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Chapter 1

Introduction

“One should hardly have to tell academicians that information is a valuable re-

source: knowledge is power. And yet it occupies a slum dwelling in the town of

economics.” George J. Stigler, 1961.

Consumers typically do not know all available alternatives, prices, and what they offer. Hence,

they cannot just buy the alternative they prefer. Instead, consumers first need to gather

information to be able to compare alternatives and eventually choose one. Because searching

for such information is costly, consumers rarely compare all alternatives and potentially miss

out on cheaper or better-suited alternatives.

George J. Stigler introduced this reasoning in economics and his seminal article, leading

with the quote above, initiated an extensive literature that studies the resulting search frictions.

Common to this literature is that it uses models for how rational consumers decide to search for

products or product information. These search models are useful for several reasons. Different

models can highlight various aspects of the search process that drive search behavior. They

also allow us to analyze how specific changes to the search environment affect how consumers

search and which alternative they eventually buy. Moreover, search models can characterize

the demand sellers face in settings where consumers have limited information, which, in turn,

governs competition in prices or other dimensions (e.g., advertising).

Chapter 2 adds to this literature by developing and solving the “search and discovery

problem,” a model for the decision process consumers face in various settings. In this problem,

a consumer is initially aware of only a few products. For these products, the consumer has some

(but not all) information and knows that they exist. Using this information, the consumer can

1
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CHAPTER 1. INTRODUCTION

decide in what order to gather detailed information on these alternatives and when to stop

searching. Besides, there are also products that the consumer has never heard of. For these

alternatives, the consumer cannot just decide to gather more detailed information. Instead, he

first needs to discover and become aware of them. Hence, the consumer needs to also decide

between searching among alternatives he is already aware of and discovering more products.

The main contribution of Chapter 2 is to prove that optimal search decisions and outcomes

in the search and discovery model remain tractable, despite the complexity of the decision

problem. Specifically, I show that reservation values fully characterize the optimal policy.

Building on this result, I further show that the purchase of a consumer solving the search and

discovery problem can be obtained directly from these reservation values. Combined, these

two results make it feasible to study settings where consumers have limited awareness without

having to consider the multitude of possible choice sequences that consumers could potentially

take.

In the search and discovery model, alternatives that consumers discover early in the search

process are more likely to be searched and bought. This mechanism explains a commonly

observed pattern: “position effects.” These position effects occur on product lists that most

online retailers or search intermediaries use to present consumers with the alternatives they

offer. Each product has a position on this list, where position effects are the effects of a

product’s position on how many consumers will click on and purchase. It is well-documented

that these position effects are substantial such that being moved higher up on the list leads

to a measurable increase in demand.

Position effects are important because they create scope for search intermediaries (or online

retailers) to increase their revenues simply by changing the ranking of the product list they

present to consumers. However, changes in the ranking of alternatives beneficial to a search

intermediary may be harmful to consumers. For example, revenues could be increased by mov-

ing expensive alternatives to the top of the list, potentially harming price-sensitive consumers.

Consequently, there is a potential misalignment of interests between search intermediaries and

consumers.

In Chapter 3, I study this potential misalignment of interests and how such “revenue-based”

rankings affect consumers. I first show that heterogeneity in position effects determines which

alternatives need to be moved higher up on the list. As a result, heterogeneity in position

2
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effects also determines how revenue-based rankings affect consumers. Using click-stream data

from an online travel agent, I provide descriptive evidence for this heterogeneity that highlights

that alternatives with “desirable” attributes (e.g., a low price) have stronger position effects.

To quantify the effects of changes in the ranking, I also develop and implement an estima-

tion approach for the model introduced in Chapter 2. By simulating counterfactual scenarios

I show that revenue-based rankings can benefit search intermediaries and consumers relative

to various other rankings. Moreover, I find that revenue-based rankings decrease consumer

welfare only to a limited extent when compared to utility-based rankings that first show the

alternatives that consumers prefer (on average). Combined, these results suggest that, when

designing rankings, search intermediaries’ and consumers’ interests are not strongly misaligned.

In Chapter 2, I treat the different costs consumers incur when inspecting and discovering

products as model primitives. This modeling approach is useful because it explains position

effects and allows to evaluate the effects of different rankings. Indeed, the position effects

and lack of clicks observed in Chapter 3 can only be rationalized if inspecting and discovering

products is costly. However, treating costs as model primitives does not explain why searching

is costly and how these costs may differ across consumers and settings.

In Chapter 4, co-authored with Yufeng Huang and Ilya Morozov, we use a different model-

ing approach. We develop a search model where a consumer decides how much time to spend

searching in different product categories. In the model, search frictions arise endogenously:

because time is limited, spending more time searching in one category requires spending less

time searching in other categories or doing some other enjoyable activity. Hence, searching for

products incurs the opportunity costs of time in our model.

Our model allows to study two novel aspects of search. First, we can characterize search

across different product categories. This allows us to analyze potential cross-category effects

and factors that determine when they are important. Second, our model allows us to disentan-

gle the effects of changes to the search technology that determines how much time is required

to search an alternative, and changes to the opportunity costs of time. We highlight that the

consumer searches more products but may spend less time on search overall when the search

technology improves. We also show that when given more time, the consumer does not start

searching in additional categories without also spending more time searching in previous ones.
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Chapter 2

Optimal Search and Discovery

This chapter is published in Management Science, 68 (5): 3904–3924.

Abstract

This paper studies a search problem where a consumer is initially aware of only a
few products. At every point in time, the consumer then decides between searching
among alternatives he is already aware of and discovering more products. I show
that the optimal policy for this search and discovery problem is fully characterized
by tractable reservation values. Moreover, I prove that a predetermined index fully
specifies the purchase decision of a consumer following the optimal search policy.
Finally, a comparison highlights differences to classical random and directed search.
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2.1. INTRODUCTION

2.1 Introduction

Consumers typically first need to search for product information before being able to compare

alternatives. The resulting search frictions have received considerable attention in the litera-

ture.1 Under the rational choice paradigm, the analysis of such limited information settings

relies on optimal search policies that describe how a consumer optimally searches among all

available alternatives. I add to this literature by developing and solving a sequential search

problem that introduces a novel aspect: limited awareness of available products.

To fix ideas, consider a consumer looking to buy a mobile phone. Through advertising

or recommendations from friends, the consumer initially is aware of a single available phone

and has some (but not all) information on what it offers. Given this basic information, the

consumer can directly gather more detailed information on this alternative, for example by

reading a review online. Besides, there are also phones available that the consumer is initially

not aware of. For these alternatives, he knows neither of their existence, nor the features they

offer. This precludes the consumer from directly inspecting these phones. Instead, he first

needs to discover and become aware of them, for example by getting more recommendations

from friends or through a search intermediary. Figure 2.1 depicts a possible choice sequence

for this case.

discover

discoverinspect Phone 2

discoverbuy Phone 2inspect Phone 1

inspect Phone 1

inspect Phone 1

Figure 2.1 – Example of a choice sequence in the search and discovery problem.

The “search and discovery problem” introduced in this paper formalizes a consumer’s dy-
1For example, Stigler (1961); Diamond (1971); Burdett and Judd (1983); Anderson and Renault (1999); Kuksov
(2006); Choi et al. (2018); Moraga-González et al. (2017a,b) study search frictions in equilibrium models and
Hortaçsu and Syverson (2004); Hong and Shum (2006); De Los Santos et al. (2012); Bronnenberg et al. (2016);
Chen and Yao (2017); Zhang et al. (2018); Jolivet and Turon (2019) study implications of search empirically.
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CHAPTER 2. OPTIMAL SEARCH AND DISCOVERY

namic decision process in this and similar settings. The resulting framework allows to study

settings that are difficult to accommodate in existing search problems. In particular, neither

random (e.g. McCall, 1970) nor directed search (e.g. Weitzman, 1979) is well suited to study

settings where rational consumers remain oblivious to some, while obtaining only partial in-

formation on other products. However, such settings are common in practice. For example,

online retailers and search intermediaries present an abundance of alternatives on product

lists that reveal partial information only for some products. Consumers then decide between

clicking on products already discovered on the list to reveal full information, and browsing

further to discover more products. More generally, in markets with a large number of alter-

natives, consumers will remain unaware of many alternatives unless they actively set out to

discover more products. Similarly, in markets where rapid technological innovations lead to

a constant stream of newly available alternatives, few consumers are aware of new releases

without exerting effort to remain informed.

The contribution of this paper is to show that despite its complexity, optimal search de-

cisions and outcomes in the search and discovery problem remain tractable if the consumer

has stationary beliefs. First, I prove that the optimal policy is fully characterized by reserva-

tion values similar to the well-known reservation prices derived by Weitzman (1979). In each

period, a reservation value is assigned to each available action, and it is optimal to always

choose the action with the largest value. Each of the reservation values is independent of any

other available action and can be calculated without having to consider expectations over a

myriad of future periods. Hence, reservation values remain tractable. This allows to determine

optimal search behavior under limited awareness without using numerical methods.

Second, I prove that the purchase of a consumer solving the search and discovery problem

is equivalent to the same consumer having full information and directly choosing products

from a predetermined index. This result generalizes the “eventual purchase theorem” derived

independently by Choi et al. (2018), Armstrong (2017) and Kleinberg et al. (2017) to the case

of limited awareness.2 Similar to the eventual purchase theorem, my generalization allows

to derive a consumer’s expected payoff and market demand without having to consider a

multitude of possible choice sequences that otherwise make aggregation difficult.
2Choi et al. (2018) introduced the name and noted that “Our eventual purchase theorem was anticipated by
Armstrong and Vickers (2015) and has been independently discovered by Armstrong (2017) and Kleinberg
et al. (2017).”

6



580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger
Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022 PDF page: 15PDF page: 15PDF page: 15PDF page: 15

2.1. INTRODUCTION

This paper also highlights several implications of limited awareness through a comparison

of stopping decisions, expected payoffs and market demand with classical random and directed

sequential search. A first implication of limited awareness is that it leads to two distinct search

actions which posits a novel question: Do consumers benefit more from making it easier to

discover more alternatives (e.g. through search intermediaries), or from facilitating inspection

by more readily providing detailed product information? For the case where a consumer

discovers one product at a time, I show that there exists a (possibly small) threshold for

the number of alternatives after which the expected payoff increases more when facilitating

discovery instead of facilitating inspection. This highlights the relative importance of discovery

costs in settings with many alternatives.

Moreover, limited awareness generates distinct patterns in the resulting market demand.

In directed search, more consumers preferring a product based on partial product information

increases its market demand. This need not be the case with limited awareness; if consumers

remain unaware of a product, its market demand does not increase as it becomes the preferred

option. Whereas the same holds with random search, not being able to use partial information

to decide whether to inspect a product induces consumers to stop earlier if total costs of

revealing full product information remain the same.

The search and discovery problem also provides an intuitive rationalization of ranking

effects commonly observed in click-stream data (e.g. Ursu, 2018): as consumers stop search

before having discovered all products, products that would be discovered later are less likely

to be bought. I show that these ranking effects are independent of the number of available al-

ternatives, and decrease as more products are discovered. This mechanism offers a meaningful

interpretation of how advertising that provides partial product information is beneficial for a

seller; 3 if a seller’s marketing efforts make more consumers aware of a product before search

or increase the probability of the product being discovered early on, ranking effects directly

imply that they will increase the demand.

Finally, this paper adds to the empirical search literature by discussing implications of lim-

ited awareness for the estimation of structural search models. Besides highlighting differences

in parameter estimates and counterfactual predictions across the three models, I show that a
3This relates to the “informative view” of advertising. See e.g. Bagwell (2007) for a summary and comparison
to the “persuasive view”.
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CHAPTER 2. OPTIMAL SEARCH AND DISCOVERY

directed search model will lead to accentuated search cost estimates due to not accounting for

limited awareness when rationalizing stopping decisions.

The remainder of this paper is organized as follows. First, I discuss related literature.

Section 3 introduces the search and discovery (henceforth SD) problem. Section 4 provides the

optimal policy and discusses several extensions as well as limitations. In Section 5, I generalize

the eventual purchase theorem of Choi et al. (2018) and use this to derive a consumer’s expected

payoff as well as market demand. Section 6 compares search problems and discusses empirical

implications. Section 7 concludes. Throughout, proofs are deferred to the appendix.

2.2 Related literature

The search and discovery problem introduced in this paper nests both classical random and

directed sequential search as special cases. In random search, a searcher has no alternative-

specific prior information, hence searches randomly across alternatives and only decides when

to end search (e.g. McCall, 1970; Lippman and McCall, 1976). In directed search, the searcher

is aware of all available alternatives and uses partial product information to determine an

order in which to inspect products and when to end search (e.g. Weitzman, 1979; Chade and

Smith, 2006). In contrast, in the search and discovery problem, the consumer is aware of only

a few products. Hence, the consumer not only decides in what order to inspect products he is

already aware of and when to end search, but also when to try to discover more alternatives.

To prove the optimality I use results from the multi-armed bandit literature to first de-

termine that a Gittins index policy is optimal,4 and then introduce a monotonicity condition

to show that the Gittins index reduces to simple reservation values. Specifically, I use the

results of Keller and Oldale (2003) who proved that a Gittins index policy is optimal in their

branching bandits framework. This framework differs from the standard multi-armed bandit

problem in that taking an action will reveal information on multiple other actions. However,

as an action branches off into new actions and reveals information only on those, the state

of other available actions is never altered. Hence, the important independence assumption

continues to hold.

Similar monotonicity conditions also apply in other multi-armed bandit problems where
4Gittins et al. (2011) provide a textbook treatment of multi-armed bandit problems and the Gittins index policy.
As purchasing a product ends search, search problems correspond to stoppable superprocesses as introduced
by Glazebrook (1979).
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they simplify the otherwise difficult calculation of the Gittins index values (see e.g. Section

2.11 in Gittins et al., 2011). The present case differs in that monotonicity is only required for

the action of discovering more alternatives, but does not hold when inspecting a product. In a

recent working paper, Fershtman and Pavan (2019) independently derived a similar character-

ization of the optimal policy when applying a monotonicity condition in a general multi-armed

bandit problem where a decision maker also extends a set of alternatives.

Moreover, monotonicity conditions also lead to the results in the literature on (random)

search problems where a searcher learns about the distribution from which he is sampling

(Rothschild, 1974; Rosenfield and Shapiro, 1981; Bikhchandani and Sharma, 1996). These

authors determine priors and learning rules that satisfy a similar condition based on which

they can derive an optimal policy that is myopic. The SD problem differs in that not all

information about a product is revealed when it is discovered such that it entails two distinct

search actions. As I show, this makes it difficult to find similar priors or learning rules that

would lead to a myopic optimal policy in extensions to the SD problem that incorporate

learning.

Several other contributions extend Weitzman’s (1979) seminal search problem in different

directions. Adam (2001) studies the case where the searcher updates beliefs about groups of

alternatives during search and finds a similar reservation value policy to be optimal. Olszewski

and Weber (2015) generalize Pandora’s rule to search problems where the final payoff depends

on all the alternatives that have been inspected, not only the best one. Finally, Doval (2018)

analyzes the optimal policy when a searcher can directly choose alternatives without first

inspecting them.

This paper also relates to the recent literature studying problems where a consumer grad-

ually reveals more information on products (Branco et al., 2012; Ke et al., 2016; Ke and

Villas-Boas, 2019). These problems are formulated in continuous-time and generally do not

admit an optimal policy based on an index. The SD problem differs in that it assumes that

a consumer cannot purchase a product before having revealed full information. This makes

available actions independent such that a tractable reservation value policy is optimal. Fur-

thermore, the SD problem allows that multiple products can be discovered at a time such

that with one action, information on multiple products is revealed. Though Ke et al. (2016)

also consider correlated payoffs, discovering multiple products differs in that the correlation

9
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CHAPTER 2. OPTIMAL SEARCH AND DISCOVERY

structure of payoffs changes after the discovery; inspecting one does not reveal information

about other products discovered at the same time.

The SD problem also subsumes decision processes considered in the growing empirical

literature estimating structural search models (e.g. Honka, 2014; Chen and Yao, 2017; Ursu,

2018). Most closely related are De los Santos and Koulayev (2017) and Choi and Mela (2019),

who also model consumers that decide between inspecting and revealing more products. This

paper differs in that I provide a tractable optimal policy for the decision problem, whereas these

studies use simplifying assumptions and numerical methods to solve their models. The results

presented in this paper can serve as a justification for some of these simplifying assumptions:

Given that the optimal policy is myopic, the one-step look-ahead approach adopted by De

los Santos and Koulayev (2017) yields optimal choices of search actions if monotonicity holds.

Moreover, the optimal policy in the SD problem implies that as long as the consumer has not

yet revealed the last alternative, it will never be optimal to go back and inspect a product

that was discovered earlier if beliefs are stationary. Hence, the simplifying assumption made

in Choi and Mela (2019) where consumers cannot go back and inspect a product revealed

previously does not affect the estimation as it would not be optimal to do so.

Honka et al. (2017) and Morozov (2019) also consider limited awareness and assume that

consumers cannot inspect products they are not aware of. However, in their models consumers

cannot discover products beyond those they are initially aware of and the underlying search

problem then is equivalent to directed search. Janssen and Non (2009) consider a homogeneous

goods market where sellers can advertise and resolve consumers’ uncertainty on whether they

carry the product and the price they charge. The search problem consumers face in their model

differs from the SD problem in that for sellers that advertise, no uncertainty remains. Hence,

consumers decide between a known and an unknown payoff, simplifying the characterization

of the optimal policy. Koulayev (2014) estimates a search model where consumers also decide

whether to reveal more products, but assumes that revealing a product shows all information

on that product. Hence, there is no need for inspecting a product as considered in this paper.5

Finally, related studies have highlighted other potential biases in search cost estimates.

Jindal and Aribarg (2020) show how heterogeneous prior beliefs can lead to an overestimation
5Koulayev (2014) solves the dynamic decision problem using numerical backwards induction. For the case where
costs are increasing in time (which is the case in his results), the present results suggest that a simple index
policy also characterizes the optimal policy for his model.
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of search costs, Ursu (2018) argues that that an incomplete search history also accentuates

search cost estimates, whereas Yavorsky et al. (2020) discuss the effects of normalizing search

benefits.

2.3 The Search and Discovery Problem

A risk-neutral consumer with unit demand faces a market offering a (possibly infinite)6 number

of products gathered in set J . Alternatives are heterogeneous with respect to their charac-

teristics. The consumer has preferences over these characteristics which can be expressed in

a utility ranking. To simplify exposition and facilitate a comparison to existing models from

the consumer search literature (e.g. Armstrong, 2017; Choi et al., 2018), I assume that the

consumer’s ex post utility when purchasing alternative j is given by

u(xj , yj) = xj + yj (2.1)

where xj and yj are valuations derived from two distinct sets of characteristics. Note, however,

that the results presented continue to hold for more general specifications that do not rely on

linear additive utility.7 An outside option of aborting search without a purchase offering u0 is

available.

The consumer has limited information on available alternatives. More specifically, in pe-

riods t = 0, 1, . . . the consumer knows both valuations xj and yj only for products in a

consideration set Ct ⊆ J . For products in an awareness set St ⊆ J , the consumer only knows

partial valuations xj . This captures the notion that if the consumer is aware of a product, he

has received some information on the total valuation of the product. Finally, the consumer

has no information on any other product j ∈ J\ (St ∪ Ct).

During search, the consumer gathers information by sequentially deciding which action

to take starting from period t = 0. If the consumer decides to discover more products,

nd alternatives are added to the awareness set. If less than nd alternatives have not yet

been revealed, only the remaining alternatives are revealed. For each of the nd alternatives,
6The problems with infinitely many arms in a multi-armed bandit problem discussed by Banks and Sundaram
(1992) do not arise in the present setting.

7Specifically, suppose that when the consumer becomes aware of alternative j, he reveals a signal on the
distribution from which the utility of j will be drawn. Appropriately defining the distribution of signals and
the distribution of utilities conditional on these signals then yields an equivalent search problem.
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the partial valuation xj is revealed. To reveal the remaining characteristics of a product j,

summarized in yj , the consumer has to inspect the product. This reveals full information on

the product and moves it from the awareness into the consideration set. The latter implies

St ∩ Ct = ∅.
The order in which products are discovered is tracked by positions hj ∈ {0, 1, . . . }, where

a smaller position indicates that a product is discovered earlier, and hj = 0 implies either

j ∈ C0 or j ∈ S0. Without loss of generality, it is assumed that products are discovered in

increasing order of their index.8

Two precedence constraints on the consumer’s actions are imposed. First, the consumer can

only buy products from the consideration set. Second, the consumer can only inspect products

from the awareness set. Whereas the first constraint is inherent in most search problems and

implies that a product cannot be bought before having obtained full information on it,9 the

latter is novel to the proposed search problem. It implies that a product cannot be inspected

unless the consumer is aware of it. In an online setting where a consumer browses through

a list of products, this constraint holds naturally: Individual product pages are reached by

clicking on the respective link on the list. Hence, unless a product has been revealed on the list,

it cannot be clicked on. In other environments, this precedence constraint reflects that, unless

a consumer knows whether an alternative exists, he will not be able to direct search efforts and

inspect the specific alternative. For example, if a consumer is not aware of a newly released

phone model, he will not be able to directly acquire detailed information before discovering it.

Given the setting and these constraints, the consumer decides sequentially between the

following actions:

1. Purchasing any product from the consideration set Ct and end search.

2. Inspecting any product from the awareness set St, thus revealing yj for that product and

adding it to the consideration set.

3. Discovering nd additional products, thus revealing their partial valuations xj and adding

them to the awareness set.
8Note that in equilibrium settings, the order may be determined by sellers’ actions, requiring a careful analysis
of how these will determine the consumer’s beliefs. For example, in online settings it is common for sellers to
bid on the position at which their product adverts are shown (see e.g. Athey and Ellison, 2011).

9Doval (2018) is a notable exception.
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The distinction between inspecting and discovering products is novel in the SD problem.

The two actions differ in three important ways. First, whereas the consumer can use product-

specific information to decide the order in which to inspect products from the awareness set,

the decision whether to discover more products is based solely on beliefs over products that

may be discovered. Second, if nd > 1, discovering products reveals information on multiple

products. Finally, discovering products adds them into the awareness set, whereas inspecting

a product moves it into the consideration set. In combination with the precedence constraints

this implies that the actions that are available in the next period differ.10

These actions are gathered in the set of available actions, At = Ct ∪ St ∪ {d}, where d

indicates discovery. If a consumer chooses an action a = j ∈ Ct, he buys product j, whereas

if he chooses an action a = j ∈ St, he inspects product j. To clearly differentiate between

the different types of actions, this set can also be written as At = {b0, b3, s4, . . . , d}, where bj

indicates purchasing and sj inspecting product j.

Both inspecting a product and discovering more products is costly. Inspection and discov-

ery costs are denoted by cs > 0 and cd > 0 respectively. These costs can be interpreted as the

cost of mental effort necessary to evaluate the newly revealed information, or an opportunity

cost of the time spent evaluating the new information. In line with this interpretation, I as-

sume that there is free recall: Purchasing any of the products from the consideration set does

not incur costs, and cs is the same for inspecting any of the products in the awareness set.

The consumer has beliefs over the products that he will discover, as well as the valuation

he will reveal when inspecting a product j. In particular, xj and yj are independent (across

j) realizations from random variables X and Y , where the consumer has beliefs over their

joint distribution. This implies that the consumer believes that in expectation, products are

equivalent. A generalization where the distribution of X depends on index j is discussed in

Section 2.4. Note that throughout, capital letters are used for random variables, lower case

letters are used for the respective realizations and bold letters indicate vectors.

The consumer also has beliefs over the total number of available alternatives. I assume

that the consumer believes that with constant probability q ∈ [0, 1], the next discovery will
10Note that the latter two points also imply that products that the consumer is not aware of cannot be modeled

as a set of ex ante homogeneous products that differ in terms of beliefs and associated costs from the products
in the awareness set.
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be the last.11 As shown in the next section, the optimal policy is independent of the number

of remaining discoveries that may be available in the future. Note, however, that this belief

specification implicitly assumes that the consumer always knows whether he can reveal nd

more alternatives. An extension presented in Section 2.4 covers the case where the consumer

does not know how many alternatives will be revealed.

All information the consumer has in period t is summarized in the information tuple Ωt =〈
Ω̄, ωt

〉
. The tuple Ω̄ =

〈
u(x, y), nd, cd, cs, GX(x), FY |X=x(y), q

〉
represents the consumer’s

knowledge and beliefs on the setting. It contains the utility function, how many products

are discovered, and the different costs. It also contains the consumer’s beliefs summarized

in the probability q and the cumulative densities GX(x) and FY |X=x(y). The latter specifies

the cumulative density of Y , conditional on the realization of X, which is observed by the

consumer before choosing to inspect a product. As a short-hand notation, I use G(x) and

F (y) for these distributions. As a regularity condition, it is assumed that both G(x) and

F (y)∀x have finite mean and variance.

During search, the consumer reveals valuations xj and yj for the various products. This

information is tracked in the set ωt, containing realizations xj for j ∈ St ∪ Ct and yj for

j ∈ Ct. The set of available actions At and the information tuple Ωt capture the state in t.

The consumer’s initial information on the alternatives are captured in ω0 which will contain

(partial) valuations of products in the initial awareness and consideration set. Figure 2.2 shows

their transitions starting from period t = 0. The depicted example assumes that there are only

two alternatives available and that products are discovered one at a time. If the consumer

initially chooses the outside option (b0), no new information is revealed, and no further actions

remain. If the consumer instead reveals the first alternative, he can inspect it in t = 1.

2.3.1 The consumer’s dynamic decision problem

The setting above describes a dynamic Markov decision process, where the consumer’s choice

of action determines the immediate rewards, as well as the state transitions. The state in t is

given by Ωt and At. As the valuations xj and yj can take on any (finite) real values, the state
11Note that one can translate beliefs over a specific number of available alternatives to this probability by

assuming it varies during search. For example, if nd = 1 and the consumer believes that there are 3 alternatives
in total, then qt = 0 when the consumer has not yet discovered the second alternative and qt = 1 otherwise.
A specification like this (and any specification where qt ≤ qt+1∀t) also satisfies the monotonicity condition
(2.31) presented in Appendix 2.C. Consequently, if it is assumed that the consumer knows |J |, monotonicity
continues to hold.
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Ω0 =
〈
Ω̄, {x0, y0}

〉
A0 = {b0, d}

Ω1 =
〈
Ω̄, {x0, y0}

〉
A1 = ∅

Ω1 =
〈
Ω̄, {x0, y0, x1}

〉
A1 = {b0, s1, d}

Ω2 =
〈
Ω̄, {x0, y0, x1}

〉
A2 = ∅

Ω2 =
〈
Ω̄, {x0, y0, x1, y1}

〉
A2 = {b0, b1}

Ω2 =
〈
Ω̄, {x0, y0, x1, x2}

〉
A2 = {b0, s1, s2}

d

s1

b0

d

b0

Figure 2.2 – Transition of state variables Ωt (information tuple) and At

(set of available actions) for nd = 1 and |J | = 2.

space in general is infinite.12 Time t itself is not included in the state; given At and Ωt, it is

irrelevant to the agent’s choice, because beliefs (over valuations and termination of discovery)

are time invariant.

The consumer’s problem consists of finding a feasible sequential policy, which maximizes

the expected payoff of the whole decision process. A feasible sequential policy selects an action

at ∈ At given information in Ωt in each period t. Let Π denote the set containing all feasible

policies. Formally, the consumer solves the following dynamic programming problem

max
π∈Π

V (Ω0, A0;π) (2.2)

where V (Ωt, At;π) is the value function defined as the expected total payoff of following policy

π starting from the state in t. Let

[BaV ] (Ωt, At;π) = R(a) + Et [V (Ωt+1, At+1;π)|a] (2.3)

denote the Bellman operator, where the immediate rewards R(a) either are inspection costs,

discovery costs, or the total valuation of a product j if it is bought. Immediate rewards R(a)

12An exception is when xj and yj are drawn from discrete distributions, which limits the number of possible
valuations that can be observed.

15



580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger
Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022 PDF page: 24PDF page: 24PDF page: 24PDF page: 24

CHAPTER 2. OPTIMAL SEARCH AND DISCOVERY

therefore are known for all available actions. Et [V (Ωt+1, At+1;π)|a] denotes the expected

total payoff over the whole future, conditional on policy π and having chosen action a.13 The

expectations operator integrates over the respective distributions of X and Y . A purchase

in t ends search such that At+1 = ∅ and Et [V (Ωt+1, ∅;π)|a] = 0 whenever a ∈ Ct. The

corresponding Bellman equation is given by

V (Ωt, At;π) = max
a∈At

[BaV ] (Ωt, At;π) (2.4)

2.4 Optimal policy

The optimal policy for the SD problem is fully characterized by three reservation values. In

what follows, I first define these reservation values, before stating the main result. At the

end of this section, I discuss possible extensions based on a monotonicity condition, as well as

limitations.

As in Weitzman (1979), suppose there is a hypothetical outside option offering utility z.

Furthermore, suppose the consumer faces the following comparison of actions: Immediately

take the outside option, or inspect a product with known xj and end search thereafter. In this

decision, the consumer will choose to inspect alternative j whenever the following holds:

Qs(xj , cs, z) ≡ EY [max{0, xj + Y − z}]− cs ≥ 0 (2.5)

Qs(xj , cs, z) defines the expected myopic net gain of inspecting product j over immediately

taking the outside option. If the realization of Y is such that xj + yj ≤ z, the consumer takes

the hypothetical outside option after inspecting j and the gain is zero. When xj + yj > z, the

gain over immediately taking the hypothetical outside option is xj + yj − z. The expectation

operator EY [·] integrates over these realizations.

The search value of product j, denoted by zsj , then is defined as the value offered by a

hypothetical outside option that makes the consumer indifferent in the above decision problem.
13In this formulation of the problem, the consumer does not discount future payoffs. This is in line with the

consumer search literature, which usually assumes a finite number of alternatives without discounting. However,
it is straightforward to show that the results continue to hold if a discount factor β < 1 is introduced. In this
case, the search and discovery values defined in the next section need to be adjusted accordingly.

16
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2.4. OPTIMAL POLICY

Formally, zsj satisfies

Qs(xj , cs, z
s
j ) = 0 (2.6)

which has a unique solution (see Lemma 1 in Adam, 2001). The search value can be calculated

as

zsj = xj + ξ (2.7)

where ξ solves
∫∞
ξ [1− F (y)] dy − cs = 0 (see Appendix 2.B).

The purchase value of product j, denoted by zbj , is defined as the utility obtained when

buying product j:

zbj = u(xj , yj) (2.8)

Based on reservation values given by (2.6) and (2.8), Weitzman (1979) proved that in

any period, it cannot be optimal to inspect a product j where zsj < maxk∈St z
s
k, or to end

search if maxk∈St z
s
k > maxk∈Ct z

b
k. Hence, given Ct and St, it is optimal buy j ∈ Ct with

the largest purchase value among products in Ct whenever maxk∈Ct z
b
k ≥ maxk∈St z

s
j , and else

search j with the largest search value among products in St. However, this rule does not fully

characterize an optimal policy in the SD problem, as the consumer can additionally discover

more alternatives.

For this additional action, a third reservation value based on a similar myopic compar-

ison is introduced. Suppose the consumer faces the following comparison of actions: Take

a hypothetical outside option offering z immediately, or discover more products and then

search among the newly revealed products. The consumer will choose the latter whenever the

following holds:

Qd(cd, cs, z) ≡ EX

[
V
(〈
Ω̄, ω(X, z)

〉
, {b0, s1, . . . , snd} ; π̃)

)]− z − cd ≥ 0 (2.9)

where ω(X, z) = {z, x1, . . . , xnd
} denotes the information the consumer has after revealing the

nd more alternatives and π̃ is the policy that optimally inspects the nd discovered products.

Note that with some abuse of notation, product indices were adjusted to the reduced decision

problem, such that j = 0, 1, . . . , nd indicates the hypothetical outside option and the newly

revealed products.

Qd(cd, cs, z) defines the myopic net gain of discovering more products and optimally search-

17
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ing among them over immediately taking the outside option. It is myopic in the sense that

it ignores the option to continue searching beyond the products that are discovered. In par-

ticular, note that V
(〈
Ω̄, ω(X, z)

〉
, {b0, s1, . . . , snd} ; π̃)

)
is the value function of having an

outside option offering z and optimally inspecting alternatives for which partial valuations in

X are known. Possible future discoveries and any products in St or Ct are excluded from the

set of available actions in this value function. This implies that the discovery value does not

depend on the consumer’s beliefs over whether the next discovery will be the last. Finally,

EX [·] defines the expectation operator integrating over the joint distribution of the partial

valuations in X. Formal details on the calculation of the expectations and the value function

are provided in Appendix 2.B.

As for the search value, let the discovery value, denoted by zd, be defined as the value

of the hypothetical outside option that makes the consumer indifferent in the above decision.

Formally, zd is such that

Qd(cd, cs, z
d) = 0 (2.10)

which has a unique solution. In the case where Y is independent of X, the discovery value

can be calculated as

zd = μX + Ξ(cs, cd) (2.11)

where μX denotes the mean of X and Ξ(cs, cd) solves (2.10) for an alternative random variable

X̃ = X − μX . Further details for the calculation are provided in Appendix 2.B.

Theorem 1 provides the first main result. It states that the optimal policy for the search

problem reduces to three simple rules based on a comparison of the search, purchase and

discovery values. In particular, the rules imply that in each period t, it is optimal to take the

action with the largest reservation value defined in (2.6), (2.8), and (2.10). Hence, despite being

fully characterized by myopic comparisons to a hypothetical outside option, these reservation

values rank the expected payoffs of actions over all future periods.

Theorem 1. Let z̃b(t) = maxk∈Ct u(xk, yk) and z̃s(t) = maxk∈St z
s
k denote the largest search

and purchase values in period t. An optimal policy for the search and discovery problem is

characterized by the following three rules:

- Stopping rule: Purchase j ∈ Ct and end search whenever zbj = z̃b(t) ≥ max
{
z̃s(t), zd

}
.

18
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- Inspection rule: Inspect j ∈ St whenever zsj = z̃s(t) ≥ max
{
z̃b(t), zd

}
.

- Discovery rule: Discover more products whenever zd ≥ max
{
z̃b(t), z̃s(t)

}
.

The proof of Theorem 1 relies on results from the literature on multi-armed bandit prob-

lems, specifically the branching bandits framework of Keller and Oldale (2003). These authors

show that in a multi-armed bandit problem where taking an action branches off into new

actions, a Gittins index policy is optimal. Importantly, as an action branches off, it cannot

be taken again in its original state. This ensures that available actions are independent in

the sense that taking one does not alter the state of any other available action. The imposed

precedence constraints combined with the fact that the consumer cannot discover a product

for a second time imply the same branching structure in the SD problem, and the results of

Keller and Oldale (2003) therefore imply that a Gittins index policy is optimal. Introduc-

ing a monotonicity condition I then show that the Gittins index is equivalent to the simple

reservation values defined above.

Based on Theorem 1, optimal search behavior can be analyzed using only (2.6), (2.8) and

(2.10). Weitzman (1979) showed that search values decrease in inspection costs and increase

if larger realizations yj become more likely through a shift in the probability mass of Y . The

same applies to the discovery value. It decreases in discovery costs and increases if probability

mass of X is shifted towards larger values. The discovery value also depends on inspection costs

and the conditional distribution of Y through the value function; it decreases in inspection

costs and increases if larger values of Y are more likely.

To see the latter, consider the case where alternatives are discovered one at a time. In this

case, the myopic net gain of discovering more products reduces to

Qd(cd, cs, z) = EX [max {0, Qs(X, cs, z)}]− cd (2.12)

For any c′s > cs, it holds that Qs(x, c
′
s, z) ≤ Qs(x, cs, z) for all finite values of x and z, implying

that Qd(cd, c
′
s, z) ≤ Qd(cd, cs, z) for all z. As Qd(cd, cs, z) is decreasing in z (see Appendix

2.A), it follows that the respective discovery values satisfy zd′ ≤ zd.

The optimal policy being fully characterized by simple rules leads to straightforward anal-

ysis of optimal choices for any given awareness and consideration sets. For example, consider

19



580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger
Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022 PDF page: 28PDF page: 28PDF page: 28PDF page: 28

CHAPTER 2. OPTIMAL SEARCH AND DISCOVERY

a period t where max
{
zd, z̃s(t)

}
< z̃b(t) such that the consumer stops searching. When de-

creasing inspection costs sufficiently in this case, the inequality reverts and the consumer will

instead either first discover more products, or inspect the best product from the awareness

set.

2.4.1 Monotonicity and extensions

For the reservation value policy of Theorem 1 to be optimal, the discovery value needs to fully

capture the expected net benefits of discovering more products, including the option value of

being able to continue discovering products. The monotonicity condition used in the proof of

the theorem ensures that this holds. It states that the expected net benefits of discovering

more products do not increase during search. Hence, whenever the consumer is indifferent

between taking the hypothetical outside option and discovering more products in t, he will

either continue to be indifferent or take the outside option in t + 1. Whether the consumer

can continue to discover products in t+ 1 thus does not affect expected net benefits in t, and

the discovery value fully captures the expected net benefits.14

In the baseline SD problem, several assumptions directly imply that the monotonicity con-

dition holds. Specifically, (i) the consumer believes that product valuations are independent

and identically distributed, (ii) q remains constant and (iii) nd is known. However, these as-

sumptions can be relaxed to capture a wider range of settings. Below, three related extensions

are presented. Formal results and further details are presented in Appendix 2.C.

Ranking in distribution: In some settings, the consumer’ beliefs are such that the

distribution of partial valuations depends on the position at which a product is discovered.

Monotonicity will be satisfied if beliefs are such that the mean of Xj decreases in a product’s

position hj , or more generally if beliefs are such that Xj first-order stochastically dominates

Xk if hj ≤ hk. The optimal policy then continues to be characterized by Theorem 1, the only

difference being that the discovery value is based on the position-specific beliefs and decreases

during search, making it optimal to recall products in some cases. This could result in a

market environment where sellers of differentiated products compete in marketing efforts for
14For the search and purchase values, no monotonicity condition is required. This follows from the fact that

in the independent comparison to the hypothetical outside option, both actions do not provide the option
to continue searching. After buying a product, search ends, and after having inspected a product, the only
option that remains is to either buy the product or choose the hypothetical outside option. Consequently, for
inspection and purchase, at most one future period needs to be considered to fully capture the respective net
benefits over immediately taking the outside option.
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consumers to become aware of their products early on. If sellers offering better valuations have

a stronger incentive to be discovered first, they will increase marketing efforts.15 Consumers’

beliefs then will reflect this ordering such that monotonicity holds and the simple optimal

policy can be used to characterize equilibria. Similarly, online stores often use algorithms to

first present products that consumers may like more. This again satisfies monotonicity such

that the tractable optimal policy can be used to rationalize search behavior in click-stream

data from such stores.

Unknown nd: In other environments, a consumer may not know how many alternatives

he will discover. For example, a consumer may believe that there are still alternatives he

is not aware of and thus try to discover them, only to realize that he already is aware of

all the available alternatives. In such cases, a belief over how many alternatives are going

to be discovered needs to be specified. The reservation value policy continues to be optimal

if these beliefs are such that monotonicity is satisfied. This will be the case if beliefs are

constant, or if (more realistically) the consumer expects to discover fewer alternatives the

more alternatives he already has discovered.16 The only difference to the baseline is that in

Qd(cd, cs, z), expectations are additionally based on beliefs over how many alternatives will be

revealed.

Multiple discovery technologies: Consumers may also have multiple discovery tech-

nologies at their disposal. In an online setting, for example, each technology may represent a

different online shop offering alternatives. Moreover, advertising measures may separate prod-

ucts into different product pools. In such settings, the consumer also decides which technology

to use to discover more alternatives. By assigning each of the discovery technologies a different

discovery value, the optimal policy can be adjusted to accommodate this case.17

15See, for example, the discussion on non-price advertising and the related references cited in Armstrong (2017).
16This would reflect the case where the consumer expects it to become harder to discover alternatives the fewer

alternatives have not yet been discovered. Alternatively, this could be modeled as either q or cd to increase
with each discovery, which also satisfies monotonicity.

17An interesting extension for future research is to model the case where a consumer can choose the order in
which products are revealed based on a product characteristic such as price. This requires modeling beliefs that
reflect this ordering through updating the support of the price distribution; in an ascending order the minimum
price that can be discovered needs to increase with every discovery. Chen and Yao (2017) incorporate choices of
such search refinements in their empirical model. However, in their model, a consumer simultaneously decides
on the refinement and which position to inspect. In contrast, if such choices are modeled as a SD problem
the consumer would sequentially decided between a discovery technology and whether to inspect a product.
This is more closely done by De los Santos and Koulayev (2017), who also model sequential choice of search
refinements and clicks, but use simplifying assumptions and do not derive the optimal policy.
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2.4.2 Limitations

Though the optimal policy applies to a broad class of search problems, two limitations exist.

The first is that in the dynamic decision process, all available actions need to be independent

of each other; performing one action in t should not affect the payoff of any other action that

is available in t. This is required to guarantee that the reservation values fully capture the

effects of each action. Recall that each reservation value does not depend on the availability

of other actions. If independence does not hold, however, the availability of other actions also

influences the expected payoff of an action. Choosing actions based only on reservation values

that disregard these effects therefore will not be optimal. Alternative search problems that

violate this independence assumption are presented in the appendix.

The second limitation is that the monotonicity condition discussed above needs to hold for

the discovery value to be based on myopic net benefits. If this condition does not hold, then the

discovery value does not fully capture the expected net benefits of discovering more products.

However, as long as independence of the available actions is satisfied, a Gittins index policy

remains optimal (see proof of Theorem 1). Hence, the optimal policy when monotonicity fails

consists of comparing the search and purchase values from equations (2.7) and (2.8) with the

Gittins index value for discovery that explicitly accounts for future discoveries.

One interesting case where this fails is if the consumer learns about the distribution of X

or the number of alternatives he will discover during search. So far, it was assumed that inde-

pendent of the information the consumer reveals during search, his beliefs remain unchanged.

This will be the case if either the consumer has rational expectations and hence knows the un-

derlying distributions, or simply does not update beliefs. With learning, the consumer updates

his beliefs based on partial valuations or number of products revealed in a discovery.

Similar learning models have been studied in the context of classic search (and stopping)

problems, where the consumer learns about the distribution he is sampling from (e.g. Roth-

schild, 1974; Rosenfield and Shapiro, 1981; Bikhchandani and Sharma, 1996; Adam, 2001). 18

Whereas these studies determine prior beliefs or learning rules such that the optimal policy

is based on myopic reservation values, similar conditions do not guarantee that monotonicity

holds in a SD problem where a consumer learns about the distribution of X or the number of
18The SD problem is equivalent to these learning problems in the case where cs = 0 and the consumer updates

beliefs about the distribution of the random variable X + Y .
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alternatives he will discover. The reason is that in classic search problems a consumer reveals

full information when inspecting a product. Hence, if a product turns out to be a good match,

the value of stopping increases along with the value of continuing search, where the learn-

ing rule guarantees that this is such that the expected net benefits of continuing search over

stopping with the current best option weakly decrease with each inspection.19 In contrast,

in the SD problem, discovering either more or better partial valuations does not necessarily

increase the value of the best option in the consideration set.20 For example, the consumer

can discover many products that look very promising based on partial valuations, but after

inspection realize that these products are a bad match after all. In this case, the value of

stopping remains the same, whereas beliefs are shifted such that the consumer expects to find

better or more products in future discoveries.

Extending the SD problem to the case where the consumer learns about the distribution

of X or the number of alternatives therefore comes at the cost of losing tractability of the

discovery value; a tractable expression for the Gittins index value for the discovery action

(henceforth denoted by zLt ) is difficult to obtain as it is necessary to determine the value

function of a dynamic decision process that includes many future periods. Moreover, whereas

the discovery value in Theorem 1 remains constant throughout search, zLt changes whenever

the consumer updates beliefs. Consequently, the optimal policy when the consumer updates

beliefs becomes more complex in that the discovery value changes with each discovery and

explicitly includes future periods.

Whereas zLt is not tractable and computationally expensive to obtain, it is possible to

derive bounds on this value that are easier to compute and can serve as an approximation.

First, zLt can be approximated from below through k -step look-ahead values. The 1-step look-

ahead value is defined by (2.10), where the expectation operator is adjusted to account for

the consumer’s beliefs in t. As k increases, more future discoveries are considered in (2.10),

leading to a more precise approximation of zLt up to the point where zLt is calculated precisely.

Second, a result of Kohn and Shavell (1974) can be used to derive an upper bound. These

authors show that the expected value of continuing search when the consumer fully resolves
19See e.g. Theorem 1 in Rosenfield and Shapiro (1981).
20If the consumer learns about the distribution of Y conditional on X, then discovering more alternatives with

similar X can increase the value of the best option. Analyzing this mechanism provides an interesting avenue
for future research.
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uncertainty on the underlying distributions in the next period exceeds the true continuation

value in a classic search problem where a consumer samples from an unknown distribution.

The same logic directly applies in the extension to the SD problem and the upper bound then

can be computed using the results provided in the next section. A formal treatment of these

bounds is provided in the appendix.

2.5 Eventual purchases, consumer’s Payoff, and demand

In an environment where consumers sequentially inspect products, a consumer’s expected

payoff and the market demand result from integrating over different possible choice sequences

leading to eventual purchases. Conceptually, this poses a major challenge, as the number of

possible choice sequences grows extremely fast in the number of available alternatives.21

Theorem 2 allows to circumvent this difficulty. It states that the purchase outcome of a

consumer solving the search problem is equivalent to a consumer directly buying a product

that offers the highest effective value. Importantly, a product’s effective value does not depend

on the various possible choice sequences leading to its purchase.

Theorem 2. Let

wj ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uj if uj < zd and j ∈ C0

w̃j if w̃j < zd or j ∈ S0

zd + f(hj) + εw̃j else

be the effective value for product j revealed on position hj where w̃j ≡ min{zsj , zbj} = xj +

min {ξ, yj}, f(hj) is a non-negative function and strictly decreasing in hj and ε is an in-

finitesimal. The solution to the search and discovery problem with initial consideration set C0

and awareness set S0 leads to the eventual purchase of the product with the largest effective

value.

This result is based on and generalizes the “eventual purchase theorem” of Choi et al. (2018)

(and independently Armstrong, 2017; Kleinberg et al., 2017) to the case where the consumer

has limited awareness. The value w̃j used in the theorem is equivalent to the effective value
21For example, with only one alternative and an outside option, there are four possible choice sequences. With

two alternatives, the number of possible choice sequences increases to 20, and with three alternatives, there
are already more than 100 possible choice sequences.
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defined by Choi et al. (2018), and the proof follows the same logic; as a product (incl. out

outside option) is always bought, the proof only needs to establish that the optimal policy

never prescribes to buy a product that does not have the largest effective value.

The generalization to the case of limited awareness follows from the following implication

of the optimal policy: Whenever both the inspection and the purchase value of a product

in the awareness set exceed the discovery value, the consumer will buy the product and end

search. Hence, when w̃j ≥ zd, the consumer never discovers products on positions beyond

hj . This is captured in the effective values by the term zd + f(hj), which ranks alternatives

based on when during search they are discovered, yielding a larger effective value if a product

is discovered earlier. The infinitesimal in the last condition additionally is necessary to rank

products that are revealed on the same position. Suppose we have w̃j > w̃k ≥ zd for two

products discovered on the same position. Without the infinitesimal, the effective value would

be wj = wk, implying the consumer would be indifferent between buying either of the two

products. This contrasts the optimal policy, which for w̃j > w̃k will never prescribe to buy k

if both j and k are in the awareness set. If nd = 1, the infinitesimal is not required.

The result continues to hold for extensions of the SD problem, as long as the discovery val-

ues are predetermined. The only difference then is that in the effective value of an alternative

j, the discovery value depends on the position at which j is revealed.

2.5.1 Expected payoff

Based on these results, it is now possible to derive a simple characterization of a consumer’s

expected payoff, as summarized in Proposition 2.1. In this expression, the expected payoff does

not explicitly depend on inspection and discovery costs; they affect the expected payoff only

through the discovery and search values. As the proof shows, this follows from the definition

of these values, which relate expected payoffs and costs (as in Choi et al., 2018). Based on this

characterization, it is only necessary to derive the distribution of the effective values without

having to explicitly consider different choice sequences. Note also that as the effective value

is adjusted, the expected payoff does not depend on the choice of function f(h) which ranks

alternatives based on their position in the effective value.
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Proposition 2.1. A consumer’s expected payoff in the SD problem is given by

V (Ω0, A0;π) = EŴ

[
max
j∈J

Ŵj

]

where EŴ [·] integrates over the distribution of Ŵ =
[
Ŵ0, . . . , Ŵ|J |

]′
, with ŵj being the effec-

tive value adjusted with ŵj = uj∀j ∈ C0,ŵj = w̃j∀j ∈ S0, and f(hj) = ε = 0∀hj. If |J | = ∞,

V (Ω0, A0;π) = zd.

Whereas it is clear that making either inspection or discovery easier leads to an increase

in the expected payoff, it is not obvious which of these two changes is more beneficial for a

consumer. For the case where nd = 1, Proposition 2.2 shows that if the number of alternatives

exceeds some threshold, then the consumer benefits more from facilitating the discovery of

additional products.22

Proposition 2.2. If nd = 1, there exists a threshold n∗ such that whenever |J | > n∗, a con-

sumer benefits more from a decrease in discovery costs than a decrease in inspection costs. This

threshold decreases in the value of the alternatives in the initial consideration and awareness

set.

Whereas the proof is more involved, the intuition is that when there are only few alter-

natives available, the consumer is more likely to first discover all alternatives and then start

inspecting alternatives. Hence in expectation, he pays the inspection costs relatively often

and a reduction in inspection costs will be more beneficial. Similarly, when the value of the

outside option is large, the consumer is likely to inspect fewer of the products he discovers,

leading to relatively small benefits of a reduction in inspection costs.

For settings where nd > 1, it becomes difficult to obtain similarly general results. In par-

ticular, for some distributions and nd, it is possible that decreasing inspection costs increases

the discovery value zd by more than decreasing the discovery costs by the same amount. In

such cases, the consumer will benefit more from making inspection less costly. Nonetheless,

the general intuition remains the same in such settings; a reduction in inspection costs is more

beneficial, the more likely it is that the consumer inspects relatively many alternatives.
22Note that this threshold can be zero. For example, this is the case when u0 = 0, cs = 0.1 and cd = 0.1, and

the valuations are drawn from standard normal distributions.
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2.5.2 Market demand

Using Theorem 2, it is straightforward to derive a market demand function when heterogeneous

consumers optimally solve the SD problem. In particular, let the effective value wij for each

consumer i be a realization of the random variable Wj and gather the random variables in

W =
[
W0, . . . ,W|J |

]′. For a unit mass of consumers the market demand for a product j then

is given by

Dj = Eh [PW (Wj ≥ Wk∀k ∈ J\j)] (2.13)

where the expectations operator Eh [·] integrates over all permutations of the order in which

products are discovered by a consumer.

As the effective value decreases in the position at which a product is discovered, (2.13)

reveals that the demand for a product depends on the probability of each position at which

it is displayed. Specifically, the demand for a product exhibits ranking effects; products that

are more likely to be discovered early are more likely to be bought. As discussed in detail

in the next section, this follows from the structure of the SD problem. As search progresses,

it becomes less likely that a consumer has not yet settled for an alternative; hence, fewer

consumers become aware of products that would be revealed later, leading to a lower demand

for such products.

2.6 Comparison of search problems

To highlight implications of limited awareness and how the SD problem differs from existing

approaches, I compare it with the two classical sequential search problems; directed search

as in Weitzman (1979) and random search as in McCall (1970). Both these search problems

are nested within the SD problem. Directed search results if the consumer initially has full

awareness (i.e. S0 = J) such that the consumer knows all partial valuations prior to search and

does not need to discover products. Random search results if discovering a product reveals full

information on this product, hence the consumer always both inspects and discovers a product,

precluding him to use partial product information to only inspect promising products.23

For clarity, I focus the comparison on the case where products are discovered one at a
23Directed search also results if discovery costs are zero such that the consumer first discovers all products and

only then starts inspecting, whereas random search also results if inspection costs are zero and the consumer
inspects any products he discovers.
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time (nd = 1) and where the consumer initially only knows an outside option (S0 = ∅).
Furthermore, valuations xj and yj are assumed to be realizations of mutually independent

random variables X and Y , where the consumer has rational expectations such that beliefs

are correct. Assumptions specific to each search problem are described below.

Search and Discovery (SD): The consumer searches as described in Section 2.3, incur-

ring inspection costs cs and discovery costs cd. Without loss of generality, I assume that the

consumer discovers products in increasing order of their index, making subscripts for position

h and product j interchangeable.

Random Search (RS): When discovering a product j, the consumer reveals both xj

and yj ; hence does not have to pay a cost to inspect the product. Costs to reveal this

information are given by cRS . In this case, the consumer optimally stops and buys product j

if xj + yj ≥ zRS . The reservation value is given by zRS = μX +μY + ξ̃, where ξ̃ is the same as

in (2.7) but defined over the joint distribution of demeaned X and Y . Products are discovered

in the same order as in SD. Furthermore, I assume u0 < zRS to ensure a non-trivial case.

Directed Search (DS): The consumer initially observes xj∀j, based on which he chooses

to search among alternatives following Weitzman’s (1979) reservation value policy. Costs to

inspect product j are given by a function cDS
j = vDS(cs, hj), where cs are baseline costs that

are adjusted for the position through a function vDS : R2
+ → R+ which is assumed to be

strictly increasing in a product’s position hj . As costs vary across products, reservation values

are given by zsj = xj + ξj , where ξj is the same as in (2.7) with product-specific inspection

costs. The assumption on vDS(cs, hj) implies that ξj decreases in j. I impose this functional

form restriction as otherwise the DS problem does not generate similar patterns, as discussed

in Section 2.6.2.

2.6.1 Stopping decisions

In search settings, consumers’ stopping decisions determine which products consumers consider

and buy. Stopping decisions therefore shape how firms compete in prices, quality or for being

discovered early during search. Hence, comparing stopping decisions across the different search

problems provides important insights on how well existing approaches are able to capture

the more general setting where consumers are not aware of all alternatives and use partial

information to determine whether to inspect products.
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In the SD problem, a consumer always stops search at a product k whenever the product

is both promising enough to be inspected and offers a large enough valuation to not make it

worthwhile to continue discovering more products. Formally, this is given by the condition

xk +min{yk, ξ} ≥ zd. The probability that a consumer will stop searching before discovering

product j therefore is given by

PX,Y (Xk +min{Yk, ξ} ≤ zd∀k < j) = 1− PX,Y (X +min {Y, ξ} ≤ zd)j−1 (2.14)

Similarly, in the RS problem, a consumer will always stop search at a product k whenever

xk + yk ≥ zRS , hence the probability of stopping search before discovering product j is given

by

PX,Y (Xk + Yk ≤ zRS∀k < j) = 1− PX,Y (X + Y ≤ zRS)j−1 (2.15)

In both search problems, a consumer may stop search before discovering a product j.

Consequently, stopping decisions in the SD and the RS problem imply the same feature:

Products that a consumer initially has no information on may never be discovered and bought,

independent of how the consumer values them.

However, as the consumer has the option of not inspecting products with low partial

valuations, stopping probabilities differ. In particular, in the case where the total cost to

reveal all information about a product are the same, stopping probabilities are smaller in the

SD problem. This is highlighted in Proposition 2.3 and follows from the fact that not having

to inspect alternatives with small partial valuations allows to save on inspection costs. This

increases the expected benefit of discovering more products, which implies a smaller probability

of search stopping, and that on average, more products will be discovered in the SD problem.

Proposition 2.3. If costs in the RS problem are given by cRS = cs + cd, a consumer on

average ends search at earlier positions in the RS than in the SD problem.

In contrast, stopping decisions are different in the DS problem. As the consumer initially

knows of the existence of all products and can order them based on partial information, there is

no stopping decision in terms of discovering products. Instead, the consumer directly compares

all partial valuations and the different inspection costs, based on which he decides the order in

which to inspect products. Hence, he can directly inspect highly valued products even when
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they are presented at the last position.

This difference arises from the different assumptions on consumers’ initial information

and is paramount in the analysis of search frictions. Consider an equilibrium setting where

horizontally differentiated alternatives are supplied by firms that compete by setting mean

partial valuations (e.g. by setting prices as in Choi et al., 2018). If consumers are aware of

all alternatives and search as in the DS problem, all firms will compete directly with each

other. In contrast, in a SD problem, the firm that is discovered first initially competes only

with the option of discovering potentially better products. This difference is further illustrated

in Appendix 2.G, and as it determines how firms compete, will lead to different equilibrium

dynamics.24

2.6.2 Ranking effects

The above analysis already suggests that the demand structure differs across the three search

problems. To provide further details, I focus on a particular pattern that is generated by all

three search problems: Market demand for a product decreases in its position. Such ranking

effects are important as they determine how fiercely sellers compete for their products to be

revealed on early positions, for example through informative advertising or position auctions

(e.g. Athey and Ellison, 2011). Furthermore, they have received considerable attention in

the marketing literature, which has produced ample empirical evidence that suggests their

importance in online markets (e.g. Ghose et al., 2014; De los Santos and Koulayev, 2017;

Ursu, 2018).

To compare the mechanism producing ranking effects across the search problems, I use the

following definition: The ranking effect for a product is the difference in market demand of

the product being revealed at position h and at h+1, with the corresponding exchange of the

product previously revealed at position h+ 1. Formally, this is given by

rk(h) ≡ dk(h)− dk(h+ 1) (2.16)
24To give an example, Anderson and Renault (1999) and Choi et al. (2018) model a similar environment, with

the difference that in the former, consumers initially are not aware of any alternatives, whereas in the latter
they observe prices (i.e. sellers’ choices) of all alternatives prior to search. Because of this difference, decreasing
inspection costs lowers the equilibrium price in a symmetric equilibrium in the former, whereas the opposite
holds in the latter environment. Haan et al. (2018) provide a detailed discussion of this difference.
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where dk(h) denotes the market demand for a product when revealed at position h in search

problem k ∈ {SD,RS,DS}. For clarity, product specific subscripts are either omitted or

exchanged with position subscripts in the following. The former is feasible as effective values

are assumed to be independent realizations of a random variable W .

To investigate ranking effects, it is first necessary to derive the market demand at a par-

ticular position h. For a unit mass of consumers with independent realizations of effective

values, it is given by

dSD(h) = PW (W < zd)h−1

[
PW (W ≥ zd)

+ PW (W < zd)|J |−(h−1)PW (W ≥ max
k∈J

Wk|Wk < zd∀j)
]

(2.17)

The expression follows from Theorem 2 which implies that if a consumer discovers a product

with wj ≥ zd, he will stop searching and buy a product j. The consumer will only discover

and have the option to buy a product on position h if wj < zd for all products on better

positions. In contrast, when wj < zd, the consumer will first discover more products, and only

recall j if he discovers all products and j is the best among them.

In the latter case, a product’s position does not affect market demand; once all products

are discovered, products are equivalent in terms of their inspection costs and the order in

which they are inspected is only determined based on partial valuations. This implies that the

ranking effect in the SD problem is independent of the number of alternatives and simplifies

to

rSD(h) = PW

(
W ≥ zd

) [
PW (W < zd)h−1 − PW (W < zd)h

]
(2.18)

This expression reveals that the ranking effect in the SD problem solely results from the

difference in the probability of a consumer reaching positions h or h+ 1 respectively. Besides

the distribution of valuations and the inspection and discovery costs, Proposition 2.4 shows

that the ranking effect is determined by the position h to which the product is moved. When

h is large, fewer consumers will not have already stopped searching before reaching h. Hence,

the later a product is revealed, the smaller is the increase in demand when moving one position

ahead.

The demand in a random search problem is derived similarly. In RS, a consumer will
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only be able to buy a product if he has not stopped searching before, which requires that

x+y < zRS for all products on better positions. Furthermore, a consumer will also only recall

a product if he has inspected all alternatives. Similar to the SD problem, this implies that the

ranking effect in the RS problem is given by

rRS(h) = PX,Y

(
X + Y ≥ zRS

) [
PX,Y

(
X + Y < zRS

)h−1 − PX,Y

(
X + Y < zRS

)h] (2.19)

Comparing (2.18) with (2.19) reveals that ranking effects in the RS problem are produced

by the same mechanism as in the SD problem. In both search problems; fewer consumers buy

products at later positions due to the increasing the probability of having stopped searching

before discovering these products. It follows that in both search problems, ranking effects

decrease in the position and are independent of the total number of alternatives.

Though their extent generally differs, Proposition 2.4 additionally shows that at later

positions, ranking effects will be larger in the SD problem. The result is a direct implication

of Proposition 2.3; as a consumer is more likely to reach a product at a later position in the

SD problem, ranking effects at later positions will be larger.

Proposition 2.4. The ranking effect in both the SD and the RS problem decreases in position

h and is independent of the number of alternatives. Furthermore, if cRS = cs+ cd, there exists

a threshold h∗ such that rSD(h) ≥ rRS(h) for all h > h∗.

Given the different stopping decisions, ranking effects in directed search do not result

from consumers having stopped searching before reaching products revealed at later positions.

Instead, they result from differences in the cost of inspecting products at different positions.

To see this, write the ranking effect in the DS problem as25

rDS(h) = EW̃h

[∏
k �=h

P(W̃k ≤ W̃h)

]
− EW̃h+1

[ ∏
k �=h+1

P(W̃k ≤ W̃h+1)

]
(2.20)

This expression reveals that the ranking effect results from two sources in the DS problem.

First, by moving a product j one position ahead, the product previously on position h is now
25Alternatively, ranking effects could be modeled in a DS problem by assuming that the consumer initially has

full information on some products. In this case, the model effectively has only 2 positions (full and partial
information), and hence would not be able to explain the decrease in demand across all positions resulting
from the SD problem.
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more costly to inspect, making it more likely that j is bought for any w̃j . Second, by making

it less costly to inspect j, the distribution of w̃j shifts such that larger values w̃j become more

likely.

In contrast to RS and SD, the ranking effect in the DS problem depends on the number

of available alternatives. In RS and SD, ranking effects result from the decreasing probability

of a consumer having stopped searching before reaching a particular position, which does

not depend on how many alternatives there are in total. In DS, however, a consumer directly

compares all alternatives based on partial valuations. Adding more alternatives thus will affect

the demand on each position.

Specifically, Proposition 2.5 shows that ranking effects in the DS problem will be smaller

if there are many alternatives. The reason is that as the number of alternatives increases,

each product is less likely to be bought and differences in the position-specific market demand

decrease. Note, however, that in cases where the probability of consumers buying products on

the last positions is very small or exactly zero (e.g. when inspection costs are large), adding

more alternatives will not affect ranking effects in the DS problem.

Proposition 2.5. The ranking effect in the DS problem is weakly decreasing in the number of

alternatives.

A second difference to the RS and SD problems is that the ranking effect does not neces-

sarily decrease in position. This is possible as there are two counteracting channels through

which position affects the ranking effect in a DS problem. First, as there is lower demand for

products at later positions, differences between them will be smaller. Second, if vDS(cs, h) is

such that ξh decreases in h at an increasing rate, the difference in the purchase probability at

h instead of at h+ 1 increases in the position. When the latter dominates, the ranking effect

will first increase in position.

The above comparison highlights that the mechanism producing ranking effects in the DS

problem is distinct from the one in the SD and RS problems, leading to a different demand

structure. In the former, ranking effects result from differences in inspection costs relative to

differences in partial valuations. Hence, a better partial valuation is a substitute for moving

positions ahead. In contrast, in a SD or RS problem, a product’s large partial valuation does

not affect consumers that stop search before discovering it. Hence, offering a larger partial
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valuation does not substitute for being discovered early in a SD or RS problem.26

Moreover, the size of ranking effects determines how important it is for products to be

revealed on an early position. As ranking effects are independent of the number of alternatives

in SD and RS, so are sellers’ incentives to have their products revealed early during search.

In contrast, in DS, the demand increase of moving positions ahead becomes smaller when the

number of alternatives increases. Hence, sellers can have smaller incentives to be revealed on

early positions when there are many, relative to when there are only few alternatives.

Finally, the above comparison between the number of alternatives and ranking effects also

suggests the existence of an empirical test to distinguish the search modes in some settings.

If data is available that allows to test whether ranking effects depend on the number of

alternatives, then it will be possible to empirically determine whether a DS problem, instead of

a RS or SD problem provides a framework that better captures ranking effects in a particular

setting. Furthermore, if data is available that allows to test whether a product’s partial

valuation has an effect on whether it is inspected, it will be possible to distinguish between

RS and SD.

2.6.3 Expected payoff

If costs are specified such that the total costs of revealing all product information remain the

same, then the three search problems differ only in the information the consumer can use

during search. A comparison of a consumer’s expected payoff based on such a specification

therefore provides some insight into whether it is always to the consumer’s benefit to provide

information that helps to direct search towards some alternatives.

For total costs of revealing full information about a product on position h to be the same

in the three search problems, inspection costs in the RS and DS problem are specified as

cRS = cs + cd and cDS
j = cs + hjcd respectively.

The SD problem extends the RS problem by additionally providing the consumer with the

option to not inspect products depending on their partial valuations. This allows the consumer

to save on inspection costs by not inspecting products with small partial valuations. As stated

in Proposition 2.6, this increases the expected payoff which implies that providing product

information across two layers, as done for example by online retailers or search intermediaries,
26Note, however, that in an equilibrium setting, offering larger partial valuations may indirectly serve as a

substitute for being discovered early by raising consumers’ expectations and induce them to search longer.
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is beneficial for consumers.

Proposition 2.6. If cRS = cs + cd, then a consumer’s expected payoff in the SD problem is

larger than in the RS problem.

In contrast to the SD problem, the consumer can use all partial valuations to direct search

in the DS problem. Hence, if inspection costs for all products are the same in both problems

(i.e. cDS
j = cs∀j), a consumer will have a larger expected payoff in the DS problem as he can

directly inspect products with large partial valuations. However, under the assumption that

total costs of revealing full information are the same in both search problems, a more detailed

analysis is necessary to determine which search problem offers a larger expected payoff.

Denote a consumer’s expected payoff in a search problem k as πk for k ∈ {SD,DS}.
Proposition 2.1 implies that expected payoffs are given by

pSD = EŴ

[
max{u0,max

j∈J
Ŵj}

]

pDS = EW̃

[
max{u0,max

j∈J
W̃j}

]

Furthermore, let Hk(·) denote the cumulative density of the respective maximum value over

which the expectation operator integrates in problem k. The difference in expected payoffs of

the SD and the DS problem then is given by

pSD − pDS =

∫ ∞

zd
HDS(w)− 1dw +

∫ zd

u0

HDS(w)−HSD(w)dw (2.21)

The first expression in (2.21) is negative, capturing the advantage of observing partial valua-

tions for all products and being able to directly inspect a product at a later position. Given

HDS(w) ≤ HSD(w) on w ∈ [u0, zd], the second expression in (2.21) is positive, revealing that

directly observing all partial valuations xj does not only yield benefits.

The latter stems from the difference in how inspection and discovery costs are taken into

consideration in the two dynamic decision processes. In DS, the total cost of inspecting a

product j at a later position is directly weighed against its benefits given the partial valuations.

In contrast, in SD, the consumer first weighs the discovery costs against the expected benefits

of discovering a product with a larger partial valuation. Once product j is revealed, the
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accumulated cost paid to discover j (jcd) is a sunk cost and does not affect the decision

whether to inspect j.

Hence, in cases where products on early positions have below-average partial valuations xj ,

the optimal policy in SD tends to less often prescribe to inspect these products compared to

the direct cost comparison in DS. In some cases, the former can be more beneficial, leading to

a larger expected payoff.27 Directly revealing all partial valuations therefore does not always

improve a consumer’s benefit, if the consumer continues to incur the same total costs to reveal

the full valuation of any given product. 28

2.6.4 Empirical implications

Differences in the underlying search problem also have implications for the estimation of

structural search models. For example, a structural search model will use price differences

across all products to inform parameter estimates if it abstracts from limited awareness and

assumes that consumers observe all prices prior to search. Consumers not inspecting low-

price products they are unaware of then may be spuriously attributed either to a small price

sensitivity or large inspection costs. Whereas there are many applications of structural search

models and an ubiquity of settings where consumers remain unaware of some alternatives, the

sensitivity of results from structural search models to limited awareness remains unclear.

I therefore investigate the implications of estimating either a random or directed search

model in a setting where consumers instead solve the search and discovery problem. I focus

on a scenario where preference and cost parameters are estimated using data on consumers’

consideration sets and purchases; a common case as consideration sets are observable in click-

stream or survey data. Using a simple specification,29 I first analyze how the different models

attribute observed stopping decisions to structural parameters. A numerical exercise then

reveals that this can lead to sizable differences in parameter estimates and counterfactual

predictions.

Empirical setting: The data consist of consumers’ consideration sets and purchases,30 as
27For example, this is the case if X ∼ N

(
0, 1

3

)
, Y ∼ N

(
0, 2

3

)
, cs = cd = 0.05 and |J | = 10.

28No threshold result as in Proposition 2.2 applies in this case. The first expression in (2.21) decreases whereas
the second expression increases in the number of alternatives.

29The empirical literature extends the simple specification for a range of settings, for example by introducing
heterogeneous preferences. The main rationale continues to hold in such settings.

30The simulated data also contains consumers with an empty consideration set, i.e. those that did not search
any alternatives. This corresponds to an ideal setting where the whole population of consumers is observed.
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well as a number of characteristics for each of the available products. The utility of purchasing

product j is specified as uj = x′
jβ + yj , where xj is a vector containing the observed product

characteristics, β is a vector of preference parameters and yj is an idiosyncratic unobservable

taste shock with mean zero. Depending on the model, consumers are assumed to reveal xj

when either discovering j (SD) or inspecting j (RS), or know xj prior to search (DS). yj is

revealed after inspecting j in all three models.

Given this setting, Table 2.1 shows sufficient or necessary conditions for the purchase of

product j across the three models, conditional on j being the best product inspected and (ii)

the observed consideration set not coinciding with the set of all available alternatives. The

condition for the SD problem shows that a purchase of product j can be independent of realized

valuations of products that the consumer is not aware of in the purchase period t̄.31 j only

needs to offer “good enough” characteristics relative to the mean and to products the consumer

is aware of at the time of purchase. The RS model features the same structure; a consumer will

end search and buy product j if its valuation exceeds the reservation value. However, Ξ and

ξ̃ depend differently on the underlying costs and distributions of characteristics in xj and yj .

Through these non-linear functions, a RS model will attribute observed limited consideration

sets differently to preference and cost parameters.

In the DS model rationalizing the purchase of j requires that the valuation of the purchased

product is larger than the search values of all uninspected products. If, for example, xk >

xj for an uninspected product, the DS model will require either relatively small preference

parameters, or relatively large inspection costs. Hence, depending on the characteristics of

the uninspected products, rationalizing limited consideration sets in a DS model will require a

combination of large inspection costs and attenuated preference parameters, as the estimation

procedure will try to fit an inequality for each uninspected product.

Table 2.1 – Purchase conditions

SD (xj − μX)′β + yj ≥ Ξ & (xj − xk)
′β + yj ≥ ξk∀k ∈ At̄ (sufficient)

RS (xj − μX)′β + yj ≥ ξ̃ (necessary)
DS (xj − xk)

′β + yj ≥ ξk∀k /∈ Ct̄ (necessary)

Notes: Sufficient or necessary conditions for purchase of product j conditional on uj ≥ uk∀k ∈ Ct̄

and J � Ct̄. t̄ denotes the purchase period.

31The condition is sufficient but not necessary. A lternatively, the consumer can first become aware of all
alternatives, before then purchasing j.
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To investigate the extent to which this influences results from structural search models, I

perform simulations for this setting. First, I simulate consumers solving a SD problem with

the given utility specification and under the assumption that consumers initially aware of one

product. Using these data, I then estimate structural parameters in search models based on

either the RS and DS problem. For the DS problem, two specifications are estimated. DS1 is a

baseline where inspection costs are parameterized as cDS1
j = cs. DS2 introduces an additional

cost parameter such that inspection costs increase in position hj with cDS2
j = cs + cdhj . This

specification additionally uses data on the order in which products are discovered by consumers.

For all three models, the estimation fits inequalities based on the conditions of Table 2.1, as

well as other inequalities coming from continuation and purchase decisions. Details on the

maximum likelihood estimation are provided in the appendix. As comparison, I also present

estimates of a full information (FI) model.

Results of such a simulation are presented in Table 2.2. Parameters for this particular

simulation are shown in the same table and were chosen to reflect a setting with relatively few

searches, as is often the case in click-stream data.32 To account for the fact that assuming the

distribution of yj is a normalization in the empirical context, estimates are presented as a ratio

to the coefficient of the second characteristic. Given its negative coefficient, this characteristic

will be interpreted as a product’s price.

Table 2.2 – Estimated Coefficients and Search Set Size

#Searches Purchases (%) β2 β1/|β2| β3/|β2| cs/|β2| cd/|β2|
SD 1.35 63.70 -1.00 1.00 3.50 0.03 0.06
DS1 1.18 65.48 -0.19 1.01 2.58 1.79
DS2 1.18 65.22 -0.19 1.01 2.72 1.58 0.01
RS 1.00 72.85 -0.82 1.28 5.21 0.05
FI 60.54 -0.62 1.00 5.01

Notes: Estimation from a simulated dataset with 2,000 consumers and 30 products per consumer.
Characteristics are independent draws (across consumers and products) from x1j ∼ N(2, 3.0), x2j ∼
N(3.5, 1.0) and yj ∼ N(0, 1). The third characteristic is an outside dummy. The data is generated
based on the SD model with nd = |A0| = 1, with parameters in the estimated models denoted by
cRS = cs, cDS1

j = cs and cDS2
J = cs + cdhj . The first two columns are based either on the generated

data (SD) or estimated by generating 5,000 search paths for each consumer.

32For example, Ursu (2018) reports an average of 1.12 clicks per consumer and two thirds of consumers ending
up booking a hotel.Chen and Yao (2017) reports an average of 2.3 clicks per consumer using data only on
consumers that ended up booking a hotel.
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The results show that both DS specifications are able to match the number of purchases,

as well as the relative preference coefficients relatively well, despite the price coefficient being

strongly attenuated and the number of searches being underestimated. However, inspection

costs are strongly accentuated in both DS models. This offers a novel explanation for the large

estimates of baseline costs estimated with some DS models (e.g. Chen and Yao, 2017; Ursu,

2018): By not accounting for consumers not being aware of some alternatives, a DS model

spuriously attributes consumers not inspecting products they are not aware of to large inspec-

tion costs.33 This continues to occur in the DS2 model that could rationalize ranking effects

produced by the SD model through inspection costs that increase in the position at which a

product is discovered. However, the results show that instead the DS2 model estimates only

a small increase in inspection costs across positions and also strongly overestimates baseline

inspection costs.

The RS model underestimates inspection costs; they are less than the combined inspection

and discovery costs. Moreover, the ratio of preference parameters deviates from the true

values. The large differences in the estimated coefficient for the outside option result from

how the different models interpret consumers not inspecting or not buying. Whereas in the

DS problem this occurs from large inspection costs, the RS model attributes the lack of search

mainly to a good outside option.

Differences in the structural search models also influence results from counterfactual simu-

lations. Table 2.3 shows the results of two different counterfactuals for each of the models. For

each counterfactual scenario, parameters from Table 2.2 are used for each model to simulate

consumer surplus (CS) and the demand for the outside option (D0), as well as for prod-

ucts shown on the first (D1) and fifth (D5) position. Throughout, results are expressed in

percentage deviations from the baseline scenario.

The first counterfactual consists of removing all search costs, which can be used to gauge

the effects of removing the search friction. For both DS models, accentuated baseline inspection

costs lead to a larger increase in consumer surplus compared to the SD model with which the

data was generated. Moreover, removing costs in the DS models makes consumers more likely

to purchase any product, independent of their position. In contrast, demand in the SD and
33Other explanations for large search search cost estimates are incomplete search histories (e.g. Ursu, 2018) and

heterogeneous prior beliefs (Jindal and Aribarg, 2020).
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RS model decreases for both products listed. This stems from the inherent ranking effects

where products on early positions are bought more frequently as consumers stop search early.

In this case, removing all costs moves demand to later positions.

The second counterfactual scenario analyzes the effects of a one percent price decrease

of products discovered on the fifth position. The change in demand for the first product

highlights an important difference in the substitution pattern. In the data-generating SD

model, the demand for products on the first position decreases by little, as the price decrease

of a product on a later position does not affect choices of consumers that stopped search

before becoming aware of the product. In contrast, in a DS (or FI) model, consumers who

were previously buying products on the first few positions observe the price decrease and can

directly substitute to the fifth product. This translates into more substitution from the first

few positions as a response to a price decrease of a product on a later position. The predicted

changes in the demand for the fifth product further highlight that the different models lead

to different predictions for consumers’ responses to price changes; whereas the DS1 and RS

models underestimate, the DS2 model overestimates the increase in demand in response to

the price change.

Table 2.3 – Counterfactuals

Remove costs Δp5 = −1%
ΔCS ΔD1 ΔD5 ΔCS ΔD1 ΔD5

SD 28.60 -37.35 -2.32 0.02 -0.01 1.81
DS1 85.06 38.04 43.11 0.01 -0.04 1.72
DS2 81.38 15.53 29.19 0.01 -0.03 2.75
RS 18.73 -25.36 -11.78 0.01 -0.02 1.49
FI 0.00 0.00 0.00 0.01 -0.05 1.91

Notes: Results from simulated counterfactuals based on Table 2.2,
where (i) all costs are set to zero and (ii) the price for the 5th
product is reduced by 1 % for each consumer. All changes are
expressed in % relative to the baseline. Demand and consumer
surplus are calculated by averaging across 5,000 simulated search
paths for each consumer.

Though results from only a single simulation are presented, I obtained qualitatively sim-

ilar results across a wide range of parameter values.34 Throughout, DS models overestimate

inspection costs and all estimated models can lead to sizable differences in parameters and
34These results can be replicated with the supplementary material.
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2.7. CONCLUSION

results from counterfactual predictions. Nonetheless, the SD problem will be more similar

to the DS problem if consumers are aware of many alternatives when they end search (e.g.

due to small discovery costs). Similarly, if consumers inspect most products they discover

independent of their characteristics, the SD problem will be more similar to the RS problem.

When estimating search models, researchers should therefore carefully consider the degree to

which limited awareness plays a role in the specific setting they are studying and which model

is appropriate.

To this end, the results of Propositions 2.4 and 2.5 can be used to empirically differentiate

the search modes in some settings. If data are available that allow to test whether ranking

effects depend on the number of alternatives, it will be possible to empirically determine

whether a DS problem, instead of a RS or SD problem provides a framework that better

captures ranking effects. Furthermore, if data are available that allow to test whether a

product’s partial valuation has an effect on whether it is inspected, it will be possible to

distinguish between RS and SD.

2.7 Conclusion

This paper introduces a search problem that generalizes existing frameworks to settings where

consumers have limited awareness and first need to become aware of alternatives before being

able to search among them. The paper’s contribution is to provide a tractable solution for

optimal search decisions and expected outcomes for this search and discovery problem. More-

over, a comparison with classical random and directed search highlights how limited awareness

and the availability of partial product information determine search outcomes and expected

payoffs.

A promising avenue for future research is to build on this paper’s results and study limited

awareness in an equilibrium setting. This could yield novel insights into how consumers’

limited information shapes price competition. Furthermore, the search and discovery problem

can serve as a framework to analyze how firms compete for consumers’ awareness. For example,

informative advertising can make it more likely that consumers are aware of a seller’s products

from the outset. Ranking effects derived in this paper already suggest that it will be in a

seller’s best interest to make consumers aware of his product, but further research is needed

to determine equilibrium dynamics.
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Another avenue for future research entails incorporating the search and discovery problem

into a structural model that is estimated with click-stream data. The available actions in

the search and discovery problem closely match how consumers scroll through product lists

(discovery) and click on products (inspection) on websites of search intermediaries and on-

line retailers. By accounting for the fact that consumers initially do not observe entire list

pages, such a model could improve the estimation of consumers’ preferences, inspection costs

and ranking effects relative to models that abstract from consumers not observing the whole

product list.
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Appendix

2.A Proofs of main theorems and propositions
2.A.1 Theorem 1
Let Θ(Ωt, At, z) denote the value function of an alternative decision problem, where in addition
to the available actions in At, there exists a hypothetical outside option offering value z. As
the SD problem satisfies that taking an action does not change the state of another available
action and has the same branching structure, Theorem 1 of Keller and Oldale (2003) states
that a Gittins index policy is optimal and that the following holds:35

Θ(Ωt, At, z) = b−
∫ b

z
Πa∈At

∂Θ(Ωt, {a} , w)
∂w

dw (2.22)

where b is some finite upper bound of the expected immediate rewards.36 The Gittins index
of action d (discovering products) is defined by gdt = EX

[
Θ(Ωt+1, At+1\At, g

d
t )
]
. Suppose the

consumer knows the total number of alternatives |J |, and consider a period t in which more
discoveries will still be available in t+ 1 with certainty. In this case we have

gdt = EX

[
Θ(Ωt+1, {d, s1, . . . , snd}, gdt )

]
− cd (2.23)

= EX

[
b−

∫ b

gdt

∂Θ(Ωt+1, {d} , w)
∂w

nd∏
k=1

∂Θ(Ωt+1, {sk} , w)
∂w

dw

]
− cd

where sk ∈ St+1\St∀k. Θ(Ωt, {sk} , z) is the value of a search problem with an outside op-
tion offering z and the option of inspecting product k (with known partial valuation xk).
Θ(Ωt+1, {d} , w) is the value of a search problem with an outside option offering z, and the
option to discover more products. Finally, EX [·] is the expectation operator integrating over
the beliefs over the nd random variables in X = [X, . . . ,X], which does not depend on time.

Optimality of the Gittins index policy then implies that when z ≥ gdt+1, the consumer

35Compared to the baseline branching framework discussed by Keller and Oldale (2003), the SD problem does
not have discounting, and purchasing a product is a “terminal” action. Note also that whereas not explicitly
stated by the authors, their framework accommodates the case where it is not known ex ante to how many
“children” an available action branches into. This will be the case in the SD problem if the consumer does not
know the number of products he will discover.

36Expected immediate rewards are in [−max{cs, cd},E[X + Y ]], hence assuming finite mean of X and Y guar-
antees that they have a finite upper bound.
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will choose the outside option in t + 1. Hence Θ(Ωt, {d} , w) = w∀w ≥ gdt+1 which yields
∂Θ(Ωt,{d},w)

∂w = 1∀w ≥ gdt+1. This implies that for gdt ≥ gdt+1, gdt does not depend on whether
more products can be discovered in the future, and the optimal policy is independent of the
beliefs over the number of available alternatives. As a result, as long as the Gittins index is
weakly decreasing during search, i.e. gdt ≥ gdt+1∀t, it is independent of the availability of future
discoveries and beliefs q.

It remains to show that gdt ≥ gdt+1∀t holds in the proposed search problem. When |J | = ∞,
gdt = gdt+1 is immediately given by the fact that in both periods infinitely many products remain
to be discovered and that the consumer has stationary beliefs (i.e. q is constant and valuations
are independent and identically distributed). For |J | < ∞, backwards induction yields that
this condition holds: Suppose that in period t + 1, no discovery action is available as all
products have been discovered. In this case, the Gittins index is given by

gdt+1 = EX

[
b−

∫ b

gdt+1

nd∏
k=1

∂Θ(Ωt+1, {sk} , w)
∂w

dw

]
− cd (2.24)

As 0 ≤ ∂Θ(Ωt,{d},w)
∂w ≤ 1 and ∂Θ(Ωt,{sk},w)

∂w ≥ 0, it holds that

EX

[
b−

∫ b

gdt+1

nd∏
k=1

∂Θ(Ωt+1, {sk} , w)

∂w
dw

]
≤ qEX

[
b−

∫ b

gdt

nd∏
k=1

∂Θ(Ωt+1, {sk} , w)

∂w
dw

]
+

(1− q)EX

[
b−

∫ b

gdt

∂Θ(Ωt, {d} , w)

∂w

nd∏
k=1

∂Θ(Ωt, {sk} , w)

∂w
dw

]
(2.25)

which implies gt ≥ gt+1.
Finally, Θ(Ωt+1, {d, s1, . . . , snd}, gdt ) = V

(〈
Ω̄, ω(x, z)

〉
, {b0, s, . . . , snd} ; π̃)

)
in (2.9) im-

plies zd = gdt . Similarly, the definition of the inspection and purchase values (in (2.6) and
(2.10)) are equivalent to the definition of Gittins index values for these actions and it follows
that the reservation value policy is the Gittins index policy.

2.A.2 Theorem 2
Proof. As a product always is bought, it suffices to show that the optimal policy never pre-
scribes to buy product j if there exists another product k with wk > wj . To account for the
case where C0 
= ∅, define zsk = ∞∀k ∈ C0 which implies w̃k ≡ min

{
zsk, z

b
k

}
= zbk∀k ∈ C0.

First, consider the case where k is revealed before j (h0 ≤ hk < hj). In this case, wk > wj

if and only if either (i) w̃k ≥ zd or (ii) zd > w̃k > w̃j . In the former, the optimal policy
prescribes to not discover products beyond k, hence not to buy product j. This follows as
zsk ≥ zd and zbk ≥ zd imply that the optimal policy prescribes that search ends with buying k
before discovering j. In the latter, wj = w̃j < wk = w̃k , and the optimal policy prescribes to
continue discovering such that both products are in the awareness set. The eventual purchase
theorem of Choi et al. (2018) then applies, and hence the optimal policy does not prescribe
to buy product j. Second, consider the case where k is discovered after j (hk > hj). In this
case, note that wj > wk if w̃j ≥ zd. Hence, wk > wj if and only if zd > w̃k > w̃j , which is
the same as (ii) above. Finally, consider the case where k is discovered at the same time as j
(hk = hj). Then wk > wj if and only if w̃k > w̃j , which follows from the construction of the
effective values. This again is the same as (ii) above and hence the optimal policy does not
prescribe to buy j.
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2.A. PROOFS OF MAIN THEOREMS AND PROPOSITIONS

2.A.3 Proposition 2.1
Proof. The proof follows a similar structure as the proof of Corollary 1 in Choi et al. (2018).
To simplify exposition, the following additional notation is used: Let w̃j ≡ xj +min{yj , ξj} as
in Theorem 1, and ŵj equal to the effective value from Theorem 2, with the adjustment that
f(hj) = ε = 0. Furthermore, let w̄r ≡ maxk∈J0:r−1 ŵk∀r ≥ 1, ˜̄wr ≡ maxk∈Jr w̃k and ˜̄wr,j ≡
maxk∈Jr\j w̃k where Ja:b denotes the set of products discovered on position r ∈ {a, . . . , b}, and
Jr is short-hand for Jr:r. Finally, let 1(·) denote the indicator function and h̄ the maximum
position.

The payoff of a consumer given realizations xj and yj for all j is given by

h̄∑
r=1

1(w̄r < zd)

⎡
⎣∑
j∈Jr

1(w̃j ≥ max
{
zd, ˜̄wr,j

}
)(xj + yj)− 1(xj + ξj ≥ max

{
zd, ˜̄wr,j

}
)cs

⎤
⎦

+ 1(w̄0 ≥ zd)ν0 −
h̄∑

r=1

1(w̄r < zd)cd + 1(wh̄ < zd)ν (2.26)

which follows from the optimal policy and Theorem 2: (i) If w̄0 ≥ zd, the stopping rule
implies that the consumer does not discover any products beyond the initial awareness set.
Conditional on not discovering any additional products, the payoff then is equal to v0, which
denotes the payoff of a directed search problem over products k ∈ S0 and an outside option
offering ū0 = maxk∈C0 uk. (ii) If w̄r < zd, the continuation rule implies that the consumer
continues beyond position r− 1, i.e. discovers products on position r and pays discovery costs
cd. (iii) Conditional on discovering j, when w̃j ≥ max

{
zd, ˜̄wr,j

}
, the stopping and inspection

rules imply that the consumer buys j, gets utility xj + yj and does not continue beyond
position r. (iv) Conditional on discovering j, when xj + ξj ≥ max

{
zd, ˜̄wr,j

}
, the inspection

rule implies that the consumer inspects j and incurs costs cs. (v) If wh̄ < zd, the continuation
rule implies that the consumer discovers all products, whereas the inspection rule implies that
he inspects all products

{
j|xj + ξj ≥ zd

}
. Conditional having discovered all products, the

consumer therefore has the payoff of a directed search problem over products
{
j|xj + ξj < zd

}
with outside option ũ0 = max{u0,maxk∈{j|xj+ξj≥zd,xj+yj≤ξj} xk + yk}. This is denoted by ν.

Let E [·] integrate over the distribution of Xj , Yj∀j ∈ J , and substitute inspection and
discovery costs by cs = E

[
1(Yj ≥ ξj)(Yj + xj − zsj )

]
= ∀j (with zsj = xj + ξj) and cd =

E
[
1( ˜̄Wr ≥ zd)( ˜̄Wr − zd)

]
(see Appendix 2.B). The expected payoff then is given by:
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h̄∑
r=1

E

[
1(W̄r < zd)

(∑
j∈Jr

1(W̃j ≥ max{zd, ˜̄Wr,j})(Xj + Yj)

− 1(Xj + ξj ≥ max{zd, ˜̄Wr,j})1(Yj ≥ ξj)(Yj − ξj)

)]

−
h̄∑

r=1

E
[
1(W̄r < zd)1( ˜̄Wr ≥ zd)( ˜̄Wr − zd)

]
+ E

[
1(W̄0 ≥ zd)ν0 + 1(W̄h̄ < zd)ν

]

=

h̄∑
r=1

E

⎡
⎣1(W̄r < zd)

(∑
j∈Jr

1(W̃j ≥ max{zd, ˜̄Wr,j})(Xj +min{ξj , Yj})
)⎤⎦

−
h̄∑

r=1

E
[
1(W̄r < zd)1( ˜̄Wr ≥ zd)( ˜̄Wr − zd)

]
+ E

[
1(W̄0 ≥ zd)ν0 + 1(W̄h̄ < zd)ν

]

=
h̄∑

r=1

E
[
1(W̄r < zd)1( ˜̄Wr ≥ zd) ˜̄Wr

]

−
h̄∑

r=1

E
[
1(W̄r < zd)1( ˜̄Wr ≥ zd)( ˜̄Wr − zd)

]
+ E

[
1(W̄0 ≥ zd)ν0 + 1(W̄h̄ < zd)ν

]

=

h̄∑
r=1

E
[
1(W̄r < zd)1( ˜̄Wr ≥ zd)zd

]

+ E

[
1(W̄0 ≥ zd)max

{
ū0,max

k∈S0

W̃k

}
+ 1(W̄ < zd)max{ũ0, max

k∈{k|xk+ξk<zd}
W̃k}

]

= E

[
max
j∈J

Ŵj

]

The second-to-last step substitutes ν0 = E
[
max

{
ū0,maxk∈S0 W̃k

}]
and similarly for ν, which

directly follows from Corollary 1 in Choi et al. (2018). The last step combines the expressions
of the three mutually exclusive cases using the definition of ŵj .

To prove the second claim, note that the definition of zd requires that P(W̃j > zd) > 0,
as otherwise Qd(cd, cs, z

d) > 0. Hence with |J | = ∞, P
(
maxj∈J W̃j < zd

)
= 0 such that

E
[
maxj∈J Ŵj

]
= zd.

2.A.4 Proposition 2.2
Proof. Consider a situation where we decrease costs cs and cd to either c′s = cs−Δ or c′d = cd−
Δ, while keeping the other cost constant. Let H1(·) and H2(·) denote the cumulative density
of W̄ ≡ max{w̄0,maxj∈J\C0∪S0

Ŵj} in the former and the latter case respectively, where
w̄0 ≡ max {maxk∈C0 uk,maxk∈S0 w̃k} is the value of the alternatives in the initial consideration
and awareness sets. Similarly, let zd1 and zd2 denote the associated discovery values. Given
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2.A. PROOFS OF MAIN THEOREMS AND PROPOSITIONS

nd = 1, we have ∂Qd(cd,cs,z)
∂cd

< ∂Qd(cd,cs,z)
∂cs

; hence
∣∣∣∂zd∂cd

∣∣∣ >
∣∣∣∂zd∂cs

∣∣∣ and zd2 > zd1 . Moreover,

note that the definition of the adjusted effective value ŵj implies Hi(w) = 1∀w ≥ zdi and
Hi(w) = 0∀w ≤ w̄0.

Conditional on w̄0 < zd1 , the difference in a consumer’s expected payoff across the two
changes therefore can be written as∫ zd2

zd1

1−H2(w)dw−
∫ zd1

w̄0

H2(w)−H1(w)dw (2.27)

Whereas the first part is strictly positive, the second part is negative. The latter follows as for
w ∈ [w̄0, z

d
1 ], W̄ = maxj∈J\C0∪S0

Xj +min{Yj , ξ} and ∂ξ
∂cs

< 0 such that H1(w) ≤ H2(w). As
valuations are independent across products, we have Hk(w) = PX,Y (X +min {Y, ξk} ≤ w)|J |;
hence, as |J | increases, H2(w)−H1(w) and H2(w) decrease for w ∈ [w̄0, z

d
2 ].37 Consequently,

for all Δ > 0 there exists some threshold n∗ for |J | such that the difference in the expected
payoff conditional on w̄0 < zd1 is positive, i.e.

∫ zd2

zd1

1−H2(w)dw >

∫ zd1

w̄0

H2(w)−H1(w)dw (2.28)

Conditional on w̄0 ≥ zd1 , having zd2 > zd1 immediately implies that the expected payoff
increases by at least as much when decreasing discovery costs. Note also that when zd2 < w̄0,
neither change affects the expected payoff. Finally, integrating over the realizations yk for
k ∈ S0 that determine w̄0 yields the unconditional expected payoff as a combination of these
cases, which implies the first result.

Increasing the value of the alternatives in the initial consideration and awareness set then
makes larger values of w̄0 more likely. This implies the second result, as it makes both the
case w̄0 ≥ zd1 more likely, as well as decrease the right-hand-side of (2.28).

2.A.5 Proposition 2.3

Proof. At cs = 0, we have zd = zRS .
∣∣∣∂zRS

∂cs

∣∣∣ ≥ ∣∣∣∂zd∂cs

∣∣∣ then implies zd ≥ zRS . Using this in
(2.14) and (2.15) immediately yields the result.

2.A.6 Proposition 2.4
Proof. The first two statements immediately follow from (2.18) and (2.19). To see the lat-
ter, rewrite (2.18) as PW

(
W < zd

)h−1
PW

(
W ≥ zd

)2, and (2.19) in a similar way. cRS =
cs + cd then implies zd ≥ zRS . Hence, PW

(
W < zd

)
= PX,Y (X + min {Y, ξ} < zd) ≥

PX,Y

(
X + Y < zRS

)
which directly implies the existence of the threshold.

37Note that if PX,Y (X +min {Y, ξk} ≤ w) is large, then H1(w)−H2(w) will first increase in |J |, before starting
to decrease.
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CHAPTER 2. OPTIMAL SEARCH AND DISCOVERY

2.A.7 Proposition 2.5
Proof. Write the first expression in (2.20) (demand at position h) as

EW̃h

⎡
⎣P(W̃h+1 ≤ W̃h

) ∏
k/∈{h,h+1}

P
(
W̃k ≤ W̃h

)⎤⎦ (2.29)

When |J | decreases, this expression decreases through the product term, which is weighted
by the first term P

(
W̃h+1 ≤ W̃h

)
. As P

(
W̃h+1 ≤ t

)
≥ P

(
W̃h ≤ t

)
∀t, the first expression in

(2.20) decreases by more than the second one when the number of alternatives increases.

2.A.8 Proposition 2.6
Proof. The RS problem is equivalent to a policy in the SD problem that commits on inspecting
every product that is discovered, conditional on which the consumer chooses to stop optimally.
However, as the optimal policy in the SD problem is not this policy, it must yield a (weakly)
larger payoff.

2.A.9 Uniqueness of discovery value
Proposition 2.7. (2.10) has a unique solution.

Proof. Qd(cd, cs, z) with respect to z yields (see Appendix 2.B)

∂Q(cd, cs, z)

∂z
=

{
+H(z)− 1 if z < 0

−2 +H(z) else
(2.30)

where H(·) denotes the cumulative density of the random variable maxk∈J̃ W̃k. This implies
that ∂Qd(cd,cs,z)

∂z ≤ 0, which combined with continuity, Qd(cd, cs,∞) = −cd and Qd(cd, cs,−∞) =
∞ guarantee that a solution to (2.10) exists. Finally, uniqueness requires Qd(cd, cs, z) to be
strictly decreasing at z = zd. ∂Qd(cd,cs,z

d)
∂z = 0 would require that H(zd) = 1, which contradicts

the definition of the discovery value value zd in (2.10), as it implies Qd(cd, cs, z
d) ≤ −cd <

0.

2.B Further details on search and siscovery values
The search value of a product j is defined by equation (2.6) and sets the myopic net gain of
the inspection over immediately taking a hypothetical outside option offering utility z to zero.
This myopic net gain can be calculated as follows:38

38The second steps holds as with a change in the order of integration we get
∫∞
z−xj

[1 − F (y)]dy =∫
z−xj

∫∞
y

fY (t)dtdy =
∫
z−xj

∫ t

z−xj
fY (t)dydt =

∫
z−xj

[yfY (t)]y=t
y=z−xj

dt.
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2.C. MONOTONICITY AND EXTENSIONS

Qs(xj , cs, z) = EY [max{0, xj + Y − z}]− cs

=

∫ ∞

z−xj

(xj + y − z)dF (y)− cs

=

∫ ∞

z−xj

[1− F (y)] dy − cs

Substituting ξj = z − xj then yields (2.7).
The discovery value is defined by equation (2.10) and sets the expected myopic net gain

of discovering more products over immediately taking a hypothetical outside option offering
utility z to zero. Corollary 1 in Choi et al. (2018) and similar steps as the above then imply
that:

Qd(cd, cs, z) = EX,Y

[
max

{
z, max

k∈{1,...,nd}
W̃k

}]
− z − cd

= EX,Y

[
max

{
0, max

k∈{1,...,nd}
W̃k − z

}]
− cd

=

∫ ∞

z
1−H(w)dw − cd

where H(·) denotes the cumulative density of the random variable maxk∈J̃ W̃j . The above
also implies that in the case where Y is independent of X, a change in variables yields that
the discovery value is linear in the mean of X, denoted by μX :

zd = μX + Ξ(cs, cd)

where Ξ(cs, cd) solves (2.10) for an alternative random variable X̃ = X − μX .

2.C Monotonicity and extensions
Monotonicity of the Gittins index values (gdt ≥ gdt+1∀t) is satisfied whenever the following
holds:

0 ≤EX,Y,nd,q,t

[
Θ(Ωt+1, Ãt+1, g

d
t )
]

− EX,Y,nd,q,t+1

[
Θ(Ωt+2, Ãt+2, g

d
t+1)

]
(2.31)

where gdt is the Gittins index of discovering products (defined in equation (2.23)), and Ãt+1 ≡
{d, s1, . . . , snd} is the set of actions available in t+1 containing the newly revealed products and
(if available) the possible future discoveries. The expectation operator EX,Y,nd,J,t [·] integrates
over the following random realizations, where the respective joint distribution now can be time-
dependent: (i) Partial valuations drawn from X = [X1, . . . , Xnd

]; (ii) conditional distributions
FY |X=x(y); (iii) the number of revealed alternatives (nd); (iv) whether more products can be
discovered in future periods determined by the belief q.

It goes beyond the scope of this paper to determine all possible specifications of beliefs
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CHAPTER 2. OPTIMAL SEARCH AND DISCOVERY

which satisfy this condition. However, Proposition 2.8 provides two specifications that can be
of interest and for which (2.31) holds (see also Section 2.4).

Proposition 2.8. (2.31) holds for the below deviations from the baseline model:

1. Y is independent of X. Beliefs are such that the revealed partial valuations in X are i.i.d.
with time-dependent cumulative density Gt(x) such that Gt (x) ≤ Gt+1 (x) ∀x ≥ zd − ξ.

2. The consumer does not know how many alternatives he will discover. Instead, he has
beliefs such that with each discovery, at most the same number of alternatives are revealed
as in previous periods (nd,t+1 ≤ nd,t).

Proof. Each part is proven using slightly different arguments.

1. Let x̃ ≡ maxk∈{1,...,nd} xk. If z̃s= x̃ + ξ ≤ zd, Θ(Ωt+1, Ãt+1, z
d) = 1, whereas for

x̃ > zd−ξ, ∂Θ(Ωt+1,{e,s1,...,snd},zd)
∂x̃ ≥ 0. Independence implies that the cumulative density

of the maximum x̃ is G̃t(x) = Gt(x)
nd . Consequently, whenever the distribution of X

shifts such that Gt(x) ≤ Gt+1(x)∀x ≥ zd − ξ, larger values of Θ(Ωt+1, Ãt+1, g
d
t ) become

less likely in t+ 1, and hence (2.31) holds.

2. Since ∂Θ(Ωt+1,{sk},w)
∂w ≤ 1, we have ∂Θ(Ωt+1,Ãt+1,gdt )

∂nd
≥ 0. Hence (2.31) holds given nd,t+1 ≤

nd,t.

Based on this monotonicity condition, Proposition 2.9 generalizes Theorem 1. It implies
that whenever (2.31) holds, the discovery value can be calculated based on the expected
myopic net gain of discovering products over immediately taking the hypothetical outside
option. Hence, whenever (2.31) holds, the optimal policy continues to be fully characterized
by reservation values that can be obtained without having to consider many future periods.

Proposition 2.9. Whenever (2.31) is satisfied, Theorem 1 continues to hold (with appropriate
adjustment of the discovery value’s time-dependence).

Proof. Follows directly from the proof of Theorem 1.

2.D Violations of independence assumption
Costly recall: Consider a variation to the search problem, where purchasing a product in
the consideration set is costly unless it is bought immediately after it is inspected. If in
period t product j is inspected, then inspecting another product or discovering more products
in t + 1 will change the payoff of purchasing product j by adding the purchase cost. In the
context of a multi-armed bandit problem, this case arises if there are nonzero costs of switching
between arms. Banks and Sundaram (1994), for example, provide a more general discussion on
switching costs and the nonexistence of optimal index-based strategies. The same reasoning
also applies in a search problem where inspecting a product is more costly if the consumer
first discovers more products. The exception is if there are infinitely many alternatives. In
this case, the optimal policy never prescribes to recall an alternative.

Learning: Independence is also violated for some types of learning. Consider a variation
of the search problem, where the consumer updates his beliefs on the distribution of Y . In
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2.E. LEARNING

this case, by inspecting a product k and revealing yik, the consumer will update his belief
about the distribution of Y , thus affecting the expected payoffs of both discovering more and
inspecting other products. Independence therefore is violated and the reservation value policy
is no longer optimal.39 Note, however, that as long as learning is such that only payoffs of
actions that will be available in the future are affected, independence continues to hold. This
is for example the case when the consumer learns about the distribution of X as discussed in
Section 3.2.

Purchase without inspection: A final setting where independence does not hold is
when a consumer can buy a product without first inspecting it. In this case, the consumer
has two actions available for each product he is aware of. He can either inspect a product, or
directly purchase it. Clearly, when the consumer first inspects the product, the information
revealed changes the payoff of buying the product. Independence therefore is violated and
the reservation value policy is not guaranteed to be optimal. Doval (2018) studies this search
problem for the case where a consumer is aware of all available alternatives, and characterizes
the optimal policy under additional conditions.

2.E Learning
Several studies consider priors or learning rules under which the optimal policy is myopic
when searching with recall (Rothschild, 1974; Rosenfield and Shapiro, 1981; Bikhchandani
and Sharma, 1996; Adam, 2001). A sufficient condition for the optimal policy to be myopic
is given in Theorem 1 of Rosenfield and Shapiro (1981): Once the expected net benefits of
continuing search over stopping with the current best option are negative, they remain so.
Hence, whenever it is optimal to stop in t, it is also optimal to stop in all future periods.
The monotonicity condition used in this paper directly imposes that this is satisfied; expected
benefits of discovering more products remain constant or decrease during search. A fairly
general assumption underlying learning rules that satisfy this condition is Assumption 1 in
Bikhchandani and Sharma (1996). This assumption requires that beliefs are updated such
that values above the largest value revealed so far become less likely.40 Hence, whenever a
better value is found than the current best, finding an even better match in the future becomes
less likely.

In the SD problem, similar learning rules that satisfy this condition are difficult to find.
When the consumer learns about the number of products that are revealed with each discovery,
expected benefits of discovering more products increase if many products are revealed, but the
value of stopping remains the same if all these products are bad matches. Hence, a learning
rule would need to guarantee that beliefs shift such that the expected benefits of discovering
more products do not increase, as opposed to only the net benefits over stopping. Similarly,
if the consumer learns about the distribution of partial valuations X, the value of stopping
need not increase even if partial information indicates a good match leading the consumer to
shift beliefs towards larger values; after inspecting a promising product, the consumer may
still realize that the product is worse than the previously best option.

Though the optimal policy is not myopic with learning, it is still based on the Gittins
index, where the search and purchase values are as in the baseline SD problem. The main

39Adam (2001) studies a similar case where independence continues to hold across groups of products. However,
his results do not extend to the case with limited awareness, as the beliefs of Y also determine the expected
benefits of discovering more products.

40Note that Bikhchandani and Sharma (1996) consider search for low prices.
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difficulty is calculating the index value for discovering more products, denoted by zLt . Whereas
calculating this value precisely would require accounting for learning in future periods, it is
possible to derive bounds on this value that are easier to calculate and can be used to judge
how far off a myopic policy is.

To show this, I focus on the case where the consumer learns about the distribution of
partial valuations. In particular, consider the following variation of the search and discovery
problem: Let the distribution of partial valuations in X be characterized by a parameter vector
θ and denote its cumulative density by Gθ(·). The consumer initially does not know the true
parameter vector and Bayesian updates his beliefs in period t given some prior distribution.
Denoting the consumers’ beliefs on θ with cumulative density Pt(·), the consumers’ beliefs
about X drawn in the next discovery are characterized by the cumulative density G̃t(X) =∫
Gθ(X)dPt(θ).41

Denote a k -step look-ahead value as zdt (k) and define it as the value of a hypothetical
outside option that makes the consumer indifferent between stopping immediately, and dis-
covering more products after which at most k−1 more discoveries remain. For example, zdt (1)
satisfies the myopic comparison in (2.10), where expectations are calculated based on period
t beliefs G̃t(·). The definition of zdt (1) then implies that it is equal to the expected value of
continuing to discover products if no future discoveries remain. As the consumer can stop
and take this hypothetical outside option in t + 1, allowing for more discoveries after t + 1
can only increase the expected value, hence zdt (1) ≤ zdt (2) · · · ≤ zLt . zdt (1) therefore provides
a lower bound on zLt , and zLt can be approximated with increasing precision through k -step
look-ahead values.

To derive an upper bound, consider the case where the consumer learns the true θ in t+1,
if he chooses to discover more products in t. The value of discovering more products in t when
the true θ is revealed in t+1 then is larger compared to the case where the consumer continues
to learn. This is formally derived by Kohn and Shavell (1974) for a search problem where a
consumer samples from an unknown distribution. Intuitively, when the true θ is revealed, the
consumer is able choose the action in t+ 1 that maximizes the expected payoff going forward
for each realization of θ. In contrast, if the consumer does not learn the true θ in t + 1,
he cannot choose the maximizing action for each realization of θ, but only the action that
maximizes expected payoff on average across possible θ.

An upper bound therefore is given by the value z̄dt such that the consumer is indifferent
between stopping and taking a hypothetical outside option offering z̄dt , and discovering more
products after which the true θ is revealed. Formally, z̄dt satisfies

z̄dt =

∫ ∫
Ṽ (Ωt+1, At+1, z̄t; θ)dPt+1(θ)dG̃t(X) (2.32)

where Ṽ (Ωt+1, At+1, z̄
d
t ; θ) denotes the expected value of a search and discovery problem with

known θ and an outside option offering z̄dt . Proposition 2.1 then directly allows to calculate
this value without having to consider all the possible search paths.

Proposition 2.10 summarizes these results. A similar result can also be derived for the case
41For example, consider the case of sampling from a Normal distribution with unknown mean and known variance,

and assume nd = 1. If the consumer believes in t that the mean is distributed normally with θ ∼ N(μt, σ
2
t ),

then G̃t(x) = Φ(x−μt
σt

), where Φ(·) is the standard normal cumulative density (see e.g. Theorem 1 in DeGroot,
1970, Ch. 9.5).
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2.F. ESTIMATION DETAILS

where the consumer learns about a distribution from which the number of products that are
discovered is drawn.

Proposition 2.10. In the search and discovery problem with Bayesian learning about an
unknown distribution of partial valuations X, it is optimal to:

1. continue whenever maxk∈Ct uk ≤ zdt (1)

2. stop whenever maxk∈Ct uk ≥ z̄dt

2.F Estimation details
To estimate the three models I use a simulated maximum likelihood approach based on a
kernel-smoothed frequency simulator. Using numerical optimization, parameters are found
that maximize the simulated likelihood given by:

max
γ

∑
i

Li(γ) =
∑
i

log

(
1

Nd

Nd∑
d=1

1

1 +
∑Nk

k=1 exp(−λκkdi)

)

where γ is the parameter vector, Nd is the number of simulation draws, λ is a smoothing
parameter and κkd is one of Nk inequalities resulting from the optimal policy in the respective
model evaluated for draw d. All three models are estimated with λ = 10 and Nd = 500. At
these values, parameters are recovered well when data is generated with the same model.

DS conditions These conditions are the same as in Ursu (2018), who provides further
details on how they relate the optimal policy in the DS problem. The difference to her
specification is that inspection costs are linear, and that in DS1 there are no positions. For
observed consideration set Ci for consumer i, a given draw d for the unobserved taste shocks
yj(d) which defines product utilities uj(d) as well as the utility of the purchased option u∗i (d),
there are multiple purchase, and stopping conditions expressed in inequalities:

Stopping: κkdi = max
j∈Ci

uj(d)− zm∀m /∈ Ci

Continuation κkdi = zm+1 − max
j∈Ci(m)

uj(d)∀m = 1, 2, . . . , Nis − 1

Purchase: κkdi = u∗i (d)− uj(d)∀j ∈ Ci

In the continuation conditions, Nis denotes the number of observed inspections, zm+1 is the
search value of the next inspection, Ci(m) is the consideration set of i after m inspections.
Note that the last relies on observing the order in which products are inspected; if this order
were not observed, the method proposed by Honka and Chintagunta (2017) could be used to
integrate over possible search orders. The stopping condition only applies if not all products
are inspected, the continuation condition only applies if i inspected at least one product.

RS conditions The conditions in the RS model are similar to the ones in the DS model.
However, the stopping and continuation conditions now are based on the reservation value
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zRS , which follows directly from the optimal policy:

Stopping: κkdi = max
j∈Ci

uj(d)− zRS

Continuation κkdi = zRS − max
j∈Ci(m)

uj(d)∀m = 1, 2, . . . , Nis − 1

Purchase: κkdi = u∗i (d)− uj(d)∀j ∈ Ci

FI conditions In the FI model, standard purchase conditions apply:

κkdi = u∗i (d)− uj(d)∀j

2.G Sellers’ decisions
To illustrate the difference in sellers’ decision making across the SD and DS problem, we can
compare the market demand generated by the SD problem with the one from the DS problem
when there are infinitely many alternatives. Given a unit mass of consumers, market demand
for a product discovered at position h is given by

dSD(h) = PW

(
Wk < zd∀k < h

)
PWh

(
Wh ≥ zd

)
(2.33)

where Wh is the random effective value of a product on position h. The expression immediately
follows from the stopping decision which implies that if a consumer discovers a product with
wj ≥ zd, he will stop searching and buy a product j. Hence, the consumer will only discover
and have the option to buy a product on position h if wh < zd for all products on earlier
positions.

For the DS problem, Choi et al. (2018) showed that the market demand is given by

dDS(h) = PW

(
W̃h ≥ max

k∈J
W̃k

)
(2.34)

where W̃k = Xk +min {Yk, ξk}.
Now suppose that the seller of a product on position h sets the mean of Xh, for example

by choosing a price. In the SD problem, this is equivalent to choosing PWh

(
Wh ≥ zd

)
; the

probability that the consumer inspects and then stops search by buying the seller’s product.
Importantly, this does not directly depend on partial valuations of both products at earlier,
and products at later positions. This results from the stopping decisions, and given the infinite
number of products a consumer will never recall a product discovered earlier.

In contrast, in the DS problem, choosing the mean of Xh influences demand through the

joint distribution of all products. As consumers are aware of all products, they compare all

partial valuations. Hence, each seller’s choice of partial valuations affects all other sellers

demand, and sellers do not make independent decisions.
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Chapter 3

Heterogeneous Position Effects and

the Power of Rankings

Abstract

Most online retailers or search intermediaries present products on product lists. By
changing the ordering of products on these lists (the “ranking”), these online outlets
can increase their revenues at a potential cost to consumer welfare. This paper
shows that rankings increase revenues through the differential impact of higher list
positions on purchases of heterogeneous products, and provides empirical evidence
for heterogeneity in these “position effects.” To quantify consumer welfare effects,
I develop an estimation procedure for the search and discovery model introduced
in Chapter 2. By simulating counterfactual scenarios I show that revenue-based
rankings can benefit search intermediaries and consumers relative to various other
rankings. Moreover, I find that revenue-based rankings decrease consumer welfare
only to a limited extent when compared to utility-based rankings that first show
the alternatives that consumers on average prefer.
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CHAPTER 3. HETEROGENEOUS POSITION EFFECTS

3.1 Introduction

A growing number of consumers purchase products online, either from online retailers or

through a search intermediary like Expedia. These online outlets typically present consumers

with ranked product lists. It is well established that the ordering of such lists has a substan-

tial influence on which products consumers inspect and eventually buy: alternatives on top of

the list are more likely to be clicked on and bought.1 This creates scope for an online outlet

to increase its own revenues by deploying ranking algorithms, as highlighted by an extensive

literature developing such algorithms.2 A concern with such “revenue-based” rankings is that

they could adversely affect consumers by first displaying relatively expensive items, thus harm-

ing price-sensitive consumers that would prefer to first discover cheaper alternatives. When

designing rankings, a search intermediary’s and consumers’ interests, therefore, may be mis-

aligned. In this paper I analyze whether and to which extent this is the case by (i) showing

that rankings increase revenues through differences in the impact of higher list positions on the

demand of heterogeneous products, (ii) providing empirical evidence for heterogeneity in these

“position effects,” and (iii) estimating the search and discovery model developed in Chapter 2

to quantify the effects of different rankings on revenues and consumer welfare.

A change in ranking requires switching positions of the available alternatives: moving an

alternative up on the list requires moving another one down. Such a switch in positions in-

creases revenues as long as the alternatives that are moved higher up on the list gain more

revenues than than the ones being moved down lose. As a consequence, which alternatives

need to be moved up on the list to increase revenues and how this is going to affect consumers

depends on heterogeneous position effects. For example, if position effects are such that the

expected revenue increase is largest for relatively expensive alternatives, moving these alter-

natives higher up on the list increases revenues, but harms consumers that now need to spend

more time to find cheaper alternatives or, if they leave the website early, may miss out on them

altogether. In contrast, if cheaper products gain the most revenues through strong demand

increases, a revenue-based ranking will move these alternatives to the top of the product list,

thus increasing revenues while benefiting consumers.

Which of these cases applies and how revenue-based rankings affect consumer welfare is an
1See, for example, Ghose et al. (2012), Ghose et al. (2014) or Ursu (2018).
2Chu et al. (2020) and Derakhshan et al. (2022) are recent examples. Section 3.2 provides further details.
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3.1. INTRODUCTION

empirical question that I address in this paper. Answering this research question poses two

main challenges. First, it requires quantifying consumer welfare and evaluating scenarios that

are not observed in the data. To this end, I estimate a structural search model based on the

theoretical framework developed in Chapter 2. The underlying decision process generalizes

directed search á la Weitzman (1979). With directed search, observed position effects are ex-

plained through position-specific search costs (see Ursu, 2018). Instead, my model rationalizes

position effects through model primitives. When reaching the product list, consumers decide

between discovering more products on the list and clicking on specific hotel listings to reveal

detailed information. Position effects, therefore, stem from consumers initially not observing

the whole list and ending search before discovering alternatives on later positions. This cap-

tures better the decision process consumers face when interacting with ranked product lists,

and allows to draw meaningful insights for consumer welfare. Once estimated, I can quantify

changes in revenues and consumer welfare across different counterfactual rankings.

Second, position effects need to be identified separately from consumers’ preferences; con-

sumers may click on and book hotels on higher positions because they prefer them or because

of position effects. To do so, I use data from Expedia with randomized position assignments.

This exogenous variation allows to disentangle the two and identifies position effects without

convoluting the effect of a ranking that assigns bestsellers to top positions (Ursu, 2018).

I provide descriptive evidence highlighting that product attributes and the position on

the list complement each other: on average, clicks and bookings for hotels with desirable

characteristics are over-proportionally affected by different positions. A key finding is that

there is a negative and significant interaction between price and a product’s position on the

list; conditional on other attributes, cheaper hotels on average have stronger position effects.

This result highlights that consumers’ search behavior limits how much moving more expensive

products to higher positions can increase total revenues; when first presented with relatively

expensive alternatives, consumers either continue to browse along the list to find cheaper ones

or leave the website.

The complementarity between hotel attributes and the position on the list is also captured

in the structural model. Specifically, “high-utility” hotels have a stronger demand increase

when being moved to the top. The complementarity also extends to expected revenues. In a

counterfactual analysis where I move randomly selected hotels to higher positions on the list,
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I find that, on average, expected revenues increase more for high-utility hotels: the stronger

demand increase for high-utility hotels offsets that cheaper hotels generate less revenue per

booking. As a result, maximizing total revenues entails moving high-utility products to higher

positions on the list. This, in turn, also benefits consumers. Nonetheless, there is substantial

variation around the average revenue increase of different hotels when being moved to higher

positions. A ranking that orders by expected revenues, therefore, may still increase total

revenues over one that orders by utility.

To quantify the revenue and consumer welfare effects of a revenue-based ranking, I propose

a simple ranking algorithm that orders hotels based on the expected revenues on the same

position. This ranking is motivated by the observation that a hotel’s revenue increase when

moving it to the top position is directly related to its revenue on the initial position. This

revenue-based ranking increases total revenues over a randomized ranking by 9.10%, whereas a

utility-based ranking increases revenues only by 6.85%. Importantly, this revenue increase does

not necessarily come at a cost to consumers. The proposed ranking actually increases average

consumer welfare over a randomized ranking by 0.47$. Compared to a utility-based ranking,

the revenue-based ranking decreases consumer welfare only by 0.26$. When focusing only on

consumers that book a hotel, the revenue-based ranking increases consumer welfare over a

randomized ranking by 2.81$, and decreases it over the utility-based ranking by 1.71$. These

results show that a revenue-based ranking is closer to a utility-based than to a randomized

ranking,3 and highlight that both consumers and a search intermediary like Expedia can

benefit from a revenue-based ranking. As a consequence, when designing rankings, a search

intermediary’s and consumers’ interests are not strongly misaligned.

Combined, my results also offer two managerial insights. First, a concern for search in-

termediaries or online retailers is that a revenue-based ranking could lead to a bad search

experience for consumers and, as a consequence, increase customer churn. My results suggest

that this is not the case. Because products that consumers prefer benefit more from top po-

sitions (both in terms of demand and revenues), a revenue-based ranking can actually benefit

consumers. Second, by being shown on top positions, sellers of popular products can boost

their revenues beyond their inherently high level. Consequently, if they have the option to
3The revenue-based ranking is also further from Expedia’s own ranking, which increases consumer welfare on
average by 0.17$ (all consumers) and 1.15$ (only consumers that booked).
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influence whether they are shown on top positions (for example, through “sponsored listings”),

these sellers have a strong incentive to use it.

The remainder of this chapter is organized as follows. First, I discuss related literature.

Section 3.3 introduces and discusses the main aspects of the search and siscovery model to

study the effects of rankings. Section 3.4 summarizes the data and describes the estimation

approach. Finally, Section 3.5 discusses the empirical results and the last section concludes

by outlining future areas of research.

3.2 Related literature

This paper relates and contributes to the literature on consumer search, position effects and

ranked product lists. First, the descriptive evidence for heterogeneity in position effects adds

to the empirical literature analyzing position effects in product lists and search advertising.

Closely related is the empirical work of Ghose et al. (2014), who find mixed evidence for

how characteristics influence position effects. Specifically, they find that, conditional on other

attributes, both a higher price and a higher hotel class amplify position effects. Yet, whereas

the click-through-rate (CTR) falls in price, it increases in hotel class. Ursu (2018) shows that

having experimental variation in positions is important when studying position effects. Using

the same data as this paper, Ursu (2018) finds smaller position effects than previous studies

that rely on other methods to account for these endogeneity concerns. This paper instead uses

the experimental variation in positions to identify heterogeneous position effects.

My results contrast the empirical literature studying heterogeneous position effects in

search advertising. Whereas several studies find that ads with a larger CTR on any posi-

tion have weaker position effects (Goldman and Rao, 2014; Athey and Imbens, 2015; Blake

et al., 2015; Jeziorski and Segal, 2015; Jeziorski and Moorthy, 2018), I find that hotels with

a larger CTR and more bookings on any position also have stronger position effects. The

difference stems from the different context. Consumers are more likely use a product list like

the one on Expedia to search for and compare alternatives. In contrast, many consumers

enter search terms on Google with a specific outcome already in mind. Hence whether an ad

appears on the first or second ad slot does not matter for these consumers as they will click it

independent of where the ad is shown.4

4Blake et al. (2015) find that search advertising is not effective for a well-known platform like eBay; traffic to
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Second, the paper adds to the literature examining the effects of different rankings on

consumer welfare and search behavior. This literature generally finds that a “utility-based”

ranking – a ranking that orders products by the utility they offer to consumers at purchase –

increases consumer welfare and the number of transactions (Ghose et al., 2012, 2014; De los

Santos and Koulayev, 2017; Ursu, 2018). Results for how a utility-based ranking affect the

search intermediary’s revenues are mixed. Ghose et al. (2014) find that the utility-based rank-

ing yields the largest total revenues across the rankings considered, whereas Ursu (2018) finds

that in three out of the four destinations in her sample total revenues decrease. This paper

differs in that I focus on the alignment of the search intermediary’s interest in maximizing total

revenues and consumer welfare, and show how this relates to heterogeneous position effects.

Closer to this goal is the recent study by Zhang et al. (2021) who study welfare effects of

revenue-based rankings. However, they do not use a micro-founded search model, and instead

use a stylized demand model where the position on the list directly enters the demand func-

tion through a functional form assumption. Donnelly et al. (2022) consider welfare effects of

personalized rankings, and find only minor profit-driven distortions from such personalization.

Ursu and Dzyabura (2020) study how to locate products to maximize the number of searches

and sales, but do not consider consumer welfare effects in their model. Choi and Mela (2019)

estimate a structural search model in a two-sided market and their counterfactual analyses

suggest that auctioning off the top positions to sellers and ordering the remaining positions

based on expected revenues yields the largest profits for the search intermediary.

Many studies in operations research derive algorithms to maximize revenues by choosing

which alternatives to offer, and in which order to display them to consumers. This litera-

ture motivates this papers’ focus on the potential misalignment of interests, and the empirical

evaluation of how revenue-based rankings affect consumers. Earlier studies solving this class

of optimization problems, sometimes referred to as “assortment problems,” started by using

discrete choice models to characterize the demand side (e.g. Van Ryzin and Mahajan, 1999;

Talluri and Van Ryzin, 2004; Davis et al., 2014). More recent studies started using differ-

ent search models to characterize demand. Chu et al. (2020) analyze optimal rankings that

balance sellers’, consumers’ and the platforms’ surplus. An important difference is that a

price-decreasing order is not revenue-maximizing in my model. This is because consumers

eBay was barely affected by not placing any ads during the experiment.
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that do not buy an alternative do not necessarily discover all alternatives. Hence, moving

a cheaper product to the top can increase revenues if it gets an over-proportional demand

increase. Derakhshan et al. (2022) show how a platform should optimally order alternatives

to either maximize market share or consumer welfare when consumers search following their

“two-stage sequential search model.” This model differs from the search and discovery model

in that consumers first decide how many products to discover, before then inspecting all of the

discovered products.5 In a recent working paper, Compiani et al. (2021) develop and estimate

a “double-index” model based on which they show that optimally assigning the first few slots

on the list can already get reasonably close to the optimum, as long as alternatives shown

after these slots are unlikely to be bought. The “double-index” model nests several different

potential search strategies. Note, however, that my search and discovery model is not nested

within their model: any model admissible in the double-index model requires that consumers

are aware of all alternatives prior to search, and can directly search an alternative even if it is

displayed on the bottom of the list. In contrast, in the search and discovery model, consumers

first need to discover an alternative before being able to inspect it. Hence it provides a micro-

founded explanation for the observed position effects: because fewer consumers discover the

alternatives at the bottom of the list, fewer consumers eventually click on and buy them.

The mechanism for position effects also distinguishes my paper from the growing literature

that estimates structural search models based on a directed search model using Weitzman’s

(1979) seminal result for the optimal policy (e.g. Kim et al., 2010; Chen and Yao, 2017; Honka

and Chintagunta, 2017; Honka et al., 2017; Kim et al., 2017; Morozov, 2019; Yavorsky et al.,

2020; Moraga-Gonzalez et al., 2022). Note that the search models used in these studies can

be reformulated as special cases of the search and discovery model. Hence, the my simulation

procedure for the likelihood may be used to obtain a smooth likelihood function for the cases

that use similar data. Other studies estimate structural search models based on a “top-down”

search model (Chan and Park, 2015; Choi and Mela, 2019). These models also explain position

effects through fewer consumers not reaching the bottom of the page. However, these models

use the simplifying assumption that consumers cannot go back and click on a product they

discovered previously. The model estimated in this paper is more general as consumers can go

back and click on previously discovered products; it therefore can accommodate search orders
5This is akin to a fixed sample size search strategy for the discovery process.
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where consumers first click on an item shown lower on the list.6

3.3 Modeling the effects of rankings

The model builds on the theoretical framework I introduced in Chapter 2. The framework

extends the directed search process of Weitzman (1979) in that consumers initially are aware

of only a few alternatives. Hence, they decide between inspecting products they are already

aware of and discovering more alternatives that then can be inspected.

This decision process matches the actions consumers can take and the information they

have at each point in time when interacting with product lists as presented used Expedia and

many other online outlets. After entering a search query at Expedia, consumers are directed

to the product list and observe the first few hotel listings on the top positions. From the

product list, consumers already observe some hotel attributes such as price or the number of

hotel stars. Based on this information, consumers then decide between clicking on the listings

and scrolling down the product list. Whereas a click reveals more information on the hotel

by bringing consumers to its detail page, scrolling reveals more hotel listings that then can be

clicked on.

The model differs from directed search which explains position effects through position-

specific search costs in three important ways. First, it provides a micro-founded explanation

for the observed position effects: because fewer consumers discover the hotels at the bottom

of the list, fewer consumers click on and eventually book them. Second, it takes into account

that at the beginning of search, consumers have no information on hotels that are shown

on later positions on the list. As I show in Chapter 2, not accounting for this can lead to

biased preference and search costs estimates. Third, substitution patterns and the benefits to

being moved to top positions differ. In directed search models, consumers can directly click

on a product at the bottom of the product list and will do so as long as its expected utility

is large enough to compensate for the larger search cost. In the more general model this is

not the case, as consumers first need to scroll down the list to discover additional products.

Consequently, in the former, moving to the top leads to more clicks and bookings because it

reduces hotel-specific search costs, whereas in the latter it does so because more consumers
6Despite the additional complexity, the estimation is computationally more efficient as it does not rely on value
function iteration for the optimal policy as the one of Choi and Mela (2019).
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3.3. MODELING THE EFFECTS OF RANKINGS

discover and are able to click and book it.

3.3.1 The “Search and Discovery” model

When booking hotel j, consumer i receives utility

uij = −αpj + x′
jβ + εij (3.1)

where pj is the price of hotel j,7 xj is a vector of observable hotel characteristics (e.g. review

score), α and β are respective preference weights, and εij is an unobserved idiosyncratic taste

shock. The utility of not booking any hotel, i.e. the outside option, is given by ui0 = β0 + εi0.

The idiosyncratic taste shocks are assumed to be independent across hotels and consumers,

and follow a distribution with zero mean and cumulative density F .

Initially, consumers know their preferences and the value of the outside option. Moreover,

they know the attributes (pj ,xj) for hotels j that they observe when arriving on the product

list. Denote the set of hotels i observes when arriving on the list by Ai0, and the set of hotels

i can potentially discover by Ji.

Consumers sequentially decide between clicking on any of the hotel listings they already

revealed and scrolling down to discover more hotels. By inspecting j, consumers reveal the

idiosyncratic taste shock εij . Throughout, I denote the expected utility of a product by

uej = E [uij ] = −αpj + x′
jβ. By scrolling down the product list, consumers reveal (pj ,xj) for

the next nd hotels.

Both clicking and scrolling are costly actions. When scrolling to discover additional hotels,

the consumer incurs discovery costs cd(h). These discovery costs depend on the position

h = 0, 1, . . . the consumer has reached so far. When clicking on a listing, the consumer incurs

inspection costs cijs. Inspection costs are heterogeneous across hotels and consumers and

are drawn from a common distribution. Inspection costs for j are revealed when (pj ,xj) is

revealed and are known prior to inspecting j. The heterogeneous inspection cost assumption

captures that factors other than the observed attributes influence consumers click decisions,

but not their purchase decision. For example, some consumers may find it easier to evaluate

certain hotels because of past experience with similar ones.

There is free recall both for inspecting and discovering. Going back and inspecting a
7In the empirical application hotel prices do vary across different consumers. See Section 3.4.1.
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previously revealed listing does not add extra costs. Similarly, going back and booking a hotel

that was inspected previously does not add extra costs.

Consumers have beliefs on the distribution from which εij are drawn. Moreover, they have

beliefs on the joint distribution from which both hotel attributes and inspection costs are

drawn for hotels that are going to be discovered. The cumulative density of this distribution

will be denoted by Gh, where the formal definition is given below. This distribution is allowed

to depend on the position h the consumer has reached so far.

I further assume that cd(h) and Gh depend on h so that the monotonicity condition dis-

cussed in Chapter 2 holds. In the present setting, this is guaranteed to hold if cd(h) weakly

increases in h, the mean of Gh weakly decreases in h, and the variance of Gh remains con-

stant. This assumption is required for the policy described below to be optimal. However,

this assumption is not very restrictive. If consumers anticipate that a ranking first displays

alternatives that many consumers like, they expect worse alternatives to be shown further

down, therefore satisfying this assumption. Moreover, the empirical specification described in

Section 3.4 introduces a parameter that relates to this assumption, and the resulting estimates

suggest that it holds. Finally, I impose the regularity condition that all discussed distributions

have finite mean and variance.8

3.3.2 The optimal policy is based on reservation values

Consumers search optimally: in each period, they take the action that maximizes the expected

payoff over all future periods. As shown in Chapter 2, the optimal policy in this case is char-

acterized by reservation values: in each period, taking the action with the largest reservation

value maximizes the expected payoff over all future periods. As there are three types of ac-

tions – buying, inspecting, discovering – there are three types of reservation values. But the

underlying principle is the same. Specifically, the reservation value for an action is the value

of a hypothetical outside option that sets the myopic net benefit of taking the action over im-

mediately taking the hypothetical outside option to zero. Crucially, the myopic net gain does

not depend on any other available alternatives or the availability of future discoveries. Hence,

reservation values, and consequently the optimal policy, can be obtained without having to

consider myriad future periods or different available alternatives.
8This is required to ensure that the dynamic decision problem has an optimal policy.
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For the current problem with the utility specification (3.1) and heterogeneous inspection

costs, the reservation values are given by (see Appendix 2.B):

1. Purchase value: zpij = uij = −αpj + x′
jβ + εij

2. Search value: zsij = −αpj + x′
jβ + ξij , where ξij solves

∫ ∞

ξij

[1− F (t)] dt− cijs = 0 (3.2)

3. Discovery value: zd(h) solves

∫ ∞

zd(h)
[1−Gh(t)] dt− cd(h) = 0 (3.3)

where Gh(t) = Ph(Z
s
ij ≤ t).

Note that (3.2) uniquely determines ξij given cijs and the cumulative density F . Similarly,

(3.3) uniquely determines zd(h) given cd(h) and the cumulative density Gh. Conversely, given

ξij , zd(h) and the cumulative densities F and Gh, it is possible to back out cijs and cd(h)

respectively (see Appendix 3.B.1).

3.3.3 Effective values allow to compute demand and consumer welfare

To calculate consumer welfare and demand, define consumer i’s effective value of a product j

as

wij(hij) ≡ min{zd(hij − 1),min{zsij , zpij}} (3.4)

where hij tracks the position at which i discovers j by setting hij = 0 for hotels in Ai0 and

hij = s for hotels revealed with the sth scroll. Additionally, define cd(h) = 0 such that

zd(h) = ∞ for h < 0, which accounts for j ∈ Ai0 being discovered for free. The effective value

of the outside option is given by its utility, i.e. wi0 = β0 + εi0.

It is further useful to define another value that is not adjusted through the discovery value.

Let

w̃ij ≡ min{zsij , zpij} (3.5)

with w̃i0 = ui0 for the outside option. This value is the same as the “effective values” defined by
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Armstrong (2017) and Choi et al. (2018). Because w̃ij ≥ zd(hij) implies that both the search

and purchase values of j are larger than the discovery value, it also implies that the consumer

will both click and then book j, before going on to discover more alternatives. Moreover,

because w̃ij ≥ zsik implies that both the search and purchase value of j exceed the search value

of k, it follows that k will not be searched if the consumer discovers j earlier or at the same

time.

Both values depend on observable product attributes and the position on the list. To

evaluate the effects of rankings, I calculate demand and consumer welfare conditional on

observable attributes and the positions. Hence, a ranking ri takes the available hotels for

consumer i as given and only changes their positions. To simplify notation, let Xi(ri) ≡[
(p1,x1, hi1), . . . ,

(
p|Ji|,x|Ji|, hi|Ji|

)]
gather all observable attributes of hotels consumer i can

potentially discover and the positions they will be discovered on. Hence, Xi(ri) depends on

the ranking of alternatives.

Based on the effective values, consumer i’s demand for product j, conditional on the

ranking and observable attributes can be calculated as9

dij(ri) = P

(
Wij(hij) ≥ max

k∈Ji
Wik(hik)

∣∣∣∣Xi(ri)

)
(3.6)

where Wij(hij) denotes the random variable for the effective value. The probability then is

taken over the joint distribution of all effective values, conditional on the observable attributes

and the ranking.

The (expected) consumer welfare of a consumer i then can be calculated as (see Appendix

3.B.1)

CSi(ri) = E

⎡
⎣ h̄i∑

k=0

1
(
W̄ik−1 < zd(k − 1)

)
1(W̄ik > zd(k))W̄k

∣∣∣∣∣∣Xi(ri)

⎤
⎦

− E

⎡
⎣ h̄i−1∑

k=0

1
(
W̄ik < zd(k)

)
cd(k)

∣∣∣∣∣∣Xi(ri)

⎤
⎦ (3.7)

where W̄ik = max{W̃i0, . . . , W̃ik} denotes the random variable of the maximum of values
9This is an application of Theorem 2 in Chapter 2, where nd = 1 and the discovery value depends on positions
h with zd(h) ≥ zd(h+ 1).

66



580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger
Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022 PDF page: 75PDF page: 75PDF page: 75PDF page: 75

3.3. MODELING THE EFFECTS OF RANKINGS

defined by (3.5) discovered up to position k.10 h̄i denotes the maximum position that i

can discover.11 The expectation is calculated conditional on the observable attributes and

the ranking. The first expression captures welfare derived from the chosen alternative and

inspection costs paid up to that point. The second expression reflects the discovery costs

the consumer pays in expectation.12 A change in ranking affects both parts: the consumer

potentially chooses a different alternative, and pays a different amount of discovery costs.

3.3.4 Heterogeneous position effects allow rankings to increase revenues

The large operations literature focusing on revenue-maximization suggests that online retailers

and search intermediaries focus on increasing revenues. As they take a share of each alterna-

tive’s revenues, online retailers and search intermediaries increase their own revenues if they

increase total revenues across all alternatives (see also 3.4.1.2).13 Hence, their goal when im-

plementing different rankings often is to increase total revenues generated across the whole

list.

To build intuition how a change in ranking affects these revenues, I focus on the simple

case where a consumer i initially is aware of only a single alternative (|Ai0| = 1) and discovers

products one at a time (nd = 1).

Consider a switch of the position of two subsequent products j = A,B displayed on

the first two positions. Denoting the demand increase resulting from the switch by Δdij ≡
dij(h)− dij(h+ 1) ≥ 0, the change in (expected) total revenues can be calculated as14

ΔER = (pB − pA)ΔdiA + pB(ΔdiB −ΔdiA) (3.8)

This expression directly reveals that this switch in position can increase revenues through

two distinct mechanisms. The first part captures that if the product moved higher up is more

expensive, the demand it diverts from the product it replaces yields more revenues. This “price

effect” is complemented by a change in the overall demand, i.e. the decrease in the share of
10To capture alternatives in A0, I define W̄i,−1 = 0, which combined with the previously defined zd(−1) = ∞

ensures that 1
(
W̄ik−1 < zd(k − 1)

)
= 1 for k = 0.

11h̄ does not need to equal |Ji| because alternatives in A0 have the same position.
12If the consumer’s beliefs are correct and adapt with the ranking, the expression can be further simplified based

on proposition 1 in Chapter 2.
13If margins are homogeneous across products, revenue-maximization will be equivalent to profit-maximization.
14The expression directly follows from ΔER = pBΔdiB − pAΔdiA.
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the outside option. This “demand effect” captures that if the product we are moving higher

up gains more demand than the one we are moving down loses, overall demand and, therefore,

revenues increase.

Underlying this demand effect are heterogeneous position effects. Without such hetero-

geneity, ΔdiB −ΔdiA = 0 and only the price effect would prevail. Through its micro-founded

explanation for position effects, the search and discovery model offers a clear explanation for

how heterogeneity in position effects arises. Specifically, by conditioning on different proba-

bility regions for the utility offered by the outside option we get (see Appendix 3.B.3)

ΔdiB −ΔdiA = P(Ui0 > zd(0))
[
P
(
W̃iB > Ui0|Ui0 > zd(0)

)
− P

(
W̃iA > Ui0|Ui0 > zd(0)

)]
(3.9)

This expression reveals that heterogeneous position effects only arise if consumers that do not

buy an alternative, do not discover all alternatives. To see this, note that (3.9) only depends

the probability region where ui0 > zd(0). In this case, the draw of the outside option is

so large that the second product never is discovered, even if B is a bad match. This result

follows from the fact that in the case where ui0 < zd(0), the product being moved to the

first position only diverts demand from the other product; one’s gain is the other’s loss. In

contrast, with ui0 > zd(0), different products on the first position only divert demand from

the outside option, such that heterogeneity arises.

The relative strength of the price and demand effect determines which switches increase

total revenues. Because in this simple example, Δdij increases in uej and decreases in pj (see

Appendix 3.B.3), the demand and the price effect can go either in the same, or opposite

directions. Specifically, if pB > pA and ueB > ueA, both effects go in the same direction and

it is clear that the switch increases total revenues. If instead ueB < ueA because of non-price

attributes, the demand effect offsets the price effect such that their relative strength determines

whether the switch increases revenues.

Whereas this simplified analysis focuses only on the switch of the first two positions, a

similar logic applies to other switches. In the general case of switching products on positions

hu < hl, the demand for all products j with hj < hu will also change. This is because with

some probability, the consumer stops after discovering products on position hu. In this case,
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the demand for products j with hj < hu will depend on the product that is shown on position

hu. Moreover, for products with hj ∈ (hu, hl) the probability of stopping after discovering the

product on hl depends on what product is revealed on this position.

3.3.5 Discussion

Albeit not the focus in this paper, it is worth noting that the described mechanisms for

how rankings affect revenues and consumer welfare also apply to personalized rankings. The

only difference in personalized rankings is that preference weights are heterogeneous across

consumers, and that when constructing the ranking, an online retailer takes into account a

specific consumer’s preference weights and how that leads to heterogeneous position effects.

Whereas the model provides a micro-foundation to position effects and captures the deci-

sion process consumers face when interacting with ranked product lists relatively well, there

are some factors it does abstract from. Specifically, in line with directed search models based

on Weitzman (1979), I do not model learning across alternatives or costly recall. As high-

lighted in Chapter 2, the advantage of this is that it yields an optimal policy which remains

tractable and leads to a simple characterization of how rational consumers will search among

alternatives and which alternative they eventually purchase.

In line with previous literature studying the effects of rankings and deriving optimal rank-

ing algorithms (e.g. Ghose et al., 2014; Chen and Yao, 2017; Ursu, 2018; Chu et al., 2020;

Derakhshan et al., 2022), prices and the discovery value zd(h) do not depend on the ranking.

This allows to focus on the direct of effects of changes in rankings, but abstracts from indirect

effects through consumers updating beliefs or price adjustments of alternatives. This is justi-

fied as even with repeat visits, consumers are unlikely to be able to distinguish the different

rankings. The alternatives offered and the rankings vary substantially over time on most web-

sites. Hence, inferring the ranking algorithm used to order alternatives would be very difficult

for consumers. Similarly, if alternatives are sold by individual sellers, these sellers would need

to be very sophisticated to adjust prices based on constantly changing rankings and demand

conditions.15 Nonetheless, considering long-term adjustments of beliefs or prices may provide

an interesting avenue for future research.
15There is some empirical evidence of pricing frictions. For example, Garcia et al. (2022) finds that hotel managers

follow price recommendations of a platform only with some delay. Huang (2022) finds that sellers on Airbnb
often use uniform pricing and do not react to demand changes.
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3.4 Data and estimation approach

3.4.1 The Expedia dataset

The dataset is from a leading online travel agency, Expedia, and can be obtained from Kag-

gle.com.16 It consists of data on clicks and purchases from 166,039 consumers looking for hotel

stays on Expedia.com during the period between November 2012 and June 2013.17 When sub-

mitting a query for a hotel stay, Expedia presents a list of available options. Consumers

observe a range of hotel characteristics on this list, such as the price per night and the review

score. They then can click on a particular item in the list to go to the hotel’s individual page

that reveals further information and provides the option to book the hotel.

3.4.1.1 Summary

The main feature and advantage of the data is that for around 30% of consumers, the ranking

was randomized; in this sample, Expedia randomly assigned hotels fitting a consumers’ query

to positions on the list. For the other 70% of consumers in the sample, Expedia used their

ranking algorithm to assign hotels to positions.18

Having this experimental variation in hotels’ positions is important to determine hetero-

geneous position effects without convoluting the effect of more desirable hotels also being

displayed higher. If hotels are positioned on top of the list based on unobservable characteris-

tics that also lead to more clicks and purchases, it would be difficult to disentangle correlations

with such unobservables, potentially leading to an overestimation of position effects (see Ursu,

2018). Besides, for the external validity of the results it is also necessary that consumers

were assigned randomly into the group that observed the randomized positions. This check is

already done in online appendix B of Ursu (2018), who uses the same dataset. The compari-

son shows that consumer characteristics are similar between the two samples. Moreover, her

analysis shows that hotel characteristics are distributed evenly across positions.

Table 3.1 summarizes the data on a hotel- and consumer-level for consumers that observed

the random ranking. A detailed description of each variable is provided in Table 3.8 in Ap-
16https://www.kaggle.com/c/expedia-personalized-sort/data.
17This is the final dataset after cleaning. Appendix 3.A shows the respective criteria.
18It is not possible to get the specifics of the Expedia ranking algorithm used during the sample period. Most

likely it used observable hotel and query characteristics to create a ranking that maximized predicted clicks or
bookings.
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Table 3.1 – Summary statistics (random ranking)

N Mean Median Std. Dev Min. Max.

Hotel-level
Price (in $) 1,357,106 171.70 141.04 114.03 10.00 1000.00
Star rating 1,333,734 3.34 3 0.89 1 5
Review score 1,354,996 3.81 4.00 0.97 0.00 5.00
No reviews 1,354,996 0.04 0 0.19 0 1
Chain 1,357,106 0.62 1.00 0.48 0.00 1.00
Location score 1,357,106 3.26 3 1.53 0 7
On promotion 1,357,106 0.24 0 0.43 0 1

Consumer-level
Number of items 51,510 26.35 31 8.46 5 38
Number of clicks 51,510 1.14 1 0.66 1 25
Made booking 51,510 0.08 0 0.27 0 1
Trip length (in days) 51,510 3.07 2 2.42 1 40
Booking window (in days) 51,510 53.67 31 62.49 0 498
Number of adults 51,510 2.08 2 0.94 1 9
Number of children 51,510 0.43 0 0.82 0 9
Number of rooms 51,510 1.14 1 0.46 1 8

Notes: Summary statistics for observations under random ranking. Detailed variable descriptions
are provided in Table 3.8 in Appendix 3.A.

pendix 3.A.19 In total, 51,510 consumers observed the random ranking. On average, consumers

clicked on 1.14 hotel listings, and about 8% eventually booked a hotel. Some consumers ob-

served only a few items, with the minimum number of items observed being only five. This

does not result from consumers not browsing further, but from these consumers searching for

hotels in destinations or on dates where only few hotels had rooms available. Moreover, the

maximum of items consumers observed is 38, despite some destinations potentially offering

more alternatives than that. This stems from a limitation in the data where I only observe

results displayed on the first page. However, this does not affect the reduced-form analysis due

to the way heterogeneous position effects are identified from the data. Moreover, the estima-

tion of the structural model does not assume that consumers must have stopped scrolling on

the first page and therefore is little affected, apart from there being less information available

to pin down the value of discovering more hotels.
19The “no reviews” variable is a dummy indicating whether a hotel has no reviews. In the dataset this is coded

as a “review score” of zero. However, given that it differs from a “review score” of zero as well as from a missing
“review score,” I treat this dummy separately.
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3.4.1.2 Expedia benefits from increasing total revenues

By offering hotel bookings on its website, Expedia makes revenues through two different models

typical for online travel agents.20 First, some hotel listings are offered through a merchant

model. Under this model, Expedia negotiates with individual hotels the rooms made available

through its website and each room’s respective pricing. Second, some hotels are listed under

the agency model. In this case, Expedia takes a commission and only passes on reservations

and payments to the individual hotels that set prices themselves. With the data, it is not

possible to determine under which revenue model a specific hotel is listed.21

Under both models, Expedia makes revenues by taking a share of the hotel price when it

is booked. As a result, Expedia increases its own revenues by increasing total revenues across

all hotels on the list. Moreover, if commissions are the same for all hotels, maximizing total

revenues across the whole list also maximizes Expedia’s profits. This motivates the focus of

this paper on revenue-based rankings that target total revenues generated from the whole list.

3.4.1.3 Two limiting features

There are two main limiting features: (i) the dataset contains data only on consumers that

made at least one click and (ii), queries that led to a purchase were oversampled. Whereas

these limitations are relevant for my analysis, I concur with Ursu (2018) that they can be

circumvented. First, position effects are identified from differences in click and purchase rates

across positions and characteristics. Hence neither limitation affects the identification of po-

sition effects. Second, as only part of the consumer population is observed, counterfactual

results may not generalize to the whole population. However, for consumers that did not click

on any listing under the ranking they observed, a change in the ranking can only induce them

to click and book more (clearly not less). This implies that as long as consumers that did not

click on any hotel differ only in search costs from the ones that are observed in the sample,

my counterfactual results provide lower bounds for the change in both revenues and consumer

welfare.
20Expedia also offers other services such as car rentals or flights that are not part of the data.
21In 2013 (the sample period), Expedia made 70% of its worldwide revenue through the merchant model

and 24% through the agency model. The revenue from the merchant model primarily is from hotel
bookings, where as the agency model also includes flights and other products. See the annual report
https://s27.q4cdn.com/708721433/files/doc_financials/2013/ar/EXPE_2013_Annual_Report.PDF
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3.4.1.4 Estimation sample

To estimate the model, I restrict the sample to the largest four destinations. Moreover,

following Ursu (2018) I only include queries that had at least 30 hotel listings in the results.

This is the most commonly observed case for these four destinations. The resulting estimation

sample captures typical search sessions for the most popular destinations, excluding other

queries for less popular destinations or with only few results. The resulting sample consists of

2,890 consumers that on average clicked on 1.15 listings and 5.77% of which booked a hotel.

Additional sample statistics are provided in Table 3.5. The data does not contain information

as to which cities or areas these destinations correspond to. However, all four destinations are

in the same country, for which 80% of queries are for domestic travel within the country. This

strongly suggests that the four destinations are in the United States (see Ursu, 2018).

3.4.2 Empirical specification

For the estimation, I assume that consumers discover hotels one at a time (nd = 1), and that

consumers discover the first three listings for free (|Ai0| = 3∀i). This is motivated by Expedia’s

website layout; after entering a search query, Expedia’s product list initially reveals three hotel

listings, after which each row on the product list only reveals a single hotel. However, note

that the estimation approach described in the next session directly generalizes to cases where

consumers observe multiple alternatives prior to search and discover multiple alternatives at

a time.

Because the optimal policy only depends on the reservation values, I directly parameterize

the discovery value as follows:

zd(h) = Ξ− exp(ρ)h (3.10)

Ξ is the initial discovery value, whereas the parameter ρ governs the rate by which the discovery

value decreases across the different positions. Both Ξ and ρ are parameters that are estimated.

Note that the exponential function ensures that the discovery value is decreasing for all values

of ρ. This guarantees that the monotonicity condition is satisfied (see 3.3.1).

Because (3.3) is a unique mapping, discovery costs can be backed out from the estimated

zd(h) by additionally specifying assumptions on consumers’ beliefs. Specifically, I assume that
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discovery costs are constant across positions, hence, a potential decrease in zd(h) only stems

from consumers expecting worse alternatives to be discovered later on. Second, I assume

that only the mean of Gh depends on the position. Combined with the rational expectations

assumption, this allows me to estimate Gh based on the observed hotel attributes. Further

details are provided in Appendix 3.B.2.

Appendix 3.B.2 also details the main advantages of this approach. First, it allows to

estimate the model and derive demand implications without having to determine consumers’

beliefs over alternatives that are going to be discovered. Backing out the discovery costs is

only necessary for consumer welfare analysis. Moreover, during estimation it avoids having to

re-estimate consumers’ beliefs and having to do the computationally costly inversion (3.3) at

each step in the estimation.

Search values as parameterized by specifying that

ξij = ξ + ρξ log(h̃ij) + νij νij ∼ N(μν , σ
2
ν) (3.11)

With this specification, −αpj + x′
jβ + ξ + ρξ log(h̃ij) is the average expected net benefit

of inspecting hotel j. This term depends on product j’s position within the listings that

the consumer observes when arriving at the list, denoted by h̃ij . Specifically, recall that

posij = 1, 2, . . . denotes the position on the product list at which hotel j is displayed to

consumer i. I then define h̃ij = min{posij , 3}, as the consumer initially observes three listings.

This specification implies that for hotels that are observed initially, expected net benefits of

searching differ depending on where in the first few positions a hotel is shown. This additionally

captures that it can be more costly for consumers to inspect hotels that are shown further

down within the listings observed initially. Moreover, the specified functional form implies

that the rate by which the expected net benefits decrease also decreases, which is motivated

by the same pattern observed in the data (see Figure 3.3).

The additional error term, νij , introduces hotel-specific heterogeneity in inspection costs.

Specifying the distribution over the expected net benefits ξij is equivalent to specifying a dis-

tribution over heterogeneous inspection costs. This follows from (3.2) that allows to uniquely

determine cijs from ξij and the distributional assumption on εij .

This parametrization of the search values differs from previous approaches (e.g. Honka,
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2014; Ursu, 2018). Instead of estimating parameters for the inspection cost and how they

increase across positions, I directly estimate parameters for the search values and how they

depend on the position. This avoids having to apply the non-linear mapping (3.2) during

the estimation, making it computationally more efficient.22 Moreover, consumer welfare and

demand predictions continue to be valid under alternative assumptions on why the net benefits

of inspecting vary across hotels. For example, instead of heterogeneous inspection costs,

consumers may have heterogeneous beliefs on the distribution of εij , generating a distribution

over ξij .23

I further assume that the idiosyncratic taste shocks are i.i.d. normal with mean με and

variance σ2
ε . Putting things together, the model parameters are β, ξ, ρ, με, σ2

ε , μν and σ2
ν . As

described in the following sections, the model parameters are either estimated or normalized.

3.4.3 Estimation approach

I estimate the model parameters using simulated maximum likelihood. In general, the fact that

consumers always take the action with the largest reservation value implies a set of inequalities

that need to hold for any observed search path. The estimation procedure then finds the

parameter values that maximize the log-likelihood of these inequalities holding. Formally, the

estimation procedure solves

max
θ

L(θ) = max
θ

N∑
i=1

logLi(θ) (3.12)

where Li(θ) is consumer i’s likelihood contribution given the model-implied inequalities and

parameters gathered in θ.

This set of inequalities follows from the following insights: First, the optimal policy implies

that the effective value of the purchased product (or the outside option) determines how many

products a consumer discovered: whenever w̄i ≡ maxj wij ≥ zd(h), both the search and

purchase value of j exceed the discovery value at position h, hence the consumer buys j

without ever discovering products beyond position h. Conversely, if w̄i < zd(h), the consumer

did not stop before discovering the hotel on position h. Second, a product having been
22With heterogeneous search costs, the mapping would have to be done many times during each iteration of the

optimizer, as it would have to be applied for every simulation draw of the inspection cost.
23Compiani et al. (2021) independently applied a similar logic in their “double-index” search model.
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searched requires that its search value exceeds w̄i. Third, those products that are searched

but not bought additionally require that their utility is smaller than w̄i. Finally, products

that are not searched must have a search value that is smaller than the effective value of the

purchased product.

The probability of these model-implied inequalities holding then yields the likelihood con-

tribution of a consumer i. There are multiple cases to consider, which depend on whether a

consumer made any clicks and whether a search session ended with a booking or by taking

the outside option. Here, I only present the two cases that occur in the data. The case where

a consumer does not make any clicks is presented in Appendix 3.B.4.

3.4.3.1 Case 1: consumer makes clicks but takes the outside option

Consider a consumer i that clicked on hotel listings and did not book a hotel (the most common

case in the data). To simplify notation, I define the consideration set Si as the set containing

all listings the consumer clicked on as well as the the outside option. Furthermore, let zsi0 = ∞
such that the search value of the outside option is such that zi0 ≥ c holds for finite c. Observing

a click on j implies that i must have discovered listings at least up to its position. This implies

an upper bound on wi0 = ui0, as the consumer stops scrolling at position h where zd(h) < ui0.

Consequently, the upper bound on ui0 is given by zd(h̄i − 1), where h̄i ≡ maxj∈Si hij denotes

the last position at which i clicked. Denoting the set of products that the consumer discovered

given ui0 by Ji(ui0) and the cumulative density of ui0 by H(·), the likelihood contribution

then can be written as

Li(θ) =

∫ zd(h̄i−1)

−∞
P

(
min
j∈Si

Zs
ij ≥ ui0 ∩max

j∈Si

Uij ≤ ui0 ∩ max
j∈Ji(wi0)\Si

Zs
ij ≤ ui0

)
dH(ui0) (3.13)

=

∫ zd(h̄i−1)

−∞

∏
j∈Ji(ui0)\Si

P
(
Zs
ij ≤ ui0

)× ∏
j∈Si

P(Zs
ij ≥ ui0)P(Uij ≤ ui0)dH(ui0) (3.14)

The second expression follows from the independence of the underlying unobserved error terms.

The different terms follow directly from the optimal policy discussed above, where by definition

wi0 = ui0.
∏

j∈Ji(ui0)\Si
P
(
Zs
ij ≤ ui0

)
takes the product over all hotels the consumer did not

click on, where the optimal policy implies that their search values need to be smaller than the

utility of the outside option.
∏

j∈Si
P(Zs

ij ≥ ui0)P(Uij ≤ ui0) takes the product over all hotels

the consumer did click on, where the optimal policy implies that their search values need to
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3.4. DATA AND ESTIMATION APPROACH

be larger than the outside option, whereas their utilities are smaller.

3.4.3.2 Case 2: consumer makes clicks and books a hotel

Consider a consumer i that clicked on hotel listings in set Si and ends the search session by

booking hotel q. As the inequalities are going to depend on whether different hotels in Si are

displayed before or after q, the set is partitioned into a set Si− containing clicked hotels for

which hij < hiq, and Si+ containing clicked hotels for which hij ≥ hiq. As the search session

ends with booking q, the effective value of q (wiq) determines how far the consumer scrolled.

If q is the hotel with the maximum position of any clicked hotel (hiq = h̄i), there is no upper

bound on w̃iq as the consumer can discover, click and then book q without scrolling beyond

hiq. However, if h̄i > hiq, the consumer must have first discovered additional hotels before

going back to book q. In this case, w̃iq is again bounded above by zd(h̄i − 1). To gather both

cases in one expression, define the upper bound as bq = zd(h̄i − 1) if hiq < h̄i and else equal

to ∞. Denoting the cumulative density of the value w̃iq by Hq(·), the likelihood contribution

of i can be written as

Li(θ) =

∫ bq

−∞
P

(
min
j∈Si−

Zs
ij ≥ wiq ∩ min

j∈Si+

Zs
ij ≥ w̃iq∩

∩max
j∈Si

Uij ≤ w̃iq ∩ max
j∈Ji(wi0)\Si

Zs
ij ≤ w̃iq

)
dHq(w̃iq) (3.15)

=

∫ bq

−∞

∏
j∈Ji(w̃iq)\Si

P
(
Zs
ij ≤ w̃iq

)× ∏
j∈Si−

P(Zs
ij ≥ wiq)P(Uij ≤ w̃iq)

×
∏

j∈Si+

P(Zs
ij ≥ w̃iq)P(Uij ≤ w̃iq)dHq(w̃iq) (3.16)

The second expression again follows from independence of the idiosyncratic error terms.

There are two main differences to the first case. First, the integration now is over the

value w̃ij defined by (3.5) for the booked hotel instead of the utility of the outside option.

Second, listings that are clicked on but not bought are partitioned into two sets. For listings

that are discovered before q, the search value needs to be larger than the effective value

wiq = {zd(hiq − 1), w̃iq} because consumers may click on j ∈ Si− before discovering q such

that zsij ≥ zd(hiq − 1) is sufficient. However, for other listings j ∈ Si+ this is not sufficient

because they are discovered only after q, hence w̃iq ≤ zsij needs to hold.
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3.4.4 Simulation approach

Given that there is no closed-form solution for the above integrals, I use Monte Carlo inte-

gration to calculate them. A straightforward approach would be to take draws for w̃iq or ui0,

calculate the corresponding set Ji(·) for draws that satisfy the respective upper bounds, and

then calculate the inner expressions based on the cumulative density of the normal distribu-

tion. However, this so-called “crude frequency simulator” (see e.g. Train, 2009) has two main

disadvantages: (i) it does not lead to a smooth likelihood function due to how, for example,

P(maxk∈Ji(w̃iq) Z
s
ik ≤ wi0) depends on Ji(w̃iq), and (ii) it would require to take many draws to

get a reasonably accurate approximation for the integral.

Given these disadvantages, I develop a procedure akin to the well-known GHK simulator

for the Probit model,24 and similar to the recently developed approach of Chung et al. (2019).

By taking draws from H(·) truncated so that Ji(·) remains the same for all draws within the

given bounds, I circumvent both these issues. To focus on the main idea, I only show the

respective procedure for the relatively simple first case. The more involved procedure for the

second case is deferred to Appendix 3.B.5, but is based on the same main insight of using

subintervals.

To calculate the integral in (3.14), the procedure below is applied, where Ji denotes the

set of hotel listings that consumer i potentially can discover.

1. Partition the interval (−∞, zd(h̄i − 1)] into subintervals

(−∞, zd(|Ji|)], (zd(|Ji|), zd(|Ji| − 1)], . . . , (zd(h̄i − 2), zd(h̄i − 1)]

2. For each subinterval, take Nr draws for uri0 truncated to be within the specific

subinterval

3. For each subinterval and draw uri0, determine J(uri0) and calculate

P (uri0) ≡
∏

j∈Ji(ui0)\Si

P
(
Zs
ij ≤ uri0

)× ∏
j∈Si

P(Zs
ij ≥ uri0)P(Uij ≤ uri0)

24The procedure is named after the authors of the following contributions (see Train, 2009): Geweke (1989,
1991); Hajivassiliou and McFadden (1998); Keane (1990, 1994).
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3.4. DATA AND ESTIMATION APPROACH

4. Sum up within-interval means across draws, weighting by the probability of uri0

falling within the subinterval

Putting this into one formula yields

L̃i(θ) =

Ns∑
s=1

P (ui0 ∈ B(s))
1

N

Nr∑
r=1

P (uri0) (3.17)

where Ns is the number of subintervals, and B(s) are the respective bounds for subinterval s.

Note that as uri0 = β0 + εdi0, it is i.i.d. normal, standard procedures can be used to take draws

that satisfy the bounds and calculate the corresponding probability.25 Similarly, calculating

the probabilities in P (uri0) only requires calculating the cumulative densities.

3.4.5 Directed search is a special case

As directed search á la Weitzman (1979) is a special case of the search and discovery process

underlying the present model, it is worth pointing out that a simplified version of the above

estimation approach can also be used to estimate a directed search model. Specifically, remov-

ing the upper bounds in the integrals and setting J(w̃iq) = Ji directly yields the likelihood

contributions for a directed search model. As J(w̃iq) is fixed to the whole set of products

consumer i can discover, it is also not necessary to partition into subintervals. To incorporate

position-specific search costs, it is then only necessary to adjust the specification of the search

values in (3.11).

Using this simulation approach has two main advantages for estimating a directed search

model. First, it yields a smooth likelihood function without having to manually set a smoothing

parameter, which is not an innocuous choice in small samples. Second, it is computationally

efficient as numerical integration is performed only over one dimension.

3.4.6 Identification and normalizations

Between-consumer variation in the characteristics of the displayed hotels, their positions and

the associated changes in clicks and bookings allows to identify model parameters. Specifically,

mean utility parameters (β) are identified by the correlation between hotel characteristics and
25Specifically, wd

i0 follows a normal distribution truncated at
[
zdij(hij − b− 1), zdij(hij − b)

]
. Denoting the cdf of

a standard normal distribution by Φ(·), we have P
(
wi0 ∈ [

zdij(hij − b− 1), zdij(hij − b)
])

= Φ

(
zdij(hij−b)

σε

)
−

Φ

(
zdij(hij−b−1)

σε

)
, and taking draws from the truncated normal can be done using standard numerical methods.
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CHAPTER 3. HETEROGENEOUS POSITION EFFECTS

the associated click and booking frequency. For example, with a smaller price coefficient (in

absolute terms), consumers on average click and book more expensive hotels. The baseline

parameter for the expected net benefits of clicking (ξ) is identified by the number of clicks

of consumers; with a large ξ, consumers on average click on more listings. Moreover, the

respective change in net expected benefits of clicking on one of the first few positions (ρξ) is

identified by the differences in the click rates across these early positions and the functional

form assumption.

Because the data does not contain information on where on the page a consumer stopped

scrolling, product discovery is latent and not directly observed. Nonetheless, both parameters

governing the discovery value can be identified by the decrease in the click frequency at later

positions. This can be seen in the likelihood contribution shown in (3.14). With a large Ξ or

small ρ, larger values of ui0 become more likely, making it also more likely that J(ui0) contains

more listings on later positions. Consequently, the probability of a consumer not clicking on

listings in J(ui0) will be smaller.

However, the number of available alternatives is limited and a substantial share of con-

sumers are observed to click on positions that are on the bottom part of the page. As the last

click of a consumer provides an upper bound for w̃iq, this leaves few alternatives beyond the

last click that are required to bound the discovery value from above through fewer clicks being

observed on positions after the last click. To circumvent this and provide an upper bound

on the discovery value, I additionally assume that consumers always first clicked before going

on to discover more hotels. Whereas this implies that consumers always clicked from top to

bottom, this is a pattern common to click-stream data.26

This provides an upper bound for the discovery value as it additionally requires that for

an observed click on hotel j by consumer i, the following inequality holds:

zsij ≥ Ξ (3.18)

Additionally imposing this inequality only requires changing the probability P(Zs
ij ≥ ui0) to

P(Zij ≥ Ξ) in the likelihood contributions (3.14) and (3.16).
26Choi and Mela (2019) find that in 98.2% of visits, consumers do not click from bottom-up. The authors use

this to justify their “top-down” search assumption.
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The means of the idiosyncratic shocks cannot be identified separately from other parame-

ters. Specifically, μν cannot be separately identified from ξ. This directly follows from the click

inequality where both μν and ξ enter linearly.27 As is also standard in discrete choice models,

με is not identified as it shifts the product utilities equally across all hotels. Consequently, in

the estimation both parameters are normalized to μν = με = 0. σν also can not be separately

identified from ξ; all else equal, both an increase in ξ or an increase in σν increases average

number of clicks. I therefore set it to σν = 1 in the estimation.

Similar to Yavorsky et al. (2020), σε can be identified through the parametric form of

the search values and position being an exogenous search cost shifter. Whereas these authors

argued in the context of a directed search model based on Weitzman (1979), similar arguments

apply to its generalization used in this paper. Whereas this works well in simulations (see

below), in the estimation σε is not identified well. This is because with the additionally

imposed condition (3.18), probabilities for initial clicks scale in σε, making it more difficult to

identify it separately from ξ. Hence instead of estimating this variance, I set it to σε = 0.1.

As shown in Section 3.5.2, this produces a reasonable model fit.28

Monte Carlo simulations confirm that parameters can be identified with the present data.

I generate datasets by simulating search paths for given parameter values, and then verify

whether the estimation procedure is able to recover these parameter values.29 For observable

hotel characteristics and positions, I directly use the ones observed in the estimation sample

described in 3.4.1.4. This ensures that the variation in hotel characteristics across positions is

the same during the simulation as in the different estimation samples. I repeat this procedure

20 times and present average results.

Results of two such Monte Carlo simulations are presented in Table 3.2. They show that

estimation procedure is able to recover all parameters. Specifically, all parameter estimates

are very close to the true ones. It is worth pointing out that these results suggest that the

estimation approach indeed provides an improvement over approaches that rely on kernel-

smoothed frequency simulators to calculate the likelihood function. Studies that employ such
27In the likelihood contribution (3.16), the click inequality is given by P(Zs

ij ≥ w̃r
iq) = P(νij ≥ w̃r

iq−x′
jβ−ξ−ρhj),

hence increasing the mean of ν is equivalent to increasing ξ.
28Setting this to larger values leads the model to overpredict bookings.
29As the data is generated without condition (3.18), this condition is also not applied when performing the

estimation.
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CHAPTER 3. HETEROGENEOUS POSITION EFFECTS

Table 3.2 – Monte Carlo simulation

Simulation 1 Simulation 2

True Estimate Std. Error True Estimate Std. Error

Price (in 100$) -0.20 -0.20 (0.01) -0.20 -0.19 (0.00)
Star rating 0.10 0.10 (0.02) 0.20 0.19 (0.00)
Review score 0.10 0.11 (0.02) 0.05 0.05 (0.01)
No reviews 0.20 0.23 (0.14) 0.10 0.09 (0.03)
Location score 0.05 0.05 (0.01) -0.10 -0.10 (0.00)
Chain 0.10 0.10 (0.03) 0.20 0.19 (0.01)
Promotion 0.10 0.10 (0.02) 0.10 0.09 (0.00)
Outside option 2.00 2.02 (0.10) 0.50 0.47 (0.02)
ξ 1.70 1.68 (0.06) 1.50 1.49 (0.03)
Ξ 1.50 1.52 (0.09) 1.40 1.36 (0.05)
ρ -4.00 -4.00 (0.18) -4.00 -3.99 (0.48)
ρξ -0.40 -0.40 (0.03) -0.20 -0.21 (0.02)
σε 1.00 -0.99 (0.03) 0.20 -0.20 (0.01)

Notes: Average across 20 Monte Carlo simulations. Each estimation is performed with
50 simulation draws. Observable data is the same as in the estimation sample.

a smoothed likelihood approach commonly find that parameter estimates in their Monte Carlo

simulations are more than two standard deviations away from their true values (e.g. Ursu, 2018;

Honka, 2014; Yavorsky et al., 2020).

3.5 Empirical results

As discussed in 3.3.4, how harmful a revenue-maximizing ranking is to consumers depends on

whether a potential demand increase outweighs price effects from a change in ranking. Hence,

to understand how a revenue-maximizing ranking affects consumers, it is important to first

analyze heterogeneity in position effects.

3.5.1 Descriptive evidence of heterogeneous position effects

To provide descriptive evidence of heterogeneity in position effects, I estimate the following

linear probability model (LPM):

P(Yij = 1|zij) = x′
jβ1 +w′

iβ2 + posijγ + posijx
′
jθ + τd (3.19)

Each observation is a hotel j in destination d shown on position posij = 1, 2, . . . in a consumer

query i. Note that a larger position implies that the hotel is shown further down on the

product list such that a negative coefficient for γ implies that hotels further down the list are
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less likely to be clicked on. Hotel characteristics (e.g. price) and an intercept are gathered

in column vector xj , whereas query characteristics (e.g. trip length) are gathered in column

vector wi. Depending on the specification, Yij is a dummy indicating whether j was clicked

on or booked in consumer query i. τd indicates fixed effects on a destination-level. Finally,

zij gathers xj , wi, posij and the fixed effects τd. Throughout, random variables are indicated

in capital letters.

The main parameters of interest are γ and θ. These parameters jointly capture how a

hotel’s position affects its probability of being clicked on or booked. Specifically, given some

hotel characteristics x̃j , I define the position effect as the average effect of the position on

the CTR or booking probability, conditional on hotel attributes. Because of the randomized

ranking, effects on the CTR or booking probability from hotels on other positions are uncor-

related with the position effect. Hence, this effect can be estimated consistently. Formally,

the position effect is the marginal effect defined by:

∂P(Yij = 1|z̃ij)

∂posij
= γ + x̃′

jθ (3.20)

Table 3.3 presents coefficient estimates and clustered standard errors.30 Coefficient esti-

mates are scaled to represent changes in terms of percentage points. Columns 1 and 4 show

the results of a baseline model that does not include the interaction term and hence excludes

heterogeneity in the position effect.31 Throughout, coefficients of the baseline position effect

and hotel characteristics are significant and have the expected sign. For example, more expen-

sive hotels, on average, are less likely to be clicked on and booked, whereas hotels with more

stars are more likely to be clicked on and booked.

When interaction terms are included (columns 2 and 5) there is still a significant direct posi-

tion effect and hotel characteristics continue to have a significant effect on a hotel’s probability

of being clicked on and booked. However, the direct position effect is considerably smaller and

notably, the interaction between price and position is positive and significant. This implies

that, on average and conditional on other attributes, cheaper hotels have stronger position
30Standard errors are clustered on a consumer-level. This captures that search behavior can induce correlation

in the error terms; a large draw in one alternative can mean that consumers are less likely to click on or book
another alternative, suggesting potential negative correlation in the error terms.

31This replicates parts of Table 2 in Ursu (2018).
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Table 3.3 – Coefficient estimates (LPM, random ranking)

Clicks Booking

(1) (2) (3) (4) (5) (6)

Position -0.1864*** -0.1424*** -0.1427*** -0.0116*** -0.0028 -0.0028
(0.0019) (0.0121) (0.0123) (0.0005) (0.0028) (0.0029)

Price -0.0125*** -0.0173*** -0.0190*** -0.0011*** -0.0017*** -0.0017***
(0.0002) (0.0004) (0.0004) (0.0000) (0.0001) (0.0001)

Star rating 1.6211*** 2.1556*** 0.1051*** 0.1227***
(0.0317) (0.0657) (0.0079) (0.0163)

Review score 0.0810** 0.0287 0.0366*** 0.0794***
(0.0351) (0.0813) (0.0082) (0.0193)

No reviews -0.2488 -0.7767** 0.0872** 0.1412*
(0.1622) (0.3839) (0.0345) (0.0825)

Chain 0.2227*** 0.3105*** 0.0248** 0.0641***
(0.0459) (0.0966) (0.0113) (0.0240)

Location score 0.4381*** 0.5602*** 0.0529*** 0.0556***
(0.0168) (0.0321) (0.0036) (0.0071)

On promotion 1.1578*** 1.4961*** 1.5318*** 0.1261*** 0.1436*** 0.1463***
(0.0497) (0.1100) (0.1229) (0.0130) (0.0287) (0.0332)

Position × Price 0.0003*** 0.0003*** 0.0000*** 0.0000***
(0.0000) (0.0000) (0.0000) (0.0000)

Position × Star rating -0.0318*** -0.0270*** -0.0011 -0.0005
(0.0028) (0.0029) (0.0007) (0.0007)

Position × Review score 0.0028 0.0044 -0.0025*** -0.0024***
(0.0035) (0.0035) (0.0008) (0.0008)

Position × No reviews 0.0295* 0.0338** -0.0032 -0.0026
(0.0164) (0.0166) (0.0035) (0.0036)

Position × Chain -0.0053 -0.0047 -0.0023** -0.0017
(0.0041) (0.0042) (0.0010) (0.0010)

Position × Location score -0.0071*** -0.0083*** -0.0002 -0.0004
(0.0013) (0.0013) (0.0003) (0.0003)

Position × On promotion -0.0201*** -0.0209*** -0.0010 -0.0010
(0.0048) (0.0049) (0.0012) (0.0013)

Constant 3.2785*** 2.5361*** 9.8741*** 0.2303*** 0.0806 0.8939***
(0.1433) (0.2909) (0.1100) (0.0348) (0.0680) (0.0323)

FE Destination yes yes yes yes yes yes
FE Hotel no no yes no no yes
Query Characteristics yes yes yes yes yes yes
N 1,220,917 1,220,917 1,219,253 1,220,917 1,220,917 1,219,253
R2 (adj.) 0.0149 0.0152 0.0267 0.0026 0.0026 -0.0019

Notes: A higher position means being displayed lower on the product list. Coefficients are scaled to represent
changes in terms of percentage points. Standard errors are shown in parenthesis and are clustered at the query
level. Star ratings are adjusted so that the position effect from the first row is for a hotel with 1 star, and other
characteristics equal to the minimum observed value.

effects. Figure 3.1 depicts the position effect for both clicks and bookings at different per-

centiles of the price distribution and different values of the star rating. Whereas hotels at

the first decile of the price distribution on average have a position effect of -0.22 percentage
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Figure 3.1 – Cheaper hotels with more stars have stronger position effects
Notes: Position effects as defined in (3.20) and expressed in percentage points. Values in x̃j set
to respective percentile of the price distribution or the respective star rating, where values of other
characteristics are set to the mean. Bars indicate 95% confidence interval calculated from standard
errors clustered on the query level.

points for clicks and -0.015 for bookings, it decreases (in absolute terms) to -0.15 and -0.007

percentage points at the 90% percentile. In contrast, whereas one-star hotels on average have

a position effect of -0.14 percentage points for clicks and -0.01 for bookings, it increases (in

absolute terms) to -0.26 and -0.014 for five star hotels. For other characteristics such as the

review score, the sign of the interaction term also opposes the sign of the direct effect of the

characteristics: hotels with characteristics which on average lead to more clicks and bookings

on any position overall have stronger position effects.

Figure 3.2 shows combined position effects across different percentiles of the distribution of

hotel characteristics x̃j in the data. As some characteristics (e.g. price) mute position effects

and others (e.g. star rating) amplify it, I construct the different percentiles based on the sign

of the respective coefficient in β1. For example, the first decile in the figure constructs x̃j with

the price at the 90% percentile of the price distribution, and the star rating of the first decile
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of the distribution of star ratings. With this construction, the different percentiles order x̃j

by the predicted click and booking probability given these characteristics, conditional on the

position and fixed effects.

Figure 3.2 highlights a clear pattern for position effects in clicks and bookings. Whereas

for a hotel at the 10% percentile the position effect is estimated to be around 0.08 percentage

points, its magnitude doubles for a hotel at the median and more than triples for a hotel at

the 90% percentile. Similarly, the position effect on the probability of being booked increases

from close to zero to around 0.02 percentage points.
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Figure 3.2 – Hotel attributes and position effects complement each other
Notes: Position effects as defined in (3.20). Values in x̃j set to respective percentile, ordered based
on sign of coefficients in columns 2 and 5 in Table 3.3. Bars indicate 95% confidence interval
calculated from standard errors clustered on the consumer level.

Though a change of 0.02 percentage points in the booking probability seems small, it is

important to note that this change is per position. Compared to a hotel on the tenth position,

a hotel with similar characteristics on the first position is estimated to have a 0.2 percentage

points larger booking probability. This is a substantial increase compared to no change in the

booking probability for products at the low end of the distribution. Moreover, as a search

intermediary like Expedia is visited by thousands of consumers every day, even a seemingly

small change in the booking probability has substantial effects on revenues.

A hotel’s position is exogenous because of the random ranking. However, its price may

not be. If there are unobservable hotel characteristics such as quality that are correlated with

price and influence the click and booking probability, coefficient estimates for β1 and θ, and

hence the estimated position effects, will be biased. To address this endogeneity concern,
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Table 3.3 additionally presents estimates for a specification that adds fixed effects on a hotel

level (columns 3 and 6).32 Only price and whether the hotel is on promotion vary across

different search sessions and the coefficients in β1 cannot be estimated for other characteristics.

Nonetheless, the interaction between hotel characteristics and position still can be estimated

as it is identified by within-hotel variation of the position. The estimates overall are close

to the baseline and confirm these results; cheaper hotels on average have stronger position

effects and hotels, conditional on their unobserved characteristics. This is further highlighted

in Appendix 3.C.2 which reproduces Figure 3.2 for the specification with hotel-fixed effects.

The similarity of the estimates of the price coefficient alleviates price endogeneity concerns

in these data. This is in line with previous findings with data from online travel agencies.

Specifically, Ursu (2018) argues that within-hotel price variation in these data is to a large

degree explained through the dates of the trip, with the remaining within-hotel price variation

occurring due to either experimental price variation or intermediate sellers offering the room

on Expedia at different prices. Neither of the latter explanations are demand related, such

that conditional on the query (which fixes the trip date), there is little concern for observed

price variation being correlated with the error term. Besides, using price instruments in a

control function approach, De los Santos and Koulayev (2017) and Chen and Yao (2017) also

find that parameter estimates do not change significantly relative to the specification without

price instruments.

The above specification also assumes that the change in clicks and bookings is linear in

the position. However, the position effect between the very last to the second to last position

is likely going to be different from the position effect from the second to the top position.

I show in the appendix that the results are robust to a range of alternative specifications

that treat position more flexibly. Results from these specifications are shown in Appendix

3.C.2. Specifically, allowing for more flexible position effects by adding squared and cubic

position terms and the respective interactions with hotel characteristics continues to show

that hotels with desirable characteristics have more pronounced position effects. Moreover,

I obtain qualitatively similar results when including position-specific parameters for the first

four positions. Besides, estimating a Probit instead of a linear probability model also yields

qualitatively similar results.
32Several hotels are displayed only to a single consumer and therefore are excluded from this specification.
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Table 3.4 – Parameter estimates

Estimate Std. Error

Price (in 100$) -0.11*** (0.01)
Star rating 0.06*** (0.01)
Review score 0.02 (0.01)
No reviews 0.12 (0.06)
Location score 0.06*** (0.01)
Chain -0.01 (0.01)
Promotion 0.03*** (0.01)
Outside option 0.62*** (0.05)
ξ -1.03*** (0.03)
Ξ 0.77*** (0.05)
ρ -5.35*** (0.06)
ρξ -0.31*** (0.02)

Discovery costs ($) 0.02
Click costs ($) 1,038.80
Click costs conditional on click ($) 0.49

Log likelihood -15,641.78
N consumers 2,890

Notes: Estimation is performed with 50 simulation draws. Standard errors
in parentheses.

Overall, these results highlight a strong interaction of position effects with hotel charac-

teristics: hotel attributes and the position on the list complement each other such that hotels

with more desirable characteristics have stronger position effects.

3.5.2 Model results

I estimate the model with Nr = 50 simulation draws. The resulting parameter estimates are

shown in Table 3.4 and have the expected sign. The price coefficient is statistically significant

and negative. In contrast, coefficients of the star rating, the location score, and whether the

hotel was on promotion are positive and statistically significant. Coefficients of whether a

hotel belongs to a larger chain, as well as the two coefficients for the review score are not

statistically significant.

Table 3.4 shows that the discovery are estimated to be 2¢. The estimate suggests that

consumers would be willing to pay 2¢ to reveal an additional alternative on the list. Discovery

costs being small stems from the low booking probability in the data. Because few consumers

book a hotel in the data, the estimated model predicts that it is unlikely that a newly discovered
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Figure 3.3 – The model fits observed clicks an bookings across positions
Notes: Clicks and bookings averaged across 1,000 simulation draws per consumer. The shaded area
indicates the 95% percentile of the minimum and maximum number of clicks or bookings across
simulation draws and consumers.

alternative will be better than the outside option. Hence, discovery costs need only be small

to rationalize the observed position effects.

In contrast, estimates for the mean inspection costs are large: in expectation, clicking on an

alternative and learning the yet unknown product information incurs a cost north of 1,000$.

However, no consumer is predicted to pay these enormous costs. Instead, mean inspection

costs conditional on a click are a more reasonable 50¢.

3.5.2.1 The model fits the data well

Figure 3.3 compares the number of bookings (top panel) and clicks (bottom panel) per position

observed in the data with the ones predicted by the model. The figure suggests that the model

is able to capture the number of clicks and booking, and where they occur, reasonably well.

Table 3.5 further highlights that the model is able to fit these moments in the data.

Specifically, the model matches the number of clicks and where they occur fairly well. The

number of bookings and the position at which they occur is somewhat overpredicted. However,

as Figure 3.3 reveals, only few bookings occur in the data, with a noisy pattern across positions.

This lack of observations makes it more difficult for the model to fit the moments for the
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Table 3.5 – The model fits moments in the data

Bookings: N Bookings: Position Clicks: N Clicks: Position

Data 167.00 15.16 3,316.00 14.94
Predicted 228.85 16.48 3,384.77 15.40

Notes: Simulated search paths generated with 1000 draws for each consumer.

bookings. Nonetheless, the 95% percentile (shaded area) captures the pattern across positions

well.

Based on these fit measures, I conclude that the model is able to capture the main patterns

in the data. In addition, the model also allows to predict where consumers stopped scrolling

within the page. The optimal policy implies that consumers always stop scrolling when the

value of the outside option exceeds the discovery value. As a result, the probability that a

consumer scrolls at most h times is given by

P(Ui0 > zd(h)) (3.21)

This expression therefore provides a bound for how far consumers scrolled.

Based on this lower bound, the model predicts that at most 79% of consumers discover

hotels beyond position 20 and at most 63% of consumers discover the listing on position 30.

This explains the decrease in predicted clicks and bookings on positions further down in the

list: fewer consumers discover these hotels and are able to click on them.

3.5.2.2 High-utility hotels benefit more from better positions

To analyze how heterogeneous position effects are captured by the estimated model, I ana-

lyze counterfactual scenarios where hotels are displayed on different positions than the ones

observed in the data. A simple approach to predict the changing booking probabilities would

be to draw effective values for each hotel and then predict demand based on the probability

of a particular hotel’s effective value being the largest.33 However, most consumers do not

book a hotel such that the predicted booking probabilities for each hotel are very small on

any position. Analyzing changes in the booking probability for individual hotels, therefore,

requires a precise calculation of booking probabilities. To this end, I use a similar simula-
33This is the approach taken to predict the fit where this is feasible as search paths are averaged across many

consumers.
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tion procedure as for the likelihood contributions. Specifically, the procedure takes truncated

draws of the effective value of the hotel for which the demand is calculated, and then calculates

the probability of this effective value being the largest among hotels that a consumer would

discover given this draw. The details for the procedure are provided in Appendix 3.B.6.

To analyze how position effects relate to the utility consumers derive from booking a

particular hotel, I predict changes in demand when moving a particular hotel to different

positions. In principle, it would be possible to do this for every hotel observed by consumers

in the sample. However, this becomes computationally expensive as the demand has to be

recomputed thousands of times. Instead, for each consumer, I move a single randomly selected

hotel across different positions. Randomized position assignment further ensures that hotels

other than the one being moved also are positioned randomly. Relating the resulting change

in demand for the focal hotel j to its expected utility uej = −αpj + x′
jβ then shows whether

high-utility hotels can expect larger demand changes when being moved to different positions.

Figure 3.4 shows predicted changes in demand for four different scenarios. Each dot rep-

resents the hotel being moved for one of the consumers in the random sample, where changes

in the demand (i.e. the booking probability) are indicated in percentage points. The first

panel reveals that there are substantial demand increases when being moved from the middle

of the page to the top position. The second and third panel reveal that this demand increase

mainly stems from being moved from the third to the very top position, which is in line with

the sharp initial decrease in clicks and bookings observed across the first few positions (see

Figure 3.3). Nonetheless, the last panel also reveals that there are benefits from being moved

from the end to the middle of the product list. This increase comes from a share of consumers

being predicted to not scroll all the way to the bottom of the page; being moved to the middle

gives the benefit of more consumers discovering the hotel and potentially booking it.

Throughout, Figure 3.4 reveals a strong correlation between a hotel’s predicted demand

increase and its expected utility. Whereas hotels on the low end of the utility distribution

show no change in demand, hotels at the upper end increase the booking probability by up to

2.5 percentage points. This stems from low-utility hotels not being booked even when shown

on the top position, whereas being moved to a top position makes more consumers consider

the high-utility hotels. Nonetheless, panels one and three reveal that there is some variation,

where in various cases hotels with a lower utility have a larger expected increase in demand.
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Figure 3.4 – High-utility hotels gain more demand
Notes: Changes are indicated in percentage points. Booking probabilities averaged across 5,000
simulation draws.

This stems from differences in the utility offered by other hotels. Suppose many high-utility

hotels are displayed on the first few positions. In this case, consumers are not likely to discover

hotels beyond the first few positions; they immediately book a high-utility hotel from the first

positions. Hence, the demand on later positions will be smaller compared to the case where

only low-utility hotels are shown on the first few positions, such that moving such a hotel to

the top position increases its demand by more.

Hotels offering larger utility also can expect the largest increase in revenues, at least on av-

erage. This is highlighted in Figure 3.5 which depicts predicted changes in expected revenues

for hotels being moved to different positions. The substantial variation stems from hetero-

geneity in hotel prices relative to the strength in their demand increase. Because booking

probabilities and their respective changes tend to be small small, the changes in expected

revenues for many hotels are also small. For example, the expected revenue increase for a

100$-hotel is only 0.3$ if the booking probability increases by 0.3 percentage points. Nonethe-

less, with thousands of consumers visiting search intermediaries like Expedia every day, such

seemingly small changes lead to substantial gains in the number of transactions and expected

revenues.
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Figure 3.5 – High-utility hotels gain more revenues
Notes: Changes in expected revenues are expressed in $, calculated as the change in the booking
probability multiplied by the hotel’s price. Booking probabilities averaged across 5,000 simulation
draws.

The results in Figure 3.5 highlight that it’s not the hotels that offer the highest utility

that increase revenues by the most from being shown on top. Instead, due to their higher

price, more expensive but still desirable hotels gain the most when being shown on top. This

suggests that these hotels will have the strongest incentive to influence where on the list they

are shown. Hence, if a search intermediary allows sellers to influence the position at which

they are revealed to consumers, for example as sponsored listings, the willingness-to-pay of

these hotels will be the largest. Moreover, the results imply that a ranking that balances

demand increases and prices will increase total revenues over a ranking that’s based only on

expected utilities.

3.5.3 Comparison of rankings

To analyze how different rankings affect Expedia’s revenues and consumer welfare, I compare

several different rankings. For this comparison, I use the sample where consumers observed

Expedia’s ranking and simulate consumers’ search paths, eventual purchases and consumer

welfare. Though consumers were sampled differently from the estimation sample, using only

predicted choices ensures that the comparison is based on the same underlying consumer popu-
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lation. Appendix 3.C.1 shows that the results are qualitatively comparable for the randomized

sample.

As a baseline, I construct a randomized ranking where I average results across multiple

randomly drawn rankings. Relative to this baseline, I then calculate the effects of five different

rankings, as described below. As outlined in Section 3.3.5, consumers do not adjust their beliefs

such that the effects of different rankings are short-run effects.

ER Expedia ranking: Expedia’s own ranking as given in the sample.

UR Utility-based ranking: This ranking displays hotels in decreasing order of their expected

utility uej = −αpj + x′
jβ. This ranking shows the (on average) best matching alter-

natives first and aims at increasing consumer welfare. By first showing alternatives

that consumers prefer, the ranking can help consumers find better matching alterna-

tives. Moreover, it helps consumers find these alternatives earlier on, thus lowering total

search costs consumers incur.

RR Revenue-based ranking: For the ranking that aims at increasing total revenues generated

across the whole list, I focus on a simple ranking algorithm that orders hotels based on

the expected revenues on the same position. As Appendix 3.C.3 shows, the expected

increase in revenues for an individual hotel is roughly proportional to its expected revenue

at the initial position. Hence, ordering products based on the expected revenue on the

same position will also be able to increase total revenues. To implement this ordering,

it is only required to calculate expected revenues for each hotel on a particular position,

and then reorder listings in decreasing order of these revenues. For the analysis, I again

use the position at which consumers purchase on average (position 15, see Table 3.5).

PR Price-decreasing ranking: This ranking displays alternatives in decreasing order of their

price, i.e. shows the most expensive alternatives first.

-UR Inverse utility-based ranking: This ranking orders alternatives in increasing order of

their expected utility, i.e. it shows the (on average) worst matching alternatives first.

Table 3.6 shows the results of this comparison. Effects are shown as changes relative to

the randomized ranking. Note that as Expedia’s revenues are roughly proportional to total
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Table 3.6 – The effects of different rankings

ER UR RR PR -UR

Expedia
Total revenues (%) 1.80 6.85 9.10 -2.44 -4.52
Number of transactions (%) 2.23 8.62 6.24 -3.56 -5.01
Avg. price of booking (%) -0.42 -1.63 2.69 1.15 0.52
Number of clicks (%) 0.93 2.71 2.25 -2.05 -3.32

Consumers
Consumer welfare ($, per consumer) 0.17 0.68 0.47 -0.26 -0.34
Consumer welfare ($, per booking) 1.15 4.52 2.81 -1.50 -2.74
Utility of booked hotel ($) 1.11 4.43 2.70 -1.39 -2.56
Search costs ($, per booking) -0.04 -0.09 -0.11 0.11 0.17

Notes: Predicted changes of Exepdia’s ranking (ER), the utility-based ranking
(UR), the revenue-based ranking (RR), the price-decreasing ranking (PR) and the
inverse utility-based ranking (-UR). All changes are relative to a randomized rank-
ing, obtained by averaging across 20 randomizations. The predicted search paths
were generated with 5,000 draws for each consumer.

revenues, the expressed percentage changes for total revenues also translate to percentage

changes in Expedia’s revenues.

3.5.3.1 Expedia gains the most from the revenue-based ranking

The ER, UR and RR all manage to increase revenues over the randomized ranking. However,

the UR and RR manage to increase revenues substantially more than the ER. Moreover, as

intended, the RR leads to the largest increase in revenues; it roughly adds another three

percentage points increase over the UR. Whereas the RR leads to an increase in the average

price of bookings, the ER and UR lead to a decrease in this price. This difference allows the

RR to yield the largest increase in revenues, despite the fewer transactions compared to the

UR.

The results for the PR reveal that showing the most expensive alternatives first reduces

total revenues. This highlights that the power of rankings in inducing consumers to book more

expensive hotels is limited. Instead, the PR leads to a substantial decrease in the number of

transactions and revenues; consumers do not discover the cheaper alternatives further down

in the list page and leave Expedia without making any booking. The substantial decrease

in transactions and revenues for the -UR further highlights the importance of these demand

effects.
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3.5.3.2 Revenue-based rankings harm consumers only to a limited extent

The consumer welfare results show that, prior to search, the average consumer is willing to pay

0.17$ to observe the ER instead of a randomized ordering. For the UR this willingness-to-pay

increases to 0.68$ and for the RR to 0.47$. These effects are relatively small, especially when

compared to the average price of 154$ (see Table 3.7 in the appendix). This results from the

majority of consumers not booking a hotel in any of the rankings. Recall that the optimal

policy implies that the consumers that do not buy an alternative discover alternatives until the

value of the outside option exceeds the discovery value. As neither is affected by the ranking,

consumers that do not book a hotel continue to scroll up to the same point, paying the same

amount of discovery costs. When focusing on changes in consumer welfare of consumers that

do book a hotel (second row), the three rankings lead to larger increases in consumer welfare

of 1.15$, 4.52$ and 2.81$ respectively.

Comparing the increases in consumer welfare between the UR and RR reveals that Expe-

dia’s and consumers’ interests are not perfectly aligned. Relative to the randomized ranking,

the UR adds another 0.21$ consumer welfare for the average consumer, and 1.71$ for con-

sumers that book a hotel. The RR leads to an increase in consumer welfare that is about a

third smaller than the increase obtained with the UR. However, the consumer welfare decrease

when moving from the UR to the RR is substantially smaller than the welfare increase of the

RR relative to the baseline. Moreover, comparing the RR with the PR and -UR highlights

that the RR is substantially better for consumers than one might expect. This is because

of heterogeneous position effects: as alternatives offering a large utility overproportionally

gain demand when being moved to higher positions, a ranking increases both revenues and

consumer welfare when moving these alternatives to the top.

The results for the ER suggest that Expedia’s ranking manages to outperform the ran-

domized ranking in terms of revenues and welfare; Expedia’s ranking indeed is working as

intended. However, the ER is far from achieving consumer welfare or revenue maximization.

This is highlighted by the fact that the UR and RR increase consumer welfare by at least

twice as much, while also increasing revenues by more than the ER. Hence, there remains

considerable scope for improvements for the ranking algorithm employed by Expedia during

the sample period.
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Table 3.6 also attributes the resulting changes in consumer welfare to either consumers

choosing better (or worse) alternatives, or lower incurred costs to discover and inspect alter-

natives. The results show that the UR and RR affect consumer welfare to a large extent

through helping consumers find better matching alternatives; less than a third of the total

welfare change can be attributed to a reduction in search costs.

Combined, these results highlight that, when designing rankings, a search intermediary’s

and consumers’ interests are not severely misaligned. Because of the complementarity of a

hotel’s position and the utility it offers to consumers, a revenue-based ranking will move high-

utility alternatives to higher positions, benefiting both consumers and the search intermediary.

Such a ranking therefore manages both to boost short-term revenues, while potentially also

long-term revenues through the return of satisfied customers.

3.6 Conclusion & future directions

This paper studies heterogeneous position effects and shows that product attributes and the

position on the list complement each other: on average, clicks and bookings for hotels that

consumers prefer (e.g. cheap or at a good location) increase more when being displayed on

higher positions. I further show that this implies that a revenue-based ranking can benefit both

the search intermediary and consumers by moving high-utility products to higher positions.

Whereas the focus of this paper is on heterogeneous position effects and the associated

potential of different rankings, related questions remain that I aim to address in future research.

First, the model does not feature heterogeneity in either preference parameters or search costs.

Introducing such heterogeneity should lead to an improved model fit for the data. Specifically,

by allowing some consumers to have a combination of small inspection and large discovery

costs, the model would be able to fit the initial sharp decrease in clicks without making

initial clicks less costly. Moreover, whereas the proposed heuristic performs well, and I show

that heterogeneity in position effects does allow rankings to boost revenues, an open question

remains as to how one could design a ranking algorithm that maximizes revenues in the search

and discovery model.

Another interesting area for future extensions is the non-trivial joint problem of both

ordering products and pricing them, as faced by online retailers. Depending on how each

product’s price elasticity depends on the position it is displayed on, different rankings can
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create scope for a retailer to increase prices to further boost revenues. Another interesting topic

for future research is to study equilibrium dynamics when sellers of heterogeneous products can

bid for being shown on top positions through “sponsored listings.” The results in this paper

suggest that sellers of high-utility products on average gain the most in terms of revenues

when being moved to the top positions. Hence they will have the largest willingness-to-pay to

be shown on top positions. However, further research is necessary to determine equilibrium

dynamics and how this will affect consumer welfare, as well as the respective revenues of

individual sellers and the search intermediary.
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Appendix

3.A Data
The original dataset from Kaggle.com contains 9,917,530 observations on a hotel-consumer
level. Following Ursu (2018) (see her online Appendix A), I exclude consumers with at least
one observation that satisfies any of the following criteria:

1. The implied tax paid per night either exceeds 30% of the listed hotel price (in $), or is
less than 1$.

2. The listed hotel price is below 10$ or above 1,000$.

3. There are less than 50 consumers that were looking for hotels at the same destination
throughout the sample period.

4. The consumer observed a hotel on position 5, 11, 17 or 23, i.e. the consumer did not
have opaque offers (Ursu (2018) provides a detailed description of this feature in the
data).

The final dataset then contains 4,503,128 observations. This number differs from the one
in Ursu (2018) by 85 observations. This difference stems from three consumers (IDs 79921,
94604, 373518), where numerical differences resulting from floating point calculations lead to
differences in how the criteria are evaluated. For example, for ID 79921 the implied tax of the
hotel on position 18 is given by 167.7

1.0 − 129.0 = 38.7 = 0.3× 129 and hence the first condition
above is not satisfied and the observation is retained. However, floating point calculations can
introduce numerical deviations, which leads to Stata evaluating this such that the consumer
is dropped.

Completing information on the dataset, Table 3.7 shows summary statistics for consumers
that observed the Expedia ranking, and Table 3.8 provides a detailed description of each
variable.
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Table 3.7 – Summary statistics (Expedia ranking)

N Mean Median Std. Dev Min. Max.

Hotel-level
Price (in $) 3,146,022 154.54 129.00 96.54 10.00 1000.00
Star rating 3,084,716 3.31 3 0.87 1 5
Review score 3,143,741 3.92 4.00 0.80 0.00 5.00
No reviews 3,143,741 0.02 0 0.13 0 1
Chain 3,146,022 0.68 1.00 0.47 0.00 1.00
Location score 3,146,022 3.13 3 1.50 0 7
On promotion 3,146,022 0.26 0 0.44 0 1

Consumer-level
Number of items 114,529 27.47 31 7.91 5 38
Number of clicks 114,529 1.11 1 0.59 1 24
Made booking 114,529 0.92 1 0.28 0 1
Trip length (in days) 114,529 2.13 2 1.67 1 38
Booking window (in days) 114,529 32.78 14 48.16 0 482
Number of adults 114,529 1.96 2 0.87 1 9
Number of children 114,529 0.37 0 0.77 0 9
Number of rooms 114,529 1.11 1 0.42 1 8

Notes: Summary statistics as in Table 3.1 for consumers that observed the Expedia ranking.

Table 3.8 – Description Variables

Hotel-level
Price (in $) Gross price in USD
Star rating Number of hotel stars
Review score User review score, mean over sample period
No reviews Dummy whether hotels has zero reviews (not missing)
Chain Dummy whether hotel is part of a chain
Location score Expedia’s score for desirability of hotel’s location
On promotion Dummy whether hotel on promotion

Consumer-level
Number of items How many hotels in list for consumer, capped at first page
Number of clicks Number of clicks by consumer
Made booking Dummy whether consumer made a booking
Trip length (in days) Length of stay consumer entered
Booking window (in days) Number of days in future that trip starts
Number of adults Number of adults on trip
Number of children Number of children on trip
Number of rooms Number of rooms in hotel

3.B Additional derivations
3.B.1 Calculating consumer welfare
The derivation of expected consumer welfare, conditional on observable attributes and the
ranking follows almost the same steps as the derivations in 2.A.3. The main adjustment is
that the discovery value depends on the position, and that welfare is calculated conditional
on observable hotel attributes.

Define w̄ih ≡ max{w̃i0, . . . , w̃ih} as the maximum of values discovered up to position h,
with (3.5) defining w̃ij = x′

jβ + min{ξij , εij}. Moreover, let w̄i0 = maxj∈A0 w̃ij denote the
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3.B. ADDITIONAL DERIVATIONS

maximum value in the initial awareness set, h̄ the maximum position to discover, and Ah the
set of alternatives that are discovered up to position h. To simplify notation, further define
the observed value yj ≡ x′

jβ and let 1(·) denote the indicator function.
The consumer continues discovering whenever w̄ih < zd(h). Hence, given realizations ξij

and εij for all hotels, the discovery costs that the consumer pays are given by

h̄∑
h=0

1(w̄ih < zd(h))cd(h) (3.22)

The consumer also stops discovering whenever w̄ih > zd(h), conditional on which, the consumer
searches any alternative that is discovered and satisfies zsij > w̄ih. Hence, consumer welfare
without discoverycosts is given by

h̄∑
h=0

1(w̄ih−1 < zd(h− 1))1(w̄ih > zd(h))×
⎛
⎝∑

j∈Ah

1(w̃ij = w̄ih)(yj + εij)− 1(yj + ξij ≥ w̄ih)csij

⎞
⎠ (3.23)

Using that csij = E [1(εij ≥ ξij)1(εij + yj − ξij)] and taking expectations over the whole ex-
pression yields

h̄∑
h=0

E

[
1(W̄ih−1 < zd(h− 1))1(W̄ih > zd(h))×

⎛
⎝∑

j∈Ah

1(W̃ij ≥ W̄ih)(yj + εij)− 1(yj + ξij ≥ W̄ih)1(εij ≥ ξij)(εij + yj − ξij)

⎞
⎠] (3.24)

Note that the expectation operator does not integrate over values yj as we are calculating
welfare conditional on observable attributes. Finally, note that 1(yj + ξij ≥ w̄ih)1(εij ≥ ξij)
implies 1(w̃ij ≥ w̄ih) (and is zero otherwise). Hence, the second part simplifies to 1(w̃ij ≥
w̄ih)(yj +min{εij , ξij). Combining with (3.22), we get expression (3.7).

3.B.2 Backing out discovery costs
The definition of the discovery value given in (3.3) implies:

cd(h) =

∫ ∞

zd(h)
[1−Gh(t)] dt (3.25)

This is a unique mapping from Gh and cd(h) to zd(h). Given cd(h) and Gh, (3.25) can be
solved for zd(h), and given zd(h) and Gh, it can be solved for cd(h). However, Gh is based on
consumers beliefs’ and, hence, needs to be estimated. Recall that Gh(t) = Ph(Z

s
ij ≤ t) where

search values are given by zsij = −αpj+x′
jβ+ξij . The empirical parametrization determines the

distribution of ξij , but consumers’ beliefs over the distribution of observable hotel attributes
−αpj + x′

jβ are not observed. Importantly, this distribution depends on model parameters
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that need to be estimated. Hence, it has to be estimated again at each step in the estimation,
and then used in the inversion (3.25) to obtain zd(h). This is computationally costly, as
solving (3.25) requires root-finding that does not admit an analytical solution. By directly
estimating a function for the discovery values zd(h), I avoid this step all-together. Moreover,
my approach yields demand predictions that do not rely on any additional assumptions on
consumers’ beliefs, as they only depend on the reservation values, not costs.

To fully solve (3.25) for cd(h), I assume the following:

1. Discovery costs do not depend on the position, i.e. cd(h) = cd∀h
2. The variance of Zs

ij does not depend on the position.

3. The consumer has rational expectations such that beliefs over the distribution of Zs
ij on

position h̃ equal the distribution of Zs
ij over all alternatives. In the application, I assume

that h̃ is the position at the mean rank, such that in expectation across all positions,
beliefs are correct.

Based on these assumptions, Gh̃(t) can be estimated by taking draws zsij = −αpj +x′
jβ + ξij ,

where (pj ,xj) are drawn from the observed distribution in the data, and ξij is drawn from the
distribution implied by the empirical specification.

To further simplify calculating (3.25), note that (3.25) can be written as (where 1(·) again
is the indicator function):

cd(h) = Eh

[
max{0, Zs

ij − zd(h)}
]

(3.26)

Hence, for given h = h̃, we can directly calculate the expectation by drawing from the distri-
bution of Zs

ij .

3.B.3 Position effects depending on the price
This appendix derives that the size of a product’s position effect increases in its expected
utility, and therefore decreases in its price. The position effect of being switched from the
second to the first position can be calculated as:

ΔdiB =diB(1)− diA(2)

=P
(
Ui0 > zd(0)

)
P
(
W̃iB > Ui0|Ui0 > zd(0)

)
+ P

(
Ũi0 ≤ zd(0)

) [
P(W̃iB ≥ zd(0))

(
1− P(W̃iA ≥ zd(0)

)
+ P(W̃iB ≥ zd(0)) · 0

]
=P

(
Ui0 > zd(0)

)
P
(
W̃iB > Ui0|Ui0 > zd(0)

)
+ P

(
Ũi0 ≤ zd(0)

)
P(W̃iB ≥ zd(0))P(W̃iA ≥ zd(0))

As W̃ij = uej+min{ξij , εij}, the above expression also directly implies that that Δdij increases
in uej , and hence decreases in pj .
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3.B. ADDITIONAL DERIVATIONS

3.B.4 Cases likelihood calculation
3.B.4.1 Case 0: consumer does not click on any hotels
Consider a consumer i that did not make any clicks. In this case, the likelihood contribution
of i can be written as

Li(θ) =

∫ ∞

−∞
P

(
max

j∈Ji(ui0)
Zs
ij ≤ ui0

)
dH(ui0)

=

∫ ∞

−∞

∏
j∈Ji(ui0)

P
(
Zs
ij ≤ ui0

)
dH(ui0) (3.27)

3.B.4.2 Case 1: consumer makes clicks but takes the outside option
See main text.

3.B.4.3 Case 2: consumer makes clicks and books a hotel
See main text.

3.B.5 Cases for simulated integral
3.B.5.1 Case 0: consumer does not click on any hotels
This case can be calculated similar to the case where consumer i clicks on some hotels and
does not book a hotel. There are only two differences. First, there is no upper bound for ui0.
Second, the inner probability is different because there are only products that the consumer
did not click on.

The Monte Carlo integration to calculate the integral in (3.27) is as follows (with Ji de-
noting the set of hotels that consumer i potentially can discover):

1. Partition the interval (−∞,∞) into subintervals

(−∞, zd(|Ji|)], (zd(|Ji|), zd(|Ji| − 1)], . . . , (zd(h̄i − 2), zd(h̄i − 1)], (zd(h̄i − 1),∞)

2. For each subinterval, take Nr draws for uri0 truncated to be within the specific
subinterval

3. For each subinterval and draw uri0, determine J(uri0) and calculate

P̃ (uri0) ≡
∏

j∈Ji(ur
i0)\Si

P
(
Zs
ij ≤ uri0

)

4. Sum up within-interval means across draws, weighting by the probability of uri0
falling within the subinterval

Putting this into one formula yields

L̃i(θ) =

Ns∑
s=1

P (ui0 ∈ B(s))
1

N

Nr∑
r=1

P̃ (uri0) (3.28)

3.B.5.2 Case 1: consumer makes clicks but takes the outside option
See main text.
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3.B.5.3 Case 2: consumer makes clicks and books a hotel
The main difference to the case where consumer i does not book a hotel is that the integral
now is over w̃iq = x′

jβ + min{ξiq + νiq, εiq}, where ξij ≡ ξ + ρ log(h̃ij). To get a smooth
likelihood function nonetheless, draws for w̃iq are taken with three separate inner cases as
outlined below. Throughout, the notation is as in Section 3.4.4.

The Monte Carlo integration procedure to calculate the integral in (3.16) for a consumer
i that books hotel q and clicks on hotels in Si is as follows:

1. Partition the interval (∞, bq] into subintervals

(∞, zd(|Ji|)], (zd(|Ji|), zd(|Ji| − 1)], . . . , (zd(h̄i − 2), zd(h̄i − 1)], (zd(h̄i − 1), bq]

2. For each subinterval B(s), and each of the following cases take Nr draws for εiq and
νiq satisfying the restrictions and calculate the truncation probability:

(a) p1(B(s)) ≡ P
(
x′
iqβ + εiq > B(s)

)
× P

(
x′
iqβ + ξiq + νiq ∈ B(s)

)
(b) p2(B(s)) ≡ P

(
x′
iqβ + εiq ∈ B(s)

)
P
(
ξiq + νiq ≤ εriq|εriq

)
(c) p3(B(s)) ≡ P

(
x′
iqβ + εiq ∈ B(s)

)
P
(
ξiq + νiq > εriq|εriq

)
Note that the latter two cases are related in that both probabilities are based on the
same draw εriq, resulting in a smooth likelihood function.

3. For each of these cases and resulting draws w̃r
iq and wr

iq, determine J(w̃r
iq) and

calculate

P (w̃r
iq, w

r
iq) ≡

∏
j∈Ji(w̃r

iq)\Si

P
(
Zs
ij ≤ w̃r

iq

)× ∏
j∈Si−

P(Zs
ij ≥ wr

iq)P(Uij ≤ w̃r
iq)

×
∏

j∈Si+

P(Zs
ij ≥ w̃r

iq)P(Uij ≤ w̃r
iq) (3.29)

4. Sum up within-interval means across draws, weighting by the respective probabilities
of the different cases

3.B.6 Calculation of product-specific demand
3.B.6.1 Share outside option
The probability of consumer i taking the outside option given parameters θ is given by

Di0(θ) =

∫ ∞

−∞
P

(
max

j∈Ji(ui0)
W̃ij ≤ ui0

)
dH(ui0)

This integral can be calculated with the same procedure as described in case 0 in Appendix
3.B.5, with the only difference that the inner probability is calculated as

P̃ (uri0) =
∏

j∈Ji(ur
i0)

P
(
W̃ij ≤ uri0

)
=

∏
j∈Ji(ur

i0)

P
(
Zs
ij ≤ uri0

)
P (Uij ≤ uri0)
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3.B. ADDITIONAL DERIVATIONS

Note also that Ji(ui0) always contains all products that the consumer sees when arriving at
the page.

3.B.6.2 Share of product q

The probability of consumer i booking hotel q (i.e. buying product q) given parameters θ is
given by

Diq(θ) =

∫ ∞

−∞
P

(
max

j∈Ji(w̃iq)
W̃ij ≤ w̃iq

)
dHq(w̃iq)

This integral can be calculated with the same procedure as described in case 2 in Appendix
3.B.5, with the only difference that the inner probability is calculated as

P (w̃r
iq, w

r
iq) =

∏
j∈Ji(w̃r

iq)

P
(
W̃ij ≤ w̃r

iq

)
=

∏
j∈Ji(w̃r

iq)

P
(
Zs
ij ≤ w̃r

iq

)
P
(
Uij ≤ w̃r

iq

)

Note also that Ji(w̃iq) always contains all products that the consumer discovered before q.
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3.C Additional results and robustness
3.C.1 Effects of rankings in randomized ranking sample
This appendix presents the comparison of rankings in the randomized ranking sample. It
produces Table 3.6, with the difference that no result for Expedia’s ranking is presented.
Throughout, the results are in line with the analysis in the main text.

Table 3.9 – The effects of different rankings (randomized sample)

UR RR PR -UR

Expedia
Total revenues (%) 9.06 12.32 -2.39 -4.93
Number of transactions (%) 10.33 7.60 -3.54 -5.17
Avg. price of booking (%) -1.15 4.39 1.19 0.25
Number of clicks (%) 3.24 2.78 -2.01 -3.92

Consumers
Consumer welfare ($, per consumer) 0.40 0.28 -0.13 -0.17
Consumer welfare ($, per booking) 4.49 2.56 -1.13 -2.55
Utility of booked hotel ($) 4.37 2.46 -1.00 -2.38
Search costs ($, per booking) -0.11 -0.10 0.13 0.17

Notes: Predicted changes the utility-based ranking (UR), the revenue-based
ranking (RR), the price-decreasing ranking (PR) and the inverse utility-based
ranking (-UR). All changes are relative to a randomized ranking, obtained by
averaging across 20 randomizations. The predicted search paths were generated
with 5,000 draws for each consumer.

3.C.2 Robust position effects
This appendix presents results for heterogeneous position effects for alternative specifications.
Specifically, for each alternative specification the equivalent of Figure 3.2 is produced. The
respective specification can be found in each figure’s notes. Coefficient estimates for the flexible
specification where the position effect is specific to the first four positions are shown in Table
3.10.
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Figure 3.6 – Heterogeneous position effects: Hotel FE
Notes: Replicates Figure 3.2 with the specification including hotel fixed effects (columns 3 and 6 in
Table 3.3).
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Figure 3.7 – Heterogeneous position effects: Probit
Notes: Replicates Figure 3.2 with estimates from a Probit model. The specification is the same as
in columns 2 and 5 in (3.3), but estimates are not scaled to reflect percentage point changes.
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Figure 3.8 – Heterogeneous position effects: Flexible position effects I

Notes: Replicates Figure 3.2 with estimates from a linear probability model where pos2ij and pos2ijxj

are added to the specification in columns 2 and 5 of (3.3).
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Figure 3.9 – Heterogeneous position effects: Flexible position effects II

Notes: Replicates Figure 3.2 with estimates from a linear probability model where pos2i , pos2ixj ,
pos3i , pos3ixj are additionally included in otherwise the same specification shown in columns 2 and
5 of (3.3).
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Table 3.10 – Coefficient estimates (LPM, random ranking)
Clicks Booking

(1) (2) (3) (4) (5) (6)

Position 1 7.8714*** 8.2817*** 8.0721*** 0.3729*** 0.2309 0.1888
(0.1511) (0.6671) (0.6580) (0.0359) (0.2137) (0.2152)

Position 2 5.4610*** 4.0470*** 3.7984*** 0.3781*** 0.0280 -0.0234
(0.1358) (0.5882) (0.5844) (0.0360) (0.2067) (0.2040)

Position 3 4.1835*** 3.0172*** 2.7893*** 0.2981*** 0.0414 0.0390
(0.1268) (0.5495) (0.5474) (0.0337) (0.2090) (0.2117)

Position 4 3.3156*** 2.5642*** 2.5575*** 0.2468*** -0.0027 -0.0162
(0.1201) (0.5053) (0.5063) (0.0320) (0.1796) (0.1815)

Price -0.0122*** -0.0106*** -0.0126*** -0.0011*** -0.0009*** -0.0010***
(0.0002) (0.0002) (0.0003) (0.0000) (0.0000) (0.0001)

Star rating 1.6408*** 1.5449*** 0.1064*** 0.1012***
(0.0317) (0.0318) (0.0079) (0.0078)

Review score 0.0799** 0.0851** 0.0364*** 0.0259***
(0.0350) (0.0347) (0.0082) (0.0079)

No review score -0.2703* -0.2873* 0.0855** 0.0641**
(0.1619) (0.1618) (0.0345) (0.0327)

Chain 0.2431*** 0.2218*** 0.0260** 0.0111
(0.0459) (0.0456) (0.0113) (0.0113)

Location score 0.4413*** 0.3942*** 0.0530*** 0.0522***
(0.0168) (0.0169) (0.0036) (0.0036)

On promotion 1.1645*** 1.1058*** 1.1346*** 0.1267*** 0.1206*** 0.1235***
(0.0498) (0.0503) (0.0738) (0.0130) (0.0129) (0.0200)

Position 1=1 × Price -0.0150*** -0.0143*** -0.0012*** -0.0011***
(0.0013) (0.0013) (0.0003) (0.0003)

Position 2=1 × Price -0.0071*** -0.0066*** -0.0008** -0.0007**
(0.0012) (0.0012) (0.0003) (0.0003)

Position 3=1 × Price -0.0077*** -0.0073*** -0.0007** -0.0006**
(0.0012) (0.0012) (0.0003) (0.0003)

Position 4=1 × Price -0.0064*** -0.0059*** -0.0010*** -0.0008***
(0.0010) (0.0010) (0.0003) (0.0003)

Position 1=1 × Star rating 0.6157*** 0.5392*** 0.0466 0.0211
(0.2042) (0.2014) (0.0500) (0.0502)

Position 2=1 × Star rating 0.6483*** 0.5367*** 0.0383 0.0093
(0.1852) (0.1850) (0.0505) (0.0501)

Position 3=1 × Star rating 0.5109*** 0.4574*** -0.0199 -0.0244
(0.1697) (0.1699) (0.0462) (0.0467)

Position 4=1 × Star rating 0.6251*** 0.5218*** 0.0471 0.0380
(0.1640) (0.1643) (0.0477) (0.0480)

Position 1=1 × Review score -0.1653 -0.2458 0.0561 0.0595
(0.1645) (0.1611) (0.0636) (0.0640)

Position 2=1 × Review score -0.0326 -0.0345 0.0812 0.1000*
(0.1477) (0.1469) (0.0620) (0.0605)

Position 3=1 × Review score 0.0066 -0.0249 0.0979* 0.0927
(0.1328) (0.1325) (0.0582) (0.0586)

Position 4=1 × Review score -0.0275 -0.0779 0.0386 0.0361
(0.1268) (0.1265) (0.0550) (0.0558)

Position 1=1 × Chain -0.5939* -0.4256 0.0733 0.0645
(0.3226) (0.3203) (0.0766) (0.0768)

Position 2=1 × Chain -0.2539 -0.2020 0.1253 0.1332*
(0.2910) (0.2909) (0.0768) (0.0777)

Position 3=1 × Chain 0.8958*** 0.8946*** 0.1355* 0.1227*
(0.2665) (0.2668) (0.0708) (0.0710)

Position 4=1 × Chain 0.4631* 0.4897* 0.0468 0.0433
(0.2551) (0.2565) (0.0671) (0.0684)

Position 1=1 × Location score 0.4942*** 0.5057*** -0.0057 0.0033
(0.1060) (0.1053) (0.0213) (0.0214)

Position 2=1 × Location score 0.3808*** 0.4000*** -0.0147 -0.0120
(0.0934) (0.0937) (0.0227) (0.0233)

Position 3=1 × Location score 0.2214** 0.2513*** -0.0072 -0.0051
(0.0872) (0.0874) (0.0213) (0.0214)

Position 4=1 × Location score 0.0841 0.1138 0.0416** 0.0446**
(0.0814) (0.0819) (0.0190) (0.0194)

Position 1=1 × On promotion 0.7211** 0.7418** 0.0197 0.0277
(0.3659) (0.3640) (0.0892) (0.0892)

Position 2=1 × On promotion 0.6246* 0.6655** 0.1877** 0.1962**
(0.3362) (0.3367) (0.0951) (0.0960)

Position 3=1 × On promotion 0.1221 0.0879 -0.0394 -0.0458
(0.3118) (0.3123) (0.0824) (0.0820)

Position 4=1 × On promotion -0.1523 -0.1460 -0.0281 -0.0269
(0.2963) (0.2976) (0.0791) (0.0801)

Position 1=1 × No review score 0.0295 0.0535
(0.2795) (0.2891)

Position 2=1 × No review score 0.2274 0.3185
(0.2759) (0.2776)

Position 3=1 × No review score 0.1741 0.1648
(0.2404) (0.2395)

Position 4=1 × No review score 0.0926 0.1197
(0.2412) (0.2465)

Constant -0.8893*** -0.7773*** 5.0440*** -0.0287 0.0113 0.5519***
(0.1379) (0.1372) (0.0734) (0.0333) (0.0327) (0.0215)

FE Destination yes yes yes yes yes yes
FE Hotel no no yes no no yes
Query Characteristics yes yes yes yes yes yes
N 1,220,917 1,220,917 1,219,253 1,220,917 1,220,917 1,219,253
R2 (adj.) 0.0156 0.0160 0.0276 0.0025 0.0026 -0.0018

Notes: Coefficients are scaled to represent changes in terms of percentage points. Standard errors are shown in
parenthesis and are clustered at the query level. Star ratings are adjusted so that baseline position effects are for a
hotel with 1 star, and other characteristics equal to the minimum observed value.

109



580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger
Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

CHAPTER 3. HETEROGENEOUS POSITION EFFECTS

3.C.3 Revenue increase depending on initial revenues
Figure 3.10 shows the increase in expected revenues across different positions, depending on a
hotel’s expected revenues on position 15. Throughout, it shows a strong relationship between
the two; the larger the revenues on position 15, the larger the revenue increase.

Figure 3.10 – Simulated changes in expected revenues
Notes: Changes in expected revenues are expressed in $, calculated as the change in the booking
probability multiplied by the hotel’s price. Booking probabilities averaged across 5,000 simulation
draws.
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Chapter 4

Time Allocation and Multi-Category

Search

This chapter is co-authored with Y. Huang and I. Morozov.

Abstract

We develop a search model where a consumer decides how much time to spend
searching in different product categories. We show that, when given more time,
the consumer always first spends it in the same categories before starting to search
in additional categories. We also show that the consumer searches more products
but may spend less time on search overall when the search technology improves. Fi-
nally, we highlight cross-category search effects and derive conditions under which
they do not occur and, hence, can be disregarded in search models.

111



580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger580124-L-sub01-bw-Greminger
Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022Processed on: 7-7-2022 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

CHAPTER 4. TIME ALLOCATION AND MULTI-CATEGORY SEARCH

4.1 Introduction

Information is a valuable resource. But information is limited, and so is the time to acquire

more. As a result, consumers rarely compare many alternatives and miss out on better-

matching products. The resulting frictions have been studied extensively under the premise

that searching for alternatives is costly. Whereas Stigler (1961, p. 216) already noted that

the “chief cost [of searching] is time”, he and many other authors treat search costs as a model

primitive. This approach limits the ability to understand how search frictions arise, why they

seem to affect some consumers more than others, and how they might change with major shifts

in existing search technologies.

In this paper, we show how search frictions endogenously arise in a broader time allocation

problem. We introduce a non-sequential search model where a consumer decides how much

time to spend searching in different product categories. In our baseline model, categories are

independent, and the consumer wants to buy a single alternative in each of them. Spend-

ing time searching in a category allows the consumer to discover more alternatives through a

stochastic search technology. The search technology reflects a category’s specific search envi-

ronment and determines how many alternatives are revealed within a given amount of time.

Besides searching, the consumer can also spend time doing other activities. However, time is

limited. Therefore, by spending more time in one category, the consumer forfeits time that

could be spent searching in other categories or enjoying other activities.

Our framework allows us to address two novel questions related to search costs. First,

we ask whether improving the search technology leads to more search. An improvement in

the search technology allows the consumer to reveal more alternatives in the same amount of

time. For example, obtaining access to a well-structured shopping website allows consumers to

find many products quickly. We prove that the consumer reveals more alternatives following a

search technology improvement. In a time allocation model, this result is not obvious. Because

there are decreasing marginal benefits of revealing an additional alternative, the consumer

may, following an improvement in the search technology, save the time and instead spend it

somewhere else. This can indeed occur, but our result implies that the consumer still reveals

more alternatives.

Second, we show how opportunity costs of time determine the number of categories a
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4.1. INTRODUCTION

consumer searches in. If opportunity costs of time decrease, the consumer spends more time

searching overall. This additional search time can be used to spend more time searching in

the same categories or to start searching in new categories. We show that the latter does

not occur without the former: a consumer first intensifies search, before expanding it to new

categories. If, instead, opportunity costs of time increase, the consumer reduces search time

across all categories.

With our framework, we are – to the best of our knowledge – the first to model the de-

cision of how much to search across multiple product categories. We explicitly incorporate

the decision whether and how much to search in a specific category, differentiating this paper

from prior work that considers consumers deciding how many multi-product stores to visit

(e.g. Burdett and Malueg, 1981; McAfee, 1995; Gatti, 1999; Zhou, 2014; Rhodes, 2015).1 We

highlight cross-category search effects where a price increase makes the consumer reallocate

time to seemingly unrelated categories. Cross-category search effects, therefore, allow a mo-

nopolist retailer to increase profits by pricing even unrelated categories like substitutes. We

also derive conditions under which cross-category search effects do not occur. If one of these

conditions is satisfied, cross-category effects can be ignored in pricing decisions and in search

models.

We further compare our model with standard search models where consumers pay a fixed

cost per search (McCall, 1970; Weitzman, 1979; Chade and Smith, 2006). We note that these

models are not suited to study cross-category search: because consumers pay a utility cost

per search, each category is treated as a separate search problem. Moreover, we argue that

assuming a fixed cost per search is restrictive. Marginal search benefits in other categories

and marginal benefits of spending time not searching determine the opportunity costs of time.

Both these factors rarely are constant. Hence, search costs in most settings will also not be

constant. This argument supports Ellison and Wolitzky (2012), who consider search costs that

increase in the number of searches based on a similar reasoning.2

1These authors model the case where consumers search across stores, and each store visit reveals an alternative
for every category. Hence, consumers only decide when to stop searching, but not how much to search in
each category. Rhodes et al. (2021) consider consumers searching for prices across multiple stores and a multi-
product intermediary, but not how many alternatives to sample within a category. Our model also differs from
multi-category shopping (e.g. Smith and Thomassen, 2012; Thomassen et al., 2017) where consumers know
products ex ante, but pay additional costs if alternatives are not bought at the same store.

2Carlin and Ederer (2019) and Ursu et al. (2021) also introduce convex search costs, but attribute them to
“consumer fatigue”.
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CHAPTER 4. TIME ALLOCATION AND MULTI-CATEGORY SEARCH

Our paper also contributes to the active literature studying the economics of households’

time use.3 Specifically, our model micro-founds the “shopping technology” considered by

Aguiar and Hurst (2007a). These authors study households’ time allocation across home

production and shopping. Building on Becker (1965), they introduce the shopping technology

through some general function that allows households to convert time into cheaper prices for

the desired basket of goods. In our framework we micro-found this conversion by explicitly

modeling how additional search time allows consumers to discover better-matching products

and find lower prices.

Related studies have also considered how time constraints affect the types of products

consumers buy depending on how “convenient” (i.e. less time-intensive) to consume they

are (e.g. Anderson and Shugan, 1991; Bronnenberg et al., 2020), and how much information

consumers gather on each alternative (Hauser et al., 1993; Gabaix et al., 2006; Jang et al.,

2017; Ursu et al., 2020). Both are conceptually different decision problems.4

4.2 The multi-category search model

A consumer decides how much time to spend searching in different product categories. We

model the consumer’s decision as a static time allocation problem: given a finite time budget,

the consumer commits to a time allocation.

By modeling a finite time budget, we explicitly incorporate that time is a limited resource.

Hence, searching for alternatives in one category entails the opportunity cost of not being

able to spend the time searching in another category or doing something else entirely. The

available time is given by the consumers’ decision horizon, as well as restrictions on how much

time the consumer can freely allocate within this decision horizon. Given our focus on search,

we consider relatively short decision horizons in our model. For example, consider a consumer

deciding how to spend the 24 hours of the next working day. The consumer has already

committed to working 9 hours per working day and has an unavoidable commute of 1 hour

each way. In this case, the consumer can decide how to spend the remaining 13 hours of the

day on searching or doing other activities (e.g. sleeping, hobbies etc.).
3See, for example, Kooreman and Kapteyn (1987); Biddle and Hamermesh (1990); Aguiar and Hurst (2005,
2007b); Aguiar et al. (2013). Aguiar et al. (2012) provide a review of this literature.

4In the former, consumers choose different products because the available time influences the consumption value
of products. In the latter, consumers decide how much information to gather about substitutes within the same
category.
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4.2. THE MULTI-CATEGORY SEARCH MODEL

By abstracting from dynamic aspects, we implicitly assume that the consumer plans ahead

when deciding how to spend the available time. This often is reasonable because many activ-

ities are not possible without planning. For example, meeting friends requires coordination,

going for dinner at a good restaurant requires a reservation, and going to an event requires a

ticket that may be sold out ahead of time. Hence, within the the decision horizons we consider,

assuming that the consumer decides on and commits to a time allocation is appropriate.

Because the decision is static, our model fits into the category of non-sequential search

models. However, we emphasize that the above motivation for this modeling choice is not

based on whether consumers search sequentially or non-sequentially. Instead, within our time

allocation model, search is non-sequential because the consumer plans ahead when deciding

how to spend the available time. Hence, the decision aspect of our model is closer to the

literature that models households’ time allocation and also abstracts from dynamic aspects

(e.g. Becker, 1965; Aguiar and Hurst, 2007a).

4.2.1 Setup

There are c̄ different categories offering a range of differentiated alternatives. Alternatives

within a category are substitutes and we assume that the consumer has unit demand: within

a consideration set for a given category (formed through search), the consumer chooses the

alternative offering the largest utility. Hence, conditional on category-specific consideration

sets S = {S1, . . . , Sc̄}, the choice within one category does not influence the choice within

another category.

Categories are independent of each other; the value of purchasing a product in one category

is independent of the alternatives in another category. In other words, across categories,

products are neither substitutes nor complements. Capturing this independent structure while

keeping things simple, we assume that utilities from different categories are linear additive.

Hence, the consumer’s utility given the consideration sets in S is given by

υ(S) =
c̄∑

c=1

max
j∈Sc

ujc (4.1)

where ujc denotes the utility of purchasing product j from category c. In Section 4.4, we

discuss a more general setup that allows for complementarities across categories.
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CHAPTER 4. TIME ALLOCATION AND MULTI-CATEGORY SEARCH

Let u0c denote the consumer’s “need” to purchase an alternative from a particular category.

A large u0c means that the consumer has little need to buy an alternative from category c;

not buying an alternative still yields a large utility. For example, suppose a consumer does

not own winter boots and is moving to Chicago in January. Winters in Chicago are freezing,

and the consumer prefers not to have cold feet. In this case, the utility of not purchasing any

winter boots will be relatively small. If the consumer instead already owns a good pair of

winter boots, there is no need for another pair such that u0c will be large.

Prior to searching in a particular category, the consumer only knows the utility of not

buying an alternative. Hence, without spending any time searching the consumer gets υ(S) =∑c̄
c=1 u0c. For other alternatives, the consumer initially does not know the utility they offer.

Instead, the consumer has beliefs over the distribution of match values. Specifically, we assume

that the consumer believes that product utilities are independently drawn from a continuous

distribution with cumulative density Fc.5 To derive demand and cross-category search effects,

we assume rational expectations: the consumer’s beliefs are correct.

To reveal product utilities and be able to purchase alternatives, the consumer needs to

spend time searching in a category. We assume that categories differ in the search technology

that reveal alternatives. Hence, for the same amount of time, searching in different categories

reveals a different number of alternatives. Moreover, we assume that each search technology

is stochastic; prior to search, there is uncertainty over the number of alternatives that will be

revealed within a certain amount of time.

By setting up the problem with stochastic search technologies, we do not impose any

restrictions as to how consumers search within the allocated time. Instead, we only assume

that consumers anticipate their within-category search behavior, and how that determines how

many alternatives will be revealed.6 Besides, in most real-world settings, the exact number of

alternatives revealed within a given amount of time is difficult, if not impossible, to anticipate.

For example, prior to searching for winter boots, our consumer does not know how many

alternatives he will discover within half an hour, let alone within a minute. Uncertainty also
5Product utilities being unknown prior to search can also occur with homogeneous products, as long as there is
price dispersion. To characterize search, as is the focus of this paper, it does not matter whether the distribution
stems from product differentiation or price dispersion.

6Burdett and Judd (1983) also introduce uncertainty in their “noisy search” model. Noisy search, however,
differs in that it is a sequential search mode where paying a fixed search costs reveals at least one, and with
some chance more than one alternative.
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4.2. THE MULTI-CATEGORY SEARCH MODEL

stems from not knowing how long it will take to evaluate each alternative. Some alternatives

may be obviously unsuitable and the consumer can immediately judge that they are worse

than not buying anything, other alternatives will take longer to compare and add to the

consideration set.

We represent the stochastic search technology for each category as a discrete random

variable Nc with support {0, 1, . . . }. A realization from Nc is the number of alternatives

revealed for category c. By spending time searching in category c, the consumer increases

the probability of revealing more alternatives. Hence, we assume that the probability mass

function of the distribution of Nc, denoted by Gc(k, t) ≡ PNc|t(Nc = k) for k ∈ {0, 1, . . . },
depends on the time (t) spent searching in category c.7 We further assume that the search

technology is independent of the utility distribution, i.e. the random variables Nc and Ujc

are independent. Rational expectations imply that the consumer knows the search technology

and hence the distribution of Nc.

Besides spending time searching in categories, the consumer can also spend time enjoying

a composite outside activity. This outside activity may be comprised of various different

activities. But, to focus on search, we do not model how much time to allocate to each of

them. Instead, we denote the value of spending t minutes on the outside activity by b0(t), and

assume that b0(t) is a twice differentiable and concave function.

The value of spending time on the outside activity does not depend on the products bought

in any of the categories. Moreover, we assume that the total utility is also linear additive in the

outside activity: given consideration sets S and t0 minutes spent on the outside activity, the

consumer obtains utility u(S, t0) = υ(S) + b0(t0). By specifying this function, we implicitly

assume that the consumer has well-behaved preferences that can be represented by this utility

function. For example, with just a single category, u01+ b0(t0) > u11+ b0(t0+Δ) implies that

the consumer prefers spending t0 minutes on the outside activity and not buying any product

over spending Δ more minutes on the outside activity buying a product offering u11.
7Note that assumptions on the number of revealed alternatives are imposed through assumptions on Gc(k, t).
For example, assuming Gc(0, 0) = 0∀t allows to incorporate that if the consumer does not spend any time
searching in c, he does not reveal any alternatives with certainty.
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CHAPTER 4. TIME ALLOCATION AND MULTI-CATEGORY SEARCH

4.2.2 The consumer’s formal problem

The consumer maximizes expected utility by choosing a time allocation across categories.

Formally, this optimization problem can be stated as

max
t

EU(t) s.t.
c̄∑

c=0

tc = t̄ and tc ≥ 0∀c (4.2)

where EU(t) denotes the expected utility given time allocation t = [t0, t1 . . . , tc̄]. Specifically,

EU(t) = E [υ(S)] + b0(t0) where the expectation operator integrates over the distribution of

Ujc∀c and over the distribution of Nc. t̄ denotes the time budget available to the consumer.

The utility specification implies that the expected value from revealing k alternatives in

category c is given by E [max{u0c, U1c, . . . , Ukc}], where the expectation operator integrates

over the joint distribution of the random variables U1c, . . . , Ukc. The expected benefits of

spending t minutes searching in category c then are given by

bc(t) ≡
∞∑
k=0

Gc(k, t)E [max{u0c, U1c, . . . , Ukc}] (4.3)

To be able to focus on the underlying trade-offs and simplify the analysis, we impose the

following assumptions on the probability mass functions Gc(k, t) for all c:

A1 Stochastic dominance: PNc|t(Nc ≤ k) ≥ PNc|t′(Nc ≤ k) for all k and t′ > t, and with

strictness for at least one k.

A2 Concavity: Gc(k, t) is concave in t for all k, and strictly concave for at least one k.

A3 Differentiability: Gc(k, t) is differentiable in t for all k and t ≥ 0.

Lemma 4.1 provides several useful properties of the search benefits that follow from these

assumptions.

Lemma 4.1. bc(t) is weakly increasing, twice differentiable and strictly concave in t if A1-A3

hold.

Proof. Let e(k) ≡ E [max{u0c, U1c, . . . , Ukc}]. Because e(k) is increasing in k, A1 implies that

an increase in t makes larger values e(k) more likely such that b′c(t) =
∑∞

k=0G
′
c(k, t)e(k) ≥ 0
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4.2. THE MULTI-CATEGORY SEARCH MODEL

must hold. Because Gc(0, t) = 1−∑∞
k=1Gc(k, t), we can rewrite bc(t) =

∑∞
k=1Gc(k, t)(e(k)−

u0c). As e(k) − u0c ≥ 0∀k and does not depend on t, A2 implies that bc(t) is the sum of

concave and (at least one) strictly concave functions, hence is strictly concave. Finally, A3

implies that bc(t) is the sum of differentiable functions, hence is differentiable.

The first assumption states that increasing the time spent in a category yields a new

distribution for Nc that first-order stochastically dominates (FOSD) the original one. The

assumption, therefore, guarantees that spending more time searching in a category increases

the probability of obtaining more samples from Fc. As a result, it implies that spending more

time in a category weakly increases its expected utility.

The second assumption excludes local optima by guaranteeing that bc(t) is strictly con-

cave. Appendix 4.A.2 shows that the Poisson distribution, a natural choice for modeling the

distribution of Nc, satisfies concavity. Similarly, Appendix 4.A.3 shows that the Bernoulli

distribution with a success probability that increases in the time spent at a decreasing rate

satisfies this assumption.8 In contrast, a Bernoulli distribution with a success probability that

is linear in the time spent searching violates this assumption. In this case, both Gc(0, 1) and

Gc(1, k) are only weakly concave.9 Note that A2 is a sufficient, but not necessary, condition

for bc(t) to be strictly concave. E [max{u0c, U1c, . . . , Ukc}] increases in k at a decreasing rate,

hence even if Gc(k, t) is not concave for all k, bc(t) can still be strictly concave. As long as

the rate by which alternatives are added does not increase so fast that it offsets that at many

searches, an additional search has lower expected benefits, bc(t) is going to be strictly concave.

The third assumption guarantees differentiability and, hence, allows us to use standard

techniques to obtain the solution, as well as draw parallels to the budget allocation problem

(see Section 4.3.7). However, it excludes the case where the consumer knows exactly how

much time each search takes. For example, if the consumer knows that spending one minute

reveals one more alternative in a category, G(0, t) jumps from one to zero, and, therefore, is

not differentiable at t = 1. This restriction is necessary because if the consumer knows exactly

how much time each search takes, the consumer ends up facing an optimization problem akin

to a problem with integer constraints. In particular, the resulting problem is known in the
8For example, Nc ∼ Bernoulli(min{log(1 + t), 1}).
9If b0(t) is strictly concave, EU(t) is still strictly concave and the solution derived in the next section still
applies.
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operations literature as the “non-linear knapsack problem” and does not admit an analytical

solution.

4.2.3 The solution to the search problem

Using (4.3) and the linear additivity assumption, we can rewrite the maximization problem as

max
t

c̄∑
c=0

bc(tc) s.t.
c̄∑

c=0

tc = t̄ and tc ≥ 0 (4.4)

Lemma 4.1 immediately implies that (4.4) is a separable concave optimization problem.

This implies that the Karush-Kuhn-Tucker (KKT) sufficient conditions for an optimal time

allocation t∗ can be written as (see e.g. Ibaraki and Katoh, 1988)

b′c(t
∗
c) ≤ λ∀c (4.5a)

t∗c > 0 ⇐⇒ b′c(t
∗
c) = λ > 0 (4.5b)

c̄∑
c=0

t∗c − t̄ = 0 (4.5c)

The solution reveals that the usual intuition can be applied to the multi-category search

problem. The conditions require that the marginal search benefits equalize across the cate-

gories where it is optimal to spend at least some time searching in. If these conditions do

not hold, a marginal improvement exists: the gains from spending more time searching in one

category exceed the losses from spending less time searching in another category that offers

smaller marginal search benefits.

Condition (4.5a) shows that λ equals the opportunity costs of time. In the optimum,

spending more time searching in one category requires that the consumer spends less time

searching in another category or enjoying the outside activity. (4.5a) states that, at the margin,

the benefit lost from spending less time in other activities is at most λ. Hence, λ equals the

opportunity costs of spending less time searching in another category or enjoying the outside

activity. This can be best seen in the special case where b0(t) = νt and t̄ is sufficiently large

so that t∗0 > 0. In this case (4.5a) directly implies that b′0(t∗0) = ν = λ. Hence, any time spent

searching in a category has the opportunity cost of not receiving benefit λ from spending the
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time on other fun activities.

The opportunity cost of time at the optimal time allocation is fixed. This, however, does

not imply that the costs per search are the same for all categories. Categories differ in their

search technology: per search, a different amount of time needs to be spent. Hence, the costs

per search also depend on the expected number of searches within a given amount of time. As

we discuss in detail in Section 4.3.3, this distinction is important when relating our framework

to classical search models.

4.3 Comparative statics and implications

We consider two different sets of comparative statics. First, we analyze differences in optimal

time allocations across consumers that are independent of the categories they are searching

in. Second, we highlight the factors that determine which categories consumers spend more

time searching in. Throughout, we define making the outside activity more attractive as a

change in its benefit function such that Δb′0(t) > 0∀t ≥ 0. Moreover, we denote the optimal

allocation prior to a change with t∗c for c ∈ {0, . . . , c̄}.

4.3.1 Changes in the opportunity costs of time

The time available to search for products, as well as the attractiveness of doing other activities

differ across consumers. For example, without flexible working hours, a consumer will have to

spend a fixed number of hours working during the week, and these hours vary across consumers.

Consumers with various hobbies will find more value in spending time on those hobbies. To

evaluate such differences, we now consider the effects on the optimal time allocation following

changes in the available time time, t̄, and the value of the outside activity.

Proposition 4.1. If t∗0 > 0 and the outside activity becomes more attractive, the consumer

spends more time on the outside activity and searches less in all categories where t∗c > 0. If

instead t̄ decreases, the consumer spends less time across all categories and the outside activity.

Proof. Given Δb′0(t) > 0∀t, the optimality conditions (4.5a) and (4.5c) directly imply the

results.

In line with economic intuition, Proposition 4.1 shows that it is optimal to spend less

time searching for products when the outside activity is not attractive or if little time is
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available. Moreover, the proposition highlights that the time spent searching decreases for all

categories where it was optimal to spend at least some time searching in prior to the change.

Note, however, that the result does not imply that the consumer reduces the time spent in all

categories by the same amount. Instead, the time reduction in a particular category depends

on the shape of the benefit function.

Whereas Proposition 4.1 suggests that the converse holds as well, it does not address how

an increase in the total time spent searching will be allocated across categories. Specifically,

the following two cases can happen. First, the consumer can allocate additional search time

to searching in “old” categories, categories the consumer was already spending time in prior to

the change (t∗c > 0). Second, the consumer can also use the additional time to start searching

in “new” categories, i.e. those categories that the consumer previously did not allocate any

time to (t∗c = 0). Hence, if the consumer overall adds more time to searching for products, the

consumer can intensify search in old categories (intensive margin) or start searching in new

categories (extensive margin). To analyze the two cases, we first highlight a result related to

marginal changes.

Lemma 4.2. Marginal changes in either the benefit functions bc(t)∀c ∈ {0, . . . , c̄} or the

time constraint t̄ do not affect the time spent for categories with t∗c = 0. The exception is if

b′c(0) = b′c′(t
∗
c′) for some c′ with t∗c′ > 0.

Proof. The optimality conditions (4.5b) and (4.5a) imply that b′c(t∗c) < λ if t∗c = 0, hence

marginal changes in λ do not affect t∗c . The special case arises because then b′c(t∗c) = λ with

t∗c = 0.

Lemma 4.2 shows that, except for a special case, marginal changes only affect the intensive,

but not the extensive margin. Because a marginal change only affects the intensive margin,

any substantial change that leads to a change in the extensive margin, must also work through

the intensive margin. This logic leads to the next result.

Proposition 4.2. If t∗0 > 0 and the outside activity becomes less attractive, the consumer

spends less time in the outside activity and more time in categories with t∗c > 0. If t∗0 > 0

and t̄ increases, the consumer spends more time in the outside activity and in categories with

t∗c > 0. In both cases, the consumer may also start searching in new categories.
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Proof. Follows from Lemma 4.2.

Proposition 4.2 shows that changes leading to more time being allocated to searching in

categories always lead to more time spent searching in old categories. As a result, the consumer

always first intensifies search in old categories before expanding search to new categories,

Propositions 4.1 and 4.2 highlight a clear difference between changes to the value of the

outside activity and the time constraint. Specifically, we get the opposite effect on the time

spent on the outside activity, depending on whether we are looking at the implications of a

change in the time constraint or the value of the outside activity.

Table 4.1 – Impact of changes to outside activity or time constraint

More search Less search

Worse outside More time Better outside Less time

Time spent searching (+) (+) (–) (–)
Time outside activity (–) (+) (+) (–)

Notes: Changes based on the assumption that t∗0 > 0 and t∗c > 0 for at least one category.

Table 4.1 summarizes the different cases. As the four cases are mutually exclusive, it is

possible to empirically differentiate the two different changes. Suppose we are able to observe

consumers shifting their time allocation following some events. Based on Table 4.1, it is now

possible to differentiate between the events shifting the value of the outside activity or changing

the time available to the consumer.

4.3.2 Category-specific changes

We now turn to category-specific comparative statics that allow us to predict how consumers

allocate search time between different categories. In our model, categories differ in three

aspects: (i) the need to buy an alternative, (ii) product heterogeneity, and (iii) the search

technology. For each of these three we show how respective changes lead to a different optimal

time allocation.

Proposition 4.3 shows that if the need to buy an alternative from a category increases, the

consumer will spend more time searching in that category. The need to buy an alternative

from a particular category enters our model through u0c, the category-specific utility when

not buy an alternative. If Δuc < 0, the need to buy an alternative increases as the consumer

becomes worse off when not buying any alternative from the category. The proposition further
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shows that the consumer also increases the time spent searching in a category if the mean of

the category’s utility distribution, denoted by μc, increases. Both results are intuitive and

proven with similar steps. However, note that the two changes have different implications for

consumer welfare: a decrease in u0c leaves the consumer worse off, whereas an increase in μc

makes the consumer better off.

Proposition 4.3. If t∗c > 0 and Δu0c < 0 or Δμc > 0, the consumer increases the time

allocated to searching in c.

Proof. From (4.3), we get Δb′c(t) =
∑∞

k=0G
′(k, t)Δec(k), where Δec(k) denotes the change

in E [max {u0c, U1c, . . . , Ukc}] due to the change in the utility distribution. Clearly, Δec(k) >

0∀k > 0 for Δu0c < 0 or Δμc > 0. Because Δec(k) increases in k for these changes (see

Appendix 4.A.1), A1 implies that an increase in t shifts probability mass to larger values of

Δec(k). Hence, Δb′c(t) > 0∀t ≥ 0 holds and the optimality conditions imply the result.

The case of a mean-shift in the utility distribution is also of special interest because it

can reflect a shift in the average price within a category. Specifically, Proposition 4.3 implies

that if there is an increase in the average price of a category, a price-sensitive consumer

optimally reduces the amount of time spent searching in the category. This result allows

us to highlight cross-category search effects in Section 4.3.4. The result also highlights a

difference to sequential search models. With non-sequential search, a (positive) mean-shift

over-proportionally increases the expected marginal benefit of later searches, i.e. the expected

marginal benefit of the 10th search increases by more than the one of the first search.10 In

contrast, with sequential search, the expected number of searches directly results from the

probability of not continuing beyond a specific number of searches, which remains unaffected

by a mean-shift (see Moraga-González and Sun, 2022).

Proposition 4.3 does not impose additional assumptions on the utility distribution to de-

rive the result. For changes in the utility distribution that capture changes in product het-

erogeneity, similarly general results are difficult to obtain. Nonetheless, the proof of Propo-

sition 4.3 reveals conditions that guarantee that a change in the utility distribution increases

the consumers’ search time in the respective category. Let Δec(k) denote the change in
10The proof of Proposition 4.3 relies on the fact that Δec(k) increases in k. The same fact also leads to more

searches in standard non-sequential search models for sufficiently large changes in the utility distribution.
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E [max {u0c, U1c, . . . , Ukc}] due to the change in the utility distribution. Any FOSD shift in

the utility distribution satisfies Δec(k) ≥ 0∀k > 0. The next proposition provides two condi-

tions under which the consumer increases the time spent searching in the category.

Proposition 4.4. If t∗c > 0 and the utility distribution changes such that Δec(k) ≥ 0∀k >

0, the consumer increases the time spent searching in c if (i) Δec(k) increases in k or (ii)

G′
c(k, t

∗
c) ≥ 0∀k > 0.

Proof. If Δec(k) increases in k, A1 immediately implies that Δb′c(t) > 0∀t ≥ 0. Given

Δec(k) ≥ 0∀k > 0 and Δec(0) = Δu0c = 0, G′
c(k, t

∗
c) ≥ 0∀k > 0 implies Δb′c(t∗c) > 0.

The first condition is the one used in Proposition 4.3 to prove the result. Whereas the

condition holds for FOSD shifts in various utility distributions, showing that it holds for any

distribution proves difficult. The second condition instead imposes a restriction on the search

technology. It requires that, at the optimal time allocation prior to the change, a marginal

increase in the time spent searching does not decrease the probability of getting any positive

number of alternatives. This condition depends on the original time allocation. If t∗c is large, an

increase in t can reduce the probability of revealing only one alternative such that G′(1, t∗c) < 0,

which violates the condition. Besides, it requires that G′(0, k) < 0, hence at t∗c , the probability

of revealing zero alternatives cannot be zero.

Changes to search technologies happen regularly. For example, online retailers may make

it easier or harder to search in a particular category. To analyze how changes to the search

technology of a category affect the time allocation, we define a “search technology improve-

ment” in category c as a FOSD shift in the distribution of Nc: for the same amount of time, it

becomes more likely to reveal more alternatives. A simple way to analyze such FOSD shifts is

through a category-specific parameter. Specifically, we assume that the consumer maximizes∑c̄
c=1 bc(rctc) + b0(t0). This simple specification captures search technology improvements

through the parameter rc. If rc increases, the same amount of time reveals (in expectation)

more alternatives.

Search technology improvements have two opposing effects. We highlight the two effects in

the Poisson case with the added category-specific parameter rc, which is equivalent to assuming

Nc ∼ Poisson(rct). With this specification, rc is the average arrival rate of alternatives, given

the consumer spends t minutes searching in category c.
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The derivative of the marginal search benefits with respect to the arrival rate then is given

by (see Appendix 4.A.2)
∂b′c(rct)
∂rc

=
b′c(rct)
rc︸ ︷︷ ︸
>0

+
t

rc
b
′′
c (rct)︸ ︷︷ ︸
<0

(4.6)

The first term highlights that each additional minute spent searching in c becomes more

valuable with an increase in the arrival rate: each minute gets a larger probability of adding

more searches. The second term has the opposite sign. It stems from the decreasing marginal

returns to searching an additional alternative. For a given time spent searching in c, an increase

in the arrival rate means that for the same amount of time more alternatives are searched.

Hence, spending more time to get more searches adds less benefits.

Either of the two effects can outweigh the other and the effect of an improvement in the

search technology is ambiguous. As a result, the consumer may either spend more or less

time searching in a category following an improvement in the search technology; the consumer

either reallocates time from other activities to exploit getting more searches per minute, or

instead saves the time to search in other categories.11

4.3.3 Relation to per-search cost search models

The ambiguity in how search technology improvements affect the optimal time allocation

reveals a difference to standard search problems (McCall, 1970; Weitzman, 1979; Chade and

Smith, 2006). In standard search problems, consumers pay a fixed utility cost per search.

Hence, an improvement in the search technology will be introduced as lowering the cost per

search. This always leads to more search. With a search technology improvement, the effect is

not obvious; it can be optimal to reduce the time spent searching, which, in turn, could lead

to fewer searches. Our next result shows that this does not happen.

Proposition 4.5. The expected number of searches for a category increases with a search

technology improvement.

Proof. Let b̃c(t̃
∗
c) denote the search benefits at the new optimal allocation, where an im-

provement in the search technology implies that for any given t, there are more searches (in
11As the marginal search benefits determine how much time the consumer allocates to spending in category c,

the sign of the change in bc(t) at t = t∗c determines whether the consumer in- or decreases t∗c when the search
technology in category c improves. Calculating the optimal time allocation numerically, it is possible to come
up with examples for either of the two cases.
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expectation) after the change and that b̃c(t) > b(t)∀t. For t̃∗c > t∗c we immediately get that

there are more searches. With t̃∗c < t∗c , fewer searches would imply that b̃′c(t̃∗c) > b̃′c(t∗c) > b′c(t∗c)

holds, which contradicts that b̃′c(t̃∗c) ≤ b′c(t∗c) must hold at the new optimum.

Proposition 4.5 shows that even if an improvement in the search technology decreases the

time spent searching, the expected number of searches still increases. Hence, improving the

search technology is similar to reducing search costs in standard search models; it always helps

the consumer reveal more alternatives.

Because it also enters as a search cost reduction, standard search models predict the same

effect if the opportunity costs of time decrease. Our framework instead allows for a more

nuanced analysis. Specifically, a change in the opportunity costs of time differs from a search

technology improvement as it either affects the time constraint, the value of the outside activity,

or the value of searching in other categories. As Sections 4.3.1 and 4.3.2 highlight, the effects

of these changes are not the same.

With our framework, we can also further analyze what is required for search costs to be

fixed, as assumed by standard search models. Clearly, a fixed cost per search requires constant

opportunity costs of time. However, once we have more than one category, the opportunity

costs of time are not constant.12 Instead, they increase in the time spent searching in a

category because of decreasing marginal search benefits in other categories. Moreover, in

many settings, the benefits of doing something other than searching are also not constant in

the time spent doing them. For example, the first few minutes of checking social media will

be more beneficial than the additional minute after having already spent an hour aimlessly

browsing through some curated feed. The first half hour of reading the news on an day gives

interesting stories to explore, whereas after some time it becomes less and less likely to see a

new and interesting article.

Even if the opportunity costs of time are constant, it is not sufficient to guarantee that the

costs per search are fixed. For example, if Nc ∼ Poisson(rct), the expected number of searches

is linear in t and increases at a rate of rc. Hence, the costs per search are constant as long

as the opportunity costs of time are. In contrast, if Nc ∼ Bernoulli(min{log(1 + t), 1}), the

expected number of searches increases at a decreasing rate in t. Hence, even if the opportunity
12The exception is highlighted in Section 4.3.5.
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costs of time are constant, the costs per search are not: in expectation, the time required for an

additional search increases in the time spent searching. Hence, the search technology, together

with the opportunity costs of time, determine whether the costs per search are independent

of the number of searches.

Overall, this highlights that the expected costs per search are only constant if both the

opportunity costs of time and the increase in the expected number of searches remain con-

stant. Either with multiple categories, decreasing marginal benefits for the outside activity

or increasing difficulty of adding another alternative to the consideration set, the utility costs

per search increase in the number of searches.

Besides search costs not being fixed, our framework also deviates from standard search

models in that it has a time constraint. In a time allocation model, this constraint is natural

as time is limited; a day only has so many hours. Translating this constraint into a more

standard search model means restricting the number of searches. Such a constraint is not

considered in standard search models. Instead, consumers are able to take as many searches

as they like.

Introducing such a constraint has an immediate implication for standard search models:

even if we make searching costless, consumers will not get fully informed. Instead, they only

search up until they hit the constraint.

This again differs in our model because it allows a more nuanced analysis of search cost

reductions. In the case with a single category, making the outside activity worthless implies

that the consumer spends all the available time searching for products. As with standard

search, the time constraint then implies that the consumer does not get fully informed. In

contrast, if we instead increase the arrival rate to infinity, the consumer searches all alternatives

in essentially no time. Hence, the consumer gets fully informed despite the time constraint.

4.3.4 Cross-category search effects

Many retailers offer products from multiple categories. For example, Amazon offers products

across categories such as “Pet Supplies” and “Beauty & Personal Care”. Often, these categories

are priced separately because the categories are not thought of as substitutes or complements.

As we now show, consumers allocating time can create cross-category search effects such that

pricing categories independently does not maximize profits.
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In our framework cross-category effects arise because of the time constraint: time spent

searching in one category is time lost in another one. Hence, seemingly independent product

categories become related when analyzing them through the lens of a time allocation problem.

For example, because our consumer really needs winter boots, he has no time to search for a

better squash racket.

This mechanism has implications for cross-category pricing. To highlight the mechanism,

we focus on the following simple setup: there is a unit mass of consumers that are searching

in two categories, A and B. The two categories differ only in the price of products. To

introduce prices, we assume that products are horizontally differentiated: given a consumer’s

price sensitivity α, purchasing product j in category c yields utility

ucj = −αpc + εcj (4.7)

Both categories are offered by a monopolist retailer who decides on category-specific prices.

Specifically, for each category c, the consumer sets a single category-specific average price pc.

Marginal costs are assumed to be zero.

We assume that consumers have rational expectations such that they correctly anticipate

the category-specific average price in each category. However, even correctly anticipating the

category-specific average prices, consumers still need to spend time to reveal the idiosyncratic

match values εcj . We assume that these match values are independent draws from a distribu-

tion with cumulative densities FA = FB. Hence, a change in the average price of category A,

set by the monopolist, acts like a mean-shift in the distribution of UAj . We further assume

that the other assumptions from Section 4.2.1 are satisfied.

The demand for category A is given by

DA(pA, pB) =
∑
k

GA(t
∗
A(pA, pB), k)P (max {UA1, . . . , UAk} − αpA ≥ u0c) (4.8)

where t∗A(pA, pB) denotes the optimal time consumers allocate to searching in category A,

given average prices. The demand for category B can be specified similarly.
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The monopolist’s profits as a function of category prices then are given by

π(pA, pB) = DA(pA, pB)pA +DB(pA, pB)pB (4.9)

where the category-specific demand Dc implicitly depends on the optimal time allocation

t∗A(pA, pB). The first order condition then reveals the effects of the time allocation, both

within and across the categories:

∂π(pA, pB)

∂pA
= pA

∂DA(pA, pB)

∂t︸ ︷︷ ︸
>0

∂t∗A
∂pA︸︷︷︸
≤0

+ pB
∂DB(pA, pB)

∂t︸ ︷︷ ︸
>0

∂t∗B
∂pA︸︷︷︸
≥0

+DA(pA, pB) + pA
∂DA(pA, pB)

∂pA
(4.10)

Whereas a price increase makes consumers spend less time searching in a category (see Propo-

sition 4.3), more time is freed up to search in the other category. This is reflected in the second

term. At the profit-maximizing prices, the above derivative needs to equal zero. Hence, (4.10)

immediately implies that the profit-maximizing price increases through the cross-category

search effect; because consumers substitute to spending time searching in B and not just to

spending time in the outside activity, a price increase in A leads to an increased demand in

B, dampening the demand decrease in A.

As a result, pricing the two categories like substitutes will increase the monopolists profits.

This suggests that pricing categories independently is not profit maximizing, even if categories

are seemingly unrelated.

A similar logic applies when studying different categories as different product markets;

lower prices in one market can divert search from another, unrelated market. Nonetheless, the

search literature builds on search models that do not consider the decision to search across

categories (McCall, 1970; Weitzman, 1979; Chade and Smith, 2006). Instead, these models

implicitly abstract from cross-category search effects: because the consumer pays a fixed cost

per search, searching in each category would be treated as a separate search problem as long

as there is no restriction on the number of searches.13 Using our framework, we now derive
13The search for multiple products as considered by (e.g. McAfee, 1995; Gatti, 1999; Zhou, 2014) does not involve

the decision of which categories to search. Instead, consumers only decide when to stop searching, where each
search reveals multiple products.
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4.3. COMPARATIVE STATICS AND IMPLICATIONS

conditions under which disregarding cross-category effects does not impose any limitations.

4.3.5 When can we ignore cross-category effects?

To derive conditions under which cross-category effects can be ignored, we focus on the

marginal cross category effect, which we define as the effect of a marginal change (e.g. price

increase) in one category on the time allocation to another category. Proposition 4.6 provides

two separate cases under which there are no marginal cross-category effects.

Proposition 4.6. There are marginal cross-category effects unless at least one of these cases

applies:

(i) b0(t) = νt and t̄ is sufficiently large so that b′c(t∗c) ≤ ν for all c

(ii) t∗c = 0 and b′c(0) < λ for all c > 0 except one

Proof. Case (i): If b0(t) is not linear in t, then b′c(t∗c) = λ is not equal to a constant. Hence, a

change in b′c(t∗c) for some c implies changes to the optimal time allocation to other categories.

Whenever t̄ is not sufficiently large such that b′c(t∗c) = λ > ν, λ again is not constant. Hence,

whenever one of the two conditions is not satisfied, there are cross-category effects unless case

(ii) applies. When both conditions are satisfied, we have b
′
c(t

∗
c) = ν = λ∀c such there are no

cross-category effects; only changes to the value of the outside activity and within the same

category affect the time allocation to category c. Case (ii): The conditions imply bc(t
∗
c) < λ

for all c with t∗c = 0. This precludes cross-category effects because a marginal change in λ

leaves t∗c = 0 unaffected. If the case does not apply, there are cross-category effects because λ

again is not constant, except if case (i) holds.

The first case requires two conditions: the marginal benefit of the outside activity needs

to be constant, and the consumer must have enough time to search in all categories so that

increasing the available time will have no effect on how much time is spent searching. Together,

these two conditions guarantee that the opportunity costs of time, i.e. the Lagrange multiplier,

is a constant and independent of the category specifics at the optimal time allocation. Hence,

the time allocation for each category does not depend on the time allocation of any of the other

categories. The second case requires that time is allocated only to one category besides the

outside activity. Hence, Lemma 4.2 applies, where marginal changes in any of the categories

have no effects on the other categories.
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CHAPTER 4. TIME ALLOCATION AND MULTI-CATEGORY SEARCH

Using Proposition 4.6, we can judge whether cross-category effects may be important in

some settings. If either of the two cases applies, cross-category effects can be safely ignored

without affecting the analysis, at least at the margin. If neither case applies, then there are

cross-category effects. To give an example, suppose we model a consumer’s search for winter

boots as searching across online retailers. If the consumer does not spend any time searching

in categories other than winter boots – for example because there is no need to buy a product

from another category– case (ii) applies and there are no cross-category effects. If the consumer

instead spends time searching in multiple categories and time is limited, neither case applies

and there will be cross-category search effects.

Proposition 4.6 only applies to marginal cross-category effects. However, if we additionally

assume that the respective case still applies after any relevant change, it generalizes to more

substantial changes.

4.3.6 Consumer welfare effects

Consumer welfare effects in our model can be readily obtained by applying the Envelope

theorem. For example, the effect on consumer welfare from a change in the need of buying a

product in a category, u0c, can be obtained as follows:

∂u(t∗)
∂u0c

=
∂bc(t

∗
c)

∂u0c
≥ 0

Hence, decreasing the need to buy a product in any category (increasing u0c), has a positive

welfare effect (unless t∗c = 0). Similarly, we can show that a positive FOSD-shift in the utility

distribution of, or improving the search technology in any category has positive welfare effects.

4.3.7 Relationship to budget allocation problems

There are various parallels of our time allocation to the well-known budget allocation problem.

Both problems are faced by a consumer deciding how to allocate a limited resource, either time

or money. By assuming that the consumer has unit demand in each category, we abstract

from the budget constraint and focus only on the time and search aspects in consumers’

decision making. This is in line with the wider search literature and justified in many settings.

Specifically, when choosing from product categories that are relatively inexpensive, budget
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4.3. COMPARATIVE STATICS AND IMPLICATIONS

limitations usually are not important.14 For example, many consumers will not face a binding

budget constraint when deciding whether to buy a 1$ or 2$ chocolate bar. Time constraints,

however, can still be important in such cases. If comparing and deciding which one to buy

takes some time, the consumer may end up considering only one or none of the two chocolate

bars. Hence, the decision which chocolate bar to buy (if any) will be driven by time, as opposed

to budget considerations.

Under some restrictions on the utility functions, the mathematical formulations of the

problems are also equivalent. Specifically, in both problems the consumer solves a separable

concave optimization problem. As a result, we can also apply the Envelope theorem to perform

consumer welfare analysis. Moreover, our conditions for the non-existence of cross-category

search effects parallel conditions that guarantee the feasibility of partial equilibrium analysis

with quasi-linear utility functions.

The budget constraint in standard budget allocation problems is based on prices. With our

time allocation problem, we do not have prices for the categories. However, we can introduce

variables akin to prices by reformulating the problem. Recall the case with a rate rc, such

that search benefits are given by bc(rct). If we adjust the decision variable to t̃ = rct, the

constraint becomes
∑c̄

j=1 pct̃c + t0 = t̄ with pc = 1
rc

. With this formulation, improving the

search technology of a category is equivalent to decreasing the “price” of searching in the

category.

We also obtain a parallel to Giffen goods based on this reformulation. Recall that in Section

4.3.2, we showed that improving a search technology can lead to less time spent searching in

a category. For the reformulated problem, this implies that a price decrease can lead to less

time spent searching. Hence, categories where this is the case parallel Giffen goods, where a

price decrease leads to a lower consumption of the good.

Besides these parallels, there is is also an important difference related to the underlying

assumptions. Specifically, the functions that enter the mathematical problem derive their

shape from different assumptions. In our framework, we assume unit demand in each category,

and impose conditions on the distribution of the number of searches to guarantee a concave

shape of search benefits. In a budget allocation problem, however, the consumer decides on
14Note that the price sensitivity in (4.7) can be derived from a general model with quasi-linear utility and a

sufficiently large budget.
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CHAPTER 4. TIME ALLOCATION AND MULTI-CATEGORY SEARCH

quantities, and the respective concave shape is derived from assumptions on the underlying

preferences.

4.4 Generalizations

In the baseline multi-category search model, we exclude any interdependence of categories;

within a category, products are substitutes, across categories, they are independent. This

restriction has allowed us to focus on comparative statics and implications of formulating search

as a time allocation problem. We now extend the analysis in three different directions. First,

we show how complementarities across categories influence the consumer’s time allocation.

Second, we study how the problem can be reformulated to include different search technologies.

Finally, we consider shopping costs that we interpret as a minimum amount of time that needs

to be spent in a category to be able to buy an already known alternative.

4.4.1 Complementarities across categories

In various settings, alternatives from different categories complement each other. For example,

playing squash requires both a racket and a ball, a good wine is more enjoyable with good

food, and a nice-looking pair of winter boots looks even better when paired with the right

pants. We now show how such complementarities can be introduced, and how they affect a

consumer’s time allocation.

Complementarities across categories imply that the value of purchasing a product in one,

is influenced by the value of purchasing a product in another category. In our framework, we

can implement this logic by introducing a utility function that links categories. To highlight

the influence of categories being interdependent, we focus on the case with three categories

(c̄ = 3), two of which having complementarities. Formally, we specify the following functional

form

υ(S) = φ
(
ūk11 , ūk22 , ūk33

)
= π(ūk11 , ūk22 ) + ūk33 (4.11)

where ūkcc = max
{
u0c,maxj∈{1,...,kc} ujc

}
. Hence, we continue to maintain the assumption of

unit demand. To capture that better alternatives make the consumer better off, we assume

that π() is strictly increasing in both arguments. Besides, to focus on the effect of the comple-

mentarity we assume that, otherwise, all three categories are identical, i.e. Gc(k, t) = G(k, t)
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and Ūk
c = Ūk = max {u0, U1, . . . , Uk} for all c. Finally, we also keep the other assumptions

from the baseline model, allowing us to continue using standard techniques and focus on

interior solutions.

In this adjusted model, the consumer continues to maximize expected utility by solving

the problem in (4.2). The difference is that the objective function now is given by

EU(t) =
∞∑

k1=0

∞∑
k2=0

G(k1, t1)G(k2, t2)E
[
π(Ūk1 , Ūk2)

]

+

∞∑
k=0

G(k, t3)E
[
Ūk
]
+ b0(t0) (4.12)

When categories are independent with π(ūk1 , ūk2) = ūk1+ ūk2 and identical, the optimality

conditions (4.5a) - (4.5c) directly imply that it is optimal to spend the same amount of time

in each category (t∗1 = t∗2 = t∗3). With complementarities introduced through the function π(),

this is not the case. Instead, the optimal time spent searching in the third category generally

differs from the time spent searching in the first category (t∗3 
= t∗1 = t∗2).15

Whether the consumer spends more or less time in the first two categories depends on how

the complementarity is shaped. Proposition 4.7 provides results for two cases, where the sign

does not depend on the distribution of the number of alternatives that will be discovered.

Proposition 4.7. In the simple model with complementarities, an interior solution requires

t∗1 = t∗2 > t∗3 (t∗1 = t∗2 < t∗3) if π(u1, u2) ≥ u1 (π(u1, u2) ≤ u1) for all realizations (u1, u2) in the

relevant support, and with strictness for at least one pair.

Proof. An interior solution requires the following to hold:

∞∑
k1=0

∞∑
k2=0

G(k2, t
∗
2)

[
E

[
∂G(k1, t

∗
1)

∂t
π(Ūk1 , Ūk2)− ∂G(k1, t

∗
3)

∂t
Ūk1

]]
= 0 (4.13)

If t∗1 = t∗3, the conditions imposed on π() then directly imply that the left-hand side is strictly

larger (smaller) than zero. Hence, for (4.13) to be satisfied, t∗1 and t∗2 need to be smaller

(larger) than t∗3.

The two cases in Proposition 4.7 impose conditions on the difference π(u1, u2)− u1.16 To
15The first two categories being identical still means that time is equally allocated to the two of them.
16The relevant support is all values in the support of the distribution of max {u0c, Ujc}.
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discuss the conditions, we now interpret the difference ujc−u0c as the consumers’ willingness-

to-pay for product j from category c, net of the price that is already factored in ujc. This

interpretation is valid under the usual partial equilibrium assumptions.17

For the first case, two conditions need to apply. First, not buying an alternative in the

second category does not decrease the willingness-to-pay for alternatives from the first category.

This ensures that π(u1, u2) − u1 ≥ 0 holds independent of u2. Second, buying a better

alternative in the second category increases the willingness-to-pay for an alternative from the

first category. This ensures that π(u1, u2)−u1 > 0 for at least some pair (u1, u2). For example,

not buying winter boots may not make buying new pants less attractive, but buying a better

pair of winter boots would increase the value of buying a (matching) pair of pants.18

For the second case, the two conditions are reversed: not buying an alternative in the

second category decreases the willingness-to-pay in the first, and buying a better-matched

alternative in the second category does not increase the willingness-to-pay for products from

the first. For example, buying the best-matching squash racket will have little value unless

indoor shoes required to play on the court are also found and bought.19

In both cases, the stated conditions ensure that the complementarity either strictly in- or

decreases the marginal benefits of searching in either of the first two categories. This allows to

determine whether the time spent searching in these categories in- or decreases. For cases where

the sign of π(u1, u2)−u1 depends on the realization u2, it is difficult to determine the direction

of the effect on the marginal search benefits in general. Nonetheless, the two cases provide

the intuition that continues to apply: if finding a relatively good match in a complementary

category increases the willingness-to-pay, and it is sufficiently likely that such good matches can

be found, then the consumer will spend more time searching in complementary categories. In

contrast, if not finding a good alternative in a complementary category substantially decreases

the willingness-to-pay and it is difficult to find good matches, then it will be optimal to spend

less time searching in complementary categories.
17The assumptions are that utility is linear additive in a composite outside good that is known prior to search,

and that budget is not limited or sufficiently large to guarantee interior solutions.
18π(u1, u2) = u1 + u2 + λu1u2 with u01 = u02 > 0 and λ > 0 is an example that guarantees that both conditions

hold.
19This can be modeled, for example, as two categories being akin to perfect complements with π(u1, u2) =
min{u1, u2}.
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4.4. GENERALIZATIONS

4.4.2 Generalized search technologies

In some settings, consumers not only decide which categories to search in, but also where

to search for alternatives. For example, consumers may decide to spend time browsing in

different stores that offer alternatives from multiple categories. Settings such as these can be

accommodated in our framework by allowing search technologies to reveal alternatives from

multiple categories.

Specifically, we can model a joint distribution of the number of revealed alternatives in

each category, given the amount of time spent on a search technology. Denote this joint

distribution by N c = [N1, . . . , Nc̄], with the corresponding probability mass function G(k, t) =

PNc|t (N1 = k1, . . . , Nc̄ = kc̄), with k = [k1, . . . , kc̄]. An element in the vector t now is the time

spent in the respective search technology, that influences the distribution of N c through the

probability mass function G(k, t). Note that, with search technologies, the length of the vector

t does not need to be equal to c̄; there can be fewer or more search technologies available than

the number of categories. Hence, unlike in the baseline model, the decision of how much time

to spend searching in a category is not equivalent to the decision of how much time to spend

on a search technology.

With these generalized search technologies, the consumer continues to solve the optimiza-

tion problem (4.2), with an adjusted objective function given by

EU(t) =
∑
k1

· · ·
∑
kc̄

G(k, t)E

[
c̄∑

c=1

Ūkc
c

]
+ b0(t0) (4.14)

By imposing additional restrictions, it is then again possible to guarantee that EU(t) is well-

behaved, so that standard techniques can be applied to characterize the optimal time alloca-

tion.

4.4.3 Shopping costs

In our search model, it requires time to search for and evaluate products. However, it does

not take any time to buy a product; once an alternative is added into the consideration set

through search, no further time is needed to make a decision. When consumers are shopping

for products, however, it often takes time to buy a product even if it is known prior to search.

In this case, the time costs incurred to buy an alternative from a product category are a
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combination of shopping and search costs.

To show how shopping costs can be introduced in our framework, we now consider an

example of grocery shopping. Suppose a consumer is going to a supermarket and needs to

buy one product from each of various categories like yogurt, spices, pasta etc. From past

trips to the supermarket, the consumer already knows alternatives in each of the categories.

These known alternatives can be modeled through the value of not buying a newly discovered

alternative: a large u0c indicates that the consumer already knows a good alternative in the

respective category.

To buy a known or unknown alternative from a category, the consumer needs to spend

time walking to the respective category in the supermarket. Hence, there is a fixed time

cost of buying an alternative from a category. If the consumer buys the known alternative,

no additional time is spent. However, evaluating other alternatives from the same category

requires additional time. In this grocery store setting, we can also assume that there is no

outside activity; the consumer has allocated a fixed amount of time to do shopping, and we

focus on the decision to allocate the time across different categories.

As the consumer needs to buy an alternative from every category considered,20 the fixed

time costs are simply subtracted from every category, and enter the time constraint. The

resulting search problem is almost equivalent to (4.2). The only differences are the interpre-

tation of u0c and an adjustment to the time constraint. Specifically, denoting the shopping

costs for category c by tsc, the time constraint becomes
∑c̄

c=0 tc = t̄−∑c̄
c=1 t

s
c.

In this setting, conditions as the ones from Section 4.2.3 continue to characterize the

optimal time allocation. Hence, it is straightforward to show that reducing the time required

to buy an alternative, i.e. the shopping cost, leads to more time spent comparing alternatives.

Note however, that if the consumer does not need to buy an alternative from all categories,

the problem becomes more involved and may be difficult to solve in general.21

20This is equivalent to assuming that the value of not buying any alternative from the categories considered in
the model is sufficiently small so that the consumer always pays the fixed time costs, whereas it is sufficiently
large for categories outside the model so that the consumer would never pay the fixed shopping cost and buy
alternatives from them.

21In this case, the consumer not only decides how much time to spend searching in each category, but also which
categories to pay the fixed cost for to buy an alternative. We conjecture that in the case where categories
differ only in the need to buy an alternative and the options known prior to search, a marginal improvement
algorithm as in Chade and Smith (2006) determines the optimal time allocation.
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4.5 Conclusion

This paper introduces a search model for settings where consumers search across multiple

product categories. By modeling a consumer’s decision as a time allocation problem, we obtain

a tractable framework that allows to readily derive how much a rational consumer searches

across categories, while remaining flexible as to how exactly consumers use the allocated time

to search within a category.

Whereas we model consumers’ choices under limited information and limited time, we

abstract from a third limitation: limited budget. In this sense, we follow the broader search

literature that focuses on partial equilibrium analysis. Whereas this focus is justified to study

many settings, extending the model to additionally incorporate a budget constraint provides

a promising avenue for future research. In such a generalized framework, a consumer would

decide (i) how many units to buy for each revealed product, and (ii) how much time to

spend searching in each category. Whereas limited budget implies that the number of units is

limited, limited time and information restrict which products can be bought in the first place.

Combining these limitations then allows to additionally study how cross-category effects arise

from budget limitations, and how they relate to the cross-category search effects highlighted

in this paper.

Another interesting avenue for future research is to study equilibrium outcomes across

different categories when firms influence the utility distribution by setting prices. By charac-

terizing the demand side, our paper provides a first step towards this goal.
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Appendix

4.A Additional derivations
4.A.1 Δe(k) decreases in k

We first show that for Δu0c = u′0c − u0c < 0, Δe(k) increases in k. Write the expectations as:

e(k) = E [max{u0c, U1c, . . . , Ukc}] = u0c +

∫ ∞

u0c

1− Fc(z)
kdz

∂e(k)

∂u0c
= Fc(u0c)

k

Because Fc(u0c) ∈ [0, 1], Fc(u0c)
k decreases in k, which implies Δe(k) increases in k if Δu0c <

0. Similarly, for a change in the mean of the utility distribution, μc, we get

∂E
[
μc +max{u0c − μc, Ũ1c, . . . , Ũkc}

]
∂μc

= 1− F̃c(u0c − μc)
k

where F̃c is the cumulative density of Ũjc = Ujc −μc. Hence, Δe(k) increases in k if Δμc > 0.

4.A.2 Poisson distribution
We show that the Poisson distribution satisfies the three restrictions on the probability mass
functions: (i) Stochastic dominance, (ii) concavity, (iii) differentiability. Moreover, we derive
the expression for the marginal change of the arrival rate used in Section 4.3.2.

The probability mass function of the Poisson distribution Nc ∼ Poisson(rct) is given by

Gc(k, t) = exp(−rct)
(rct)

k

k!
(4.15)

and twice differentiable, hence satisfies (iii). To show stochastic dominance (ii), consider an
independent random variable Z ∼ Poisson(rcδ). Because P(Z < 0) = 0, Nc+Z stochastically
dominates Nc. Now note that setting δ = t′ − t, we get N ′

c = Nc +Z = Poisson(rct
′). Hence,

N ′
c stochastically dominates Nc.

Finally, to show that the resulting expected search benefits are concave in t, we first simplify
notation. Let
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4.A. ADDITIONAL DERIVATIONS

e(k) ≡ E [max{u0c, U1c, . . . , Ukc}] (4.16)
Δe(k) ≡ e(k)− e(k − 1) (4.17)

denote the expected benefit and marginal benefit of k searches. Combining this with the
probability mass function, we can write the expected search benefits , and the first and second
order derivatives as

bc(t) = exp(−rct)

∞∑
k=0

(rct)
k

k!
ec(k) (4.18)

b′c(t) = rc exp(−rct)

[ ∞∑
k=0

(rct)
k

k!
Δec(k + 1)

]
> 0 (4.19)

b′′c (t) = r2c

∞∑
k=0

Gc(k, t)(Δec(k + 2)−Δec(k + 1)) < 0 (4.20)

The inequalities show that bc(t) is strictly concave in t, hence (iii) is also satisfied. The
inequalities immediately follow from the fact that additional searches increase the expected
benefit, Δe(k) > 0∀k, but that this happens at a decreasing rate, Δe(k+2)−Δe(k+1) < 0∀k.

Expression (4.6) can be obtained by taking the derivative of (4.19) with respect to the
arrival rate:

∂b′c(t)
∂rc

=

∞∑
k=0

Gc(k, t)ec(k) + t

[
rc

∞∑
k=0

Gc(k, t)(Δec(k + 2)−Δec(k + 1))

]

=
b′c(t)
rc

+
t

rc
b
′′
c (t)

4.A.3 Bernoulli distribution
We show that the Bernoulli distribution with a success probability that depends on time
through a function ρ(t) with ρ′(t) > 0, ρ′′(t) < 0 on the relevant domain, satisfies the three
restrictions on the probability mass functions: (i) Stochastic dominance, (ii) concavity, (iii)
differentiability.

The probability mass function of the Poisson distribution Nc ∼ Bernoulli(ρ(t)) is given
by

Gc(0, t) = 1− ρ(t) Gc(1, t) = ρ(t) (4.21)

which is twice differentiable as long as ρ(t) is, hence satisfies (iii). ρ′(t) > 0 then immediately
implies stochastic dominance (ii). Using again the notation from (4.16), we can write the
expected search benefits as

bc(t) = u0 + ρ(t)(e(1)− u0) (4.22)

Hence, strict concavity (ii) immediately follows from ρ′′(t) < 0.
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