
73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright 2022 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-22, D1,4A,10,x69056 Page 1 of 7

IAC-22,D1,4A,10,x69056

A ROS/Gazebo-based framework for simulation and control of on-orbit robotic systems

J. L. Ramóna*, J. Pomaresa, L. Felicettib

a University of Alicante, San Vicente del Raspeig, Alicante, 03690, Spain, jl.ramon@ua.es, jpomares@ua.es
b Cranfield University, Cranfield, MK43 0AL, United Kingdom, Leonard.Felicetti@cranfield.ac.uk

* Corresponding Author

Abstract

The use of simulation tools such as ROS/Gazebo is currently common practice for testing and developing control

algorithms for typical ground-based robotic systems but still is not commonly accepted within the space community.

Numerous studies in this field use ad-hoc built, but not standardized, not open-source, and, sometimes, not verified

tools that complicate, rather than promote, the development and realization of versatile robotic systems and algorithms

for space robotics. This paper proposes an open-source solution for space robotics simulations called OnOrbitROS.

This paper presents a description of the architecture, the different software modules, and the simulation possibilities

of OnOrbitROS. It shows the key features of the developed tool, with a particular focus on the customization of the

simulations and eventual possibilities of further expansion of the tool. In order to show these capabilities, a computed

torque-based controller for the guidance of a free-floating manipulator is proposed and simulated using the

ROS/Gazebo-based framework described in the paper.

Keywords: space robot, humanoid robot, robot control, ROS.

Acronyms/Abbreviations

Robotic Operating System (ROS), On-Orbit

Servicing (OOS), Open Dynamics Engine (ODE),

Dynamic Animation and Robotics Toolkit (DART).

1. Introduction

Space missions will require extensive use of robots

for active debris removal, on-orbit servicing, assembling

and manufacturing applications. The development and

testing of such systems often require an iterative

approach that, together with the technical difficulties of

reproducing space conditions in ground-based test

facilities and the high costs associated with these tests,

discourage the utilization of hardware-based approaches

in the earlier stages of the design. Using simulation tools

such as ROS/Gazebo is currently common practice for

testing and developing control algorithms for typical

ground-based robotic systems but still is not widely

accepted within the space community. One of the reasons

for this is that this kind of development environment does

not allow for a complete and realistic simulation of the

space conditions, such as micro-gravity and frictionless

conditions. However, ROS is being included in several

space robotics systems in order to have versatile robotic

systems and algorithms developed for space robotics.

The use of ROS in space began with Robonaut 2,

developed by NASA and General Motors. It was the first

humanoid robot on the ISS in 2011 [1]. NASA also uses

ROS in other space robots, such as Astrobee [2][3][4].

None of these robots was tested in an extravehicular

activity scenario, but future robotic missions, such as

NASA's Valkyrie, will have improved autonomy and be

tested outside the ISS [5]. It is worth mention other

developments based on Gazebo that allows the

simulation of space and planets conditions such as the

moon terrain [6]. Additionally, several different tools and

libraries are now available as open source to solve

different problems in space. For example, in [7] a model-

free hierarchical decoupling optimization algorithm to

realize 6D-pose multi-target trajectory planning for the

free-floating space robot is presented.

Keeping in mind this panorama, the solution

proposed in this paper moves towards developing a

unified open-source tool for space-robotic simulations

[8]. The adopted framework is based on ROS, an open-

source meta operative system to develop robot

applications, combined with Gazebo, a tool to simulate

populations of robots in customized environments. Such

tools were modified to include and reproduce the

principal environmental conditions that eventual space

robots and manipulators could experience in an OOS

scenario. This solution allows for the simulation of

complex space robotic systems and at the same time takes

advantage of the number of packages already developed

in ROS for control, vision, teleoperation and modelling

tools. In this way, it is possible to simulate robotic

operation for OOS, without the need of ad-hoc coded

simulation tools but relying on a well-validated tool,

following the ROS principle of "Don’t reinvent the
wheel”. The paper presents a description of the
architecture of the different software modules. It shows

the key features of the developed tool, with a particular

focus on the customization of the simulations and

eventual possibilities of further expansion of the tool.

mailto:jl.ramon@ua.es
li2106
Text Box
© 2022 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright 2022 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-22, D1,4A,10,x69056 Page 2 of 7

The remaining part of the paper is divided into the

following sections. Section 2 describes the main

characteristics of ROS and Gazebo and their properties to

simulate space robotics. Section 3 shows the main

modules of OnOrbitROS. Specifically, it describes the

architecture and the main options to simulate robots in

different orbital conditions. A computed-based torque

controller for the guidance of free-floating manipulators

is presented in Section 4. This controller will be

simulated using OnOrbitROS and the main results are

shown in Section 5. Concluding remarks and future areas

of development are presented in Section 5.

2. ROS and Gazebo properties for space simulation

 This section presents the main properties of ROS and

Gazebo for their use in space robotics. The main

limitations of these tools when are applied to space

robotics are also described.

2.1 ROS

ROS was initially developed in 2007 by the Stanford

Artificial Intelligence Laboratory as part of the project

Stanford Artificial Intelligence Robot, a mobile robot

with a manipulator. From 2008, Willow Garage

continues the development, using ROS for their robot

PR2, a robot with two manipulators. Nearly 55 percent of

the world's robots will include a ROS package by 2024.

Currently, ROS is a standard in robot programming [9].

ROS is an open software project with a wide community

of developers around the world, universities, research

centres, companies, etc.

In order to make a robotic platform functional it is

necessary to develop a large amount of software. The

typology of software to be developed spans from

hardware-specific, such as the control of the servomotor

drivers, through software related to the perception of the

workspace by the sensors, to the high-level algorithms of

navigation, computer vision, trajectory control, etc.

Keeping in mind these needs, the creators of ROS tried

to solve two main problems.The first is to create code

with the right structure and modularity to avoid having to

develop new code when hardware or robot morphology

changes. That is, being able to reuse already developed

modules in future projects. The second of the problems is

related to the possibility of sharing code modules

developed by third-parties, with the added advantage of

having code tested by large communities of users. Thus,

much more user experience information is returned, and

a better debugging and evolution of the developed code

is allowed.

Other ROS objectives can be synthetized in the

following points [10]:

• Non-centralized control is distributed in different

modules located on several computers.

• Use of different tools for different aspects during the

process of robot programming: design, debugging,

monitoring, control, simulation, etc.

• Multilanguage development.

• The choice of the programming language should be

based on the language that is more adequate to the

requirements of the module that is being developed

(e.g. the use of c/c++ or Python).

• Code reusability. This refers to the fact that,

habitually, in the software development of a robot,

there are certain parts that are common and that

could be reused in other projects

• Open-source project. This helps the diffusion of the

tool to the research and educational community. So

that such communities might have the opportunity of

extendiding functionalities of the tools, contributing

new modules, and adapting other open-source

projects to ROS.

Such key features ideally make ROS more than a

suitable option also for space robotics applications.

However, several issues limit the utilization of ROS for

the control and simulation of robots in orbit. Specifically,

in such applications, it is required to simulate orbital

conditions, gravity gradient perturbations, free-floating

dynamics conditions, etc., that are not part of the standard

packages included in ROS, while other typical earth-

specific effects, such as wind, gravity, atmospheric

friction and drag etc., are not necessary. This paper

presents a framework called OnOrbitROS that

overcomes such limitations and allows for the simulation

and control of space robots in orbital conditions in a

ROS-based environment. Fig. 1. presents the main

architecture of OnOrbitROS. The different modules will

be described in Section 3.

2.2 ROS Control

One of the packages that is used as the basis for the

implementation OnOrbitROS and the controllers

presented in this paper is ROS Control [11]. ROS Control

is a package that complies with the main ROS directives

due to its possibilities of reuse and expansion while being

independent of the robot properties.

The ROS Control design takes into account that real-

time is necessary to control the robot hardware and that

it needs to be independent from the typology of the robot

used. Therefore, the ROS Control packages can be used

for mobile robots, manipulators, or humanoid robots. At

the same time, the platform offers numerous tools that

make it easy to create customized controllers.

OnOrbitROS integrates the ROS Control packages,

allowing for the definition of space robot controllers

without the modification of ROS Control.

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright 2022 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-22, D1,4A,10,x69056 Page 3 of 7

Additional controllers have been designed to

implement the controllers presented in this paper, taking

into account the specific dynamics of the space robot

manipulators while maintaining the architecture of ROS

Control.

2.3 Gazebo

Gazebo is an open-source simulator that allows for

realistic simulations of robots, environments, and

objects. Gazebo provides the necessary tools not only to

visualize a 3D representation of a robot but also to see its

relationship with a certain workspace and the

manipulation of objects or the interaction with other

robots that coexist in the same environment. All the

simulated objects in Gazebo have mass, speed, friction,

and many other attributes that allow them to react

realistically when pushed, pulled, lifted, etc. [12]. Other

features that make it especially interesting in space

robotics are the possibility of introducing sensors in the

environment, modeling their operation and responding to

the environment, being able to simulate 3D cameras,

force sensors, etc.

Gazebo does not use its own physics engine but rather

implements an interface to be able to use external physics

engines. At the time of writing this paper, Gazebo can use

four different physics engines: ODE, Bullet, Simbody

and DART. Each physics engine has different

characteristics and configuration parameters. There are

numerous studies where comparisons are made among

such engines based on a specific test bench [13]. There

is no physics engine that is better than the others in all

aspects. Thus, depending on the configuration and tests

carried out, the engine that obtains the best results may

vary.

Gazebo allows for easily interchange of them as well

as for setting ad-hoc parameters of each of the physics

engines. A very important feature is that Gazebo allows

the modification and/or extension of the functions of the

physics engines through plugins. OnOrbitRos uses an ad-

hoc developed plugin, called OORplugin and also shown

in Fig. 1, to modify the parameters of the physics engine

used by Gazebo to eliminate effects such as gravity, wind

or magnetism, while applying the torques and forces

corresponding to OOS applications (such as gravity

gradient) and simulating a frictionless environment.

3. OnOrbitROS architecture

This section describes the main properties and

architecture of the ROS framework OnOrbitROS for the

simulation of space robotics.

 Fig. 1 represents the main modules and architecture

of OnOrbitROS. As described in the next paragraphs,

OnOrbitROS allows the simulation of simple orbits and

other more complex orbits by using external libraries or

even trajectories that do not follow a specific orbit.

OnOrbitROS is implemented as a ROS publisher node

that generates the trajectories described by the bodies that

compose the simulation.

Section 3.1 shows the main reference frames

considered to simulate a robotic system by using

OnOrbitROS. Once the references frames have been

defined, the configuration required to simulate the

different kind of trajectories are indicated in Section 3.2.

3.1 Main reference frames

Fig. 2 represents the main coordinate frames of the

simulated OOS scenario. The on-orbit spacecraft is

denoted by target spacecraft and the corresponding

coordinate frame, 𝑭t, is located at its center of gravity.

An additional coordinate frame, 𝑭c , is located at the

center of gravity of the chaser spacecraft. In a robotic

OOS application, a robot can be located in this last

spacecraft.

Fig. 1. OnOrbitROS architecture

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright 2022 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-22, D1,4A,10,x69056 Page 4 of 7

Fig 2. OOS scenario and main reference frames

On the other hand, it is necessary to define an inertial

reference frame. This reference frame, commonly known

as Earth-Centered Inertial frame (ECI), is referenced by 𝑭i . The reference frame describing the theoretical

position of the orbit described by a spacecraft is known

as LVLH and is defined by 𝑭l. As shown in Fig. 2, the

matrices 𝑹l and 𝒕l represents the rotation and translation

of the LVLH frame with respect the inertial frame. Both

matrices are computed by the module that calculates the

theoretical orbit of the target spacecraft (shown in blue in

Fig. 1, “Trajectory generation”, see also section 3.2).

3.2 Orbit and trajectory modules

OnOrbitROS allows for the simulation of simple

orbits, other orbits by using external libraries or even

trajectories that do not follow a specific orbit:

Simple Orbit. This module can be used for the

generation of trajectories that describe elliptical orbits. It

is the default functioning of OnOrbitROS and it does not

requires any external library. It allows an easy execution

with an optimal implementation in ROS. In this case,

orbital parameters such as the semi major axis, 𝑎 ,

eccentricity, 𝑒, argument of periapsis, 𝜔, right ascension

of ascending node, Ω, inclination, 𝑖, and instant of time

of perigee passage, 𝑡p should be defined and the

simulation is carried on through a simple Keplerian

propagation.

SGP4 Adapter. This module can be used to simulate

other kind of orbits. This module creates an interface to

the spacetrack library [14][15] so that it can obtain the

parameterization from the ROS parameter server, in a

similar way to the module described above, while

publishing the position and orientation (and the

corresponding velocity) of the LVLH frame as

mentioned above.

Custom Path. This module can be used to model

trajectories that do not correspond to an elliptical orbit.

This last module makes use of the KDL library [16] to

generate trajectories based on a series of points by

interpolation between them by splines. In this case, a

series of points are introduced by the user in the ROS

parameter server (a data structure composed by a set of

positions, velocities and accelerations, and the time

instant in seconds to achieve each pose), and the Custom

Path module generates the interpolated trajectory.

All the previous information is provided by the user

in the YAML configuration file and stored in the ROS

Parameter Server. The ROS Parameter server is common

to all nodes and this allows for sharing parameters

between different nodes. The user defines the orbit or

trajectory that best fits the trajectory to be modelled in

the launch file, and the Publisher Node instantiates the

corresponding object.

4. Robot Control and OnOrbitROS

In order to show the capabilities of the tool, a

simulation of an on-orbit operation is presented in this

and the next section. Specifically, this section describes

the implementation and simulation of a computed torque-

based controller in a free-floating manipulator using

OnOrbitROS.

The joint coordinates of the manipulator are

represented by 𝒒 ∈ ℜn. This manipulator is located in a

base spacecraft. A coordinate frame, B, is located at the

centre of mass of the spacecraft. Its position and

orientation are represented by [𝒓𝑇 , 𝜽𝑇]𝑇 with respect the

earth centred inertia coordinate frame. 𝜽 contains the

yaw, pitch, roll Euler angles representing the orientation

of frame B with respect to the inertial coordinate frame

The system dynamics of the manipulator can be

represented in the following form:

 𝝉 = [𝑴𝑏𝑏 𝑴𝑏m𝑴𝑏m𝑇 𝑴mm] [𝒓̈𝜽̈𝒒̈] + [𝒄𝑏𝒄m] (1)

where 𝝉 is the input vector, 𝑴𝑏𝑏 ∈ ℜ6×6 is the inertia

matrix of the base spacecraft, 𝑴𝑏𝑚 ∈ ℜ6×n is the coupled

inertia matrix of the spacecraft and the manipulator, 𝑴mm ∈ ℜn×n is the inertia matrix of the manipulator; 𝒄𝑏,

and 𝒄m ∈ ℜ6 are a velocity/displacement-dependent,

nonlinear terms for the spacecraft, and manipulator,

respectively.

The dynamic equation in (1) can also be represented

as:

 𝑴∗𝒒̈ + 𝑪∗ = 𝝉∗ (2)

where 𝑴∗∈ ℜn×n is the generalised inertia matrix, 𝑪∗∈ ℜn is the generalised Coriolis and centrifugal vector for

the manipulator arm, defined explicitly as:

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright 2022 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-22, D1,4A,10,x69056 Page 5 of 7

𝑴∗ = 𝑴𝑚𝑚 − 𝑴𝑏𝑚𝑇 𝑴𝑏𝑏−1𝑴𝑏𝑚 (3)

𝑪∗ = 𝒄𝑚 − 𝑴𝑏𝑚𝑇 𝑴𝑏𝑏−1𝒄𝑏 (4)

The linear and angular momenta of the system [𝓵T,ΨT]T
 ∈ ℜ6 can be defined as:

 [𝓵𝜳] = 𝑴𝑏𝑏𝒗𝑏+ 𝑴𝑏𝑚𝒒̇ (5)

where 𝒒̇ ∈ ℜn represents the joint speeds of the arm and 𝒗𝑏 = [𝒓̇𝑇 , 𝝎𝑇]𝑇 . This last vector represents both the

linear and angular acceleration of the base spacecraft.

The control action of the computed torque-based

controller can be obtained taking into account the

dynamics equation indicated in (2) and can be defined by

the following equation:

 𝝉 = 𝑴∗𝑱𝑔+(𝒑̈𝑟 − 𝑱̇𝑔𝒒̇ − 𝒗̇𝑔𝑚) + 𝑪∗ (6)

where 𝑱𝑔 is the so-called Generalized Jacobian Matrix,

that can be obtained by using the following equation:

 𝑱𝑔 = 𝑱𝑚 − 𝑱𝑏𝑴𝑏𝑏−1𝑴𝑏𝑚 (7)

where 𝑱𝑚∈ ℜ6×n is the robot manipulator Jacobian, and 𝑱𝑏∈ ℜ6×6 is the Jacobian of the base spacecraft.

Additionally, the reference acceleration indicated in

Equation (6) can be obtained by:

 𝒑̈𝑟 = 𝒑̈𝑑 + 𝑲𝑑(𝒑̇𝑑 − 𝒑̇) + 𝑲𝑝(𝒑𝑑 − 𝒑) (8)

where 𝒑𝑑, 𝒑̇𝑑, and 𝒑̈𝑑 are the desired position, velocity

and acceleration to be tracked and 𝑲𝑝 and 𝑲𝑑 are

proportional and derivative matrices to be defined.

Finally, the term 𝒗̇𝑔𝑚 in Equation (6) can be computed

by using the method described in [17].

4. Results

This section describes the simulation results obtained

in the use of OnOrbitROS for the simulation of a

humanoid robot (see Fig. 3) during the tracking of

trajectories by using the controller presented in Section

3. Table 1 represents the main properties of the humanoid

robot considered in this section. This table represents a

torso with two manipulators with seven degrees of

freedom whose main kinematic and dynamic parameters

are shown in this table. Only the simulation of an arm is

considered in this Section, so 𝑴𝑏𝑏 is the inertia of the

torso and 𝑴mm the inertia of the simulated arm.

Fig 3. OnOrbitROS simulation of the humanoid robot

To evaluate the tracking controller, the desired

trajectory represented in Fig. 4 is considered (the initial,

intermediate and final positions of the trajectory are

represented in this figure). Only one arm of the humanoid

robot is carrying out the tracking. Specifically, the main

displacement is performed along the x direction of the

robot body coordinate frame (0.5m) while maintaining

the position along y direction and a parabolic trajectory

is performed along the z direction to allow the arm

motion.

Table 1. Kinematic and dynamic parameters of the humanoid robot

 Mass Height

(m)

Inertia (kg∙m2)

 (kg) Ixx Iyy Izz Ixy Ixz Iyz

Body

Parameters

93 0.843 18.6 15.4 4.1 -0.008 -0.027 0.058

 Mass Length

(m)

Inertia (kg∙m2)

 (kg) Ixx Iyy Izz Ixy Ixz Iyz

Link 1 2.741 0.28 0.0124 0.0042 0.0136 3.6e-05 7.1e-05 -0.0002

Link 2 2.425 0.144 0.013 0.0138 0.0049 1.2e-05 -0.0032 -0.0001

Link 3 2.209 0 0.007 0.0069 0.0039 -0.0001 0.0007 0.0004

Link 4 0.877 0.274 0.0025 0.0027 0.0012 0.0001 -0.0003 0.0004

Link 5 1.878 0.265 0.0035 0.0044 0.0023 1.3e-05 1.03e-05 -9.7e-05

Link 6 0.409 0 0.0001 0.00014 0.00015 -8.9e-08 -4.4e-08 4.2e-07

Link 7 0.308 0 0.0003 0.0002 0.00017 -1.6e-06 1.7e-06 -1.2e-05

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright 2022 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-22, D1,4A,10,x69056 Page 6 of 7

The following figures show the main results obtained

during the tracking of the desired trajectory. Fig. 5

represents the desired trajectory (black) and the obtained

trajectory (red) during the tracking. Both trajectories are

almost coincident. To see more clearly the error during

the tracking, Fig. 6 represents the tracking error (position

and attitude respectively). Both these last two figures

show that the tracking error remains limited during the

tracking, and the desired location is correctly achieved by

tracking the desired trajectory.

Fig. 6. Control error during the tracking. a) Position

error. b) Orientation error.

Fig 7 represents the control action generated by the

proposed controller in Equation (6). As it shown, the

torques remain contained in a range of ±1 𝑁𝑚 during the

tracking.

Fig. 7. Control action (torque) during the tracking

6. Conclusions

The use of ROS allows not only the rapid definition

of the robot’s properties, but also the simulation of

complex workspaces with different kind of sensors. This

paper presents a ROS framework for the simulation of

robots on orbit. More specifically, this paper presents the

architecture, main objectives, implementation, and

available options of the OnOrbitROS framework.

OnOrbitROS allows to extend the previous robotics

developments to the specific properties of space robotics.

Additionally, a torque-based controller is presented for

the guidance of free-floating manipulators. This

controller is applied to the guidance of one of the arms of

a humanoid robot simulated using OnOrbitROS, showing

that the tool can be easily be used for simulating and

testing ad-hoc built control strategies for on-orbit

manipulation

Currently, we are working on adding new features to

OnOrbitROS. These include the possibility to set non-

elliptical reference trajectories, the addition of other

different controllers and the inclusion of other

perturbations (e.g. drag forces and torques) into the

physical engine, in addition to the already existing

gravity gradient.

References

[1] M. A. Diftler et al., Robonaut 2 - The first humanoid

robot in space, 2011 IEEE International Conference

on Robotics and Automation, (2011) 2178-2183.

[2] S. Nolet. "The SPHERES Navigation System: from

Early Development to On-Orbit Testing," AIAA

2007-6354. AIAA Guidance, Navigation and

Control Conference and Exhibit. August 2007.

https://doi.org/10.2514/6.2007-6354

[3] M.G. Bualat, T. Smith, E.E. Smith, T. Fong, D.W.

Wheeler. "Astrobee: A New Tool for ISS

Operations," AIAA 2018-2517. 2018 SpaceOps

Conference. May 2018,

https://doi.org/10.2514/6.2018-2517

time (s)

time (s)

o
ri

en
ta

ti
o

n
 e

rr
o

r
(r

ad
)

p
o

si
ti

o
n

 e
rr

o
r

(m
)

time (s)

torque (Nm)

Fig. 4. 3D simulation of the desired trajectory

time (s)

position (m)

x

z

y

Fig. 5. Desired (black) and obtained 3D trajectory

(red) during the tracking

73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.

Copyright 2022 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms

IAC-22, D1,4A,10,x69056 Page 7 of 7

[4] J.L. Ramirez-Riberos, M. Pavone, E. Frazzoli, D.W.

Miller, “Distributed Control of Spacecraft
Formations via Cyclic Pursuit: Theory and

Experiments”, Journal of Guidance, Control, and
Dynamics 2010 33:5, 1655-1669,

https://doi.org/10.2514/1.46511

[5] N. Radford et al., “Valkyrie: NASA’s First bipedal
humanoid robot”, Journal of Field Robotics Vol. 32,
No. 3, 2015, pp. 397-419.

https://doi.org/10.1002/rob.21560.

[6] M. Allan, I. Chen, Gazebo Renders the Moon,

RosCon 2018, Workshop on Lunar Mapping for

Precision Landing (2018).

[7] S. Wang, Y. Cao, X. Zheng, T. Zhang, Collision-

Free Trajectory Planning for a 6-DoF Free-Floating

Space Robot via Hierarchical Decoupling

Optimization, IEEE Robotics and Automation

Letters, 7(2) (2022) 4953-4960.

[8] J. L. Ramon, J. Pomares, L. Felicetti. OnOrbitROS

Github 5 July 2022,

https://github.com/OnOrbitROS/, (accessed

20.07.22).

[9] P. Estefo, J. Simmonds, R. Robbes, J. Fabry. The

Robot Operating System: Package reuse and

community dynamics. The Journal of Systems and

Software, 151 (2019) 226-242.

[10] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T.

Foote, J. Leibs, R. Wheeler, A. Y. Ng. ROS: an

open-source Robot Operating System. ICRA

Workshop onOpen Source Software (2009).

[11] S. Chitta, E. Marder-Eppstein, W. Meeussen, V.

Pradeep, A. Rodríguez, J. Bohren, D. Coleman, B.

Magyar, G. Raiola, M. Lüdtke, E. Fernandez.

ros_control: A generic and simple control

framework for ROS. Journal of open source

software, 2(20), (2017), 456.

[12] N. Koenig, A. Howard. Design and use paradigms

for gazebo, an open-source multi-robot simulator.

2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (2005).

[13] S. J. Chung, N. Pollard. Predictable behavior during

contact simulation: a comparison of selected physics

engines: Predictable behavior during contact

simulation. Computer Animation and Virtual

Worlds, 27 (3-4), (2016) 262-270.

[14] D. Vallado, P. Crawford. SGP4 Orbit Determination,

AIAA 2008-6770. AIAA/AAS Astrodynamics

Specialist Conference and Exhibit. August (2008).

[15] D. Vallado, P. Crawford, R. Hujsak, T.S. Kelso.

Revisiting Spacetrack Report #3," AIAA 2006-

6753. AIAA/AAS Astrodynamics Specialist

Conference and Exhibit. (2006).

[16] R. Smits, KDL: Kinematics and Dinamics Library,

https://www.orocos.org/kdl, (accessed 20.07.22).

[17] N. Kostas, E. G. Papadopoulos, On the Dynamics

and Control of Free-floating Space Manipulator

Systems in the Presence of Angular Momentum

Frontiers in Robotics and AI, 4, (2017).

