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An important goal of simulation is optimization of the corresponding real system. We focus on simulation

with multiple responses, selecting one response as the variable to be minimized while the remaining responses

satisfy prespecified thresholds: so-called constrained optimization. We treat the simulation model as a black

box. We assume that the simulation is computationally expensive; therefore, we use an inexpensive meta-

model (emulator, surrogate) of the simulation model. A popular metamodel type is a Kriging or Gaussian

process (GP) model (GP is also used in supervised learning). For optimization with a single response, this

GP is used in efficient global optimization (EGO) (and also in Bayesian optimization, which is related to

active learning).We develop an innovative EGO variant for constrained deterministic optimization where the

optimal solution lies on one or more binding (input or output) constraints; therefore, we use the Karush-

Kuhn-Tucker (KKT) conditions. We combine these conditions with the expected improvement (EI) criterion,

which is popular in EGO. To evaluate the performance of our variant, we apply it to three popular examples

(namely, one mathematical and two engineering design problems); these examples show promising numerical

results when compared with other recent methods.

Key words : Kriging, efficient global optimization, Karush-Kuhn-Tucker conditions
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1. Introduction

Computer simulation (briefly, simulation) is a type of mathematical modeling that is popular in

many scientific disciplines, in both research and practice; also see Calma et al. (2021). Simulationists

often treat their model as a black box ; i.e., they observe only the input/output (I/O) of the model.

Mathematically speaking, a simulation model with vector input x and scalar response (output) w

defines a complicated and implicit I/O (or transfer) function w(x).

Specific simulation models may have different goals, such as optimization, prediction, sensitivity

analysis (SA), and uncertainty quantification (UQ); see Kleijnen (2015, 2021). We focus on con-

strained nonlinear single-objective optimization problems. In general, this type of problem can be

formulated as follows:

min
x

w0(x)

wh′(x)≤ ch′ (h′ = 1, . . . , t− 1)

l≤x≤u. (1)

The t > 1 outputs wh (h = 0, ..., t−1) are assumed to be deterministic. In our notation, w0 is the

goal variable, while wh′ (h′ = 1, ..., t−1) are the constrained outputs (with upper bounds ch′). The

input space is (in general) k-dimensional, and box constrained (i.e., it consists of continuous vectors

x= {x1, ...xk}; l and u are k-dimensional vectors with the lower and upper limits of the inputs). We

assume that the simulation is expensive: i.e., it requires a lot of effort (either in terms of computation

time, or cost) to obtain w(x) for a given x. In such settings, it is common to approximate the I/O

functions through a simpler and explicit function, called a metamodel (or approximation, emulator,

surrogate). A popular metamodel type, a.o. in supervised learning, is a Kriging model (named after

Krige, a South-African mining engineer) or Gaussian process (GP) model: these GPs are used in

the prominent efficient global optimization (EGO) method (see the seminal paper by Jones et al.

(1998), which is a sequential statistical method that is also used in Bayesian optimization (BO)

and is related to active learning). The term EGO occurs mainly in the Operations Research field,
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while the other terms are more common in the Computer Science/Machine Learning field. EGO

uses an acquisition function or infill criterion to iteratively select the next input combination

to be simulated. The most popular criteria are expected improvement (EI) and probability of

improvement (PI); a related criterion is the knowledge gradient in BO. The original publication

by Jones et al. (1998) did not account for output constraints (only for box constraints on the

inputs); later on, various authors have formulated variants on EGO (commonly using a suitable

variant of the original EI criterion), e.g. for constrained optimization, multi-objective optimization,

admissible or excursion sets, robust optimization, etc. (see the many references in Kleijnen (2015)).

We focus on problems as shown in Eq. (1), where at least one of constraints (either input or

output constraints) is binding (or ”active”) in the optimum. Practical examples are abundant,

for instance in the field of hydrology (Pourmohamad and Lee 2022), chemical engineering (Carpio

et al. 2018), and aeronautical design (Tao et al. 2020, Bagheri et al. 2017). To solve this type

of problem, various authors have proposed different methods. We develop an innovative method

that combines the EI criterion with the Karush-Kuhn-Tucker (KKT, or briefly Kuhn-Tucker, KT)

conditions to guide the search for better solutions. Even though these conditions are well known

in nonlinear mathematical optimization (see Boyd (2009)), this paper presents (to the best of our

knowledge) the only EGO variant that explicitly uses KKT conditions to guide the search process.

Like other EGO variants, our method is a heuristic (i.e., it does not guarantee to find the global

optimum). We also compare the results of our method and some alternative methods, found in the

recent literature.

The remainder of this article is organised as follows: in Section 2, we discuss the literature on

Kriging-based constrained simulation optimization. Section 3 gives an overview of the basics of

Ordinary Kriging and Efficient Global Optimization. Section 4 discusses the KT conditions, while

Section 5 explains the proposed KT-EGO algorithm. In Section 6, we present the results of our

algorithm on three test problems: a toy problem originally put forward by Gramacy et al. (2016),

and two mechanical engineering problems. Section 7 summarizes the conclusions.
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2. Literature review: Kriging-based constrained simulation optimization

In this section, we place our work in the context of the literature on finding a global solution for an

(expensive, deterministic) constrained nonlinear single-objective black-box optimization problem,

as specified in Eq. (1). We focus on solution methods that use a metamodel; namely, a GP or

Kriging metamodel, as is common in BO. Carpio et al. (2018) multiplies the PI for the goal variable

with the product of the (t− 1) probabilities of feasibility (PFs) for the constraints. The method

treats all output constraints as statistically independent. Similar methods are discussed in Bagheri

et al. (2017) and Tran et al. (2019).

The algorithm presented in Tao et al. (2020) contains 3 phases, each having its own infill criterion:

phase I tries to estimate the feasible region with high accuracy, phase II aims to further improve

the global accuracy of the objective function in the feasible region, and phase III exploits the region

around the optimal solution. Pourmohamad and Lee (2022) combines GPs with barrier function

(BF) or interior point methods, which aim to ensure that the boundary of the constraint space (or

feasible area) is never crossed. Our method, however, tries to estimate which input combinations lie

near that boundary, using a cosine function to estimate to which extent the KKT conditions hold

(evidently, some combinations may turn out to be infeasible when simulated). The BF methods

outperform the statistical filter (SF) methods in Pourmohamad and Lee (2020) and the augmented

Lagrangian (AL) methods in Gramacy et al. (2016), which also combine EGO with MathOpt.

Picheny et al. (2016) further improved the AL approach.

3. Basics of Ordinary Kriging and EGO

Throughout this paper, we use the notation in Kleijnen (2021). For a given arbitrary output

function h (h= 0...t−1), Ordinary Kriging (OK) assumes the following (meta)model (we leave out

the subscript h to improve readability):

y(x) = µ+M(x) (2)
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where x is a combination of the k simulation inputs xj (j = 1, ..., k), µ is the constant mean E[y(x)],

and M(x) is a realization of a zero-mean covariance stationary GP. This GP is fully defined by its

mean function and its covariance function σM :

M(.)∼GP(0, σM(., .))

The covariance function σM(., .) is assumed to exhibit spatial correlation: i.e., the outcomes M(xi)

and M(xj) will tend to be similar when xi and xj are closer to each other in the input space.

Note that we distinguish between the output function of the simulation model and the metamodel:

strictly speaking, we may only write y = w if and only if OK gives a fully valid metamodel of the

underlying simulation model.

To estimate (or train) the metamodel, we need to have a set of I/O observations. So, let X

denote the n× k matrix containing the input locations of n training sites, and let w denote the

n-dimensional column vector containing the (deterministic) simulation output under study at these

training sites X. Assuming a valid metamodel, we can determine the best linear unbiased predictor

(BLUP) y(x∗) at a new input location x∗ using these I/O data (X,w). More specifically, this

BLUP is a weighted average of the outcomes in w:

y(x∗) = γ′w (3)

with

γ =Σ−1
M σM(xi,x∗)

In this expression, ΣM is the n×n matrix containing the pairwise covariances between the outputs

at the training locations, which we denote by:

σM(xi,xi′) =Cov[y(xi), y(xi′)])

with i, i
′
= 1, ..., n. Analogously, ΣM(x∗) is the n× 1 vector containing the entries σM(xi,x∗) =

Cov(y(xi), y(x∗)) for all training inputs i= 1...n. The pairwise covariance between two outputs is

thus determined by their input locations. Sometimes, it is convenient to switch to the correlation
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matrix R = (ρi;i′), so R = τ−2ΣM ; analogously, ρ(xi,x∗) = τ−2σM(xi,x∗) (with τ 2 the variance

of the metamodel outputs y). There are several types of correlation functions; see (e.g.) Rasmussen

andWilliams (2006), pp. 80–104. In simulation, however, the most popular function is the separable,

anisotropic Gaussian correlation function

ρ(d,θ) =
k∏

j=1

exp
(
−θjd

2
j

)
= exp (−

k∑
j=1

θjd
2
j) with θj ≥ 0. (4)

where dj = |xi;j −xi′;j|. As the value of θj approaches 0, the value of the correlation function

increases to 1, implying that the y values are highly correlated (so their values vary slowly) along

that dimension. Conversely, when θj approaches ∞, the correlation function drops to 0, and the y

values may vary quickly along that dimension.

By definition, the resulting BLUP in Eq. (3) has minimum variance and is unbiased. Assuming

a valid metamodel, the OK predictor at the novel input location x∗ thus yields

y(x∗) = γ
′w= µ+ΣM(x∗)

′Σ−1
M (w−µ1n). (5)

and the mean squared prediction error (MSPE) of y(x∗) is

MSPE[y(x∗)] = τ 2 −ΣM(x∗)
′Σ−1

M σM(xi,x∗)+
[1−1′

nΣ
−1
M ΣM(x∗)]

2

1′
nΣ

−1
M 1n

. (6)

When the metamodel is valid (so y(x∗) is unbiased), MSPE[y(x∗)]= s2[y(x∗)].

We let ψ denote the vector with the (2 + k) Kriging (hyper)parameters (µ, τ 2, θ1, ..., θk)
′. In

practice, this ψ is unknown, and is commonly estimated through its maximum likelihood estimator

(MLE), ψ̂ = ψ̂(X,w). To obtain estimates of y(x∗, ψ̂) and s2[yx∗, ψ̂)], we plug ψ̂ into (5) and (6).

We ignore the bias caused by the nonlinearity of ŷ(x∗, ψ̂) , and the bias in ŝ2[ŷ(x∗, ψ̂)] (which is

known to underestimate the true variance; to obtain an unbiased variance estimator, bootstrapping

could be used, see Kleijnen and van Beers (2021). Obviously, x∗ in ŷ(x∗, ψ̂h) affects only Σ̂M(x∗)—

not µ̂ and Σ̂−1
M , which are determined by (X,w). So, we may rewrite (5) as

ŷ(x∗, ψ̂) = µ̂+ Σ̂M(x∗)
′ĉ with ĉ=Σ̂−1

M (w−µ̂1n), (7)
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which we shall use in the next subsection. Note that we estimate a separate OK model per simula-

tion output, so we obtain t such models; we do not use multivariate Kriging (also called co-Kriging ;

see, for instance, Gramacy et al. (2016), Pourmohamad and Lee (2020), Sadoughi et al. (2018)).

Our approach simplifies the analysis; moreover Kleijnen (2014) reports that both approaches may

give similar results. It is well known that OK yields an exact interpolator: i.e., at the already

observed input locations xi (i= 1...n), ŝ2[ŷ(xi, ψ̂] = 0.

4. KT-conditions in constrained optimization

In constrained nonlinear mathematical optimization, the KT conditions are first-derivative (or

first-order) necessary conditions for a solution x∗) to be optimal, provided that some regularity

conditions are satisfied (these conditions also involve Lagrangian multipliers; see again Gramacy

et al. (2016)). Assuming that all output functions of our problem (see Eq. (1)) are differentiable,

we formalize the KT conditions as follows:

−∇0(x∗) =
∑

h′′∈Aλ(x∗)

λh′′(x∗)∇h′′(x∗)+
∑

g′′∈Aµ(x∗)

µg′′(x∗)∇g′′(x∗)

with λh′′(x∗)≥ 0 and µg′′(x∗)≥ 0. (8)

In this expression, the k-dimensional vector ∇0(x∗) = (∂w0/∂x1, ..., ∂w0/∂xk)
′|x∗ denotes the gra-

dient of the goal function w0(x) at point x∗. Likewise, ∇h′′(x) denotes the k-dimensional vector

with the gradient of the binding output constraint function wh′′ at x, while the notation ∇g′′ is

the k-dimensional vector containing the gradient of the binding input constraint g′′. The notation

Aλ (x∗) refers to the set with all indices (or subscripts) h′′ of the binding output constraints, while

Aµ (x∗) refers to the set with the indices g′′ of the binding input constraints at x∗. Note that the

KT conditions imply that at least 1 constraint (output or input constraint) is binding. Obviously,

gradients of non-binding constraints play no role in Eq. (8). If min in Eq.(1) is replaced by max,

−∇0(x∗) in Eq.(8) is replaced by ∇0(x∗).

Eq.(8) can be interpreted as a linear regression model, where the explanatory variables are given

by the matrix ∆ = (∇h′′ ,∇g′′), and the dependent variable is given by −∇0 (we omit the argument
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(x∗) to avoid cumbersome notation). This gives the LS estimator ν̃ (in the remainder of this text,

the notation (̃.) denotes a LS estimator, while the notation (̂.) denotes a MLE estimator):

ν̃ = (λ̃
′
, µ̃′)

′
= (∆′∆)−1∆′(−∇0) (9)

We estimate the gradient vectors in (8) and (9) through their MLE estimators. Applying basic

calculus, we can prove that (7) gives (also see Chen et al. (2021)):

∇[ŷ(x∗, ψ̂)] =∇[Σ̂M(x∗)
′ĉ]. (10)

Assuming the Gaussian covariance function, for instance, this gradient has the following k elements

where ĉj is element j (j = 1, .., k) of ĉ:

∂ŷ(x∗, ψ̂)

∂x∗;j
=−2τ̂ 2θ̂j{Σn

i=1ĉi(x∗;j −xi:j ) exp[Σ
k
j′=1 − θ̂j′(x∗;j′ −xi:j′ )

2]} (11)

These partial derivatives are readily calculated in DACE. We then obtain the following LS estimator

for the goal gradient:

−∇̃0(x∗) =
∑

h′′∈Aλ(x∗)

λ̃h′′(x∗)∇̂h′′(x∗)+
∑

g′′∈Aµ(x∗)

µ̃g′′(x∗)∇̂g′′(x∗)

with λ̃h′′(x∗)≥ 0 and µ̃g′′(x∗)≥ 0. (12)

To quantify the validity of this LS model, we use cos[−∇̂0(x∗), −∇̃0(x∗)]) (see, e.g., Kolman

(2008), p. 73), which equals:

cos[∇̂0(x∗), ∇̃0(x∗)] =
∇̂0(x∗) • ∇̃0(x∗)

||∇̂0(x∗)|| × ||∇̃0(x∗)||
. (13)

Ideally, the two vectors coincide, yielding a cosine equal to 1 (implying that the LS model gives

a perfect fit, or the coefficient of determination—denoted by R2—equals 1). In general, though,

this will seldom be the case; in our algorithm, we require only that these two vectors point in the

same direction if x∗ lies near a stationary point; i.e., we require that 0 ≤ cos[∇̂0(x∗), ∇̃0(x∗)] ≤

1 (obviously, values closer to 1 are preferable).
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Algorithm 1 KT-EGO algorithm

Initialize ϵ= 0.001, αLB = 0.01, iter= 0

Step 1: Initial design: Use LHS to sample the n× k matrix X, containing the n initial design

combinations. Use X as input for the given simulation model, to obtain the t output vectors wh

(h = 0, ..., t− 1).

Step 2: Initialize new iteration: Set α= 0.2, iter= iter+1.

Step 3: Determine current best goal value: Determine the best goal value (w0; min) among

the feasible simulated points: w0; min = min1≤i≤n(w0(x̂i)), ∀i :wh′(x̂i)≤ ch′ (h′ = 1, ..., t−1). If none

of the simulated points is feasible, set w0; min = ∞.

Step 4: Estimate ordinary Kriging models: Use the simulation I/O data (X,wh) (h = 0, ...,

t−1) to estimate t univariate OK models, yielding the MLE of the OK parameters ψ̂h = ψ̂(X,wh)

(h = 0, ..., t− 1).

Step 5: Search for infill point: Estimate the infill point x̂o, i.e. the point that maximizes the

infill criterion ÊI0(x)× cos[∇̂0(x), ∇̃0(x)], with ÊI0(x) as in Eq.(15), and cos[∇̂0(x), ∇̃0(x)] given

by Eq.(13).

Step 6: Check end of iteration: If the optimization in Step 5 found a feasible infill point x̂o

with ÊI0(xo)> ε×w0; min, go to Step 7; otherwise, go to Step 8.

Step 7: Update I/O data: Use x̂o as input for the simulation model; update the matrix X and

the t output vectors wh (h = 0, ..., t− 1) with the new I/O information. Return to Step 2.

Step 8: Try to reduce α: If α/2≥ αLB, then replace α by α/2 and return to Step 5. Otherwise,

go to Step 9.

Step 9: Estimate final optimum: Optimize the Kriging estimate ŷ0 directly, subject to the

requirement that the upper bounds of the 90% confidence intervals on the t−1 constraint estimates

need to be negative (ŷh′(x) + z1−α/2 ∗ s[ŷh′(x)], with α = 0.2, h′ = 1...t− 1). Simulate the input

vector found (xest). If xest is feasible, the estimated optimum goal value equals min(w0; min,w0;est)

(with w0; min as determined in Step 3). Otherwise, this value equals w0;min.
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5. Efficient global optimization and Kuhn-Tucker conditions: KT-EGO
algorithm

In this section, we present a variant of EGO that takes into account the Kuhn-Tucker conditions.

The steps of the algorithm are outlined in Algorithm 1.

In Step 1, we generate the initial design matrix X, containing n combinations of the k simula-

tion input combinations, and use it as input in the simulation model to obtain the n (t-variate)

simulation outputs wn;h (h = 0,..., t− 1). A popular choice—based on Loeppky et al. (2009)—is

n = 10k; yet, in our experiments, we opt to use the smaller design size proposed in Tao et al.

(2020), which sets n =min(5k, (k + 1)(k + 2)/2) for k ≤ 6, and n = 5k otherwise. We opt for an

LHS design, as this is the most commonly used space-filling design in the Kriging literature. Step 2

then initializes the values of α (which determines the confidence interval width in Eq.(16), see Step

5 below), and the iteration counter at the start of a new iteration. Step 3 determines the current

best point among the (feasible) simulated points: we let w0; min denote its goal output. If none

of the current simulated points is feasible, we set w0; min = ∞. In Step 4, we use the simulation

I/O data (X,wh), to obtain the estimated parameters of the t univariate OK metamodels: ψ̂h =

(µ̂h, τ̂
2
h , θ̂1;h, ..., θ̂k;h)

′. In our experiments, we used Gaussian correlation functions. Step 5 is the key

step of our algorithm: here, we select the next point to be simulated (xo; also referred to as the

infill point) by maximizing the following novel infill criterion:

ÊIKT(x) = ÊI0(x)× cos[∇̂0(x), ∇̃0(x)]. (14)

The first factor refers to the well-known expected improvement criterion, which can be estimated

from the Kriging information (see, e.g., Jones et al. (1998)):

ÊI0(x) = (w0;min − ŷ(x))Φ

(
w0;min − ŷ(x)

s[ŷ(x)]

)
+ s[ŷ(x)]ϕ

(
w0;min − ŷ(x)

s[ŷ(x)]

)
. (15)

This criterion balances local search (or exploitation, in regions with high uncertainty s[ŷ(x)]) and

global search (exploration, in regions with promising values for ŷ(x)). The second factor quantifies
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the validity of the KKT conditions (see Eq. (13)). To determine this factor, we need to estimate

which are the binding output constraints in any novel point (detecting binding input constraints is

trivial). We estimate an output constraint h′ to be binding if the following condition holds:

|ŷh′(x)− ch′ |
s[ŷh′(x)]

≤ z1−α/2 (16)

where z is the (1− α/2) percentile of the standard normal probability distribution (so z1−α/2 =

Φ−1(1−α/2)), and α is a prespecified small probability (e.g., in our experiments, we initialize α

equal to 0.20, which gives z0.90 ≈ 1.2816). So, essentially, we estimate a constraint to be binding at

an arbitrary point x if the two-sided (1−α) confidence interval on the predictor includes the right-

hand side of the constraint (see the problem formulation in Eq.(1)). Note that [ch′− ŷh′(x)]/s[ŷh′(x)]

(Studentized slack of any arbitrary output constraint h′) is scale-free (so each constraint may have

its own measurement unit).

Maximizing the criterion in Eq. (14) is a difficult task, as its response surface over the search

space is usually highly multimodal. To find xo, we applied MATLAB’s pattern search (hereafter

referred to as PS ); evidently, other heuristic search algorithms can also be used. To reduce the

probability of PS getting trapped in a local optimum, we restart the algorithm multiple times,

with different starting points. Step 6 checks whether the optimal infill point returned by PS has a

sufficiently high value for ÊI0 (in our experiments, we require it to be strictly larger than 0.1% of

the current best goal value); if so, the infill point is simulated, and its I/O data are used to update

(X,w) and re-estimate the Kriging models (Step 7), after which the algorithm returns to Step 2

to start a new iteration. The simulation in Step 7 may reveal that the suggested infill point is

actually infeasible; although it doesn’t lead to an update of w0; min in that case (Step 3 in the new

iteration), such point still provides useful information for the re-estimation of the Kriging models

(Step 4). It may happen, though, that Step 6 reveals that no suitable infill point has been found

(e.g., because the optimization in Step 5 was unable to find any point with binding constraints, or

because the expected ÊI0(x) in all these points is too small to reach the required threshold). In that

case, we decrease the value of α by a factor 2 (Step 8): this increases the width of the confidence
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intervals in Eq.(16), causing the search to classify more points as potential infill points (i.e., having

at least one binding constraint). The algorithm continues to iteratively add infill points, until a stop

criterion is met. In our experiments, this happens when the algorithm doesn’t find a suitable infill

point in Step 6, and further decreasing α would result in α violating a (user-defined) lower bound

αLB (in our experiments, we set αLB = 0.01). Once the stopping criterion is met, the algorithm

proceeds to Step 9: here, the Kriging estimate of the goal function ŷ0 is optimized directly, subject

to the requirement that the upper bounds of the 90% confidence intervals on the t− 1 constraint

estimates need to be negative (ŷh′(x) + z1−α/2 ∗ s[ŷh′(x)], with α= 0.2, h′= 1...t− 1). Again, this

can be done using pattern search, or another heuristic optimization approach. We denote the

resulting estimated optimum combination by xest. Simulating this combination shows whether this

estimated optimum is feasible: if so, the final optimum goal value returned by the algorithm equals

min(w0; min,w0;est) (with w0; min as determined in Step 3). Otherwise, it equals w0;min. Evidently,

in this final optimum, the slack should be virtually zero for at least one constraint.

6. Numerical results

In this section, we discuss the results obtained when applying our KT-EGO algorithm to a toy

problem originally put forward by Gramacy et al. (2016) (see Section 6.1), and two well-known

mechanical engineering problems, i.e., the tension-compression spring problem (Section 6.2) and

the I-beam design problem (Section 6.3). The mechanical engineering field offers many popular

examples of constrained optimization in deterministic simulation; we chose these two examples

since the I/O functions are explicitly known, and they have a small number of (continuous) inputs.

We compare the performance of our KT-EGO algorithm (on each of these problems) with the

performance of alternative algorithms published in the literature. To that end, we run each problem

for a given number of macroreplications (each macroreplication starts with a different initial LHS

design; that design is then used by each of the algorithms, to achieve a fair comparison).
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6.1. Toy problem

This toy problem was originally put forward in Gramacy et al. (2016), and has also been used as

a test problem in Pourmohamad and Lee (2020, 2022). It is formalized as follows:

min
x

w0(x) = x1 +x2

w1(x) =
3

2
−x1 − 2x2 −

1

2
sin[2π(x2

1 − 2x2)]≤ 0

w2(x) =−3

2
+x2

1 +x2
2 ≤ 0

0≤ xj≤ 1 (j = 1,2). (17)

Fig. 1 displays the feasible region of this problem by the dotted area between w1(x) = 0 (highly

nonlinear and nonconvex curve) and w2(x) = 0 (circle with radius
√

3/2, partly displayed in upper

right corner). It also displays three iso-curves (red dashed lines) for w0 (all input locations on a

given iso-curve have the same w0). The points A through E are all stationary points; they satisfy

the KKT conditions. Among these, points D and E are local maxima, while points A through C are

localminima. More specifically, xA ≈ (0.1954,0.4044)′ with w0(xA) ≈ 0.5998, xB ≈ (0.7197,0.1411)′

with w0(xB) ≈ 0.8609, and xC=(0,0.75)′ with w0(xC) = 0.75. So, the global optimum is w0(xA).

We run our algorithm starting from an initial LHS design of 6 points (as k= 2, n= (k+1)(k+

2)/2; see Section 5). In each iteration i, the pattern search is restarted from ns = 20 starting points,

consisting of the infill points obtained in the ns most recent iterations; when less than ns infill

points are available (i.e., when i−1<ns), the remaining restarting points are generated by means

of an LHS design.

Fig. 2a illustrates the search process of the algorithm in the first macroreplication. The left pane

shows the infill points selected during the search, with the numbers indicating the corresponding

iteration (where 0 refers to the best point present in the initial design; feasible infill points are

shown as a full circle, infeasible points as an empty circle). The right pane shows the evolution

of the best goal value (w0;min) found during the search in terms of the total number of expensive

evaluations performed (n0;min, which includes the initial design evaluations). Fig. 2b shows the
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Figure 1 Toy example with inputs x1 and x2, goal output w0, constraints w1 and w2, and special points A through

F.

same, for macroreplication 2. As discussed above, the algorithm stops when it is unable to find a

next infill point that has a sufficiently high value for ÊI0(x), and α= 0.0125, so it cannot further

be decreased; see Algorithm 1.

It is clear that the algorithm focuses quickly on the area of the global optimum. We performed m

= 50 replications of our algorithm on this toy problem; each macroreplication samples a statistically

independent initial LHS design. Each replication uses the same initial value (0.20) for α. Fig. 3

shows the boxplot of the best found goal values at the end of the 50 macroreplications (left pane),

and the number of expensive evaluations performed by the algorithm (right pane).

Obviously, the final best found goal value cannot be lower than the true global minimum w0(xA)

≈ 0.5998). Our algorithm obtains an estimated mean objective value of 0.6100, with a median

of 0.6000 (see also Table 1). The boxplot for the number of expensive evaluations shows a mean

number equal to 18.58, with an estimated median of 18. Altogether, KT-EGO gives a quite precise

estimator of the global minimum, within a very small number of iterations.

Finally, Fig. 4 and Table 1 compare the numerical results of our KT EGO algorithm with those

obtained with three recent alternatives for constrained Bayesian optimization: (i) Pourmohamad
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(a) Macroreplication 1

(b) Macroreplication 2

Figure 2 Illustration of the infill points selected in the different iterations of the algorithm (left pane) and the

evolution of the best goal value obtained in terms of the number of expensive evaluations (w0;min in

terms of n0;min; right pane) in macroreplications 1 and 2 of the toy problem.

and Lee (2022), (ii) Carpio et al. (2018), and (iii) Tao et al. (2020). While Tao et al. (2020) uses

an initial design of n= 6 points, Pourmohamad and Lee (2022) and Carpio et al. (2018) both use

n= 20; to facilitate comparison, we thus also add the results for KT EGO with n= 20 to the figure.
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Figure 3 Boxplots of the final best goal values found (left pane) and the number of expensive evaluations per-

formed (right pane), for 50 macroreplications, for the toy problem.

Table 1 Comparison of numerical results for the toy problem

Algorithm Best goal value Nr of expensive evaluations

Mean Median Std Mean Median Std

n= 20

KT-EGO 0.6012 0.6000 0.0077 29.84 29.00 2.8881

Pourmohamad and Lee (2022) 0.6036 0.6030 0.0028 60 60 0

Carpio et al. (2018) 0.6027 0.5998 0.0046 40.46 40.5 5.0314

n= 6

KT-EGO 0.6100 0.6000 0.0361 18.58 18.00 4.4175

EKCO, Tao et al. (2020)* 0.5998 0.5998 4.24E-05 32.12 32 3.4561

* The algorithm by Tao et al. (2020) reports the Kriging output of the estimated Kriging optimum (which

we refer to as xest, Step 9 of our algorithm) as the final optimum.

The barrier function (BF) methods, presented in Pourmohamad and Lee (2022), have proven to

outperform the statistical filter (SF) methods in Pourmohamad and Lee (2020), and the augmented

Lagrangian (AL) methods in Gramacy et al. (2016). These BF, SF, and AL methods combine EGO

with mathematical optimization, as KT-EGO does. More precisely, BF methods try to optimize

the goal function while taking care that the boundary of the feasible area is never crossed. Three

BF methods were put forward in Pourmohamad and Lee (2022); at our request, Pourmohamad



17

Figure 4 Comparison of final best goal values found, and total number of expensive evaluations performed, for

KT EGO (with n= 6 and n= 20 initial design points), and the algorithms by Pourmohamad and Lee

(2022; n= 20), Tao et al. (2020; n= 6), and Carpio et al. (2018; n= 20).

applied the best of these to the toy problem. His experiment uses an initial LHS design with 20

points (as KT-EGO does) and 40 additional iterations, in 50 macroreplications. Fig. 4 shows that

our KT-EGO algorithm is able to obtain a mean and median outcome for the best goal value that is

slightly better than the one obtained by Pourmohamad and Lee (2022). The (25%,75%) percentiles

also compare favorably. KT-EGO obtains this outcome within a substantially smaller number of

expensive evaluations. We conclude that our method shows a favorable trade-off between quality

and speed, compared to the one put forward by Pourmohamad and Lee (2022).

The algorithm of Carpio et al. (2018) uses a dynamic stop criterion, based on the constrained

probability of improvement PIc: the algorithm stops when PIc reaches the threshold value 10−3 or

10−4. At our request, Carpio applied this method to the toy problem, using 50 macroreplications,

with threshold PIc = 10−4. This resulted in a median of 40.50 expensive evaluations. Our method

is slightly better w.r.t. the mean goal value, and similar w.r.t. the median; it again compares

favorably in terms of speed.

The 3-phase EKCO algorithm by Tao et al. (2020) uses n = (k+1)(k+2)/2 = 6 initial design

points. At our request, Tao applied this method to the toy problem, using 50 macroreplications.
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Note that the algorithm by Tao et al. (2020) reports the Kriging output of the estimated Kriging

optimum (which we refer to as xest, Step 9 of our algorithm) as the final optimum; the results are

thus ”optimistic”, as the algorithm does not simulate this optimum to check its feasibility. The

EKCO algorithm gives a median goal value equal to 0.59979 (the scale of Fig. 4 is such that it

does not show the variation in this final goal value, which is very small). Yet, the estimated median

number of expensive evaluations is 32, which is significantly higher than the median for KT-EGO.

Note that the smaller design size n= 6 leads to substantial decrease in the number of expensive

evaluations required for KT-EGO, without significantly impacting the quality of the solution.

In summary, we can conclude that KT-EGO is very efficient (as measured by number of expensive

evaluations required) and has similar effectiveness (as shown by the final best goal value found)

when compared with the three alternative methods —albeit with some outliers. Some outliers

correspond with final solutions that end near point C (which does satisfy the KT conditions, so it is

a stationary point, but not a global optimum). Furthermore, in some macroreplications, our method

rejects solutions near point A because it estimates these solutions to be infeasible; consequently,

it continues its search and ends with solutions that are further off, resulting again in an ”outlier”.

Altogether, we expect that our method quickly gives a solution close to the true optimum, but

occasionally it does not.

6.2. Tension-compression spring design problem

The spring design problem (see Fig. 5) is discussed in (a.o.) Kazemzadeh-Parsi (2014), and Tao

et al. (2020). In this problem, the inputs are the number of active coils N (x1), the wire diameter

d (x2), and the mean coil diameter D (x3). The goal is to minimize the weight of the spring (w0),

subject to constraints on the minimum deflection of the spring caused by the axial loading (w1),

the maximum shear stress (w2), the surge frequency (w3), and the outside diameter of the spring

(w4), while keeping the inputs within the box constraints.

We base our mathematical model on Tao et al. (2020) (Supplement, Problem 16):

min
x

w0(x) = (x1 +2)x2x
2
3
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Figure 5 Tension-compression spring design problem.

w1(x)=1− x3
2x1

71,875x4
3

≤ 0

w2(x) =
4x2

2 −x2x3

12,566(x2x3
3 −x4

3)
+

2.46

12,566x2
3

− 1≤ 0

w3(x)=1− 140.54x3

x2
2x1

≤ 0

w4(x) =
x2 +x3

1.5
− 1≤ 0

2≤ x1 ≤ 15,0.25≤ x2 ≤ 1.30,0.05≤ x3 ≤ 0.20. (18)

This problem has a very small feasible area: sampling 100,000 points using an LHS with midpoints

and evaluating these with the true constraint functions wh′(x) (h′ = 1, ...., 4) in (18), we estimate

it to be approx. 9.7% of the total experimental area.

Most publications using this test problem only report the final goal value; Kazemzadeh-Parsi

(2014) (Table 6) is one of the few that also gives the input location of the optimum (x̂o ≈

(11.25950,0.35770,0.05173)), so we take this as the reference optimum. Note that x̂o satisfies the

input constraints, with x̂o;3 = 0.05173 close to its lower bound 0.05. This solution yields w0 ≈

0.01269; w1 ≈ −0.0012, w2 ≈ 0.0000, w3 ≈ −4.0464 and w4 ≈ −0.7270: all output constraints are

thus satisfied, with w2(x̂o) being binding.

Given k = 3, we start with an initial LHS design of n= (k+1)(k+2)/2 = 10 points; again, we

perform 50 macroreplications, each time starting from an independent LHS design. Fig. 6 illustrates



20

Figure 6 Best found goal value in terms of the number of expensive evaluations, for the first five macroreplications

of the spring problem.

that many infill points sampled at the beginning of the algorithm turn out to be infeasible (this is

shown only for the first 5 macroreplications; the first parts of the curves are horizontal). Yet, as

KT-EGO learns the I/O behavior of the model, the OK metamodels improve, resulting in feasible

infill points (with improving goal values) in the later iterations.

The boxplots in Figure 7 show that, after 50 macroreplications, the mean best found goal value

equals 0.0154 (this mean is biased upwards due to 1 outlier; the median best goal value found

equals 0.0134). The average number of expensive evaluations required amounts to 40.36 (again

due to the single outlier), with a median of 32 expensive evaluations (including 10 initial design

evaluations). Comparing these results with the results of the EKCO algorithm by (Tao et al. 2020),

which show an average best found goal value approximately equal to 0.01267 (with a median of

0.01267), and an average number of expensive evaluations of 92.5 (median equal to 97), we can

conclude that our algorithm again compares favorably on speed, while the median best found goal

value remains quite good; occasionally, outliers may again occur. Recall also that the algorithm by

Tao et al. (2020) reports the Kriging output of the estimated Kriging optimum (which we refer to

as xest, Step 9 of our algorithm) as the final optimum, which differs from our approach.
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Figure 7 Boxplots of the final best goal value found (left pane) and the number of expensive evaluations required

(right pane), over 50 macroreplications, for the spring problem.

Figure 8 I-beam design problem(Wang 2003).

6.3. I-beam design problem

Wang (2003) presents the engineering model of the I-beam design (IBD) problem that we reproduce

in Fig. 8.

The objective is to minimize the vertical deflection of an I-beam, subject to cross-section area

and stress constraints under given loads (Tao et al. (2020), Supplement, Problem (18)):

min
x

w0(x) =
5000

(1/12)x3(x1 − 2x4)3 +(1/6)x2x3
4 +2x2x4[(x1 −x4)/2]2

s.t.w1(x)=2x2x4 +x3(x1 − 2x4)− 300≤ 0

w2(x) =
180,000x1

x3(x1 − 2x4)3 +2x2x4(4x2
4 +3x1(x1 − 2x4)

+
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+
15,000x2

(x1 − 2x4)x3
3 +2x4x3

2

− 6≤ 0

10≤ x1 ≤ 80,10≤ x2 ≤ 50,0.9≤ x3 ≤ 5,0.9≤ x4 ≤ 5. (19)

Using an LHS with 100,000 points, we estimate that the IBD example has a feasible area that is

less than 1% of the experimental area. Consequently, this is a challenging test problem for black-box

optimization algorithms.

KT-EGO uses an initial design of n = (k + 1)(k + 2)/2 = 15 points to analyze this problem.

Figure 9 illustrates the best found goal value in terms of the number of iterations performed,

for the first 5 macroreplications: in spite of the extremely small feasible region (in fact, none of

these macroreplications contained a single feasible point in their input design), our algorithm tends

to find a feasible solution within a very small number of iterations, and succeeds to improve on

this solution relatively fast. Figure 10 shows the boxplots for the best found goal value and the

number of expensive evaluations required, after 50 macroreplications. We obtain a mean goal value

of 0.0132, with a median of 0.0131. The mean number of expensive evaluations equals 52.02, with

a median of 43.5.The EKCO algorithm by Tao et al. (2020), Tables 3 and 7, gives a mean equal

to 0.01307 (and the same median) for the best goal value found, and a mean number of expensive

evaluations equal to 49 (with a median of 50).

7. Conclusions

We derived a novel method for solving constrained optimization problems in black-box deterministic

simulation. To the best of our knowledge, this algorithm is the first to combine the well-known

Expected Improvement criterion (which balances local exploitation and global exploration) with

Karush-Kuhn-Tucker conditions in a single infill criterion. To quantify how well these conditions

hold, our approach uses Ordinary Kriging and least squares regression. Pattern search was used in

the numerical experiments, to optimize this criterion. The results have shown that we may expect
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Figure 9 Best found goal value (w0;min) in terms of the number of expensive evaluations, for the Ibeam problem.

Figure 10 Boxplots of the final best goal value found (left pane) and the number of expensive evaluations required

(right pane), over 50 macroreplications, for the Ibeam problem.

our algorithm to give feasible solutions that are ”close” to the global optimum,requiring fewer

(expensive) simulations than competing algorithms do (we compared KT-EGO with three recent

alternatives for the toy problem, and with results of the EKCO algorithm by Tao et al. (2020)

for the spring and the I-beam problem). The algorithm sequentially samples the local area that

is estimated to be near the binding constraints: while the expected improvement factor tends to



24

select the next infill point in the infeasible area, the KKT factor successfully corrects this tendency.

The only downside observed is that, occasionally, our algorithm stops too early.
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