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Exploring conditional gene essentiality through systems 
genetics approaches in yeast 
Núria Bosch-Guiteras and Jolanda van Leeuwen*   

An essential gene encodes for a cellular function that is required 
for viability. Although viability is a straightforward phenotype to 
analyze in yeast, defining a gene as essential is not always 
trivial. Gene essentiality has generally been studied in specific 
laboratory strains and under standard growth conditions, 
however, essentiality can vary across species, strains, and 
environments. Recent systematic studies of gene essentiality 
revealed that two sets of essential genes exist: core essential 
genes that are always required for viability and conditional 
essential genes that vary in essentiality in different genetic and 
environmental contexts. Here, we review recent advances 
made in the systematic analysis of gene essentiality in yeast 
and discuss the properties that distinguish core from context- 
dependent essential genes. 
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Introduction  
A gene is defined as essential when loss of its function 
leads to death of a cell or organism. Cataloging which 
genes are essential is critical to understanding how a cell 
functions and what the minimal components are that it 
needs to survive. Gene essentiality has been extensively 
studied in the budding yeast Saccharomyces cerevisiae due 
to its compact and highly annotated genome and the 
early availability of efficient genome engineering tools. 
By systematically deleting each of the ~6000 yeast genes 
individually, Giaever et al. showed that ~18% of yeast 
genes are essential for viability under nutrient-rich 
conditions in the laboratory strain S288c [1], confirming 

the percentage of essential genes predicted by earlier 
studies [2,3]. These and other studies showed that es
sential genes tend to be highly conserved across species, 
are less likely to have a paralog, are enriched for genes 
involved in core cellular processes and genes encoding 
protein complex members, and tend to be more highly 
expressed compared with nonessential genes [1,4–7]. 

Despite the critical roles essential genes play in a cell, 
cellular processes can sometimes be rewired to bypass the 
requirement for otherwise essential genes. In recent 
years, systematic studies of gene essentiality have in
variably shown that the essentiality of a gene can change 
between contexts (Figure 1). For example, comparing 
essential gene sets among yeast species revealed species- 
specific essential genes [4,6,8–10]. Furthermore, even 
within the same yeast strain, certain genomic variants 
were found to give rise to differences in gene essentiality  
[7,11–15]. Finally, the exposure of cells to particular en
vironments could also modulate gene essentiality  
[1,16–20]. Understanding how gene essentiality varies 
between species, genetic backgrounds, and environments 
is critical for understanding selective pressures during 
evolution and may aid the identification of efficient an
tifungal drug targets as well as drug-resistance mechan
isms. Here, we review how systems genetics approaches 
have identified conditional essential genes and their 
properties, highlight how genetic and environmental 
contexts influence gene essentiality, and discuss the un
derlying causes of variation in gene essentiality. 

High-throughput approaches for studying gene 
essentiality 
Conventional methods for studying gene essentiality are 
based on analyzing the viability of haploid meiotic seg
regants derived from a heterozygous diploid mutant 
strain [1,3,11,13]. Because haploid essential gene dele
tion mutants are not viable, new segregants have to be 
isolated each time viability is tested in different ex
perimental contexts. To avoid this labor-intensive pro
cess, we recently generated a haploid conditional 
deletion mutant collection of essential genes, in which 
each strain is deleted for an essential gene, but viable 
because a temperature-sensitive allele of the same es
sential gene is present on a counterselectable plasmid  
[7]. In the presence of the plasmid, the strains behave as 
partial loss-of-function mutants of the essential gene, 
whereas counterselection against the plasmid enables 
testing for viability in the absence of the essential gene, 
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for example, in different genetic or environmental con
texts [7]. 

Another strategy to systematically study gene essenti
ality is to use CRISPR–Cas9-based screens, which work 
especially well in yeast species with low rates of homo
logous recombination such as Yarrowia lipolytica [21]. 
CRISPR–Cas9 screens rely on the generation of DNA 
double-strand breaks at desired genomic loci. Inaccurate 
repair of the DNA breaks can lead to basepair insertions 
or deletions that, when occurring in genes, can generate 
loss-of-function alleles [21]. In systematic genome-wide 
CRISPR–Cas9 screens, essential genes can be detected 
by sequencing pools of mutant cells at different time 
points and identifying the CRISPR components, and 
thus indirectly the mutants created by them, that dis
appear from the population over time. CRISPR–Cas9 
systems have also been adapted to disrupt open reading 
frames (ORFs) by introducing premature stop codons at 
defined locations in a high-throughput manner [22]. 
Furthermore, transposon-based mutagenesis screens, 
which involve high-throughput gene disruption by 
random integration of transposable DNA sequences into 
the genome, have been used to induce gene loss-of- 
function [6,8–10,18,23–25]. By mapping the transposon 
insertion sites in pools of hundreds of millions of cells, 
essential genes can be distinguished from non
essential ones based on the insertion density per gene. 
These screens not only provide information about gene 
essentiality, but at a high insertion density can also 
identify particular domains or regions of a gene that are 
(non)essential [24]. 

Finally, various types of partial loss-of-function alleles 
have been developed for essential genes, including 
temperature-sensitive mutants [26,27] and DAmP alleles  
[28], as well as several methods to control gene expres
sion such as CRISPRi [29,30] and regulatable promoters  
[31,32]. However, these are not suitable for the identi
fication of changes in gene essentiality, because partial 
loss-of-function alleles can often be rescued by me
chanisms that cannot overcome the lethality of essential 
gene deletion mutants [33,34]. 

Differential gene dispensability in evolutionary distant 
yeast species 
Gene essentiality has been systematically studied for 
different yeast species, including S. cerevisiae [1], Schi
zosaccharomyces pombe [4,8], Saccharomyces uvarum [9], 
Pichia pastoris [10], and Candida albicans [6]. Comparing 
gene dispensability between species revealed a surpris
ingly consistent percentage of essential genes per 
genome (~15–25% of all genes). The presence of para
logs can mask essentiality of a gene and more compact 
genomes with fewer redundant genes were thus ex
pected to contain a higher proportion of irreplaceable 
genes. However, the percentage of essential genes was 
not found to correlate with the total number of ORFs  
[4,9] (Figure 2). 

Further comparison of the identified essential gene sets 
revealed a core set of essential genes with roles in fun
damental biological processes that are essential among 
all tested yeast species. These include genes encoding 
proteins with a role in DNA replication and members of 
the general transcription factors, the exosome, and other 
basic cellular machinery. Each species also contains 
~300–500 essential genes that are not essential in S. 
cerevisiae [4,6,9,10] (Figure 2). The protein products of 
these species-specific essential genes are often involved 
in signaling, transport, metabolism, or regulatory pro
cesses [4,6,9]. For instance, genes that are essential 
specifically in S. pombe are highly enriched for mi
tochondrial genes, as loss of mitochondrial DNA is lethal 
in fission yeast, while tolerated in budding yeast [4]. 
Furthermore, although genome size did not affect the 
overall percentage of essential genes, the presence of 
gene paralogs can cause individual changes in gene es
sentiality between species. For instance, CDC25, en
coding a nucleotide exchange factor that activates Ras, is 
essential in S. cerevisiae but not in S. uvarum, which 
contains the CDC25 paralog SDC25 that is nonfunctional 
in S. cerevisiae [9]. 

Differential gene dispensability in isolates from the 
same species: S. cerevisiae 
Changes in gene essentiality are not solely restricted to 
distantly related species, but can also be observed 
among strains of the same species. A comparison of gene 
essentiality in the closely related S. cerevisiae strains 
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Overview of the main modifiers of gene essentiality. A gene that is 
essential in a specific strain and condition can be nonessential in other 
species or become dispensable due to modifications of the genetic 
background or environment. aaa∆, deletion allele of gene AAA; bbb*, 
mutant allele of gene BBB.   
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S288c and Σ1278b found that 1% of all genes were es
sential in only one of the two strains [11] (Figure 2). 
Furthermore, whole-genome sequencing of 1011 S. cer
evisiae isolates revealed a set of 2856 variable ORFs that 
were absent in at least one of the genomes [12]. Re
markably, 123 of these variable genes are essential in the 
S288c background. The presence of paralogs in some 
isolates, but not in S288c, could explain differences in 
essentiality for 71 genes. For the remaining 52 differ
ential essential genes, the causes underlying the varia
tion in their dispensability remain unclear [12]. Thus, for 
a substantial fraction of “essential” budding yeast genes, 
their requirement is highly dependent on the genetic 
background. 

Variation in gene essentiality within the same genetic 
background 
In addition to variation in gene dispensability between 
different species or isolates, gene essentiality can also 
vary within the same strain background. For example, 
nonessential genes can become essential through syn
thetic lethal interactions, in which the simultaneous 
perturbation of two nonessential genes leads to cell 
death. Around half of the nonessential genes in S. cere
visiae are essential in the presence of a specific gene 
deletion mutant [26], suggesting that their requirement 
for viability is masked by the presence of other genes  
[35]. Vice versa, well-characterized essential genes can 
become nonessential in the presence of bypass- 

suppressor mutations in other genes, revealing a pool of 
“context-dependent” essential genes [7,13–15,36–38]. 

Bypass suppression of essential genes is relatively fre
quent in yeast. In a systematic screen, we showed that in 
the S. cerevisiae laboratory strain S288c, the requirement 
for ~17% of essential genes (124 out of 728 tested genes) 
could be bypassed by spontaneous mutations elsewhere 
in the genome [7]. About half of the bypass-suppressor 
mutations were single-nucleotide variants, whereas the 
other half were aneuploidies. Similarly, a study that fo
cused solely on suppression by aneuploidies, found that 
~9% of essential genes in S288c could be bypassed by an 
aneuploidy [13]. By contrast, in S. pombe, ~27% of the 92 
investigated essential genes could be bypassed, almost 
twice as much as in S. cerevisiae [15]. It is difficult to 
assess whether this difference in the percentage of by
passed essential genes reflects a true biological phe
nomenon or if it is caused by the different techniques 
used to isolate suppressors (chemical mutagenesis, 
transposon insertions, and artificial gene overexpression 
in S. pombe, compared with spontaneous mutation iso
lation in S. cerevisiae). 

In all three studies, context-dependent essential genes 
more closely resembled nonessential genes than core 
essential genes, as they tended to be less conserved, 
enriched for genes with paralogs, and depleted for genes 
encoding members of protein complexes [7,13,15] 
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Comparison of gene essentiality across systematically studied yeast species [4,6,9–11]. The two bottom rows list the number of genes that, when 
compared with their orthologs in S. cerevisiae strain S288c, are either only essential in the indicated strain or species (“specific essential ORFs”) or 
only essential in S288c (“specific dispensable ORFs”). Note that experimental procedures and orthology mapping methods vary between studies and 
may affect the identified number of strain-specific or species-specific genes.   
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(Figure 3). Conditional essential genes were also en
riched for genes encoding membrane-associated proteins 
and for genes with regulatory functions. In contrast, 
genes involved in core cellular functions such as RNA 
processing, translation, and protein degradation were 
unlikely to be bypassed (Figure 3). Interestingly, many 
of the properties of context-dependent essential genes 
identified in these studies were shared with genes that 
show differential essentiality between species. Further
more, mitochondrial genes not only tended to be spe
cies-specific (essential in S. pombe but not in S. cerevisiae), 
but were also enriched in the group of genes that can be 
bypassed in S. pombe [15,39]. Thus, genes that can be 
rescued by spontaneous mutations within a species have 
similar properties as those that show variation in essen
tiality across species. 

The genetic basis of conditional essentiality 
Several studies that systematically compared gene es
sentiality among closely related yeast isolates have 
identified modifier loci that alter gene essentiality. 
Analysis of haploid progeny of S. cerevisiae S288c/Σ1278b 
hybrids containing a deletion of a conditional essential 
gene (essential in one background but not in the other) 
revealed that, in most of the cases, dispensability was 
impacted by the combined effect of multiple loci  
[11,40]. Less often, 6 out of 20 studied cases, single 
modifiers were found [40]. For example, CYS3 and 
CYS4, both encoding enzymes in the cysteine-bio
synthesis pathway, were found to be essential in Σ1278b 
but not in S288c. Furthermore, CYS3 was also found to 

be nonessential in the African palm wine strain Y12. 
Two independent single modifiers of the conditional 
essentiality of CYS3 and CYS4 were identified: MET1 in 
Y12 and OPT1 in Σ1278b, each with roles associated with 
cellular cysteine physiology. Remarkably, essentiality of 
CYS3 could be accurately predicted in other yeast iso
lates based on the presence of loss-of-function variants 
in MET1 or OPT1 [40]. Knowledge of the molecular 
mechanisms underlying differences in gene essentiality 
can thus be used to predict gene dispensability in other 
yeast strains. 

Furthermore, to understand differences in gene essen
tiality within the same strain background, general 
properties of bypass-suppressor genes have been defined  
[7,13,15]. Overall, the majority of bypassed essential 
genes (70%) could be suppressed by a single suppression 
mechanism: only mutation of one particular complex, 
pathway, or gene could rescue the lethality of a given 
essential gene [7]. Similar to the natural suppressor 
variants, the bypass suppressors isolated in the laboratory 
were often functionally related to the deleted essential 
gene. About 50% of the 283 identified bypass-suppressor 
genes carried a loss-of-function mutation, ~35% were 
associated with a gain-of-function phenotype, and the 
remaining ~15% acted through an unknown mechanism  
[7]. An example of suppression by gain-of-function 
mutations involves the bypass of actin-related proteins 
Arp7 or Arp9, which regulate the activity of the RSC 
chromatin remodeling complex. The lethality associated 
with deletion of ARP7 or ARP9 could be bypassed by 
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Properties of core and conditional essential genes. Core essential genes (left) are depleted for genes with paralogs (depicted by a single green gene) 
and involved in core cellular processes (exemplified by gene transcription). The main properties of conditional essential genes (right) are shown, such 
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missense mutations in the catalytic RSC ATPase sub
unit Sth1 that may increase Sth1 activity in the absence 
of Arp7 or Arp9 [7]. Gain-of-function effects also in
cluded aneuploidies and gene duplication. For instance, 
deletion of NUP116, encoding a nucleoporin component 
of the central core of the nuclear pore complex, could be 
suppressed by an increase in copy number of its paralog 
NUP100, either by overexpressing NUP100 individually 
or through an extra copy of chromosome XI on which 
NUP100 is located [7]. Interestingly, the majority of 
bypassable essential genes were either always sup
pressed by an aneuploidy or always by a genomic point 
mutation, even if both events led to a gain-of-function 
effect [7]. In the vast majority of the cases, including 
suppressor aneuploidies, a single gene was responsible 
for suppression [7,13,15]. This highlights differences 
between conditional essentiality across diverse genetic 
backgrounds, which is often driven by multiple modi
fiers, and suppression within the same strain back
ground, which is mainly driven by a single modifier. A 
possible explanation for this difference is that the bypass 
suppressors isolated in a laboratory setting are often not 
able to restore the fitness of an essential gene deletion 
strain to wild-type levels and multiple mutations may 
thus be needed for an essential gene deletion mutant to 
have a competitive fitness in a natural setting. 

Beyond auxotrophy: environment-dependent essential 
genes 
Gene essentiality can also be dependent on the en
vironment. Together with the description of the S. cer
evisiae deletion mutant collection in 2002, Giaever et al. 
investigated the fraction of genes necessary for growth in 
different environments, including changes in carbon 
source, amino acid availability, osmolarity, salinity, pH, 
and the presence of antifungal agent nystatin. As ex
pected, genes involved in amino acid biosynthesis were 
no longer essential when cells were provided with those 
nutrients. Beyond auxotrophy, this study revealed be
tween ~20 and 120 environment-specific essential genes 
per condition [1]. More recent systematic studies have 
investigated genes that sensitize yeast to particular en
vironments, with the aim to expand the yeast inter
actome [19,41–43], identify new drug targets [44–49], or 
find genes implicated in the metabolism of certain 
compounds (e.g., methanol) [10,19,43]. A recent sys
tematic study in S. cerevisiae surveying 14 diverse con
ditions revealed that 59% of tested gene mutants had a 
growth defect in at least one condition [19]. Although 
the specific properties of environment-dependent es
sential genes have not been thoroughly described, en
vironments often affect genes with a close functional 
relation to the pathways that are perturbed by a condi
tion [19]. For example, genes that displayed a fitness 
defect in the presence of Monensin, an intracellular 
traffic inhibitor, often functioned in vesicle trafficking 
and cell-wall biogenesis [19]. 

Gene essentiality can also be suppressed by environ
mental factors and some essential genes can thus be
come dispensable under nonstandard growth conditions. 
For instance, deletion mutants of essential genes in
volved in cell-wall integrity and composition, that nor
mally die of osmotic imbalance due to a lack of cell-wall 
stability, can be rescued by osmotically stabilized en
vironments in both S. cerevisiae and S. pombe [16–18,20]. 
While examples of environmental suppression of es
sential genes have been described, they are limited to 
individual genes or conditions. It thus remains unclear 
what fraction of essential genes can be bypassed by a 
change in environment. 

Conclusion and outlook 
The application of systematic genetic approaches to 
study gene essentiality in yeast has led to the identifi
cation of two sets of essential genes: ~560 core essential 
genes that are always required for viability, independent 
of the genetic background or environment, and many 
more context-dependent essential genes that differ in 
importance among conditions [4,6,7,9,10,12,13]. Despite 
variation in experimental design, model system, and 
growth conditions, the conditional essential gene sets 
share remarkable overlap in genes and functional prop
erties across studies. Whereas core essential genes are 
generally involved in fundamental cellular functions, 
such as translation or protein degradation, conditional 
essential genes tend to be involved in more accessory 
functions and frequently have paralogs. 

Even with the remarkable progress on mapping yeast 
essentialomes in the past years, several questions remain 
unanswered. First, differences in gene essentiality have 
been explored in several yeast species and S. cerevisiae 
strains, but our understanding of how gene essentiality 
varies throughout the yeast clade remains limited. 
Second, identification of the genetic factors driving dif
ferences in gene essentiality across yeast strains and 
species is often lacking. Third, the fraction of essential 
genes that become nonessential under different en
vironmental conditions remains unexplored. Finally, 
most systematic studies have focused on the essentiality 
of protein-coding genes in haploid cells. Our under
standing of how essentiality varies across contexts during 
sexual reproduction [50], in diploid cells, for noncoding 
RNAs [51,52], or for protein isoforms, thus remains in
complete. Systems genetics approaches, possibly com
bined with machine-learning strategies, will be needed 
to answer these questions and to achieve a thorough 
description and interpretation of the yeast essentialome. 
Knowing how gene essentiality can vary between spe
cies, strains or individuals, and environments and un
derstanding the underlying causes will benefit the 
design of synthetic minimal genomes, aid the develop
ment of specific treatments against pathogenic fungi that 
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have little effect on closely related benign species, 
highlight antifungal drug-resistance mechanisms, and 
will provide insight on how genetic variance accumulates 
during evolution and affects genetic traits. 
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