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Highlights

• It is considered an optimistic point of view to devise a cooperative

game.

• A sequential game that allows players acting strategically to construct

an optimal network is defined.

• There exists a unique cost allocation in subgame perfect equilibria.

• The cost allocation matches the one suggested by the folk rule.
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Abstract

This paper deals with the problem of finding a way to distribute the

cost of a minimum cost spanning tree problem between the players. A

rule that assigns a payoff to each player provides this distribution. An

optimistic point of view is considered to devise a cooperative game.

Following this optimistic approach, a sequential game provides this

construction to define the action sets of the players. The main result

states the existence of a unique cost allocation in subgame perfect

equilibria. This cost allocation matches the one suggested by the folk

rule.

Keywords: Game Theory, Minimum cost spanning tree, cost al-

location, subgame perfect equilibrium.

1 Introduction

In this paper, we study the implementation of the folk solution associated

with a minimum cost spanning tree problem. This research is part of a rel-

evant agenda known as the Nash program for cooperative games. The Nash

program arises from Nash (1953) as a tool to bridge the gap between coop-

erative and non-cooperative games by finding non-cooperative procedures

yielding cooperative solutions as their equilibrium payoffs (Serrano, 2020).

To this end, we consider an optimistic point of view to devise a coopera-

tive game. Following this optimistic approach, we define a sequential game

that allows players, acting strategically, to construct an optimal network.

The main result states the existence of a unique cost allocation in subgame

perfect equilibria. This cost allocation matches the one suggested by the

folk rule.

The situation of constructing a tree with the lowest possible cost known

as minimum cost spanning tree problems is quite familiar in the literature

of operations research, economics or management, among others. Let us

assume that a group of players requires a service that can only be provided
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by a source. A network, the edges of which entail some cost to build or to

use, provides access to this source. Players can either connect to the source

directly or through an existing network that already provides the service

to other players. No congestion nor depreciation of the service is assumed,

which implies that the optimal network is always a tree. Videostream, voice-

conference or software distribution applications, or an irrigation system that

supplies water from a water dam, are some examples of such situations.

Assuming that players agree to build a network and decide on how to

share its cost, there are two possible approaches to tackle this situation.

The first approach arises when the players leave the decision to a central

planner. This planner may either be a regulator whose decision is manda-

tory for the players, or an adviser whose proposal is not compulsory, but

all the players have incentives to follow. In this sense, a fundamental prop-

erty is core selection, which ensures that no coalition of players can con-

nect to the source by themselves at a lower cost than the one suggested

by the central planner.1 A relevant core-selection rule is the folk solution

(Feltkamp et al., 1994; Bergantiños and Vidal-Puga, 2007a; Bogomolnaia

and Moulin, 2010) which, moreover, also satisfies many other relevant prop-

erties (Bergantiños and Vidal-Puga, 2008). The second approach arises when

the players achieve agreements directly among themselves, following the

rules of a non-cooperative game. In this second case, the final network in

equilibrium is not guaranteed to be optimal nor the final payoff allocation

to be efficient. Joining the two approaches, it could be suitable to find a

mechanism leading to an optimal network along with a fair allocation of its

cost.

1Non-emptiness of the core in minimum cost spanning tree problems has been first

noted by Bird (1976) and deeply studied by Granot and Huberman (1981, 1984). More

recently, Dutta and Mishra (2012) and Sziklai et al. (2016) proved the non-emptiness of

the core in two more general classes of games, and Kobayashi and Okamoto (2014) focus

on concave problems, where the core has a well-known structure.
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In this paper, we focus on the second approach. We define a non-

cooperative game in which utility-maximizing players agree on how to share

the cost of an efficient graph. The non-cooperative game is as follows: first,

we fix a random order of choices of the players. Then, players act sequen-

tially according to the above order: the first player selects to whom she

connects to, looking for the cheapest connection; then, the second player

decides with whom she wants to connect taking into account that, in case

the first player had previously connected to her, then she can choose an edge

adjacent to the first player, and so on.2 The only restriction is that no cycles

are allowed. At the end of the last round, an optimal tree arises. The cost

allocation that arises by charging each player with the cost of her chosen

edge provides a stable share of the total cost such that the final share is fair.

Consequently, players accept both the optimal tree and a cost-share given

by the folk solution.

Mutuswami and Winter (2002), in a more general framework, propose a

mechanism in which players move sequentially. When it is a player’s turn

to move, she announces a set of links that she wants to see formed and her

conditional cost contribution to the spanning tree. Given the announcement,

a planner selects the largest compatible coalition, and proposes a tree to be

built and the allocation of each player. Unlike this mechanism, in our non-

cooperative game there is no planner, and the players choose only one link

and agree to pay the cost of the selected link. The results of this paper

applied to minimal cost spanning tree problems, imply that the allocations

to players in all subgame perfect equilibria correspond with the Kar rule

(Kar, 2002), defined as the Shapley value of the associated cooperative game.

As mentioned in Mutuswami and Winter (2002):

Immunity to deviations by coalition is a desirable property of

any mechanism. Unfortunately, our mechanisms do not possess

2Such a mechanism resembles Kruskal’s and Prim’s algorithms.
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this property [...].

In contrast, the equilibrium payoff allocations in our non-cooperative game

satisfy immunity to deviations by coalitions, i.e., they satisfy core selection.

Norde et al. (2004) present the Subtraction Algorithm that computes

for every minimum cost spanning tree a population monotonic allocation

scheme which, in turn, also recovers the folk solution. Contrary to our

approach, they compute the contribution of each player, for each possible

coalition of players that contain her.

Bergantiños and Vidal-Puga (2010) propose a non-cooperative game in

which players always agree on an optimal tree and a cost-share given by

the folk solution. In the first stage, the players offer prices to each other.

These prices represent the amount that the players are willing to pay to

other players if they connect to the source. Then, the player with a max-

imum net offer is asked to connect to the source or to propose a different

network. Unlike this mechanism, in our non-cooperative game the players

only propose to construct an edge, and there are no offers to other players

to incentivize their connection to the source.

Moulin and Velez (2013) and Hougaard and Tvede (2012) consider two

mixed approaches, respectively. In Moulin and Velez (2013), vertices are

sellers who bid to supply individual edges, so that a single buyer purchases

a minimum cost spanning tree. They show that an optimal tree arises in

equilibrium. In Hougaard and Tvede (2012), a planner asks for the costs

of the edges to the adjacent players, who have a priori private informa-

tion about their actual costs. With this information, the planner builds the

optimal network (under the assumption of truth-telling), so that costs be-

come common knowledge for the edges that belong to this optimal network.

They show that the folk rule causes truthful announcements to be a Nash

equilibrium for every allocation problem.

As opposed to these previous results, the non-cooperative game we pro-
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pose in this paper does not require neither the presence of a planner to

implement the cost sharing nor the players to offer prices nor bids to make

proposals, making the strategies significantly simpler. Moreover, we have

two relevant properties. Firstly, the equilibrium is strong, i.e., no coalition

of players can improve their aggregate payoff by coordinating their strategies.

Secondly, players use undominated strategies in equilibrium. In particular,

their strategies in equilibrium are optimal independently of the strategies of

other players, which make them immune to irrational deviations by other

players.

Finally, in Hernández et al. (2016), a different strategic game is defined

associated to a minimum cost spanning tree problem. This game is based

on the existence of a social transfer structure that establishes side-payments

to ensure that a particular tree is obtained. Under this approach, the min-

imum cost spanning tree appears as a subgame perfect equilibrium. The

allocation associated with this subgame perfect equilibrium depends on the

initial social transfer structure, and may coincide or not with the folk rule.

Moreover, in the game defined in Hernández et al. (2016) subgame perfect

equilibria may appear, such that the provided spanning tree is not efficient.

This inefficiency cannot occur under our approach.

The rest of the paper is organized as follows. In Section 2, we present

the model. In Section 3, we introduce the non-cooperative game. In Section

4, we discuss the results. We close with the acknowledgements.

2 The model

Let N0 = N ∪ {0} be a set of vertices where N = {1, 2, . . . , n} is a finite set

of players and 0 is the source they need to connect to.

Let C = (cij)i,j∈N0 be the cost matrix , where cij ∈ R+ represents the

connection cost between vertices i and j. We assume, as usual, that cii = 0

7

                  



and cij = cji for all i, j ∈ N0. We denote the set of all cost matrices on

N as CN . A minimum cost spanning tree problem, briefly mcstp, is a pair

(N0, C).

A network g over N0 is a subset of {(i, j) : i, j ∈ N0}. The elements of

g are called edges. We assume that the edges are undirected, i.e. (i, j) and

(j, i) represent the same edge.

Given a network g and a pair of vertices i and j, a path from i to j in

g is a sequence of distinct vertices {i0, . . . , il} satisfying i = i0, j = il and

(ih−1, ih) ∈ g for all h ∈ {1, 2, . . . , l}.
A spanning tree over N0 is a network t such that for all i, j ∈ N0 there

exists a unique path in t from i to j. Let T N0 denote the set of all spanning

trees over N0. Given t ∈ T N0 , we define the cost associated with t in (N0, C)

as

c (N0, C, t) =
∑

(i,j)∈t
cij .

When there is no ambiguity, we write c(t) instead of c(N0, C, t).

A minimum cost spanning tree for (N0, C), briefly an mt, is a spanning

tree t∗ ∈ T N0 such that c(t∗) = mint∈T N0 {c(t)}. Given a mcstp (N0, C), an

mt always exists, but it may not be unique. We denote the cost associated

with any mt on (N0, C) as c(N0, C).

There are several algorithms in the literature to construct an mt. Prim

(1957) provides one. Sequentially, the players connect, either directly or

indirectly to the source. At each stage, we add one of the cheapest edges

between the connected and the unconnected vertices.

Example 2.1 Consider the mcstp (N0, C) with N = {1, 2, 3} and a cost

matrix C ∈ CN satisfying c12 < c13 < c23 < c01 < c02 < c03. The Prim’s

algorithm proceeds as follows: At stage 1, the edge formed is (0, 1), because

this is the cheapest one between a connected vertex (the source), and a non-

connected one (players in N). At stage 2, the edge formed is (1, 2) because
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this is the cheapest one between a connected vertex (the source and player 1)

and a non-connected one (players 2 and 3). At stage 3, the edge formed is

(1, 3) because this is the cheapest one between a connected vertex (the source

and players 1 and 2) and a non-connected one (player 3). The mt formed

is then {(0, 1), (1, 2), (1, 3)}, which in this example is unique.

3

2

1 0

c13

c01

c02

c03

c12

c23

3

2

1 0

c12

c13

c01

Given S ⊂ N , we denote the restriction to S of the mcstp (N0, C) as

(S0, C), and the cost associated with any mt on (S0, C) as c(S0, C); that is,

c (S0, C) is the cost of connection of the players in S to the source.

Given N a finite set of players, a cooperative cost game for N is given

by a characteristic function v : 2N → R where v(S) ∈ R for each S ⊆ N

represents the cost of providing service to players in S. Moreover, v(∅) = 0,

i.e., it is costless to provide no service.
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For each minimum cost spanning tree problem (N0, C), we construct an

associated cooperative cost game vC given by vC(S) = c (S0, C) for each

S ⊆ N, where the worth of a coalition S depends on vertices only in S,

i.e., those vertices outside S are unavailable. This approach is pessimistic

because each coalition S should build their network without counting with

players in N \ S.

Example 2.2 With the data in Example 2.1, the cost game vC is given by

vC ({i}) = c0i for all i ∈ N , vC ({1, 2}) = c01 + c12, vC ({1, 3}) = c01 + c13,

vC ({2, 3}) = c02 + c23, and vC(N) = c01 + c12 + c13.

Nevertheless, we may consider an optimistic approach by defining for

each S, the cost matrix CS given by cSij = cij for all i, j ∈ S and cSi0 =

min {cij : j ∈ N0 \ S} for all i ∈ S. This formulation means that each

coalition S can build a network assuming that players in N \ S are al-

ready connected. The cooperative cost game v+
C is then defined where

v+
C (S) = c

(
S0, C

S
)

for all S ⊆ N . Bergantiños and Vidal-Puga (2007b)

are the first to propose this alternative associated cooperative cost game

v+
C . See Christian Trudeauand Vidal-Puga (2020) for other possible associ-

ated cost games for (N0, C).

Example 2.3 With the data in Example 2.1, the optimistic cost game v+
C

is given by v+
C ({1}) = v+

C ({2}) = c12, v+
C ({3}) = c13, v+

C ({1, 2}) = c12 + c13,

v+
C ({1, 3}) = c13 + c12, v+

C ({2, 3}) = c12 + c13, v+
C (N) = c01 + c12 + c13.

Let ΠN be the set of orders π : {1, . . . , n} → N . For simplicity, we denote

π(k) as πk for all k ∈ {1, . . . , n}. Then, given some π ∈ ΠN , the marginal

contributions payoff allocation of the optimistic game v+
C with order π is mπ

given by mπ
π1 = v+

C ({π1}) and, for k = 2, . . . , n,

mπ
πk

= v+
C ({π1, π1, . . . , πk})− v+

C ({π1, π1, . . . , πk−1}) .
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A rule is a function that assigns to each mcstp a payoff allocation. Notice

that a payoff corresponds to each player whereas a payoff allocation is a

vector whose coordinates are the respective players’ payoffs.

The folk rule (Bergantiños and Vidal-Puga, 2007a), provides a criterion

for sharing the cost of an mt between the players. The definition of the folk

rule is made by applying the Prim’s algorithm to an irreducible3 cost matrix

C∗. Remarkably, the folk rule can also be defined as the Shapley value of

the optimistic game v+
C or as the Shapley value of the pessimistic cost game

v∗C obtained from the irreducible cost matrix.4

Example 2.4 Since the Shapley value is the average of marginal contri-

butions payoff allocations, we can obtain the folk rule by computing these

payoff allocations in the optimistic game v+
C for each possible order. Table

1 represents these vectors with the data in Example 2.1 and the average of

these contributions that corresponds with the folk rule.

3 The non-cooperative extensive game

We define the non-cooperative game inductively as follows:

• At the first stage (k = 0), nature chooses some order π ∈ ΠN , being

each π chosen with the same probability 1
n! . We define Ω0

i = {i} for

all i ∈ N0.

• At stage k = 1, player π1 chooses an action from the following set:

Sπ1 =
{

(i, j) : i ∈ Ω0
π1 , j ∈ N0 \ Ω0

π1

}
.

That is, player π1 selects edge sπ1 = (i1 = π1, j1) ∈ Sπ1 to be built.

Once done, vertices i1 and j1 become connected, and we set Ω1
i1

=

Ω1
j1

= {i1, j1}. We also define Ω1
i = Ω0

i for any other i ∈ N0 \ {i1, j1}.
3The irreducible cost matrix C∗ is the corresponding matrix such that no edge cost

can be reduced without reducing the cost of the grand coalition to connect to the source.
4See Bergantiños and Vidal-Puga (2007a,b) for details and additional properties.
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Table 1: Marginal contributions of Example 2.1

order player 1 player 2 player 3

[123] v+
C ({1}) = c12

v+
C ({1, 2})− v+

C ({1})
= c13

v+
C (N)− v+

C ({1, 2})
= c01

[132] v+
C ({1}) = c12

v+
C (N)− v+

C ({1, 3})
= c01

v+
C ({1, 3})− v+

C ({1})
= c13

[213]
v+
C ({1, 2})− v+

C ({2})
= c13

v+
C ({2}) = c12

v+
C (N)− v+

C ({1, 2})
= c01

[231]
v+
C (N)− v+

C ({2, 3})
= c01

v+
C ({2}) = c12

v+
C ({2, 3})− v+

C ({2})
= c13

[312]
v+
C ({1, 3})− v+

C ({3})
= c12

v+
C (N)− v+

C ({1, 3})
= c01

v+
C ({3}) = c13

[321]
v+
C (N)− v+

C ({2, 3})
= c01

v+
C ({2, 3})− v+

C ({3})
= c12

v+
C ({3}) = c13

Average
2c01 + 3c12 + c13

6

2c01 + 3c12 + c13

6

2c01 + 4c13

6
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• In general, at stage k ≥ 1, player πk chooses an action from the set:

Sπk =
{

(i, j) : i ∈ Ωk−1
πk

, j ∈ N0 \ Ωk−1
πk

}
.

That is, player πk selects some edge sπk = (ik, jk) ∈ Sπk to be built.

Once this action is done, vertices ik and jk become connected and

we set Ωk
ik

= Ωk
jk

= Ωk−1
ik
∪ Ωk−1

jk
. We also define Ωk

l = Ωk
ik

for all

l ∈ Ωk−1
ik
∪ Ωk−1

jk
, and Ωk

l = Ωk−1
l in another case.

• At stage k = n + 1, the game finishes and the payoff for each player

i ∈ N is given by

ui(si) = csi .

That is, player i pays the cost of the edge she selected.

Notice that, in the first stage, for each i ∈ inN , Ω0
i is a singleton because

player i is not connected to anyone else.

Following Maschler et al. (2013), we define the non-cooperative game in

extensive form with perfect information and chance moves as:

Γ = (N,V,E, x0, (Vi)i∈N0 , (px)x∈V0 , u)

where

• N = {1, 2, . . . , n} is the set of players.

• V is the set of nodes in the game tree.5 Each v ∈ V is determined by

the following triple (k, π, fπk ) :

– stage k ∈ {0, 1, . . . , n+ 1},

– π ∈ ΠN that determines the order (only for k > 0),

– some function fπk : {1, . . . , k − 1} → N ×N0 such that fπk (l) ∈
Sπl for all l = 1, . . . , k − 1.

5To avoid ambiguities, we use the terms nodes and arcs in the game tree, as opposed

to vertices and edges defined for the spanning tree.
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Therefore, for k = 1, . . . , n, pairs (π, fπk ) determine the history, i.e.,

the (feasible) choice of each predecessor of πk in π. Hence, the set of

edges already paid, before πk chooses, is

{fπk (π1) , fπk (π2) , . . . , fπk (πk−1)} .

Notice that this set is empty for k = 1. For k = n + 1, the node is a

terminal one. If k = 0, it is nature’s decision node, and πk’s otherwise.

• E ⊂ V × V is the set of arcs. For a node v determined by (k, π, fπk ),

arc (v, v′) belongs to E when v′ is determined by
(
k + 1, π, fπk+1

)
such

that fπk+1(l) = fπk (l) for all l < k.

• x0 is the node determined by k = 0.

• (Vi)i∈N0 is a partition of the set of non-terminal nodes, and it deter-

mines which player (or nature, when i = 0) makes the decision at that

node. In particular, V0 = {x0} and, given i ∈ N , we have v ∈ Vi when

v is determined by (k, π, fπk ) with k ∈ {1, . . . , n} and πk = i.

• p0 is a probability distribution over the arcs emanating from x0. In

particular, p0(e) = 1
n! for each such an arc e.

• u is the function that associates each terminal node with a game out-

come. In particular, if the terminal node is given by
(
n+ 1, π, fπn+1

)
,

the game outcome is the payoff allocation
(
cfπn+1(k)

)
k∈{1,...,n}

provided

by the spanning tree t =
{
fπn+1 (k)

}
k∈{1,...,n}.

Given π ∈ Π, we denote as Γπ the subgame that begins after nature chooses

π.

Example 3.1 With the data in Example 2.1, let us now construct Γπ with

πi = i for all i. Initially, Ω0
i = {i} for all i ∈ N0.

• At the first stage, player 1 decides the edge she wants to pay, s1 ∈
{(0, 1), (1, 2), (1, 3)}. Say, for example s1 = (1, 2).

14

                  



1 2
c12

Hence, Ω1
1 = Ω1

2 = {1, 2},Ω1
3 = {3} and Ω1

0 = {0}.

• Now, player 2 decides which edge s2 to pay by taking into account s1.

Assuming that s1 = (1, 2), we have s2 ∈ {(0, 1), (0, 2), (1, 3), (2, 3)},
i.e., player 2 cannot choose (1, 2) (already taken) but she can choose

(0, 1) or (1, 3) (because she is already connected to player 1). Say, for

example, s2 = (1, 3).

3

2

1c13

c12

Hence, Ω2
1 = Ω2

2 = Ω2
3 = {1, 2, 3} and Ω2

0 = {0}.

• Finally, player 3 decides which edge s3 to pay by taking into ac-

count s1 and s2. Assuming s1 = (1, 2) and s2 = (1, 3), we have

s3 ∈ {(0, 1), (0, 2), (0, 3)} . In either case, the three players get con-

nected to the source simultaneously through a spanning tree. Say, for

example, s3 = (0, 1).

3

2

1 0

c12

c13

c01

Hence, Ω3
1 = Ω3

2 = Ω3
3 = Ω3

0 = N0.

15

                  



0

1 1 2 2 3 3

123 132 213 231 312 321

2 2 2

(0, 1) (1, 2) (1, 3)

3 3 3 3

(0, 1) (0, 2) (1, 3) (2, 3)

(c12, c13, c01)

(0, 2) (0, 3)(0, 1)

Figure 1: Game tree in Example 3.1. The digit at each non-terminal node

(squared) represents the player (or nature) that makes the decision at that

particular node.

Figure 1 depicts the nodes in V and the arcs in E that follow this partic-

ular path. The formed spanning tree determines the payoffs. For instance,

if the players select their cheapest available options, the spanning tree is

{(1, 2), (1, 3), (0, 1)} and the cost of each edge is distributed in the following

way: Player 1 pays cs1 = c12; player 2 pays cs2 = c13; and player 3 pays

cs3 = c01. Table 2 represents the payoff allocation for each π, assuming each

player selects her cheapest available option.

Given the sequential structure of Γπ, we will study the subgame perfect

equilibria. The equilibrium strategies should specify optimal behavior from

any information node up to the end of the game. That is, any player’s

strategy should prescribe what is optimal from that node onwards given the

other players’ strategies.
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Table 2: Payoff allocation with the cheapest available option.

order mt in C player 1 player 2 player 3

[123] {(1, 2) , (1, 3) , (0, 1)} c12 c13 c01

[132] {(1, 2) , (1, 3) , (0, 1)} c12 c01 c13

[213] {(1, 2) , (1, 3) , (0, 1)} c13 c12 c01

[231] {(1, 2) , (1, 3) , (0, 1)} c01 c12 c13

[312] {(1, 3) , (1, 2) , (0, 1)} c12 c01 c13

[321] {(1, 3) , (1, 2) , (0, 1)} c01 c12 c13

Average
2c01 + 3c12 + c13

6

2c01 + 3c12 + c13

6

2c01 + 4c13

6

As Example 3.1 shows, the only equilibrium payoff in Γπ is fπ
−1

, where

π−1 ∈ ΠN is the order defined as π−1
k = πn−k+1. Table 1 and Table 2 show

that the marginal contributions allocation of the optimistic game v+
C coin-

cides with the payoff allocation when players select their cheapest available

edge. Hence, in this example, the expected equilibrium payoff allocation in

Γ is the one provided by the folk rule.

Our main result establishes that this happens in general.

Theorem 3.1 Given π ∈ ΠN , there exists a unique subgame perfect equi-

librium payoff allocation for Γπ, given by the marginal contributions payoff

allocation of the optimistic game v+
C with order π. Moreover, this equilibrium

is strong and uses undominated strategies.

Proof. We will prove that for all Γπ, each player πk has a strategy that

assigns her a cost so that she pays at most

mπ
πk

= v+
C ({π1, . . . , πk})− v+

C ({π1, . . . , πk−1}),
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independently of the strategies of the other players. In other words, the

payoff for each player is bounded from above independently of the strategies

of the other players. Also, this strategy is protected from any coordinated

actions by the other players, who cannot extract a higher payment from her.

Thus, this strategy profile constitutes a strong subgame perfect equilibrium

and the strategies are undominated.

By a standard backwards argument, it is clear that there exists a sub-

game perfect equilibrium for each Γπ and, moreover, each player will select

one of her cheapest available edges. Hence, even though the subgame per-

fect equilibrium may not be unique, the subgame perfect equilibrium payoff

is. Assume w.l.o.g. πi = i for all i ∈ N . Hence, at the first stage, player

1 would choose one of her cheapest adjacent edges fπ1 (1) = (1, i) for some

i ∈ N0 \ {1}, the cost of which is precisely v+
C ({1}) = c

{1}
01 .

For clarification purposes, we analyse stage 2. At this stage, player 1 has

selected some edge (1, j1) and player 2 would choose her cheapest adjacent

edge (2, j2), whose cost is c
{2}
02 , unless 2 = fπ1 (1) and j2 = 1. In this latter

case, player 2 cannot choose edge (2, 1), but other edges (those adjacent to

player 1) would be available, and in particular the chosen edge would cost

min
{
c
{1,2}
01 , c

{1,2}
02

}
. We show that, in either case, player 2 pays at most

v+
C ({1, 2})− v+

C ({1}). We distinguish two cases:

a) If fπ1 (1) 6= 2, or fπ1 (1) = 2 and j2 6= 1, then player 2 chooses her

cheapest adjacent edge (2, j2) and pays c2j2 = c
{2}
02 . In this case,

v+
C ({1, 2}) = min

{
c12 + c

{1}
01 , c12 + c

{2}
02 , c

{1}
01 + c

{2}
02

}

v+
C ({1}) = c

{1}
01

and

v+
C ({1, 2})− v+

C ({1}) = min
{
c12, c12 + c

{2}
02 − c

{1}
01 , c

{2}
02

}
= c
{2}
02

so player 2 pays c2j2 = v+
C ({1, 2})− v+

C ({1}).
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b) If fπ1 (1) = 2, and j2 = 1, then player 2 selects the edge that minimizes

cij , i ∈ {1, 2}, j ∈ N0 \ {1, 2}. We have two subcases:

• c{1}01 = c12, then player 2 pays min
{
c
{1,2}
01 , c

{1,2}
02

}
= v+

C ({1, 2})−
v+
C ({1}).

• c{1}01 < c12, then player 2 pays c
{1}
01 < v+

C ({1, 2})− v+
C ({1}).

We now prove the result in general. Assume that we are in stage k, so

that player πk = k chooses an edge to be built. Notice that we do not assume

that the previous players, denoted as S = {1, . . . , k − 1}, have followed

any particular strategy profile. Player k would choose one of her cheapest

adjacent edges, that may connect her to a previous player (some j ∈ S)

or not (some j /∈ S ∪ {k}). The cost of this edge is ckjk = min
i∈N0,i 6=k

{cki}.
However, as in the case of stage 2, this edge might be available or not. We

distinguish the following possibilities:

a) If k /∈ ⋃i∈S Ωk−1
i , then we have three subcases:

• If jk ∈ S and (k, jk) is not one of the cheapest edges that connects

a vertex in S with a vertex in N0 \S, then v+
C (S∪{k}) = v+

C (S)+

ckjk , so player k would pay ckjk = v+
C (S ∪ {k})− v+

C (S).

• If jk ∈ S and (k, jk) is one of the cheapest edges that connects a

vertex in N0 \S with a vertex in S; that is, then there is some mt

tS in S0 such that k is connected with players Sk ⊆ S throughout

tS . In this case,

v+
C (S ∪ {k}) = v+

C (S) + min
i∈Sk∪{k},l /∈Sk∪{k}

{cil}

and min
i∈Sk∪{k},l /∈Sk∪{k}

{cil} ≥ ckj . So player k would pay

ckjk ≤ min
i∈Sk∪{k},l /∈Sk∪{k}

{cil} = v+
C (S ∪ {k})− v+

C (S).

• If jk /∈ S, then v+
C (S ∪ {k}) = v+

C (S) + ckjk , so player k would

pay ckjk = v+
C (S ∪ {k})− v+

C (S).

19

                  



b) If k ∈ ⋃
i∈S Ωk−1

i , this means that edge (r, k) has been built for

some r ∈ S, so k ∈ Ωk−1
r . If there is jk ∈ N0 \ Ωk−1

r such that

ckjk = min
i∈N0,i 6=k

{cki}, edge (k, jk) is available for player k, and the

same reasoning as in the previous case applies.

c) Finally, it remains the case in which k ∈ ⋃i∈S Ωk−1
i and for each jk

such that ckjk = min
i∈N0,i 6=k

{cki}, the edge (k, jk) is not available for

player k; that is, k, jk ∈ Ωk−1
r , for some r ∈ S. Then, player k would

choose one of the cheapest available edges (j, l) with j ∈ Ωk−1
r and

l /∈ Ωk−1
r , so that

cjl = min
i∈Ωk−1

r ,i∗ /∈Ωk−1
r

{cii∗}. (1)

The cost of this edge and the final payoff for player k is cjl.

Let t∗ be an mt, and let t∗S = {(i, i∗) ∈ t∗ : i, i∗ ∈ S} be the restriction

of t∗ to edges whose both vertices are in S. Clearly, t∗S induces a

partition {S1, . . . , Sλ} of S into λ ≥ 1 connected components. For

each α = 1, . . . , λ, let (iα, i
∗
α) ∈ t∗ such that iα ∈ Sα, i∗α /∈ Sα, and

ciαi∗α = min
i∈Sα,i∗ /∈Sα

{cii∗} .

Clearly, i∗α /∈ S for all α (however, i∗α = i∗α′ is possible for some α 6= α′).

Let t = t∗S ∪ {(iα, i∗α)}λα=1. It is not difficult to check that

v+(S) =
∑

(i,i∗)∈t
cii∗ . (2)

We have two subcases:

• If k = i∗α for some α, let Ŝ =
⋃
α:k=i∗α

Sα. Then,

v+(S ∪ {k}) = v+(S) + chh∗

where (h, h∗) ∈ t∗, h ∈ Ŝ ∪ {k}, h∗ /∈ Ŝ ∪ {k}, and

chh∗ = min
i∈Ŝ∪{k},i∗ /∈Ŝ∪{k}

{cii∗} .
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So, mπ
k = chh∗ .

Let (i, i∗) be the first edge in the (unique) path in t from k to l

such that i ∈ Ωk−1
r and i∗ /∈ Ωk−1

r . Under (1), cjl ≤ cii∗ . Under

(2), cii∗ ≤ chh∗ . Hence, cjl ≤ chh∗ = v+
C (S ∪ {k})− v+

C (S).

• If k 6= i∗α for all α,

v+ (S ∪ {k}) = v+(S) + ckk∗

where (k, k∗) ∈ t∗ and

ckk∗ = min
i 6=k
{cki} = v+({k}).

So, mπ
k = ckk∗ . In case k∗ /∈ Ωk−1

r , under (1) we deduce cjl ≤
ckk∗ = v+

C (S ∪ {k}) − v+
C (S). In case k∗ ∈ Ωk−1

r , let (i, i∗) be

the first edge in the (unique) path in t∗ from k to l such that

i ∈ Ωk−1
r and i∗ /∈ Ωk−1

r . Under (1), cjl ≤ cii∗ . Under (2),

cii∗ ≤ ckk∗ . Hence, cjl ≤ ckk∗ = v+
C (S ∪ {k})− v+

C (S).

Finally, observe that given an mt t∗ in N0, with cost c(t∗), the following

relations are fulfilled in equilibrium, where f(k) = fπk+1(k) denotes the edge

selected by player k

c(t∗) ≤
n∑

k=1

cf(k) ≤
n∑

k=1

v+
C ({1, . . . , k})− v+

C ({1, . . . , k − 1}) = c(t∗)

and the equality in the above relationships is obtained, cf(k) = v+
C ({1, . . . , k})−

v+
C ({1, . . . , k − 1}), for all k ∈ N .

The next two corollaries present properties derived from our main result.

Corollary 3.1 The folk rule arises as a unique expected subgame perfect

equilibrium payoff allocation for Γ.

Corollary 3.2 A minimum cost spanning tree always arises in any subgame

perfect equilibrium for Γ.
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4 Concluding remarks

The operations research literature has explored the design of efficient al-

gorithms to build optimal trees, as well as their computational complex-

ity. More recently, the cost-sharing aspect has received increasing attention,

from both the operational research and the economics literature. The idea is

that the players involved are responsible for paying the total cost of the im-

plementation of an optimal tree. This idea leads to taking into account the

players’ incentives to guarantee the construction of such an optimal network.

Within this context, the problem of finding an optimal network structure

does not rely only on its total cost but also on the amount that should be

charged to each player.

Our non-cooperative game gets the folk rule in expected terms. Fol-

lowing Bag and Winter (1999) and Mutuswami and Winter (2002), we can

achieve a complete implementation by adding a previous stage in which

one of the players, chosen at random, proposes a spanning tree and a cost-

sharing allocation. If all the other players accept this proposal (they vote

sequentially in any order), both the tree and the cost-sharing allocation are

imposed, and the game finishes. In case any of them rejects the proposal,

they play game Γ in the known terms. Assuming either that: a) players

are risk-averse, or b) they are risk-neutral but prefer to finish as soon as

possible, then the only final cost allocation is the one given by the folk rule.

Another relevant characteristic of our approach is that the equilibrium

strategy profiles do not need to anticipate the moves of the following players

in the order. Hence, we can define the non-cooperative game by choosing

only the first player at random; after this player chooses her available edge,

another player is chosen at random, and so on. Moreover, the optimal

strategy is to choose the cheapest available edge. Hence, the subgame perfect

equilibrium is also a strong perfect equilibrium and an equilibrium with

dominant strategies.
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