
Untying the knot between software-based platforms
and information infrastructures

Alain Sandoz
University of Neuchâtel, Switzerland
alain.sandoz@unine.ch

Léa Stiefel
University of Lausanne, Switzerland
lea.stiefel@unil.ch

Keywords: inter-organizational platform, information
infrastructure, shared functionality, service platform,
intermediation platform, interoperability platform

1. Introduction

Software-based platforms (Tiwana et al., 2010) are
important parts of information infrastructures (Hanseth
and Bygstad, 2021). There is however a knot that remains
to be untied to fully understand how platforms might drive
their emergence, structuring, and architecting. It appears
from the literature that all software-based platforms are
centrally controlled by an owner, and, therefore, that
information infrastructures (IIs) might be made up, at best,
of constructs or juxtapositions of centralized platform
ecosystems.

In this paper, we intend to untie this knot and free up some
space for research on alternatives to a world of IIs that
would be an archipelago of isolated island-states and of
federations of platforms under the control of public or
private entities jockeying for power.

The concept of platform-oriented infrastructure (Hanseth
and Bystad, ibid) describes what is to our knowledge the
most elaborate way of articulating large digital platforms
in order to reach higher infrastructural levels. Drawing on
the seminal work of Tiwana (2014) and on contributions
from many authors, the authors write, in relation to current
research on platforms: “Platform ecosystems and
infrastructures are similar in the sense that they include a
huge number of technological components as well as
developers and development organizations, … [but] there
are also significant differences: platform ecosystems are
all based on one specific architecture in terms of the split
between platform and apps, and a specific governance
structure where one single actor owns and controls the
platform while autonomous app developers control the
apps”. In his book review of (Tiwana, ibid), Kumar (2018)
summarizes: “The platform owner must achieve
autonomy of app developers and also integration of efforts
of individual contributors. These twin goals can be
achieved by an appropriate mix of decision rights, control
mechanisms, and pricing policies”.

We do not share this view. Software-based platforms may
be neither proprietary nor centrally controlled, and some
fundamental platforms of the Internet are. In this paper,
we identify such platforms, study their properties, and
discuss why they are interesting. We will consider only
inter-organizational interactions and how information
systems (ISs) of organizations interoperate on platforms.

Throughout the paper, we consistently use the terms
interact/interaction between organisations (i.e., module-
and IS-owners) and interoperate/interoperation between
information systems and/or modules and/or programs. We
purposely leave aside end-users (e.g., the private persons
that use apps running on their smart-phone) and the
corresponding platform ecosystems (e.g., Android OS or
Apple iOS). As our examples show, this does not restrict
the generality of our position: we do not pretend that
centrally controlled platforms should not be parts of IIs,
only that they should not be the only parts.

The paper is structured as follows. We first dissect the
definition of software-based platform from (Tiwana et al.,
ibid) and isolate its core shared functionality. We show
that TCP/IP is a software-based platform in this sense,
which is neither proprietary, nor centrally controlled. In
the following sections, we identify different forms of core
shared functionality and examine each form separately:
service platforms (by definition are centralized and
proprietary), intermediation platforms (by default, are
decentralized), interoperability platforms (by construction
are fully distributed). We then study the relationships
between platforms. We make a distinction between
platform- and information system- dependencies and
show that dependencies between platforms might be
relayed in different ways to the ISs that operate on these
platforms. Finally, we come back to the analogical world
and to our initial objective of untying the knot. We
conclude with a discussion of questions raised by our
perspective.

2. The core shared functionality of a platform

Tiwana et al. (ibid) defines a software-based platform as
“the extensible codebase of a software-based system that
provides core functionality shared by the modules that
interoperate with it and the interfaces through which they
interoperate”. This definition is central to their research
note on platform-centric ecosystems and is used
consistently in much of the research that has followed over
the years on the relationship between platforms and IIs.
We make three remarks on this definition: 1) the definition
does not specify whether the software-based system is
centrally controlled or not. The system could be
centralized, decentralized, or distributed; 2) it is the core
functionality that is shared, not the extensible codebase;
and 3) the interfaces are an integral part of the platform,
and the modules use them to interoperate with the
software-based system (i.e., not specifically with the IS of
some actor).

In all generality, modules are programs, and interfaces are
application programming interfaces (APIs). If 1) some
software-based system (e.g., the enterprise IS owned by
some actor) were 2) to provide a core functionality
(implicitly shared) to external modules, 3) together with
the APIs through which the modules would interoperate
with that IS (or more precisely with the services of the IS
that provide the functionality by executing the codebase),
then that “platform” would by definition be proprietary
and centrally controlled.

But, let’s imagine that a distributed software-based system
was to provide some core shared functionality to a
collection of modules, and that the owners of those
modules each controlled the API through which their
module would interoperate with that distributed system.
Provided (for consistency) that the codebase was
extensible, then that system would be a software-based
platform in the sense of (Tiwana et al., ibid).

If the component of the system that executes the portion
of the codebase used to implement the functionality for a
module, and its API, were both locally controlled by the
module’s owner; and if there was no central component in
the system, then the platform might be fully distributed,
and neither proprietary nor centrally controlled.

The codebase that implements the TCP/IP stack and that
is executed throughout the Internet by programs running
on computer systems from within information systems
(i.e., modules) is a software-based platform. Although
there are many implementations of TCP/IP, at any time
any computer system that is connected to the Internet (i.e.,
any IP-host) must locally operate at least one and control
its API. The codebase is extensible. New implementations
of TCP/IP can be easily produced (if only in higher
education engineering institutions) and extensions of the
underlying protocols, e.g., from IPv4 to IPv6, happen from
time to time, although this kind of transition proves
laborious on a socio-technical level (as shown by
DeNardis, 2009). The set of all IP-hosts is a (distributed)
software-based system that provides a shared core
functionality through this codebase. The functionality is
end-to-end controlled transmission of data between
programs that run on computer systems. It is shared by
these modules. The API through which a program
interoperates with this system is the TCP/IP system-call
interface of the computer on which it is executed.

The TCP/IP software-based platform is neither centrally
controlled, nor proprietary. A skilled programmer might
modify the portion of the codebase under his/her control,
i.e., hack the TCP/IP implementation of her/his Linux OS,
recompile the kernel, and run programs on the computer
system as before. Provided this version respects the
requirements of TCP/IP when it interoperates with other
IP-hosts, probably no one will notice. Note that the
codebase is not shared. What is shared is the core
functionality of TCP/IP, i.e., the generalized capability to
inter-operate conferred to any pair of programs running at
any given time on IP-hosts. TCP/IP is a low-level platform
that resides in the transport layer of the Internet, so low
that it remains under the radars. We will see higher level
examples, i.e. platforms in the application layer, later.

3. Service platforms

We call the type of platform usually understood in the
sense of (Tiwana et al., ibid) a service platform. The core
functionality shared by modules is a bundle of services
provided by a servicing information system (SIS) through
its APIs, i.e., interfaces that the SIS controls. Modules
external to the SIS use the services but do not directly
interoperate: data only flows between the SIS and each
module’s IS. Nevertheless, if its service provides a

functionality like transaction consistency (e.g., as for
SWIFT - Scott and Zachariadis, 2012), the SIS might relay
data between the client-ISs. So, depending on the service,
client organizations might not interact at all, or interact
only indirectly over the platform.

Although an IS might be a large and complex system, it is
usually considered to be operated under the control of a
single entity that owns it. The owner’s management sees
control of the IS as a strategic priority and drives it
according to principles of enterprise architecture
(Hanseth and Bygstad, ibid; Ross et al., 2006). The
platform ecosystem built on top of such a client-server
configuration will be centrally controlled by the service
provider; its software base and APIs will be proprietary.

Service platforms might be combined in several ways. The
SIS of one platform might use the shared functionality of
another SIS through the latter’s APIs, and vis versa. This
need not be restricted to a pair of service platforms: any
number of SISs can be connected by a network of direct
client-server relations. The network might be centralized,
or decentralized, or locally distributed. To articulate
service platforms in this way enables to develop platform-
oriented IIs in the sense of (Hanseth and Bygstad, ibid).
Multiple bilateral interconnections however stumble on
the problem of the standardization of data. This is a
research topic of its own (Hanseth et al. 1996; Poppe et al.,
2014; Sæbø and Poppe, 2015; Nielsen and Sæbø 2016).

Nielsen and Aanestad (2005) report on another type of
combination: two platform owners who dominated the
mobile networks in Norway collaborated to provide
services to the same third-party developers through the
APIs of their respective SISs. In this way they drove the
emergence of a unique market for mobile content-
providers and -consumers, that they together controlled.

For module owners, the client-server configuration can be
problematic, as the literature has shown for platforms like
Twitter (Bucher, 2013; Puschmann, 2013) or Facebook
(Helmond, 2015). In addition to functional, causal and
technical dependencies of a client-IS on the SIS, to control
the API gives the SIS owner indirect control on what a
module owner can do (control of activity), how (control of
semantics), and when (control of temporality) (Stiefel and
Sandoz, 2022). These master-slave dependencies apply at
the level of organisations. If they remain unbalanced, i.e.,
without clear incentives (business) or guarantees (through
governance), then the platform may be rejected (Stiefel, in
press).

4. Intermediation platforms

Another type of software-based PF is an intermediation
platform. These platforms provide support functionalities
to modules. They have dedicated interfaces, that might or
might not be controlled by module owners.

The implementation of the Internet internet layer, the
Internet Domain Name System, and blockchains are
intermediation PFs.

The Internet internet layer is composed of information
systems that implement the transport of TCP/IP packets
through routers and over physical links. Each router is

controlled by a unique Internet Service Provider (ISP).
Links are controlled by multiple ISPs using contracts.
Transport within this global physical network is a core
functionality provided by ISPs (i.e., enterprises, each
under the jurisdiction of one state) that are directly
connected point to point through local area networks
(LANs) or backbones using their own fully controlled
interfaces. The banal end-user Internet-host does not share
this core functionality with ISPs. It uses the transport
function only on the last link, i.e., on the LAN that connects
it to its ISP. Transport in the open Internet is only a support
function for communication between modules. The ISP
enterprises, possibly under the pressure of states or of big
customers, or on arbitrary grounds, can filter, slow down
or block out, decipher and read, etc. traffic that transits
through their routers (DeNardis, 2012). ISPs collectively
operate a private information infrastructure to manage
routing data for the transport of TCP/IP packets according
to their policies.

The Internet Domain Name System (DNS) (Mockapetris,
1983) provides name resolution in the Internet to
programs that need to access remote resources. For
example, any program that sends a request to a web server
must have resolved the domain name of the URL before
connecting to the server. The DNS is a software-based
platform composed of a decentralized hierarchy of servers
that resolve names in specific areas of the Internet, either
based on local knowledge (exact or cached) or by
forwarding unresolved requests down the hierarchy, and
responses back up. The DNS-PF is decentralized and some
of its nodes are controlled, in particular, by ISPs (using
other policies than for transport). Control and ownership
of the DNS are decentralized. The DNS support function
can be altered under the pressure of states and attacked in
many ways (Musiani, et al. 2016; in particular, Musiani,
2016; and Merrill, 2016).

Finally, blockchains (BCs) are software-based platforms
that provide the support functionality of ordered
consensus on block contents. Any module may submit
requests to a BC for the execution of code (smart contracts)
over APIs that it controls locally. But only blockchain-
nodes enforce consensus. Blockchains are in general non-
proprietary and control is decentralized. A blockchain
might be more or less open (from fully open, e.g., Bitcoin,
to permissioned with unequal voting rights, e.g.,
Hyperledger Fabric).

Modules that use an intermediation platform, do not
interoperate on the platform and module-owners do not
interact when they use it. The platform only supports some
possible interaction. Modules might suffer 1) from failures
of the support function; and in the case of blockchains, 2)
from unexpected temporal dependencies due to the total
ordering algorithm used by the BC nodes.

5. Interoperability platforms

The last type of software-based PF is an interoperability
platform. On these platforms, modules use the shared
function to interoperate directly, i.e., interoperability
platforms support direct interaction between module
owners. The global implementation of TCP/IP, seen as a

software-based system, is the most widespread
interoperability platform: it underlies the Internet
information infrastructure, and in fact any digital II. The
platform is a distributed peer-to-peer (P-2-P) system.
Every IP-host can communicate with any other over
TCP/IP, provided both agree (and the underlying support
transport function does not fail). Each IP-host owner is
free of its associations and can connect its IS to the
platform, or disconnect it, at any time. The IS fully
controls the execution of the codebase it uses and the APIs
that give access to this codebase.

TCP/IP lies in the intermediary transport layer of the
Internet, above the internet layer and below the
application layer. The latter contains many software-
based platforms, including interoperability platforms such
as FTP or HTTP. Even though these names designate
protocols, the codebase that implements these protocols,
the distributed system where this codebase is executed,
together with the APIs through which modules access
their local version of the codebase, compose software-
based platforms whose core shared functionalities enable
modules to interoperate directly.

In the examples above, the organizations that own and
operate an IS using the platform are peers. Their roles and
responsibilities with regards to the platform and its usage
are assumed in all freedom and perfectly symmetrical. It
is important to place these considerations at the
organizational level, because when the core shared
functionality is eventually used (e.g., for a file transfer via
the FTP platform), the technical relationship between
modules might be client-server. The role of being slave or
master, and the choice of the master, resp. slaves to answer
to, is however a choice of the peer, and it can be played in
the opposite direction anytime. The P-2-P concept
generally supposes that peers share a common resource,
e.g., files, computing power, bandwidth, etc. (Méadel and
Musiani, 2015; Musiani, ibid). On interoperability
platforms, the core shared functionality is the common
resource, not the data that transits (packets, files or
contents) when peer-ISs interoperate.

Based on fieldwork conducted in 2018 and 2019, Stiefel
and Sandoz (2021) study the case of an interoperability
platform that was a digital commons (Stalder, 2010). The
shared functionality was P-2-P data transmission between
organisations that operated a database in Swiss agriculture,
provided that it was authorized by the farmer who owned
the data. The codebase of the platform was opensource. It
implemented a set of services packaged into a generic
node. Each peer (organization) operated and controlled its
own node and the APIs through which it invoked the
functionality. The function required specific mechanisms
in order to guarantee asynchrony (each party remained
temporally autonomous) and support autonomy, liberty of
association, and trustworthiness of peers. The capacity to
exchange data was the common resource of the platform,
not the farmers’ data. Its usage was defined by principles,
rules, and requirements from the environment. Modules
that used the platform depended on its mechanisms (i.e.,
on its codebase) and module-owners on its rules of usage,
but no interorganizational dependencies were induced by
the platform (Stiefel and Sandoz, 2022).

A second case that we studied was individual traceability
of animals in livestock. The traceability of an object is the
capability to establish a chain of events that guarantees
some property of a given object at some instant (e.g., some
animal has never received AB treatment). This is done by
proving that the property is stable when any event of the
chain occurs and between any pair of events; and by
following the given chain back up to some point where the
property was known to be true. Different actors might be
interested in different properties of the same objects and
use different events to establish the properties they are
interested in. Different chains of events might not go
through the same locations, and not reach common
destinations in the same order. Because events first occur
and are then reported (after occurrence), total ordering
(e.g., using a BC) scales up poorly. We believe that an
interoperability platform designed to realize traceability
by implementing transmission of events and delivery at
destination in causal order (Schiper et al., 1989), is
feasible and would have the capacity to scale up well.

6. Dependencies between platforms, scaling up

To summarize, the examples we gave of different types of
platforms show that:

- concerning dependencies imposed on modules/owners 1)
service platforms impose dependencies on module-
owners in favour of platform-owners; 2) an intermediation
platform might induce dependencies of modules on the
platform (e.g., through the failure of the support function),
and possibly indirect dependencies between modules (i.e.,
temporal dependencies due to the total ordering of blocks
by a BC). Inter-module dependencies might be relayed to
module-owners; and 3) inter-operability platforms that are
designed P-2-P with liberty of association between peers
seem to not by themselves impose dependencies to
module-owners.

- concerning dependencies of platforms 1) interoperability
platforms (TCP/IP, HTTP) can depend on intermediation
platforms (e.g., transport in the Internet, resp. DNS).
Intermediation platforms like the two latter might be
locally controlled, e.g., by ISPs, and suffer from political
constraints; and 2) service or intermediation platforms can
depend on interoperability platforms (e.g., Facebook and
blockchains depend on TCP/IP).

- concerning the ability to technically scale up (scalability)
1) the scalability of a service platform depends on the
interest and the capacity of the platform owner to sustain
demand and the growth of its SIS; 2) the scalability of an
intermediation platform depends on its organization and
on the support function (DNS was built to scale, whereas
blockchains in general have problems to scale); 3) the
scalability of an interoperability platform seems to depend
more on the complexity of the meta-data necessary to
manage the shared functionality, rather than directly on
the functionality itself (e.g., TCP/IP).

7. Back to the analogical world

In the analogical world, platforms, though not software
based, have long emerged to support interaction by

providing shared functionalities to actors. 1) Language
(for direct oral or written communication), 2) currencies,
3) fax (for legal document exchange), 4) dictionaries (to
support actors using different languages), 5) stock
exchanges (for trade), and 6) deep sea harbours (for
transport), are examples of analogical platforms (that we
assimilate resp. to interoperability (1-3), intermediation
(4), and service (5, 6) platforms).

Users evolve and platforms adapt. In the 1970s sweets
producers in the Netherlands realized that they all supplied
the same retailers. By pooling their logistics i.e., to
globally optimize storage and transport, they managed to
save costs without giving up competition in the market.
This gave way to a business practice called co-opetition
(Bengtsson and Kock, 2000), which stands short for
(horizontal) collaboration between competitors. It has
since then spread to many business sectors. The first
experiment consisted in organizing a new platform with a
core functionality shared between competitors, i.e.,
storage, inventory, and re-distribution to retail according
to local needs for any brand. The platform was owned
collectively and there was no competition in relation to its
usage. Each producer had previously used a service
provider, who supplied storage, inventory, and transport
depending on what products of that brand retailers needed
locally. Each service provider had operated out of its own
private logistics platform. After co-opetition was
introduced, they had to reorganize their ecosystems in
order to survive with a reduced total income. Someone
down the line was bound to be unhappy. Producers on
their side didn’t change how they organized production
and competed in the market. Getting an advantage
(reduced costs) out of change, without having to change
the core business, is a strong incentive to switch platforms.

In the case of sector-wide authorized data transmission
(authors’ first case study), organisations were threatened
by the emergence of a central service platform for smart-
farming. They launched a counterproject that ended up
building a digital interoperability platform for co-opetition
(Sandoz, 2020). Both projects finally failed to scale up
across the sector, because once organizations had reached
their political objective of preventing the service platform
to prevail, they dropped their shared concern for data
management and fell back into doing business as usual.

If the interoperability platform had been widely adopted
by organizations, a new question might have arisen: would
their IT-service providers pool to co-opete in order to
supply the new tools needed by their customers, or would
they have resisted change, relying on their strategic
position (Saadatmand et al. 2019)?

More importantly, the interoperability platform for
authorized data transmission might have provided a
mechanism to articulate the service platforms of the peer
organizations into a broader, sector-wide, information
infrastructure.

Traceability, on the other hand, is a form of collective
control implemented by producers, transformers and
distributors, regulators and consumers, etc. in value- or
supply-chains. Shared concerns and requirements are

collaboratively implemented in order to guarantee certain
properties of objects.

The initial implementation of the animal traceability
platform we studied (Stiefel and Sandoz, 2022) relied on
a centrally positioned SIS that provided the consistent
ordering of events and their transmission between event-
producers and event-consumers. This position induced
dependencies of client ISs towards the SIS. However, in
large value chains like food production, most actors use
only a small subset of all the types of events that are traced,
and encounter only a small number of the events of those
types that eventually occur. Technologies, modes of
production, regulation, and products change constantly.
The actors who are directly concerned by a change adapt
quickly, whereas the others don’t even see it. Providing
traceability without imposing to the actors concerned any
dependency towards actors that are not concerned, makes
sense. Looking deeper into requirements for traceability
leads to relax technical constraints like centralization that
are not anchored in the analogical reality. It becomes then
possible to design an interoperability platform (or a
loosely coupled collection of interoperability platforms)
for traceability that can scale up independently of the
sector’s overall complexity.

If a core shared functionality could scale up (e.g., in the
number of peers for authorized data transmission, or in the
number of participants and in the types of events for
traceability), then an interoperability platform might end
up spilling over into a neighbouring sector (e.g.,
healthcare). The platform could then possibly become an
articulation between the information infrastructures of
different business sectors. Eventually, this is what the
TCP/IP and HTTP platforms did when their basic core
functionalities spilled out of their original business sector
which was academia.

8. Conclusion: untying the knot

In this paper, we argue that the centralized, proprietary
software-based platform model is only one type among
several. Using the central component of the definition of a
platform (Tiwana et al., ibid), i.e., the core shared
functionality, we identify two other generic types of
platforms, that we call intermediation and interoperability.
We give examples of these alternative forms (e.g., DNS,
resp. TCP/IP) to the service platform generally understood
under this definition (e.g., Facebook, or large
organizational platforms as in Hanseth and Bygstad, ibid).
If service platforms seem to be exclusively built in the
application layer of the Internet, intermediation and
interoperability platforms populate all of its layers
(internet, transport, and application).

The paper raises a series of questions that we enumerate
in conclusion, as avenues for further work. First, there
seems to be a relationship between how users of the shared
functionality at the core of a platform interact, and its
preferred architecture-governance (Hanseth and Rodon,
2020) and ownership configurations. Service platforms
(no direct interaction) are by definition centralized-
proprietary; intermediation platforms (used in support of
interaction) are by default decentralized and non-, or

possibly shared-proprietary; interoperability platforms
(direct interaction) are by construction fully distributed
and non-proprietary. It would be interesting to further
investigate this relationship by putting it to the test of other
case studies: if a relationship exists, of what order is it
(historical contingency vs. practical necessity or strong
compatibility)? Is it possible to change a platform’s type
all the while keeping its core shared functionality?

Second, we argue that interoperability platforms could be
a basis for more open sectoral infrastructures which would
not be the mere multiplication of proprietary platforms
under the control of their respective private and/or public
actors. This is in line with the new commons developed by
the works of (Benkler, 2014; Boyle, 2002; and Lessig,
1998). This hypothesis also deserves to be tested by case
studies. Are all cases of sectoral IIs, based on traditional
service platforms? And, if not, do intermediation
platforms also play a role?

Third, we have shown that platforms of different types can
have dependency relationships between them. For
example, some service or intermediation platforms
depend on interoperability platforms and interoperability
platforms might depend on intermediation platforms. The
question remains: what implications can be drawn from
this observation? Here again, empirical studies, at the
scale of interactions between platforms types, could shed
light on this point.

Fourth, we opened a breach with our story of Dutch
sweets producers in the 1970s, without going much further.
It would be interesting here, however, to see how far the
analogy between analogical and digital platforms might
take us (in the line with the work done by Schafer et al.,
2021). But the effort might require distancing ourselves
from the concept of platform and instead finding cases of
platforms with which to work the analogy. Similar to what
Nicolas Verdier (2007) did in the case of the horse post
office, showing how technical network thinking was
already at work in the 18th century, before the very concept
of network appeared in the 19th.

Fifth, but not last, we sketched a socio-technical
imaginary of high-level interoperability platforms
(authorized transmission, traceability) that could spill over
between neighbouring sectors and possibly become an
articulation between their information infrastructures.
Questions: is this imaginary possible for interoperability
platforms only, or does it apply, for example, to traditional
service platforms? In any case, would a platform-
articulated cross-sectoral infrastructure be scalable and
sustainable? And finally, is this only an imaginary, or are
there cases of cross-sectoral information infrastructures
that we could study?

The call is out.

References

Bengtsson, M., and Kock, S. (2000) “Coopetition” in Business
Networks—to Cooperate and Compete Simultaneously,
Industrial Marketing Management, 29(5), 411–426.

Benkler, Y. (2014) Between Spanish huertas and the open road:
a tale of two commons?. Governing knowledge commons,
69.

Boyle, J. (2002) Fencing off ideas: Enclosure & the
disappearance of the public domain. Daedalus, 131(2), 13-
25.

Bucher, T. (2013) Objects of intense feeling: The case of the
Twitter API. Computational Culture, Vol. 3.

DeNardis, L. (2009) Protocol politics: The globalization of
Internet governance. Mit Press.

DeNardis, L. (2012) Hidden levers of Internet control: An
infrastructure-based theory of Internet governance.
Information, Communication & Society, 15(5), 720-738.

Hanseth, O. and Bygstad, B. (2021) Managing IT in Large
Organizations as Platform-Oriented Infrastructures. A
Norwegian E-Health Case, Working Papers Series,
Nielsen, P. (Ed.) Information Systems Group, Department
of Informatics, University of Oslo.

Hanseth, O. and Modol, J. R. (2021) The dynamics of
architecture-governance configurations: an assemblage
theory approach. Journal of the Association for
Information Systems, 22(1), 5.

Hanseth, O., Monteiro, E., and Hatling, M. (1996) Developing
information infrastructure: The tension between
standardization and flexibility. Science, Technology, &
Human Values, 21(4), 407-426.

Helmond, A. (2015) The platformization of the web: Making
web data platform ready. Social media+ society, 1(2),
2056305115603080.

Kumar, V. (2018) Book Review: Platform Ecosystems. Aligning
Architecture, Governance and Strategy,
Journal of Information Technology Case and Application
Research, 20(2).

Lessig, L. (1998) Keynote address: commons and code.
Fordham Intell. Prop. Media & Ent. LJ, 9, 405.

Scott, S. V. and Zachariadis, M. (2012) Origins and development
of SWIFT, 1973–2009 Business History, 54(3), 462-482.

Méadel, C. and Musiani, F. (2015) Abécédaire des architectures
distribuées. Presses des Mines.

Merrill, K. (2016) Domains of Control: Governance of and by
the Domain Name System. In The turn to infrastructure in
Internet governance (pp. 89-106). New York: Palgrave
Macmillan.

Mockapetris, P. (1983) Domain names: Concepts and Facilities
(RFC 882) and Implementation and specification (RFC
883), 15 Sept. 2022 https://www.rfc-editor.org/rfc/rfc882
and https://www.rfc-editor.org/rfc/rfc883).

Musiani, F., Cogburn, D. L., DeNardis, L., and Levinson, N. S.
(Eds.). (2016) The turn to infrastructure in Internet
governance. New York: Palgrave Macmillan.

Musiani, F. (2016) Alternative Technologies as Alternative
Institutions: The Case of the Domain Name System. In The
turn to infrastructure in Internet governance (pp. 73-86).
New York: Palgrave Macmillan.

Nielsen, P. and Aanestad, M. (2005) Infrastructuralization as
design strategy: A case study of a content service platform
for mobile phones in Norway. In Proceedings of the 28th

Information Systems Research Seminar in Scandinavia.
Kristiansand.

Nielsen, P. and Sæbø, J. I., (2016) Three strategies for functional
architecting: cases from the health systems of developing
countries. Information Technology for Development, 22(1),
134-151.

Poppe, O., Sæbø, J., and Nielsen, P. (2014) Architecting in Large
and Complex Information Infrastructures. In Scandinavian
Conference on Information Systems, pp. 90-104. Springer.

Puschmann, C. and Burgess, J. (2013) The politics of Twitter
data.

Ross, J. W., Weill, P. D., and Robertson, D. C. (2006) Enterprise
Architecture as Strategy. Creating a Foundation for
Business Execution. Harvard Business School Press.

Saadatmand, F., Lindgren, R., and Schultze, U. (2019)
Configurations of platform organizations: Implications for
complementor engagement. Research Policy, 48(8).

Sæbø, J. I. and Poppe, O., (2015) Federated Architecting in West
Africa. In Proceedings of the 13th International
Conference on Social Implications of Computers in
Developing Countries, Negombo, Sri Lanka.

Sandoz, A. (2020) Inter-operating Co-opeting Entities. A Peer-
to-Peer Approach to Cooperation between Competitors
http://www.thinkmind.org/index.php?view=article&articl
eid= bustech_2020_1_20_90020.

Schafer, V., Balbi, G., Ribeiro, N., and Schwarzenegger, C.
(2021) Digital Roots: Historicizing Media and
Communication Concepts of the Digital Age. De Gruyter.

Schiper, A., Eggli, J., and Sandoz, A. (1989) A New Algorithm
to Implement Causal Ordering. In International Workshop
on Distributed Algorithms (pp. 219-232). Springer, Berlin,
Heidelberg.

Stalder, F. (2010) Digital commons. The Human Economy: A
Citizsen’s Guide.

Stiefel, L. (in press) Les données du problème. Une plateforme
numérique inadaptée à l’agriculture suisse. Etudes rurales.

Stiefel L. and Sandoz A. (2021) Une plateforme en pair-à-pair
pour l’échange de données : l’émergence d’un commun
numérique, Terminal, (130).

Stiefel, L. and Sandoz, A. (2022) Alternatives à la concentration :
une analyse des relations de dépendance sur les
plateformes numériques. In Proceedings of the 31st AIMS
Conference, Annecy.

Tiwana, A., Konsynski, B., and Bush, A. (2010) Platform
Evolution: Coevolution of Platform Architecture,
Governance, and Environmental Dynamics (Research
Commentary), Information Systems Research 21(4), 675–
687.

Tiwana, A. (2014) Platform Ecosystems. Aligning Architecture,
Governance and Strategy. Newnes.

Verdier, N. (2007) Le réseau technique est-il un impensé du
XVIIIe siècle: le cas de la poste aux chevaux. Flux, 68(2),
7-21.

