi;h;r − wi;h)(wi′;h;r − wi′;h)

(m− 1)m
. (28)

Now we derive OK with CRN, which requires neither s2[wh(xi)] nor s[wh(xi), wh(xi′)]; moreover, m >

1 suffices. Originally, OK was derived for deterministic simulation, which implies that Σ̂e;h vanishes; i.e.,

the OK predictor (say) ŷOK;h and its estimated MSPE simplify drastically, compared with the SK predictor

and its estimated MSPE. If Σ̂M ;h is nearly singular (or ill-conditioned), then we may add a small nugget

effect; i.e., Σ̂e;h becomes dhIn×n where dh is a small number that is determined by the CPU accuracy; see

Gramacy and Lee (2012), and Lophaven et al. (2002, p. 11). However, the original interpretation of the

nugget effect is found in geostatistics; namely, the noise is determined by measurement errors etc.; this noise

is denoted by dh—or better σ2
h; see Cressie (1993).

Now we introduce a new OK estimator for random simulation with CRN and mi = m. We point out that

wh;r is the simulation output h in replication r with a fixed seed, so wr is not random anymore (Pearce et
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al. (2022) also emphasizes that the simulation output is deterministic, once the seed is fixed). Therefore, we

apply OK to this wh;r and obtain ŷOK;h;r(x|X,Wn×t) or briefly ŷOK;h;r(x),which uses ψ̂(X,wh;r):

ŷOK;h;r(x) = µ̂h;r + σ̂M ;h;r(x)′Σ̂−1M ;h;r(wh;r−µ̂h;r1n) (29)

This ŷOK;h;r(x) would be the best linear unbiased predictor (BLUP) if the Kriging parameters ψh were known

and the Kriging metamodel were perfectly valid so E[ŷOK;h;r(x)] = E[wh(x)]. Furthermore, we assume that

the (nonlinear) estimator ŷOK;h;r(x) is normally distributed. Then the best estimator of E[wh(x)] is the OK

predictor averaged over the m replications:

ŷOK;h(x) =

∑m
r=1 ŷOK; h;r(x)

m
. (30)

The wh;r give m IID ŷOK; h;r(x), so

var[ŷOK;h(x)] =
var[ŷOK; h(x)]

m
. (31)

So, m ↑ ∞ implies var[ŷOK;h(x)] ↓ 0; i.e., ŷOK;h(x) converges to E[wh(x)].

If the predictor is unbiased, then the MSPE reduces to the extrinsic variance; also see the subscript M

in ŷh(x∗) (obviously, ŷOK; h(x) is a special case of ŷh(x); i.e., Σ̂e;h vanishes in ŷh(x) and s2[ŷh(x)]). We

follow the usual practice, and estimate this variance by the plug-in estimator

s2M [ŷOK;h;r(x)] = τ̂2h;r − σ̂M ;h;r(x)′Σ̂−1M ;h;rσ̂M ;h;r(x) +
[1− 1′nΣ̂−1M ;h;rσ̂M ;h;r(x)]2

1′nΣ̂−1M ;h;r1n
. (32)

Though this variance estimator is not normally distributed, we simply use the average (instead of a robust

estimator such as the sample median):

s2M [ŷOK;h(x)] =

∑m
r=1 s

2
M [ŷOK;h;r(x)]

m
. (33)

Notice that (33) and (32) have the same expected value (namely, the extrinsic variance, given X and Wn×t),

but (33) has a smaller variance:

var{s2M [ŷOK;h(x)]} =
var{s2M [ŷOK;h(x)]}

m
.
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So, m ↑ ∞ implies var{s2M [ŷOK;h(x)]} ↓ 0; i.e., s2M [ŷOK;h(x)] converges to the true extrinsic variance.

It is well known that if x = xi, then s2M [ŷOK;h;r(x)] (defined in (32)) is exactly zero (OK is a perfect

interpolator), for all r-values. Hence, its average s2M [ŷOK;h(x)] is also zero. However, if x = xi, then there

is still intrinsic noise; i.e., ŷOK;h;r(xi) = wi;h;r so

s2[ŷOK;h;r(xi)] = s2(wi;h;r) =

∑m
r=1(wi;h;r − wi;h)2

(m− 1)
.

This gives

s2[ŷOK;h;r(xi)] =
s2[ŷOK;h;r(xi)]

m
.

For a general x, we use

s2e[ŷOK;h(x)] =

∑m
r=1[ŷOK; h;r(x)− ŷOK;h(x)]2

(m− 1)m
; (34)

also see the subscript e in ŷh(x∗). So, m ↑ ∞ gives s2e[ŷOK;h(x)] ↓ 0; also see (31). Altogether, we decide

to use

s2[ŷOK;h(x)] = s2M [ŷOK;h(x)] + s2e[ŷOK;h(x)]. (35)

We use the average of ∇̂[ŷOK;h;r(x)] (estimated gradient of ŷOK; h at x, given X and Wn×t.r—for CRN

with r = 1, ..., m):

∇̂[ŷOK;h(x)] =

∑m
r=1 ∇̂[ŷOK;h;r(x)]

m
with h = 0, ...., t− 1. (36)

Note that our method is inspired by Kleijnen (2015, pp. 109–110)’s sensitivity analysis (not optimization)

through linear regression analysis in random simulation with CRN and variance heterogeneity; i.e., instead

of generalized LS (GLS) with estimated Σ̂e, this analysis may use ordinary LS (OLS). Furthermore, CRN

may be combined with antithetic random numbers (ARN); e.g., Chih (2013) uses such a combination in a

second-order polynomial metamodel.

Note that our algorithm uses only the point estimators s2[ŷOK;h(x)] and ∇̂[ŷOK;h(x)], and not their

estimated variances.

Note that LOO-CV with CRN (analyzed through SK or OK) implies that wi;h and ŷi;h or ŷOK;i;h(in the

numerator) are not independent: ŷi;h or ŷOK;i;h depend on wi′;h (i′ 6= i), and wi;h also depends on wi′;h.

However, we ignore this dependence.

If our algorithm uses OK with CRN, then it replaces ŷ by ŷOK.

The condition mi = m implies that our allocation rule does not apply. If PS revisits an old point, then

we add one replication to each of the B points near the estimated boundary; if PS gives a new point, then
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we add m replications to that point (so, Σ̂e;h remains well defined, in SK; OK does not use Σ̂e;h). If B ≥

5, then we re-estimate all Kriging parameters; the condition B ≥ 5 is meant to give acceptable MLEs of the

parameters ψh.

The next algorithm is a pseudo-code for CRN analyzed by SK. This algorithm closely follows the algorithm

for IRN analyzed by SK, presented in the main text. However, the condition mi = m implies that the

algorithm does not apply the sample-allocation rule. We delete all comments on the algorithm in the main

text.

Algorithm 2

1. Select the algorithm’s control variables αE, α, αinfe, αmin, ε, m, n.

2. Sample the initial design matrix X with n combinations of the k simulation inputs xj that satisfies

the input constraints fg(x) ≤ cg with g = 1, ..., v.

3. Use X as input for the simulation model, to obtain m replications using CRN, which gives Wn×t;r.

4. Apply LOO-CV to (X,Wn×t;r).

5. If LOO-CV rejects the SK models, then obtain a new replication for all n combinations; replace m by

m+ 1; return to Step 4.

6. Use (X,Wn×t;r) to compute ψ̂h, Σ̂e;h, ŷh(xi), and s2[ŷh(xi)].

7. Use ŷh(xi) to compute ŷ0; min = mini ŷ0(xi) if ŷh′(xi) + z(1−α)s[ŷh′(xi)] ≤ ch′ with h′ = 1, ..., t − 1

and α = αinfe; else ŷ0; min = ∞.

8. Use ŷh(xi) to compute ∇̂h[ŷh(xi)].

9. Apply PS to estimate x̂o, which maximizes M̂EI(x)× ˜̂cos[x] such that x satisfies the t− 1 CIs for the

constrained outputs h′ and the v input constraints.

10. If PS finds a feasible point x̂o that is an old point, then add one replication to all B points near the

estimated boundary; else if PS finds a feasible point x̂o that is a new point, then add m replications

to this point; return to Step 6.

11. If PS does not find a feasible point x̂o, then replace α by α/2. If α ≥ αmin, then return to Step 9; else

if α < αmin and M̂EI(x) < ε× |ŷ0; min|, then go to the final Step.

12. Present the estimated optimal goal output ŷ0; min.
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The next algorithm uses OK to analyze CRN with mi = m replications.

Algorithm 3

1. Select the algorithm’s control variables αE, α, αinfe, αmin, ε, m, n.

2. Sample the initial design matrix Xn×k with n combinations of the k simulation inputs xj that satisfies

the input constraints fg(x) ≤ cg with g = 1, ..., v.

3. Use Xn×k as input for the simulation model, to obtain m replications using CRN, which gives Wn×t;r.

4. Apply LOO-CV to (Xn×k,Wn×t;r).

5. If LOO-CV rejects the OK models, then obtain a new replication for all n combinations; replace m by

m+ 1; return to Step 4.

6. Use (Xn×k,Wn×t;r) to compute ψ̂h;r, ŷOK;h;r(xi), s
2[ŷOK;h;r(xi)].

7. Use ŷOK;h(xi) to compute ŷOK;0; min = mini ŷOK;0(xi) if ŷOK;h′(x̂i) + z(1−α)s[ŷOK;h′(x̂i)] ≤ ch′ with

h′ = 1, ..., t− 1 and α = αinfe ; else ŷOK;0; min = ∞.

8. Use ŷOK;h;r(xi) to compute ∇̂[ŷOK; h;r(xi)] and its average ∇̂[ŷOK; h(xi)]

9. Apply PS to estimate x̂o, which maximizes M̂EI(x)× ˜̂cos[x] such that x satisfies the t− 1 CIs for the

constrained outputs h′ and the v input constraints.

10. If PS finds a feasible point x̂o that is an old point, then add one replication to all B points near the

estimated boundary; else if PS finds a feasible point x̂o that is a new point, then add m replications

to this point; return to Step 6.

11. If PS does not find a feasible point x̂o, then replace α by α/2. If α ≥ αmin, then return to Step 9; else

if α < αmin and M̂EI(x) < ε× |ŷOK;0; min|, then go to the final Step.

12. Present the estimated optimal goal output ŷOK;0; min.

Now we discuss CRN in the toy example. We assume that CRN indeed “work”; i.e., CRN create positive

correlations between eh(x) and eh(x′) (outputs of the same type h, at points x and x′). Furthermore,

we assume that ρi;i′;h increases, as the simulated input combinations xi and xi′ resemble each other more;

i.e., we use the Gaussian correlation function, which uses (xi;j − xi′;j)2 (so, our assumption resembles the

assumption for the extrinsic noise in a GP). Initially we used LHS with n = 20 (instead of 6) midpoints.

Combining this LHS and the Gaussian correlation function implies that the toy example has mini(xi;j−xi′;j)2
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= (1/20)2 = 0.0025 and maxi(xi;j − xi′;j)2 = 0.9502 = 0.9025. Obviously, if (xi;j − xi′;j) ↓ 0, then ρi;i′;h ↑

1; if (xi;j − xi′;j) ↑ ∞, then ρi;i′;h ↓ 0. However, n = 20 implies maxi(xi;j − xi′;j) = 0.950 (� ∞); we decide

which value ρi;i′;h should have at xi′;j = 0.975 (biggest midpoint). Obviously, this value—together with

ρi;i′;h = 1 at xi;j = 0—determines θj , which features in the Gaussian correlation function. Furthermore,

we define a ρi;i′;h between 0.5 and 1.0 as high, and between 0.0 and 0.5 as low. To select specific values for

ρi;i′;h in these intervals, we use uniform sampling. Furthermore, we assume that θ1 = θ2, which is perfect

for e0 and e2; for simplicity’s sake, we also assume θ1 = θ2 for e1. For example, ρi;i′;h = 0.5 gives θ1 = θ2 =

0.3128, and ρi;i′;h = 0.1 gives θ1 = θ2 = 2.0781.

Altogether we obtain many covariance matrixes; namely, one matrix per output type, for small noise and

big noise, per initial 20 × 20 design X, which is sampled per macroreplication and increases as new points

are added. To illustrate these matrixes, we display the upper-left 5×5 submatrix of the 20×20 (symmetric)

covariance matrix for e1—for small noise and high CRN effect—with σe;1(x) (instead of σ2
e;1(x)) on the main

diagonal, and the (scale-free) ρi;i′;1 (so cov[e1(xi), e1(xi′)] = ρi;i′;1 × σe;1(xi)× σe;1(xi′):



1.21 0.97 0.94 0.94 0.98

1.32 0.93 0.91 0.93

1.18 0.99 0.87

0.81 0.87

0.76


(37)

The values ρ1;2;1 = 0.97 and ρ1;3;1 = 0.94 in this matrix imply that x1 and x2 are closer than x1 and x3

are. We must check whether Σe;20×20 is positive definite (PD). MATLAB offers two methods: (i) “attempt

Cholesky factorization”, and (ii) “check eigenvalues”; we use method (ii).

We assume zero cross-correlations ρi;0;1, ρi;0;2, and ρi;1;2 in the toy example, whereas a (random) discrete-

event simulation model with multiple output types (so, t >1) gives non-zero cross-correlations because

the t outputs are generated by the same simulation model (also see the inventory example in Section 6).

Unfortunately, we discovered that the toy example with non-zero cross-correlations gives serious numerical

problems (we must then use a 60× 60 covariance matrix that uses 20 3× 3 submatrixes Σe(xi,xi′) instead

of the preceding three 20× 20 matrixes).

Once we have confirmed that Σh;n×n—with initial value n = 20—is PD, we sample the n-variate eh;n

from the multi-variate normal density (MND) with all n means equal to zero and the non-diagonal covariance

matrix Σh;n×n:

eh;n∼Nn(0n,Σh;n×n) (38)
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where our toy example initially uses n = 10k = 20, so Σh;n×n is 20 × 20 and h = 0, 1, 2; we call the

corresponding X the initial or pilot design. To sample from a MND, we use the MATLAB function mvnrnd.

Given eh;n sampled through (38), we compute the corresponding wh (h = 0,1, 2).

Next, our algorithm finds an estimated optimal point x̂o. There are two possibilities: (i) This x̂o is an

old point, so a replication is added for both this point and all other old points “close” to the boundary, using

CRN; i.e., m increases by 1 and the augmented I/O simulation data becomes (X,wh;r(x̂o;r)) (with h = 0,

1, 2 and r = 1, ..., m) where wh;r(x̂o;r) uses eh;n sampled through (38). (ii) This x̂o is a new point (near

the boundary), so m replications are obtained for this point using the same PRNs as the old points used

for the corresponding replications; i.e., m does not increase but n does increase by 1 and the augmented

I/O simulation data becomes (X,wh;r(x̂o)) where wh;r(x̂o;r) is sampled through (40)—explained next. If

x̂o is “very close” to one of the old points, then DACE gives the error message “Multiple design sites are not

allowed”. In our toy example (with 0 ≤ xj ≤ 1) we consider x̂o to be an old point if the absolute values of

the differences in both input dimensions are less than 0.001 (so m becomes m+ 1). Note that (by definition)

each iteration after the initial design increases either m or n (i.e., adds either a column or a row to Wh).

If x̂o is a new point, then x̂o should give outputs that are correlated with the outputs of the old outputs

(because of CRN); e.g., if CRN happens to give relatively high old outputs (i.e., many sampled values of

eh;n exceed 0n), then the new outputs should also be relatively high (i.e., eh;n+1(x̂o) > 0). We define eh;n+1

= (eh;n, eh;o)′ where eh;o = eh(x̂o). Obviously, E(eh;n) = 0n and Σh;n×n is the n× n covariance matrix in

(38). Furthermore, σ2
o;h denotes the variance of eo;h at x̂o. Finally, σn;o denotes the n-dimensional vector

with the covariances between the n old intrinsic noises and the new intrinsic noise at x̂o, for response h.

Altogether, we define the following (n+ 1)× (n+ 1) covariance matrix

Σh;(n+1)×(n+1) =

 Σh;n×n σn;o

σ′n;o σ2
o;h

 . (39)

Obviously, this matrix should be PD. If the sampled values for ρi;o;h—together with the n old points xi (i

= 1, ..., n) and the new point xo—do not give a σn;o that gives a PD matrix, then we resample ρi;o;h and

compute the corresponding θ1 = θ2—until the matrix is PD. To sample from the conditional distribution of

eh(x̂o) given en, we change the mean vector and the covariance matrix in (38) (e.g., Mittelhammer (1996)):

eh(x̂o) | eh;n∼N(σ′n;oΣ
−1
h;n×neh;n, σ

2
o;h − σ′n;oΣ−1h;n×nσn;o) (40)

We have already seen that Σh;n×n is PD (see (37)), but now (40) uses Σ−1h;n×n—which might be nearly

37



singular (MATLAB then gives the error message: ”the matrix is close to be singular” and we add a nugget

effect). Fortunately, our toy example does not give these numerical problems.

Each macroreplication samples a new initial LHS design, independent of the designs in the other macrorepli-

cations. This new design implies a new (20× 20) Σh;n×n.

Appendix 2: The heterogeneous variances of the intrinsic noise in

the toy problem

Jalali et al. (2017) gives the following two equations:

[max
x

wh(x) + bh]× ah = max
x

σe;h(x)

[min
x

wh(x) + bh]× ah = min
x

σe;h(x), (41)

and defines the range of wh(x) as Rh = maxx E[wh(x)] − minx E[wh(x)] and distinguishes between small

noise 0.6Rh or 0.15Rh and big noise 6.0Rh or 1.5Rh. Because that publication estimates the global minimum

of an unconstrained problem, the best case means that σe;h(x) decreases linearly as wh(x) decreases. So,

the right-hand sides of (41) use

max
x

σe;h(x) = 0.60Rh or 6.00Rh

min
x

σe;h(x) = 0.15Rh or 1.50Rh. (42)

Combining (41) and (42), we can determine ah and bh in (41); this gives the desired linear equation

σe;h(x) = ahbh + ahE[wh(x)]. (43)

The worst case means that σe;h(x) increases linearly as E[wh(x)] decreases. Combining the analogue of

(41) with (42) gives

{bh + min
x

E[wh(x)]} × ah = max
x

σe;h(x)

{bh + max
x

E[wh(x)]} × ah = min
x

σe;h(x). (44)

Using the data in the toy example, we compute minx E[w0(x)] = 0 and maxx E[w0(x)] = 2 so R0 = 2;
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hence, (43) (best case with smallest noise) gives

σe;0(x) = 0.30 + 0.45E[w0(x)]. (45)

Furthermore, minx E[w1(x)] = -1.5 and maxx E[w1(x)] = 1.6711 so R1 = 3.1711, and minx E[w2(x)]

= -1.5 and maxx E[w2(x)] = 0.5 so R2 = 2. The main text gives σe;1(x) and σe;2(x) for the best case with

smallest noise; furthermore, σe;h(x) for the worst case with biggest noise is

σe;0(x) = 12.0− 4.5E[w0(x)]

σe;1(x) = 12.2766− 4.5E[w1(x)]

σe;2(x) = 5.25− 4.5E[w2(x)] (46)

Appendix 3: EI versus MEI

Jones et al. (1998) derives the following estimator of EI where wmin = min1≤i≤n w(xi) and we use our

symbol ŷOK(x):

ÊI(x) = (wmin − ŷOK(x)) Φ

(
wmin − ŷOK(x)

s[ŷOK(x)]

)
+ s[ŷOK(x)]φ

(
wmin − ŷOK(x)

s[ŷOK(x)]

)
. (47)

Inspired by Jalali et al. (2017), we define the following estimator of MEI where xmin is the point that

gives wmin, ŷ(xmin) replaces wmin:

M̂EI(x) = (ŷ(xmin)− ŷ(x)) Φ

(
ŷ(xmin)− ŷ(x)

s[ŷ(x)]

)
+ s[ŷ(x)]φ

(
ŷ(xmin)− ŷ(x)

s[ŷ(x)]

)
. (48)

Appendix 4: Details for toy problem

This Appendix shows how our algorithm proceeds through various stages (or iterations)—before it reaches

its final estimated optimum.

Fig. 11 shows dashed curves to denote the white-box constraints E(wh′) = 0 (h′ = 1, 2) (which are

the analogues of the solid curves for the deterministic constraints). These curves—combined with the (non-

displayed) goal function E[w0(x)] = x1 + x2—give the (black) square that denotes xA ≈ (0.1954, 0.4044)′.
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Figure 11: Toy example: input combinations in initial design and next iterations, for a restart ending near
A in macroreplication 57 with αinfe = 10%, mmin = 10, and 20 PS starting points

Each restart begins in iteration 0 using a new initial LHS design. We discuss two of the twelve restarts, in

macroreplication 57 (there are 60 macroreplications); namely, one restart that ends near xA and has relatively

few iterations after iteration 0 (namely, seven so our discussion is relatively short), and one restart that ends

near xC = (0.00, 0.75) and has relatively many iterations including revisits of old input combinations. All

restarts and macroreplications use different LHS designs, but use the same αinfe (namely, 10%), mmin (=

10), and number of PS starting points (20).

Table 2: Iterations of a restart ending near point A in macroreplication 57

Iter. x̂min ŷ0;min E[w0(x̂min)] x̂o M̂EI ˜̂cos
0 (0.2500, 0.7500) 0.9106 1.0000 (0.0250, 0.6625) 0.3712 0.9980
1 (0.2500, 0.7500) 0.9935 1.0000 (0.0006, 0.2769) 0.7276 1.0000
2 (0.2500, 0.7500) 0.9699 1.0000 (0.2125, 0.4515) 0.4198 0.9993
3 (0.2500, 0.7500) 0.9778 1.0000 (0.1740, 0.4047) 0.4632 0.9996
4 (0.2125, 0.4515) 0.5680 0.6640 (0.0750, 0.5515) 0.0138 0.6307
5 (0.2125, 0.4515) 0.5777 0.6640 (0.0989, 0.5325) 0.0125 0.3748
6 (0.2125, 0.4515) 0.5726 0.6640 (0.1490, 0.3797) 0.1033 0.9989
7 (0.2125, 0.4515) 0.6068 0.6640

The (black) stars denote the initial n = 6 input combinations selected through LHS with midpoints. The

preprocessing (with LOO-CV) obtains the. required number of replications for these combinations. The star

within a (red) ball denotes x̂min = (0.2500, 0.7500)′, in iteration 0; this x̂min is also displayed in Table 2,

in the row for iteration—or “Iter.”—0 (because we know the true I/O functions, we know that this x̂min is

indeed feasible). The algorithm uses PS, to compute x̂o that maximizes the product of M̂EI(x) and ˜̂cos(x);
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see Table 2, last three columns.

In the Figure, the (green) solid balls denote x̂o in iteration 1, ..., 7. The dark (red instead of light green)

ball denotes the final estimate of x̂min = (0.2125, 0.4515)′, which equals x̂o obtained in iteration 2.

Furthermore, this Table shows that iteration 0 gives ŷ0;min = 0.9106. We (not the algorithm) also know

the corresponding E[w0(x̂min)] = 0.2500 + 0.7500 = 1.0000. The winner of the PS is x̂o = (0.0250, 0.6625)′.

This x̂o maximizes the product of M̂EI(x) and ˜̂cos(x); actually, M̂EI(x̂o) = 0.3712 (which is a sizable

improvement of ŷ0;min = 0.9106) and ˜̂cos(x) = 0.9980 (which is close to the maximum value 1). At the

end of an iteration, the algorithm runs the simulation model with x̂o as input, obtains (not displayed)

wh;r(x̂o), and uses the augmented I/O data to re-estimate (not displayed) ŷh, s[ŷh], and ∇̂h. Iteration 1

uses these ŷh and s[ŷh], and estimates that x̂o = (0.0250, 0.6625)′ (result of iteration 0) is infeasible; so,

x̂min remains the same as in iteration 0. However, ŷ0;min becomes 0.9935. Of course, if x̂min remains the

same, then E[w0(x̂min)] remains the same; namely, 1.0000. The re-estimated ŷh, s[ŷh], and ∇̂h give a new

x̂o =(0.0006, 0.2769)′. The algorithm obtains wh;r(x̂o), and re-estimates ŷh, s[ŷh], and ∇̂h.

Iteration 2 estimates x̂o = (0.0006, 0.2769)′ to be infeasible; so, x̂min does not change. The new x̂o

becomes (0.2125, 0.4515)′.

Iteration 3 estimates this x̂o to be infeasible, so this x̂o does not become the new x̂min. Actually, the

algorithm evaluates all old simulated combinations, and finds that x̂min remains the same as in iteration 0.

The new x̂o becomes (0.1740, 0.4047)′.

Iteration 4 re-estimates ŷh and s[ŷh], and estimates x̂o = (0.1740, 0.4047)′ to be infeasible. Moreover,

the new x̂min becomes an old x̂o; namely, (0.2125, 0.4515)′ (see iteration 2). And so the algorithm proceeds.

Iteration 7 gives the final x̂min = (0.2125, 0.4515)′ with ŷ0;min = 0.6068 (iteration 4 has already given the

same x̂min, but a different ŷ0;min = 0.5680). The algorithm stops because α = 0.0063 falls below its lower

bound 0.01.

Fig. 12 displays ŷ0;min as a function of Nq for restart q that requires preprocessing with 237 runs (so the

average number of replications per combination is 237/6 = 39.5) and the total N is 483. The total number

of replications (
∑n
i=1mi;s;q) in iteration s = 7 is much smaller than in iteration 1 (the distance between two

consecutive balls projected onto the horizontal axis is smaller in iteration 7). This Figure also shows + signs

that denote symmetric 90% CIs around ŷ0; min. Obviously, the lengths of these CIs tend to decrease as N

increases. (We do not display the Figure for E[w0(x̂min)], because that Figure resembles Fig. 12.)

Fig. 13 is the analogue of Fig. 11, but finishes near C instead of A.

Fig. 14 is the analogue of Fig. 12. It shows that this restart requires many more simulation runs in the

preprocessing; namely, 1,497. The final value of N is 9,883. Its final solution is farther away from the true

global optimum.
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Figure 12: Toy example: estimated optimal goal value when simulation outputs are added in iterations 0
through 7, for a restart ending near A in macroreplication 57 with αinfe = 10%, mmin = 10, and 20 PS
starting points
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Figure 13: Toy example: input combinations in initial design and next iterations, for a restart ending near
C in macroreplication 57 with αinfe = 10%, mmin = 10, and 20 PS starting points
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